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Abstract: 44 

 45 

Background: Data on natural clinical and immunological courses following HIV 46 

seroconversion with CXCR4-tropic or dual mixed (X4/DM) viruses are controversial. We 47 

compared spontaneous immunological outcome in patients harbouring a X4/DM virus at the 48 

time of seroconversion to those harbouring a CCR5-tropic (R5) virus. 49 

 50 

Methods: Data from patients participating in CASCADE, a large cohort collaboration of HIV 51 

seroconverters, and with ≥2 years of follow-up since seroconversion were included. The HIV 52 

envelope gene was sequenced from frozen plasma samples collected at enrolment, and HIV 53 

tropism was determined using Geno2Pheno algorithm (FPR 10%). The spontaneous CD4 T 54 

cell evolution was compared by modeling CD4 kinetics using linear mixed models with 55 

random intercept and random slope. 56 

 57 

Results: 1387 patients were eligible. Median time between seroconversion and enrolment was 58 

one month (range 0-3). At enrolment, 202 of 1387 (15%) harboured a X4/DM-tropic virus. 59 

CD4 decrease slopes were not significantly different according to HIV-1 tropism during the 60 

first 30 months following seroconversion. No marked change in these results was found after 61 

adjusting for age, year of seroconversion, and baseline HIV viral load. Time to antiretroviral 62 

treatment initiation was not statistically different between patients harbouring a R5 (20.76 63 

months) and those harbouring a X4/DM-tropic virus (22.86 months, logrank test p=0.32).  64 

 65 

Conclusion: In this large cohort collaboration, 15% of the patients harboured a X4/DM virus 66 

close to HIV seroconversion. Patients harbouring X4/DM tropic viruses close to 67 

seroconversion did not have an increased risk of disease progression, estimated by the decline 68 

in CD4 T cell count or time to cART initiation.  69 



 
 

Introduction 70 

HIV-1 enters into its target cells through a stepwise process including attachment to CD4 71 

receptor on the cell surface, interaction with cell surface chemokine receptors, and fusion of 72 

the viral envelope and host cell membranes. Viral strains are classified as R5 when they only 73 

use the cysteine-cysteine receptor 5 (CCR5 or R5), X4 when they only use cysteine-X-74 

cysteine receptor 4 (CXCR4 or X4) or X4/DM (dual/mixed) when both R5 and X4 viruses 75 

coexist in blood plasma. HIV transmitted through sexual activity is predominantly R5 tropic, 76 

as semen partly promotes transmission of R5 tropic viruses,1 and because transmission of X4 77 

tropic strains appears to be constrained whatever the route of transmission.2-4 For this reason 78 

HIV variants isolated early in the course of infection use CCR5, along with CD4, to gain 79 

entry into cells,5 while X4-tropic variants emerge late, and have also been associated with an 80 

accelerated decline of CD4 T cell count and progression to AIDS.6,7 R5-tropic viruses are 81 

predominant during primary HIV-1 infection (PHI), although recent findings suggest that the 82 

prevalence of X4-tropic variants can reach up to 16% during PHI.8-10 A rapid progression to 83 

AIDS has been reported in one patient shortly after primary infection with a dual-mixed 84 

X4/DM variant.11 Cross-sectional studies performed at the time of PHI have not reported any 85 

difference in CD4 T cell count in those harbouring a X4 tropic virus compared to those 86 

harbouring a R5 tropic virus.8-10 Longitudinal studies examining differences between R5 and 87 

X4 or dual mixed (X4/DM) viruses with regards to the natural clinical and immunological 88 

courses following HIV seroconversion are scarce and findings are conflicting. While some 89 

suggested that X4-tropic viruses present at PHI increase the risk of immunological 90 

progression,12 others did not.8 The major limitation of these longitudinal studies is their small 91 

sample size. 92 

Here we assessed the impact of the presence of X4/DM variants (determined by genotypic 93 

assay) at the time of seroconversion on the subsequent natural evolution of CD4 T cell count 94 



 
 

and on the time to combined antiretroviral treatment (cART) initiation in the large CASCADE 95 

collaboration cohort.  96 



 
 

Patients and Methods 97 

 98 

CASCADE is a collaboration of 28 cohorts of individuals with well estimated dates of HIV 99 

seroconversion (seroconverters). We used data pooled in September 2014, within EuroCoord. 100 

All collaborating cohorts received approval from their regulatory or national ethics review 101 

boards. Seroconversion dates were estimated as the midpoint between the last documented 102 

negative and first positive HIV antibody test dates for most participants (84.6%) with the 103 

interval between tests being 3 years or less. For the remaining individuals, seroconversion 104 

date was estimated through laboratory methods (PCR positivity in the absence of HIV 105 

antibodies or antigen positivity with four or fewer bands on western blot), or as the date of 106 

seroconversion illness with both an earlier negative and a later positive HIV test done within a 107 

time interval of 3 years or less.13 108 

Data from patients participating in CASCADE were included in the present study if they had 109 

an interval of less than 2 years between a negative/positive ELISA or laboratory evidence of 110 

seroconversion, were enrolled after 1995, and had ≥2 years of follow-up since seroconversion, 111 

were ART-naive at enrolment, and had an available frozen sample within 12 months 112 

following seroconversion while ART-naive. 113 

 114 

The HIV envelope gene was amplified and sequenced from frozen plasma samples collected 115 

at enrolment in the cohort and HIV tropism was determined using Geno2Pheno algorithm 116 

with a false-positive rate (FPR) of 10%. We used specific validated algorithms to predict 117 

tropism of CRF02_AG,14 D15  and CRF01_AE16 subtype viruses. Genotypic prediction of 118 

tropism for other non-B subtype viruses was done similarly to B subtype viruses, according to 119 

the French ANRS algorithm (www.hivfrenchresistance.org). All tropism determinations were 120 

performed in the same Virology Laboratory of Saint-Louis Hospital in Paris, France. 121 

http://www.hivfrenchresistance.org/


 
 

 122 

Patient characteristics at the time of enrolment in the respective cohorts within CASCADE 123 

were compared using the Chi2 test and the Wilcoxon rank-sum test for categorical and 124 

continuous variables according to tropism R5 versus X4/DM, respectively. CD4 T cell count 125 

kinetics were analyzed on a square-root scale in order to obtain a normal distribution and 126 

stabilize the variance. We estimated the CD4 T cell dynamics over time, accounting for the 127 

correlation among repeated measurements within each individual, through linear mixed 128 

models with random intercept and random slope. Slopes of CD4 T cell counts were compared 129 

between the two groups. The mean CD4 count evolution was depicted by plotting the mixed 130 

model predictions. We examined evidence of an interaction between HIV-1 subtype and 131 

tropism. Time to cART initiation according to tropism was estimated by using Kaplan–Meier 132 

survival analysis and compared by log-rank test. 133 

We performed several sensitivity analyses. First, because specific interpretation rules were 134 

used to predict tropism for non-B HIV-1 subtypes, we examined impact of HIV-1 tropism on 135 

CD4 T cell count evolution separately in B and in non-B HIV-1 subtypes. Second, because 136 

the French ANRS-PRIMO cohort accounted for half of the patients included in the study, and 137 

because French guidelines include specific therapeutic recommendations for PHI 138 

management,17 we also performed the analysis without data from the ANRS – PRIMO cohort.  139 

  140 



 
 

Results 141 

Characteristics at enrolment 142 

A total of 1387 patients were eligible for inclusion in the study. Their characteristics are 143 

shown in Table 1, with the key finding being that median time between estimated date of 144 

seroconversion and enrolment into a CASCADE cohort was one month (IQR 0-3) and median 145 

time between cohort enrolment and cART initiation was 21 months. At enrolment, 202 of 146 

1387 (14.6% (95% CI: 12.7-16.5%)) harboured an X4/DM-tropic virus and their baseline 147 

characteristics did not differ from the 1185 harbouring a R5-tropic virus as regards to age, 148 

gender, year of enrolment, transmission group, CD4 count and HIV viral load. The only 149 

difference was HIV subtype; the prevalence of X4/DM-tropic viruses was higher in subtype B 150 

(16.4%) than in non-B subtypes viruses (6.3%, p<0.001) (Table 1).  151 

 152 

CD4 T cell count decline according to HIV-1 tropism 153 

The CD4 dynamics were modelled according to tropism (Figure 1). CD4 decrease slopes were 154 

not significantly different according to HIV-1 tropism during the first 30 months following 155 

seroconversion: the slope of CD4 T cell decrease was -0.13 √CD4/month and -0.16 156 

√CD4/month in patients harbouring a R5 or X4/DM virus, respectively. This difference did 157 

not reach statistical significance (p=0.08, Table 2). For example, starting from 500 CD4 T 158 

cells/mm3, the model predicted that a patient harbouring a R5-tropic virus would reach a CD4 159 

T cell count of 476/mm3 after 12 months of follow-up without cART, while a patient 160 

harbouring a X4/DM tropic would reach a mean of 449 CD4 T cells/mm3 at the same time 161 

point of follow-up. No marked change in these results was found after adjusting for age, year 162 

of seroconversion (<2002, [2002-2005[, [2005-2007[, and ≥2007), and baseline HIV viral load. 163 

 164 

 165 



 
 

Time to cART initiation according to HIV-1 tropism 166 

A total of 225 patients did not initiate cART during follow-up: 17% with a R5-tropic virus 167 

and 13% with a X4/DM tropic virus (p=0.23). The Kaplan-Meier estimates of the median 168 

delay between enrolment and cART initiation was 20.76 months in patients harbouring an R5-169 

tropic virus (IQR 0.72 – 51) and 22.86 months in patients with a X4/DM tropic virus (IQR 170 

0.49 – 47) , with no statistically significant difference (logrank test p=0.32; Figure 2).   171 

 172 

Sensitivity analysis 173 

 174 

Although no statistically significant interaction was found between viral subtype and tropism 175 

in the model, we also ran separately the analysis in patients harbouring a B subtype virus and 176 

non-B virus, and found similar results. Only after excluding patients from the ANRS – 177 

PRIMO cohort, we found a statistically significant difference, albeit modest, in CD4 T cell 178 

count slope according to HIV-1 tropism, with a steeper slope for X4/DM than for R5 tropic 179 

viruses (p=0.02). For example, starting from 500 CD4 T cells/mm3, the model predicted that a 180 

patient harbouring a R5-tropic virus would reach a CD4 T cell count of 376/mm3 after 24 181 

months of follow-up without cART, while a patient harbouring a X4/DM tropic would reach a 182 

mean of 333 CD4 T cells/mm3 at the same time point of follow-up. At 30 months of follow-183 

up, the CD4 T cell count would be 348/mm3 for a patient harbouring a R5-tropic virus and 184 

297/mm3 for a patient harbouring a X4/DM-tropic virus. This difference remained statistically 185 

significant after adjusting for age, year of seroconversion (<2002, [2002-2005[, [2005-2007[, 186 

and ≥2007), and HIV viral load (p=0.01). Again, no statistically significant interaction was 187 

found between viral subtype and tropism.  188 



 
 

Discussion 189 

Here we show, in the largest sample size to date, that HIV-1 X4/DM tropic viruses can be 190 

identified in a significant proportion of patients enrolled close to seroconversion, and that 191 

X4/DM tropic viruses are not significantly associated with a faster decline in CD4 T cell 192 

count. 193 

Despite the fact that semen promotes the transmission of R5-tropic viruses, we showed here 194 

that, in a large sample size with more than 95% of patients having acquired HIV through 195 

sexual transmission, almost 15% of these patients harboured X4/DM tropic viruses close to 196 

seroconversion. Such a proportion of X4/DM tropic viruses at the time of seroconversion is in 197 

keeping with other smaller earlier studies performed in France and in Spain.8,9 These X4/DM 198 

viruses, when detected at the time of seroconversion, are dominant and quasi-exclusive and 199 

persist for lengthy periods of time.16,18 200 

To the best of our knowledge, our study, by using the CASCADE collaboration cohort, has 201 

included the largest number of patients enrolled close to seroconversion.  Unlike previous 202 

reports in chronically infected naïve patients or in patients with advanced HIV disease,7,19,20 203 

we show that, in recent infection, patients harbouring X4/DM tropic viruses did not have an 204 

increased risk of disease progression, estimated by the decline in CD4 T cell count or time to 205 

cART initiation.  206 

We were also able to address the issue of HIV-1 subtype as 18% (n=254) of participants were 207 

infected with non-B subtypes. Some HIV-1 subtypes may have an impact on CD4 count at 208 

HIV seroconversion and CD4 rate of decline, but such subtypes are rare in CASCADE.21 209 

Mlisana et al showed that HIV-1 C subtype was associated with a rapid disease progression 210 

and a faster decline in CD4 T cell count.22 Only one X4/DM tropic virus belonged to C 211 

subtype in our study. Of note, the Geno2Pheno test used to predict viral tropism has been 212 

validated for B subtype viruses.23,24 Thus, specific rules have been generated for the 213 



 
 

prediction of HIV-1 CRF02_AG, CRF01_AE and D subtype viruses,14-16 but such specific 214 

rules are not available for other non-B subtype viruses. We did not find an impact of HIV-1 215 

tropism on CD4 T cell count slopes according to HIV-1 subtype (B versus non-B). 216 

 217 

A potential limitation might be that data on genotypic resistance to nucleoside and non-218 

nucleoside reverse transcriptase inhibitors, protease and integrase inhibitors were not 219 

available for the current study, but we have shown previously that the frequency of R5X4 220 

viruses among patients infected with resistant viruses was similar to that in those harbouring 221 

wild-type viruses.9 Another limitation might be the lack of tropism assessment during follow-222 

up. Indeed, some patients harbouring a R5-tropic virus at the time of seroconversion might 223 

have experienced a switch to X4-tropic virus during follow-up. However, such a coreceptor 224 

switch in the early course of the disease and without drug-selective pressure is very rare.25 225 

Interestingly, we did find a statistically significant difference in CD4 T cell count slopes 226 

according to HIV-1 tropism when restricting the analysis to all but the ANRS- PRIMO cohort. 227 

We performed this sensitivity analysis because (i) the ANRS – PRIMO cohort accounted for 228 

half of the patients enrolled in the present study and (ii) French antiretroviral treatment 229 

guidelines during PHI might have differed from other countries in the past, with a more 230 

systematic and rapid antiretroviral treatment initiation during PHI.17 Indeed, rapid treatment 231 

initiation at the time of PHI may have offset the potential role of HIV-1 tropism on the 232 

subsequent CD4 T cell count natural slope. Although statistically significant, the difference in 233 

the CD4 T cell count reached after 24 months of follow-up may not be clinically relevant. 234 

The value of determining HIV-1 tropism at the time of PHI is questionable now that all 235 

national and international guidelines recommend rapid initiation of cART in patients 236 

diagnosed at the time of PHI. Maraviroc, a CCR5-antagonist, is also not listed among the 237 

preferred antiretrovirals to be used for first line cART. Recent data, however, suggest that the 238 



 
 

presence of CXCR4-using viruses at the time of PHI was associated with the virological 239 

failure of cART initiated during PHI.26 In addition, there is a growing interest in such patients, 240 

diagnosed and started on cART at the time of PHI, because they might be the best candidates 241 

for future studies addressing functional cure.27-29 Such studies require structured treatment 242 

interruptions, thus, HIV-1 tropism might also prove helpful in selecting the best candidates. 243 

  244 
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Table 1: Characteristics of eligible patients at the time of enrolment in CASCADE 410 

according to HIV-1 tropism (R5 versus X4/DM) 411 

 412 

 

ALL 

 

R5 

N=1185 

 

X4/DM 

N=202 

 

p value 

Sex, % (n)     

    Male  87 (1213)  88 (1040) 86 (173) 0.4 

Age at enrolment Median (IQR), years 35 (29-41)     35 (29-41)    35 (29-40) 0.7 

Time of follow-up before cART Median 

(IQR), months 

21 (0.7-50) 20.76 (0.72 – 

51) 

22.86 (0.49-47) 0.32 

Year of enrolment Median (IQR) 2005 (2002-

2007) 

2005 (2002-

2007) 

2005 (2001-2007) 0.13 

Time between seroconversion and 

enrolment Median (IQR), months 

0.9 (0.3-2.7) 0.9 (0.3-2.7) 0.8 (0.3-3.2) 0.92 

Transmission group, % (n)    0.07 

    Homosexual / bisexual 73 (1016) 73 (864) 75 (152)  

    Heterosexual  21 (284) 21 (247)               18 (37)  

    Other, IV, haemophilia 

    Missing 

3 (46) 

3 (41) 

3 (35) 

3 (39) 

                6 (11) 

                1 (2) 

 

Ethnic origin, % (n)      

   White 

    African & other (6 Asians) 

69 (956) 

8 (110) 

69 (818) 

9 (101) 

68 (138) 

5(9) 

0.07 

    Missing values 23 (321) 22 (266) 27 (55)  

Subtype     

    Subtype B 

    CRF02_AG 

70.7 (980) 

0.8 (11) 

69 (819) 

1 (11) 

80 (161) 

0 (0) 

<0.001 

    Other  17.5 (243) 19 (227) 8 (16)  

    missing 11 (153) 11 (128) 12 (25)  

Clinical AIDS, % (n) during follow-up 5 (74) 5 (63) 5 (11) 0.9 

ART treatment initiated, % (n) during 

follow up in the cohort (at anytime) 

 

84 (1162) 83 (987) 87 (175) 0.2 

Number of CD4 measurements Median 6 (1-11) 6 (1-11) 6 (1-11) 0.6 



 
 

 413 

*1 missing value 414 

** 116 missing values for viral load 415 

  416 

(IQR) 

CD4 cell count at PHI diagnosis* (Median 

(IQR) cells/mm3) 

508 (377-

673) 

       510 (378-

672) 

    498 (366-678) 0.6 

HIV viral load at PHI diagnosis**     

   Median (IQR) log10c/mL 4.9 (4.2-5.5)       5.0 (4.3-5.5)     4.9 (4.2-5.4) 0.5 



 
 

Table 2: Spontaneous evolution of CD4 cell count in patients with R5-tropic virus versus 417 

X4/DM-tropic virus, from linear mixed-effects models  418 

 419 
PARAMETER ESTIMATE SE* P VALUE ADJUSTED 

ESTIMATE
** 

SE*  P 
VALUE 

FIRST √CD4 FOLLOWING 
SEROCONVERSION ( IN 
R5) 

23.42 0.47 <.0001    

X4 VS R5 -0.27 0.39 0.50 -0.24 0.39 0.53 
       
SLOPE  √CD4/MONTH       
R5 
X4 
X4 VS R5 

-0.13 
-0.16 
-0.03 

0.01 
0.02 
0.02 

 
 

0.08 

-0.14 
-0.17 
-0.04 

0.01 
0.02 
0.02 

 
 

0.06 
*Standard Error,**Adjusted for: age, year of seroconversion (in 4 categories according to 420 
percentiles <2002 ; ≥2002 et <2005 ; ≥2005 et <2007 ; ≥2007), HIV viral load at PHI 421 

  422 



 
 

Figure 1: Estimated CD4 cell count decline from the piecewise linear mixed-effects model 423 

according to tropism (dashed line represents the predicted estimated CD4 cell count decline 424 

with CCR5 viruses and solid line represents the predicted estimated CD4 cell count decline 425 

with CXCR4 viruses). 426 
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 Figure 2: time to cART initiation according to HIV-1 tropism (Kaplan- Meier survival 433 

 curves, log rank) (dashed line represents cumulative probability of initiating cART in 434 

 patients harbouring CCR5 viruses and solid line represents cumulative probability of initiating 435 

 cART in patients harbouring CXCR4 viruses) 436 
 437 
 438 
 439 

 440 
 441 
 442 

Log-rank test: p=0.32
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