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ABSTRACT 

Speech-in-noise (SPIN) perception involves neural encoding of temporal acoustic cues. 

Cues include temporal fine structure (TFS) and envelopes that modulate at syllable (Slow-rate 

ENV) and fundamental frequency (F0-rate ENV) rates. Here the relationship between 

speech-evoked neural responses to these cues and SPIN perception was investigated in older 

adults. Theta-band phase-locking values (PLV) that reflect cortical sensitivity to Slow-rate 

ENV and peripheral/brainstem frequency-following responses phase-locked to F0-rate ENV 

(FFRENV_F0) and TFS (FFRTFS) were measured from scalp-EEG responses to a repeated 

speech syllable in steady-state speech-shaped (SpN) and 16-speaker babble (BbN) noises. The 

results showed that: 1) SPIN performance and PLV were significantly higher under SpN than 

BbN, implying differential cortical encoding may serve as the neural mechanism of SPIN 

performance that varies as a function of noise types; 2) PLV and FFRTFS at resolved 

harmonics were significantly related to good SPIN performance, supporting the importance of 

phase-locked neural encoding of Slow-rate ENV and TFS of resolved harmonics during SPIN 

perception; 3) FFRENV_F0 was not associated to SPIN performance until audiometric threshold 

was controlled for, indicating that hearing loss should be carefully controlled when studying 

the role of neural encoding of F0-rate ENV. Implications are drawn with respect to fitting 

auditory prostheses. 
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I. INTRODUCTION 

Perception of speech-in-noise (SPIN) requires the target speaker’s voice to be separated 

from background noises. This can be achieved by processing temporal acoustic cues (Moore, 

2008). There are three temporal components of speech signals that provide different 

information: 1) slowly-varying envelope (Slow-rate ENV) that modulates at rates of < 10 Hz 

and represents syllable structure (Rosen, 1992; Greenberg et al., 2003). Slow-rate ENV plays 

an essential role in speech perception both in quiet (Shannon et al., 1995; Arai et al., 1999) 

and in noise (Drullman et al., 1994); 2) The envelope that modulates at rates around F0 

(F0-rate ENV) and provides information about voicing and pitch (Rosen, 1992). Tracking the 

pitch of the target speaker is critical for segregating the target voice from background sounds 

(Bregman, 1994; Bird and Darwin, 1998; Binns and Culling, 2005); 3) Temporal fine 

structure (TFS) that fluctuates at rates above F0 (Rosen, 1992; Moore, 2008). TFS is important 

for perception of formant structure (Moore, 2014) as well as voicing and pitch (Rosen, 1992; 

Smith et al., 2002). SPIN perception is significantly better when TFS is present than when it is 

absent (Zeng et al., 2005; Stickney et al., 2007; Eaves et al., 2011). Neurophysiological 

tracking of these cues is also related to speech perception. For example, the degree of neural 

phase-locking to Slow-rate ENV is associated with speech intelligibility (Ahissar et al., 2001; 

Peelle et al., 2012; Doelling et al., 2014). Also, magnitudes of peripheral/subcortical 

speech-evoked frequency-following responses (FFRs) that are phase-locked to F0-rate ENV 

(FFRENV_F0) (Song et al., 2010) and TFS (FFRTFS) (Fujihira and Shiraishi, 2015) correlate 

with SPIN performance. 

Older adults experience more difficulties in SPIN perception than normal-hearing 
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younger adults (Moore, 2014). Behavioral studies suggest that this may be attributable to 

age-related deterioration in processing of TFS (Lorenzi et al., 2006; Hopkins, Moore and 

Stone, 2008; Hopkins and Moore, 2011). Neurophysiological studies show that FFRENV_F0 and 

FFRTFS have smaller magnitudes in older, than in younger, adults (Anderson et al., 2012; 

Presacco et al., 2016). This suggests that poorer neuro-temporal encoding of F0-rate ENV and 

TFS by older adults may account for impaired SPIN performance. Despite these findings, the 

relative importance of neural processing of F0-rate ENV and TFS remains obscure. While 

Anderson et al. (2011) showed that FFRENV_F0 was associated with SPIN ability in older 

adults, this result did not replicate (Schoof and Rosen, 2016). Recent studies report that in 

older adults FFRTFS, but not FFRENV_F0, is associated with speech perception in environments 

where there is reverberation (Fujihira and Shiraishi, 2015). This highlights the importance of 

neural encoding of TFS, compared to that of F0-rate ENV, during SPIN perception (Marsh and 

Campbell, 2016). Furthermore, since these studies (Anderson et al., 2011, 2012; Fujihira and 

Shiraishi, 2015; Presacco et al., 2016; Schoof and Rosen, 2016) were conducted in older 

adults with relatively normal hearing (hearing thresholds ≤ 30 dB HL at frequencies ≤ 4 kHz), 

they do not reflect the significant variability in audiometric hearing in aging populations 

(Gopinath et al., 2009; Humes et al., 2010). 

The present hypothesis is that SPIN performance is associated more with phase-locked 

neural encoding of Slow-rate ENV and TFS compared to that of F0-rate ENV in older adults 

who vary in audiometric profiles. This is based on the observations that Slow-rate ENV is 

critical for speech perception both in quiet and in noise (Drullman et al., 1994; Shannon et al., 

1995; Arai et al., 1999) and impaired sensitivity to TFS, rather than F0-rate ENV, significantly 
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degrades SPIN performance (Stickney et al., 2007). To test the hypothesis, behavioral and 

neural assessments were conducted on healthy older adult participants in a sample with 

significant inter-individual variability in their audiometric profiles. Participants completed a 

SPIN task in which speech reception thresholds were measured under two types of noise: 

steady-state speech-shaped noise (SpN) and 16-speaker babble noise (BbN), where 

background speakers in BbN had similar voices characteristics to the target voice. SpN serves 

as a steady-state energetic masker, whilst BbN constitutes an envelope-modulated energetic 

masker as well as an informational masker that leads to phonetic interference. Rosen et al. 

(2013) showed that speech perception is better under SpN than BbN and that BbN is a 

particularly challenging form of noise for older adults (Helfer and Freyman, 2008; Schoof and 

Rosen, 2014). Participants listened to a repeated syllable in quiet, SpN and BbN, whilst neural 

activity was recorded concurrently over scalp-EEG electrodes. Speech-evoked FFRs, which 

reflect peripheral/brainstem phase-locked encoding of F0-rate ENV and TFS (Aiken and 

Picton, 2008), were obtained. Cortical activity was represented by theta-band phase-locking 

values (PLVs) that reflect neural sensitivities to Slow-rate ENV (Luo and Poeppel, 2007; 

Howard and Poeppel, 2010). Signal-to-noise ratios (SNRs) of the acoustic stimuli in 

SpN/BbN during the neural recording were set at either 7 or -1 dB, with the former (7 dB) 

being the SNR at which speech is reasonably recognizable while the latter (-1 dB) is the SNR 

that is relatively more challenging for SPIN perception (see Methods). The relationship 

between the neural measures and SPIN performance was then examined. It was predicted that 

the neural measures, especially those recorded under the challenging SNR, would correlate 

with the behavioral differences across noise types and individuals, and that the 
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neural-behavioral relationship would further elucidate the underlying neural mechanisms of 

SPIN perception in older adults. 

II. METHODS 

A. Participants 

Participants comprised 47 older healthy adults (aged 53 to 76 years, 17 males and 30 

females). All were native English speakers who had lived in Britain for at least 25 years. No 

clinically-diagnosed neurological diseases, language-related or psychiatric problems were 

reported. All participants identified 100% of the words in the speech perception task correctly 

when SNR was 8 dB. Twelve participants used hearing aids (HAs, either monaural or 

binaural). They wore their HAs with their usual settings and these were kept the same 

throughout the experiment. Fig. 1 shows the pure-tone audiograms (PTA) for frequencies 

between 0.25 and 8 kHz of the non-HA participants measured via a MAICO MA41 

Audiometer (MAICO Diagnostics, Germany). Inter-individual variability in hearing 

thresholds occurred particularly at high frequencies (≥ 3 kHz), consistent with the 

distributions of audiometric profiles in aging populations (Gopinath et al., 2009; Humes et al., 

2010). Fig. 1C shows the free-field PTAs of the HA users. They were measured by presenting 

pure tones via a Fostex 6301B loudspeaker (Canford Group Ltd, UK) at 0 degree azimuth 

positioned 1 meter away from the participants’ ears. The sounds were controlled by the 

experimenter using a ThinkPad T430i laptop (Lenovo Group Ltd). Sound pressure levels 

(SPL) at 1 meter distance were measured and were then converted to hearing level (dB HL) 

for each frequency according to the ISO calibration guideline for free-field PTAs (ISO 
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389-7-2005, British Society of Audiology, 2008). The free-field PTA confirmed that the HAs 

were functioning. However PTA does not precisely predict audibility of input stimuli with the 

current procedure because non-linear intensity gains are common in contemporary HAs 

(Levitt, 2007). Hence, free-field PTAs were not used in subsequent analyses. 

 

  

Figure 1. Pure-tone audiograms (PTAs) of the 35 non-HA participants. (A) Individual PTAs 

(left: left ear; right: right ear) of all non-HA participants. There was one participant’s data at 6 

kHz (on both ears) and six participants’ data at 8 kHz (two at both ears and four at either left 
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or right ear) that were not plotted, because their hearing thresholds were > 85 dB HL and not 

measurable at these frequencies. (B) PTAs (collapsing the left and right ears) averaged across 

all non-HA participants (open and filled circles are data from for Group 1 and Group 2, 

respectively). When points were not measurable, data values were set at the highest possible 

value (85 dB) when average values and standard errors (SEs) were calculated. Error bars 

denote the SEs. (C) Free-field PTAs for HA users. There were three participants’ data at 6 and 

8 kHz that were not plotted, because their hearing thresholds were > 85 dB. The dashed lines 

indicate the normal hearing threshold level (25 dB HL). 

 

 Participants were randomly assigned to one of two groups, with the proviso that each 

group had six HA participants. The syllable stimuli were presented at different SNRs to the 

two participant groups when neural measurements were made (see TABLE I). There were 23 

participants (59 to 76 years old; mean ± SE = 68.22 ± 1.01; 8 males) in Group 1 and 24 

participants (53 to 75 years old; mean ± SE = 67.33 ± 1.03; 9 males) in Group 2. There were 

no significant differences in ages (p = 0.542) nor hearing thresholds in non-HA participants 

(averaged across 0.25 to 4 kHz and across both ears) (p = 0.693) between the two groups. The 

neural data and neural-behavioral relationship of the two groups were analyzed separately. 

 

TABLE I. Background noise types and SNR levels for Group 1 and 2 participants during the 

EEG recordings. During EEG recording, the stimuli in quiet background (NoN) were 

presented at the same level to both groups (all 47 participants), but the SNRs for noisy 

backgrounds (SpN and BbN) differed in level across Groups 1 and 2 (7 dB and -1dB 
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respectively). 

SNR +∞ dB 

(NoN) 

7 dB 

(SpN and BbN) 

-1 dB 

(SpN and BbN) 

 

Participants 

 

All 47 participants 

Group 1  

(23 participants) 

Group 2  

(24 participants) 

 

B. Speech-in-noise (SPIN) perception task 

Speech Reception Thresholds (SRTs) (SNR level for 50% word correct, as in Plomp 

and Mimpen, 1979) were measured when participants recognized words within sentences 

under two different types of background noise, steady-state speech-shaped noise (SpN) and 

16-speaker babble noise (BbN). Target sentences were pre-recorded BKB sentences (Bench et 

al., 1979) spoken by a male British English speaker whose F0 ranged between 80 and 200 Hz. 

Each sentence was meaningful and included three key words (content words), e.g., for ‘The 

clown has a funny face’, the key words were ‘clown’, ‘funny’ and ‘face’. The BKB sentences 

were used rather than more complex ones such as IEEE sentences (Rothauser et al., 1969) in 

order to minimize effects of individual variability in working memory on speech perception 

performance. The BbN was a mixture of 16 different utterances spoken by 16 male British 

English speakers who had similar F0s and voice quality to the target speaker. The SpN was 

created by randomizing the phases in the long-term spectrum of BbN before the spectrum was 

transformed back to the time domain. Consequently SpN had the same long-term spectral 

power distribution as BbN and relatively stable temporal properties (Rosen et al., 2013). The 
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background noise always started about 500 ms prior to the onset of the target sentence and 

continued until the sentence ended. 

Participants were seated in a sound-treated booth facing a Fostex 6301B loudspeaker 

(Canford Group Ltd, UK) at 0 degree azimuth positioned one-meter away from the their ears. 

The sentences were all presented at an intensity of 70 dB SPL at the 1 meter distance. 

Participants listened to different sets of 30 sentences in SpN and in BbN and repeated orally 

as many words as they could after each sentence was heard. Eight practice sentences were 

given prior to each noise condition. The sentences were delivered by a Matlab 2010a 

(Mathworks, USA) program and the experimenter scored participants’ responses using a 

graphical user interface (GUI) not visible to participants. The SNR was varied adaptively to 

track the threshold for 50% words correct. The first sentence was always presented at a high 

SNR (8 dB and 10 dB for sentences in SpN and BbN, respectively), and SNR was decreased 

by 4 dB on successive sentences until fewer than two words (i.e., < 50% correct) were 

recognized correctly. Then the SNR was increased or decreased by 2 dB on the next sentence 

when fewer (< 50%) or more than (> 50%) two words were recognized correctly. Participants 

were not given feedback about their performances. SRT was obtained by linear interpolation 

when two SNRs with the minimal distance (i.e., 2 dB) had word scores that were higher and 

lower than 50%.  

C. EEG experiment 

1. Acoustic stimulus  

The stimulus was a 120-ms-long /i/ syllable (Fig 2A) with a falling F0 contour (160 to 
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110 Hz) (Fig 2B). This corresponded to the 4th lexical tone in Mandarin. It was pronounced by 

a male native Mandarin speaker. Previous studies have used flat F0 contours (e.g., Aiken and 

Picton, 2008; Song et al., 2010). The syllable with a natural falling F0 contour controls for 

exposure, as such contours are not encountered in English monosyllables (Krishnan et al., 

2005; Wong et al., 2007). Moreover, the F0 of the stimulus corresponds in range and direction 

(generally falling) to the F0s of the target speakers in the BKB sentences employed in the 

SPIN task. The syllable had a relatively constant amplitude envelope except that 5 ms rising 

and falling cosine windows were applied at onset and offset to avoid transients. The formants 

occurred in frequency regions where the harmonics are and are not resolved (F1, F2 and F3 

frequencies were approximately 280, 2400 and 3100 Hz, see Fig 2A). 

 

Figure 2. The syllable stimulus /i/ used during EEG recording. (A) The temporal waveform 

(top) and spectrogram (bottom) of the stimulus. F1, F2 and F3 frequencies are approximately 

280, 2400 and 3100 Hz, respectively. (B) F0 contour of the stimulus, which is a falling tone 

ranging between 160 and 110 Hz, obtained by autocorrelation. The waveforms, spectrograms 

and F0 data were generated using PRAAT (Boersma and Weenink, 2013). 
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The syllable was presented at the original polarity or negative polarity where the 

syllable was inverted. The stimuli were presented in three backgrounds: quiet (“no noise” or 

NoN); steady-state speech-shaped noise (SpN); and 16-speaker babble noise (BbN). The last 

two corresponded to the types of noise in the SPIN task. The stimuli for NoN were presented 

at the same level to both groups of participants (see TABLE I) but the SNRs for SpN and 

BbN differed in level across Groups 1 and 2 (7 dB and -1dB respectively). There were 3200 

sweeps at each polarity for each type of noise background (hence 6400 sweeps altogether). 

The 6400 sweeps were split into 16 segments for each background type and polarities were 

presented in a random order. Inter-stimulus intervals (ISI) varied randomly between 60 and 

120 ms and syllables repetition rate was approximately five syllables per second. 

2. EEG recording procedure 

EEGs were recorded using an ActiveTwo system (Biosemi, The Netherlands) at a 

16384 Hz sampling rate at the Cz (vertex), C3 and C4 position. The bilateral earlobes were 

used as references. Electrode impedance was always kept below 35 mV. Participants reclined 

comfortably in an adjustable chair located within an electromagnetic-shielded and 

sound-treated booth. The stimuli were presented via a Rogers LS3/5A loudspeaker (Falcon 

Acoustics, UK) positioned one meter from their ears at 0 degree horizontal azimuth directly in 

front of participants. The stimulus level (measured across time including inter-stimulus 

intervals) was 74.5 dB SPL at the 1 meter position before background noise was added in all 

the conditions. The stimulus levels after adding noise (SpN or BbN) were 75.8 dB in Group 1 

(SNR of 7 dB) and 79.5 dB in Group 2 (SNR of -1 dB). Participants were instructed to close 
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their eyes, relax and keep as still as possible to avoid movement artifacts. They were 

instructed not to attend actively to the stimuli and they were allowed to fall asleep to 

minimize discomfort because of protracted exposure to the repeated sounds. The entire 

in-booth test period lasted for approximately 70 minutes. They were monitored by the 

webcam throughout the test and no significant changes in head or body positions were 

observed. Algorithms that classified the sleep status in different periods were applied to the 

EEG data. These algorithms separated wakeful (conscious) from sleep (unconscious) states. 

Only the data from wakeful states were used in the current analyses (see Arousal states).  

3. Arousal states 

Wilf et al. (2016) reported cortical, but not subcortical, suppression whereas Portas et al. 

(2000) found suppression at both cortical and subcortical levels. Whilst this discrepancy needs 

resolving, both studios confirm that cortical activity is suppressed in sleep states. EEG data 

were only used from wakeful periods in the analyses in the present paper because significant 

correlations between SPIN performances and EEG parameters only occurred during wakeful 

periods (see Results). The detailed effects of sleep status on speech-evoked EEG responses is 

to be reported in the near future. 

To separate wakeful from sleep periods, sleep spindles at the EEG sigma frequency (12 

~ 16 Hz) were located. These provide signatures about sleep (Warby et al., 2014) in Martin et 

al.’s (2013) method. Here EEGs at Cz were bandpass filtered into alpha (8 ~ 11 Hz), sigma 

(12 ~ 16 Hz) and beta (17 ~ 20 Hz) bands using a 2nd-order zero-phase Butterworth filter. 

The filtered signals were then divided into 250-ms-long successive segments. A spindle was 

labeled when all three of the following conditions were met: 1) sigma root-mean-square 
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(RMS) voltage in a given segment exceeded the threshold of the 95th percentile of the sigma 

RMS of all segments; 2) sigma RMS was higher than both alpha and beta RMS in the current 

segment; 3) two successive segments met both 1) and 2). 1) and 2) were invoked because 

sigma-band spectral domination is the major characteristic of sleep spindles (Martin et al., 

2013; Warby et al., 2014). Extending requirements across two segments was included because 

sleep spindles usually last for at least 500 ms (De Gennaro and Ferrara, 2003).  

The entire EEG recording was divided into 192 21-second-long epochs. Epochs were 

classified into three categories; wakefulness, sleep, and transition between wakefulness and 

sleep. Sleep epochs were those that contained at least one sleep spindle. Wakeful epochs were 

those that contained no spindles and were not adjacent to an epoch with a speech spindle. The 

remaining epochs were designated as transition epochs. Participants also gave a subjective 

rating of how much they slept after the test was completed (scale points from 1 to 7, each of 

which had a textual description). There was a significant correlation between the subjective 

ratings and percentage of epochs classified algorithmically as ‘sleep’ (p = 0.002). This 

validated the classification algorithm.  

4. Frequency Following Responses (FFRs) 

FFRs were obtained from Cz (Skoe and Kraus, 2010). EEG signals were re-referenced 

to the average at the bilateral earlobes, bandpass filtered (70 ~ 4000 Hz) using a 2nd-order 

zero-phase Butterworth filter, and baseline corrected (based on the 50 ms pre-stimulus period 

in each sweep). To avoid movement artifacts, sweeps that had amplitudes exceeding ± 25 μV 

were rejected (c.f., Song, Nicol and Kraus, 2011; Schoof and Rosen, 2016). FFRs with the 

original (FFRorig) and negative (FFRneg) polarities were obtained by grand-averaging across 
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sweeps with the respective polarities. FFRs that represent ENV (FFRENV) and TFS (FFRTFS) 

were obtained by adding and subtracting FFRorig and FFRneg, respectively (Aiken and Picton, 

2008). Three FFR magnitudes were calculated: FFRENV_F0; FFRTFS_H2 and FFRTFS_F2F3. The 

FFRENV_F0 magnitude represents the neural magnitude of FFRENV along the F0 trajectory of 

the stimulus syllable (Fig 3A). Magnitudes of FFRTFS_H2 and FFRTFS_F2F3 represent the neural 

magnitudes of FFRTFS along the resolved harmonics H2 (2nd harmonics at 220 ~ 320 Hz 

representing F1) and unresolved F2 and F3 trajectories of the syllable respectively (Fig 3B). 

Magnitudes were calculated as follows. 

 

Figure 3. FFRENV (A) and FFRTFS (B) of waveforms (top) and spectrograms (bottom) 

averaged across 35 selected participants during wakeful periods in the quiet background (NoN) 

condition. The 35 participants were those whose numbers of sweeps were no fewer than 1,450 

after artifact rejection during wakeful periods in NoN. For each participant, the waveforms 

were obtained based on randomly selecting wakeful epochs which contained 1,450 to 1,550 

sweeps (see Normalization of sweep numbers). FFRENV_F0 (at F0 range between 160 ~ 110 Hz) 
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(A), FFRTFS_H2 (at H2 range between 220 ~ 320 Hz) and FFRTFS_F2F3 (at F2-F3 range between 

2000 ~ 4000 Hz) (B) are indicated by the dashed boxes. X-axes give time in ms and ‘0’ is the 

stimulus onset. 

 

First, ENV-F0, H2, F2 and F3 trajectories of the stimulus syllable were calculated. To 

obtain the ENV-F0 trajectory, a set of 40 ms sliding windows (1-ms per step) was applied to 

the Hilbert envelope (Hilbert, 1912) of the syllable. Each 40 ms segment was 

Hanning-windowed, zero-padded to 1 second (to achieve 1 Hz frequency resolution) and 

Fourier-transformed. The frequency with the highest magnitude in the Fourier spectrum 

between 110 and 160 Hz (F0 range of the syllable) was chosen as the F0 value at each step. H2, 

F2 and F3 trajectories were obtained in the same way, except that: 1) the sliding windows 

were applied to the syllable rather than the Hilbert envelope of the syllable; 2) the H2 value at 

each step was selected in the range of H2 (220 ~ 320 Hz); 3) instead of zero-padding and 

applying a Fourier transform, F2 and F3 values at each step were chosen based on the 

magnitudes of the spectral profile (via cepstral smoothing, Proakis and Manolakis, 2007) in 

the F2 and F3 ranges respectively (2200 ~ 2600 Hz and 2800 ~ 3500 Hz).  

Second, to calculate the FFRENV_F0 magnitude, the set of 40 ms sliding windows (1 ms 

per step) was applied to FFRENV. At each step, the 40 ms segment was Hanning-windowed, 

zero-padded to 1 second and Fourier-transformed. The mean log-magnitude (loge[power]) was 

measured across a 20 Hz bandwidth centered at the frequency of the ENV-F0 trajectory of the 

syllable stimulus at that step. The magnitudes were then averaged across all steps covering the 
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120 ms syllable length. In addition, as FFRENV occurs at the auditory brainstem after a neural 

transmission time of between 5 and 10 ms (Chandrasekaran and Kraus, 2010; Skoe and Kraus, 

2010), FFRENV should have a delay of 8 to 13 ms relative to the syllable onset (allowing an 

additional 3 ms for air-transmission from loudspeaker to cochlea). The final FFRENV_F0 

magnitude was the maximum magnitude for a time lag between 8 and 13 ms (1 ms steps). 

Magnitudes of FFRTFS_H2 and FFRTFS_F2F3 were measured in the same way as FFRENV_F0, 

except that: 1) the procedure was applied on the FFRTFS along the H2 (for FFRTFS_H2) and the 

F2 and F3 (for FFRTFS_F2F3) trajectories of the syllable stimulus; 2) for FFRTFS_F2F3, instead of 

zero-padding and applying a Fourier transform, the magnitude at each step was the summed 

magnitude of the spectral profile (via cepstral smoothing) across a 150 Hz and 300 Hz 

bandwidth respectively centered at F2 and F3 of the syllable at that step; 3) as FFRTFS occur at 

early stages of auditory processing in the periphery (Aiken and Picton, 2008), the neural 

transmission time for FFRTFS_H2 and FFRTFS_F2F3 was set to 5 ms at maximum, resulting in 

time lags between 3 and 8 ms with the air-transmission time included. 

5. Cortical responses 

 Electrodes C3 and C4 were used to represent activity in the auditory cortex (Carpenter 

and Shahin, 2013; Noguchi, Fujiwara and Hamano, 2015). Theta-band (4 ~ 6 Hz, 

corresponding to stimulus repetition rate of ~ 5 syllables per second) phase-locking values 

(PLVs) were measured. EEGs were decimated to 1024 Hz, re-referenced to the average of 

bilateral earlobes and bandpass filtered (4 ~ 6 Hz) using a 2nd-order zero-phase Butterworth 

filter. Sweeps where amplitudes exceeded ± 15 μV on either electrode were rejected. Due to 

the relatively narrow frequency range, the theta-band signal normally does not have 
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excessively high amplitude and > 90% of the sweeps were retained in almost all participants 

(except for one participant who retained > 80%). PLV time series (PLV(t)) were calculated 

using the following formula (Morillon et al., 2012): 

   

where n denotes the total number of sweeps, ϕi(t) denotes the Hilbert phase series of the 

filtered EEG of the ith sweep time-locked to the syllable onset. Hilbert phase was used as it 

locks to stimuli even when EEG amplitude variation occurs because of eye closure and 

relaxation (Thatcher, 2012). PLV(t) were then averaged across the 120 ms syllable length. As 

neural transmission from cochlea to auditory cortex takes 10 to 15 ms in primates (Lakatos et 

al., 2007), the final PLV was taken as the maximum among values with time lags between 13 

and 18 ms (1 ms steps) with the air-transmission time included.  

Measurements of all EEG parameters (FFRs and PLV) were obtained using Matlab 

2010a. 

D. Statistical analyses 

1. Within-subject ANOVAs and linear regression analyses 

Within-subject Repeated Measures ANOVAs were conducted for the four EEG 

parameters (i.e., FFRENV_F0, FFRTFS_H2, FFRTFS_F2F3 and PLV) across the three background 

types (i.e., NoN, SpN and BbN) for Groups 1 and 2, respectively. Post-hoc within-subject 

pairwise t-tests were conducted if the main effects of background type (with 

Greenhouse-Geisser correction) were significant in the ANOVA. 
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Linear regression analyses were conducted for each group of participants. In each group, 

the analyses were conducted for all participants (the ‘HA + non-HA’ analysis) and for non-HA 

participants only (the ‘non-HA only’ analysis). In the ‘HA + non-HA’ analysis, SRT in SpN 

was predicted by the four EEG parameters (FFRENV_F0, FFRTFS_H2, FFRTFS_F2F3 and PLV) 

obtained from the EEG recording whilst syllables were presented in SpN. Similarly, SRT in 

BbN was predicted by the four EEG parameters obtained from the EEG recording whilst 

syllables were presented in BbN. A second regression analysis was further performed that 

excluded HA users (the ‘non-HA only’ analysis) to assess the effect of neural responses after 

controlling for audibility and hearing loss, as stimulus audibility information was not 

available for HA users in the present study. PTA (averaged across 0.25 ~ 4 kHz and across left 

and right ears) was included as a predictor in addition to the EEG parameters to assess the 

effect of neural responses. A non-zero intercept was always included as an IV in each 

regression equation. Best-Subsets Regression was used, which chose predictors that generated 

the lowest Akaike information criterion (AIC). This provided the optimal model with best 

goodness of fit and the least chance of overfitting (Burnham and Anderson 2003). 

Multicollinearity was diagnosed if the variance inflation factors (VIFs) of any predictor were 

above 10 or if the condition index was above 30 (Hair. et al., 2010). The assumption that 

residuals were normally-distributed was violated if the Shapiro-Wilk test on the residuals had 

a p-value below 0.05 (Shapiro and Wilk, 1965). A subset was discarded when there was 

multicollinearity or normality of residuals was violated. Furthermore, outliers which had 

Cook’s distances above 1 (Cook, 1979) were removed. 

2. Normalization of sweep numbers 
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FFRs have small amplitudes, and averages of large numbers of stimulus repetitions are 

needed for reliable responses (Skoe and Kraus, 2010). Around 1,500 sweeps are needed after 

artifact rejection (c.f., Dajani et al., 2005; Wong et al., 2007). Participants’ data on any 

particular background type were not included in subsequent analyses if the number of retained 

wakeful sweeps was below 1,450 for that background type.  

Furthermore, since the current EEG parameters are based on phase-locked activities 

whose magnitudes are sensitive to the number of sweeps (Aviyente et al., 2011), problems can 

arise during statistical analyses if numbers of sweeps differ significantly across participants 

and background types. To reduce the risk of this happening, the number of sweeps was 

normalized to around 1,500 for each background type and participant. The normalization was 

conducted by randomly selecting the wakeful epochs which contained 1,450 to 1,550 

artifact-free sweeps (summed across both polarities). The EEG parameters were then obtained 

from the selected epochs. This random selection procedure was repeated 100 times for each 

background type, giving 100 estimates of each EEG parameter. Measures averaged over the 

100 estimates were used in the final statistical analyses. The process thus ensured that 

measurements of the EEG parameters were always based on around 1,500 sweeps regardless 

of the rejection rate. The normalization procedures for FFRs and PLV were conducted 

separately. 

3. Controlling for background EEG noise in FFRs 

As FFR magnitudes are small, their robustness can be influenced by the background 

EEG noise levels across participants (Skoe and Kraus, 2010). Therefore, the magnitudes of 

background EEG noises were obtained, and it was confirmed that magnitudes of FFR 
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parameters were statistically above the noise level. We also tested whether EEG noise 

influenced the relationship between FFRs and the behavioral data by conducting partial 

correlation analyses between FFR parameters and SRTs after noise magnitudes were 

controlled for. The 50 ms pre-stimulus period was used as the background period. A set of 40 

ms sliding windows (1 ms steps) was applied on the background period as described in the 

procedures for calculating FFRENV_F0, FFRTFS_H2 and FFRTFS_F2F3 magnitudes. Each 40 ms 

segment was Hanning-windowed, zero-padded to 1 second and Fourier-transformed. For 

FFRENV_F0_Background and FFRTFS_H2_Background, magnitude at each step was the average spectral 

log-magnitude of FFRENV across 110 and ~ 160 Hz (range of F0) and that of FFRTFS across 

220 ~ 320 Hz (range of H2), respectively. For FFRTFS_F2F3_Background, instead of zero-padding 

and applying the Fourier transform, its magnitude at each step was calculated as the summed 

magnitude of the FFRTFS spectral profile (obtained via cepstral smoothing) across 2325 ~ 

2475 Hz (150 Hz bandwidth centered at 2400 Hz (F2)) and 2950 ~ 3250 Hz (300 Hz 

bandwidth centered at 3100 Hz (F3)). The final magnitudes were the averages across all steps 

of the background period. The procedure for normalization of sweep numbers for the noise 

magnitudes was the same as that done when the EEG parameters were calculated. 

ANOVAs, t-tests, linear regressions and partial correlations were all conducted using 

SPSS 13.0 (SPSS Inc., USA).  

 

III. RESULTS 

A. Behavioral results 
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Fig 4 shows the SRT results across all 47 participants. Consistent with Rosen et al. 

(2013), SRT was significantly lower (i.e., better speech performance) in SpN (mean ± SE, 

-4.13 ± 0.21 dB) than in BbN (mean ± SE, 0.54 ± 0.22 dB) (two-tailed t-tests, t(46) = -30.127, 

p < 10-31).  

 

Figure 4. SRT results under SpN (grey) and BbN (black) across all 47 participants. The 

asterisk denotes p < 0.05. Error bars denote SEs. 

 

B. Robustness of FFRs  

First, the magnitudes of the three FFR parameters (FFRENV_F0, FFRTFS_H2, FFRTFS_F2F3) 

were compared with the magnitudes of their respective EEG background noise 

(FFRENV_F0_Background, FFRTFS_H2_Background and FFRTFS_F2F3_Background). The magnitudes were 

significantly higher for all three FFR parameters than their respective EEG background noise 

for all three background types (NoN, SpN and BbN) in both groups of participants (two-tailed 

t-tests, all p < 0.001). This confirmed the robustness of FFRs at the group level. 
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C. Neural results across acoustic background types 

Next, within-subjects Repeated Measures ANOVAs were conducted for the four EEG 

parameters (three FFR parameters and PLV) across the background types separately for 

Groups 1 (SNR of 7 dB) and 2 (SNR of -1 dB) (Fig 5). Only data from participants whose 

numbers of sweeps were above 1,450 for all three background types during wakeful periods 

were used. This resulted in 15 and 17 participants being retained in Groups 1 and 2, 

respectively, with 4 HA users in each group. Age (HA plus non-HA participants; Group 1 vs. 2: 

t(30) = 0.666, p = 0.511) and audiometric threshold in non-HA participants (averaged across 

frequencies from 0.25 to 4 kHz and across both ears; Group 1 vs. 2: t(22) = -0.161, p = 0.873) 

did not differ between the two groups. Post-hoc pairwise t-tests (two-tailed, all with 

Bonferroni corrections) were conducted when a significant main effect (with 

Greenhouse-Geisser correction) of background type occurred in each analysis. A significant 

main effect was found for FFRENV_F0 in Group 2 (F(2, 14) = 15.615; p < 0.001), with a 

significantly higher FFRENV_F0 magnitude in quiet background (NoN) than in either noise 

backgrounds (FFRENV_F0_NoN > FFRENV_F0_SpN, p = 0.001; FFRENV_F0_NoN > FFRENV_F0_BbN, p = 

0.001). The difference in FFRENV_F0 magnitude between SpN and BbN was not significant (p 

= 1.000). Significant main effects of background type were found for PLV in both groups 

(Group 1: F(2, 12) = 15.112, p < 0.001; Group 2: F(2, 14) = 19.548, p < 10-4). Post-hoc 

comparisons showed that, for Group 1, PLV was significantly higher in NoN and SpN than in 

BbN (PLVNoN > PLVBbN, p < 0.001; PLVSpN > PLVBbN, p < 0.001); for Group 2, PLV was 

significantly higher in NoN than in either noise background (PLVNoN > PLVSpN, p = 0.003; 

PLVNoN > PLVBbN, p < 0.001), and PLV was significantly higher in SpN than in BbN 
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(PLVSpN > PLVBbN, p = 0.023). 

 

Figure 5. The four EEG parameters (FFRENV_F0, FFRTFS_H2, FFRTFS_F2F3 and PLV) under three 

background types (NoN, SpN and BbN). Sections at the top and bottom give data from 

Groups 1 and 2, respectively. For FFRs, y-axes denote spectral log-magnitude (in dB). M.E.: 

main effects. ns: non-significant. Asterisks for the post-hoc pairwise t-tests denote p < 0.05. 

Error bars denote SEs. 

 

D. Neural-behavioral relationship 

Linear regression was used to evaluate neural-behavioral relationships. For each group 

of participants, the four EEG measures were used to predict SRT in SpN/BbN (‘HA + 

non-HA’). PTA was also included as a predictor in a second analysis that excluded the HA 

users (‘non-HA only’). According to the data-inclusion criterion (number of sweeps ≥ 1,450 

during wakeful periods), 18 (6) and 20 (6) participants were retained respectively in SpN and 
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BbN for Group 1, and 19 (5) and 21 (5) participants were retained respectively in SpN and 

BbN for Group 2 (the number in brackets being the number of HA users). 

Best-Subsets Regression results are summarized in TABLE II (‘HA + non-HA’) and 

TABLE III (‘non-HA only’). For both ‘HA + non-HA’ and ‘non-HA only’ conditions, 

significant correlations between SRTs and EEG parameters were only found in Group 2 (SNR 

of -1 dB during EEG recording). Specifically, for Group 2; i) in the ‘HA + non-HA’ condition, 

PLV correlated negatively with SRT in SpN (t(17) = -2.265, p = 0.037, see TABLE II and Fig 

6A, B), whilst FFRTFS_H2 magnitude correlated negatively with SRT in BbN (t(19) = -2.576, p = 

0.019, see TABLE II and Fig 6C, D); ii) in the ‘non-HA only’ condition, after controlling for 

PTA, FFRENV_F0 magnitude and PLV correlated negatively with SRT in SpN (FFRENV_F0: t(10) 

= -2.246, p = 0.049; PLV: t(10) = -2.450, p = 0.034; see TABLE III), whilst FFRTFS_H2 

magnitude and PLV correlated negatively with SRT in BbN (FFRTFS_H2: t(12) = -3.009, p = 

0.011; PLV: t(12) = -8.256, p < 10-5; see TABLE III). 

 

TABLE II. Results of Best-Subsets linear regression for ‘HA + non-HA’ participants in 

Groups 1 and 2. SRTs (in SpN/BbN) were predicted by the four EEG parameters. N denotes 

the number of participants based on the data inclusion criterion that the number of sweeps ≥ 

1,450 during wakeful periods; numbers shown in brackets denote the number of HA 

participants. Ra
2 denotes the adjusted R-square of the models. Significant p values are in bold 

and * = significant at p < 0.05. 

Group N Ra
2 Noise type Dependent variable Predictor(s) T-value(s) p-value(s) 
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Group 1 18 (6) 0.010 SpN SRT FFRTFS_H2 -1.086 0.293 

20 (6) 0.015 BbN SRT FFRTFS_H2 -1.134 0.272 

Group 2 19 (5) 0.187 SpN SRT PLV -2.265 0.037* 

21 (5) 0.220 BbN SRT FFRTFS_H2 -2.576 0.019* 

 

Figure 6. Neural-behavioral relation. Red dots represent HA participants. p values and Ra
2 are 

given. Asterisks denote p < 0.05. Sections A and C give significant correlations between theta 

PLV and SRT in SpN (A) and between FFRTFS_H2 magnitude and SRT in BbN (C) for Group 2 
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according to the linear regression analyses (see TABLE II). Sections B and D give time series 

of theta PLV in SpN (B) and FFRTFS_H2 (FFRTFS bandpass filtered at H2 range of 220 ~ 320 

Hz) in BbN (D) for Group 2. Red and blue lines represent the averages of better (SRTs lower 

than the group median) and worse (SRTs higher than the group median) SPIN performers, 

respectively. The time series were obtained from the sweeps with normalized numbers (1,450 

~ 1,550) during the wakeful periods (see Normalization of sweep numbers). X-axes give time 

in ms and ‘0’ is the stimulus onset. Sections E and F give the partial correlations for Group 2 

between FFRTFS_H2 magnitudes and SRTs after controlling for FFRTFS_H2_Background magnitudes 

in SpN (E) and BbN (F). The FFRTFS_H2 residuals which were obtained from correlations 

between the FFRTFS_H2 and FFRTFS_H2_Background magnitudes. SRT residuals were obtained from 

correlations between SRT and the FFRTFS_H2_Background magnitude. 

 

TABLE III. Results of Best-Subsets linear regression for ‘non-HA only’ participants in 

Groups 1 and 2. SRTs (in SpN/BbN) were predicted by the four EEG parameters and PTA. N 

denotes the number of participants based on the data inclusion criterion that the number of 

sweeps ≥ 1,450 during wakeful periods. Ra
2 denotes the adjusted R-square of the models. 

Significant p values (p < 0.05) are in bold and ^ = marginal significance (p < 0.1), * = 

significant at p < 0.05 and ** = significant at p < 0.01. 

Group N Ra
2 Noise type Dependent variable Predictor(s) T-value(s) P-value(s) 

Group 1 12 0.114 SpN SRT PTA 1.555 0.151 

14 0.246 BbN SRT PTA 2.289 0.041* 
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Group 2 14 0.538 SpN SRT FFRENV_F0 

PLV 

PTA 

-2.246 

-2.450 

2.062 

0.049* 

0.034* 

0.066^ 

16 0.882 BbN SRT FFRTFS_H2 

PLV 

PTA 

-3.009 

-8.256 

7.600 

0.011* 

< 10-5** 

< 10-5** 

 

Partial correlation analyses (two-tailed) were conducted next between the FFR 

parameters (FFRENV_F0, FFRTFS_H2 and FFRTFS_F2F3) and SRTs while controlling for the 

magnitudes of background EEG noise. This partialled out the effects of EEG noise on the 

FFR-SRT relation mathematically. Results showed that: 

 1) For Group 1, there were no significant correlations between any of the FFRs 

parameters and SRTs in SpN or BbN after the respective EEG noise magnitudes were 

controlled for in the ‘HA + non-HA’ or ‘non-HA only’ condition (all p > 0.2).  

2) For Group 2:  

i) In the ‘HA + non-HA’ condition, there were no significant correlations between 

FFRENV_F0, FFRTFS_F2F3 magnitudes and SRTs after FFRENV_F0_Background, FFRTFS_F2F3_Background 

magnitudes were controlled for in either SpN or BbN (all p > 0.7). There were significant 

negative correlations between FFRTFS_H2 magnitude and SRT in SpN (t(16) = -2.464, p = 0.025, 

Fig 6E), and between FFRTFS_H2 magnitude and SRT in BbN (t(18) = -2.525, p = 0.021, Fig 6F) 

after FFRTFS_H2_Background magnitudes were controlled for. The latter replicated the previous 

linear regression result on Group 2 (see TABLE II and Fig 6C). 
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 ii) In the ‘non-HA only’ condition, there were no significant correlations between any 

of the FFRs parameters and SRTs in SpN or BbN after the respective EEG noise magnitudes 

were controlled for (all p > 0.09). To further test the influence of EEG background noise on 

the previous Best-Subset Regression results in ‘non-HA only’ (see TABLE III), magnitudes 

of FFRENV_F0_Background and FFRTFS_H2_Background were used as additional predictors in the 

Best-Subset equations in SpN and BbN respectively. After adding FFRENV_F0_Background as a 

predictor in SpN, correlations between FFRENV_F0 and SRT and between PLV and SRT were 

not significant (FFRENV_F0 and SRT: t(9) = -1.361, p = 0.207; PLV and SRT: t(9) = -2.240, p = 

0.052; see TABLE IV). Thus, it cannot be entirely ruled out that, while controlling for PTA, 

the significant correlations of FFRENV_F0 and PLV (especially FFRENV_F0) with SRT in SpN 

may be due to the influence of EEG background noise. Lack of significance may have 

occurred because of the small number of participants (N = 14) and the increased number of 

predictors. On the other hand, after adding FFRTFS_H2_Background as a predictor in BbN, 

correlations between FFRTFS_H2 and SRT and between PLV and SRT were still significant 

(FFRTRS_H2 and SRT: t(11) = -2.548, p = 0.027; PLV and SRT: t(11) = -7.274, p < 10-4; see 

TABLE IV), showing that the significant correlations were not influenced by the EEG 

background noise. 

 

TABLE IV. Results of including magnitudes of EEG background noise as predictors for 

Group 2 (‘non-HA only’) participants based on the results of Best-subset linear regression. 

This analysis assesses the influence of the EEG background noise on the neural-behavioral 

relation. FFRENV_F0_Background and FFRTFS_H2_Background were added to predict SRT in SpN (top 
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half of table) and in BbN, (bottom half of table). N denotes the number of participants based 

on the data inclusion criterion that the number of sweeps ≥ 1,450 during wakeful periods. Ra
2 

denotes the adjusted R-square of the models. Significant p values (p < 0.05) are in bold and ^ 

= marginal significance (p < 0.1), * = significant at p < 0.05 and ** = significant at p < 0.01. 

Group N Ra
2 Noise type Dependent variable Predictor(s) T-value(s) P-value(s) 

Group 2 14 0.487 SpN SRT FFRENV_F0 

PLV 

PTA 

FFRENV_F0_Background 

-1.361 

-2.240 

 1.948 

-0.098 

0.207 

0.052^ 

0.083^ 

0.924 

16 0.871 BbN SRT FFRTFS_H2 

PLV 

PTA 

FFRTFS_H2_Background 

-2.548 

-7.274 

 6.170 

 0.197 

0.027* 

< 10-4** 

< 10-4** 

0.847 

 

IV. DISCUSSION 

The present results support our hypothesis that SPIN perception is associated 

statistically with phase-locked neural encoding of Slow-rate ENV and TFS, rather than that of 

F0-rate ENV, in older adults who presented with different audiometric profiles. Magnitude of 

FFRENV_F0 that reflects encoding of F0-rate ENV correlated significantly with behavioral 

performances in SpN when audiometric threshold was mathematically controlled for. The 

participants here showed wide individual variability of audiometric thresholds as is typical in 

aging populations (Gopinath et al., 2009; Humes et al., 2010) and hence should be more 
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representative of clinical populations than previous studies (Anderson et al., 2011; Presacco et 

al., 2016; Schoof and Rosen, 2016). Some HA users were also included in the present study 

and contributed to the current results (the ‘HA + non-HA’ condition). This extended individual 

variability in the regression analyses (see Fig. 6; HA users are shown as red dots). However, it 

should be noted that stimulus audibility was not quantified for this group, and the numbers are 

small. Future work should allow more informative hearing aid-related analyses. Significant 

correlations between EEG parameters and SRT performance were found in Group 2 but not in 

Group 1. This indicated that individual variability of SPIN abilities may be better explained 

using EEG parameters obtained under low SNR, which is relatively challenging for speech 

perception (-1 dB in Group 2), compared to high SNR at which speech is fairly recognizable 

(7 dB in Group 1). The neural-behavioral relationship is summarized schematically in Fig 7 

and is discussed further below. 

Theta PLV
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Figure 7. Summary of the neural-behavioral relationship in older adults who varied in 

audiometric hearing (the ‘HA + non-HA’ condition). Theta PLV, which reflects cortical 
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sensitivity to Slow-rate ENV of target speech, was associated with speech performances in 

SpN. FFRTFS_H2 magnitude, which reflects peripheral/brainstem processing of TFS in the 

resolved harmonics region, was associated with speech performances for both SpN and BbN. 

Also see TABLE II and Figure 6. 

 

A. Cortical sensitivity to Slow-rate ENV 

The SRT result showed that speech perception was significantly better in SpN than in 

BbN (Fig 4), as reported in previous work (Rosen et al., 2013). Correspondingly, the neural 

results showed that theta-band PLV time-locked to the syllable onset was significantly higher 

in SpN than in BbN for both groups of participants and there were no significant differences 

for other EEG parameters between the two noise types (Fig 5). Also, PLV was higher in quiet 

than in noisy backgrounds (particularly in Group 2, see Fig 5). Such results may explain how 

speech perception deteriorates in noisy environments and why it is better in SpN than in BbN. 

Previous research has reported that the theta PLV reflects neural sensitivity to the Slow-rate 

ENV in the auditory cortex (Luo and Poeppel, 2007; Howard and Poeppel, 2010) and that 

Slow-rate ENV is critical for speech perception (Drullman et al., 1994; Shannon et al., 1995; 

Arai et al., 1999). Furthermore, theta PLV obtained from scalp-EEG time-locked to input 

acoustic stimuli could reflect neural firing in the auditory cortex when decoding stimuli (Ng, 

Logothetis and Kayser, 2013). SpN is a steady-state energetic masker (EM) with no linguistic 

information, whilst BbN is an EM with envelope modulations more similar to speech 

compared to SpN. Also, BbN is an informational masker (IM) that can lead to phonetic 
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interference (Rosen et al., 2013). BbN had no lexical interference in the present study because 

of the high number of speakers (16) in the babble (Hoen et al., 2007). It is likely that the 

combined EM and IM properties of BbN caused lower cortical sensitivity to Slow-rate ENV 

of the target speech, leading to worse SPIN performance than that in SpN. This differential 

cortical sensitivity may serve as the neural mechanism of SPIN performance which varies as a 

function of noise type. Moreover, the linear regression results from Group 2 showing that 

higher theta PLV was associated with better speech perception in SpN (see TABLE II and 

TABLE III) and BbN (after controlling for PTA in non-HA participants, see TABLE III) 

further highlighted the important role of cortical sensitivity to Slow-rate ENV during SPIN 

perception.  

B. Neural encoding of TFS in the resolved harmonics region 

The neural-behavioral relationship observed in Group 2 showed that higher FFRTFS_H2 

magnitude, which reflects phase-locked neural encoding of TFS in the resolved harmonics 

(H2) region, was associated with better speech perception in both SpN and BbN (TABLE II 

and Fig 6). FFRTFS_H2 magnitude correlated significantly with better speech performances in 

BbN after PTA was controlled for (TABLE III and IV). Previous studies using cochlear 

implant simulation methods have shown that encoding TFS is critical for SPIN perception 

(Zeng et al., 2005; Stickney et al., 2007; Eaves et al., 2011). Unprocessed (where TFSs were 

retained compared to those “processed” without TFS) low-frequency (< 500 Hz) speech 

components benefited speech perception for both normal-hearing people and cochlear implant 

users (Turner et al., 2004; Qin and Oxenham, 2006; Carroll, Tiaden, and Zeng, 2011). A 

harmonic sieve, in which pitch of the target voice is extracted and used to segregate this voice 
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from background noise, is a possible explanation (Bregman, 1994; Bird and Darwin, 1998; 

Binns and Culling, 2005). Pitch perception mainly relies on TFS (Smith et al., 2002; Zeng et 

al., 2004), especially TFS in the low-frequency resolved harmonics region (Oxenham, 

Micheyl and Keeble, 2009). In the present study, the syllable stimulus used during EEG 

recording had an F0 range and contour (falling) similar to those of the target voices in the 

sentence stimuli during the SPIN perception task. Therefore, better FFRTFS_H2 representation 

reflects better processing of pitch information of the target speech, hence better voice 

segregation ability during SPIN perception.  

C. Neural encoding of F0-rate ENV 

FFRENV_F0 magnitudes were significantly lower in noise (at SNR of -1 dB) than in quiet, 

as reported in previous studies (Russo et al., 2004; Presacco, Simon and Anderson, 2016). 

This indicates how background noise affects speech perception. Anderson et al. (2011) 

showed that FFRENV_F0 magnitude correlated significantly with better SPIN performances in 

older adults. While only normal-hearing older adults (hearing thresholds ≤ 25 dB HL at ≤ 

4000 Hz) were tested in Anderson et al. (2011), the present study recruited participants who 

varied in audiometric profiles (including some who wore HAs), which gives a more 

appropriate audiometric distribution for aging populations (Gopinath et al., 2009; Humes et 

al., 2010). The present results did not show any significant correlation between FFRENV_F0 

magnitude and SPIN performance until PTA was mathematically controlled for in non-HA 

participants (for SpN in Group 2, see TABLE III). This significant correlation could also 

have resulted from the influence of EEG pre-stimulus magnitudes (TABLE IV), although 

such influence may simply reflected the variation in pre-stimulus brain activities and, hence, 
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may need to be interpreted with caution. The correlation between FFRENV_F0 magnitude and 

SPIN performance indicates that phase-locked neural encoding of F0-rate ENV may be 

associated with SRT only when participants have similar audiometric thresholds and such 

association is limited to speech perception in SpN. As FFRENV_F0 magnitude depends on 

participants’ sensitivity to the syllable, with poorer audibility leading to smaller FFRENV_F0 

magnitude (Ananthakrishnan et al., 2016), higher degrees of hearing loss should cause smaller 

FFRENV_F0 magnitude. However, other evidence has shown that hearing loss can lead to 

greater encoding of F0-rate ENV compared to normal-hearing in animal studies (Kale and 

Heinz, 2010; Henry et al., 2014; Zhong et al., 2014) as well as in older human participants 

(Anderson et al., 2013). It has been suggested that such exaggerated encoding of F0-rate ENV 

distracts encoding of salient acoustic cues (e.g., TFS) in noisy environment and hence could 

be detrimental to SPIN perception (Henry et al., 2014; Zhong et al., 2014). Therefore, the 

extent of audiometric hearing loss should be controlled carefully when studying the 

relationship between SPIN performances and neural encoding of F0-rate ENV in older adults. 

D. Clinical implications 

Older adults who varied in their audiometric thresholds were tested in the present study. 

Audiometric impairments in older adults often manifest as high-frequency hearing loss 

(Humes et al., 2010). However, high-frequency amplification in older adults has limited 

clinical benefits for speech perception (Turner and Cummings, 1999; Ching et al., 2001; 

Horwitz, Ahlstrom and Dubno, 2008). People using auditory prostheses, such as hearing aids 

(HAs) have difficulty in understanding conversations in noise partly because of limited 

improvements in SNR despite advanced contemporary noise reduction approaches (Bentler, 
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2005; Géléoc and Holt, 2014; Tremblay and Miller, 2014). Furthermore, even older adults 

with normal hearing experience difficulties in SPIN perception, especially in multi-speaker 

backgrounds, compared to normal-hearing young adults (Helfer and Freyman, 2008; Rajan 

and Cainer, 2008; Schoof and Rosen, 2014). Therefore, as well as developing strategies for 

restoring peripheral hearing and applying noise reduction approaches, it could be helpful to 

attend to neural biomarkers in the auditory pathway in order to determine optimal 

rehabilitation in older adults. In addition to decline in audiometric hearing, older adults have 

been shown to have diminished auditory processing of TFS that is related to poorer SPIN 

perception (Lorenzi et al., 2006; Grose and Mamo, 2010; Hopkins et al., 2008; Hopkins and 

Moore, 2011). This may be related to the loss of neural inhibition in the aging auditory system 

which is important for phase-locking to TFS information (Anderson et al., 2012). Furthermore, 

broadened frequency tuning at the auditory periphery due to hearing loss may decrease the 

phase-locking abilities to TFS causing SPIN perception to deteriorate further (Henry and 

Heinz, 2012). This echoes the present finding that peripheral/brainstem processing of TFS in 

the low-frequency resolved harmonics region is critical for SPIN perception. The present 

findings thus provide neural evidence to support signal processing strategies for cochlear 

implants that retain TFS information in the low-order harmonics region that render significant 

benefits during speech perception (Turner et al., 2004; Qin and Oxenham, 2006; Carroll et al., 

2011). 

It has been proposed that scalp-recorded electrophysiological measures, such as cortical 

auditory evoked potentials (cAEPs) (Tremblay and Miller, 2014) and speech-evoked FFRs 

(Dajani, Heffernan and Giguere, 2013; Bellier et al., 2015), could be used to evaluate the 
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effects of HA fitting. Components of cAEPs (such as the N1-P2 complex) have been reported 

to be good indicators for assessing HA effects both in quiet and in background noise 

(Tremblay and Miller, 2014; Kuruvilla-Mathew, Purdy and Welch, 2015). While 

low-frequency (delta, theta and alpha) PLVs can predict both amplitudes and latencies of N1 

and P2 in cAEPs in noisy backgrounds (Koerner and Zhang, 2015), it is plausible that PLV 

can also serve as a marker that helps to assess the effects of HA fitting on cortical encoding 

during SPIN perception. Bellier et al. (2015) demonstrated that magnitudes of speech-evoked 

FFRENV and FFRTFS can be modulated by amending HA settings which generate different 

auditory stimulations. FFRs could thus be used as potential peripheral/subcortical markers 

that would benefit HA users. Therefore, a further clinical implication of the present study is 

that it could provide cortical and peripheral/subcortical neural markers for evaluating and 

optimizing the settings in HAs in older adults. Compared to evaluation of these neural 

markers, evaluation of SPIN performances tends to be a more direct approach to assess HA 

benefit. However, improvements of SPIN perception based on different HA settings may also 

be influenced by higher-level cognitive factors, such as working memory capacity (see a 

review by Lunner, Rudner and Rönnberg, 2009). Evaluation of sensory-neural markers in 

HAs could thus dissociate its role from individual cognitive factors in assisting SPIN 

perception. To this end, future work is needed to assess the neural-behavioral relation with 

further control of cognitive factors during SPIN perception. 
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