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Forceless Sadowsky strips are spherical
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We show that thin rectangular ribbons, defined as energy-minimizing configurations of the Sadowsky functional
for narrow developable elastic strips, have a propensity to form spherical shapes in the sense that forceless solutions
lie on a sphere. This has implications for ribbonlike objects in (bio)polymer physics and nanoscience that cannot
be described by the classical wormlike chain model. A wider class of functionals with this property is identified.
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I. INTRODUCTION

Understanding the configurations and stresses of biopoly-
mers lying on a surface is important in a number of biomolec-
ular processes, including the packing of DNA inside viral
capsids [1], cytokinesis in animal and yeast cells during which
mainly membrane-bound actin filaments provide the forces
necessary for cell division [2], and cell wall synthesis in
bacteria [3,4]. Graphene nanoribbons have also been studied
on surfaces [5] with a view to assembling ribbonlike nanoma-
terials with desirable properties.

A classical theoretical approach to the study of such fila-
mentous objects is to use the wormlike chain (WLC) model
[6] in which the polymer is assumed to have only entropic
bending elasticity (characterising the persistence length). For
biopolymers, like DNA, that also have torsional elasticity,
the torsional directed walk or rodlike chain (RLC) is a more
appropriate model [7,8].

If the biopolymer is ribbonlike, i.e., much thinner than it is
wide, then the polymer essentially behaves as a thin sheet.
Such sheets (e.g., paper) tend to deform isometrically, i.e.,
without stretching. The deformed shape of an intrinsically flat
ribbon is therefore part of a developable surface. Accordingly,
an elastic developable strip model has been proposed for
ribbonlike filaments [9,10]. Since developable surfaces can be
completely reconstructed from the strip’s deformed centerline,
the problem of finding equilibrium solutions for such strips can
be formulated as a variational problem on a space curve for an
energy functional in which the width 2w appears merely as a
parameter [11,12]. In the limit of a narrow strip, w — 0, this
functional reduces to the Sadowsky functional [13,14],

f k*(1 +n)* ds, (1)

where s is arc length, « is the curvature, n = t/k, and 7 is the
torsion of the curve. The straight generators of the surface make
anangle 8 = arctan(1/n) with the tangent to the centerline (see
Fig. 1). More precisely, the Sadowsky functional (1) is valid
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in the limit |wn’| <« 1, which means that w does not have to
be small if the angle the generator makes with the centerline
varies only very gradually with arc length s. A strip deformed
in the shape of a cylinder, for example, which has n" = 0, is
described by Eq. (1) (for arbitrary w). An asymptotic analysis
of the validity of functional (1), in terms of geometrical and
load parameters, is given in [15]. The Sadowsky functional
originated in mechanical studies of Mobius strips [13,14]. The
functional is a singular limit of the finite-width functional near
inflection points of the centerline [11,16,17].

There is a long line of research, stretching back to Man-
ning’s work [ 18], on equilibrium paths of elastic lines on curved
surfaces. Generally, a filament lying on a physical surface
requires a distributed reaction force from the surface onto
the (intrinsically straight) filament. The surface has to be stiff
enough to provide the required force, which will increase with
the curvature of the surface. These external forces acting on
the filament induce internal forces and hence stresses in the
material. For the important ideal model problem of a spherical
surface, for instance, both the WLC and RLC model require
a reaction force [18-21]. Here we show that, remarkably,
Sadowsky strips are spherical if forceless, meaning that no
distributed force is required to constrain them to a spherical
surface. So no tensile or compressive stresses need to be
sustained by the material. We like to speculate that nature
may have found ways to exploit this fact in the interaction
between biofilaments and surfaces or vesicles. By contrast,
we mention the well-known fact that forceless solutions of the
Kirchhoff rod (RLC) are helices (with the straight rod and the
ring as degenerate states), while for the special case of the
Euler elastica (WLC) they are rings (or straight rods).

In fact, the Sadowsky functional is just the simplest func-
tional of a family of functionals whose equilibrium curves are
spherical. Therefore, in the next section we start with the more
general formulation of a geometric variational problem on a
space curve.

II. GEOMETRIC VARIATIONAL PROBLEMS
ON SPACE CURVES

A space curve y: [0,L] — R? without inflection points
is completely characterized (up to Euclidean motions) by its
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FIG. 1. A developable strip is made up of straight generators in
the rectifying plane of tangent ¢ and binormal b to the centerline r.
The generators make an angle 8 with the tangent. n is the principal
normal.

curvature k (s) (> 0) and the ratio n(s) = 7(s)/k(s), where t(s)
is the torsion. We consider functionals on such curves of the
form

L
Uly) = /0 (. ds. 2

Functionals of this type appear in a range of applications. For
instance, the classical case | = «2 gives the Euler elastica used
as amodel for the bending of elastic rods or polymers. The case
| = (Ax + Bn)k gives the isotropic Kirchhoff rod having both
bending and torsional stiffness [22], while [ = (A + Bn?)k?
describes a thin strip whose material frame is locked to the
Frenet frame and which therefore bends only about a single
principal axis [23]. The linear function / = A + Bk + Cr,
meanwhile, which gives rise to generalized (Lancret) helices
(having constant 1), has been proposed for protein chains
[24]. Functionals U as in Eq. (2) also appear in the localized
induction hierarchy, an idealized model of the evolution of
vortex filaments in three-dimensional inviscid incompressible
fluids [22], and its generalizations [25]. The kinematics of
space curves is furthermore related to integrable systems
such as the nonlinear Schrodinger equation and the modified
Korteweg—de Vries equation [26,27].

Critical points of U satisfy the following equilibrium
conditions [28]: (a) balance equations for the components
of the internal force F = (F;,F,,F,)T and moment M =
(M;,M,,M,)T expressed in the Frenet frame {¢,n,b} (tangent,
principal normal, and binormal):

F+wxF=0, )

M+oxM+txF=0, “)

where @ = (kn,0,k)T is the curvature (Darboux) vector in
the Frenet frame and t = (1,0,0)7, and (b) the “constitutive”
relations

10l al nal
My=——\ My=——-—. )
K on oK
The force vector is a constant vector in space, and F? and
F - M are first integrals of Egs. (3) and (4). A further conserved
quantity is the Hamiltonian given by

al
H=x— —1+F,.
oK

The equations can alternatively be derived through Euler-
Poincaré reduction [11] or by direct variation [29-31].

III. FORCELESS SPACE CURVES

We now consider the special case of forceless solutions,
F = O. For such solutions the moment vector is conserved
and the Hamiltonian becomes H = «l, — [. By generalizing
from some of the integrands / in Eq. (2) reviewed above, we
let I be the product of two factors:

l(k,m) = k" p(n), ©)

where n is an arbitrary number (not necessarily an integer)
and p(n) € C? is an arbitrary positive function of its single
argument 7. The corresponding Hamiltonian is H = (n —
Dk p(n) = h = const. For n # 0,1, we have

h 1/n
o= (—) - 0. )
(n—Dpm)

The constitutive equations (5) allow us to solve for two
components of the moment vector,

h 1-1/n
M =|—- ,
f [(n - 1)p] Pn

h 1-1/n
M, = [m} (np —npy).

The remaining component is found by differentiating M, and
using the first component of Eq. (4):

h 1-2/n ) ) 1 )
Mn:(l’l—l) p/n |:ppmy+<;_1)pn:|77

It is easy to check that the above expressions satisfy the
third component of Eq. (4) identically and that the second
component can be written as

h 2/n
A" + A + (m) Ap =0, (8)
1
Ay = pAn [pp,m + (; - 1>p§], )
4 1 2
A= 2/n—1 |:P2Pnrm + (; — 3>ppnp,m =+ 2(; — 1) P3:|,
(10)
Ao = pl(1 +1*)py — nnp]. (1)
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We now recall the criterion for a curve to be spherical.

Theorem [32]. The necessary and sufficient conditions for
a C* regular curve r(s) to lie on a sphere are

(i) the curvature k¥ does not vanish (hence the torsion t is
defined),

(i) there exists a C! function f(s) such that

fz:(l), f+<=o0.
K K

The curve satisfying this criterion lies on a sphere of radius
R = /k~2 + f2.Note that the above theorem does not require
nonvanishing torsion of the curve.

Differentiating the expression for the curvature Eq. (7) we

obtain
N 1n-1\""
(;)=Y—L< h ) I’/ panl -

1
We define f = ﬁ("h;l) /n pl/n—l%n/’
Pu(n)
"

12 . . .
becomes f = (1) o ”_l%n/. Differentiating f with
respect to s and inserting the result into the equation f’ + n =
0, we arrive, after simplification, at a second-order equation
for n:

assuming that

exists and is finite. After substitution of « this

hmn—)()

h 2/n
Bon" + Blrl,2 + (m) By =0, (12)

By = p*"'p,m, (13)

n

2
Bl = Pz/n_z[P(Pnn?? - pr]) + ( - 1>P,2,77:|, (14)

By = nn’. (15)

We can now ask the question, for what p(n) does Eq. (12)
coincide with Eq. (8)? If it does, then solutions of Eq. (8) are
spherical. To answer the question, we match the coefficients
of our two equations, which gives two new equations:

AyBy = AgBo, (16)

A1 By =AQB]. (17)

These are two nonautonomous ordinary differential equations

for p(n).
Equation (16) simplifies to

2 2, 1Y\ o
nppw — 0+ p, +nppy, =0.
Its general solution is
NAY
p(n) = C(ﬁ2 + ;) ,

where C and N are integration constants. Note that the ratio
""T(") is well defined for n = 0. Direct substitution of the above
p(n)into the second condition Eq. (17) reveals that it is satisfied
only for N = n (the arbitrary prefactor constant C is clearly of
no importance). Thus, we conclude that all forceless inflection-
free minimizers of the functional I(x,n) = «" p(n), n # 0,1,

are spherical only for

I(kc,n) = Cx"(1 +n*)", C = const. (18)

The radius of the sphere is R = |"n;l%|, where M? = M,2 +
M? + M} > 0. A special analysis reveals that for n = 1,
Eq. (18) gives, among other solutions, arbitrary planar curves
(n = 0). Forn = 0, Eq. (18) is trivial, but Eq. (6) gives Lancret
helices, for arbitrary nonconstant p.

IV. THE SADOWSKY FUNCTIONAL - FORCELESS
STRIP SOLUTIONS

For n = 2 in Eq. (18) we obtain the Sadowsky functional
Eq. (1):

L
Us(y) = / k(1 + 1) ds. (19)
0
For forceless strips Egs. (3), (4), and (5) reduce to
M =«kM,, M,=«ngMy,—«M, M,=—knM,, (20)

M, = 4den(1+ 1%, My =2k(1 —n*), 1)
while the Hamiltonian is
H =«*(1 + >~ (22)

The remaining normal component of the moment may be
found from the first (or third) equation in (20) and (22):

M, = 4(1 +n*)n'. (23)

Combination with the second equation in (20) and again (22)
then gives

2(1 + 0" +4nn* + hn =0, (24)

where £ is the value of the Hamiltonian. The theorem above
tells us that solutions of this equation represent spherical
curves, i.e., centerlines of narrow forceless rectangular strips
are spherical curves. The radius of the sphere equals R = %
Integrating Eq. (24) once gives the moment first integral

G(n,n) = 4(1 +n*)*(@4n* + h) = M*. (25)

Analysis of the derivatives of G(n,n’) reveals that there always
exists only one critical point at the origin and that it is always
a center point. Therefore, all the orbits in the phase plane are
closed (see Fig. 2).

Further integration of Eq. (25) yields

2 (" 1+n?

+— —  __dn=s5-—1s9,
Vb A= +pP ’

2

where A% = T—h = hR? > 1, the inequality following from
Eq. (25). Evaluation of the integral delivers the final equation

2A [A—1
m[2E<n\/(A— DA+14+n)'V 24 )
( \/ 24 [A— 1)]
_F 77 , —
(A—DA+14+n2)'V 24
[A=1-—n*
— 277 m = :l:\/Z(S - SQ), (26)
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——n(s)

FIG. 2. Phase portrait for Eq. (25) with orbits for M = 2.05,
2.25,3,4,5, and 10 (inner to outer) highlighted (h = 1).

where F(z,k) = [;(1 — k?sin>u)~2 du and E(z,k) = [ (1 —
k? sin? u)% du are the incomplete elliptic integrals of the first
and second kind, respectively (with k the elliptic modulus),
and s¢ is an integration constant. Once this equation is solved
for n, the curvature can be computed as

Vh
1+9?
(@)

1 1.0
0.8 08
0.6 0'6
0 0.4

02
0.2

As follows from Eq. (25), ' goes through a maximum or
minimum when n = 0, while n goes through a maximum or
minimum, 7 = ++/A — 1, when ' = 0. Using this, the period
can be computed from Eq. (26) as

2A|: ( /A—l) ( A—1>:|
T=4,/—|2E{\/— | - K{(\/— | |,

h 2A 2

where K(k) and E(k) are the complete elliptic integrals of
the first and second kind, respectively. The curvature is then
periodic with period T /2. The expression for the Hamiltonian
implies that zeros of 7 correspond to maxima of the curvature,
Kmax = \/ﬁ, while n has extrema at points where « has a
minimum, Kpj, = ‘/TE = % (see Figs. 3 and 4). Note that the
torsion t averaged over a period T is zero. Solutions are
therefore achiral.

We also note that the tangential component of the mo-
ment is proportional to n: M, = 4v/hn. Thus the tangent to
the centerline makes an angle with the moment vector with
cosine equal to M;/M = 2n/A. This implies that the tangent
to the centerline is oriented orthogonally to the fixed axis of
the moment vector at points where n = 0, while the tangent
to the centerline is aligned with the moment vector at points
where n = £A/2. Since —v/A — 1 < n < /A — 1, the latter
occurs at maximum || if A = 2, 1i.e., n = £1 [Fig. 4(a) gives
an example for h = 1, M = 4].

Shapes of strips on the sphere are shown in Figs. 3
and 4. Here the strips are drawn with a small width to illustrate
that they rotate relative to the (imaginary) spherical surface.
The angle y between the normal to the developable surface
of the ribbon at its centerline and the normal to the sphere

(b) (©)

=

[—]}
>
[(—)

@
[}
—)
N

-0.2

FIG. 3. Forceless Sadowsky strip solutions. (Top) Curvature «(s), torsion t(s), and their ratio n(s), s € [0,3T], for (a) M =2.05 (T =
8.91355),(b) M =2.25(T =9.02503), (c) M = 3 (T = 9.44378). (Bottom) Corresponding spherical shapes for s € [0,57 ]. The black arrow

indicates the moment vector (h = 1).
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FIG. 4. Continued from Fig. 3 for (a) M = 4 (T = 9.99339), (b) M = 5 (T = 10.52595), (c) M = 10 (T = 12.91809).

can be found from the equation « cos x = %. We see that at
points of vanishing 1, where the generator is orthogonal to
the centerline, this angle reaches its maximum value, while
it vanishes at points of maximum [7|. In the latter case the
tangent plane to the ribbon’s surface is also tangent to the
sphere.

Strips are generally not closed on the sphere, but periodic
bounadry conditions (in both space and curvature) could be
imposed, which would fix one of the two free parameters
(M, h), leaving a one-parameter family of closed solutions.
Note that these structures would be closed as a strip, since
periodicity of curvature and torsion enforces periodicity of the
Frenet frame and alignment of the end generators. They would
have high-order spatial symmetry, namely, D,; symmetry
(n being a mode number), with planes of reflection symmetry
through the moment vector alternating with axes of  -rotation
symmetry perpendicularly intersecting the central moment
axis and transversely intersecting the symmetry planes. Non-
closed (quasiperiodic) strip solutions, meanwhile, have D,
symmetry. Structures with either of these symmetry groups
must indeed have zero force, as there can neither be a force
component in a plane of reflection symmetry nor along an axis
of rotation symmetry.

V. DISCUSSION

We have shown that a class of energy functionals for elastic
filaments, which includes the Sadowsky energy for a narrow
strip, has spherical forceless extremals. For the Sadowsky case
solutions depend on two parameters: the values of the two
first integrals, i.e., the magnitude of the moment (M) and
the Hamiltonian (&), which is also the (normalized) bending
energy density. The radius of the sphere is %

The class of functionals with this property may be wider.
However, it does not include the corrected Sadowsky func-

tional constructed in [33] (although this correction only af-
fects solutions where |n| > 1, so solutions for which |n| < 1
everywhere are still spherical). Nor does it include the narrow
limit (w — 0) of the functional for annular strips derived
in [34], nor, seemingly, the functional for narrow residually
stressed strips derived in [35]. It would be interesting to find
all functionals of the form (2) (or, more generally, functionals
with [ = I(«k,n,«',n’,...) [28]) with unconstrained spherical
solutions, analogous to all functionals with forceless helical
solutions having been characterized in [24].

We stress that in this paper we have not considered any con-
straint on the strip. In particular, the surface of the strip is not
required to lie in the surface of the sphere, although solutions,
as in Fig. 3(a), that remain close to the equator (i.e., have small
geodesic curvature) rotate out of the surface only very little.
Strips adhered to a spherical surface (similar to the growing
crystals studied in [36]) would obviously have Gaussian
curvature 1/R?, with R the radius of the sphere. The surface
of the strip would then not be developable and therefore not be
described by the Sadowsky functional. However, the Sadowsky
functional can still be expected to provide a good approxima-
tion for the mechanics of a physical ribbon if the stretching en-
ergy U, is much smaller than the bending energy U,. Now, for
an adhered ribbon whose geodesic curvature is much smaller
than its normal curvature, we estimate U, ~ t(w/R)*and U;, &
t3/R?, where t is the thickness of the ribbon (both energies per
unit area). We thus require w/R < t/w (in addition to f /w <
1 for any ribbon model) and we conclude that the (approximate)
validity of the Sadowsky model for such adhered spherical
ribbons does not extend to arbitrarily thin ribbons.
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