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Previous studies using multi-voxel pattern analysis have decoded the content of 

participants’ delayed intentions from patterns of fMRI data. Here we investigate whether 

this technique can be used to decode not only participants’ own intentions, but also their 

representation of the intentions held by other people. In other words: if Sam is thinking 

about Hoki, can we decode the content of Hoki’s intention by scanning Sam’s brain? We 

additionally distinguished two components of intentions: action-plans versus goals, and 

included novel control analyses that allowed us to distinguish intending an outcome from 

simply expecting it to occur or simulating its consequences. Regions of frontal, parietal, 

and occipital cortex contained patterns from which it was possible to decode intentions 

of both self and other. Furthermore, crossclasification between self and other was 

possible, suggesting overlap between the two. Control analyses suggested that these 

results reflected visuo-spatial processes by which intentions were generated in our 

paradigm, rather than anything special about intentions per se. There was no evidence 

for any representation of intentions as mental states distinct from visuospatial processes 

involved in generating their content and/or simulating their outcomes. These findings 

suggest that the brain activity patterns decoded in intention-decoding fMRI studies may 

reflect domain-general processes rather than being intention-specific. 
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1. Introduction 

 

What are intentions, and how do they relate to patterns of brain activity? The term 

intention is used in various ways in everyday language and is “notoriously difficult” to 

define (Pacherie and Haggard, 2010). Nevertheless, recent neuroimaging studies have 

investigated their underlying brain mechanisms, including several using pattern 

classification techniques as a method for “decoding intentions”. In this study we attempt 

to extend these findings by asking whether we can decode participants’ representations 

of another person’s intentions as well as their own. We also examine some of the 

different ways in which intentions may be defined, and examine how these may relate to 

fMRI decoding results. In other words, we aim to explore the following question: when 

intentions are decoded from fMRI activity, what exactly is it that is being decoded? 

 

1.1 Types of intentions 

 

Intentions are conscious mental states that bear some relation to subsequent action 

(Bratman, 1987; Mele, 1992; Pacherie, 2008; Pacherie and Haggard, 2010; Searle, 1983). 

They may be subdivided according to various factors such as their temporal proximity to 

action. For example, philosophers have distinguished prior intentions versus intentions-

in-action (Searle, 1983); future-directed versus present-directed intentions (Bratman, 

1987); prospective versus immediate intentions (Brand, 1984); and distal versus proximal 

intentions (Mele, 1992). Pacherie (2008) proposes an “intentional cascade” between 1) 

distal intentions, associated with initial deliberation and planning; 2) proximal intentions, 

which develop an action plan within a specific context; and 3) motor intentions, which 

are involved in motor guidance and control during the execution of overt movements.  
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In the psychology literature, memory for intentions has been investigated in the field of 

“prospective memory” (PM) research (Brandimonte et al., 1996; Kliegel et al., 2008). 

Researchers in this field have also made various theoretical distinctions. For example 

some authors distinguish “vigilance”, where an intention is consciously rehearsed over a 

brief period, versus prospective memory “proper”, where the intention must be brought 

to mind at the appropriate time (Graf and Uttl, 2001). Others distinguish the different 

ways in which intentions can be cued (McDaniel and Einstein, 2007), such as event-

based PM (intending to do something when a particular cue occurs), time-based PM 

(intending to do something at a particular time) and activity-based PM (intending to do 

something after completing a particular activity). A further distinction within event-based 

PM (McDaniel and Einstein, 2000) is between “focal” tasks (where the individual will 

already be attending to the cue for intended action as part of an ongoing activity) versus 

“nonfocal” tasks (where the ongoing task does not direct attention towards the cue).   

 

Clearly, the term “intention” has a rich set of meanings and is used in a variety of 

different ways. This complicates any attempt to investigate putative neural correlates. It 

could be the case that phenomena related to the concept of intention are so diverse at 

the level of brain function as to make this concept unsuitable as a target for 

neuroscientific investigation (Uithol et al., 2014). According to this view, searching for 

the neural correlates of intention would be like searching for the neural correlates of 

“thinking” or “believing”: the concepts have such “wildly disjunctive” meanings (Fodor, 

1974) as to resist interpretation in terms of a limited set of neural correlates.  

Alternatively, it may be the case that a core set of brain systems play a key role across a 

broad range of situations described in terms of intention. Deciding between these views 

will require careful consideration of how neuroimaging paradigms relate to specific 

cognitive processes. 
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Insofar as intentions can be linked to particular brain processes, a further question is the 

extent to which these processes are intention-specific or domain-general. On one hand, 

intentions might be seen as special type of mental state, with distinct neural correlates. 

For example, some artificial intelligence-inspired models of the cognitive system such as 

SOAR (Laird, 2012; Newell, 1990) and ACT-R (Anderson, 1996; Anderson et al., 2004) 

posit a system called the “goal stack” that plays a unique cognitive role. According to 

these models, the goal stack is structurally distinct from other systems (i.e. it has unique 

computational properties). Such models might predict a unique pattern of brain activity 

associated with intentions. On the other hand, other models (Altmann and Trafton, 

2002) analyse the concept of intention wholly in terms of domain-general processes such 

as memory, priming, and so on. Models of this type would not predict intention-specific 

patterns of brain activity that could not be observed in the context of domain-general 

cognitive processes.  

 

1.2 Neuroimaging and intention decoding 

 

Initial PET studies investigating neural correlates of intentions focused on comparing 

brain activity between situations where participants held pending intentions while 

performing an additional “ongoing” task versus situations where they simply performed 

the ongoing task by itself. These studies revealed brain regions showing increased 

(Burgess et al., 2001; Okuda et al., 1998) and decreased (Burgess et al., 2003) activity 

associated with remembering delayed intentions. Methodologically, several of these 

studies used an approach of “multiple task averaging”, where two or more tasks were 

investigated in order to detect patterns of intention-related signal change that were 

relatively invariant to the precise cognitive operations required by specific tasks (Burgess 
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et al., 2003, 2001; Gilbert et al., 2009; Simons et al., 2006). Despite wide variety in the 

intentions and tasks used in these studies, results from these paradigms revealed 

surprisingly consistent patterns of signal change, particularly in regions of rostral 

prefrontal cortex (reviewed by Burgess et al., 2011; Cona et al., 2015). Subsequent studies 

characterised these effects in further detail, for example extending results from event-

based to time-based paradigms (Oksanen et al., 2014; Okuda et al., 2007), investigating 

subtypes of event-based tasks (Gilbert et al., 2009; Simons et al., 2006), distinguishing 

activity related to encoding, storage, and retrieval of intentions (Gilbert et al., 2012) and 

examining whether the roles of regions showing activation increases versus decreases 

could be distinguished (Landsiedel and Gilbert, 2015). 

 

More recently, studies have begun to use neuroimaging to investigate the content of 

intentions. That is, rather than seeking to identify differences in brain activity between 

having any intention versus no intention, these studies have attempted to identify 

differences in brain activity between two specific intentions (Gilbert, 2011; Haynes et al., 

2007; Momennejad and Haynes, 2012, 2013; Soon et al., 2013, 2008; Wisniewski et al., 

2016). This represents an inversion of the multiple task averaging logic of earlier studies. 

Whereas multiple task averaging was used in an attempt to identify brain activity that is 

relatively invariant from one intention to another, recent studies have complemented this 

by seeking to detect intention-specific patterns of brain activity. These studies have 

typically used multivariate decoding approaches (Haynes and Rees, 2006; Norman et al., 

2006), whereby pattern classifiers are trained on examples of activity associated with two 

categories of trial (e.g. two different intentions), and their ability to correctly classify 

novel data is tested. 
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For example, Haynes et al. (2007) decoded participants’ prospective intentions to add or 

subtract a pair of to-be-presented numbers, by analysing patterns of activity in medial 

prefrontal cortex. Subsequent studies showed that it was possible to decode participants’ 

free choices to make one of two motor responses (Soon et al., 2008) or perform one of 

two abstract tasks (Soon et al., 2013), up to 10 seconds before they executed those 

responses. Gilbert (2011) decoded participants’ intentions to make a special response if 

they saw a particular stimulus in the future, with distinct brain regions containing 

patterns that predicted A) the type of stimulus participants were expecting, and B) the 

specific response they were preparing to make when they saw it. Momennejad and 

Haynes (2012, 2013) decoded participants’ intentions to execute high/low or odd/even 

discriminations once they encountered subsequently-presented digits, with significant 

effects observed in various medial and lateral prefrontal regions.  

 

1.3 Components of intentions 

 

The studies reviewed above indicate that different intentions can be associated with 

specific patterns of brain activity, allowing them to be decoded using pattern 

classification techniques. But what exactly do these different patterns of brain activity 

reflect? There are various dimensions along which intentions can vary, potentially in an 

orthogonal manner, making it unclear what exactly the classifiers are detecting. For 

example, consider a hypothetical pattern classifier that can decode whether a person 

intends to warm or cool a room, using a thermostat. Below we consider some of the 

dimensions that the classifier might be sensitive to. 
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A. Goals or outcomes. An obvious way in which two intentions can differ from one another 

is in the goals or outcomes they aim towards. Our classifier might be distinguishing 

representations of a desired goal of warmth or coolness. 

 

B. Action-plans. A second dimension on which intentions can differ is in the action or task 

one intends to perform in order to achieve a goal. Suppose that the thermostat is 

operated digitally with a left or right button to cool or warm the room, respectively. In 

this case, a person who intends to cool the room may also intend to press the left button. 

If the button mappings were reversed, an intention to cool the room may also be an 

intention to press the right button. Therefore, intended goals and intended action-plans 

can vary independently of one another. This distinction between goals and action plans 

has been recognised in the distinction made between “goal intentions”, which specify an 

intended outcome, and “implementation intentions”, which specify a means of bringing 

that outcome about (Gilbert et al., 2009; Gollwitzer, 1999). Similarly, discussions of the 

brain’s so-called mirror system have noted that “there must be a clear distinction 

between goals and the motor routines that are implemented in a given circumstance to 

achieve those goals” (Hickok, 2008, p. 1241).  

 

The distinction between goals and action-plans may be interpreted in terms of a multi-

level hierarchy (e.g. Cooper and Shallice, 2000), whereby a higher-level goal (e.g. to fill a 

glass with water) is decomposed in terms of progressively more specific subgoals and 

subplans (e.g. to turn the tap, by executing a particular type of reaching movement with 

the arm, adopting a particular kind of grip with the hand, etc.), eventually leading to 

specific patterns of muscle activity. As noted by Tomasello et al. (2005), a goal such as to 

fill a glass with water can itself be seen as an action-plan to satisfy a higher-level goal (e.g. 

to quench thirst). Thus, “what is a goal when viewed from beneath is a means when 
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viewed from above” (p. 677). Accordingly, the distinction between goals and action-

plans does not necessarily identify two dichotomous kinds of representation. Rather, 

describing intentions in terms of distinct goals and action-plans can highlight multiple 

hierarchically-organised representations that play a role in the control of action. 

 

C. Reasons. A third dimension on which intentions can differ is the reason for forming 

that intention to begin with. Intentions can be seen as “the primary link between reasons 

and actions” (Mele, 1992, p.3). Thus, a currently hot room may motivate an individual to 

form an intention to cool it down, but a currently cool room may motivate the opposite 

intention. Our hypothetical classifier might be sensitive to current room temperature or 

the reasoning involved in comparing the current temperature to the desired temperature 

in order to infer whether the appropriate action would be to warm or cool the room. 

 

D. Expectations. Another possibility is that our classifier is decoding an expectation that 

the room will warm up or cool down, rather than the intention to bring this about. 

Expectations and intentions are intimately related. Indeed, in formal models of “active 

inference” the distinction between intending an outcome and expecting it to occur can 

collapse (Friston et al., 2011; Kilner et al., 2007). Nevertheless, intention and expectation 

have distinct meanings in ordinary language. For example, someone might intend to 

execute a tricky basketball shot without expecting that they are likely to be successful 

(Mele, 1992). Conversely, it is possible to expect an outcome without intending it to 

occur. For example, someone who failed to prepare for a test might expect to fail it 

without intending to.  

 

The expectations associated with intentions could relate to outcomes (in which case they 

may overlap with goals), or the expected actions by which those goals might be achieved 
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(in which case they would overlap with action-plans). They might also relate to other 

features associated with goals and action-plans such as the expected level of effort 

associated with an intended action. For example, in the Haynes et al. (2007) study 

addition may have been less effortful than subtraction, and therefore the classifier may 

have decoded an expected level of cognitive control that would subsequently be required, 

rather than any specific representation of arithmetical operations. Another possibility 

would be that expectations represent the rewards that can be obtained if an intention is 

fulfilled (see Wisniewski et al., 2015 for discussion). 

 

E. Commitment. One crucial difference between intending an outcome and merely 

expecting it to occur is that in the former case, but not the latter, the agent has a 

disposition to act in order to bring it about. Thus, along with their representational 

aspects (goals and action-plans), intentions also have a motivational aspect (Brand, 1984). 

Without this motivational aspect, one may have a “predictive awareness” (Mele, 2009) 

that something is about to occur (e.g. a sneeze) without intention. In the example of our 

hypothetical pattern classifier, it is unclear whether it is sensitive to a prediction that a 

particular outcome will occur, a commitment to that outcome, or both. One way to 

address this issue is to investigate whether a pattern classifier trained to distinguish two 

particular intentions also makes correct predictions when tested on states of the world 

associated with those intentions (e.g. stimuli associated with expected perceptual 

outcomes) in the absence of any intention to bring those states about. Insofar as such a 

cross-classification is possible, this implies that the classifier is sensitive to the predictive 

aspect of intentions. 

 

1.4 Aims of the present study 
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The foregoing discussion demonstrates that if a pattern classifier can distinguish between 

a person intending X versus Y, it is not always certain exactly what it is distinguishing. 

Perhaps the classifier is sensitive to brain representations of the goals attached to the two 

intentions, or their associated action-plans. It may be sensitive to an expectation of the 

intentions’ perceptual consequences, the required level of cognitive control, or the state 

of the world that rationally justifies forming one or the other intention to begin with. 

Perhaps it is sensitive to two or more of these factors. One aim of the present study is to 

apply an intention decoding methodology to a paradigm that allows us to disentangle 

some of these possibilities, by orthogonally manipulating distinct intention components 

(e.g. goals versus action-plans) and training separate pattern classifiers to decode these 

components. 

 

A second aim of this study is to investigate not only whether we can decode the 

intentions of the scanned participant, but also their representation of another person’s 

intention. A large body of research has identified brain regions involved in thinking 

about the mental states of other people, particularly those associated with the brain’s 

“mentalizing system” (Frith and Frith, 2012; Kennedy and Adolphs, 2012). For example, 

many studies show increased activation of regions such as medial prefrontal cortex and 

temporo-parietal junction when participants think about the goals and intentions of 

other people (Van Overwalle and Baetens, 2009). These studies might be considered 

analogous to univariate investigations of first-person intentions which compare 

performance of an ongoing task by itself with performance of the same task while also 

remembering a delayed intention (e.g. Burgess et al., 2003, 2001). In other words, they 

compare thinking about someone’s intention versus not thinking about their intention. 

Here, we seek to extend this by searching for patterns of brain activity that distinguish 

thinking that an agent has intention X versus thinking that they have intention Y. To our 
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knowledge, this type of ‘meta-decoding’ has not previously been attempted, i.e. decoding 

the scanned participant’s mental decoding of another agent’s intention. 

 

As well as training separate classifiers to decode the scanned-participant’s own intention 

and their representation of another agent’s intention, we also investigated whether we 

could “cross-classify” between the two. That is, we investigated whether a classifier 

trained to decode the scanned participant’s intention could also perform successfully 

when tested on the other agent’s intention, and vice versa. This would imply some 

overlap between representation of our own mental states and those of other agents, as 

suggested by “simulation” theories of mindreading. These theories posit that we 

understand the mental states of other agents – at least in part – by simulating those 

mental states within our own cognitive systems (Apperly, 2008; Carruthers and Smith, 

1996; Gordon, 1986; Heal, 1986; Ramnani and Miall, 2004). 

 

Finally, as discussed above, as well as investigating cross-classification between 1st-person 

and 3rd-person intentions, we also investigated cross-classification between intentions and 

states of the world associated with those intentions. Insofar as classifiers trained to 

decode intentions could also decode these non-intended outcomes, this would suggest 

that the classifiers are sensitive to information that is not specific to intentions but could 

also apply to expectations for what is about to occur, simulation of their perceptual 

consequences, and so on. To our knowledge, this is the first study to compare brain 

activity associated with intending an outcome versus merely expecting it. 

 

We scanned participants using fMRI as they performed a task alongside another agent, 

orthogonally manipulating the scanned-participant’s own intention and the intention of 

the other agent. In one condition, participants believed that the other agent was another 
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person they had met prior to the scanning session, in another they believed that the other 

agent was a computer. This allowed us to investigate whether putative brain 

representations of another agent’s intention are specific to thinking about people, or also 

apply to thinking about other types of agent. Some previous studies indicate patterns of 

brain activation, particularly involving medial prefrontal cortex, that apply selectively 

when participants believe they are interacting with a person rather than a computer 

(Gallagher et al., 2002; Gilbert et al., 2007). However other studies, particularly those 

investigating the mirror system, show no difference between interacting with a person 

versus a robot (Cross et al., 2012; Gazzola et al., 2007). 

 

2. Methods 

 

2.1 Participants 

 

24 right-handed participants attended an initial behavioural training session followed by a 

MRI scanning session 1-4 days later (mean age: 24.4 years; range 19-36; 10 males). A 

further three participants took part in the behavioural training setting but were not 

invited back for MRI scanning due to poor performance of the behavioural task.  All 

participants provided written informed consent before taking part and the study was 

approved by the UCL Research Ethics Committee (1584/002). 

 

2.2 Behavioural task 

 

Participants took part in a collaborative task with a partner. They were told that they 

were playing a game together. For half of the trials the participants were told that their 

partner was another person outside the scanner; in the other half they were told that it 
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was a computer program. There were two roles in this task: the experimenter or 

computer program always took the role of player A, who acted first on each trial. The 

experimental participant took the role of player B, who acted second on each trial. A 

schematic representation of this task is shown in Figure 1 and the sequence of events on 

each trial is shown in Figure 2. 

 

Each trial began with the players viewing a picture of two vertical pipes, side by side, 

with a ball above one of them. Initially, two sections of the pipes were missing. 

Subsequently, the ball began to fall downwards and the players’ task was to fill in the 

missing sections of the pipes to guide it towards goal locations (left or right). During this 

trajectory there were three “switch points” where the ball could either switch from one 

pipe to the other (in which case the pipes could be seen crossing over) or stay in the 

same pipe (in which case the pipes continued straight down). Player A’s task was to 

configure the first switch point (i.e. switch versus stay) and player B’s task was to 

configure the third switch point. The second switch point was already shown in a switch 

or stay configuration from the beginning of the trial and was not under control of either 

player.  

 

Before the pipes were filled in, the first switch point was filled with either the name 

‘Hoki’ (when player A was the experimenter) or ‘Computer’ (when player A was the 

computer program). The third switch point was filled with the participant’s first name. 

The colour of these names indicated goal locations for the two players (left versus right). 

These locations determined each player’s goal immediately after the switch point that 

they controlled. Therefore, player A’s goal referred the ball’s location immediately after 

the first switch point and player B’s goal referred to the location immediately after the 

third switch point. The players’ names could be shown in four possible colours: red, 
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green, blue, or orange. Two of these colours indicated left and two indicated right, so 

that there were two pairs of colours which indicated left versus right. One pair of colours 

was used on odd-numbered trials and the other was used on even-numbered trials. By 

cueing each position with two different colours, we were able to decode fMRI patterns 

corresponding to each position unconfounded with the presentation of particular colours 

(see below). 

 

[Figure 1 about here] 

 

Each trial began with an initial period of ‘thinking time’, where the players could form 

intentions for future behaviour (i.e. their decisions to set their respective switch points to 

switch or stay configurations). It is only this period of the trial that will be examined in 

our neuroimaging analyses. Suppose that a trial begins as follows: 1) ball above the left 

pipe; 2) player A’s name in a colour indicating the right pipe as a goal, 3) the second 

switch point set to a switch configuration, 4) player B’s name in a colour indicating the 

left pipe as a goal. The full crossing of these four factors defined the 16 possible trial 

types in this task (see Table 1 for a list). From the starting point described above, it is 

possible to reason as follows: given that the ball’s starting point is on the left but player 

A’s goal is on the right, player A should form an intention to set the first switch point to 

a switch configuration. Following this, the ball will pass through the second switch point, 

which is also set to a switch configuration, so it will transfer the ball back to the left pipe. 

Therefore, given that player B’s goal is for the ball to be on the left, this player should 

form an intention to set the third switch point to a stay configuration. In this way, player 

B forms the appropriate stay intention, and in doing so s/he considered six pieces of 

information: 1) player A’s goal (right); 2) player A’s action-plan (switch); 3) player B’s 
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goal (left); 4) player B’s action-plan (stay); 5) the ball’s initial position (left); 6) 

configuration of the second switch point (switch). 

 

[Figure 2 about here] 

[Table 1 about here] 

 

Importantly, in our experimental design these six variables are perfectly orthogonal to 

each other across the 16 trial types. This allowed us to investigate patterns of brain 

activity that were sensitive to each of these six variables in turn, without being 

confounded with any of the other variables.  Although the two action-plans could be 

deduced by thinking about the four other pieces of information (as described in the 

example above), the correlation between each action-plan and the other five variables, 

across the 16 trial types, was zero (Table 2). Formally, predicting the action-plans from 

the other factors is a linearly inseparable problem (Duda et al., 2000). This means that a 

linear classifier such as the one used in the present study would by definition be unable 

perform better than chance in predicting action-plans from the other variables. 

 

[Table 2 about here] 

 

Following the thinking time at the beginning of each trial two images were shown to the 

left and right of the first switch point, one showing pipes in a switch configuration and 

the other showing pipes in a stay configuration. This was the cue for player A to press 

the left or right button to configure the first switch point. As soon as this occurred, the 

ball began falling continuously down the pipes and player B was presented with switch 

and stay options either side of the third switch point. Player B then configured the third 

switch point in anticipation of the arrival of the ball. Finally when the ball reached the 
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bottom of the pipes, feedback was provided in the form of a flashing dot shown under 

player B’s goal location. If player B’s switch point was configured correctly, this was 

shown in green; otherwise a black outline was shown. Whenever switch / stay options 

were presented on the screen they were randomly assigned to left versus right. This 

meant that during the initial thinking period the player could only form an abstract 

intention to switch or stay rather than a specific motor response to press the left or right 

button. 

 

2.3 Behavioural procedure 

 

Participants took part in an initial behavioural training session to learn the task. First they 

practiced the task without player A, with the first two switch points already set to the stay 

configuration from the beginning of each trial. During this part of the practice session 

they saw the words ‘LEFT’ and ‘RIGHT’ presented in their associated colours on the left 

and right of the screen so that they could learn these colour-position mappings. 

Following this, they performed the task without these reminders being presented on the 

screen until they reached a criterion of at least 75% correct. Next, they practiced the task 

with the experimenter (Hoki) also taking part as player A, controlling the first switch 

point. The second switch point was still always set to stay. During this part of the task the 

experimenter sat beside the participant and pressed keys on the keyboard to configure 

the first switch point, so that the participant would see that player A was a real person 

taking part in the task. Next, they practised the task with the second switch point set to a 

switch configuration, followed by practice trials with the second switch point randomly set 

to switch or stay configurations. After this, a new element of the task was introduced. 

Participants performed 16 practice trials, and on two of these trials Hoki configured the 

first switch point incorrectly (i.e. catch trials). As a result player B had to reverse their 
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intended configuration of the third switch point to guide the ball to their goal location. 

The purpose of this was to provide a measure of whether participants were generating an 

expectation for player A’s behaviour in each trial’s initial thinking period. If so, an 

incorrect choice from player A would be surprising, as a result of which player B would 

be required to rapidly change their action-plan, which could be detected behaviourally by 

increased response time and/or error rate. Alternatively, if player B simply reacted to the 

position of the ball after player A configured the first switch point, there would be no 

reason to expect them to behave differently between catch and noncatch trials. At the 

end of this practice session, participants were presented with the question ‘Did Hoki 

sometimes surprise you with her choice?’, which they answered by pressing a button 

corresponding to the words ‘No’ and ‘Yes’ presented on the left and right of the screen. 

This was included as a means of encouraging participants to form expectations for player 

A’s behaviour throughout the task. Finally, in the last practice session, participants 

performed 16 trials where player A was Hoki, followed by the question ‘Did Hoki 

sometimes surprise you with her choice?’, then 16 trials were player A was Computer, 

followed by the question ‘Did the Computer sometimes surprise you with its choice?’. 

This matched the task that would subsequently be performed in the fMRI scanning 

session. In order to make clear the distinction between ‘Hoki’ and ‘Computer’ trials, 

whereas Hoki was engaged in the task and pressed keys on the computer while she was 

player A, when the Computer was player A the switch point was configured without 

requiring any key press and Hoki looked away from the laptop and read a magazine to 

make it clear that she was no longer involved in the task. 

 

During the scanning session, there were six runs, each consisting of 32 trials as described 

above, with the exception that unbeknownst to the participant, the computer was now 

always in control of player A so that Hoki / Compuer conditions were perfectly 
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matched. The order of Hoki / Computer for player A in the first run was 

counterbalanced between participants, and subsequently reversed from each run to the 

next. Each set of 16 trials consisted of the full set of possible trial types, presented in 

random order. The two colour-pairs used to cue goal locations alternated from each trial 

to the next. On two randomly-selected runs there were no catch trials; two runs each 

contained two catch trials out of the 16 where player A was Hoki, and two runs each 

contained two catch trials out of the 16 where player A was the Computer. Following the 

MRI scan, participants were asked to fill out a questionnaire giving their impressions of 

the task (see below). 

 

The timings on each trial were as follows. The initial thinking time (the focus of the 

neuroimaging analyses) followed an approximately exponential distribution (min: 3s, 

max: 18.5s, mean: 8s). By jittering the duration in this manner we were able to 

decorrelate the haemodynamic response to this period of the trial from subsequent parts 

(Visscher et al., 2003). Following this, player A’s response options were presented on the 

screen. Player A responded 0.5 – 1.1 seconds later (mean: 0.7). These timings were 

matched between the Hoki and Computer conditions, and were similar to the timings 

produced by Hoki in the practice session. At this point the ball began falling down the 

screen and player B’s response options were presented. As soon as player B responded, 

the third switch point was filled in accordingly. If player B had not responded by the 

time the ball reached the position of the third switch point (which took 2 seconds), the 

switch point was set to the incorrect configuration. Once the ball reached the third 

switch point, i.e. the final moment at which it was possible for player B to make a choice, 

it then sped up and took 0.4s to reach the bottom of the screen, followed by a 1s 

feedback period, then a 0.5 pause until the next trial. Therefore mean total trial duration 

was 12.6s. Each run consisted of two miniblocks of 16 trials, with each miniblock 
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followed by a 6 second period where participants were asked if they were surprised by 

player A’s behaviour. The two miniblocks were identical except that the agency for player 

A switched between Hoki and Computer. 

 

2.4 fMRI procedure 

 

A 1.5T Siemens TIM Avanto scanner was used to acquire both T1-weighted structural 

images and T2*-weighted echoplanar images (64 x 64; 3.2 x 3.2mm pixels; echo time: 40 

ms) with blood oxygen level-dependent (BOLD) contrast. Each volume comprised 40 

axial slices (3.2mm thick, oriented approximately to the anterior commissure-posterior 

commissure plane). Functional scans were acquired in six sessions, each comprising 428 

volumes (~7 min). Volumes were acquired continuously using a multi-band sequence 

(acceleration factor: 4), with an effective repetition time of 1s per volume. The first nine 

volumes in each session were discarded to allow for T1 equilibration effects. Between the 

third and fourth functional scan, a 6 min T1-weighted structural scan was performed. 

 

2.5 Data analysis  

 

Multi-voxel pattern analyses were conducted as follows. Separate analyses were 

conducted to decode each of the following pieces of information: player A’s goal 

(left/right), player A’s action-plan (switch/stay), player B’s goal (left/right), player B’s 

action-plan (switch/stay). Seeing as player B was the scanned participant, this means that 

we were decoding either player B’s representation of player A’s goal/action-plan, or 

player B’s representation of their own goal/action-plan. We did this by partitioning the 

16 possible trial types into two sets of 8, depending on the piece of information we were 

decoding, and training a classifier to distinguish the two categories. For example, suppose 
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that we were decoding player B’s representation of player A’s goal. In this case, we would 

train a classifier to distinguish trial types 1,2,5,6,9,10,13,14 versus 3,4,7,8,11,12,15,16 (see 

Table 1). Note that these categories differ only in player A’s goal and are perfectly 

balanced in terms of the initial ball position, player B’s goal, the second switch 

configuration, player A’s action plan, and player B’s action plan. Therefore player A’s 

goal could be examined, unconfounded with the other pieces of information. Next, to 

decode player B’s representation of their own goal, we would classify trial types 

1,3,5,7,9,11,13,15 versus 2,4,6,8,10,12,14,16. Again, the two categories classified here are 

perfectly balanced in terms of each of the other pieces of information. This procedure 

was therefore repeated to decode each possible type of information, separately for the 

human-partner and computer-partner conditions. 

 

fMRI data were analysed using SPM12 software running on MATLAB R2016b for Mac, 

along with custom-written MATLAB code. First-level models were set up to analyse 

fMRI data after realignment with SPM12 but prior to normalisation or smoothing. For 

each MVPA analysis, the thinking period at the beginning of each trial was modelled with 

eight separate boxcar regressors: four representing one of the categories being decoded 

(e.g. player A’s goal: left), the other four representing the other category (e.g. player A’s 

goal: right). The four regressors for each decoding category resulted from the crossing of 

two possible agents (Hoki / Computer) and two possible pairs of colours used to 

represent left vs right goals. Additional regressors coded for 1) Hoki’s non-catch 

response; 2) Hoki’s catch response; 3) Computer’s non-catch response; 4) Computer’s 

catch response; 5) The participant’s own response; 6) Feedback following correct 

responses; 7) Feedback following incorrect responses; 8) Post-miniblock question about 

whether there had been any surprising responses. These were modelled with delta 

functions, apart from the feedback regressors (modelled with a duration of 1s) and the 
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post-miniblock regressor (modelled with a duration equivalent to the participant’s 

response time). Additional regressors coded for the six movement parameters derived 

from realignment and the mean over scans. This comprised the full model for each 

session. 

 

Parameter estimates from first-level models were used for MVPA analyses. These 

analyses used a searchlight approach (Kriegeskorte et al., 2006): we investigated decoding 

accuracy from a sphere of voxels centered on each voxel in the brain in turn (radius: 

three voxels).  Each sphere yielded a vector of voxelwise parameter estimates 

representing one of the two conditions being distinguished (e.g. player A’s goal left vs 

player A’s goal right), in one of the six sessions. These vectors were individually 

normalised to mean 0, SD 1 before being entered into MVPA analysis, and the resulting 

decoding accuracy was assigned to the central voxel after subtracting 50%, yielding a 

whole-brain decoding map where zero indicated chance performance. Separate analyses 

were conducted for the human-partner and computer-partner conditions. For each 

condition, linear support vector machines were trained to distinguish patterns 

corresponding to the two categories (LIBSVM implementation; 

http://www.csie.ntu.edu.tw/~cjlin/libsvm;  regularization parameter: 1). A leave-one-

out crossvalidation approach was used so that classifiers were trained on five sessions 

and tested on the sixth, rotating training/testing sets over the six sessions. Furthermore, 

classifiers were always trained on data from one colour-goal mapping and tested on the 

other (averaging results after flipping the two mappings). This ensured that classification 

could not be based on the colours used to cue the two goals.  

 

To evaluate decoding accuracy at the group level, decoding maps were normalized into 

3mm cubic voxels using Montreal Neurological Institute reference space and fourth-
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degree B-spline interpolation, based on normalisation parameters derived from 

segmenting the coregistered structural scan1. The normalised maps were then smoothed 

using a 4mm Gaussian kernel (as in Gilbert, 2011) and entered into a one-sample t test at 

the second level. This allows evaluation of regions showing consistently above-chance 

decoding accuracy across participants. Results were considered significant if they passed 

a familywise error corrected extent threshold of p < .05, based on a cluster forming 

threshold of p < .001. This follows the statistical approach and threshold used in other 

recent MVPA studies (e.g. Loose et al., 2017), avoiding the inflated false positive rates 

seen at more liberal statistical thresholds by Eklund et al. (2016).  

 

3. Results 

 

3.1 Questionnaire measures 

 

No participant spontaneously guessed that the human-partner and computer-partner 

conditions were in fact identical. All participants said that they were at least somewhat 

surprised to discover that the experimenter was no longer involved in the task once the 

scanning session began. However, participants reported that they approached the task 

similarly in the two conditions, with only one participant out of 24 reporting any 

difference in behaviour between the two (this participant said that they tried harder to 

perform well in the human-partner condition). For full results from the questionnaire, 

see Supplementary Materials. 

 

3.2 Behavioural results 

                                                        

1 For one participant no structural scan was available and the normalisation parameters 
were based on the mean functional scan. 
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Behavioural results are summarised in Figure 3. Participants generally performed 

accurately; however, accuracy was reduced and reaction time increased on catch trials, 

where player A configured the first switch point unexpectedly. This indicates that 

participants formed prior expectations during the initial thinking period on each trial. If 

they had simply reacted to player A’s configuration of the first switch point there would 

be no reason to expect any difference between the two types of trial. Accuracy data was 

entered into a repeated measures ANOVA with factors Catch (catch vs non-catch) and 

Partner (human vs computer). This showed a significant effect of Catch (F(1,23) = 21, p 

< .001, η2
p = .48) but no significant effect of Partner or Catch x Partner interaction 

(F(1,23) < 2.6, p > .12, η2
p < .11). A similar analysis of the reaction time data showed a 

significant effect of Catch (F(1, 23) = 86, p < .001, η2
p = .79), but no significant effect of 

Partner or Catch x Partner interaction (F(1,23) < 2.7, p > .11, η2
p < .11). Accuracy for 

participants’ report at the end of each block whether there had been any catch trials was 

78%, which was significantly above chance (t(23) = 7.2, p < .001). Note that answering 

this question correctly requires the catch/non-catch status of all 16 trials to be accurately 

evaluated, therefore this represents a much higher level individual-trial accuracy than 

78%. 

 

3.3 Decoding intentions of self and other 

 

Eight separate decoding analyses were conducted as a result of crossing the following 

three factors: A. own intention or other intention (below we refer to this as 1st-person 

and 3rd-person respectively); B. goal (left-right) or action-plan (switch-stay); C. human-

partner or computer-partner. Therefore, the eight analyses attempted to decode the 
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following: 1) 1st-person goal, human-partner; 2) 1st-person goal, computer-partner; 3) 1st-

person action-plan, human-partner; 4) 1st-person action-plan, computer-partner; 5) 3rd-

person goal, human-partner; 6) 3rd-person goal, computer-partner; 7) 3rd-person action-

plan, human-partner; 8) 3rd-person action-plan, computer-partner. Rather than report 

each of these analyses here (with the attendant multiple comparisons problem this would 

cause), we first averaged them and entered the mean decoding map into a one-sample t-

test (for results from each of the individual decoding analyses, see Supplementary 

Materials). This provides a single test potentially sensitive to any type of information, 

from which it is possible to generate regions of interest which are unbiased with respect 

to the three factors described above. We then consider the evidence for significant 

decoding of each specific type of information below. 

 

The mean decoding map identified four regions at a whole-brain corrected threshold 

showing significant effects, all in the left hemisphere (Table 3, Figure 4):  dorsal posterior 

frontal cortex (BA 6/8), superior parietal cortex (BA 7), posterior cingulate (BA 23/30) 

and occipital cortex (BA 18). Mean decoding accuracies were extracted across all voxels 

in each of these regions of interest (ROIs) and entered into a repeated measures 

ANOVA with factors Region, Perspective (1st person / 3rd person), Component (goal / 

action-plan) and Partner (human / computer). Note that these ROIs are biased towards 

above-chance decoding accuracy seeing as this was the statistical criterion by which they 

were selected (based on a familywise error correction for multiple comparisons). 

Therefore in the analyses below we only report significance tests for effects which are 

orthogonal to this selection criterion (Kriegeskorte et al., 2009). There was a main effect 

of Component (F(1,23) = 7.1, p = .014, η2
p = .235), qualified by a Component x Region 

interaction (F(3,69) = 7.3, p = .0003, η2
p = .240). There were no other significant effects 

(p > .079, η2
p < .094). 
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[Table 3 about here] 

[Figure 4 about here] 

 

These results are illustrated in Figure 5. Overall, accuracies for decoding action-plans (i.e. 

switch versus stay) were higher than accuracies for goals (left versus right). However, 

these results were modulated by region. Numerically, decoding accuracy for action-plans 

increased in the following sequence: 1) occipital cortex, 2) posterior cingulate, 3) superior 

parietal cortex and 4) frontal cortex. Decoding accuracy for goals increased in exactly the 

reverse sequence. Thus, when considering each intention component separately, there 

was a main effect of Region for both action-plans (F(3,69) = 4.54, p = .006, η2
p = .165) 

and goals (F(3,69) = 4.41, p = .007, η2
p = .161). This indicates that the decoding map 

shown in Figure 4 reflects significant contributions from both goal decoding and action-

plan decoding. If mean decoding accuracy had been driven by above-chance levels for 

just one intention component, there would be no reason for the other component to 

differ significantly between regions.  

 

[Figure 5 about here] 

 

3.4 Cross-classification between 1st and 3rd person perspectives 

 

Next we investigated whether it was possible to crossclassify between the intentions of 

the scanned-participant and their partner. To do this, we trained classifiers on categories 

based on one classification (e.g. own intention switch versus stay) and tested them on 

categories based on another (e.g. partner’s intention switch versus stay). These analyses 

were performed using a searchlight approach across the whole brain, with classifiers 
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trained on one colour-goal mapping and tested on the other, as in the decoding analyses 

above. For all analyses, we averaged over classification direction (i.e. train on partner A, 

test on partner B / train on partner B, test on partner A). Note that classifications for the 

two partners were strictly orthogonal, by design. This means that a classifier that was 

100% accurate for decoding one partner’s intention would necessarily be at chance level 

for the other partner.  Nevertheless, it is still possible for a single classifier to decode 

both partners’ intentions with above chance accuracy. For example, consider a classifier 

that predicts switch if either partner has an intention to switch, otherwise stay. This 

classifier would correctly classify 75% of trials. 

 

[Figure 6 about here] 

 

We averaged results from the cross-classification analysis in the four regions of interest 

defined by the analysis above. Note that unlike the decoding accuracies analysed in 

section 3.3, the decoding accuracies in the present analysis are unbiased at our regions of 

interest because the trial categorisations for training and testing data were orthogonal to 

one another. As a result, the analyses under investigation were independent of those used 

to define the regions of interest (Kriegeskorte et al., 2009). Therefore, we include tests 

for above-chance decoding accuracies in the present section, which we refrained to do in 

section 3.3 because it would have been biased. Decoding accuracies were analysed in a 

repeated-measures ANOVA with factors Region, Component (goal / action-plan) and 

Partner (human / computer), after subtracting 50 so that zero represented chance 

performance. The intercept for this ANOVA was greater than zero (F(1,23) = 4.4, p = 

.047, η2
p = .161), indicating that significant crossclassification occurred. There were also 

main effects of Region (F(3,69) = 5.77, p = .001, η2
p = .200) and Component (F(1,23) = 

8.95, p = .007, η2
p = .280). Results are shown in Figure 6, which shows significant cross-
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classification of action-plans in frontal and superior parietal cortex (p < .0012). Both of 

these effects survived a Bonferroni correction for multiple comparisons (corrected alpha 

= .006); none of the other cross-classifications was significant, even without Bonferroni 

correction (p > .28). 

 

3.5 Cross-classification between mental-state decoding and physical-state decoding 

 

One of the aims of the present study was to investigate cross-classification between 

intention components and states of the world corresponding to those intentions. Such 

cross-classification might be expected if, for example, holding a particular intention was 

associated with simulating its perceptual consequences. This would be consistent with 

prior evidence of overlapping fMRI activation patterns for perception and imagery 

(Cichy et al., 2012; Stokes et al., 2009). 

 

In order to investigate cross-classification of this type, we first collapsed over the human-

partner and computer-partner conditions (which failed to show any significant 

differences). We also collapsed across the two colour-goal mappings. It was no longer 

necessary to keep these separate because the results of the following analyses could not 

be biased by classification of colour cues. We then performed separate cross-

classification analyses for the two intention components and report results from the four 

ROIs as above. For goal decoding, we cross-classified between left versus right goals, 

and trials that began with an image of the ball above the left versus right pipe. For plan 

decoding, we cross-classified between switch versus stay intentions, and trials that began 

with the second switch-point shown in the switch versus stay configuration. Therefore 

these analyses cross-classified between invisible goals or plans inferred by the 

participants, and visible states of the world that corresponded to these goals or plans. We 
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conducted these analyses separately for 1st-person and 3rd-person intentions. As with our 

earlier analyses, these cross-classifications were unbiased in our experimental design, e.g. 

intentions with left versus right goals were equally likely to occur on trials with the ball 

starting above the left versus right pipe (see Tables 1 and 2). 

 

[Figure 7 about here] 

 

Using the same ROIs as sections 3.3 and 3.4 above, decoding accuracies were analysed in 

a Region x Perspective (1st-person / 3rd-person) x Component (goal / plan) Repeated 

Measures ANOVA. The intercept for this ANOVA was greater than zero, indicating that 

significant cross-classification was possible (F(1,23) = 45.6, p < .001, η2
p = .67). There 

were main effects of Region (F(3,69) = 9.58, p < .001, η2
p = .29) and Component 

(F(1,23) = 15.1, p < .001, η2
p = .40), along with interactions between Region x 

Component (F(3,69) = 12.1, p < .001, η2
p = .34), Component x Perspective (F(1,23) = 

7.69, p = .011, η2
p = .25) and Region x Component x Perspective (F(3,69) = 16.4, p < 

.001, η2
p = .42). These results are illustrated in Figure 7. Significant cross-classification 

was possible for both 1st-person and 3rd-person action-plans in frontal and superior 

parietal cortex. In occipital cortex, cross-classification was possible for 1st-person action-

plans and 3rd-person goals. Each of these effects survived a Bonferroni correction over 

the 16 tests conducted (t(23) > 4.2, p < .00031; corrected alpha = .003). None of the 

other cross-classification effects was significant, even at an uncorrected threshold (t(23) 

< 1.7, p > .11). 

 

3.6 Intention-specific activity patterns? 
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In a final set of analyses, we tested whether there were any regions for which the initial 

intention decoding analyses yielded better decoding accuracies than the subsequent 

cross-classification analyses. This might be expected if there were intention-specific 

patterns of brain activity that did not generalise between 1st-person and 3rd-person 

intentions, or between intention representations and representations of physical states of 

the world. We also searched for regions in which 3rd-person intention decoding was 

significantly different between the human-partner and computer-partner conditions. 

None of these planned analyses produced any significant results. Thus, there was no 

evidence for intention-specific patterns of brain activity. We report a further set of 

exploratory analyses in Supplementary Materials. While the majority of these analyses 

produced nonsignificant results, a small number of significant results were found. 

However, we do not consider that these results provide strong evidence for intention-

specific activity patterns unless they can be replicated, given the high risk of false 

positives when a large number of exploratory analyses are conducted. 

 

We also investigated the strength of evidence for a null effect of Perspective (1st person 

vs 3rd person) and Partner (human vs computer) on intention decoding in the regions of 

interest shown in Table 3. To do this we repeated the analysis described in section 3.3 

above, using a Bayesian Repeated Measures ANOVA in the statistics package JASP 

0.8.3.1 (JASP Team, 2017). Our null model included the factors Region, Component, 

and Region x Component, to account for the significant Region x Component 

interaction described above. We then calculated Bayes Factors BF01 for models 

additionally including factors of Perspective and Partner, and all interactions with other 

factors. This provides a measure of the evidence for a null effect of including these 

additional factors. In all cases, models including the Perspective factor and its interaction 

with other factors had a BF01 greater than 7.8, and those including Partner and its 
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interactions had a BF01 greater than 10.9. Bayes factors greater than 10 are conventionally 

interpreted as providing “strong” evidence, while those in 3-10 range are described as 

“substantial” (Jeffreys, 1961). Thus, the evidence for a null effect of Perspective and 

Partner in our regions of interest was in the substantial-to-strong range.  

 

4. Discussion 

 

In this study we aimed to extend previous “intention decoding” fMRI experiments with a 

paradigm incorporating three novel features: A) attempting to decode both the scanned-

participant’s own intention and their representation of another agent’s intention; B) 

distinguishing goal versus action-plan components of intentions; C) attempting cross-

classification between intention components and states of the world corresponding to 

those components. Results showed that it was possible to decode both 1st person and 3rd 

person intentions, with distinct brain regions showing selectivity for goal versus action-

plan components of those intentions. However, follow-up analyses suggested that the 

decoding analyses reflected low-level processes involved in generating the content of 

intentions and/or expecting their outcomes, rather than any intention-specific pattern of 

brain activity. 

 

The network of brain regions from which intentions could be decoded included regions 

of dorsal prefrontal, superior parietal, posterior cingulate, and occipital cortices. Similar 

regions of dorsal prefrontal and superior parietal cortex frequently co-activate in 

functional neuroimaging studies (Yeo et al., 2011) and have been proposed to play a key 

role in awareness of conscious intentions and motor plans (Cona et al., 2015; Desmurget 

et al., 2009; Desmurget and Sirigu, 2009; Haggard, 2005). These regions - termed the 

‘dorsal frontoparietal network’ by some authors (Ptak et al., 2017) - have also been 
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implicated in a range of visuospatial processes relevant to the present paradigm, such as 

generation of saccades (Grosbras et al., 2005), shifts in visual attention (Corbetta et al., 

1998; de Haan et al., 2008), simulation of spatial transformations and mental rotation 

(Zacks, 2008), motor imagery, and emulation of visuomotor processes (Hétu et al., 2013; 

Zabicki et al., 2016). 

 

While the present results are certainly consistent with a prominent role of dorsal 

frontoparietal regions in representing intentions, there are at least at least three possible 

roles that these regions could have played that can be described without invoking the 

concept of intention. First, it is possible that intentions to switch versus stay were 

associated with different patterns of eye movements and that our decoding analyses were 

simply detecting saccade-related activity patterns in this network. In the absence of eye-

tracking data from this study, we cannot exclude this possibility. A second potential role 

of this network is in performing the spatial computations required to compare the 

starting position of the ball with its goal position, and thereby derive an appropriate 

intention to switch versus stay. This would be consistent with its role in other paradigms 

involving computation of spatial transformations, such as mental rotation tasks (Zacks, 

2008). Third, this network may have played a role in emulating intended action-plans 

and/or simulating the perceptual consequences of plans to switch versus stay. This 

would be consistent with “motor emulation” theories of the role of this network (Ptak et 

al., 2017). These three possibilities are not mutually exclusive, and would all be 

compatible with the significant cross-classification between intended action-plans to 

switch versus stay and the perceptually-presented configuration of the second switch 

point in our experimental design. Each of these possible functions could play an 

important role in supporting visuomotor intentions. However, none of them can be 

interpreted as an intention-specific processes. 
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The posterior cingulate region identified in our decoding analyses has also been 

proposed to play a key role in processing intentions. For example, Cona et al.’s (2015) 

meta-analysis showed consistent activation of posterior cingulate associated with both 

encoding and retrieving intentions. Gilbert et al. (2012) found that voxelwise patterns of 

activity in this region showed greater similarity between encoding and retrieval when 

intentions were successfully fulfilled rather than missed (see also Qiao et al., 2017 for 

evidence that similar medial parietal regions are involved in representing intentional task 

set). This region also plays an important role in visuospatial tasks such as those involving 

eye movements (Berman et al., 1999), spatial attention (Hopfinger et al., 2000), and 

translation between egocentric and allocentric spatial reference frames (Vogt et al., 1992). 

 

Turning now to occipital cortex, this region showed the greatest decoding of goals (left 

versus right), but no cross-classification between 1st-person and 3rd-person 

representations. However, occipital cortex did show significant cross-classification 

between visual presentation of the ball on the left versus right of the screen and the 3rd-

person goal of partner A to move the ball to the left versus right pipe. It also showed 

cross-classification between visual presentation of the second switch point in a switch 

versus stay configuration and player B’s action-plan to switch versus stay. Both of these 

effects could be explained if this region held a visual template of the scanned 

participant’s expectation of the outcome of player A’s intended behaviour, along with a 

visual template of how the scanned-participant (player B) should then respond. The first 

of these pieces of information would be required as an intermediate step in the inference 

as to whether the correct plan is to switch or stay. The second would then provide a 

template that would allow selection of the correct response by matching the visual 
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presentation of the two response options against a representation of the correct one to 

choose. 

 

Unlike the majority of previous intention decoding studies (reviewed by Haynes, 2014; 

Momennejad and Haynes, 2013), the present study did not show any evidence of 

intention decoding from medial prefrontal cortex, a region thought to play a key role in 

intentional action (Brass et al., 2013). There are at least two relevant differences between 

the present paradigm and previous ones that may explain this discrepancy (see also 

Zhang et al., 2013 for a relevant discussion of rule encoding in medial prefrontal cortex). 

First, the intentions contrasted in previous studies tended to represent abstract task sets 

(e.g. perform an addition versus a subtraction task) rather than visuospatial options used 

here (left vs right and switch vs stay). Second, in the present study there was no filler task 

during the intention planning period: participants simply focused on thinking about their 

intention until the response cues appeared. Previous work suggests that medial prefrontal 

decoding of delayed intentions is particularly associated with periods filled with a 

distracting task (Momennejad and Haynes, 2013). A possible explanation of this – at least 

with respect to the rostral aspects of this brain region - comes from the ‘gateway 

hypothesis’ of Burgess and colleagues (Burgess et al., 2007; Gilbert et al., 2005). This 

hypothesis suggests remembering intentions whilst also dealing with a distracting 

ongoing task may particularly recruit rostral prefrontal cortex due to a role of this brain 

region in attentional selection between stimulus-oriented thought (prompted by the 

ongoing task) and maintenance of stimulus-independent representations of intended 

behaviour. Accordingly, rostral prefrontal cortex would not be expected to play a role in 

task such as the present one, where participants are free to focus on intentions without 

simultaneously having to deal with a distracting ongoing task.  
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Our design included two features that would have allowed us to distinguish brain activity 

specifically related to processing of intentions versus non-specific visuo-spatial processes. 

First, we were able to compare patterns of brain activity that distinguished the scanned 

participant’s own intention to switch versus stay from their representation of another 

agent’s intention. Seeing as the visuo-spatial computations required to generate 

appropriate 1st-person and 3rd-person intentions were matched, this would have revealed 

patterns that could not be attributed simply to lower-level visuo-spatial processes. 

Second, when examining participant’s representation of 3rd-person intentions we could 

compare their representation of a human partner’s intention versus a computer partner. 

A brain region from which it was possible to decode participants’ representations of a 

human partner’s intention, but not a computer partner in a matched task, would be a 

candidate region for supporting representations which were specific to the content of 

other humans’ mental states. 

 

Neither of these comparisons revealed any significant differences in decoding accuracy. 

On the basis of this, we argue that the present results provide no evidence for unique 

brain representations of intentions as a special type of mental state, distinct from 

processes such as generation and elaboration of visuomotor plans, simulating expected 

perceptual outcomes, and so on. Of course, this is not to deny that alternative 

experimental paradigms might be more successful, or that alternative analysis techniques 

with the present dataset might have detected intention-specific patterns. To facilitate re-

analyses of our data by other researchers, we have provided the full fMRI dataset for 

download at the following location: [the dataset will be uploaded upon acceptance of this 

manuscript]. We cannot exclude the possibility that our failure to find intention-specific 

patterns of activity merely reflects low statistical power. We tested a total of 24 

participants, and 96 trials contributed to each of the decoding analyses performed (or 192 
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trials for analyses collapsing over human-partner and computer-partner conditions). This 

is comparable to previous fMRI intention decoding studies, e.g. Momennejad and 

Haynes (2012, 2013), who tested 20 and 23 participants respectively, and used 60 and 72 

trials respectively for their main decoding analyses. Nevertheless, the problem of low 

power in neuroscience studies should not be underestimated (Button et al., 2013) and it 

is clearly possible that studies with greater power might detect intention-specific patterns 

of brain activity. 

 

Our results could have implications on a practical as well as a theoretical level.  Recent 

speculation has suggested that intention decoding neuroimaging methodologies could 

play a role in legal contexts, for example decoding criminal intent from a brain scan (see 

Haynes, 2014 for discussion). We are sceptical of this possibility. This would require 

decoding of 1st-person commitment to an intended act, rather than a representation of 

someone else’s intention, or thinking about a particular action-plan without any 

commitment to actually bring it about (e.g. an expectation that an outcome will occur 

without motivation to bring it about). Our results suggest that it could be difficult to 

distinguish which of these is being decoded when we “decode intentions”. We also 

suggest that previous intention decoding neuroimaging studies have failed to 

demonstrate patterns of brain activity that are unequivocally intention-specific, rather 

than potentially reflecting other factors such as expectations for future events regardless 

of any intention to bring them about. We propose that a clearer understanding of what 

intention decoding analyses are actually decoding can come from paradigms that 

distinguish various intention components from each other and compare decoding of 

intentions with decoding of expectations. This can help us to make progress with the 

following three questions: 
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1) How selectively are intention components such as goals and action-plans coded 

by distributed brain networks?  

2) To what extent are patterns of brain activity involved in representing our own 

intentions also involved in representing the intentions of others? The two types 

of brain representation must in some sense be distinct, seeing as we are can 

represent other agents’ intentions without those intentions controlling our own 

behaviour. How might this distinction between 1st-person and 3rd-person 

intentions be explained? 

3) Can we distinguish patterns of brain activity involved in commitment to an 

intention as opposed to expectation or simulation of its consequences?  

 

Answering these questions is likely to benefit from further consideration of domain-

general processes that play a role in generating and representing intentions, rather 

than necessarily conceiving of intentions as a special type of mental state with distinct 

neural correlates. 
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Region BA Peak co-
ordinate 

Zmax N 
voxels 

Decoding 
accuracy 

Dorsal posterior frontal 
cortex 

6/8 -36, -4, 47 3.81 61 51.4% 

Superior parietal cortex 7 -21, -52, 56 5.07 290 51.4% 
Posterior cingulate 23/30 -9, -58, 17 4.38 78 51.2% 
Occipital cortex 18 -21, -88, 8 4.38 60 51.3% 
 
Table 3: Regions of significant intention decoding. BA = approximate Brodmann Area. 
Decoding accuracies represent the mean of all searchlights with central voxels within 
each region. Furthermore, they represent the mean of eight separate decoding analyses, 
therefore a region with a decoding accuracy of 58% in one analysis and 50% in the 
remaining seven would have a mean decoding accuracy of 51%.  
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Figure 1. Schematic illustration of stimuli for behavioural task  
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Figure 2. Sequence of events on one trial of the behavioural task. Colour-goal reminders were shown at the 
beginning of each block of 32 trials, then the subsequent five stages occurred on every trial. Only the initial 
thinking time, shown here with thicker border, was used for fMRI analyses.  
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Figure 3. Behavioural results. Error-bars indicate 95% confidence intervals for the within-subject contrast 
between catch/non-catch trials (Loftus & Masson, 1994), such that nonoverlapping bars indicate a significant 
difference. Grey lines indicate data from individual participants. This shows a highly consistent pattern in the 
response time data. The pattern is less consistent for the accuracy data, likely because there are only four catch 
trials in each condition, hence the only possible values for catch-trial accuracy are 0, 0.25, 0.5, 0.75, and 1, 
whereas the non-catch trial accuracies can take a larger range of values.  
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Figure 4. Regions of consistently above-chance intention decoding. Panels A-C display results on sagittal (x 

= -10), coronal (y = -50), and axial (z = 52) slices respectively of the mean normalised structural scan. 

Decoding was possible from four regions: occipital cortex (panel A), posterior cingulate (panel B), superior 

parietal cortex (panels A-C) and dorsal prefrontal cortex (panels A and C). Panel D shows a 3D rendering of 

results derived from MRIcroGL software.  
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Figure 5. Accuracy of intention decoding analyses in four regions shown in Figure 4. Horizontal red line 
indicates chance accuracy. 1st-person decoding refers to classification of the scanned participant’s intention. 3rd-
person decoding refers to classification of their representation of the partner’s intention. Error bars indicate 
95% confidence intervals for the comparison of each bar with chance performance. Note that the regions of 
interest were selected on the basis of showing above-chance decoding accuracy in these analyses, therefore we 
refrain from significance-testing of individual bars seeing as results could be inflated by selection bias.
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Figure 6. Cross-classification between 1st-person and 3rd-person intentions. Note that these analyses are unbiased 
with respect to the analyses used to generate regions of interest. Error-bars indicate 95% confidence intervals 
for the comparison of each bar against chance performance. 
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Figure 7. Cross-classification between visually presented stimulus-characteristics (initial presentation of ball 

on left vs right / initial configuration of second switch point as switch vs stay) and inferred intention 

components (goal: left vs right / action plan: switch vs stay). 1st-person decoding refers to decoding of the 

scanned participant’s intention; 3rd-person decoding refers to decoding of their representation of their 

partner’s intention. Error bars indicate 95% confidence intervals for the comparison of each bar against 

chance performance. 


