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ABSTRACT
We propose a spatial compounding technique and variational framework to improve 3D ultrasound image quality by com-
positing multiple ultrasound volumes acquired from different probe orientations. In the composite volume, instead of
intensity values, we estimate a tensor at every voxel. The resultant tensor image encapsulates the directional information
of the underlying imaging data and can be used to generate ultrasound volumes from arbitrary, potentially unseen, probe
positions. Extending the work of Hennersperger et al.,1 we introduce a log-Euclidean framework to ensure that the ten-
sors are positive-definite, eventually ensuring non-negative images. Additionally, we regularise the underpinning ill-posed
variational problem while preserving edge information by relying on a total variation penalisation of the tensor field in the
log domain. We present results on in vivo human data to show the efficacy of the approach.

Keywords: Ultrasound, Computational Sonography, Image Registration, Compounding, Compositing, Tensor
Imaging, Total Variation, Inverse Problem

1. INTRODUCTION
Ultrasound (US) probes used in diagnostic medicine emit sound in the frequency range 1 to 20 MHz and receive echoes
reflected back from the tissues being imaged. The strength of the signal and the time taken to return back to the probe is
used to produce the images. The degree of sound reflection depends on surface structure and angle between tissue surface
and US beam. The position and orientation of the probe therefore plays an important role in the appearance of US images.
The complex physics of US image formation makes images highly direction dependent. It is therefore customary for the
ultrasonographer to capture a variety of images of the same object by translating the ultrasound probe over the body surface.
From an image computing perspective, the resulting redundancy of images calls for a method to compound the data into a
single model of the imaged object.

There is a wide variety of existing approaches to ultrasound spatial compounding. Statistical approaches (like averaging
and median) have been applied over all the voxels across the source images to generate the composite volume.2 Optimal
stitching seam has been proposed to merge overlapping 3D ultrasound volumes. For instance, Kutarnia et al.3 treats
seam selection as a voxel labeling problem where each label corresponds to one source volume. The optimal labeling,
which defines the seams, is solved using graphcut so as to minimize the intensity and gradient difference between adjacent
volume selections. Recently, computational sonography1 was suggested to provide a richer signal representation based
on the reconstruction of tensor fields that preserves the directionality components of the anatomy-specific and direction-
depend source images, as opposed to traditional intensity volume reconstruction.

Our contributions, in this work, are the following. First, given a set of previously aligned ultrasound volumes, we propose
a novel spatial compounding technique and log-Euclidean variational framework to generate a composite image from
multiple ultrasound volumes. Image registration is used to align the input images in a common reference space. The
reconstructed composite image has a richer representation than each individual ultrasound images. It encapsulates, using
a tensor representation, the directionality component of the signal as captured by the different probe orientations from
the input images. Similar to the previous work of Hennersperger et al.,1 the tensor representation allows to generate
images under any arbitrary, potentially unseen, direction of the probe. However, unlike the previous work, our tensor
representation is guaranteed to be positive-definite, thereby ensuring generation of non-negative images. Second, we
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regularise the underpinning ill-posed variational problem while preserving edge information by relying on a total variation
penalisation of the tensor field in the log domain. Finally, we demonstrate the performance of the method on real dataset.

The paper is structured as follows. In Section 2, we present the image alignment steps. In Section 3, we briefly cover
the mathematical background. In Section 4, we introduced our spatial compounding approach. Finally, in Section 5, we
discuss the experiments and results.

Pairwise	local	registration	of	consecutive	ultrasound	volumes:	
!"#$%,#

Initialise	frame-to-reference	transformations	by	composing	
local	transformations:	!"(()%)/,,# = !"(()%)/,,# ∘ ⋯ ∘ !"#$%,#

Refine	global	transformations	by	performing	frame-to-
reference	registration	using	!"(()%)/,,# as	initialisation

Solve	the	log-Euclidean	computational	sonography	inverse	
problem	to	fuse	the	aligned	volumes

Figure 1: Overview of the method. Left: Schematic representation of the multiview acquisition. Right: Proposed flowchart.

2. IMAGE ALIGNMENT
As illustrated in Figure 1, given a set of N ultrasound volumes, we register them, using rigid transformations, to a common
reference frame before we apply our spatial compounding technique. We choose the middle image of the sequence, i.e. the
(N− 1)/2 frame, as the reference image. All the images are registered to the middle image. However, direct registration
between the ith image, where 1≤ i≤ N, to the centre image may be difficult considering the wide difference in orientation
between the images. To address this we follow the steps below to register the ith image and the (N−1)/2th image:

1. In the first step, we register neighbouring images using NiftyReg.4, 5 We obtain T̂i+1,i as the transformation from the
ith image to the (i+1)th image, where 1≤ i < N.

2. We initialize the transformation T(N−1)/2,i by composing all the intermediate transformations calculated in the previ-
ous step: T̂(N−1)/2,i = T̂(N−1)/2,((N−1)/2)−1 ◦ · · · ◦ T̂i+2,i+1 ◦ T̂i+1,i.

3. We refine the transformation T(N−1)/2,i by registering, again using NiftyReg,4, 5 the ith image and the (N− 1)/2th

image, starting from the transformation T̂(N−1)/2,i from the previous step.

While this simple approach performed well in the presented experiments, further work will evaluate more elaborate regis-
tration approaches where global consistency would be achieved by registering all possible pairs of ultrasound volumes in a
bundle-adjustment fashion6 or by relying on joint registration method.7

3. MATHEMATICAL PRELIMINARIES
3.1 Duplication Matrix
Let A be a k× k matrix. The operator vec stacks the columns of a matrix into a vector. The operator unvec does the
inverse with unvec(vec(A)) = A. If A is symmetric, vec(A) contains duplicate information. It is therefore convenient
to also consider half-vectorisation, vech(A), by eliminating all supra-diagonal elements of A. The duplication operator8

D : R(k(k+1)/2)×1→ R(k2)×1 duplicates elements of a vector U = vech(A), such that D(vech(A)) = vec(A). In our context
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where k = 3, we obtain

vech(A) = (a11,a21,a31,a22,a32,a33)
T (1)

vec(A) = (a11,a21,a31,a12,a22,a32,a13,a23,a33)
T = D ·vech(A) (2)

D =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (3)

3.2 Derivative of the Matrix Exponential
Let M be a diagonalisable matrix (such as a symmetric matrice). The derivative of the matrix exponential, M 7→ exp(M),
is provided in Kalbfleisch et al.9 and Najfeld et al.10 as:

d exp(M)

dM
= (V ⊗V−T ) ·diag(vec(Lexp(λ))) · (V−1⊗V T ), (4)

where ⊗ is the Kronecker product, M =V ΛV−1 is the eigen decomposition of the matrix M, λ is the vector of eigenvalues
(i.e. Λ = diag(λ)) and Lexp(λ) is the Loewner matrix of the exponential and the vector of eigenvalues. We have:

Lexp(λ) =
exp(λ)⊕1−1⊕ exp(λ)

λ⊕1−1⊕λ
, (5)

where

[Lexp(λ)]i j =

{
exp(λi) if i = j
(exp(λi)−exp(λ j))

(λi−λ j)
if i 6= j

(6)

and where ⊕ is the Kronecker sum, i.e. P⊕Q = P⊗ Id+ Id⊗Q. We note that using a simple Taylor expansion we obtain
numerically well-behaved formulas in case of equal or minor differences between eigen values:

exp(λ+ ε)− exp(λ)
λ+ ε−λ

= exp(λ)(1+
ε

2
+

ε2

6
+ . . .) (7)

Alternatively, one may also resort to one of the formulas provided by Najfeld et al.10 for the generic case in which M need
not be differentiable:

d exp(M)

dM
= (Id⊗exp(M))

1− exp(−adM)

adM
(8)

= (exp(M/2)T ⊗ exp(M/2))sinch(−adM/2) (9)

with adM = (−MT )⊕M providing the adjoint action of a matrix M.

4. LOG-EUCLIDEAN COMPUTATIONAL SONOGRAPHY
Given a set of transformed ultrasound volumes, we obtain a composite volume where each voxel is a 3× 3 tensor by
minimizing the following term as suggested in Hennersperger et al.,1

argmin
Q j

∑
i

∑
j
(vT

i Q jvi− Ii j)
2, (10)

where Q j is the symmetric tensor at voxel location j, 1≤ j ≤ m, m is the number of voxels, 1≤ i≤ n, n is the number of
images, vi is the directional vector or probe direction of the ith ultrasound volume and Ii j is the voxel intensity. As pointed
out in Hennersperger et al.,1 solving the above equation without specific constraints on Q j may lead to a non positive
definite tensor. To ensure a positive definite tensor Q j, we re-write the above equation using the log-Euclidean approach
of Arsigny et al.11 With this approach, positive definite tensors Q j are parameterised with arbitrary symmetric matrices
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S j through the use of the matrix exponential Q j = exp(S j). The operators unvec and D enables us to write the symmetric
3×3 matrices S j in a parametric form without redundancies using a vector X j ∈ R6×1: S j = unvec(D ·X j).

We additionally introduce a robust loss function ρ and a total variation penalisation term to regularise the ill-posed problem
while preserving edge information. We obtain the following variational problem:

argmin
X j

∑
i

∑
j

ρ((vT
i exp(unvec(D ·X j))vi− Ii j)

2)+λ ·TV(X j). (11)

A smooth approximation of the total variation regularisation term can be provided by relying on the Huber loss function,
as exemplified in the 1D case below:

TVH(x) =

{
1
2 (∇x)2 if |∇x| ≤ δ

δ(|∇x|− 1
2 δ) otherwise

(12)

Equation (11) becomes a non-linear least squares problem that can efficiently be solved if one can compute the Jacobian
of the residuals. In this work, we make use of the Levenbeg-Marquardt algorithm12 available in the Ceres Solver library.13

The first term of (11) can be rewritten using

f (X j) = Φ(exp(unvec(D ·X j))), (13)

where

Φ(A j) = vT
i A jvi− Ii j. (14)

Using the chain rule, the Jacobian of f is given as,

J f (X) = JΦ(exp(unvec(D ·X))) · Jexp(unvec(D ·X)) · Junvec(D ·X) · JD ·X = vi⊗ vi ·
d exp(M)

dM
·1 ·D. (15)

Combining the terms, the Jacobian of f is given as,

J f (X) = (vi⊗ vi) · (V ⊗V−T ) ·diag(vec(Lexp(λ))) · (V−1⊗V T ) ·D. (16)

We highlight that even though the model (11) provided interesting results in our experiment, future work would need to
model more realistically the physics of ultrasound image acquisition including signal attenuation, and scattering. This
could, in the first instance, be done using an effective but computationally tractable model such as the one presented by
Wein et al.14 for CT-Ultrasound registration.

5. RESULTS
We evaluated the proposed method on in vivo human datasets. The ultrasound datasets were acquired from two volunteers.
Consent was obtained before ultrasound acquisition. Ultrasound acquisition was performed using a Voluson E10 ultrasound
system with an eM6C curved matrix electronic 4D transducer (GE Healthcare, Chicago, Il). Each dataset contained nine
(N = 9) volumes. The probe was gradually translated over the body surface whilst tilting to maintain the target body part
in the field of view. We use peak signal to noise ratio (PSNR) as the evaluation metric.

Table 1: PSNR Leave-one-out results (in dB).
Dataset Hennersperger et al.1 Our method

λ = 0 λ = 1 λ = 10 λ = 100
1 18.8 16.1 21.2 21.6 13.6
2 17.5 17.7 21.8 22.6 22.9

The two parameters in (11) are λ and δ. λ is the scale factor and δ is the constant in the Huber loss function. λ is evaluated
for the following set of values: 0, 1, 10 and 100. The constant δ was set to a small positive value (δ = 0.01).
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(a) Dataset 1 - 2nd image out of a sequence of nine images

(b) Dataset 1 - 5th image out of a sequence of nine images

(c) Dataset 2 - 6th image out of a sequence of nine images

(d) Dataset 2 - 7th image out of a sequence of nine images
Figure 2: The four column from left to right are as follows: (1) Leave-one-out image, (2) Hennersperger et al.,1 (3) Our
method λ = 0 and, (4) Our method λ = 10.

We used leave-one-out strategy to evaluate the performance of the method. In each round of the leave-one-out we leave
out one of the images from the set of N images. We then estimate the tensor image using the rest of the N-1 images. The
estimated tensor image is used to generate the projection image along the direction of the left out image. The projection
image is then compared to the left out image using the PSNR metric. This is iterated over all the images in the set. The
results are averaged over all the round to estimate the overall error, see Table 1. Table 1 shows that our method performs
better than Hennersperger et al.1 As per the leave-one-out rounds in Table 1, λ = 10 is the best parameter setting. Some of
the leave-one-out results are shown in Figure 2. In Figure 2, the images on the left columns are the leave-one-out images,
the second to left column are the output images using Hennersperger et al.,1 the third to left column are the output images
using our method with parameter λ = 0, and the last column at the right are the output images using our method with
parameter λ = 10.
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6. CONCLUSION
We propose a spatial compounding technique to improve the 3D ultrasound image quality by compositing multiple ul-
trasound volumes acquired from different probe orientations. Our compounding technique uses a tensor representation 
which is sensitive to the probe orientation. The proposed method has a better PSNR than Hennersperger et al.1 which uses 
similar tensor based representation. The log-Euclidean framework ensures that the tensors are positive definite, enforcing a 
non-negative image. The additional total variation term is used for spacial regularisation. The initial results of the proposed 
method are promising. Future work will focus on improving the validation of our methods, on introducing more realistic 
models of signal attenuation and on providing a combined method to jointly optimise the image alignment and the tensor 
model fitting.
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