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Abstract
Objectives  Several common and rare risk variants 
have been reported for systemic sclerosis (SSc), but the 
effector cell(s) mediating the function of these genetic 
variants remains to be elucidated. While innate immune 
cells have been proposed as the critical targets to 
interfere with the disease process underlying SSc, no 
studies have comprehensively established their effector 
role. Here we investigated the contribution of monocyte-
derived macrophages (MDMs) in mediating genetic 
susceptibility to SSc.
Methods  We carried out RNA sequencing and genome-
wide genotyping in MDMs from 57 patients with SSc and 
15 controls. Our differential expression and expression 
quantitative trait locus (eQTL) analysis in SSc was further 
integrated with epigenetic, expression and eQTL data 
from skin, monocytes, neutrophils and lymphocytes.
Results  We identified 602 genes upregulated 
and downregulated in SSc macrophages that were 
significantly enriched for genes previously implicated in 
SSc susceptibility (P=5×10−4), and 270 cis-regulated 
genes in MDMs. Among these, GSDMA was reported 
to carry an SSc risk variant (rs3894194) regulating 
expression of neighbouring genes in blood. We show 
that GSDMA is upregulated in SSc MDMs (P=8.4×10−4) 
but not in the skin, and is a significant eQTL in SSc 
macrophages and lipopolysaccharide/interferon 
gamma (IFNγ)-stimulated monocytes. Furthermore, we 
identify an SSc macrophage transcriptome signature 
characterised by upregulation of glycolysis, hypoxia and 
mTOR signalling and a downregulation of IFNγ response 
pathways.
Conclusions O ur data further establish the link 
between macrophages and SSc, and suggest that 
the contribution of the rs3894194 risk variant to SSc 
susceptibility can be mediated by GSDMA expression in 
macrophages.

Introduction
Systemic sclerosis (SSc) is an intractable chronic 
autoimmune disease of unknown aetiology with 
high clinical heterogeneity and mortality rates. SSc 
is characterised by complex inflammatory, vascular 
and fibrogenic interactions occurring in multiple 
systems and tissues.1 Among the cellular popu-
lations contributing to the pathogenesis of SSc,  
monocytes/macrophages have been suggested to 
play a key role in initiating and/or perpetuating 

the disease,2 but their specific role and importance 
are still unclear. Candidate gene and genetic screen 
studies have begun to elucidate the genetic archi-
tecture of SSc3; for instance, genome-wide associa-
tion studies (GWAS) and whole exome sequencing 
(WES)4 have reported numerous genes associated 
with susceptibility to SSc or to SSc subphenotypes 
and related traits.5 However the functional and 
cellular context of many genes and variants associ-
ated with SSc remains poorly understood. In macro-
phages, gene sets representative of macrophage 
activation have been used for enrichment analyses 
in expression profiles obtained from SSc-associated 
tissues,6 but the direct link between SSc disease vari-
ants and macrophage transcriptome remains to be 
elucidated.

Here we integrate differential expression and 
expression quantitative trait locus (eQTL) analyses 
in monocyte-derived macrophages (MDMs) from 
patients with SSc and healthy controls, revealing 
(1) changes in macrophage transcriptome as an 
important contributor to SSc and (2) upregulation 
and cis-regulation of GSDMA (a candidate gene for 
SSc susceptibility) contributing to disease risk in 
macrophages but not in skin.

Methods
Sample collection and clinical details
Patients with SSc met the  American Rheumatism 
Association preliminary criteria for a diagnosis 
of SSc.7 The study was carried out with a total of 
57 patients who attended the rheumatology clinic 
at the Royal Free Hospital exhibiting SSc with 
subgroups of limited cutaneous SSc (lcSSc) and 
diffuse cutaneous SSc (dcSSc). Patients with overlap 
features of another autoimmune rheumatic disease 
were excluded. Cases were classified as lcSSc or 
dcSSc according to extent of skin thickening8 and 
reflected the expected serological and clinical char-
acteristics of the cohort that have been detailed 
in previous publications.9 Patients were receiving 
standard treatments for SSc in line with current 
European League Against Rheumatism recommen-
dations.10 Thus, 11 patients were receiving low-dose 
prednisolone, 9 had received methotrexate, 18 
received mycophenolate and 2 had received other 
potential disease-modifying agents (cyclophospha-
mide and rituximab, respectively). As expected, 
immunosuppression was more frequently used in 
cases with diffuse skin disease. Blood samples were 
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also collected from 15 healthy control subjects. Details for all 
the samples included in this study can be found in online supple-
mentary table S1. All subjects gave written informed consent. 
Blood (25 mL) was drawn from all patient and control samples 
using standardised phlebotomy procedures into sodium citrate 
tubes.

Isolation of MDMs
Human MDMs were differentiated from total blood from 
patients with SSc and healthy donors using gradient separation 
(Histopaque 1077, Sigma) and adhesion purification. Following 
Histopaque separation, peripheral blood mononuclear cells were 
resuspended in RPMI (Life Technologies), and monocytes were 
purified by adherence for 1 hour at 37°C, 5% CO2. The mono-
layer was washed three times with Hank's Balance Salt Solution 
(HBSS) to remove non-adherent cells, and monocytes were 
matured for 5 days in RPMI containing 100 ng/mLmacrophage 
colony-stimulating factor (M-CSF) (PeproTech, London,  UK) 
and 10% fetal calf serum (Labtech International). Macrophage 
purity was confirmed by immunohistochemical assessment of 
CD68 and >99% cells were CD68+.

RNA extraction and RNA sequencing
Total RNA was extracted from human monocyte-derived 
macrophages (hMDMs) using TRIzol (Invitrogen) and RNeasy 
Mini Kit (Qiagen) according to manufacturers’ instructions, 
with an additional purification step by on-column DNase 
treatment using the RNase-Free DNase Kit (Qiagen) to 
ensure elimination of any genomic DNA. The integrity and 
quantity of total RNA were determined using a NanoDrop  
1000 spectrophotometer (Thermo Fisher Scientific) and Agilent 
2100 Bioanalyzer (Agilent Technologies). In total 500 ng of 
total RNA was used to generate RNA-sequencing  (RNA-seq) 
libraries using TruSeq RNA Sample Preparation Kit (Illumina) 
according to the manufacturer’s instructions. Briefly, RNA was 
purified and fragmented using poly-T oligo-attached magnetic 
beads using two rounds of purification followed by the first 
and second complementary DNA (cDNA) strand synthesis. 
Next, cDNA 3' ends were adenylated and adapters ligated 
followed by 15 cycles of library amplification. Finally, the 
libraries were size-selected using AMPure XP Beads (Beckman 
Coulter), purified and their quality was checked using Agilent 
2100 Bioanalyzer. Samples were randomised to avoid batch 
effects, and multiplexed libraries were run on a single lane  
(six samples/lane) of the HiSeq 2500 platform (Illumina) to 
generate 100 bp paired-end reads. An average coverage of 64M 
reads per sample was achieved. The RNA-seq data have been 
deposited in NCBI’s Gene Expression Omnibus (GEO) database 
(GEO Series accession number GSE104174).

Quantitative reverse transcription PCR analysis
cDNA was obtained from 500 ng of total  RNA using the 
Bio-Rad iScript Kit (Bio-Rad, Hertfordshire, UK) according to 
the manufacturer’s instructions. Quantitative reverse transcrip-
tion PCR reactions were performed using the ViiA 7 Real-Time 
PCR System (Life Technologies). A total of 10 ng of cDNA per 
sample was used for PCR using Brilliant II SYBR Green qPCR 
Master Mix (Agilent  Technologies). QuantStudio Real Time 
PCR Software (Life Technologies) was used for the determina-
tion of treshold cycle  (Ct) values. Results were analysed using 
the comparative Ct method,11 and each sample was normalised 
to the reference gene (HPRT) to account for any cDNA loading 

differences. Results are expressed as mean±SEM, and statistical 
analysis was performed using Student’s t-test.

Genotyping
DNA was isolated from 1 mL of whole blood of 71 samples  
(57 patients with SSc and 14 controls) using Gentra Puregene 
Blood Kit (Qiagen). Genotyping was performed on the Illumina 
Infinium Omni2.5–8 1.3 platform, which resulted in 2 372 784 
genotype calls (Illumina GenomeStudio V.1.9.4 software).

RNA-seq and genotype data processing and detailed descrip-
tion of all the analyses included in this work can be found in the 
online supplementary file.

Results
Differential expression analysis of SSc and control MDMs
Differential expression analysis of MDMs expression profiles, 
in patients with SSc (n=57) and controls (n=15) (online supple-
mentary figure S1), identified 170 upregulated and 432 down-
regulated genes in SSc, respectively (a total number of 602 genes, 
false discovery rate (FDR) <0.1; figure 1A and online supplemen-
tary table S2). Quantitative PCR analysis validated the changes 
detected by RNA-seq for a subgroup of genes (online  supple-
mentary figure S2). We revealed hundreds of genes associated 
with SSc in MDMs, including genes previously implicated in 
the genetic aetiology of the disease (figure  1B). In addition, 
145 (25%) out of these 602 differentially expressed (DE) genes 
have been reported to interact functionally at the protein and 
pathway levels (figure 1C). Consistent with previously proposed 
biological processes and pathways associated with SSc,3 the 
upregulated genes showed significant enrichment for unfolded 
protein response, epithelial mesenchymal transition and DNA 
repair, whereas the downregulated genes showed enrichment 
for innate immune response-related processes (figure 1D), such 
as interferon response and allograft rejection, including  genes 
previously linked to SSc (eg, IL2RB,12 TNFAIP3, HLA-DQA1, 
HLA-DRB13). Consistent with the previous SSc transcriptomics 
analysis in skin13 and in fibroblasts from patients with SSc-associ-
ated interstitial lung disease,14 the majority of the DE genes were 
downregulated in MDMs. The SSc macrophage transcriptome 
showed enrichment for genes involved in increased metabolic 
rates (glycolysis, hypoxia and mammalian target of rapamycin 
(mTOR) signalling), which have been previously linked with a 
proinflammatory activation profile.15

To investigate whether the genes dysregulated in MDMs have 
been previously implicated with genetic susceptibility to SSc, 
we queried the National Human Genome Research Institute 
(NHGRI) GWAS Catalog5 and looked for genes identified by 
WES.4 We found that 10% of the genes previously associated 
with SSc overlapped with the set of DE genes detected in MDMs, 
representing a significant enrichment with respect to genome-
wide expectation (10% observed overlap vs 2% expected 
overlap, Fisher’s exact test P=5×10−4; see online  supplemen-
tary methods). Among the set of upregulated genes, we identi-
fied GSDMA and GRB10, which have previously been associated 
with SSc susceptibility16 and subphenotypes of SSc by GWAS,17 
respectively. We also found RASAL1, a gene identified by WES 
that is enriched for deleterious variants in dcSSc.4 The set of 
downregulated genes included IKZF3 and TNFSF4 , both identi-
fied in a meta-GWAS SSc study,18 as well as TERT and TMPRSS3, 
candidate genes for dcSSc identified by WES.4 Therefore our DE 
analysis from patients with SSc and controls revealed hundreds 
of genes associated with SSc in MDMs, including genes previ-
ously implicated in the genetic aetiology of the disease.
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Genetic regulation of macrophage gene expression in SSc
We carried out genome-wide cis-acting eQTL mapping in the 
cohort of patients with SSC (15 433 genes used as input; see 

online  supplementary methods), which yielded 683 loci regu-
lating the mRNA abundance of 270 genes in MDMs (genome-
wide cis-eQTLs with FDR  <5%; online  supplementary table 

Figure 1  RNA sequencing differential expression analysis between monocyte-derived macrophages (MDMs) from patients with systemic sclerosis 
(SSc) and healthy controls provides evidence for the involvement of macrophages in SSc and related cellular processes. (A) Volcano plot with 
differential expression results. Gene names of the top 10 upregulated and downregulated genes are included. Genes previously identified in SSc 
human genetic association studies are also highlighted (yellow diamond). Genes with no significant differential expression are displayed in light 
green, whereas differentially expressed (DE) genes (false discovery rate (FDR) <0.1) are displayed coloured by gene type (TEC denotes gene to be 
experimentally confirmed and TR denotes T cell receptor genes). (B) Summary of the DE genes in SSc MDMs that have been previously found to be 
associated with SSc susceptibility by human genetic studies. The table includes differential expression test statistics in MDMs (log2 fold change (FC) 
and P value) and information about the SSc genetic study in which the gene had previously been reported (ie, study type and the provided evidence 
for involvement with SSc susceptibility). (C) Network with known protein-protein and databases interactions (edges) between the DE genes (nodes) 
identified in SSc MDMs. Gene size and colour are mapped to log2 FC. Only the genes with reported connections are displayed here (see Methods). 
(D) Functional processes (from Hallmark database) enriched in the set of DE genes in SSc MDMs were computed by gene set enrichment analysis 
(GSEA).33 Normalised enrichment scores (NES) denote the upregulation and downregulation enrichment strength. FDR levels for the GSEA are also 
included. GWAS, genome-wide association studies; WES, whole exome sequencing.

group.bmj.com on January 30, 2018 - Published by http://ard.bmj.com/Downloaded from 

https://dx.doi.org/10.1136/annrheumdis-2017-212454
https://dx.doi.org/10.1136/annrheumdis-2017-212454
http://ard.bmj.com/
http://group.bmj.com


4 Moreno-Moral A, et al. Ann Rheum Dis 2018;0:1–6. doi:10.1136/annrheumdis-2017-212454

Basic and translational research

Figure 2  Study of cis-regulated genes in systemic sclerosis (SSc) monocyte-derived macrophages (MDMs). (A) Manhattan plot with all the cis-
eQTL results. Differentially expressed genes in SSc MDMs (false discovery rate (FDR) <0.1) that are also cis-regulated (FDR <0.05) are highlighted in 
orange (five genes). Expression levels of these genes in SSc and control MDMs are displayed in boxplots (P refers to the P value of the differential 
expression test; see online supplementary methods). Expression levels of these five genes in patients with SSc according to the genotype of the cis-
regulatory SNP (x-axis, the number refers to the number of copies for the minor allele) are shown in boxplots (P refers to the P value of the cis-eQTL; 
see online supplementary methods). (B) GSDMA expression levels in the skin in three cohorts of patients with SSc and controls (first two boxplots are 
cohorts of diffuse patients with SSc, whereas the third boxplot refers to patients with limited SSc). GEO refers to Gene Expression Omnibus database 
followed by the database accession number for each skin data set. P refers to t-test P value (two-tailed). N refers to the samples size in each group. 
(C) GSDMA expression levels in MDMs (from this study, indicated with asterisk) alongside with expression from all tissues/cell types included in 
Genotype-Tissue Expression (GTEx) database24 (only tissues/cell types with GSDMA median transcripts per kilobase million (TPM) levels >0.5 are 
displayed). We include at the top of the graph the tissues/cell types in which rs3859192 has been shown to regulate GSDMA levels in the GTEx 
database (both effect size and cis-eQTL P value are shown). Among the tissues where GSDMA is significantly cis-regulated (grey background), GSDMA 
is most highly expressed in SSc macrophages (highlighted with yellow background). In the case of the macrophage data, eQTL refers to the results 
presented in panel (A). (D) Overview of the genomic region on chromosome 17 centred on the GSMDA gene where we report the SNPs associated 
with GSDMA expression levels in macrophages (top eQTL SNP rs3859192). y-axis (left), significance of the eQTL in SSc macrophages is reported using 
FDR. y-axis (right), recombination rate between the SNPs. SNPs are displayed coloured by linkage disequilibrium (LD). Both LD and recombination 
rate are estimated from 1000 genomes (March 2012) in the European population. The location of the risk variant for SSc previously reported by Terao 
et al16 (rs3894194) is also indicated (this SNP is not genotyped in the cohort used in this MDMs study). (E) Summary of the regulatory information 
(methylation, acetylation and DNase hypersensitivity) included in the Roadmap Epigenomics and ENCODE projects27 for the cis-eQTL SNP for 
GSDMA (rs3859192) detected in SSc macrophages (see online supplementary file for details). Red box, monocyte and monocyte-derived cell types. 
eQTL, expression quantitative trait locus; GWAS, genome-wide association studies; HSMM, human skeletal muscle myoblasts; SNP, single nucleotide 
polymorphism. 
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S2). The cis-regulated genes were nominally enriched for similar 
processes detected in the set of DE genes, such as interferon 
gamma (IFNγ) response and major histocompatibility complex 
class II protein complex (gene set enrichment analysis, P<0.02; 
online supplementary table S2). To identify cis-regulated genes 
associated with SSc, we integrated the eQTL data with the results 
of differential expression analysis (602 genes significantly differ-
entially expressed with FDR <10%), which shortlisted five candi-
dates, GSDMA, MMP1, AC004148.2, APOBEC3C and NMRK1, 
as the only genes that are both DE and cis-regulated in SSc MDMs 
(figure 2A). Among these candidates, GSDMA (Gasdermin A, a 
member of the Gsdm gene family that is required for tumour 
necrosis factor-α-induced apoptosis in mouse19) shows the highest 
upregulation in SSc MDMs. Furthermore, GSDMA is cis-regu-
lated by the single nucleotide polymorphism (SNP) rs3859192 
and is an established susceptibility gene for SSc (identified by 
the largest current  transethnic meta-analysis comprising 4436 
cases and 14 751 controls).16 Moreover, various genetic variants 
at the GSDMA locus have been previously associated with other 
autoimmune diseases with a proposed macrophage component, 
including asthma,20 rheumatoid arthritis,21 ulcerative colitis22 
and Crohn’s disease.23 In contrast with the strong association 
of macrophage GSDMA expression with SSc reported here  
(P=8.4×10−4;  figure  2A), GSDMA expression levels do not 
change in the skin of SSc (both diffuse and limited) in three inde-
pendent studies (figure 2B). Despite GSDMA being most highly 
expressed in the  skin as compared with 53 primary tissues/
cell types analysed24 and the large sample size used for the cis-
eQTL analysis (n≥250), the gene is not cis-regulated in the skin 
(normal and sun-exposed) (figure 2C).

To investigate whether the cis-regulation of GSDMA expres-
sion exists in a wider immune-cell context, we next assessed the 
genetic regulation of GSDMA expression in monocytes,25 neutro-
phils and lymphocytes.26 We did not find significant cis-regula-
tion of GSDMA in basal (unstimulated) monocytes. Notably, the 
transcript was cis-regulated in monocytes stimulated with lipo-
polysaccharide at two time points (2 hours and 4 hours) and in 
IFNγ-stimulated (24 hours) monocytes25 (online supplementary 
table S4). These cis-regulatory SNPs found in stimulated mono-
cytes included the cis-eQTL SNP rs3859192 found in MDMs 
from patients with SSc (figure 2D). No significant cis-regulation 
of GSDMA has been detected in neutrophils or lymphocytes.26 
These results suggest that the functional relevance of GSDMA 
expression may be attributed to the monocyte/macrophage 
subset of the innate immune response.

Our eQTL analysis revealed upregulation and signif-
icant cis-regulation of GSDMA mRNA levels in SSc MDMs 
(figure 2C), the latter is exerted by an intronic SNP rs3859192 
(figure 2D). This eQTL SNP rs3859192 is in linkage disequi-
librium (LD) with the risk variant rs3894194, which was 
found to be associated with SSc by transethnic meta-anal-
ysis.16 Specifically, the LD between rs3859192 and rs3894194 
(estimated from 1000 genomes database) in European and 
African populations (represented in our multiethnic cohort 
of patients with SSc) is D'=0.72 (R2=0.49) and D'=0.92 
(R2=0.66), respectively. We used Roadmap Epigenomics and 
ENCODE project data27 to search for  additional evidence 
indicating a potential regulatory role of the GSDMA eQTL in 
MDMs (SNP rs3859192) and found, among other cell types, 
multiple overlapping regulatory marks in both primary and in 
CD14+ monocytes (figure 2E).

Discussion
Large-scale genetic mapping studies have yielded novel hypoth-
eses for genes and pathways associated with SSc.3 In addition to 
genetic studies, assessing the specific contribution of different 
cell types to the pathogenesis of SSc allows to decipher the func-
tional context where disease susceptibility genes operate and 
eventually prioritise specific targets for therapeutic intervention. 
Host  genetics influence the transcriptional response in human 
monocytes/macrophages in a cell-specific and stimulus-spe-
cific way and is associated with disease.28 Here we identified 
hundreds of genes whose expression level in macrophages is 
associated with SSc , ,2 highlighting a disease-mediating role for 
this cell type2. In comparison, a similar analysis between diffuse 
and limited SSc yielded only seven DE genes (online  supple-
mentary figure S3), suggesting that expression changes under-
lying clinical SSc subtypes might be more difficult to detect in 
macrophages. 

Our results from differential expression and eQTL analysis 
in SSc macrophages, when combined with genetic suscepti-
bility (GWAS/WES), regulatory (Roadmap Epigenomics and 
ENCODE) and expression and eQTL data from the  skin and 
other cell types (GTEx24), support a previously undetected role 
for macrophages in GSDMA overexpression in the pathogenesis 
of SSc. In addition, the identification of a previously unappreci-
ated macrophage cis-eQTL in LD with the previously reported 
SSc risk variant in GSDMA16 suggests that the contribution to 
disease of GSDMA might be exerted by macrophages. GSDMA is 
a member of the recently discovered gasdermin protein family. 
Gasdermins were previously described as regulators of cellular 
swelling and lysis through formation of membranous pores 
in conjunction with release of proinflammatory cytokines, a 
process also known as pyroptosis.29–31 Accordingly, Gsdma3-mu-
tant mice with constitutive pyroptosis display severe skin inflam-
mation.32 Thus, we speculate that overexpression of GSDMA 
could cause dysregulation of the pyroptosis process in SSc. 
Taken together our integrated expression and eQTL analyses in 
SSc provide a proof of concept for the functional annotation 
of genes that have been implicated in disease susceptibility but 
are poorly characterised at the cellular level, prompting detailed 
functional studies of immune cells in SSc.
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