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Abstract

Functional families (FunFams) are a sub-classification of CATH protein domain su-

perfamilies that cluster relatives likely to have very similar structures and functions.

The functional purity of FunFams has been demonstrated by comparing against ex-

perimentally determined Enzyme Commission annotations and by checking whether

known functional sites coincide with highly conserved residues in the multiple se-

quence alignments of FunFams. We hypothesised that clustering relatives into Fun-

Fams may help in protein structure modelling.

In the first work chapter, we demonstrate the structural coherence of domains in

FunFams. We then explore the usage of FunFams in protein monomer modelling. The

FunFam based protocol produced higher percentages of good models compared to

an HHsearch (the state-of-the-art HMM based sequence search tool) based protocol

for both close and remote homologs. We developed a modelling pipeline that, utilises

the FunFam protocol, and is able to model up to 70% of domain sequences from

human and fly genomes.

In the second work chapter, we explore the usage of FunFams in protein complex

modelling. Our analysis demonstrated that domain-domain interfaces in FunFams

tend to be conserved. The FunFam based complex modelling protocol produced

significantly more good quality models when compared to a BLAST based protocol

and slightly better than a HHsearch based protocol.

In the final work chapter, we employ the FunFam based structural modelling tool

to understand the implications of alternative splicing. We focused on isoforms de-

rived from mutually exclusively exons (MXEs) for which there is more enriched in pro-

teomics data. MXEs which could be mapped to structure show a significant tendency

to be exposed to the solvent, are likely to exhibit a significant change in their physio-

chemical property and to lie close to a known/predicted functional sites. Our results

suggest that MXE events may have a number of important roles in cells generally.
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Chapter 1

Introduction

Proteins are essential macromolecules found throughout biological systems. They

are involved in virtually every biological process. For example, antibodies are proteins

produced by our body after exposure to foreign particles (e.g. viruses and bacteria)

that help neutralize the toxins and protect the body. Immunoglobulin A is an antibody

found in mucosal areas, such as the gut and respiratory tract and play a crucial role

in the immune function.

Enzymes are proteins that act as catalysts for most biochemical interactions in the

cell. They are also involved in facilitating the process of formation of new molecules.

Alcohol dehydrogenase is involved in breaking down alcohols producing different use-

ful ketones and aldehydes. For example, in humans, alcohol dehydrogenase is found

in liver and catalyses the oxidation of ethanol to acetaldehyde.

Messenger proteins, such as hormones, transmit signals to coordinate biologi-

cal processes (i.e. growth, metabolism) between different cells, tissues and organs.

Structural proteins, such as actin, keratin and collagen provide structure and support

for cells. Last but not least, there are storage and transport proteins that bind and

carry molecules throughout the body.

In order to understand biological systems, we need to know how these proteins

fold and interact with other molecules (i.e. proteins, ligands). This requires the use of

protein structure data. Once a protein structure is determined, it is usually deposited

in the Protein Data Bank (PDB) (Berman et al., 2000). In Aug 2017, there were more

than 130,000 entries in the PDB. However, solving the structure of a protein is compli-

cated and time-consuming, therefore the number of solved protein structures is much

less than the number of proteins sequenced so far, which is ≥89 million (UniProt,

2017). This gap is known as the "Protein Structure Gap". Various computational

protein structure modelling approaches have been developed to bridge the gap.

In this thesis, work is presented which describes the development of protein monomer
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and protein complex structural modelling protocols, aided by template selection from

functionally coherent protein families in the CATH-Gene3D classification of domain

families. We then applied the structural modelling platform to understand the struc-

tural and functional implications of alternative splicing. This chapter describes gen-

eral bioinformatics concepts, methods and resources that are relevant to the work

presented in this thesis, followed by an outline of the following chapters.

1.1 Experimental techniques to determine the protein

structure

The structures of proteins can be determined using experimental techniques such

as X-ray crystallography (X-ray), nuclear magnetic resonance spectroscopy (NMR),

and cryo-electron microscopy (Cryo-EM). Most of the structures that are available in

the PDB database were determined using X-ray crystallography. Proteins need to be

purified and crystallized before being subjected to bombardment by an intense beam

of X-rays. The proteins diffract the X-ray beam into a pattern of spots, which are then

analysed to determine the distribution of electrons, which is subsequently analysed

to determine the location of every atom in the protein. X-ray determination provides

great detail on the location of all atoms in the protein together with other ligands that

were incorporated into the crystal. Nowadays, the imaging process is straightforward

and crystallographers spend most of their time in the complicated process of obtaining

crystals. Success in this depends on satisfying different factors such as protein purity,

pH, the concentration of protein, temperature, precipitants and additives.

The accuracy of the 3D structure is dependent on the quality of crystals, which

should be well ordered. An important measure of the accuracy is the X-ray resolution,

which measures the amount of detail that can be seen: the higher the resolution, the

higher quality of the protein structure. Proteins with an X-ray resolution below 1Å are

very well determined and for most analyses, a resolution better than 4Å is desirable.

NMR spectroscopy is also used to determine protein structures. One major ad-

vantage of NMR is its ability to determine the structure of the proteins in solution, as
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opposed to X-ray crystallography that examines proteins in the crystal form. After the

proteins are purified, they are placed in a strong magnetic field that probes with radio

waves. Based on the observed resonance, the atoms that are close to each other (dis-

tance restraints) and how they are bonded (angle restraints and orientation restraints)

can be deduced. An expert can then build the models based on the list of constraints.

NMR can generally be applied to small proteins (bigger than 30 kDa). Large proteins

tend to have too many peaks in the NMR spectra that are overlapping which com-

plicates the structure determination process. The introduction of techniques such as

isotope labelling and multidimensional experiments may alleviate these problems to

some extent (Verardi et al., 2012).

NMR analyses usually include a whole ensemble of structures that are built based

on the observed list of experimental restraints. Regions with strong restraints will be

very similar among the structures in the ensemble and those with weak restraints

will be very different. Regions with fewer restraints usually correspond to the flexible

parts of the molecules. There is no simple measure like X-ray resolution to determine

the quality of NMR structures. NMR structures can be assessed by comparing the

relative differences between the models using root mean square deviation (RMSD, a

structural comparison score that will be explained in Section 1.5.3), or by comparing

the distribution of energetically allowed regions for backbone dihedral angles using

the Ramachandran plot (Ramachandran et al., 1963).

Cryo-EM has also been used to study protein structures. Cryo-EM allows re-

searchers to construct 3D images of microscopic objects using focused beams of

electrons and super-cold temperatures. In the past, the quality of the models pro-

duced by cryo-EM was not comparable to those produced by NMR and X-ray crys-

tallography. Recent advances - such as the development of better direct electron

detectors (which give an increase in the number of images, the size of the data sets,

and faster readouts), powerful computing clusters to process the large amount of data

produced, improved image-processing software, and the implementation of a hybrid

approach that fits high-resolution structures solved by X-ray to structures derived from
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cryo-EM - have improved the quality of structures tremendously (Vénien-Bryan et al.,

2017). Cryo-EM does not need proteins to be crystallised and has the ability to handle

large protein molecules. Recently, EM techniques have been able to solve the struc-

ture of a 465-kD protein complex (beta-galactosidase complex with a cell-permeant

inhibitor) with 2.2Å resolution (Bartesaghi et al., 2015).

1.2 The structures of proteins

The functional properties of proteins depend on the 3D structure. The primary

structures of proteins are the sequences of amino acids along the polymer chain.

There are a total of 20 amino acids in nature. All the amino acids possess a central

carbon atom to which is attached a hydrogen atom, an amino group and a carboxyl

group. What differentiates one amino acid from another is the side chain (R-group)

attached to the central atom.

These side chains vary considerably in their physiochemical properties. Amino

acids can be grouped into three main classes: hydrophobic, charged and polar. (See

Figure 1.1 for the different physiochemical properties and Figure 1.2 for the chem-

ical formula of these amino acids). Amino acids are joined together during protein

synthesis through the formation of peptide bonds (between the carboxyl and amino

groups).
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Figure 1.1: Taylor’s Venn diagram (Taylor, 1986) of amino acid properties illustrating
the physiochemical similarities and differences of the amino acids
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Figure 1.2: The chemical formula of the 20 amino acids

Proteins are energetically driven to fold into their 3D structure by the packing of

their mainly hydrophobic amino acids into the interior, leaving a surface of hydrophilic

side chains. The formation of hydrogen bonds between the backbone oxygen atoms

and the amide hydrogen atoms drive different regions of the proteins to form local

secondary structure elements such as α-helices and β-sheets. α-helices are the

most commonly found helices in nature and usually adopt right-handed coiled rod-

like structures. 310 helix, π-helix, β-helix, polyproline helix, collagen helix are different

configurations of helices found in proteins. β-sheets are formed by linking two or more

beta strands (i.e. stretches of extended regions of the polypeptide chain typically

3 to 10 amino acids long) by hydrogen bonds and adopting sheet-like structures.
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Depending on the bonding patterns between individual strands, β-sheets can adopt

parallel, anti-parallel or mixed configurations.

The folding of the secondary structure elements of the proteins then gives the

native 3D conformation known as the tertiary structure. The 3D conformation is usu-

ally held together by interactions between the side chains. Disulfide bridges can be

formed between two cysteine residues. Ionic bonds can be formed between amino

acids with an extra carboxyl group and amino acids with an extra amine group (i.e.

between lysine and aspartic acids). Salt bridges are usually formed between charged

side chains of acidic and basic amino acids. Hydrogen bonds can be formed between

the side chain of amino acids. Hydrophobic interactions can be formed between the

non-polar side chains. Some proteins adopt a quaternary structure which constitutes

the assembly of different polypeptide chains via electrostatic and non-covalent bonds

to give one protein complex.

Proteins that share the same common ancestor are known as homologues. Both

sequence and structural similarity can be used to identify the evolutionary relation-

ships. However, the protein structure is generally much more conserved than the

protein sequence (Chothia and Lesk, 1986) and therefore very remote homologues

can often only be detected by structure comparison. Homologues can be further

separated into orthologues or paralogues. Orthologues are related through specia-

tion. These proteins usually share the same protein function. Paralogues, on the

other hand, occur within the same genome after gene duplication. Paralogues usually

evolve new functions (i.e. modification of functional residues such as residues in the

catalytic site or substrate binding site).

1.3 Aligning protein sequences

Aligning the primary sequence of a novel protein to previously characterised pro-

teins is often important to derive information about its structure and function. Se-

quence alignment is the process of comparing two or more sequences in order to

identify regions which are similar.
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Aligning two proteins that are very similar can be straightforward. However, the

process becomes complicated when diverse sequences are compared comprising

multiple insertions and deletions of residues between the sequence. Gaps need to

be inserted in these alignments to cope with the insertions or deletions introduced as

the sequences diverged from each other. Equivalent residues need to be identified in

the alignment. For example, amino acids such as leucine and valine are very similar

in their physiochemical properties (both sharing comparable hydrophobicity and size).

Amino acid substitution matrices such as the Identity matrix, physiochemical property

matrices and evolutionary matrices are often used to score the residue matches and

mismatches in alignment.

The most commonly used substitution matrices are the Dayhoff Point Accepted

Mutation (PAM) matrix (Dayhoff et al., 1978) or the blocks amino acid substitution

(BLOSUM) matrix (Henikoff and Henikoff, 1992). These matrices consist of all-against-

all amino acid scores that reflect how often one amino acid is likely to have been mu-

tated to the other over a given evolutionary time frame derived from an alignment of

homologous protein sequences. BLOSUM matrices are derived from the amino acid

changes observed in the highly conserved region (known as blocks) of >500 protein

families found in the BLOCKS database (Henikoff and Henikoff, 1992). PAM matrices

are based on scoring all amino acid changes likelihood in homologous sequences

during evolution from 71 protein families (Dayhoff et al., 1978). The choice of which

matrix to use depends on the goal of the research. BLOSUM matrices are effective

to find conserved domains, whereas PAM matrices are useful to track evolutionary

origins of proteins (Mount, 2008).

There are two modes of pairwise sequence alignment: global and local. Global

sequence alignment attempts to align the complete sequences of the proteins to

find the maximum similarity. Such methods may be appropriate when aligning se-

quences which are similar in length and/or multi-domain composition. In contrast,

local sequence alignments attempt to find the maximum similarity within a sub-region.

They are particularly useful when aligning sequences that have different lengths, or
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remotely related sequences that contain diverse domain regions. The Needleman-

Wunsch algorithm (Needleman and Wunsch, 1970) and the Smith-Waterman algo-

rithm (Smith and Waterman, 1981) are used for generating global and local pairwise

alignments respectively. Both of these algorithms exploit dynamic programming (DP)

to produce alignment. This optimises the alignment of the identical or similar residues

whist introducing the least gaps.

The first step of DP is to populate a 2D matrix with numerical scores according

to the identities/similarities between the residues inside each cell (using the different

substitution matrices as explained above). This is followed by the process of accumu-

lating the scores in the 2D matrix from the bottom right corner of the matrix up to the

top right corner of the matrix. Starting from the furthest right of a given row, scores

are calculated one cell at a time. The score for each cell is computed by adding the

score already in the cell to the best score from all the possible paths leading up to

that cell (i.e. one of the cells in the row or column to the right and below the current

cell). A gap penalty can also be involved to penalise the introduction of a gap in the

alignment. Once the matrix has been accumulated, the highest scoring path through

the matrix is traced back from top left to bottom right. Starting from the highest scoring

cell in the top row, the best path will proceed through the highest scoring of the cells

in a similar manner as the accumulating step. Figure 1.3 summarizes the steps in DP.
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Figure 1.3: Steps in DP using a generic identity matrix without gap penalty. a) Scor-
ing the matrix. b) Accumulating the matrix. c) Tracing back through the matrix. d)
Mechanism for accumulating/tracing back the matrix. (Adapted from (Orengo et al.,
2003))

Below are the mathematical equations for the Needleman-Wunsch algorithm (Equa-

tion 1.1) and the Smith-Waterman algorithm (Equation 1.2). Score (i,j) defines the

data in a cell with coordinate i,j when comparing sequence x and y.

Score(i, j) = max


Score(i− 1, j − 1) + Score(xi, yj)

Score(i− 1, j) +Gap

Score(i, j − 1) +Gap

 (1.1)
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Score(i, j) = max



Score(i− 1, j − 1) + Score(xi, yj)

Score(i− 1, j) +Gap

Score(i, j − 1) +Gap

0


(1.2)

The sequence identity of two sequences is typically calculated as follow:

Sequence identity =
Number of identical residue

Number of residues in the smallest protein
× 100%

(1.3)

1.3.1 Multiple sequence alignment

Finding an optimal sequence alignment for more than three sequences using DP can

be very computationally expensive and it is difficult to obtain the optimal alignment.

Therefore, heuristic algorithms have been used to reduce the computational times.

Progressive alignment methods build a multiple sequence alignment (MSA) by gradu-

ally combining a series of pairwise alignments starting from the most similar pair to the

most distantly related ones. However, the addition of sequences sequentially to the

growing MSA can be problematic as any errors made in the early stages will end up

propagating to the final MSA. t-coffee (Di Tommaso et al., 2011) and Clustal omega

(Sievers et al., 2011) are examples of widely used progressive alignment methods.

Iterative refinement methods may refine some of the mis-alignments occurred in pro-

gressive MSA. These methods realign subgroups of sequences followed by alignment

of these subgroups into a global alignment of all of the sequences. MUSCLE (Edgar,

2004) is an example of iterative based MSA program. MUSCLE first produces a rough

and fast approximate MSA. The second stage of MUSCLE attempts to improve the

phylogenetic tree using a better distance matrix and build a new alignment. The final

stage refines the improved alignment.

MAFFT (Katoh and Standley, 2013) suite of MSA programs also adopt iterative



CHAPTER 1. INTRODUCTION 35

refinement steps. MAFFT incorporates Fast Fourier transform (FFT) in which a pro-

tein sequence is converted to a sequence composed of volume and polarity values

for each amino acid residue. This allows fast detection of homologous regions. Differ-

ent progressive and iterative refinement methods have been implemented in various

MAFFT alignment modes ranging from highly accurate for <200 sequences to very

fast for >2000 sequences. Several independent benchmarks (Le et al., 2017; Pais

et al., 2014; Thompson et al., 2011) have shown MAFFT outperforming other MSA

methods such as MUSCLE (Edgar, 2004), t-coffee (Di Tommaso et al., 2011) and the

Clustal suite of tools (Larkin et al., 2007; Sievers et al., 2011).

Generating a good MSA is key as it is possible to identify conserved residue po-

sitions from such an alignment. There are now many algorithms available for this.

Scorecons is one such method that assigns a conservation score (Scorecons score)

between 0 and 1 for every position in an alignment. A score of 0 indicates no con-

servation whilst a score of 1 indicates all residues at the position are completely con-

served. The Scorecons score is calculated using amino acid similarity information

from a Dayhoff-like mutation data matrix, PET1 (Jones et al., 1992). The overall

score sums up the contributions from each individual sequence, and sequences are

weighted inversely with their redundancy in the alignment (Valdar, 2002).

Scorecons also computes the diversity of position score (DOPS) of an alignment.

DOPS reflects the proportion of diverse sequences in the alignment and the number

of highly conserved positions (with high Scorecons score). An alignment with DOPS

above 70 is deemed sequence diverse for analysis (i.e. having a lower probability of

predicting false positives) (Dessailly et al., 2013). Conserved positions can be used

to predict functional residues such as catalytic residues and substrate binding sites

(Das et al., 2015; Dessailly et al., 2013). Scorecons is used in the work reported in

Chapter 4 to detect whether residue changes in splice isoforms lie close to predicted

functional sites.
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1.4 Database searching

1.4.1 Sequence based

Generally, all of the sequence based methods involve searching for sequence matches

in databases such as UniProt (UniProt, 2017) or PDB (Berman et al., 2000). BLAST

(Altschul et al., 1990) is a very fast tool for scanning large sequence repositories.

BLAST splits the query sequence into small fragments (with the default size of 3).

These fragments are then used to search against all the fragments (available in a

particular database). A substitution matrix (i.e. BLOSUM or PAM) is used to score

the matches. Each fragment match is then extended in both directions, allowing for

gaps, to create the largest possible segment segment pair. All the different segment

pairs are scored, assigned significant value and ranked. Sequence identity and over-

lap between the query and segment matches are used as criteria in a typical BLAST

search (Altschul et al., 1990).

1.4.2 Profile based

Sequence profiles that capture the pattern of residue types embedded in an MSA of

evolutionarily related relatives can improve the sequence signal for sequence search-

ing. These approaches have the ability to extend the sequence search into the "twi-

light zone" (sequence identity below 30%) and "midnight zone" (sequence identity

below 20%).

Evolutionary information from families of homologous proteins can be captured in

position-specific scoring matrices (PSSMs). For example, PSI- BLAST (Altschul et al.,

1997) uses a PSSM to score matches between query and database sequences and

is about three times more sensitive than BLAST. PSI-BLAST first employs BLAST to

find the close relatives for query sequence, from which an MSA can be built. A PSSM

is then generated based on the MSA and used to find new relatives. Subsequently,

a new MSA and PSSM can then be built. The cycle is continued until no more new

relatives can be found within a specific statistical threshold.
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Hidden Markov models (HMMs) are more advanced forms of sequence profiles.

HMMs were first proposed for the use in bioinformatics by Gary Churchill of Cold

Spring Harbor Laboratory. The first HMM based program was SAM (Krogh et al.,

1994). The revolutionary feature of HMMs is their ability to additionally capture the

insertions and deletions that are found in MSAs. HMMs implement a statistical frame-

work based on state-transition probabilities (emission probabilities and transition prob-

abilities for moving from state to state) in an MSA. Probability is calculated for one of

three states: match state (models the distribution of residues allowed), insert state (in-

sertion of one or more residues) and delete state (deletion of one or more residues).

By traversing this probabilistic network, a distribution of residues is ’emitted’ at each

position to create the HMM model.

Figure 1.4: HMM model showing the transition probabilities between the different
states

The HMMER (Eddy, 2011) software suite provides programs that can be used to

create and manipulate profile HMMs, create databases of profile HMMs and perform

sensitive searches of sequence and profile HMM databases. HMMER is widely used

for making HMM models, particularly by protein family databases such as Pfam (Finn

et al., 2016), SUPERFAMILY (Wilhelm et al., 2014) and Gene3D (Lam et al., 2016).

In addition, pairs of sequence profiles can be compared to find out the similarity

between the two MSAs. COMPASS (Sadreyev and Grishin, 2003) generates PSSMs

from two input MSAs and generates an optimal PSSM-PSSM alignment. Profile com-
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parer (PRC) (Madera, 2008) and HHsearch (Remmert et al., 2012) supports HMM-

HMM comparison and alignments.

HHsearch provides a suite of programs for HMM-based sequence searching and

sequence alignment. HHsearch has been shown to perform better than HMMER and

PSI-BLAST in sensitivity, alignment quality and also speed (Remmert et al., 2012).

HHsearch includes predicted secondary structure information in the HMM profile.

Moreover, HHsearch employs a maximum accuracy (MAC) alignment algorithm. This

algorithm is inspired by the MAC algorithm introduced by Holmes and Durbin (1998).

This is done by maximizing the number of correctly aligned pairs of residues (i.e. the

posterior probability of match state to be aligned between 2 HMMs). HHsearch has

been employed by some of the state-of-the-art 3D structural modelling servers such

as Robetta (Kim et al., 2014; Ovchinnikov et al., 2017), BioSerf (Buchan et al., 2013),

SWISS-MODEL (Biasini et al., 2014), nns (Joo et al., 2016) and MULTICOM (Li et al.,

2015) for both template searching and sequence alignment.

1.4.3 Assessing the significance of the result obtained from these

programs

When we are inferring homologies between sequences, it is important to know if a

sequence match constitutes homology evidence and the likelihood that it is expected

by chance. Measures such as score, bit-score and E-value are usually used to assess

the quality of an alignment (match). A score S, is a numerical value that explains the

overall quality of an alignment, depending on the substitution matrix and gap penalty

used. Typically, the higher the score, the higher the similarity and the better the align-

ment. Bit score is a normalised score that allows user to estimate the magnitude of

the search space. It allows the comparison of alignment irrespective of substitution

matrices or gap penalty used. The bit score is calculated by:

Bit score =
λS − ln(K)

ln(2)
(1.4)
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where S is the overall alignment score, λ and K reflect the matrices and penalties

used. The E-value represents the number of hits one can "expect" to see by chance

when searching a database. Hence, the E-value is dependent on the size of the

database and the query length. The closer the E-value to 0, the better the alignment.

E-values are calculated using the following formula:

E = Kmne−λS (1.5)

where m is the length of the query sequence, n is the total number of residues in

the database, S represents the overall alignment score and K and λ are parameters

dependant on the substitution matrix and on the gap penalties.

1.5 Structure comparison

1.5.1 Structure comparison methods

There are now more than 50 structure comparison methods available. Here we briefly

review only those methods that are widely used by protein structure classification re-

sources (explained in Section 1.6) or the structural modelling communities. SSAP

(Taylor and Orengo, 1989) is used by the CATH resource (Dawson et al., 2017). DALI

(Holm and Sander, 1993) is used by the SCOP resource (Andreeva et al., 2014).

TM-align (Zhang and Skolnick, 2005) is widely used by various structural modelling

groups competing in CASP (a community-wide experiment to assess the best struc-

tural prediction algorithms, more details in Chapter 2).

ProFit is based on the McLachlan rigid body superposition method (McLachlan,

1982) and uses a simple least-squares fitting algorithm which considers the optimal

rotation angles of the atom-atom pairs to superpose two protein structures (Martin,

1996).

The DALI algorithm (Holm and Sander, 1993) splits the protein structures into

hexapeptide fragments and then compares the contact maps of these fragments. Po-

tentially equivalent fragments are identified by looking for similar patterns of distances



CHAPTER 1. INTRODUCTION 40

between residues. These pairs are then concatenated to extend the alignment using

a Monte Carlo optimisation. The structural similarity between the concatenated struc-

tures is measured after each concatenation in order to determine the quality of the

alignment.

Figure 1.5: DALI algorithm (adapted from (Orengo et al., 2003))

Sequential structure alignment program (SSAP (Taylor and Orengo, 1989)) uses

double dynamic programming (double DP) to produce a structural alignment between

2 structures based on comparing Cβ-Cβ vectors in 3D space. The program starts

by determining the residue structural environments for each residue in the 2 proteins

being compared. These comprise the set of vectors from each residue’s Cβ atom to

all the other residues’ Cβ atoms in the same protein. After that, residue structural

environments for potentially equivalent pairs of residues between 2 proteins are com-

pared. Potentially equivalent pairs of residues are selected based on the secondary

structure, solvent accessibility, and local conformation of the residues. Comparison of

the vectors from each residue pair in the residue pair is carried out to score a 2D score

matrix. DP is then used to determine the optimal path through this scoring matrix. If

the residue pairs score highly enough, the optimal path is added into a 2D summary

scoring matrix. This process is repeated until all potentially equivalent residue pairs
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are compared. Finally, another layer of DP is carried out to determine the optimal path

through the summary scoring matrix, which gives the equivalent residues between the

two proteins (Taylor and Orengo, 1989). Figure 1.6 illustrates the SSAP algorithm.

CATHEDRAL (Redfern et al., 2007) is the streamlined version of SSAP (Taylor and

Orengo, 1989). CATHEDRAL is around 1,000 times faster than SSAP. CATHEDRAL

performs an initial run of a rapid secondary structure comparison between structures

using graph theory (Harrison et al., 2003). The putative fold matches identified are

then aligned again using a more accurate DP similar to SSAP.

Figure 1.6: SSAP algorithm (adapted from (Orengo et al., 2003))

In 2005, Yang Zhang and Jeffrey Skolnick developed TM-align. TM-align uses

three different methods to generate initial structural alignments. The first method

uses DP to structurally align the secondary structures of the two proteins.

The second method performs a gapless threading of the smaller structure of the

two proteins onto the larger structure (Kihara and Skolnick, 2003). Gapless thread-

ing starts by superposition of randomly chosen continuous fragments (same length in

both proteins) from the longer protein onto the shorter protein. The TM-score (Zhang

and Skolnick, 2004) of the superposition (explained in the next section), rotation matrix
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and translation factor of the superposition is recorded. This process is repeated until

all possible continuous fragments are matched. The rotation matrix and translation

factor from the superposition with the highest TM-score is then applied to whole pro-

tein. This produces a distance scoring matrix and DP is used to obtain the structure

alignment.

The third method uses DP on a "summary" 2D matrix which combines the sec-

ondary structure scoring matrix (obtained from secondary structure similarity align-

ment method) and the distance scoring matrix (obtained from the gapless threading

alignment method).

Based on the aligned residue information of all the initial alignments produced,

a TM-align rotation matrix is produced. The structures are then superposed based

on the rotation matrix. A new structural alignment can then be produced by imple-

menting DP on a score similarity matrix (based on the residue distance between the

superposed structures) with a gap-opening penalty.

Superposition of the structures is then carried out again based on the TM-align

rotation matrix derived from the new alignment, followed by implementing DP on the

new score similarity matrix. This heuristic iterative process is repeated until the align-

ment has become stable. The alignment with the highest TM-score is then returned

(Zhang and Skolnick, 2005). Figure 1.7 illustrates the TM-align algorithm.

In addition, the Zhang lab also developed MM-align (Mukherjee and Zhang, 2009),

an offshoot of the TM-align program designed for aligning multiple-chain protein com-

plex structures.
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Figure 1.7: The heuristic iterative algorithm of TM-align

1.5.2 Performance of structure comparison methods

In 2005, TM-align was compared against structure comparison methods CE (Shindyalov

and Bourne, 1998) and DALI (Holm and Sander, 1993) using a benchmark target

dataset that consists of 200 non-homologous PDB proteins. TM-align produced more

accurate structural alignments and used less CPU run time compared to DALI and

CE (See Table 1.1).

Methods Coverage RMSD Average CPU time
CE 34.7 % 6.36 Å 2.28 s
DALI 53.5 % 14.25 Å 12.22 s
TM-align 43.4 % 5.18 Å 0.52 s

Table 1.1: Comparison between TM-align, CE and DALI (adapted from (Zhang and
Skolnick, 2005))

In 2007, Redfern et al. also compared SSAP against several structural compari-

son methods (DALI, CE, STRUCTAL (Kolodny et al., 2005), and LSQMAN (Kleywegt

and Jones, 1997)) using a dataset of 1,779 CATH-SCOP domains. The domain align-

ment quality of the different methods was compared. SSAP gave a higher percentage
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of correct folds than DALI and CE according to the SiMax scoring scheme (See Sec-

tion 1.5.3 for details). SiMax takes account of the proportion of residues aligned in

the larger domain structure to determine whether a significant fold match has been

achieved. In addition to that, SSAP correctly aligned 25% more residues than DALI

and 40% more than CE (Redfern et al., 2007).

Although no direct comparison has been done between SSAP and TM-align, both

of the methods were shown to perform better than CE and DALI. Further investigation

is needed to compare the two methods using the same benchmark dataset and the

same scoring scheme.

1.5.3 Structure comparison scores

The most commonly used structure comparison score is the Cα root mean square

deviation (RMSD). RMSD calculates the root mean square of the distance between

all equivalent Cα atom pairs; Since all of the atoms are equally weighted. RMSD

can be very sensitive to local changes. RMSD has a power-law dependence on the

protein size; a RMSD of 3Å calculated over 20 residues is far less significant than the

same RMSD calculated over 200 residues. Below is the formula used to calculate

RMSD:

RMSD(x, y, z) =

√√√√ 1

N

N∑
i=1

(x1i − x2i)2 + (y1i − y2i)2 + (z1i − z2i)2 (1.6)

To account for RMSD’s over-sensitivity to local changes, Zemla et al. developed

the GDT-score, which takes into account the number of Cα pairs within a distance 1Å,

2Å, 4Å, and 8Å after superposition of the two structures. GDT-TS score is calculated

by taking the average of the four GDT scores obtained divided by the number of

residues in the target. GDT-TS is the current official structural comparison score used

in the CASP competition (which will be described the next chapter). A more sensitive

GDT measure named GDT-HA is available as well, that accounts for Cα pairs which
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have a distance 0.5Å, 1Å, 2Å, and 4Å (Read and Chavali, 2007; Zemla, 2003; Zemla

et al., 1999). The MaxSub method focuses on the percentage of Cα pairs superposing

within 3.5Å distance (Siew et al., 2000). In addition, the SiMax score normalises the

larger of the two proteins being compared using the following equation:

SiMax = max(L1L2)
RMSD

Number of aligned residues
(1.7)

where L1 and L2 are the length of the respective proteins. However all these

methods still fail to eliminate the dependence on protein size. In 2004, Zhang and

Skolnick proposed a solution to the problem by introducing a protein size-dependent

scale and developed the TM-score:

TM − score = Max

 1

LN

LT∑
i=1

1

1 +
(
di
d0

)2
 (1.8)

where LN is the length of the template structure, LT is the number of the residues

aligned to the template structure, di is the distance between the i-th pair of aligned

residues and d0 is the scaling factor. The scaling factor is calculated as d0 = 1.24 3
√
LQ − 15−

1.8, where LQ denotes the length of the model.

Xu and Zhang have suggested that the TM-score has certain advantages in scor-

ing structure similarities over other methods such as MaxSub, RMSD, and GDT-TS. It

is thought to be more sensitive to global topology, accounts for all residues pairs and

has been used as a quantitative criterion for protein topology classification. Protein

pairs with TM-score above 0.5 are generally in the same CATH/SCOP topology fold

(Xu and Zhang, 2010).

Other scores include the SSAP score which has been used for protein structure

classification in the CATH database (Dawson et al., 2017). SSAP score measures the

vectors from all the equivalent residues pairs of a protein to other equivalent residue

pairs in the protein, followed by the normalization of the score (to be independent of

protein size) using the following formula:
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SSSAP =

(
aln∑

i=1,i′=1

aln∑
j=1,j′=1

Svectori→j,i′→j′

)
/(maxequivs∗(maxequivs− 11)) (1.9)

where aln is the number of aligned residues, maxequivs is the maximum num-

ber of equivalent positions between proteins. The vector similarity score Svector is

calculated as follows:

Svectori→j,i′→j′ =
500

(10 + δ)
(1.10)

where δ is distance between vectors. The SSAP score has a maximum of 50. To

set the final SSAP score into a maximum of 100, the following equation is used:

S ′SSAP = ln(SSSAP ) × 100

ln(50)
(1.11)

A SSAP score of 70 out of 100 indicates structures have a similar fold (Taylor and

Orengo, 1989).

1.6 Protein structure classification

Protein structures have been organised into evolutionary families by resources

such as CATH (Dawson et al., 2017) and SCOP (Andreeva et al., 2014). Both of

these resources classified the proteins at the domain level. Protein domains are

independently-folding functional and evolutionary units of a protein sequence. They

are generally observed as local, compact units of structure, with a hydrophobic in-

terior and a hydrophilic exterior, forming a globular-like state that cannot be further

subdivided. CATH and SCOP identify structural domain boundaries within protein

structures and classify domains into protein families based on their evolutionary ori-

gin. However, there are differences between the two resources (i.e. how the proteins

are chopped into domains and how the domains are classified into families) which will

be discussed further below.

Sequence-based information has also been used to classify proteins into protein
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families. Resources employing these techniques usually identify conserved sequence

patterns. The most widely used resource is Pfam (Finn et al., 2016). The newest

release of Pfam (release 31) comprises 16,712 protein families, which covers more

than 75% of the sequences in UniProt.

1.6.1 CATH

CATH (Orengo et al., 1997) was established by Orengo and Thornton in the mid-

1990s. The first release of CATH in 1997 featured a total of 8,000 structural domains

classified into 1,000 superfamilies. The newest release of CATH (CATH version 4.1)

classified 308,999 structural domains into 2,737 superfamilies.

CATH is derived using a semi-automated approach followed by expert manual cu-

ration. Domain boundaries are inferred in new protein structures by searching for

using both sequence and structural similarity to domains that have been classified in

CATH. Sequence similarity is obtained by scanning the new chains against a library of

CATH superfamily HMMs. Structural similarity is computed using a streamlined ver-

sion of SSAP (Taylor and Orengo, 1989), CATHEDRAL (Redfern et al., 2007), that is

around 1,000 times faster. Both of these similarities are then used to assess whether

the new chain is homologous to any domains in CATH. For cases with low similar-

ity, the domain boundaries are identified manually. Manual assignment of domain

boundaries is guided by three ab initio domain identification methods: PUU (Holm

and Sander, 1994), DETECTIVE (Swindells, 1995) and DOMAK (Siddiqui and Bar-

ton, 1995).

The CATH superfamily code is denoted by four numbers corresponding to each

level in the CATH classification (i.e. 3.20.20.120). At the top of the hierarchy is the

class level where structural domains are classified based on their secondary structure

content (i.e. the proportion of residues adopting α-helical or β-sheet conformations).

Class 1 domains are mostly α-helical, Class 2 domains are mostly β-sheet, Class 3

domains have a significant amount of both α-helical and β-sheet. Class 4 domains

have very little secondary structure content.
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The second level of the hierarchy is the architecture level given by the global ar-

rangement of secondary structures in 3D space. This is followed by the topology level

where domains with similar folds (which takes into account the 3D arrangement, ori-

entations and connections between the secondary structures) are grouped together.

The fourth level is the homologous superfamily level where domains are deemed ho-

mologous if they meet two of the following three criteria:

• Significant sequence similarity (e.g. Significant E-value)

• Significant structural similarity (e.g. SSAP score above 80 with at least 60%

overlapping residues)

• Evidence of functional similarity (e.g. conserved catalytic, or binding site residues

and cofactors)

1.6.1.1 Gene3D

For each CATH superfamily, HMMs are built for non redundant representatives (at

95% sequence identity). Based on these HMMs, the CATH-Gene3D resource (Lam

et al., 2016) predicts domain superfamily assignments in UniProt sequences (UniProt,

2017) and ENSEMBL sequences (Aken et al., 2016). These annotations provide

structural and functional insights to the protein. The current release of Gene3D covers

a total of 54 millions sequences belonging to 2,737 CATH superfamilies, from 19,000

genomes.

In addition to the domain assignments, Gene3D also provides protein-protein in-

teraction information, drug information, catalytic site information and mutation infor-

mation for human proteins. For regions that are not covered by structural domains,

Gene3D also predicts if these regions are intrinsically disordered using IUPRED (Dosz-

tanyi et al., 2005). A total of 60,000 3D structural models were built for over 70% of the

structurally uncharacterised sequences in human and fly genomes using an in-house

modelling platform FunMod described in Chapter 2.
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1.6.1.2 Sub-classification of homologous superfamilies into functional fami-

lies (FunFams)

Once the sequence relatives are assigned to a specific superfamily in CATH, func-

tional families are identified by performing agglomerative clustering of domain rela-

tives (GEMMA (Lee et al., 2010)). Relatives are first annotated with Gene Ontology

(GO) annotations and then clustered at 90% sequence identity (S90). S90 clusters

without GO-annotations are removed. In addition, sequence fragments (less than

80% of the average sequence length) are also removed from the clusters. For each

S90 clusters, a sequence profile is built based on the MSA. S90 clusters are then

compared using HMM-HMM profile comparison software, COMPASS (Sadreyev and

Grishin, 2003). At each round, clusters that match a specific threshold are merged

and profiles are generated for the new clusters. The process is continued to until a

single cluster remains (i.e. producing a hierarchical clustering tree from the leaf nodes

to the root).

Determining an optimal cut of a hierarchical clustering tree of sequence relatives

within a given superfamily is key to producing functionally pure clusters. Initially, GO

annotations were used to ensure the functional coherence in each functional family

(i.e. clusters are only merged if they contain coherent GO terms) (Rentzsch and

Orengo, 2013). However, due to the paucity of the GO terms and annotation biases

existing in the GO (Schnoes et al., 2013), a newer approach that exploits sequence

patterns and unaffected by the limitations of GO was developed.

The new FunFHMMer protocol determines the best optimal cut of the tree using

conserved positions and specificity determining positions in the cluster alignments

(Das et al., 2015). Highly conserved positions are generally important for the stability,

folding or function of the protein domain. Specificity-determining positions are posi-

tions that are conserved within and unique to a particular cluster, sharing a specific

function and usually involved in functional divergence from other clusters (Abhiman

and Sonnhammer, 2005; Rausell et al., 2010).

The functional purity of the new FunFams was demonstrated in a number of ways:
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by validating against experimentally determined Enzyme Commission (EC) (Webb,

1992) and SFLD (Akiva et al., 2014) annotations and also by checking whether known

functional sites coincide with highly conserved residues in the MSAs of FunFams (Das

et al., 2015). Functional predictions based on FunFams were ranked amongst the

top five methods for the "Molecular Function" category and the "Biological Process"

category in the 2nd CAFA International Function Prediction experiment (Jiang et al.,

2016).

1.6.2 SCOP

The Structural Classification Of Proteins (SCOP) database (Murzin et al., 1995), like

CATH, classifies structural domains hierarchically into three different levels. SCOP is

largely based on expert curation resulting in a very high-quality dataset. The highest

level of classification in SCOP is the Class level which is based on secondary structure

content. The structural domains are further classified based on their fold groups,

which is similar to the T-level in CATH. The third level of SCOP is the homologous

superfamilies level (comparable to the H-level in CATH) which comprises of either

domains which share sequence identity with at least 30% sequence identity or those

having very similar structures and functions. SCOP uses tools such as the structural

comparison tool DALI (Holm and Sander, 1993), Pfam (Finn et al., 2016) and BLAST

(Camacho et al., 2009) to check for the homology of the domains (Andreeva et al.,

2014).

Recently, a new prototype of SCOP, SCOP2 (Andreeva et al., 2014) has been in-

troduced to organise the structural domains. With the expansion of structural data in

PDB, the SCOP team recognised that evolutionary relationships can be more com-

plex than first thought, leading to a new design to capture the relationships. Rather

than using a hierarchy, the new SCOP2 uses a directed acyclic graph to represent the

structural and evolutionary relationship of the domains. Both structural and evolution-

ary relationships are now split into two separate categories allowing the classification

of the homologous proteins into different folds and structural classes while keeping
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them in the same evolutionary family and superfamily (Andreeva et al., 2014).

SCOPe (Structural Classification of Proteins-extended) (Fox et al., 2013) is a

database that extends the SCOP v1.75 database (the newest stable release of SCOP).

To keep up with structural growth in PDB, SCOPe uses automated methods to clas-

sify the new structures using the original SCOP-based hierarchy. Similar to Gene3D,

the SUPERFAMILY (Wilson et al., 2009) resource provides domain superfamily and

family assignments for protein sequences based on SCOP.

1.7 Overview of Thesis

The first work chapter of the thesis explores the structural coherence of domains

in FunFams (built using the new FunFHMMer algorithm). We then explore the use of

FunFams in protein monomer modelling and a new modelling pipeline (FunMod) that,

utilises the FunFam protocol to model structurally uncharacterised domain sequences

from human and fly genomes.

In the second work chapter, we explore the use of FunFams in protein complex

modelling. We report analyses that explored the conservation of domain-domain in-

terfaces in FunFams. A new template library is generated for template selection in

3D-template based docking and we report a FunFam based complex modelling pro-

tocol.

In the final work chapter, we employ the FunFam based structural modelling tool

to understand the implications of alternative splicing. We focused on mutually exclu-

sive exons (MXEs) for which there is more evidence of translation into proteins from

proteomic experiments. Our pipeline allowed us to assess for the first time, structural

and functional consequences of MXE events in whole genomes.
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Modelling protein monomers

2.1 Introduction

Proteins are essential macromolecules found in all biological systems. They are

involved in virtually every biological process. For instance, the cooperation of tran-

scription factors, activators and DNA-binding proteins are necessary for the mRNA

transcription process that ultimately drives the production of proteins.

The 3D atomic coordinates of protein structures can be solved using experimental

methods such as X-ray, NMR or electron microscopy. Once a protein structure is

determined, it is usually deposited in the Protein Data Bank (PDB) (Berman et al.,

2000). The PDB is the most comprehensive protein structure repository containing

over 130,000 entries. However, resolving the protein structure is complicated and

time-consuming, therefore the number of solved protein structures is much less than

the number of proteins sequenced so far, which is ≥89 million (UniProt, 2017). This

gap is known as the "Protein Structure Gap". Various computational protein structure

modelling approaches have been developed to bridge the gap and will be described

in the next section.

2.1.1 Predicting protein structures

The most commonly used and most accurate protein structure modelling method

is comparative modelling which predicts the structure of an unknown protein using

known information from one or more homologous partners. Comparative modelling

usually involves three steps: (1) Identification of template structures for modelling the

query protein, (2) Sequence alignment between the template and the query, and (3)

Modelling the structure of the query.

Generally, all the template selection methods involve searching for template pro-

tein structures from the PDB. Global sequence identity between the query and tem-
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plates has been used extensively as the primary criterion for a search process us-

ing BLAST (Altschul et al., 1990). Comparative modelling of a structurally unchar-

acterised protein generally produces a good 3D model as long as a homologous

template with a global sequence identity of 30% or more is used. However, once

the sequence identity falls below 30% (Twilight zone), the model quality deteriorates

rapidly (Baker and Sali, 2001).

There have been some powerful methods that have been developed to recognise

remotely related structural templates such as PSI-BLAST (Altschul et al., 1997), which

is based on 1D sequence profiles, and HHsearch (Söding, 2005) and HMMER (Eddy,

2011), which are based on HMMs. These approaches have the ability to extend

the sequence search into the "Twilight Zone" and find templates which have high

structural similarity with the query. Phyre2 (Kelley et al., 2015), MULTICOM (Cao

et al., 2015) and HHpred (Söding et al., 2005), are examples of robust comparative

modeling servers that use HHsearch to search for structural templates.

Various studies have highlighted the importance of considering the physical and

structural environment of the template selected for modelling a particular query se-

quence such as pH, temperature, space group and quaternary structures (Fiser,

2004). However, Sadowski and Jones concluded that these factors do not signifi-

cantly improve template selection for single domain modelling (2007). If there is more

than one potential template with comparable sequence identity, it is preferable to use

the template with the best X-ray resolution, regardless of conditions.

Once a structural template has been identified, both the template and alignment

(usually obtained from the template searching method) are submitted to a compara-

tive modelling program that will predict the 3D atomic coordinates of the query protein.

Overall, it is generally agreed that profile-based alignments produce better quality

models than sequence-based alignments (Yan et al., 2013). In addition, HMM-based

alignments (i.e. HHsearch) tend to give higher quality models than PSSM-based

alignments (i.e. PSI-BLAST) (Yan et al., 2013).

The major steps in modelling the structure of a query sequence, based on a tem-
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plate structure, are summarised below. For a more detailed account see recent re-

views (Mishra et al., 2013; Tress, 2013). Guided by the sequence-template alignment,

comparative modelling methods usually start by copying the coordinates (structurally

conserved regions) from the template to assemble the basic backbone of the model.

Processing deleted residues between the query and template sequence involves

the removal of residues and closure of the hole formed by creating the new peptide-

bond. For insertions, loop modelling can be done by searching through high reso-

lution fragment libraries (either derived from the PDB or structural domain resources

such as CATH or SCOP) to find segments that fit the specific part of the backbone.

However, these methods are limited by the fact that the number of possible conforma-

tions increases exponentially with the length of a loop (difficult when the loop size is

>7 residues). By contrast, conformational approaches construct loops by searching

through the conformational space of possible loop conformations driven by satisfy-

ing a specific energy function (e.g. stereo-chemical, distance, steric constraints). In

order to maximize the accuracy of loop prediction, simulating the correct environ-

ment (energy functions) is key. Approaches to do this include hybrid methods which

employ both knowledge based and physics-based energy functions (see for exam-

ple Park et al. 2014 for more details) and physics-based energy functions, such as

CHARMM36m (Huang et al., 2017).

The next step is side chain modelling which involves the process of refining/adding

side chains to the backbone built. Strategies such as dead end elimination, Monte

Carlo sampling and simulated annealing are usually used to sample the most proba-

ble rotamer (side chain conformation), based on the local conformation of the back-

bone, from rotamer libraries such as SCWRL4 (Krivov et al., 2009). Once the model

is produced, it is usually refined to minimize unfavourable collisions between atoms.

This is usually done by performing energy minimizations following molecular dynam-

ics simulations using force fields. Excessive refinement may cause the model to be

deviate significantly from the original template (For some recent approaches see Feig

2016; Kim and Kihara 2016; Lee et al. 2016; Park et al. 2016).
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In 1993, Andrej Sali and Tom Blundell developed MODELLER, which is still one

of the most widely used comparative modelling methods. It is based on satisfac-

tion of spatial restraints theory inspired by NMR spectroscopy. These restraints in-

clude homology-derived constraints obtained from the alignment of query sequences

and template structures, stereochemical restraints extracted from the CHARMM-22

molecular force field (Brooks et al., 1983), and statistical restraints compiled from a

list of known protein structures. Based on the alignment between the query and the

model, a set of spatial restraints are derived. These restraints which include bond dis-

tances, bond angles, dihedral angles, Van der Waals repulsion, are then expressed

as probability density functions. These functions are then combined into an objective

function used to calculate the location of each atom in the protein (Sali and Blundell,

1993).

Besides MODELLER, there are other comparative modelling programs available

such as nest (Petrey et al., 2003), 3D-JIGSAW (Bates et al., 2001), Builder (Koehl and

Delarue, 1995), SWISS-MODEL (Kopp and Schwede, 2004), and SegMod/ENCAD

(Levitt, 1983, 1992). A comparison was done between all these methods by Wallner

and Elofsson (2005). This showed that no single program outperformed the others.

All of them have their advantages and disadvantages. But, MODELLER, nest, and

SegMod/ENCAD produce more chemically correct models than the other programs.

Following the introduction of MODELLER, many other approaches were devel-

oped for protein structure prediction. To assess their performance and identify which

features work best, an independent assessment initiative was established in 1994

(Moult et al., 1995). The Critical Assessment of Protein Structure Prediction (CASP)

is a community-wide experiment that is held bi-annually. Whilst CASP1 had only 3

categories (comparative modelling, fold recognition and ab initio modelling), many

more categories have been introduced since then, such as accuracy of predictions

for residue-residue contacts and disordered regions. Other categories include model

quality assessment, model refinement, data-assisted prediction, protein complex pre-

diction, and recently, prediction of biological relevance. All these categories are im-
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portant in structural modelling (Moult et al., 2016), and a few of them are highlighted

below, particularly those relating to recent developments in comparative modelling.

2.1.2 Recent developments in structural modelling

An exciting recent development relates to more accurate predictions for residue-residue

contacts. Residue contact information has been used in the past, albeit not very suc-

cessfully (i.e. with >80% of false positives, (Monastyrskyy et al., 2014)), and whilst

these approaches included co-evolution methods, the performance was poor because

it was difficult to separate indirect couplings from direct couplings. In addition, very

sequence diverse MSAs were typically required. Recently, methods based on direct

coupling analysis have been able to disentangle direct couplings from indirect cou-

plings (Jones et al., 2012; Kamisetty et al., 2013; Marks et al., 2011; Nugent and

Jones, 2012). Furthermore, for some cases the problem of obtaining a sufficient

number of diverse sequences can be solved by using metagenome data (Ovchinnikov

et al., 2017).

In addition, machine learning approaches (recently deep learning), that utilise fea-

tures related to the residue type (i.e. polarity etc.), structural characteristics (i.e. sol-

vent exposure, secondary structure etc.), sequence separation length between the

residues under consideration, and pairwise information between all the residues in-

volved, also show promise in contact prediction (Adhikari and Cheng, 2016; Eick-

holt and Cheng, 2012; Feinauer et al., 2014).The best residue contact predictor in

CASP11 (Monastyrskyy et al., 2015) was MetaPSICOV (Jones et al., 2015; Kosciolek

and Jones, 2016), which integrates both co-evolution and machine learning methods.

Since then, many more structural groups have started to employ residue contacts

using integrative methods (He et al., 2017; Skwark et al., 2014) or deep learning

methods (Wang et al., 2017) ultimately using this data to guide 3D structure mod-

elling. In the template free category of CASP11, an accurate structural model of a

256 residue protein was successfully generated by incorporating contact information

(Monastyrskyy et al., 2015). In addition, residue contact data can be used for model
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ranking, selection, evaluation and refinement (Adhikari and Cheng, 2016; Park et al.,

2016).

Other recent developments are the application of different profile based methods

in template identification and sequence alignment (Markov random fields, (Ma et al.,

2014), conditional random forests, (Joo et al., 2016)); the use of integrated template-

based and ab initio approaches (Yang et al., 2016); better protein model refinement

methods with improved energy functions and MD simulations (Della Corte et al., 2016;

Feig, 2016; Kim and Kihara, 2016; Lee et al., 2016; Park et al., 2016).

However, merely producing a model without determining the quality of the model

is unreliable if the structure is to be used to derive biological insights. The chapter

continues with the explanation on how to assess the quality of protein models.

2.1.3 Assessing protein models

If there is a native structure for the protein, then the best assessment of model quality

is by comparison with the known structure. Structural comparison is usually done

by superposing the 3D model against the native protein structure. This is the most

direct way of determining how well the model captures the characteristics of the native

structure. Different structural comparison methods and scores have been developed

and are described in Chapter 1.

However, if there is no native structure available, other model quality assessment

approaches must be used. The performance of these approaches is also usually

assessed by doing a structural comparison to known protein structures. These ap-

proaches will be described in the following section.

To assess the performance of a protein modelling algorithm, a benchmark set of

proteins is used for which the structure is already known. Model quality can then be

assessed by comparing the 3D model against the known structure.
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2.1.3.1 Protein monomer model quality assessment

A good quality protein model should resemble a native protein. Native proteins usu-

ally have compact, well-packed 3D-structures. The spatial features of the residues

should comply with empirically characterised constraints on torsional angles captured

in Ramachandran plots (Ramachandran et al., 1963). Hydrophobic side chains of the

protein are buried to reduce unfavourable contacts with water molecules. Hydrogen

bonds, disulphide bridges, salt bridges and covalent bonds should be present, as

these facilitate the folding and packing of the polypeptide chain.

These methods typically used by structural biologists to check whether their crystal

structures are well determined include PROCHECK (Laskowski et al., 1993) and Mol-

Probity (Chen et al., 2009) which determine whether a protein structure has native-like

features. These methods use various approaches to rule out unlikely protein struc-

tures with unfavourable stereochemical properties such as Ramachandran outliers,

steric clashes, incorrect hydrogen bonds and distorted bond angles.

From a thermodynamic perspective, native proteins are usually folded to the low-

est energy state (Rangwala and Karypis, 2010). Many energy-based programs have

been developed to select the most native-like model, with the lowest energy state,

from decoy sets. Statistical potential energy based functions are derived from the sta-

tistical analysis of the growing numbers of experimental protein structures. In contrast,

physics-based energy functions use molecular mechanics force fields of molecules

that take into account bond lengths, torsional angles, Van der Waal forces and elec-

trostatic interactions (Brooks et al., 1983; Weiner et al., 1984).

In addition, the quality of protein models can also be assessed by checking the

compatibility of the models produced with the conservation of the sequence pattern.

The core of the proteins is usually composed of conserved residues. In contrast,

protein surface residues tend to be less conserved with more variability (Branden and

Tooze, 1999).

The current state-of-the-art model quality assessment methods can be divided

into two main types: single model methods and clustering methods.
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Single model methods Single model methods use evolutionary information (Kalman

and Ben-Tal, 2010), statistical potentials, knowledge-based potentials (Brooks et al.,

1983; Weiner et al., 1984) and a combination of different features (Benkert et al.,

2008; Cao et al., 2016; Liu et al., 2016; Singh et al., 2016) obtained from only one

model to evaluate the model quality (Wallner and Elofsson, 2003).

The most commonly used statistical potential based model quality assessment

method is MODELLER’s DOPE (Shen and Sali, 2006). DOPE is an atomic distance-

dependent statistical potential based on a physical reference state that accounts for

the finite size and spherical shape of proteins. There are many statistical potential

methods available. They differ in the sample set of known protein structures used,

the protein representation (e.g. all atoms, Cα atoms), the spatial features (e.g. an-

gles, distances, solvent accessibility), and the definition of the reference state (Dong

et al., 2013). Recently, new methods such as GOAP (Zhou and Skolnick, 2011),

SOAP (Dong et al., 2013), DOOP (Chae et al., 2015) and VoroMQA (Olechnovič and

Venclovas, 2017) have been introduced and all claimed to be more reliable than their

counterparts.

Model quality assessment methods exploiting machine learning methods are also

becoming popular. The major advantage of ML methods is their ability to take into

account a large number of features simultaneously, often capturing the hidden rela-

tionships among them, which is hard to deduce with energy term measures alone.

ProQ2 combines evolutionary information, MSA data, and structural features from the

model using a support vector machine (SVM) to assess the quality (Ray et al., 2012).

The recent ProQ3 uses a deep learning method to combine ProQ2 with Rosetta en-

ergy terms (Leaver-Fay et al., 2011) and has been shown to be superior to ProQ2

(Uziela et al., 2017, 2016). DeepQA is another deep learning method that com-

bines physiochemical properties (i.e. secondary structure similarity, solvent acces-

sibility) and statistical potential energy terms (Cao et al., 2016). MQAPRank is a

machine-learning-to-rank method that extracts features from statistical potentials and

the scores obtained from a few model quality assessment methods (Jing et al., 2016).
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SVMQA is an SVM method that combines 8 statistical potential energy terms and

11 consistency-based terms (between the predicted values from the sequence of the

query protein and calculated values from the model built) (Manavalan and Lee, 2017).

Besides assessing the model from a global perspective, local quality assessments

of protein models are also available. It is possible to discriminate between good/bad-

modelled regions of a whole protein chain using software such as QMEAN (Benkert

et al., 2008), ProQ2 (Ray et al., 2012), and ModFOLD (Maghrabi and McGuffin, 2017).

Clustering methods In contrast to single model methods, clustering methods are

based on the structural comparison of multiple models generated for a single target.

All-against-all structural comparisons are first carried out and the resulting scores

used to generate a N-dimensional distance matrix based on the structural distances

between each model (See Figure 2.1).

Figure 2.1: Clustering of models according to structural distance from each other
(adapted from Rangwala et al. 2012).

These approaches assume that the best model is the model structure with the

lowest average distance to the rest of the dataset (Konopka et al., 2012). Therefore,

after clustering the models, these approaches select the centroid for each cluster.

The best model of the whole decoy dataset usually lies within the largest structurally
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conserved cluster. A model quality score for the model is calculated by averaging the

structural comparison scores obtained from all the pairwise comparisons (model vs

model) within the cluster and is usually followed by normalisation of the score. Recent

methods that use clustering approaches are PconsD (Skwark and Elofsson, 2013),

MULTICOM-CONSTRUCT (Cao et al., 2014) and ModFOLD6-rank/ModFOLD6-cor

(Maghrabi and McGuffin, 2017).

2.1.3.2 Recent developments in model quality assessment

Model quality assessment by clustering has typically been superior to other quality

assessment methods. However, these approaches fail to identify good quality models

if the majority of the models are of bad quality and are structurally similar to each

other. The other problem with clustering methods is the high computational costs.

Furthermore, many single model methods have recently been identified that can

achieve better performance than clustering methods, for example, in the CASP cate-

gory that selects the good-quality models from decoys (please refer to the CASP12

quality assessment result page, http://predictioncenter.org/casp12/qa_diff2best.cgi).

This is probably due to rise of machine learning methods. SVMQA is an SVM method

that is based on the combination of two independent predictors trained on the TM-

score or GDT-TS score (Manavalan and Lee, 2017). Other methods exploit deep

learning and machine-to-rank which seem to be superior to SVMs (Cao et al., 2016;

Jing et al., 2016; Uziela et al., 2017, 2016).

2.1.4 Resources dedicated to large-scale comparative modelling

of genome sequences

As mentioned already above, there have been several recent developments in com-

parative modelling and many excellent servers are now available for biologists wishing

to model the structure of a query protein (see (Modi et al., 2016) for more information

on the servers that are currently highly ranked). Since the focus in this chapter is more

related to providing libraries of structural templates and a library of structural models,
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we consider resources providing large repositories of pre-calculated 3D models.

In particular, four resources that provide pre-calculated 3D structural models for

over 100,000 UniProt sequences (for multiple model organisms) are described below

and for each we describe how the structural models are built. These resources pro-

vide easy access to 3D structure data, visualize these structures using state-of-the-art

visualization platforms and also provide functional annotations, where available e.g.

inherited binding site information and other information valuable for life science re-

searchers.

2.1.4.1 ModBase

ModBase (Pierce et al., 2014) was developed by the Sali group in 1998 and currently

contains more than 36,000,000 protein models (5,956,279 unique sequences) for at

least 66 species (as of April 2017). ∼82% of the 170,418 human transcripts in the

database are annotated with structural models. ModBase uses ModPipe (Eswar et al.,

2003), an automated pipeline, to produce the models. ModPipe utilizes a whole range

of template selection methods (sequence-sequence, sequence-profile, profile-profile)

including PSI-BLAST and HHsearch. The alignment obtained from the template se-

lection method is then fed into MODELLER for the modelling process. For each model

ModBase provides five different quality assessment criteria (sequence identity, GA341

(Melo et al., 2002), normalised DOPE (Shen and Sali, 2006), ModPipe Quality Score,

TSVMod score (Eramian et al., 2008)).

In addition to the model quality, the target-template alignment and sequence iden-

tity are also provided. In addition, some of the entries contain information about puta-

tive ligand binding sites, SNP annotation, and protein-protein interactions.

2.1.4.2 SWISS-MODEL repository

SWISS-MODEL (Bienert et al., 2017) is another comprehensive repository providing

3D structural models for the 12 most accessed genomes in UniProtKB. It houses more

than 900,000 models for UniProt sequences. Out of the 21,042 human sequences,
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∼75% are annotated with at least 1 structural model. SWISS-MODEL repository

also provides structural models for homo-oligomeric complexes. All the homology

models were created using an in-house modelling platform PROMOD3 (Bienert et al.,

2017) that uses BLAST and HHsearch for template searching. In order to facilitate

oligomeric complex modelling, structural templates in the database are also organised

as quaternary structure assemblies. The database is updated weekly and contains

more than ∼81,000 unique sequences in ∼180,000 assemblies. QMEAN (Benkert

et al., 2008) is used to assess the quality of the models. As well as model quality, all

models are provided with the target-template alignment and sequence identity. Some

of the entries contain InterPro functional annotations (Finn et al., 2017). SWISS-

MODEL plans to model more homo-oligomeric complexes, even for distant relatives,

and to possibly include hetero-oligomeric complexes.

2.1.4.3 Protein Model Portal

Protein Model Portal (Haas et al., 2013) is a database which collects both experimen-

tal structures and structural models. As well as structural models found in the Mod-

Base and SWISS-MODEL repositories, models generated by some of the NIH funded

Protein Structure Initiative (PSI) centres are also included. Based on the UniProt re-

lease 2017-1, the portal comprises 5,388,221 unique sequences covered by at least

one model. By combining models from different resources, the suppliers of the Pro-

tein Model Portal can apply the same model quality assessment and validation criteria

to them. Again, each model is provided with the sequence-template alignment and

sequence identity. The user can also request further assessment of model quality as

the portal provides a submission interface to other quality assessment servers such

as ModEval (Eramian et al., 2008), QMEAN (Benkert et al., 2009) and ModFOLD

(Maghrabi and McGuffin, 2017). Furthermore, the models provided by different re-

sources can be structurally superposed to analyse the variability amongst them. For

any queries with no structural model currently available, the portal provides a sub-

mission interface to modelling servers such as I-TASSER (Yang et al., 2015), Phyre2
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(Kelley et al., 2015).

2.1.4.4 Genome3D initiative

Genome3D (Lewis et al., 2015) is a UK-based collaborative project to annotate genome

sequences with structural information. The participating partners include Gene3D

(Lam et al., 2016), SUPERFAMILY (Wilson et al., 2009), Phyre2 (Kelley et al., 2015),

VIVACE (Ochoa-Montaño et al., 2015), pDomTHREADER (Lobley et al., 2009) and

BioSerf (Buchan et al., 2013). Each resource provides models based on either SCOP

or CATH domain structures. Therefore, to facilitate the comparison of predicted mod-

els, Genome3D identifies matching CATH and SCOP superfamily pairs. Genome3D

uses both homology-based approaches (e.g. Gene3D, SUPERFAMILY, Phyre2) and

threading-based approaches (e.g. FUGUE, pDomTHREADER, Phyre2) to provide

structural annotations for UniProt sequences. Genome3D annotates 94.6% of the

20,195 human sequences with at least one structural domain annotation. In addition

to that, 88% of the 20,195 human sequences are annotated with 3D structural models.

Structural models in the resource were built by the following comparative modelling

and threading methods.

BioSerf (Buchan et al., 2013) is a fully automated pipeline that combines com-

parative modelling, protein threading and ab initio approaches. BioSerf searches

for a suitable homologous template using PSI-BLAST and HHsearch. MODELLER

is then used to build the model. Protein threading is done using in-house thread-

ing methods pGenTHREADER (Lobley et al., 2009) and pDomTHREADER (Lobley

et al., 2009) guided by a protein secondary structure prediction method PSIPRED

(Jones, 1999). The FRAGFOLD algorithm is used, where appropriate, to create ab

initio models. FRAGFOLD uses known protein super secondary structural fragments

and uses a simulated-annealing algorithm to assemble the most probable 3D pro-

tein structure (Kleywegt and Jones, 1997). Recently, the Jones group introduced

EigenTHREADER, a novel fold recognition method which combines standard thread-

ing methods with their in-house MetaPSICOV contact prediction constraints method
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(Buchan and Jones, 2017).

Phyre2 (Kelley et al., 2015) relies on HHsearch searches. Once templates have

been identified, MODELLER is then used to predict the most probable model. Amino

acid side chains are added to the final model using SCWRL4 (Krivov et al., 2009). In

addition to the comparative modelling pipeline, Phyre2 also provides multiple-template

and ab initio approaches to model the query. Recently, Phyre2 introduced PhyrePower

which models queries with distant homology using contact threading i.e. pairwise

alignment of eigendecomposed contact maps (Kelley, 2017).

Both SUPERFAMILY and Gene3D use HMMER3 (Eddy, 2011) to search their

template libraries (based on SCOP and CATH respectively). Structural models are

created by using the HMM alignment of the sequence to the best superfamily, and

then resolved using MODELLER.

2.1.5 Objectives

As mentioned in Section 2.1.1, several approaches are used for identifying a close

relative with known structure, to provide a template for comparative modelling. Where

very close homologues are available (≥30% sequence identity), it is possible to de-

tect the closest template using the results returned by BLAST. However, when only re-

mote homologues are available, it is best to scan against sequence profiles or HMMs

constructed from closely related sets of homologues e.g. within a SCOP or CATH su-

perfamily. The Orengo Group recently developed a sub-classification of CATH protein

domain superfamilies that clusters relatives likely to have very similar structures and

functions.

Functional families (FunFams) were introduced as a sub-classification of super-

families inside the CATH-Gene3D, a resource which provides evolutionary classifica-

tion of structures and sequences for known protein domains (Dawson et al., 2017;

Lam et al., 2016). (See the Introduction chapter for a more detailed explaination of

FunFams). When FunFams were used to select templates for building models of

structurally uncharacterised relatives in 11 large, structurally and functionally diverse
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superfamilies, in the Structure Function Linkage Database (SFLD) (Akiva et al., 2014),

the structural coverage of models was up to 5 times greater, for some superfamilies,

compared to selecting targets using a 30% sequence identity cut-off. Furthermore,

despite the fact that many remote homologues were used as templates, the final mod-

els were found to be of similar quality to those built using close sequence homologues

(≥30% sequence identity) as parents (Lee et al., 2010).

A recent, more accurate FunFam identification protocol (FunFHMMer, (Das et al.,

2015)) uses similarities in sequence patterns, reflecting highly conserved positions

and specificity-determining positions, to guide the sub-clustering and family detection.

Functional purity of the new FunFams was demonstrated in a number of ways: validat-

ing against experimentally determined Enzyme Commission (Webb, 1992) and SFLD

annotations, and also checking whether known functional sites coincide with highly

conserved residues in the MSAs of FunFams (Das et al., 2015). Functional predic-

tions based on FunFams were ranked amongst the top five methods for "Molecular

Function" category and "Biological Process" category in the 2nd CAFA international

function prediction experiment (Jiang et al., 2016).

In this chapter, we assess the quality of models built using a new modelling

pipeline (FunMod) that uses the CATH-Gene3D FunFams to select parent templates.

We first calculate the structural conservation of structural domains within FunFams.

Since many model quality assessment methods exist, in order to assess the model

quality, we first determine which of these methods is the best for our benchmark. Af-

ter that, we assess which sequence alignment methods produce more good quality

models. Then, we compare the quality of models built using FunFams to select tem-

plates with those built using HHsearch to identify templates. After that, we develop

a modelling pipeline that combines different template strategies to model structurally

uncharacterised proteins in human and fly genomes.
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2.2 Materials and Methods

2.2.1 Calculating the structural conservation of structural domains

within CATH-Gene3D FunFams and CATH superfamilies

To explore the conservation of domains within FunFams, we clustered all the CATH

structural domains for each FunFam (which contains structural domains) into se-

quence identity 90% (S90) clusters. The structural representative for each S90 cluster

was selected as the relative whose length is closest to the average length of the do-

mains of the cluster. After that, we carried out all the pairwise structural comparisons

between all the S90 representatives using SSAP (Taylor and Orengo, 1989).

We also compared the structural conservation of CATH domains across CATH

superfamilies to compare against the conservation within FunFams. For each super-

family, we also compared representatives from sequence identity 35% (S35) clusters.

The S35 structural representative was selected based on the average length of do-

mains inside the S35 cluster and for having the best X-ray resolution of the structure.

For each type of analysis (i.e. FunFam or superfamily), we carried out pairwise struc-

tural comparisons between all the representatives.

We calculated the mean of the normalised RMSD and SSAP score for the com-

parisons.

2.2.2 Assessing the model quality assessment methods, query-

template alignment and template selection strategy

To assess the protocols for selecting templates, aligning templates and queries, rank-

ing and assessing models, a query dataset was compiled from sequences of known

structural domains in CATH (Sillitoe et al., 2015). The clustering program CD-HIT (Fu

et al., 2012) was used to cluster CATH domain sequences into clusters of relatives

showing 30% or more sequence identity (S30 clusters). A single representative was

selected from each cluster to generate a non-redundant dataset.
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To make sure the proteins selected have good structure, only proteins solved by

X-ray crystallography with resolution equal to or better than 2Å were used. At this res-

olution, proteins tend to have fewer errors with only a few incorrect rotamers (Huang,

2007).

This dataset was separated into two subsets based on sequence homology. The

close homologue subset consists of query targets that have sequence relatives with

more than or equal to 30% global sequence identity. By contrast, the remote ho-

mologue subset comprises query targets that have sequence relatives with less than

30% global sequence identity. This gave 8,633 close homologue query targets and

602 remote homologue query targets.

2.2.2.1 Template selection methods

The default parameters suggested by the authors of the respective methods were

used for all the methods.

HHsearch Query sequences in the benchmark set were scanned against the CATH

HHsearch HMM library using HHsearch. The library is composed of HMM built for

every single domain in the CATH version 4.0. The HMM library was built according to

the protocol provided in the HHseach guidebook: For each CATH target sequence, we

performed two iterations of HHsearch searches against the UniProt20 database (pro-

vided by HHsearch, clustered at 20% sequence identity), with an E-value threshold of

0.001.

We selected the structural template with the highest probability to be a true positive

provided by the program, which considers both the sequence and secondary structure

alignment for each target sequence. The structural templates selected must exceed

the default probability score of 20 and E-value below 0.001. The original structures of

the query sequences were excluded as templates.

FunFam Query sequences in the benchmark set were scanned against the HMMs

for each CATH FunFam using HMMER3. The FunFam of the best-matched HMM was



CHAPTER 2. MODELLING PROTEIN MONOMERS 69

selected. If the matched FunFam did not contain any structural templates, the next

closest FunFam was checked to determine whether there was a structural template.

However, the query sequence had to match the FunFam with an E-value threshold of

<0.001.

The original structures of the query sequences were excluded as templates. The

best templates were selected based on the average BLOSUM62 sequence similarity

with the query targets. Templates with X-ray resolution below 5Å were prioritised.

2.2.2.2 Comparing different model quality assessment methods

A variety of model quality assessment methods were tested. These methods were

used to select the best models from ten models built by MODELLER. nDOPE (i.e.

normalised DOPE) (Shen and Sali, 2006), GOAP (Zhou and Skolnick, 2011), and

BACH (Sarti et al., 2013) are statistical potential based single model quality assess-

ment methods. Whereas, GA341 combines statistical potentials with information on

target-template sequence identity, and structural compactness (Melo et al., 2002).

ProQ2 (Ray et al., 2012) is a machine learning method that is based on evolutionary

information, a MSA and structural features. ModFOLDclust2 (McGuffin and Roche,

2010) is a clustering based model quality assessment method.

To assess the performance of the model assessment methods, the best model

selected by the different methods was superposed on the original protein structure,

and the quality of the model was given by the structural similarity score.

2.2.2.3 Comparing different query-template alignments methods

MAFFT alignment We employed MAFFT MSA method (Katoh and Standley, 2013)

to align the query and template identified by the different template searching algo-

rithms.

For HHsearch, we realigned the sequences of the best HHsearch match using

MAFFT (L-INS-i mode). Next, the query sequence was added to the alignment using

MAFFT (using the mafft –add option). Subsequently, for both BLAST and HHsearch,
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the alignment of query and template was submitted to MODELLER.

For FunFam method, query sequences were added to the pre-built FunFam align-

ment of the matched FunFams using MAFFT and the alignment of query and template

was submitted to MODELLER. The original FunFam alignment was produced using

MAFFT (L-INS-i mode).

HHsearch alignment For HHsearch, we obtained the query-template sequence

alignment provided by the HHsearch program. For the FunFam method, after identi-

fying the FunFam to which the query belongs and selecting the best structural tem-

plates, we obtained an HHsearch HMM profile for the structural template to generate

an alignment. Then, we aligned the query sequence with the template HMM profile

using the HHsearch alignment methods and extracted the query-template alignment.

2.2.2.4 Comparative modelling

Comparative modelling software MODELLER version 9.15 was used to predict ten

models for each query target for each template selection method. The best model was

selected using the best model quality assessment score obtained in Section 2.3.2.

2.2.2.5 Assessing the performance of the prediction protocols and ranking the

models

In order to assess the target selection, sequence alignment and model ranking proto-

cols, TMscore, a sequence dependent structural superposition program (Zhang and

Skolnick, 2005), was used. TMScore calculates a TM-score (Zhang and Skolnick,

2004) in the range of 0 to 1. Protein pairs with TM-score >0.5 are generally in the

same CATH/SCOP fold group (Xu and Zhang, 2010).

The TMScore program was also used to calculate the GDT-HA score. The GDT-

HA score takes into account the number of Cα pairs within a distance 0.5Å, 1Å, 2Å,

and 4Å after superposition of the two structures (Read and Chavali, 2007; Zemla,

2003; Zemla et al., 1999). GDT-HA is the current official structural comparison score
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used in The Critical Assessment of Protein Structure Prediction (CASP) competition

(Kryshtafovych et al., 2015).

2.2.3 Modelling structurally uncharacterised sequences in human

and fly

Once a robust modelling pipeline had been established by the benchmarking, 3D

models were generated for human and fly domain sequences classified in the CATH-

Gene3D resource (version 12 (Lees et al., 2014)). After removing all sequences that

already had a structure in the PDB, there were 97,326 human (Homo sapiens) se-

quences and 36,761 fly (Drosophila melanogaster ) sequences inclusive of isoforms.

Different template searching methods were combined to model all sequences:

• FunFams

• HHsearch (using the CATH 4.0 HMM library, which includes HMMs for all CATH

domains)

• HHsearch (using the SCOP 1.75 HMM library clustered at 70% sequence iden-

tity)

• HHsearch (using the SCOe 2.05 HMM library clustered at 90% sequence iden-

tity)

• HHsearch (using the September 2014 release of PDB HMM library clustered at

70% sequence identity)

After the models had been built, we used the best model quality assessment score

obtained in Section 2.3.2 to assess the quality of the models.

2.3 Results and Discussion

We first explored the structural conservation of domains within FunFams and com-

pared this with the structural conservation of domains across the superfamily.
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2.3.1 Structural conservation of structural domains within Fun-

Fams and across superfamilies

We calculated the structural conservation for a total of 1,307 CATH superfamilies and

5,675 FunFams. Figure 2.2 contains two histograms that demonstrate the nRMSD

and SSAP score differences between structural domains within FunFams and across

Superfamilies. The majority of FunFam structural domains have a nRMSD value be-

tween 0 to 5Å and a SSAP score between 80 to 100. By contrast, for pairs of su-

perfamily domains, the nRMSD values have a wider spread from 0 to 10Å and SSAP

score differences between 70 and 90. Both the SSAP and nRMSD differences be-

tween the groups were statistically significant (p-value <2.2e-16, Mann-Whitney U

test). This demonstrates that the structural domains within FunFams are more struc-

turally conserved than within Superfamilies.

Figure 2.2: Structural conservation of domains within FunFams and Superfamilies.
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2.3.2 Choosing the best model assessment method

We first tested different model assessment methods to determine/establish their per-

formance. This quality of the models was assessed directly by superposing them on

the native structures for the target sequences. For each target, top ranked models

(out of the 10 models built) were selected by different model assessment methods.

Figure 2.3 illustrates the qualities of top ranked models selected by different model

assessment methods. The top ranked models have similar quality regardless of which

structure comparison methods were used to assess performance.

Since all the methods gave comparable performance in ranking models, MOD-

ELLER’s built in method nDOPE was used to select the best model in the studies

reported below, as this was the most convenient option.

Figure 2.3: Comparison between different model quality assessment methods. The
percentage of top ranked models (selected by a particular method) with a certain
degree of structural similarity with the native structure are shown.
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2.3.3 Choosing the best query-template alignment method

There are 3 major steps to the modelling process: (1) Find the template (2) Align

the query and template (3) Build the model. We first tested the different strategies

for aligning the query and template. These strategies were assessed by building the

models and assessing the model quality.

We used the HHsearch template selection method in this analysis. We examined

the performance of the two different alignments methods: HHsearch default query-

template alignment and MAFFT query-template alignment. Alignments were com-

pared using the same structural templates for the same query sequences. HHsearch

aligns the query sequence to the sequences in the HMM model to which the query

sequence has the best match. For MAFFT, the query sequence is matched to a HH-

search HMM and then align the sequences from the HMM model aligned with the

query. Figure 2.4 demonstrates the percentages of good quality models built for both

close homologs (sequence identity ≥30%) and remote homologs (sequence identity

<30%) for the alignment methods. Overall, the HHsearch alignment method produced

a higher proportion of good quality models than the MAFFT alignment method.

Figure 2.4: Comparison between different sequence alignment methods. Good mod-
els are defined by models with TM-score >0.5 when compared to the native structure.
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We examined one extreme example where the two query-template alignments pro-

duced are very different (See Figure 2.5, Figure 2.6 and Figure 2.7). The sequence

identity between the template 2nv9F02 and the query 7odcA02 was 39%. The HH-

search query-template alignment is good. However for the MAFFT alignment, most

of the residues are not aligned properly and lots of gaps are added. Problems in the

alignment are reflected in the models produced. HHsearch employs an alignment

algorithm that maximizing the number of correctly aligned pairs of residues (i.e. the

posterior probability of match state to be aligned). HHsearch also has an default fil-

tering step that removes sequences that are too distant. The MAFFT strategy does

not include a filtering step and so MAFFT will be aligning many very distant relatives.

Figure 2.5: The HHsearch query-template alignment for query 7odcA02

Figure 2.6: The MAFFT query-template alignment for query 7odcA02
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Figure 2.7: Known structure and structural models built using HHsearch and MAFFT
alignments for 7odcA02

Since this analysis demonstrated that the HHsearch query-template alignment

performed better than MAFFT in the modelling pipeline, the HHsearch method was

used in the following analyses of template selection protocols.

2.3.4 Assessing the performance of FunFam and HHsearch tem-

plate selection methods

In the previous section, we demonstrated that the HHsearch alignment strategy works

better for comparative modelling. Here we assessed the different template selection

strategies (i.e. HHsearch and FunFams). Again, this was done by building the models

and assessing the model quality.

Figure 2.8 demonstrates the proportion of good quality models built by FunFams

and HHsearch. FunFams gave a high proportion of good quality models than HH-

search for both close (sequence identity ≥30%) and remote homologs (sequence

identity <30%). The difference was statistically significant for models built for remote

homologs (p-value <1E-19, Mann-Whitney U test).
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Figure 2.8: Proportion of good quality models built by FunFam and HHsearch.

2.3.4.1 Close homologues with sequence identity ≥50%

Figure 2.9 shows that both template selection strategies gave similar numbers of good

quality models. This result is not surprising as the FunFam and HHsearch protocols

either selected the same template or another closely related structural template. At

this level of sequence homology, sequences tend to share high structural similarity, so

choosing an alternative close homologue as a template is unlikely to affect the quality

of the models built.

Figure 2.9: Number of models built from templates selected by the FunFam and
HHsearch protocols for homologues with sequence identity ≥50%. Good models are
defined by models with TM-score >0.5 when compared to the native structure.



CHAPTER 2. MODELLING PROTEIN MONOMERS 78

2.3.4.2 Close homologues with sequence identity 30%-50%

Figure 2.10 compares the performance of the FunFam protocol versus the HHsearch

protocol, respectively, for homologues in the sequence identity range 30%-50%. When

comparing target selection and alignment protocols, for each query target, models

were assigned to one of the following three categories: (1) models that were pro-

duced from the same template (2) models that were generated by different templates

(3) extra models that could only be built by a particular method.

Overall, the performance of the FunFam protocol is comparable to the HHsearch

protocol. The HHsearch protocol gave 4 more good quality models than the FunFam

protocol. Both of the methods managed to identify some query targets, which the

other protocol failed to identify. FunFams built an extra 46 models and HHsearch built

an extra 593 models. 84.8% of these extra FunFams models are of good quality, and

44.3% of HHsearch models are good. FunFams identifies fewer targets because the

protocol only allows models to be built if there is a highly confident match.

Figure 2.10: Number of models built by the FunFam and HHsearch protocols for
homologues with sequence identity 30%-50%. Good models are defined by models
with TM-score >0.5 when compared to the native structure.

2.3.4.3 Remote homologues with sequence identity <30% sequence identity

Figure 2.11 demonstrates the quality of models built by the FunFam protocol and the

HHsearch protocol for the remote homologues in the query dataset. FunFam gave

slightly more good models than HHsearch protocol for the common models.
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HHsearch managed to identify 220 templates not selected by FunFams. However,

56% of the models built are low quality models. We observed a similar phenomenon

with close homologues with sequence identity 30%-50%. The HHsearch protocol

tends to model more targets than the FunFam protocol, but about half of the mod-

els built are of low quality. The FunFam protocol gave fewer models but a higher

proportion of good quality models.

Using this benchmark dataset, it appears that FunFams do not identify any addi-

tional templates compared to the HHsearch strategy.

Figure 2.11: Number of models built by the FunFam and HHsearch protocols for
remote homologues. Good models are defined by models with TM-score >0.5 when
compared to the native structure.

Figure 2.12 demonstrates the distribution of model quality for models built for

queries using different templates. Overall, FunFams and HHsearch models are com-

parable. However, there are slight differences depending on the method used to

assess model quality. FunFam models score slightly better with GDT-HA, whereas

HHsearch models are slightly better assessed using the TM-score. TM-score is a

global structural comparison score that accounts for all the residues of the modelled

proteins, GDT-HA uses distance cut-offs and focuses on fractions of the structures

that are correctly modelled.

Therefore, HHsearch models have better global similarity with the native structure

and FunFams models tend to have a higher local agreement with the native struc-

ture. Having a local similarity is important when we are modelling enzymes or protein
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complexes, where a better representation of functional sites is crucial.

Figure 2.12: Distribution of model quality scores of common remote models (using
different templates) built by the FunFam and the HHsearch protocols. Similar struc-
tures gave higher GDT-HA/TM-scores.

2.3.4.4 Which protocol selects a higher proportion of good templates than the

other protocol

We carried out an analysis to determine how often the FunFam protocol or the HH-

search protocol selected a better template (compared to the other). To identify which

protocol selects the best template, we performed a structural comparison between the

structural templates, against the query structure. We compared 5,977 close and 146

remote cases where the protocols selected different structural templates and found

∼80% of the chosen FunFam and HHseach templates had nRMSD score below 3Å

when compared to the query structure.

We subtracted the nRMSD value of FunFam structural comparison score by the

nRMSD value of HHsearch structural comparison score to determine which protocol

selects better template. Table 2.1 demonstrates the nRMSD difference of the tem-

plates selected. We observed that in 67% of the cases FunFam and HHsearch select
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structurally similar templates. There is a slight tendency for the FunFam protocol

to select better structural templates than the HHsearch protocol. This is statistically

significant (p-value < 2E-12, Wilcoxon signed ranked test).

Table 2.1: How often do the two protocols select a better template?

∆nRMSD≥1Å (HHsearch selects better templates) 13%
1Å<∆nRMSD<1Å (Similar templates) 67%
∆nRMSD≤-1Å (FunFam selects better templates) 20%

2.3.5 Modelling human and fly genomes

In the previous section, we demonstrated the ability of the FunFam protocol to build

a higher proportion of good quality models than the HHsearch protocol. In this sec-

tion, we report a modelling pipeline that utilised both the FunFam protocol and the

HHsearch protocol to model structurally uncharacterised human and fly sequences

found in the CATH-Gene3D resource. Different HHsearch libraries based on CATH,

SCOP, SCOPe and PDB seed structures were used. Figure 2.13 illustrates the Fun-

Mod modelling pipeline.
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Figure 2.13: FunMod modelling pipeline

2.3.5.1 Analysis of model quality for human and fly genes using FunFams and

HHsearch (CATH)

Our previous analysis in Section 2.3.2 showed that all the model quality assessment

methods perform equally well. In this study, we employed nDOPE and GA341 to

assess the quality of the models. Both of these scores are widely applied and are

used by the comparative modelling resource ModBase to assess the model quality

(Eswar et al., 2008; Pieper et al., 2014). Good quality models are models that score

an nDOPE score below 0 and GA-341 score above 0.7 with a false positive rate of

3.25% (Melo and Sali, 2007).

Note, the HHsearch(CATH) strategy is the HHsearch protocol we have discussed

in Section 2.3.4. Both the FunFam and HHsearch uses the same HHsearch align-

ment strategy. Figure 2.14 demonstrates the number of good quality human and fly

models built by both HHsearch(CATH) and FunFams protocols. Both protocols model
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a significant proportion of the structurally uncharacterised genes in both model organ-

isms. For approximately 21% of the proteins only one of the protocol could produce a

good model. As expected, the HHsearch (CATH) protocol gave more models than the

FunFams protocol. Yet, FunFams did give a considerable amount of extra models.

Figure 2.14: Number of good quality FunFams and HHsearch (CATH) human and fly
models

For all the common models built by the two protocols, we investigated the pre-

dicted quality of the models based on nDOPE. Overall, we can see that FunFams

models gave a higher nDOPE compared to HHsearch models. The differences were

significant (<2.2e-16, Wilcoxon signed-rank test). This demonstrates that generally

FunFam models are more likely to be good quality than the HHsearch(CATH) models

(See Figure 2.15).

The result differs slightly from our previous analysis (see Section 2.3.4) due to

the different query dataset used. The benchmark dataset in the previous section is a

selection of representative CATH structures which capture the structural diversity in

the CATH resource. The data set in this analysis is possibly more representative of

protein space.
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Figure 2.15: Distribution of model quality scores for common FunFams and HHsearch
(CATH) human and fly models. Good quality models give lower nDOPE score.

In summary, this analysis demonstrates that the FunFam protocol gave slightly

more good quality models than the HHsearch (CATH) protocol. This means that the

FunFam protocol has a lower false discovery rate compared to the HHsearch (CATH)

protocol.

2.3.5.2 Analysis involved FunFams and all the HHsearch libraries

Figure 2.16 demonstrates the number of good models built by the different strate-

gies. One thing to mention, only 70% of the CATH domains are included in FunFams.

Therefore, the HHsearch (CATH) libraries covers a lot of CATH domains than Fun-

Fams.
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Figure 2.16: Number of models built by the different template searching strategies

The Venn diagram in Figure 2.17 summarises the common and extra models built

by the different strategies. All strategies produce a significant number of models and

there are many query sequences for which only one strategy can build a model.

Therefore it is valuable to use multiple search strategies and template libraries to

model the whole genome.
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Figure 2.17: Overlap of good models built by different strategies

We selected the best models built for every Gene3D sequences based on the

model quality. By applying this strategy, we extended the structural coverage from

10% known structure to nearly 70% for both fly and human sequences (Figure 2.18).

Figure 2.18: Structural coverage of human and fly CATH-Gene3D sequences
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2.4 Conclusions

Comparative modelling performance usually depends on three steps: (1) template

selection (2) sequence alignment between template and query (3) comparative mod-

elling. This chapter mainly focused on the template selection and sequence alignment

process. These two steps are the most critical since if a wrong template is selected

or if the right template is badly aligned, it is unlikely to yield a good model.

Although many new model quality assessment protocols (MQAPs) have been de-

veloped recently, we found that all performed similarly in selecting the best model from

sets of models generated by MODELLER. We, therefore, used MODELLER’s built in

program, DOPE, to rank models.

We explored whether the FunFam template selection protocol identified better

template structures than the HHsearch protocol. The FunFam protocol first assigns

a query sequence to a FunFam and then selects the best template from the FunFam

based on the sequence identity and X-ray resolution. For the HHsearch protocol,

we used HHsearch to scan against a library of HMMs (built from all CATH domain

structures (version 4.0)) and select the best template based on the program’s built-in

statistical measures. We employed the same alignment strategy for both protocols.

The FunFam protocol gave a higher percentage of good models compared with HH-

search for both close homologues [95.0% (HHsearch) versus 98.7% (FunFams)] and

remote homologues [68.3% (HHsearch) versus 94.5% (FunFams), p-value <1E-19;

Mann-Whitney U test]. This suggests that it is helpful to subclassify homologues ac-

cording to likely structural and functional similarity for the template selection process.

In addition, we developed a modelling pipeline that utilises the FunFam template

search protocol and other template searching methods (i.e. HHsearch protocol utilis-

ing different template libraries). By combining these methods, we managed to model

up to 70% of human and fly genomes with at least one structural domain model. We

demonstrated that models built on templates identified by the FunFam protocol are

more likely to be good quality compared to HHsearch (CATH) models (based on the

model quality assessment score nDOPE). We also show the importance of using dif-



CHAPTER 2. MODELLING PROTEIN MONOMERS 88

ferent template libraries to extend the structural coverage of fly and human genomes.

2.4.1 Future directions

Another major application of our modelling pipeline will be for protein complex mod-

elling which will be discussed in Chapter 3. Protein modelling of structurally unchar-

acterised protein monomers can increase the number of protein complexes which can

be built.

In the future, it would be valuable to test whether we can improve the sequence

alignment between template and query using newer sequence alignment methods

such as MRF-Align (which is based on Markov Random Forest) (Ma et al., 2014) that

have been proven to produce better sequence alignments.

We have observed recently that some of the FunFams are polluted with sequences

that are annotated with diverse GO terms, suggesting that they should not to be clus-

tered in the same FunFam. Ongoing research work in the Orengo group is involved

with sub-classifying these polluted FunFams into functionally pure clusters.

We can also incorporate secondary structure information into the FunFam HMMs.

Secondary structure prediction programs such as PSI-PRED (Jones, 1999) can be

used to predict the overall secondary structure profile for all the FunFam HMMs. This

may increase the power of the template search as HMM with secondary structure

information is stronger than a purely sequence-based HMM. The effect will be more

profound if we can add secondary structure information in the early stages of FunFam

building.

Also improvement in the loop and side chain modelling can be explored as well

using methods such as using a better energy scoring function or a better side chain or

rotamer library (Della Corte et al., 2016; Feig, 2016; Kim and Kihara, 2016; Lee et al.,

2016; Park et al., 2016).
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2.4.2 Uses of structural modelling in experimental studies

Below, we highlight a few selected examples of recent developments in techniques

that exploit comparative models to improve the structural determination or structural

coverage of large-scale macromolecular assemblies.

2.4.2.1 Facilitation of cryo-EM density map fitting with homology models

New developments in cryo-electron microscopy (cryo-EM) have meant that this ap-

proach is increasingly used for the protein structure determination of large macro-

molecular complexes and assemblies. One major problem with cryo-EM is the low

resolution of the density maps that are produced. To help with the interpretation

of these density maps, they are usually fitted onto experimentally solved structures.

However, owing to the low number of solved structures, it can sometimes be hard

to find a suitable template. In 2005, the Topf group demonstrated that it is feasible

to use comparative models for the fitting process. They subsequently developed a

web server named CHOYCE (Rawi et al., 2010) which performs homology modelling

(MODELLER) and fitting into cryo-EM maps. The server allows the user to select the

most accurate models (based on the DOPE score).

For those adventurous users who prefer to perform the modelling manually, Allen

and Stokes exemplified the steps involved from building the structural models to the

fitting of models to the density map using an integral membrane protein, CopA. In ad-

dition to this, they also illustrated how to dock additional components into the models

using a computational approach (Allen and Stokes, 2013).

Gorgon (Baker et al., 2016) can model not only a protein structure but entire

macromolecular assemblies. For example, the C backbone model for every protein

component in the ribosome (from an 4.5Å resolution cryo-EM map) was automati-

cally built in less than a day. Gorgon uses ab initio modelling, feature extraction and

rigid-body and flexible fitting for model building. It also includes the use of statistical

measures to evaluate the fit of an atomic model to the cryo-EM density map.
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2.4.2.2 Integrative structural biology

Integrative structural biology is a new field which tries to determine the three-dimensional

structures of proteins by using the ensembles produced by experimental methods and

computational approaches (Ward et al., 2013). This is especially useful for proteins

that are not crystallizable, are insoluble, are too large or too small or are conforma-

tionally heterogeneous (Sali et al., 2015).

Shi and coworkers used a refined integrative method that combines information

generated from electron microscopy, X-ray crystallography and comparative structure

modelling to provide a clear structural view of the Nup84 nucleoporin complex. This

complex is a stable heteroheptameric (seven nucleoporins) protein complex of 600

kDa from budding yeast (Shi et al., 2014).

Another interesting example is the structure of human prolactin receptor solved by

Bugge and coworkers in 2016. This was the first ever full view of a class I cytokine re-

ceptor. Class I cytokine receptors are generally considered to be key drug targets.

The comparative modelling tool MODELLER was employed to integrate structural

data from NMR spectroscopy, small-angle X-ray scattering and native mass spec-

trometry to generate a structural model of the receptor. The structural model was

generated by assembling all of the individual domains of the structure as overlapping

segments (Bugge et al., 2016).



Chapter 3

Modelling protein-protein interactions

3.1 Introduction

Protein-protein interactions (PPIs) are groups of two or more protein monomers

that interact. These can be physical contacts or functional associations between pro-

teins. This research has focused on PPIs which involve physical contacts between

two or more proteins as a result of biochemical events. PPIs can be classified into

homo-oligomeric complexes, if the PPI takes place between identical protein chains,

or hetero-oligomeric complexes for PPIs that take place among non-identical protein

chains with up to 70% of known complexes in the PDB being the former (Levy and

Teichmann, 2013).

PPIs can be also be separated into permanent PPIs and transient PPIs. Perma-

nent PPIs are usually associated with interactions between subunits of multi-subunit

protein complexes. The protein monomers of these complexes are usually unstable

on their own. Classical examples of stable PPIs include haemoglobin, core RNA poly-

merase and ATP synthase. By contrast, transient interactions, as the name implies,

are temporary interactions between protein pairs that may be strong or weak. The

binding of a transcription factor to the promoter region of a gene, signal transduction,

binding between hormone receptors, antigen-antibody interactions and inhibition of

proteases are examples of transient PPIs.

It has been speculated that there may only be 10,000 distinct protein interfaces

(Aloy and Russell, 2004), and that the number currently characterised may be close

to being complete (Gao and Skolnick, 2010), so that most of the known protein in-

terfaces are probably reusable for modelling interactions in different contexts. Yet,

some studies indicate that this is not entirely true: an analysis done using the Con-

served Domain Database demonstrated that only 30% of protein domain families have

a structural PPI representative suggesting that there may be many more interfaces to

characterise (Goncearenco et al., 2014).
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Protein interfaces usually consist of a solvent-excluded protein core region sur-

rounded by a rim region that is partly buried. The protein core contributes to around

75% of the buried surface area, whereas the rim region contributes to the other 25%.

The protein core and rim regions have different amino acid composition and conser-

vation (Janin et al., 2008).

The characteristics of protein interfaces have been extensively studied using dif-

ferent datasets of protein complexes (Ansari and Helms, 2005; Bahadur et al., 2004;

Chakrabarti and Janin, 2002; Janin et al., 2008; Jones and Thornton, 1996; Nooren

and Thornton, 2003; Ofran and Rost, 2003). Transient protein interfaces tend to have

a smaller interface region (<1500Å2) than the permanent PPIs (with interface regions

ranging from 1,500Å2 to 10,000Å2). Most protein interfaces are considerably flat, with

planarity of about 2Å. Planarity were estimated by calculating the RMSD of all in-

terface atoms from the least squares plane fitted through all interface atoms (Jones

and Thornton, 1996). Permanent protein complexes have been shown to have more

planar protein interfaces which are more closely packed and with less inter-subunit

hydrogen bonds compared to non-obligate complexes (Jones and Thornton, 1996).

Overall, protein interfaces are also more hydrophobic than the protein exterior (sur-

face) but less than the inner region of the protein. Transient PPIs tend to be more

polar, less hydrophobic than permanent PPIs (Ansari and Helms, 2005; Ofran and

Rost, 2003).

Proteins interact through their interfaces and it is possible to define the interface

regions (residues) from the 3D structure of the protein complexes. Protein interfaces

can also be identified by the calculation of buried solvent accessible surface area

(buried SASA) on complex formation. Interacting residues are defined as residues

for which the total or side chain buried solvent accessible surface area is larger than

0Å2-1Å2 (Jones and Thornton, 1995). We can calculate the area by the following

equation:
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Buried SASA = sASA(protein 1) + sASA(protein 2)− sASA(protein complex)

(3.1)

In addition, various other definitions have been used to define interacting residues

and are summarized in Table 3.1.

Table 3.1: Different definitions used to define interacting residues in the interfaces of
protein complexes

Definitions References
The distance between any of the atoms should be less than
5.0Å Tsai et al. (1996)

The distance between any of their atoms, one from each, should
be less than the sum of their corresponding Van der Waals radii
plus 0.5Å

Tsai et al. (1996)

The distance between two sulfur atoms of a pair of cysteines,
should be less than 2.56Å (two times the covalent radius of sul-
fur plus 0.5Å) (disulphide bonds)

Mosca et al.
(2012)

The distance between all N-O and O-N atom pairs, should be
less than 3.5Å (hydrogen bonds) Mosca et al.

(2012)
The distance between all N-O and O-N atom pairs, should be
less than 5.5Å (salt bridges) Mosca et al.

(2012)

X-ray crystallography (X-ray), nuclear magnetic resonance spectroscopy (NMR)

and cryo electron microscopy are the most commonly used experimental techniques

used to determine the 3D structures of protein complexes. The two main protein com-

plex 3D structure repositories are the PDB and PISA (Krissinel and Henrick, 2007).

PDB contains all the author determined protein complexes, solved experimentally. By

contrast, PISA provides predicted protein complex structures. Using graph theory,

PISA enumerates all the protein complexes (biological assemblies) that can be po-

tentially formed in a given biological unit. PISA also performs analysis of the chemical

stability of each complex. Chemically stable complexes are identified as those with a

positive free energy of dissociation (determined by the calculation of the free energy

of binding and the entropy change term) (Krissinel and Henrick, 2007).

Databases such as 3D-complex (Levy et al., 2006) and DOCKGROUND (Douguet
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et al., 2006) were developed to reduce the structural redundancy of protein complexes

found in the PDB. These databases serve as an important tool for biologists to under-

stand the structure, dynamics and assembly of protein complexes that are found in

nature and also for structural modelling of protein complexes (Ahnert et al., 2015;

Marsh and Teichmann, 2015).

3D-complex uses graph theory to cluster complexes based on structural/sequence

similarity and patterns of contacts between chains. All the chains are characterised

using SCOP domain architectures (Murzin et al., 1995). In addition, manual inspection

of complexes is used to detect erroneous PDB complexes. Examples of errors in com-

plexes include: 1) protein complexes that fail to have symmetry 2) protein complexes

that were assigned to an incorrect symmetry type 3) protein complexes that have

wrongly assigned chain numbers 4) identical protein complexes that are assigned to

a different quaternary structure by PDB and PQS (predecessor of PISA).

By contrast, the DOCKGROUND resource does not use graph theory to classify

the protein complexes. Protein complexes are separated into pairwise complexes.

Pairwise complexes are defined as pairs of interacting chains that belong to the same

PDB entry. The SCOP domain definition is also used to characterise the chains in

the pairwise complex. In addition to that, all the protein chains are annotated with

AEROSPACI information that takes into account properties such as the protein struc-

ture’s resolution, R-factor and stereochemical properties (Chandonia et al., 2004).

The DOCKGROUND resource also removes illegitimate complexes such as in-

terwoven chains, tangled chains and chains with interacting unfolded termini parts.

Interwoven chains generally constitute a single polymer which has been broken into 2

sections because of missing residues in the X-ray structure. A tangled chain is a free

unfolded segment with more than 6 residues which interact exclusively with the neigh-

bouring chain. Similar to tangled chains, chains with interacting unfolded termini have

an unfolded termini segment which interacts with the neighbour chain. After removing

illegitimate complexes, pairwise complexes are then clustered using structural (based

on the SCOP’s classification scheme) or sequence similarity. In summary, DOCK-
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GROUND is a database of pairwise complexes. Separating complexes in this way is

valuable because multimeric complexes are composed of many pairwise complexes.

ProtinDB (Jordan et al., 2011) is a comprehensive web server that allows the

user to construct a dataset of protein-protein interface residues from the PDB. Users

can select the different cut-offs used to characterise the interface residues (distance

between C-α atoms, distance between atoms based on Van der Waals radius) and

surface residues (relative accessible surface area threshold value). In addition, users

have the option to extract the information from the biological unit file or asymmetric

unit files from the PDB.

Protein chains are generally composed of smaller structural units called protein

domains. These are compact, local, and semi-independent units of protein structure,

which are capable of performing their own functions. Besides PPI databases (which

are typically established as chain-chain interaction databases), there are databases

that focus on domain-domain interactions (DDIs). DDI databases such as 3did (Mosca

et al., 2013b) and iPfam (Finn et al., 2014) involve the projection of Pfam domains

(Punta et al., 2012) onto 3D structures obtained from the PDB.

There are also PPI databases that include predicted PPI information. PrePPI

database developed by the Honig Lab is a database that contains both predicted

and experimentally determined PPIs. PrePPI predicts over 2 million PPIs including

31,402 PPIs for yeast and 317,813 PPIs for human (Zhang et al., 2013). NCBI-IBIS is

another comprehensive predicted and experimental PPIs database. NCBI-IBIS con-

tains not only PPIs, but also Protein-DNA, Protein-RNA and Peptide-Ion interactions

(Shoemaker et al., 2012).

Interactome3D (I3D) is another major resource providing 3D annotated protein

networks. I3D is based on an automatic pipeline that first collects experimentally

determined PPIs from publicly available databases and uses this data to build protein

networks. Subsequently, protein structure information from the Protein Data Bank

(PDB) (Berman et al., 2000) is added onto the networks. If the pipeline fails to find a

structure for a particular PPI, I3D tries to model the protein structure using homology



CHAPTER 3. MODELLING PROTEIN-PROTEIN INTERACTIONS 96

models or domain-domain information (Mosca et al., 2012). Currently, I3D annotates

about 14% of the 81,000 known human PPIs with protein structures.

Table 3.2 and Table 3.3 summarise some of the current PPI/DDI databases with

structural information.
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3.1.1 Structural modelling of protein complexes

Despite the significant effort incurred by the structure genomics initiatives to char-

acterise protein complexes (Nair et al., 2009; Schwede, 2013; Terwilliger, 2011), the

number of complexes solved is still relatively low (Mosca et al., 2012; Stein et al.,

2011). Therefore the development of new/better protein complex structural modelling

tools is crucial to get a better picture of protein complex space.

There are two different computational approaches to predict the 3D structure of

bound protein complexes : (1) Template-free or docking and (2) Template-based

methods.

3.1.1.1 Template-free modelling/docking

Protein structures of monomeric proteins in the complex, that have been solved exper-

imentally or predicted, serve as the starting point for protein docking. Protein docking

involves the assembly of two monomers in different binding orientations. Searching

through 6-dimensional space (which covers both translational and rotational spaces)

is usually computational expensive. During rigid-body docking, the internal geometry

of the monomer structure such as bond angles, bond lengths and torsion angles are

maintained. By contrast, flexible docking allows changes in internal geometry. Since

there are millions of docking conformations available to consider, protein docking is

usually very computationally expensive.

After thousands of docking poses have been sampled, the process of scoring and

ranking the poses usually follows. Many scoring functions have been developed, but

those used in current state-of-the-art methods are usually based on statistical poten-

tials, molecular mechanics, binding affinity (∆∆G), or prediction of hotspot residues

(Moal et al., 2013). (See Figure 3.1)
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Figure 3.1: Template-free modelling/Docking (adapted from (Szilagyi and Zhang,
2014))

The current state-of-the-art template-free modelling methods were reviewed re-

cently (Rodrigues and Bonvin, 2014). HADDOCK (Dominguez et al., 2003) and Clus-

Pro (Comeau et al., 2004) were the two best performing groups in recent CAPRI pro-

tein complex prediction competitions (Lensink et al., 2016, 2017; Lensink and Wodak,
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2013). HADDOCK uses water, buried surface area, interaction restraint energy and

desolvation to sample and score the docking poses. Similarly, ClusPro uses electro-

statics, interaction restraint energy and desolvation free energy for filtering models.

(See Table 3.4, CAPRI will be explained in Section 3.1.2.1)

Table 3.4: Prediction performance of web servers in recent CAPRI rounds. For the
second,third and fourth column, the first numbers are the number of predicted targets,
the numbers inside the brackets are the number models that are of good quality.
(Adapted from (Lensink et al., 2016, 2017; Lensink and Wodak, 2013)).

Server Group Round 20-27 Round 30 Round 28-35
ClusPro (Comeau et al., 2004) 10 (6) 25 (16) 12 (5)
HADDOCK (Dominguez et al., 2003) 10 (4) 25 (16) 12 (2)
SWARMDOCK (Torchala et al., 2013) 4 (4) 25 (11) 12 (2)
GRAMM-X (Tovchigrechko and Vakser, 2006) 6 (0) 22 (6) 12 (1)
LZERD (Esquivel-Rodríguez et al., 2012) 2 (1) 25 (3) 12 (3)

A major weakness of protein docking is the significant loss in accuracy when trying

to build protein complexes that involve a major conformation change (Moreira et al.,

2010). New template-based approaches aim to address this problem.

3.1.1.2 Template based modelling

In contrast with template-free approaches, template based methods involve the con-

struction of protein complexes by copying the structural architecture of related tem-

plate complexes. Both sequence and structural similarity have been used to identify

suitable templates.

Sequence based approach Sequence-based approaches are based on the as-

sumption that similar sequences tend to share similar structures and functions and

therefore similar binding orientations. If two query proteins are homologous to two

other proteins that are known to form a complex, we can then use the known proteins

as structural templates to model the query complexes. In 2003, Aloy et al. conducted

a study to understand the relationship between sequence and interaction divergence.

They demonstrated that pairs of proteins with sequence identity >40% tend to inter-
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act similarly. Inspired by this work, the Aloy group developed a structural modelling

protocol and resource named Interactome3D (Mosca et al., 2012). Structural tem-

plates are identified by matching the query sequences of protein monomers with the

sequences of protein complexes whose structures have been deposited in the PDB.

Aloy et al. then modelled the protein complexes using the comparative modelling

software MODELLER (Sali and Blundell, 1993).

To determine the accuracy of modelled PPIs, Aloy et al. performed a benchmark

to model interactions for which experimental structures are available. The quality of

the models was assessed using interface RMSD and the fraction of native residue-

residue contacts (these criteria will be described in Section 3.1.2.1). The top-ranked

models produced gave medium- to high- quality models for 52% of human interactions

(obtained from experimentally determined PPI resources such as IntAct, MINT and

HPRD), for which templates could be identified (Mosca et al., 2012).

Structure based approach (3D-template-based docking) Sometimes, proteins

that are quite different in their sequences can share still high similarity in structure.

Therefore structure based methods have also been developed. 3D-template-based

docking is based solely on structural similarity (Kawabata, 2016; Kundrotas et al.,

2012; Mukherjee and Zhang, 2011; Tyagi et al., 2012; Zhang et al., 2012). Struc-

tural similarity in theory should provide a better coverage because there are cases of

structural and functional relationships that sequence similarity alone fails to identify.

After suitable docking templates have been identified, individual components are su-

perposed onto the docking templates. The resulting superposition is the structure of

the predicted protein complex (See Figure 3.2).
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Figure 3.2: Superposing monomers onto the docking templates to produce a pre-
dicted protein complex.

PRISM (Kuzu et al., 2013; Tuncbag et al., 2012), VAKSER protocol (Kundrotas

and Vakser, 2013) and Interactome3D (Negroni et al., 2014) are the current-state-of-

the-art 3D-template-based docking pipelines that generate 3D models of complexes

on a large scale. Table 3.5 compares the template pool, structural matching methods,

filtering methods and ranking methods used by the three pipelines.
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The application of 3D-template-based docking seems promising. The Vakser

group suggest that in the near future is it is very likely that there will be docking

templates available to model the human PPIs (i.e. human PPIs obtained from the

DIP (Salwinski et al., 2004) and BIND (Alfarano et al., 2005) databases) as there are

increasing numbers of structures in the PDB (Kundrotas et al., 2012). In order to eval-

uate the quality of the models built, Vakser et al. benchmarked their method using

PDB protein complexes solved in 2009 to 2011, while using protein complexes solved

before 2009 as docking templates. About one-third of all the models produced by

them were of good quality (interface RMSD <5Å). (Interface RMSD will be explained

in detail in the next section).

Recently, Negroni and co-workers undertook a similar analysis, but focused only

on the applicability of template-based docking in the Twilight Zone (using templates

with sequence identity less than 30%) (Negroni et al., 2014). The benchmark was

done using the protein-protein docking benchmark version 4 dataset (PBD4) (Hwang

et al., 2010). With a coverage of 92% and precision of 23% for the models built,

the result was in agreement with the analysis conducted by the Vakser group. This

suggests that the number of good quality models is still limited. Therefore, there is

still a need to undertake further research into 3D-template-based docking.

3.1.2 Community-wide protein complex modelling assessment ex-

periment

Inspired by CASP, the Critical Asssessment of PRedicted Interactions (CAPRI) community-

wide experiment has been running since 2001 (Janin et al., 2003). CAPRI just held

the 43th round of experiment with two to four rounds held every year. There are

over 50 research groups worldwide that have participated in CAPRI. The main goal

of CAPRI is to assess the quality of the predicted structures of protein complexes. A

typical CAPRI round usually starts when the CAPRI organisers receive new protein

complex structures from structural consortia. The amino-acid sequence of the tar-

get protein and some relevant information about the proteins is then provided to the
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CAPRI participants. The participants are asked to model the 3D structure of the pro-

tein complexes. Any models submitted are assessed using the CAPRI assessment

protocol (Janin et al., 2015; Méndez et al., 2003).

3.1.2.1 Assessing the performance of modelling methods

As with protein monomers, the best approach for assessing the performance of the

methods is through structural comparison of the modelled complexes with the known

complexes. The structural comparison scores that are usually considered include the

fraction of native residue-residue contacts (Fnat), and the interface RMSD (RMSD
interface

).

Fnat is defined as the number of native residue-residue contacts in the predicted

complex divided by the number of residue contacts in the native complex. Residues

are considered to be in contact if any of their atoms are within 5Å. Some researchers

calculate the fraction of non-native contacts (Fnon-nat) as well. Fnon-nat is defined by

as the number of non-native residue-residue contacts in the predicted complex divided

by the number of residue contacts in the native complex. RMSD
interface

accounts only

for the RMSD of interface residues in the predicted complex compared with the known

complex. Protein interface residues are defined as those having at least one atom

within 10Å of an atom on the other molecule in the target structures.

Table 3.6 explains the CAPRI criteria used for labelling the predicted protein com-

plexes.

Table 3.6: CAPRI criteria of labelling protein complexes (Adapted from Méndez et al.)

Quality of predicted models Fnat RMSD
interface

High ≥ 50 % ≤1.0 Å
Medium ≥ 30 % 1.0 Å < x ≤ 2.0 Å
Acceptable ≥ 10 % 2.0 Å < x ≤ 4.0 Å
Incorrect < 10 %
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3.2 Objectives

In the previous chapter, we demonstrated the advantages of using FunFams in

protein monomer modelling. In this chapter, we explore the usage of FunFams in pro-

tein complex modelling. We start by assessing the structural conservation of protein-

protein interfaces within FunFams. Since none of the databases use CATH domain

architecture primarily to classify protein complexes, we project the CATH domains

onto 3D structures obtained from the PDB and produce a library of known DDIs an-

notated with FunFam information. After that, we assess the conservation of protein-

protein interfaces in FunFams. Subsequently, we explore the usage of FunFams in

protein complex modelling (sequence based template based modelling) with the help

of MODELLER. We also explore the value of FunFams for producing a template library

for 3D-template based docking and benchmark it against one of the state-of-the-art

template libraries.

3.3 Materials and Methods

3.3.1 Investigating the conservation of protein-protein interfaces

in CATH-Gene3D FunFams

3.3.1.1 Generating a library of CATH-Gene3D FunFam domain-domain inter-

faces

ProtinDB (Jordan et al., 2011) is a comprehensive repository that enables the user

to extract protein-protein interface residues from protein complexes found in the PDB.

We used this information to determine which residues were interacting in the PDB

entry. The interface residues in our study were defined according to the following

criteria: (1) The distance between any two atoms, one from each side, was below

<5Å (2) The protein interface must be exposed to the surface, therefore, a relative

accessible surface area of at least 5% was used (3) We extracted information only

from the biological units.
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We defined two CATH domains as interacting domains if there were more than 5

interacting residues (Finn et al., 2014; Mosca et al., 2013a; Winter et al., 2006). We

considered two types of interactions (1) within the same chain (intra-chain) and (2)

between different chains (inter-chain). Once all the DDIs were identified, we extracted

the corresponding residues from the biological assembly files provided by the PDB.

Then, we identified the FunFam in which the domain was classified.

3.3.1.2 Calculating the conservation of protein-protein interfaces within Fun-

Fams and between FunFams across a superfamily

We used the DDI library produced to explore the conservation of protein-protein in-

terfaces within FunFams and between FunFams in the same superfamily. For within

FunFam comparisons, we only compared pairs of DDIs that were involved in the same

FunFam (i.e. involve interacting partners from the same FunFams). For between Fun-

Fam comparisons, we compared pairs of DDIs that involved the same superfamily

(excluding those interactions that involved the same FunFam).

Figure 3.3: Within and between FunFam comparisons

Comparing all pairs of DDIs is very computationally expensive. Therefore, we
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clustered all the pairs of DDIs into 90% sequence identity clusters (S90 clusters).

The structural representative for each S90 cluster was selected based on the X-

ray resolution of the protein complex structure. Given two pairs of DDIs A-B and

A’-B’, where A-A’ and B-B’ are pairs of structures that belong to the same Fun-

Fams/Superfamily, interaction RMSD and interface RMSD were calculated. Interac-

tion RMSD (RMSD
global

) is a measure of the binding mode similarity, introduced by

Aloy et al. (2003). It is the RMSD between a standard set of coordinates after two

superpositions: one that optimally superimposes A’ on A and one for B’ on B. The

standard 14 coordinates consist of the centres of mass for each domain plus six addi-

tional points defined by adding or subtracting 5Å to each of the x, y and z coordinates.

A pair of interactions with a low RMSD
global

(e.g <10Å) are likely to have similar posi-

tioning of domains, but with a rotation of one domain relative to another. By contrast,

Interface RMSD (RMSD
interface

) measures the root-mean-square-displacement of the

backbones of the interface residues. RMSD
global

is a global measures that accounts

for both translational differences and domain rotations, while RMSD
interface

focus on

the local changes of the protein interfaces.
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Figure 3.4: This figure illustrates how theRMSD
global

is calculated. Three complexes
(1-3) are compared considering the first as a reference. Two superpositions were
performed: one that optimally superimposes A’ on A and one for B’ on B. The spheres
show the positions of the 14 atoms (i.e. centres of mass for each domain plus +/-5Å
in each axis from the centres of mass to generate 6 further points.) following the
superpositions. The RMSD of these positions were the RMSD

global
. (Adapted from

Aloy et al. 2003)

For each similarity (A and A’ or B and B’), we also calculated the sequence identity

and SSAP score (structural comparison obtained from the structural comparison tool

SSAP(Taylor and Orengo, 1989)). The sequence identity is defined as the number

of identical residues divided by the length of the smaller domain. For each pair of

DDIs compared, there are thus two sequence and structural comparisons one for

each monomer pair in the dimer. In subsequent plots, we used the minimum of the

sequence identity and SSAP scores.
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3.3.2 Modelling protein complexes - Template based modelling

(MODELLER)

In this section, we explored the performance of FunFams in selecting templates for

modelling binary PPIs using MODELLER. We performed two benchmarks to assess

the accuracy of modelled PPIs built using FunFams to select templates, compared to

(1) the template selection strategies used by Interactome3D (Mosca et al., 2012) (2)

the template selection strategies using HHsearch (Söding, 2005) to identify templates.

The protein complex modelling platform produced by MODELLER (Sali and Blundell,

1993) was used for both cases.

3.3.2.1 Complex modelling pipelines

FunFam pipeline Protein sequences of each query PPI were mapped into CATH-

Gene3D domain sequences. All the query domain sequences were scanned for struc-

tural templates using FunFHMMer against the CATH FunFam HMM library. In order

to build a model of the complex, template domain structures for a given query protein

had to be from the same PDB entry. Therefore, selected FunFams are those that

contain a domain from a PDB entry which contains all domains to be modelled and

for which the E-value of the domain FunFam matches are ≤0.001. This threshold has

been shown to give models for monomers.

After identifying the structural template to be used, we realigned the query se-

quence against the template’s HHsearch HMM (The HMM is built by performing two

iterations of HHsearch searches of the template against the UniProt20 database with

an E-value threshold of 0.001) to obtain the query-template sequence alignment pro-

vided by HHsearch. (See Chapter 2 for more details).

We evaluated several methods for selecting templates. The assessment strategy

is described below and the results are presented in Section 3.4.5.1. Subsequently, the

comparative modelling software MODELLER was used to predict 10 models. Models

with <5 residue-residue contacts were discarded. The top model was then selected
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based on the normalised DOPE score (Shen and Sali, 2006).

Interactome3D pipeline Since the Interactome3D pipeline is not publicly available,

the results for Interactome3D were obtained from the Nature Methods’ publication

(Mosca et al., 2012). For this work, Intractome3D searched for structural templates

using BLAST (Camacho et al., 2009) against the PDB BLAST library. The templates

selected had a minimum sequence identity of 40% with the query targets. Structural

templates with the highest sequence identity and coverage were selected. Sequence

alignments between query and template were produced using MODELLER’s built in

alignment algorithm. Subsequently, MODELLER was employed to predict 5 models.

Models with <5 residue-residue contacts were discarded. The top model was then

selected based on the normalised DOPE score.

HHsearch pipeline All the query domain sequences were scanned against the

CATH v4.0 HMM library for structural templates using HHsearch. As for the FunFam

pipeline, template domain structures for the same query protein had to be from the

same PDB entry. We selected the structural template with the highest probability to

be a true positive provided by the HHsearch program. The structural templates must

exceed the default probability score of 20 and have an E-value ≤0.001. We used the

template-query sequence alignment provided by the HHsearch program.

We selected the best template based on the best method described in Section

3.4.4.1. Subsequently, the comparative modelling software MODELLER was used to

predict 10 models. Models with <5 residue-residue contacts were discarded. The top

model was then selected based on the normalised DOPE score.

3.3.2.2 Comparing different ways of selecting the best templates

We tested different combinations of scoring schemes (i.e. sequence identity, ZRANK

global energy function score (Pierce and Weng, 2007), and the SOAP-PP protein

interface statistical potential score (Dong et al., 2013)) to select the best templates

for the modelled PPIs. ZRANK score is based on physics based potentials such as
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desolvation energy, Van der Waals, partials electrostatics (Pierce and Weng, 2007).

3.3.2.3 Benchmark dataset used in the comparison of the FunFam protocol

with the Interactome3D protocol (Chain-chain interactions)

The quality of the Interactome3D models were obtained from the Nature Methods

paper (Mosca et al., 2013a). Although, the benchmark target dataset is not publicly

available, Aloy et al. reported that to benchmark Interactome3D they used all the

experimentally solved PPIs from the November 2011 release of PDB. Subsequently,

they selected those interactions for which a structural template could be found (with a

minimum global sequence identity of 40%) as the targets.

We compiled two benchmark datasets in a similar manner to Interactome3D: (1)

based on the November 2011 release of Interactome3D (2) based on the experimen-

tally known complexes from the May 2015 release of Interactome3D. We selected

PPIs for which domains in the query PPIs have been classified in CATH and structural

templates could be found for both chains. Both the query datasets were chain-chain

based and include both single-domain PPIs and multiple domain PPIs.

The size of benchmark target dataset built by the FunFam protocol and Inter-

actome3D is different because the FunFam protocol covers only protein complexes

which comprised domains that can be mapped onto CATH-Gene3D.

3.3.2.4 Benchmark dataset used in the HHsearch comparison (DDIs)

PBD5 (Vreven et al., 2015) is a non-redundant target protein complex dataset com-

piled by Zlab, which is the group that develops ZDOCK (Mintseris et al., 2007), one of

the most robust template free docking methods in CAPRI. Based on the difference be-

tween the bound and the unbound form of the binding targets, all the docking targets

were assigned an expected difficulty based on the RMSD
interface

and Fnat calculated

after superposing the bound and the unbound forms of the known structure on top of

each other. We classified the interactions into DDIs using the CATH domain definition

v4.0. This gave 181 easy DDI targets and 103 medium/hard DDI targets.
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Table 3.7: Criteria used to classify the difficulties of PBD targets

Difficulty Criteria
Easy Fnat ≥60% and RMSD

interface≤1.5Å
Medium [Fnat <60% and RMSD

interface≤1.5Å] OR [1.5Å<RMSD
interface≤2.2Å]

Hard RMSD
interface

>2.2Å

3.3.3 Modelling protein complexes - 3D-Template-based docking

We developed a template based docking modelling pipeline adapted from the method

developed by the Vakser group (Kundrotas and Vakser, 2013). Unlike the approaches

described in Section 3.3.2, this approach uses structural comparison to find suitable

templates. We performed two benchmarks to determine (1) how well can we recre-

ate the Vakser pipeline (2) how well the template library based on CATH FunFams

perform. We also explored methods to rank the docking poses. We used chain-chain

PPIs in order to compare with Vakser. However, it is possible to adjust the pipeline to

utilize domain-domain based PPI.

3.3.3.1 3D-Template based docking modelling pipeline

To model the structure of PPIs, the protein monomer structures for the PPI were

obtained from the PDB. Subsequently, both monomers were structurally compared

against an interface library of pairwise complexes described below. Structural align-

ment was done using TM-align (Zhang and Skolnick, 2005). TM-align was used be-

cause of its speed and the high accuracy of the alignment. Three filtering criteria

were used to filter the docking templates: the TM structural similarity score of at least

one of the structural matches (i.e. to one of the monomers in the complex) should

be more than 0.4 (out of 1) to the template found in the library; the percentage of

aligned residues located at the surface for both structures in the alignments should be

≥50%; At least 40% of the interacting residues should be covered by the alignment.

Docking templates with a TM-score >0.9 were removed to prevent self-hits. Transfor-

mation matrices of the alignment were then used to produce the models. Figure 3.5
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illustrates the pipeline.
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3.3.3.2 Template library of pairwise complexes

DOCKGROUND template library The only pre-built publicly available template li-

brary available was the DOCKGROUND template library (Douguet et al., 2006). This

library was produced by the Vakser group and was built by starting with 12,134 pro-

tein complexes, solved with X-ray resolution of ≤3.5Å, mean accessible surface area

buried by each chain of at least 250Å2, and the number of interacting residues con-

tributed from each chain of at least 10. After that, the protein-protein interfaces were

extracted by selecting residues in the interface and within 12Å atomic distance from

the interface (Sinha et al., 2012). The dataset was then clustered using a structural

similarity TM-score cut-off of 0.9. This resulted in 7,107 non-redundant protein-protein

interfaces of pairwise complexes. (See http://dockground.compbio.ku.edu for more

details.)

The DOCKGROUND template library is based on the 2012 PDB release. We

speculated using a newer PDB release would include additional structures who could

improve the quality of the models built, as closer homologoues may be available as

templates. We decided to build our own template library and use FunFams to cluster

the templates.

Building the Lam library As with the DOCKGROUND template library, the Lam

library was also composed of protein interfaces of pairwise complexes. It was adapted

from the method developed by Douguet et al. (2006) for building a template library.

We started with 51,792 PDB entries by excluding all PDB entries, which were not

protein entries, had X-ray resolution ≥3.5Å, and <30 residues in the protein chains.

These PDB entries corresponded to 82,858 biological assembly files obtained from

the PDB. The biological assembly file is the macromolecular assembly that has been

shown to be the functional form of the molecule.

Biological assemblies were comprised of monomers, dimers, or multimers. Monomers

were excluded from the benchmark. Dimers were composed of two interacting chains;

no further processing was done. Multimers may be composed of a wide range of pair-
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wise complexes depending on the nature of the particular proteins. For instance, there

might be three types of pairwise complexes in a trimer (three chain multimer): A-B,

A-C and B-C. The same theory applied to other multimers.

The next step was to make sure the pairwise complexes were interacting. Inter-

acting pairwise complexes were defined as pairwise complexes with mean accessi-

ble surface area buried by each chain ≥250 and the number of interacting residues

≥10 (Douguet et al., 2006). Pairs of residues were considered as interacting if they

are within 6 Å, to consider neighbouring residues, which constitute the scaffold of

an interface (Kuzu et al., 2013). The accessible surface area was determined using

NACCESS (Hubbard and Thornton, 1993). The calculation of mean accessible area

buried by each chain was calculated using the following formula:

Mean buried SASA =
sASA(protein 1) + sASA(protein 2) − sASA(protein complex)

2
(3.2)

After the filtering process, sequence and structural similarities are typically used

to reduce the redundancy of the protein complexes (Douguet et al., 2006; Levy et al.,

2006). Functional families have been shown to be functionally and structurally coher-

ent (Das et al., 2015). Therefore, in constructing this dataset we explored the use of

functional families to cluster the protein complexes. We grouped all the pairwise com-

plexes based on the multiple domain architecture of FunFams (FF_MDA). FF_MDA

used the functional family as the assignment unit and extends the assignment to both

protein chains. Figure 3.6 illustrates the clustering process.
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Figure 3.6: Chain-chain based protein complexes are separated into different sub-
groups based on the FunFam multiple domain architecture.

After the structural clusters were produced, the next step was to select the struc-

tural representative for each FF_MDA. The pairwise complexes with the lowest X-ray

resolution were selected. If there was more than one pairwise complex for a particular

PDB entry, the pairwise complex with the largest number of chains in the complex was

selected. After that, the protein interfaces of the pairwise complexes were defined by

selecting residues with atoms within 12Å from the interface (Sinha et al., 2012). Figure

3.7 summarises the template library building process.
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Figure 3.7: Summary of template library building process

3.3.3.3 Benchmarking the 3D-template based docking pipeline

We performed the first benchmark to determine how well we could recreate the Vakser

pipeline using the publicly available DOCKGROUND template library. We used the

same benchmark target dataset as the Vakser study (Kundrotas and Vakser, 2013).

The benchmark dataset was composed of 372 non-redundant pairwise complexes

clustered from the DOCKGROUND resource.

3.3.3.4 Benchmarking the 3D-template based docking pipeline using the Lam

library

We performed another benchmark to assess the performance of the Lam library in

template selection. We used the PBD4 (Hwang et al., 2010) non-redundant target

protein complex dataset compiled by Zlab. This complex dataset comprises 80 easy

cases, 22 medium cases and 17 difficult cases. This benchmark was included as

it is now the most widely used benchmark for validating the predictions of protein

complexes.
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3.3.3.5 Ranking the docking poses

We tested different scoring schemes: (1) sum of the TM-scores (one for each target

monomer) obtained from the alignment between docking targets and docking tem-

plates (Negroni et al., 2014), (2) MODELLER’s normalised DOPE statistical potential

score (Shen and Sali, 2006), (3) removal of steric clashes, and (4) MM-align (Mukher-

jee and Zhang, 2009) (Explained in the Introduction chapter) to rank the docking

poses built.

3.3.4 Assessing the quality of models

To benchmark our MODELLER and 3D-template based docking pipelines, the models

were assessed by doing a structural comparison with the known protein complexes.

We used the assessment criteria adopted by CAPRI (Méndez et al., 2003). In short, a

model was classified as good/bad quality according to the RMSD
interface

and the Fnat

in the known protein complex that were also present in the model . See table below:

Table 3.8: Classifying the models into different categories

Quality of predicted models Fnat RMSD
interface

High ≥50% ≤1.0Å
Medium ≥30% 1.0Å<x≤2.0Å
Acceptable ≥10% 2.0Å<x≤4.0Å

3.4 Results and Discussion

3.4.1 Generating a library of CATH-Gene3D FunFam domain-domain

interfaces

We obtained a total of 130,173 biological DDIs from the PDB using the protocol de-

scribed in Section 2.3.2.1. 42% of the DDIs are intra-chain DDIs, and 58% of them

are inter-chain DDIs. All the DDIs were grouped based on FunFam compositions.

HomoDDIs are DDIs that involve the same pair of FunFam whereas heteroDDIs are
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DDIs that involve different pairs of FunFams. 48% of the DDIs are heteroDDIs. Figure

3.8 and 3.9 summarise the most prevalent homoDDIs and heteroDDIs in our dataset.

The most prevalent homoDDI is the immunoglobulin superfamily, followed by the clas-

sic Rossman fold superfamily, which contains domains that bind the enzyme cofactor

NAD(P). The list also includes many enzyme superfamilies, such as Aldolase, Kinase,

Ferroxidase.

Figure 3.8: The most prevalent homoDDIs in the dataset. HomoDDIs are DDIs that
involved the same CATH superfamily (e.g. superfamily 2.60.40.10 versus superfam-
ily 2.60.40.10). We included the name of the name of CATH superfamily. We also
included the proportions of domain that fall into these superfamilies.
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Figure 3.9: The most prevalent heteroDDIs in the dataset. HeteroDDIs are DDIs that
involved different CATH superfamilies (e.g. superfamily 1.10.510.10 versus superfam-
ily 3.30.200.20). We also included the name of the name of CATH superfamily. We
also included the proportions of domain that fall into these superfamilies.

3.4.2 Conservation of domain-domain interfaces within FunFams

We used the FunFam domain-domain interface library to explore the conservation of

domain-domain interfaces within FunFams.

3.4.2.1 The relationship between the sequence similarity of FunFam relatives

and conservation of the interfaces

Figure 3.10 shows the plot of conservation of domain-domain interfaces within Fun-

Fams, across a superfamily (RMSD
interface

versus sequence identity) with the 80th

and 90th percentiles (i.e. 80% of 90% of the data are below the curve) marked.

Interactions are well conserved within FunFams (with RMSD
interface ≤5Å) when

the sequence identity is above 40%. Domain interfaces of intra-chain interactions
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are highly conserved with RMSD
interface ≤2Å even for remote relatives (<30% se-

quence identity). The domain interfaces of inter-chain interactions are less con-

served than the intra-chain interactions but they are still somewhat conserved (with

RMSD
interface≤5Å) when the sequence identity is above 40%.

We also examined the conservation of interfaces across a superfamily (i.e. by

comparing interfaces between representatives of different FunFams within the same

superfamily). These are much less conserved than within FunFams. Again, as with

comparisons within FunFams, the domain interfaces of intra-chain interactions are

better conserved than inter-chain interactions.

Although inter-chain interfaces both within FunFams and across the superfamily

tend to be conserved when the sequence identity is above 40%, there are signifi-

cantly more inter-chain interfaces that are conserved (with RMSD
interface≤10Å), even

at low sequence identity (i.e. <40% sequence identity) within FunFams than across

the superfamily. (See Figure 3.10).
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Figure 3.10: Relationship between sequence identity of domain relatives from Fun-
Fam/Superfamily and the conservation of their interface using RMSD

interface
.The

curves shows the 80th and 90th percentiles. Interactions were split into inter-chain
and intra-chain.

Recent analysis in our group demonstrated that that some of the FunFams (4,100

out of the 101,000 FunFams) contain relatives that are annotated with diverse GO

terms. These polluted FunFams are usually within the more functionally diverse su-

perfamilies. We removed all the comparisons for these polluted FunFams as we hy-

pothesized that functionally diverse relatives would be likely to differ in complexes and

interfaces involved. For the non-polluted FunFams, we observed that 90% of the inter-

faces are well conserved (RMSD
interface

below 5Å) even for remote relatives (<30%
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sequence identity) for both inter-chain and intra-chain interactions. We also used

RMSD
global

to quantify the conservation. 80% of the interactions within non-polluted

FunFams are well conserved (with RMSD
global

below 10Å). (See Figure 3.11 and

3.12)

Figure 3.11: Relationship between sequence identity of domain relatives from non-
polluted FunFams and the conservation of their interface using RMSD

interface
.The

curves shows the 80th and 90th percentiles. Interactions were split into inter-chain
and intra-chain.
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Figure 3.12: Relationship between sequence identity of domain relatives within non-
polluted FunFams and conservation of their interface using RMSD

global
.The curves

shows the 80th percentile. This plot includes both inter-chain and intra-chain inter-
faces.

3.4.2.2 The relationship between the structural similarity of FunFam relatives

and conservation of the interfaces

A similar trend was observed for the relationship between the structural similarity

of the domain relatives in the FunFams and the conservation of the interface by

RMSD
interface

. We used SSAP to quantify the structural similarity. SSAP score is

range from 0 to 100, with a score of 100 being very structurally similar. Overall,

there’s a higher conservation for intra-chain interactions than inter-chain interactions.

Intra-chain domain interfaces are well conserved even for remote relatives within Fun-

Fams. The domain interfaces of inter-chain interactions are well conserved (with

RMSD
interface

around 5Å) when the SSAP score is above 90 for both within Fun-

Fam and across superfamily comparisons. For lower values of SSAP, the inter-chain
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interfaces are not so well conserved. For non-polluted FunFam comparisons, 90% of

the interfaces tend to be well conserved for both inter-chain and intra-chain interac-

tions (See Figure 3.13). We also used RMSD
global

to quantify the conservation. 80%

of the interactions within non-polluted FunFams are well conserved (with RMSD
global

below 10Å). (See Figure 2.14)
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Figure 3.13: Relationship between structural similarity of domain relatives from Fun-
Fam/Superfamily and conservation of their interface using RMSD

interface
. The curves

shows the 80th and 90th percentiles. Interactions were split into inter-chain and intra-
chain.
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Figure 3.14: Relationship between structural similarity of domain relatives within non-
polluted FunFams and conservation of their interface using RMSD

global
.The curve

shows the 80th percentile. This plot includes both inter-chain and intra-chain inter-
faces.

In summary, our analysis demonstrates that domain-domain interfaces tend to be

well conserved within FunFams. However, some FunFams are polluted with relatives

that have somewhat different functions and interfaces. In the following section, we

investigate some examples of these polluted FunFams further.

3.4.3 Analysis of variation in complex structures in the polluted

FunFams

3.4.3.1 Different multiple domain architectures (MDAs)

We analysed some extreme outliers from our plots (ie in figure 3.10 and figure 3.13)

and found that there were differences in the MDA in these outlying pairs. See Figure

3.15 for an example where two pairs of DDIs are from chains with different MDA.
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Figure 3.15: Both DDI 1fbiH01-1fbiX00 and DDI 1zv5L00-1zv5A00 were originated
from chains having different MDAs. They involved the same FunFam pairs which in-
volves the interaction between lysozyme (blue domain) and antibody (green domain).
We speculate that the different in interface region is due to the fact that different anti-
body recognising the different part of antigen.

3.4.3.2 Different oligomeric state

DDI 3o7mA00-3o7mB00 and DDI 1tc1A00-1tc1B00 are both crystal structures of hy-

poxanthine phosphoribosyltransferase. DDI 3o7mA00-3o7mB00 is from Bacillus an-

thracis, while DDI 1tc1A00-1tc1B00 is found in Trypanosoma cruzi. Both of the DDIs

are homodimers, so all the domains are in the same FunFam. They are highly similar

in structure with a SSAP score (between the most dissimilar domains) of 92 and a

sequence similarity (between the most dissimilar domains) of 40%.

The PDB entry of 3o7m is a tetramer and 1tc1 is a dimer. In the 3o7m tetramer,

two of the domains (the blue(A”) and the violet (A”’)) have the same structure and
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interface as DDI 1tc1A00-1tc1B00. However the green (A’) and the blue (A”) domains

have different interface. We speculate that the dimer 1tc1A00-1tc1B00 may belong to

a larger interaction complex or the hypoxanthine phosphoribosyltransferase complex

found in Bacillus anthracis has undergone duplication and formed a tetramer. The

comparison of pairs for these DDIs in the FunFam involves comparing all pairs shown

in 3.16 (e.g. A’ A” versus A”A”’). However, as can be seen from the figure these will

have different interfaces.

Figure 3.16: Two homo DDIs that are part of a larger interaction complex. Similar
DDIs are found as as a dimer in 1tc1 and a tetramer in 3o7m

We colored the DDI comparisons within polluted FunFams according the similarity

in the oligomeric state (See Figure 3.17). Some of the cases of DDI comparison with

high RMSD
interface

did shares different oligomeric states.
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Figure 3.17: Relationship between sequence identity of domain relatives within pol-
luted FunFams and conservaton of their interface using RMSD

interface
. DDIs in the

same (red) or different (blue) oligomeric states were colored accordingly.

3.4.3.3 Other possible reasons

Below are some other possible reasons explaining why interactions may be different

within FunFams:

• One of the DDIs may have crystal packing/protein complex symmetry issues.

• One or more of the domains in the complex are in an active/inactive states.

• DDIs in a pair are involved in different cellular locations - where they are involved

in different assemblies.
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3.4.4 Assessing the performance of FunFams in selecting tem-

plates for modelling protein complexes using MODELLER

In this section, we report the performance of FunFams for selecting templates to

model binary PPIs using MODELLER. We performed two benchmarks to assess

the accuracy of modelled PPIs built using FunFams to select templates (1) compar-

ing against the template selection strategies used by Interactome3D (Mosca et al.,

2012) (2) comparing against the template selection strategies using HHsearch (Söd-

ing, 2005) to identify templates. The protein complex modelling platform MODELLER

(Sali and Blundell, 1993) was used in both cases.

3.4.4.1 FunFam protocol for selecting the best template

Interactome3D identifies structural templates by BLAST and then selects the best

templates based on the highest global sequence identity match. The FunFam protocol

scans the query sequence against the FunFam library and then selects a relative with

a known structure from the best matched FunFam.

We investigated various ways of choosing the best templates from the FunFams

for the FunFam protocol. As well as using the global sequence identity, we also tested

ZRANK global energy score and SOAP-PP protein interface statistical potential to se-

lect the best template. The best approach was determined by assessing the quality of

the models by superposing them on the native structures. Figure 3.18 illustrates the

quality of models selected using different combinations of scoring schemes. Only the

top ranked models are shown in the plot. Sequence identity between query and tem-

plate, ZRANK global energy score and SOAP-PP protein interface statistical potential

were combined in different ways. The best method was the protocol that used only

sequence identity. This protocol selected the highest number of good quality models.
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Figure 3.18: Quality of the top ranked models selected using different schemes. Se-
quence identity between query and template (SI), ZRANK global energy score (Z) and
SOAP-PP protein interface statistical potential (S) were combined in different ways.
The quality of the models were assessed by doing a structural comparison with the
known structure. CAPRI criteria were used to classify the models into high, medium
or acceptable based on RMSD

interface
and Fnat.

3.4.4.2 Comparison with Interactome3D

We compared the models produced by our template selection protocol to the models

produced by Interactome3D. The Interactome3D protocol search for structural tem-

plates is based on the sequence identity returned by BLAST, rather than HMM based

searches. Structural templates selected had a minimum global sequence identity of

40% with the query targets.

The qualities of Interactome3D models were obtained from the Nature Methods

paper (Mosca et al., 2013a). However, since the benchmark target dataset used by

Interactome3D is not publicly available, we compiled a benchmark from the November

2011 release of PDB (See Section 3.3.2.3) .

We compiled two benchmark datasets in a similar manner to Interactome3D based

on (1) the Interactome3D November 2011 release (to compare with Interactome3D)

and (2) the Interactome3D May 2015 release. We selected PPIs for which the query

PPIs have been classified into CATH domains and a structural template could be

found for both chains. Note that the size of benchmark target dataset built by the

FunFam protocol (based on the November 2011) and Interactome3D is different be-

cause the FunFam protocol covers only protein complexes which comprised domains

that can be mapped onto CATH-Gene3D. We did an analysis to determine the diffi-
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culty of the query targets found in the FunFam protocol derived dataset. A quarter

of the query targets share sequence identity of less than 40% with the closest tem-

plate. This demonstrates that the query dataset used to assess the FunFam protocol

is more difficult (See Figure 3.19).

Figure 3.19: Difficulty of the benchmark target dataset built by the FunFam protocol.
For the Interactome3D protocol, all targets in the benchmark set had more than 40%
sequence identity with the templates.

Figure 3.20 shows a significant improvement in model quality using the FunFam

protocol over the strategy used by Interactome3D. For the FunFam protocol 89% and

84% of the fly and human binary PPIs produced a medium- or high-quality model. In

contrast, the top ranked models produced by Interactome3D gave medium- to high-

quality model for only 55% and 52% of the fly and the human interactions. The Fun-

Fam protocol managed to produce 30% more medium/high quality models than Inter-

actome3D. A higher proportion of the models produced by the FunFam protocol are of

high quality. (See Figure 3.20) Clearly our HMM based protocol exploiting FunFams

to select templates outperforms the simple BLAST based strategy of Interactome3D.
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Figure 3.20: Comparison of the quality of the top ranked models produced by the
modelling protocols of FunFams and Interactome3D. The quality of the models were
assessed by doing a structural comparison with the known structure. CAPRI cri-
teria were used to classify the models into high, medium or acceptable based on
RMSD

interface
and Fnat.

3.4.4.3 Comparison with HHsearch

In Chapter 2, we demonstrated the advantages of using FunFams to search for struc-

tural templates of single domains, compared to HHsearch. In order to compare our
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FunFam search strategy for templates of protein complexes with another powerful

HMM based strategy, we used HHsearch to search for templates for the complexes.

As before for both the FunFam and the HHsearch strategy we used MODELLER to

build the models once we had selected the templates i.e. everything apart from the

template selection strategy is the same.

For the FunFam pipeline, we first identified the FunFams that are most similar to

the query, followed by the selection of the best template in the FunFams based on se-

quence identity and X-ray resolution. For the HHsearch pipeline, we used HHsearch

to query for the best template and select the best template based on the program’s

built in statistical measures (E-value and Probability to assess the best template).

We used a different benchmark dataset from the previous Interactome3D analysis.

We used the PBD5 dataset produced by Zlab. This benchmark dataset is designed

for testing docking procedures and has been used widely by research groups to test

protein complex modelling methods. We split all the chain-chain interactions in the

benchmark using the CATH domain classification into 181 easy and 103 hard DDI

targets.

The FunFam protocol could predict for 127 easy targets and 72 hard targets. HH-

search predicted 112 easy targets and 67 hard targets. Figure 3.21 demonstrates

the overall percentage of good quality models built using the FunFam and the HH-

search protocol. For easy targets, HHsearch gave 6% more good quality models than

FunFams. For the hard targets, FunFam gave 9% more good quality models than

HHsearch.
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Figure 3.21: Quality of FunFams and HHseach models.

If we compared the common models built by FunFams and Hhsearch for both

difficulty levels, FunFams models have a higher quality than the HHsearch models.

However the differences are not statistically significant (Wilcoxon signed-ranked test,

p-value >0.05).

Figure 3.22: Quality of common FunFams and HHsearch models
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3.4.5 Modelling protein complexes using a 3D-Template based

docking pipeline

In order to extend the number of protein complexes we could build i.e. human and

fly, we developed a 3D-template based docking modelling pipeline adapted from the

method established by the Vakser group (Kundrotas and Vakser, 2013). Vakser’s

method is one of the best 3D-Template based docking protocols at the moment. Since

we did not have access to their template library, we decided to use DOCKGROUND

template library. We first tested how well we implemented their method for use with

the DOCKGROUND template library. In addition, we generated a new template library

based on the FunFams. We also explored methods to rank the docking poses.

3.4.5.1 Benchmarking the template based docking pipeline

To compare against Vakser’s protocol, we used their benchmark dataset of 372 non-

redundant pairwise complexes. The main difference between our pipeline and Vakser’s

protocol is the template library used. We used the DOCKGROUND prebuilt publicly

available template library of protein-protein interfaces (DOCKGROUND template li-

brary) in our study. This is the only publicly available resource of its kind.

Vakser group evaluated the models using the RMSD
interface

score calculated by

superposing the modelled complex onto the known protein complex. The models

were grouped into high-accuracy models (RMSD
interface

<5Å) or low-accuracy mod-

els (5Å<RMSD
interface

<10Å). Models with RMSD
interface

more than 10Å were con-

sidered bad.

The results obtained from the benchmark are shown in Figure 3.23. Using a similar

target dataset, Vakser’s template library gave more good models (i.e. high-accuracy

+ low-accuracy) than the DOCKGROUND template library (68% vs 57%). However,

DOCKGROUND template library produced more high-accuracy models compared to

Vakser’s template library (40.2% vs 38.4%). Note that since the Vakser library is not

publicly available, the results in Figure 3.23 for the Vakser library were taken from a
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publication by Vakser group of results obtained using the same target dataset.

Figure 3.23: Quality of models built using the DOCKGOUND template library com-
pared to Vakser’s template library

Our results showed that we had implemented the Vakser protocol well and ob-

tained comparable results. Next, we endeavoured to improve the performance of our

pipeline by using a better template library. The DOCKGROUND template library has

not been updated since July 2012. Therefore, we decided to generate an in-house

template library dataset. Generating an in-house self-generated template library gave

us more control over the data. For example, different structural redundancy criteria

could be used, or possibly NMR solved protein structures could be included.

3.4.5.2 Benchmarking the Lam Template Library

The Lam library has a total of 12,240 pairwise complexes. The major differences be-

tween the Lam library and the DOCKGROUND library are the PDB dataset used, the

clustering method of the protein complexes and the removal of illegitimate complexes,

as detailed below. DOCKGROUND library used the July 2012 PDB release, whereas

the Lam library uses the July 2014 PDB release entries. We speculated that using
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a newer PDB dataset would include additional structures which could improve the

quality of models built, as closer homologues may be available as templates.

DOCKGROUND used a structural similarity threshold of TM-score of 0.9 to reduce

the redundancy of the whole dataset. In building the Lam library, FunFams were em-

ployed to cluster the protein complexes. However, unlike the DOCKGROUND library,

the Lam library does not remove illegitimate complexes such as interwoven chains,

tangled chains and chains with interacting unfolded termini parts. This is due to the

difficulty of extracting the information from the PDB file.

Table 3.9: Differences between template datasets

Template dataset Number of interfaces Clustering criteria
DOCKGROUND template library 7,107 Structural similarity
Lam template library 12,240 Structural and

functional similarity
(FunFams)

In the previous section, we used a benchmark target dataset compiled by the

Vakser group because we wanted to assess the performance of the Vakser method

using a DOCKGROUND library and ensure we had implemented the Vakser method

correctly. However, this target dataset is not used extensively by groups researching

docking other than the Vakser group. Therefore, we employed a new benchmark

which uses the docking target dataset PBD4 (Hwang et al., 2010) that has been used

extensively by other research groups.

Figure 3.24 demonstrates the quality of models built using the two libraries. The

models were assessed using the CAPRI criteria given in Section 3.3.4. The Lam’s

template library gave 37% high, 11% medium, and 4% acceptable quality models. The

Lam’s library gave a total of 57 good models compared to 45 for the DOCKGROUND

library.

We believe that the improvement of model quality may be due to the usage of Fun-

Fams in removing the structural redundancy of the protein complexes in the template

library. By using the structurally and functionally coherent FunFams, the Lam library

captured more diversity of pairwise complexes than the DOCKGROUND template li-
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brary which was clustered solely on structural information.

Figure 3.24: Proportion of targets that gave models of different quality built by differ-
ent template libraries

3.4.5.3 Ranking the docking poses

Unlike the modelling of individual proteins, where the practice of selecting templates

is to select the closest sequence relative with a known structure, when modelling

complexes the best criteria for selecting templates is less well understood (Kastritis

and Bonvin, 2010; Vreven et al., 2012).

Therefore, the usual practice, adopted by Vakser and others, is to select all tem-

plates that meet the match criteria, build the models based on these templates and

then rank the models based on how well they capture known features of complexes

(e.g. global energy value or structural similarity, see Table 3.5).

Therefore we evaluated different ways of ranking the models as this will affect

the performance of the pipeline since good models (i.e. superposing well on the

native structure) should be ranked highly. Certainly it is important that at least one

acceptable model (Fnat ≥10% and 2.0Å<RMSD
interface≤4.0Å) is in the top 10 ranked

models for a target.

The models were ranked using sum of TM-scores (SoTM) according to the de-
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creasing order of the sum of the two TM-scores (one for each target monomer) ob-

tained from the alignment between docking targets and docking templates (Negroni

et al., 2014).

Earlier analysis (see Figure 3.24) showed that 57 targets out of the PBD4 tar-

get dataset produced at least one acceptable model using the Lam template library.

Therefore, the following analysis will focus only on these targets. Using SOTM, only

20% of the targets had at least one good model in the top 10. This is possibly due to

the structural redundancy in the template library. Therefore, different filtering strate-

gies were tried to solve this issue.

MODELLER’s normalised DOPE (nDOPE) was used to identify and remove any

bad models. Models with a postive nDOPE score are likely to be poor, while models

with scores lower than -1 are likely to be native-like (Eswar et al., 2008). Therefore, all

models that have nDOPE score greater than 0 were removed. Using this filtering the

results improved with 35% of the targets now having at least one acceptable model in

the top 10.

Subsequently, models that possess severe steric clashes were also eliminated.

They are models with more than 3 interchain Cα-Cα within a distance of 3Å (Negroni

et al., 2014). We also removed structural redundancy in the models. Pairwise struc-

tural comparisons between models were done using the MM-align method (Mukherjee

and Zhang, 2009). MM-align was developed by the Zhang group to structurally com-

pare two multi-chain protein complexes. We decided to remove redundant models

that score TM-align more than 0.95. CATH superfamily information was also used to

remove redundant models. The following table summarizes the results obtained using

the various filtering criteria.
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Table 3.10: Number of targets with at least one good model in Top 1, 5, 10 after
applying different criteria

Methods Top 1 Top 5 Top 10
SoTM 0 (0%) 5 (9%) 11 (20%)
SoTM + nDOPE 5 (9%) 15 (27%) 19 (25%)
SoTM + nDOPE + clashes 9 (16%) 21 (38%) 22 (40%)
SoTM + nDOPE + clashes +
MM-align

9 (16%) 22 (40%) 23 (42%)

SoTM + nDOPE + clashes +
MM-align + CATH

9 (16%) 22 (40%) 24 (44%)

3.5 Conclusions

Since the structural coverage of known protein-protein complexes is relatively low,

structural modelling of protein complexes is important. Structural annotation of pro-

tein complexes gives us a better understanding of the composition and ultimately the

function and mechanism of the protein complexes.

We began by exploring the structural conservation of protein-protein interfaces in

FunFams. Our results demonstrated that within FunFams which are clusters of func-

tionally an structurally coherent relatives, domain-domain interfaces are more con-

served than across a superfamily. The difference between conservation within Fun-

Fams and across a superfamily is particularly pronounced for inter-chain interfaces

especially at low sequence identity. However, there were problems for some of the

FunFams, and we speculated that the low structural conservation for some DDIs are

due to pollution of the FunFams by relatives having different MDAs, and other possible

issues such as different ligands bound.

Next, we explored the usage of FunFams to model protein complexes using MOD-

ELLER (sequence based methods). FunFams were used to identify the structural

template. We managed to produce 30% more medium- to high-quality models for

fly and human PPIs than Interactome3D which uses BLAST to select templates. In

addition, a higher proportion of the models produced by our protocol are of higher

quality than Interactome3D. The FunFam protocol built models are slightly better than

HHsearch built models but this was not statistically significant. However, our results
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demonstrated that FunFams can facilitate the template selection process. In addition,

by using FunFams we can use the MSAs of relatives in the FunFam to provide infor-

mation on conserved surfaces which could help validate the prediction of the interface.

We also devised a new template library of pairwise complexes for template-based

docking using FunFams. The template library gave 10% more good quality models

than the widely used publicly available DOCKGROUND template library.

3.5.1 Research outlook and recent developments in protein com-

plex modelling

We demonstrated the rise of co-evolution in guiding protein monomer structure mod-

elling in Chapter 2. Similarly, co-evolution information can also be utilised for complex

modelling. Guerois group (Yu et al., 2017), the best non-server structural modelling

group in the recent CAPRI rounds (Lensink et al., 2017), use co-evolution informa-

tion in their protocol. Their new statistical potential employed for scoring docking

poses is complemented with co-evolution information. Also, the docking poses were

filtered using different scoring functions that included a co-evolution score (InterEvS-

core) (Andreani et al., 2013) and a statistically optimized SOAP potential (Dong et al.,

2013).

Analyses of protein-protein interfaces show that native conformation do not neces-

sarily have the most hydrogren bonds or the largest buried solvent accesible surface

area (Im et al., 2016; Norel et al., 1999; Xu et al., 1997). Some proteins involve

changes in the shape to enable interactions (Induced fit hypothesis). The Zacharias

group developed a coarse-grained force field that has the ability to incorporate con-

formational flexibility during the initial sampling step of docking poses and also an

energy minimization step (Schindler et al., 2017). Other research groups are likely to

employ this type of information in the future.

Template based docking is effective when dealing with protein complexes hav-

ing sufficiently close homologues with known structure. However, if no suitable ho-

mologues can be found, template-free docking needs to be employed. The Huang
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group developed hybrid methods that combine both template-based and template-

free methods (Yan et al., 2017). Incorporating template based docking in the protocol

decreases the amount of sampling space. If the template is reliable, template free

docking will be able to tweak the models into a better binding mode. Homologous

complexes do not guarantee similar binding interfaces or binding orientations. If the

template is wrong, template free docking can still sample correct binding modes and

produce a correct prediction. In contrary, Seok group added ab initio refinement steps

to refine the results of template based docking (Lee et al., 2017).

Further investigation should be carried out to improve the ranking process. ZRANK2

can be used to remove bad models based on physics based potentials such as de-

solvation energy, Van der Waals, partials electrostatics (Pierce and Weng, 2007).

Models with low global energy can be removed using FiberDOCK (Mashiach et al.,

2010). Recently, there are also modelling groups that use machine learning methods

to rank docked protein complexes. The Bates group developed a clustering method

that utilised a randomised tree classfier based on 109 molecular distributors and ob-

tained good results in the recent CAPRI rounds (Lensink et al., 2017; Pfeiffenberger

et al., 2017).

Although there has been significant improvement over the years in complex mod-

elling, there are still very challenging cases that involve multiple binding patches,

cases that involve small interface regions or cases where interface residues lie in

loop regions (Lensink et al., 2017; Soni and Madhusudhan, 2017). Further research

is clearly still needed to improve the complex modelling.



Chapter 4

Protein structure and function analyses to un-

derstand the implications of alternative splic-

ing

4.1 Introduction

Alternative splicing (AS) has been widely recognised as one of the major pro-

cesses expanding the diversity of proteomes in multicellular organisms. AS refers to

the assemblage and rearrangement of different exons (expressed sequences, which

code for proteins) and introns (intervening sequences) of a gene during the pre-mRNA

splicing such that different mRNAs and thus, proteins are produced from the same

gene. It occurs predominantly in higher eukaryotes (producing different isoforms in

different developmental stages, tissues or disease states) while keeping the number

of genes relatively low (Pohl et al., 2013).

AS is usually mediated by a large molecular machinery named the spliceosome.

The spliceosome recognises the exons and introns by using three major sequence el-

ements: the 5’ donor site, the 3’ acceptor site and a branch point. The whole splicing

process involves two sequential transesterification reactions (the process of exchang-

ing the organic R group of an ester with the organic R group of an alcohol) between

mRNA nucleotides. First, the 2’OH of the branch point performs a nucleophilic attack

on the first nucleotide of the intron at the 5’ donor site, forming a lariat. Next, the 3’OH

of the release 5’ exon performs the second nucleophilic attack at the first nucleotide

following the last nucleotide of the intron at the 3’ acceptor site, joining the exons and

releasing the intron lariat. (See Figure 4.1)
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Figure 4.1: The two stages of splicing. In the first step of splicing, the 2’ OH of an
intronic adenosine of the branchpoint attacks the phosphodiester bond at the 5’ donor
site to generate a free exon and intron-exon intermediates. At this point, the intron is
in the form of a lariat containing a 2’-5’ bond between the 5’ end of the intron and the
branchpoint. In the second step of the reaction, the 3’ OH of free exon attacks the
phosphodiester bond at the 3’ splice site to yield the ligated exons and lariat intron.

Figure 4.2 illustrates the five basic types of AS events. Exon skipping is a form of

AS where the cells "skip" the exon region/regions. This is the most common mode

of AS and accounts for nearly 40% of AS events in higher eukaryotes (Alekseyenko

et al., 2007; Kim et al., 2007; Sugnet et al., 2004). Alternative donor site AS happens

when an alternative 5’ donor site is used and changes the 3’ boundary of the up-

stream exon. This type of splicing event accounts for about 8% of AS events in higher

eukaryotes (Sugnet et al., 2004). By contrast, alternative acceptor site AS uses an

alternative 3’ acceptor site and accounts for about 18% of AS events (Sugnet et al.,

2004).

Intron retention AS usually happens when the mRNA is not flanked by introns. This

confuses the splicing machinery, therefore a part of the sequence may be spliced out

as an intron or retained as mRNA. Mutually exclusive exons are characterised by the

splicing of exons in a coordinated manner such that two or more splicing events are
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not independent. Only one out of the two exons is retained, while the other one is

spliced out. Both intron retention and mutually exclusive exons are classified as the

less frequent AS events (Keren et al., 2010; Sugnet et al., 2004).

Figure 4.2: Different modes of AS and their relative abundance in higher eukary-
otes. Exon skipping "skip" the exon region/regions. Through the use of alternative
5’ or 3’ splice sites, exons can be extended or shortened in length. One exon or the
other is included, but not both in mutually exclusively exons. Finally, the excision of
an intron can be suppressed, to leave the retained intronic sequence in the mRNA
that is exported to the cytoplasm. Constitutive exons are shown in blue and alterna-
tively spliced regions in yellow, introns are represented by solid black lines, and solid
green/purple lines indicate splicing activities.

The presence of alternatively spliced transcripts has been proved experimentally

by various techniques such as microarray and RNA-Seq studies (Graveley et al.,

2011; Sánchez-Pla et al., 2012; Uhlén et al., 2015). A recent large-scale RNA-seq

experiment demonstrated the existence of different splice variants for 72% of the

annotated human genes (Uhlén et al., 2015). Another research that integrated ab

initio gene prediction and RNA-seq identified over 205,000 human transcripts with

protein-coding potentials (Hu et al., 2015). For example,the Drosophila Down Syn-

drome Cell Adhesion Molecule gene (DSCAM) has 4 variable exon clusters with one

of them involving 48 alternative exons. This leads to 38,016 potential splicing isoforms

(Schmucker et al., 2000; Wang et al., 2012) and allows D. melanogaster to exhibit a

unique set of DSCAM proteins on its cell surface that are essential for immunity and
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normal neuronal processes. The overpression of the human homolog of DSCAM in

developing fetal neural tissue can leads to Down syndrome (Schmucker and Chen,

2009; Yamakawa et al., 1998).

Proteins produced by protein isoforms may have modified structures and func-

tions. Tress et al. demonstrated that AS can lead to wide range of structural out-

comes, and most of them are undesirable, and potentially deleterious (See Figure 4.3

for examples of potential effects). It was found that up 60% of the AS isoforms that

could be modelled by Tress and co-workers, lacked a major part of a domain (2007).

Light and Elofsson showed that 36% of the isoforms in Swiss-Prot alter the domain

architecture of the proteins (gain/loss of a globular domain, transmembrane anchor).

Figure 4.3: Potential effects of AS on protein structure. Splice isofroms were mapped
to the closest structural templates. Structures are colored in purple where the splice
isoform is missing. (a) Haemoglobin δ-subunit isoform mapped onto PDB structure
1si4. (b) Mitochondrial cysteine desulfurase isoform mapped onto PDB structure
1p3w. (taken from Tress et al. 2007).

Liu and Altman identified a total of 24 protein domains that more commonly un-

dergo AS than other proteins in human (2003). The most prevalent domains were the

repeating cadherin domain and domains that involved intrinsically disordered regions

(Liu and Altman, 2003; Tress et al., 2008). Cadherin (named for "calcium-dependent

adhesion") is a type of transmembrane protein which is predominantly involved in the

process of cell communication/signalling, development and apoptosis. Figure 4.4 il-
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lustrates the members of the cadherin familiy which share the same cadherin domain.

Figure 4.4: Schematic representation of members of the cadherin family, which share
the common cadherin domain. (a) Typical cadherin domain (b) Schematic represen-
tation of the domain organisation of selected cadherin family members (taken from
Brasch et al. 2012).

Intrinsically disordered regions are prominently found among the hubs in a PPI

network and it is believed that changes in these proteins are important for mediating

the remodelling of PPI networks (Buljan et al., 2012; Ellis et al., 2012). For exam-

ple, protein phosphatidylinositol-4-phosphate 5 kinase, type 1, gamma (PIP5K1C) is

spliced differently in cerebellum and lymph node. In the cerebellum, a tissue-specific

disordered region is spliced into the protein. This region acts as the binding site for

adaptor protein complex 2 (AP-2) (Thieman et al., 2009). This initiates further interac-

tions between AP-2 and other proteins, that are important for the process of synaptic
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vesicle transport. By contrast, the tissue-specific segment does not get spliced into

the PIP5K1C protein in lymph nodes. Therefore, PIP5K1C is unable to interact with

the AP-2 complex and the whole interaction network is thus rewired. PIP5K1C, in

this case, is involved in cell migration (Buljan et al., 2012). Figure 4.5 illustrates this

rewiring process.

Figure 4.5: Tissue-specific splicing of a disordered segment rewires the protein inter-
action network. This is illustrated with the PIP5K1C kinase gene that has an exon with
different inclusion levels in cerebellum and lymph mode. The exon encodes a bind-
ing motif (red cartoon representation), which mediates the interaction with the AP-2β
appendage domain (cyan surface representation). (adapted from Buljan et al. 2012).

AS has been linked to human diseases and cancer (Dutertre et al., 2010; Mayr

et al., 2011; Tang et al., 2011). An example of AS-related diseases is CRASH (Clini-

cal spectrum of corpus callosum hypoplasia, Retardation, Adducted thumbs, Spastic

paraparesis and Hydrocephalus) syndrome, attributed to the splice isoform 6 of L1 cell

adhesion molecule (L1CAM) (Gabellini et al., 2006). L1CAM is involved in neuronal

adhesion, neurite outgrowth, and axon guidance. This transcript does not include

exon 2 (an extracellular domain, which encodes the sequence YEGHHV, located im-

mediately N-terminal to the first Ig domain) into the L1CAM protein. The loss of this

exon 2 means that the alternative isoform exhibit reduced binding of cell adhesion

molecules and reduced neurite growth which leads to the manifestation of the syn-



CHAPTER 4. PROTEIN STRUCTURE AND FUNCTION ANALYSES TO
UNDERSTAND THE IMPLICATIONS OF ALTERNATIVE SPLICING 154

drome (Jacob et al., 2002).

Figure 4.6: When bound to fluorescent beads, recombinant protein lacking exon2
(A) exhibits less binding compared with isoform which has exon2 (B). The neurite
outgrowth is also diminished in cells lacking exon2 (C) compared to cells in which the
L1CAM protein has exon2 (D) (taken from Jacob et al. 2002)

Another example is Collagen alpha-3 type VI protein (COL6A3). COL6A3 is in-

volved in cell anchoring and remodelling of the extracellular matrix (Zanussi et al.,

1992). Studies have shown a higher level of the COL6A3 proteins in tumor tissues

than normal tissues (Arafat et al., 2011; Nanda et al., 2004; Xie et al., 2014). Re-

cent genome exon array studies have identified tumor-specific exons 3, 4, and 6 of

COL6A3 in colon cancer, and exon 6 in colon, bladder, and prostate cancers (Gardina

et al., 2006; Thorsen et al., 2008). The cancer causing exon 6 of COL6A3 contains a

von Willebrand factor domain with seven predicted phosphorylation sites, which have

a potential regulatory effect on the protein function (Thorsen et al., 2008). There was

also a study that showed a significant upregulation of COL6A3 (exons 3 and 6) in

human biopsies and cell lines derived from pancreatic cancer (Arafat et al., 2011).

These suggest a role for COL6A3 in tumor formation.

High-throughput tandem mass spectrometry (MS) based proteomics has been the
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main tool for validating the evidence of AS at the protein level. Some groups have

shown that MS only verifies a small number of alternative protein isoforms in different

species (Brosch et al., 2011; Tanner et al., 2007; Tress et al., 2008). In a recent large-

scale proteomic analysis, the Valencia group identified splice isoforms for 150 out of

22,304 human genes (Ezkurdia et al., 2012). In contrast, some other proteomics stud-

ies have reported substantially more cases of AS at the protein level. For example,

Wilhelm and co-workers identified 1,297 alternative proteins for more than 18,097 hu-

man genes (7%) (2014), and, Kim and co-workers found 2,861 protein isoforms from

more than 17,294 human genes (16%) (2014). To account for these contradictory

findings, the Valencia group carried out a reanalysis of the peptides from eight large-

scale MS experiments. They used a stringent filter to remove false-positive peptides

by removing all the peptides that were only identified in one study. They also removed

peptides that mapped to more than one gene. In the end, they recovered a total of 246

genes (282 events) that have reliable evidence for more than one isoform, for 12,716

protein-coding genes (Abascal et al., 2015a). This result suggests that alternative

variants are not abundant at the protein level.

However, there may be some technical issues present in these current MS exper-

iments. A typical MS experiment can only identify a small proportion of the peptide

ions present in a protease digest. This means that MS will fail to detect all proteins

that are expressed especially those that are expressed in low quantities (Abascal

et al., 2015a). This may explain the low number of alternative isoforms in proteomics

experiments. The other technical issue is the limited sampling depth (Abascal et al.,

2015a). Some splice isoforms are only expressed in limited tissues, or under special

circumstances. Another possible reason is that some of the splice isoforms may have

other functions than generating protein product (such as nonsense-mediated mRNA

decay) (Lareau and Brenner, 2015).

Although the splice isoforms identified in proteomics experiments have low cov-

erage, they have been found to be highly enriched with mutually exclusively (MXE)

exons both in human (60 out of 282 splicing events) and mouse (21 out of the 68
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splicing events) analyses (Abascal et al., 2015a). It is usually believed that MXEs

originated from exon duplication, and often show high sequence similarity. They are

usually similar in the length (typically fixed for α-helical and β-strands regions, but

flexible in loop regions), conserved splice site patterns (e.g. GT-AG, GC-AG, and

AT-AC), same reading frame and sequence homology (Hatje and Kollmar, 2014; Pill-

mann et al., 2011). Based on these assumptions, computational methods have been

developed to predict MXE events (Pillmann et al., 2011; Stephan et al., 2007). Kas-

siopeia is a repository composed of predicted MXE events for 12 Drosophila species,

Arabidopsis thaliana, Caenorhabditis elegans and Homo sapiens with stringent pa-

rameters (Hatje and Kollmar, 2014).

The Valencia group performed an analysis of MXE events to measure the struc-

tural and functional effects of AS by analysing the composition of conserved Pfam

functional domains in the predicted protein products. Only 1 in the 60 human MXE

events broke a Pfam domain (measured by loss or gain five or more residues) (Abas-

cal et al., 2015a). They managed to map 9 of the 60 human MXE to known PDB

structures. These MXE splice events are usually believed to have subtle effects on

the protein folds. They may affect the binding of the protein to another substrate (pro-

tein, ion) (Abascal et al., 2015a) or disturb the catalytic site or an allosteric site (See

Figure 4.7 for an example where MXE region lies close to an functional site). MXEs

have been proven to be of biological relevance (regulation of mammalian pyruvate

kinase expression level (Chen et al., 2012), the voltage dependence of ion channels

(Soom et al., 2008)).
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Figure 4.7: An example showing an MXE region, in which the amino acid residue
usage differs between alternative isoforms (blue and purple), that lie close to the
location of an ligand-binding site (orange) in human MAPK8 (taken from (Abascal
et al., 2015b)). The biological significance of this MXE may relate to different ligand-
binding specificities (Gupta et al., 1996).

4.2 Objectives

The main aim of the analysis was to understand the implications of AS on hu-

man and fly protein structures. We were particularly interested in the MXE splice

variants, since these types of events are more supported by experimental analysis

and proteomics data than other types of AS. Furthermore, most MXE events do not

involve big structural changes of the protein fold, but changes in residue usage. For

the fly dataset, we downloaded all the MXE annotations from the Kassiopeia resource

and translated gene sequences into amino acid sequences. For the human dataset,

we identified MXEs using an in-house method (See Methods section). We then as-

signed the different splice isoforms to CATH FunFams and annotated these isoforms

with structural information. We determined whether the variable residues between

exon pairs are exposed to the solvent by calculating the relative solvent accessibility

surface areas of these residues. We also analysed if these variable residues are in

the vicinity of any known functional sites such as catalytic residues (from the Cat-

alytic Site Atlas(CSA)), PPI sites and protein-small molecule interaction sites (from

the Inferred Biological Interactions Server(IBIS)), allosteric sites (predicted using the
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A-SITE predictor, developed by Dr. Aurelio Moya Garcia in our group) and FunSites

(our in-house functional site predictor, proven to predict sites enriched with CSA and

IBIS PPI residues). We then used the McLachlan physiochemical matrix to quan-

tify the amino acid changes of variable residues. We also mapped residues mutated

in cancer, from the COSMIC database to MXE events to determine if these genetic

variations lie in the vicinity of MXE events.

4.3 Materials and Methods

4.3.1 Identifying the amino acid sequences for MXE events

4.3.1.1 Fly

We downloaded the annotations of predicted MXEs for drosophila melanogaster from

the Kassiopeia resource which corresponded to Flybase 5.36 and kept the MXE

events and assoicated protein sequences that we could map to this genome. By refer-

ring to FlyBase version 2017_02, gene sequences and coordinates (32), we extracted

all the corresponding amino acid sequences. For example, we only use predicted ex-

ons in the core genome annotation and only used examples where the translations

from chromosome sequence exactly matched the Flybase translation. Further anno-

tations of the MXE events (FlyBase Gene id, FlyBase protein id, FlyBase transcript

id) were added using the ENSEMBL BioMarts tool (Kinsella et al., 2011).

4.3.1.2 Human

The Kassiopeia resource does not provide MXE annotations for human genes. In

order to identify human MXEs, we did the following. Based on Ensembl version 87,

we obtained the human mRNA transcripts (from the General Transfer Format) and

identified sets of human genes with MXEs. We selected the longest transcript as

our reference and compared all the other transcripts against the reference to look

for MXE exons (See Figure 4.8). As mentioned already MXE have been shown to

be highly similar in sequence and length. Therefore, we made sure that the exons
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were consecutive in the DNA sequence, but never occurred together in the same

transcript, were similar in length and had the same reading frame (See Figure 4.8).

After that, we translated all the MXE exons into amino acid sequences and compared

the sequences against each other with BLASTp, setting an e-value threshold of 0.005

and sequence identity 25%.

Figure 4.8: Identifying the putative MXE exons. We compared all the transcripts and
made sure the MXE exons identified are never co-occur sequentially in any transcript,
similar in length and had the same reading frame and sequence homology.

4.3.2 Predicting the function of MXE genes

We used the version 6.8 of DAVID (database for annotation, visualization and inte-

grated discovery) function annotation tool suite (Huang et al., 2009) to identify func-

tional enrichments of identified MXE genes. DAVID is widely used by the scientific

community with over 21,000 citations. The program first maps the gene list (e.g. Fly-

Base gene id or Ensemble gene id) to over 40 different types of biological annotations

(e.g. UniProt sequence feature, Enzyme Commission term, Gene Ontology terms,

protein family information, PPI, disease associations, etc) and outputs the significantly

most enriched biological annotations. We used the whole genome background for the

fly and human, respectively.

4.3.3 Annotating MXE events with structural information

All the splice events were scanned against the library of CATH v4.1 FunFam HMMs

(Dawson et al., 2017) using HMMER 3.0 (Eddy, 2011). DomainFinder3 (Yeats et al.,

2010) was used to determine which CATH-Gene3D FunFams they belonged to. We

only considered matches with a HMMER E-value of less than 0.001. For FunFams
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that had a known domain structure, we annotated the splice events with structure us-

ing FlyBase/Ensemble to PDB mapping. For FunFams that had no relative of known

structure, we used the FunMod modelling pipeline (explained in Chapter 2) to build

structural models. We used normalised DOPE and GA341 to assess the quality of

the models. Only good quality models with a negative normalised DOPE score and a

GA341 score of more than 0.7 were included in this analysis. For those splice events

where we failed to build a model, we mapped them to the structural representative

of the respective FunFams. FunFams have been demonstrated to be structurally

and functionally coherent (See Chapter 2). To make sure we chose a structural rep-

resentative that represent the FunFam well, the structural domain with the highest

cumulative SSAP structural similarity score and the best X-ray resolution was used.

Pairs of splice isoforms were aligned to the other relatives in the FunFam using

the MSA tool MAFFT (Katoh and Standley, 2013) using the function mafft-add. We

extracted the alignment between the structural representative of the FunFam and the

two splice isoforms. Based on this alignment, we extracted the variable residues

between the two isoforms.

For those events which are not included in FunFams, we scanned them against

the CATH v4.1 HMMs (to include non-FF CATH domains), SCOPe 2.06 HMMs and

PDB70 June 2017 HMMs using either HMMER 3.0 or HHsearch (Remmert et al.,

2012). Similarly, we only considered matches with a E-value of less than 0.001. We

used FunMod modelling platform to build structural models. For those events where

we failed to build a model, we mapped them to the best structural matches (based

either on the HHsearch or the HMMER result). If both of the isoforms were mapped

to the same structural template, we aligned the isoforms with the structural template

using MAFFT and extracted the variable residues between the two isoforms.
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Figure 4.9: Identifying the variable residues between splice events. Note: For the
cases which are not included in FunFams, the isoforms are aligned to the best struc-
tural match.

For those MXE events which we failed to annotate with structure information, we

predicted if they were intrinsic disordered using IUPRED (Dosztanyi et al., 2005).

IUPRED assumes that globular proteins have the capability to form many inter-residue

interactions, providing the stabilising energy to overcome the entropy loss occurring

during folding. In contrast, intrinsic disordered proteins do not form sufficient interac-

tions, having a lower stabilising energy. The IUPRED predictions work by comparing

the estimated pairwise interaction energy of the target protein to the pairwise inter-

action energy derived from a library of known structures. Residues with IUPRED

score above 0.5 were considered disordered. We defined a splice isoform as intrinsi-

cally disordered if more than 50% of the residues were predicted to be disordered by

IUPRED.
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4.3.4 Analysis to determine if variable residues between the splice

events are exposed to solvent

NACCESS (Hubbard and Thornton, 1993) is a stand-alone program that calculates

the accessible area of proteins and nucleic acids in a PDB structure. This program

is based on the Lee & Richards method (1971), whereby a sphere of given radius

(usually 1.4 Angstroms, which is the radius of water) is rolled around the surface of

the protein and the accessible surface is the total area over which the sphere passes.

This is usually given as the relative accessible surface area (rASA). rASA is calculated

by dividing the solvent accessible surface area with the maximum possible solvent

accessible surface area for the residue.

For each splice event, we calculated the rASA for all the corresponding variable

residues of the two isoforms. Amino acid residues were considered to be exposed if

the rASA value was above 10% (Miller et al., 1987). For each pair of splice events

we compared the solvent exposure of the complete splice region versus the solvent

exposure of the variable residues. The solvent exposure was calculated as:

solvent exposure =
Number of exposed residues

Total number of residues
(4.1)

4.3.5 Analysis to determine if variable residues between splice

events, are close to functional sites

After determining whether the variable residues within the splice regions for splicing

event pairs are more exposed to the solvent than the whole MXE region, we inves-

tigated if these variable residues lie in the vicinity of known functional residues. For

every pair of MXE events, we determined if the variable residues within the splice re-

gions lie close to any functional sites. We calculated the minimum distance between

the atoms of the residues involved using an in-house program CalDist (developed by

Dr. Andrew Martin and Camilla Pang). We used a distance cut-off of 4Å to determine

if residues are close.
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We also investigated random models to examine the proximity of residue to func-

tional sites, to evaluate statistical significance. For every pair of MXE event, we cre-

ated 10,000 random models (based on the patterns of location of variable residues

(i.e. X-X—X-X-X, X, variable residues, -, non-variable residues), and determined the

percentage of target residues that lie close to functional sites (See Figure 4.10). Then,

the overall percentage of variable residues lying close to functional sites was calcu-

lated, for all MXE events and for all random events. This percentage is then compared

with the actual MXE percentage. We used the z-score test to compute the statistical

significance.

Figure 4.10: Creating random models to examine the proximity of residues to func-
tional sites. For each pair of MXE event, we created 10,000 random models based
on the pattern of location of variable residues (in sequence space). After that, we
calculated the percentage of target residues that lie close to functional sites.

The functional sites considered were known experimentally characterised sites:

catalytic residues taken from CSA (Furnham et al., 2014), PPI residues and protein-
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small molecules interaction residues (ligand binding and metal binding) taken from

IBIS (Shoemaker et al., 2012). We also used our in-house predicted FunSites (Das

et al., 2015; Dessailly et al., 2013) and predicted allosteric sites. FunSites are highly

conserved residue positions within a Funfam. They have been found to be enriched

with CSA residues, and IBIS PPI sites (Dessailly et al., 2013). For the prediction of

FunSites, we only perform this analysis for FunFams that have a diverse set of rel-

atives making it possible to distinguish between conserved positions from variable

positions. The Scorecons method (Valdar, 2002) was used to calculate the sequence

diversity of a FunFam by generating a diversity of position score (DOPS score). Fun-

Fams with a DOPS score of above 70 are deemed sufficiently sequence diverse for

analysis (i.e. having a lower probability of predicting false positives) (Dessailly et al.,

2013).

We also used the A-SITE allosteric site predictor (developed by Dr. Aurelio Moya

Garcia), based on the centrality of nodes (in a protein i.e. residues) in terms of

their capability to transfer signals through the protein, to predict allosteric sites in the

protein, in order to determine whether variable residues lay on or close to allosteric

sites.The program identifies residues with high betweenness centrality. The depletion

of residues having high betweenness centrality values would be expected to interrupt

the allosteric communication among regions of the protein that lie far apart. We de-

fined the allosteric residues as the top 5 percentile residues (ranked by the A-SITE

program using the betweenness centrality measure).

4.3.6 Analysis to determine if variable residues in MXE regions

are clustered in 3D and lie close to functional sites

To reduce the noise and identify those variable residues likely to be having simi-

lar impacts, we clustered variable residues into structural clusters. For each pair

of MXE events, we calculated the all-atom-versus-all-atom distances of the variable

residues of the structural representative and determined the minimum distance be-

tween residues. We used an in-house multi-linkage clustering program which locates
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groups of residues that are within 8Å distance of each other. We made sure there are

at least three residues present in a cluster.

Subsequently, we calculated the distance from the structural clusters to known

functional residues of the structural representative. We calculated the centre-of-mass

of the clusters. The centre-of-mass calculation takes the relative atomic weights into

account. The minimum distance between the centre-of-mass of the cluster to the

closest functional residue was calculated using an in-house program named CalDist.

We used a distance cut-off of 6Å to define if the structural cluster lies close to a

functional site.

We also investigated random models to examine the proximity of randomly se-

lected residue regions to functional sites, to evaluate statistical significance. For ev-

ery MXE pair, we randomly selected structural clusters that have the same size as

our largest MXE structural cluster, 10,000 times, and determined the percentage of

clusters that lie close to functional sites. Then, the overall percentage for all MXE

events or all all random events was computed. This percentage is then compared

with the actual MXE percentage. We used the z-score test to compute the statistical

significance.

4.3.6.1 Analysis to determine if COSMIC cancer mutation residue clusters are

close to variable residue clusters in MXE pairs

The Catalogue of Somatic Mutations in Cancer (COSMIC) is a database which col-

lects somatic mutation from human cancer patients (Forbes et al., 2017). Somatic

mutations are mutations that occur in non-germ line cells i.e. which are not passed on

to human offspring. Accumulation of these mutations may alter cellular functions and

contribute to cancer (Martincorena and Campbell, 2015). COSMIC mutation data are

derived either from the literature, whole genome sequencing data or extracted from

databases such as the Cancer Genome Atlas and the International Cancer Genome

Consortium.

A number of studies have that found that cancer mutation sites lie in the vicinity
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of functional residues (i.e. protein and ligand binding sites) (David and Sternberg,

2015; Jubb et al., 2016; Yamada et al., 2016), therefore we determined if COSMIC

cancer mutation residues/clusters lie close to MXE variable residues and functional

residues. We mapped the COSMIC cancer mutation residues (version 80, released

on Feb 2017) onto the human MXE events. For those where we have structural in-

formation, we determined if the variable residue residues/clusters are close to COS-

MIC residues/functional sites using a distance cut-off of 4Å (per-residue) or 6Å (per-

cluster).

4.3.7 Quantifying the residue changes using a physiochemical

score

We also compared the physiochemical properties of variable residues using the McLach-

lan physiochemical similarity matrix (McLachlan, 1972). This scoring matrix provides

a measure of amino acid similarity based upon amino acid polarity, size, shape and

charge. Depending on the similarity in these characteristics, a pair of amino acids was

given a similarity score ranging from zero to six. A score of zero indicates no simi-

larity or a deletion. The score for a pair of identical amino acids is typically five, but

six for amino acids considered less common by McLachlan (1972). These less com-

mon amino acids consisted of phenylalanine, methionine, tyrosine, histidine, cysteine,

tryptophan, arginine, and glycine (McLachlan, 1972).

Because we are interested in whether the variable residues exhibit changes in

physiochemical properties, we transformed the McLachlan scores: 1 being very simi-

lar and 7 being very dissimilar. We summed up all the Mclachlan similarity scores for

a set of variable residues and divided by the total number of variable residues.
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4.4 Results and Discussion

4.4.1 Statistics of the MXE dataset

The fly MXE dataset consisted of 416 splice isoform pairs that involved a total of 118

fly genes. There were a total of 1,917 fly MXE pairs identified. Out of the 1,917 MXE

pairs, 1,643 pairs involved the DSCAM gene and 273 involved non-DSCAM genes.

The fly DSCAM genes have a total of 4 variable exon clusters giving 38,016 potential

splicing isoforms. This gene is important for fly immunity and neuronal processes. We

decided to split the MXE events into DSCAM events and non-DSCAM events to re-

move bias. In contrast, the human MXE dataset consisted of 460 splice isoforms that

involved a total of 205 genes. There were a total of 241 human MXE pairs identified.

Figure 4.11 demonstrates the length of the MXEs. They span from 10 residues up to

400 residues, with an average size of around 70.

We used DAVID, a function annotation tool, to identify the enriched biological an-

notations for these MXE genes realativerelative to the whole genome background.

The MXE genes are associated with membrane proteins (e.g. ion channels, synap-

tic vesicles and receptors) and enzymes (e.g. kinases, transferases, hydrolases and

oxidoreductases) with false discovery rate level <0.01.
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Figure 4.11: Size of the MXE regions. The exon size is represented by the number
of amino acids.

We structurally annotated the splice isoforms with known protein structures from

the PDB. Structural models were built using the in-house FunMod modelling platform

(See Chapter 2). For those events where we failed to produce a good model, we per-

formed structural mapping to the representative structure of the respective FunFam.

We annotated the whole protein sequences where possible, however, if we failed to

do so, we made sure the splice region was covered. All 1,643 pairs of splicing events

for DSCAM genes could be mapped to FunFams. 145 out of the 274 pairs of non-

DSCAM splicing events could be mapped to a FunFam. Only 63 pairs out of the 241

pairs of human MXE events could be mapped to a FunFam.

For those events that we failed to mapped to a FunFam, we performed structural

modelling and structural mapping based on non-FunFam CATH domains, SCOPe

domains or PDB chains. We also performed disorder analysis using the program

IUPRED. We defined a splice isoform as disordered if more than 50% of the residues

inside the slice were predicted to be disordered by IUPRED. Figure 4.12 gives in-
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formation on structural annotations for the sets of splice isoforms. We managed to

annotate 75% of fly isoforms and 50% of the human isoforms with structural informa-

tion. Less than 10% of the isoforms can be mapped to known structures. 5% of the

fly isoforms and 18% of the human isoforms are disordered.

Figure 4.12: Splice isoforms with structural information.

We also calculated the proportion of the FunFam domain covered by the splice

region. The distribution of coverage was quite large with a mean value of 36% (See

Figure 4.13). We also determined the number of variable residues involved in MXE

events. They usually involved less than 10 residues (See Figure 4.14).



CHAPTER 4. PROTEIN STRUCTURE AND FUNCTION ANALYSES TO
UNDERSTAND THE IMPLICATIONS OF ALTERNATIVE SPLICING 170

Figure 4.13: Proportion of the FunFam domain mapped by the splice region

Figure 4.14: Number of variable residues between MXE exons

Figure 4.15 illustrates the distribution of FunFams containing the MXE splice re-

gion for DSCAM. All the splice regions for DSCAM events are mapped to the CATH

superfamily 2.60.40.10 (the Immunoglobulins-like superfamily). This superfamily is

one of the most highly diverse CATH superfamilies with 19,468 domains. The splicing

events were mapped to six FunFams within the CATH superfamily. For fly non-DSCAM
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and human MXE events, the FunFams mapped by the splice region are distributed

among 84 CATH superfamilies (See Figure 4.16 and 4.17). Figure 4.18 shows the

number of CATH superfamilies and FunFams common to both fly and human. Figure

4.19 lists the names of common FunFams. These are generally membrane proteins

associated with cell-cell adhesion, signal transduction and molecule/ion transport.

Figure 4.15: Distribution of FunFams to which MXE events can be mapped (Fly,
DSCAM)
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Figure 4.16: Distribution of FunFams to which MXE events can be mapped (Fly,
nonDSCAM)

Figure 4.17: Distribution of FunFams to which MXE events can be mapped (Human)
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Figure 4.18: Number of CATH superfamilies and FunFams common to both fly and
human.

Figure 4.19: Names of common FunFams to both fly and human. They are gen-
erally membrane proteins associated with cell-cell adhesion, signal transduction and
molecule/ion transport.

4.4.2 Analysing the frequency with which MXE events are ex-

posed to solvent

We determined whether the variable residues involved in MXE events are more ex-

posed to the solvent than the whole spliced region. We calculated the rASAs of vari-
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able residues using the NACCESS program for all pairs of splicing events. For com-

parison, we also calculated the rASAs of all mapped residues (all the residues found

within the splice region). We considered all residues that have an rASA value of >10%

to be exposed. The percentage of exposed residues was calculated by dividing the

number of exposed residues by the total number of mapped residues. Figures 4.20,

4.21, 4.22 compares the proportion of exposed variable residues to the proportion of

all exposed MXE residues for fly DSCAM, fly non-DSCAM, and Human events. Over-

all, we can observe that variable residues are more exposed than all MXE residues.

The difference was highly significant (p-value <2.2e-16, Wilcoxon signed rank test).

Figure 4.20: Proportion of exposed variable residues versus exposed residues in the
whole of the splice region (Fly, DSCAM)
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Figure 4.21: Proportion of exposed variable residues versus exposed residues in the
whole of the splice region (Fly, non-DSCAM)
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Figure 4.22: Proportion of exposed variable residues versus exposed residues in the
whole of the splice region (Human)
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4.4.3 How often do variable residues in MXE events lie close to

functional sites

In the previous section, we demonstrated that the variable residues within the splice

regions for splicing event pairs are more exposed to the solvent than the whole MXE

region. Here, we investigate if these variable residues lie in the vicinity of known func-

tional residues. The known functional residues considered were catalytic residues

(obtained from CSA), PPI sites (obtained from IBIS database), protein-small molecules

interaction sites (ligand binding sites, obtained from IBIS database). We also consid-

ered our in-house functional sites (FunSites, enriched with catalytic sites and PPI

sites) and allosteric sites (based on the between centrality measure).

For every pair of splice isoforms compared, we determined if the variable residues

within the splice regions are close to any functional sites. We calculated the mini-

mum distance between the atoms of the residues involved using an in-house program

CalDist. We used a distance cut-off of 4Å to determine if residues are close. The

results were compared with a random model - described in Methods.

Figure 4.23 shows that there is a statistically significant tendency for MXE events

with variable residues to lie close to PPI, protein-small molecule and FunSites for

both fly and human dataset. For Fly non-DSCAM events, there is also a tendency

for variable residues to be in the vicinity of allosteric sites. We had less 10 events

annotated with catalytic sites but these did not usually lie close to a MXE region using

4Å distance cutoff.
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Figure 4.23: Proportion of variable residues in MXE events that lie close to functional
sites compared to the number of random residues that lie close to functional sites.

4.4.4 How often do clusters of variable residues in MXE events

lie close to functional sites

In order to remove noise, we structurally clustered the variable residues. Clusters

of variable residues were formed in 91% of the fly non-DSCAM events, 88% of the

fly DSCAM events and 73% of the human MXE events. For those events that formed

clusters, about 61% of the fly non-DSCAM events, about 50% of the fly DSCAM events

and about 66% of the human events formed only one cluster. For those that formed

multiple clusters, they usually formed 2-3 clusters (See Figure 4.24). We also de-

termined the size of the individual clusters for events with multiple clusters. There’s

usually a single large cluster followed by smaller clusters (See Figure 4.25).
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Figure 4.24: Number of structural clusters formed by MXE variable residues.
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Figure 4.25: Size of structural clusters formed (only showing events with multiple
clusters) for variable residues in MXE events

Next, we determined whether structural clusters lie close to functional residues.

For every pair of splice isoforms compared, we determined if centre of mass of the

MXE cluster was close to any functional sites (within 6Å). We calculated the mini-

mum distance between the atoms of the residues involved using an in-house program

CalDist. The results were compared with a random model - described in Methods.

Figure 4.26 shows that there is a statistically significant tendency for variable re-

gion clusters of MXE events to lie close to PPI, protein-small molecule, FunSites and

allosteric sites for both fly and human datasets. When examining the likelihood for

variable residue clusters to lie close to FunSites, for human MXE events, the p-value

is not significant due to the low sample size (i.e. our functional site prediction protocol

was not able to predict many sites because the FunFam involved have low DOPS

score (<70, See Methods)).
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Figure 4.26: Proportion of variable region clusters in MXE events that lie close to
functional sites compared to the number of random clusters that lie close to functional
sites. NOTE: The number of human MXE events with FunSite predictions is small.

4.4.4.1 How often do variable residues/clusters in MXE events lie close to pu-

tative cancer mutation sites

A number of studies that have functional residues (i.e. protein and ligand binding

sites) to be in the vicinity of cancer mutation sites (David and Sternberg, 2015; Jubb

et al., 2016; Yamada et al., 2016). We therefore we investigated whether if COSMIC

cancer mutation residues coincide with both MXE variable residues and functional

residues. Putative cancer mutations from the COSMIC database were mapped to

44 of our human MXE events. We annotated 30 of these events with structures.

We then determined if the variable residues/clusters in these MXE events were close

to COSMIC mutation residues. We found that 23 of the MXE events were close to

COSMIC residues (statistically significant with e-value <0.01, compared with random

models). We obtained the same results for both per-residue and per-cluster analyses.
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We checked if these events were also close to functional residues and found 21 of the

events were close.A significant number of cosmic mutations seems to be affecting

the MXE clusters that are close to functional sites, suggests cancer mutation could

be affecting function associated with the MXE functional switching events. Section

4.4.6.3 below, presents an example where the variable residues coincide with both

COSMIC mutation residue and known PPI sites.

4.4.5 How often do MXE events involve a significant change in

physiochemical properties of the variable residues

4.4.5.1 Variable residues close to functional sites

For MXE events where variable residues lie close (<4Å) to functional sites, we com-

pared the physiochemical properties of the equivalent residues between the two iso-

forms using McLachlan’s physiochemical matrix. We transformed the McLachlan

scores such that the higher the McLachlan score, the more dissimilar the two residues.

We summed up all the McLachlan similarity scores ( i.e. for every pair of variable

residues) and divided by the total number of variable residues examined, to give an

average score for the splice pair we were comparing.

For the fly non-DSCAM dataset, there are significant physiochemical changes in

residue properties for more than 78% of the variable regions close to FunSites, PPI

sites, PSI sites and allosteric sites, which have average McLachlan scores above 5.5

(See Figure 4.27).
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Figure 4.27: Distribution of average McLachlan scores for changes in variable MXE
residues located close (<4Å) to the different types of functional sites (Fly,non-DSCAM)
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For the fly DSCAM dataset, more than 79% of variable region changes close to al-

losteric sites have average Mclachlan scores above 5.5 (See Figure 4.28). Whilst 65%

of variable region changes close to ligand binding and interfaces, and 57% of variable

region changes close to FunSites have high average Mclachlan scores (>5.5). Thus,

fly DSCAM MXE events are more likely to involve a profound change for residues lying

close to allosteric sites than interfaces and ligand binding sites.

Figure 4.28: Distribution of average Mclachlan scores for changes in variable MXE
residues located close (<4Å) to the different types of functional sites (Fly, DSCAM)
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Similarly to the fly non-DSCAM dataset, more than 74% of the variable region

changes for FunSites, PPI sites, PSI sites and Allosteric sites have average McLach-

lan scores of above 5.5 for the human dataset(See Figure 4.29). Thus, MXE events

which can be mapped to structure show a significant tendency to lie close to a known

and/or predicted functional site and if they do they are likely to be associated with a

significant change in their physiochemical property.

Figure 4.29: Distribution of average McLachlan scores for changes in variable MXE
residues located close (<4Å) to the different types of functional sites (Human)

4.4.5.2 Physiochemical changes of Variable residues not located close to func-

tional sites

We also calculated the physiochemical property of variable residues not located close

to functional sites. We obtained result similar results to those for variable residues that



CHAPTER 4. PROTEIN STRUCTURE AND FUNCTION ANALYSES TO
UNDERSTAND THE IMPLICATIONS OF ALTERNATIVE SPLICING 186

are close to functional sites, with most of them undergoing significant physiochemical

changes (average McLachlan scores >5.5, See Figure 4.30).

Figure 4.30: Distribution of average McLachlan scores for changes in variable MXE
residues more distant from functional sites

We examined whether variable residues that are closer to functional sites (<4Å)

have more significant changes in physiochemical properties than those that are dis-

tant. Using a strigent cutoff of 6, for the fly non-DSCAM and human dataset, there

is a higher proportion of MXE events with McLachlan score >6 for variable residues

that are closer to functional sites, but this is not statistically significant. We obtained a

conflicting result for the Fly DSCAM dataset where variable residues that are distant

to functional sites have a higher proportion of MXE events with McLachlan score >6.

Overall, these results indicate that in general the MXE events produce significant

changes in physiochemical properties of the MXE regions, regardless of whether they

are close to functional sites or not.

4.4.6 Some examples of proteins displaying likely functional shifts

following MXE event

In this section, we present a few examples to illustrate the impacts of MXE events on

the function of the proteins.
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4.4.6.1 Collapsin Response Mediator Protein (CRMP-PA versus CRMP-PB)

The Collapsin Response Mediator Protein (FBgn0023023) is a Dihydropyrimidinase

enzyme (EC 3.5.2.2) that catalyzes the chemical reaction:

5, 6 − dihydrouracil +H(2)O <=> 3 − ureidopropanoate. (4.2)

It is predicted to be involved in biological processes such as centrosome localization,

pyrimidine nucleobase biosynthetic process, and positive regulation of Notch signaling

pathway.

Currently, there is no experimental structure for the fly isoforms (CRMP-PA and

CRMP-PB). The MXE exons can be mapped to FunFam (3.20.20.140.FF40287). This

FunFam is populated with Dihydropyrimidinase sequences. We modelled both of the

isoforms using the same template (CATH domain 1gkpC02) from the FunFam. The

models generated have a good model with GA341 score of 1 and normalised DOPE

score of -0.71 suggesting they are of good quality. The structures share a high struc-

tural similarity (SSAP Score above 91) and sequence similarity (79%) (See Figure

4.31 for a structural superposition with the splice regions highlighted).
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Figure 4.31: The splice regions of the protein isoforms CRMP-PA(orange) and
CRMP-PB (green)

We used the program APBS to calculate surface potentials of the two isoforms.

Adaptive Poisson-Boltzmann Solver (APBS) is a software package which models

biomolecular solvation by solving the Poisson-Boltzmann equation (PBE) (Baker et al.,

2001). PBE is a popular continuum model used to describe electrostatic interactions

between solutes in salty, aqueous media. We can see from Figure 4.32 that the sur-

face potential differs between the two isoforms. Over 80% of exposed splice region in

CRMP-PA is positively charged. In contrast, the surface potential for CRMP-PB has a

more negative charge that covers 60% of the exposed splice region.

We found out that there is a change in the zinc-binding residue 192, with a histidine

in isoform CRMP-PA and a glycine is found in isoform CRMP-PB. This change is likely

to disrupt the binding of the zinc molecule in the CRMP-PB isoform (See Figure 4.33).
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Figure 4.32: The surface potential of the splice regions (CRMP-PA and CRMP-PB)

Figure 4.33: The change of histidine residue in CRMP-PA to Glycine residue in
CRMP-PB may disturb the zinc metal binding. The three purple spheres are the
zinc ions.
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4.4.6.2 Glutamate C-alpha protein (Glucaplha-PA versus Glucaplha-PC)

The Glutamate C-alpha protein is a glutamate-gated chloride channel. As the protein

name suggests, it is a ion channel gate that mediates chloride transport. As described

in UniProt, the protein has a main extracellular domain of about 200 residues, followed

by 4 transmembrane helices. The MXE events occur in the extracellular region. They

are mapped to the Glutamate-gated chloride channel c FunFam (2.70.170.10.FF2363).

We extracted the segments of the two isoforms, which are mapped to the FunFam,

and performed a sequence alignment between them. (See Figure 4.34) There are

about 24 residues that make up the splice region.

Figure 4.34: The sequence alignment of the mapped region of the isoforms
Glucaplha-PA and Glucaplha-PC. The splice region is shown in black.

We used the FunMod modelling pipeline to model structural domains for both iso-

forms using the same template (PDB 5cfb) from the FunFam, and obtained good

models for both (GA341 score of 1 and normalised DOPE score of -0.29). The iso-

form model structures shared a high structural similarity (SSAP Score above 94.6)

and sequence similarity (79.1%) (See Figure 4.35 for the structures).
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Figure 4.35: The 3D structural model of protein Glucaplha-PA and Glucaplha-PC.
The splice regions are colored in a darker shade.

We mapped residues from each MXE exon onto the structural representative. We

inspected changes in the residues in the MXE region and found a residue change at

position 41 as Glucaplha-PC has a lysine residue whilst Glucaplha-PA has a threonine

residue at this position. We used mCSM, a protein-protein affinity mutation predictor

(Pires et al., 2014), to find out the effect of this change. The program predicted the

residue change to be destabilising (See Figure 4.36).
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Figure 4.36: Different residue usage at a protein interaction site: lysine residue in
Glucaplha-PC versus threonine residue in Glucaplha-PA. The program mCSM (Pires
et al., 2014) predicted this change to have destabilising effect on protein-protein affin-
ity. (a) Glucaplha-PC has lysine residue at position 41 (b) Glucaplha-PA has threonine
residue at position 41 (c) The mCSM prediction result

4.4.6.3 Pyruvate kinase (PKM-004 (ENSP00000334983) versus PKM-008

(ENSP00000457253))

The PKM gene codes for a pyruvate kinase. Both the isoforms were mapped to 4

FunFams. The sequences for the first three domains are identical. The MXE event

we were interested is in the fourth domain. Besides the splicing region, PKM-004

has an additional exon spliced into this domain (see Figures 4.37 and 4.38 for more

details). Overall, there are considerable residue changes in the MXE region (see

Figure 4.39.)
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Figure 4.37: Protein structures of the PKM isoforms. The MXE event we were inter-
ested is in the fourth domain involving FunFam 3.40.1380.20.FF.2481.

Figure 4.38: Sequences from domain 4 for the 2 isoforms. The splice regions are
colored orange. PKM-004 contains 46 additional residues, colored light blue.

Figure 4.39: The sequence alignment of the PKM MXE region. Variable residues are
colored red.
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There is a known structure available for PKM-004 (PDB ID 1t5a) and domain 4

corresponds to CATH domain 1t5aA01. However, there is no known structure avail-

able for PKM-008. We generated a good model for this isoform using the FunMod

platform, with GA341 score of 1 and normalised score of -0.87 using 1t5aA01 as the

template. Overall, the sequence similarity between isoforms is high (77%) and the

SSAP score is very good, 81. Figure 4.40 illustrates the superposition.

Figure 4.40: Structural superposition of domain 4 of the two isoforms. The blue
structure is PKM-004, the yellow is PKM-008. The extra exon sequence in PKM-004
is colored light blue.

We inherited the functional residues of PKM-004 onto PKM-008 to compare the

isoforms. There is a ligand (beta-fructose-1,6-diphosphate) binding site located close

to the MXE region. Close to this binding site there is a change of residue at position

433, a ligand binding residue. In addition, the ligand binding site also lies close to the

extra exon found only in PKM-004. Therefore, we speculated that the binding of the

ligand could be modified in isoform PKM-008 (See Figure 4.41).
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Figure 4.41: The additional exon in PKM-004 (residues colored in light blue in Fig-
ure (a)) is involved in the ligand binding with beta-fructose-1,6-diphosphate. These
residues are circled in light blue circles also in the ligand-binding plot from PDBsum
(De Beer et al., 2013) shown in (b). The variable MXE residues is circled in orange in
the ligand-binding plot shown in (b).

In addition, the variable residues within the MXE region may disrupt protein-complex

formation. PKM has been demonstrated to oligomerise as a tetramer (Dombrauckas

et al., 2005). To form the tetramer, domain 4 of the PKM monomers interact. There

are many variable residues located near this interface (15 residues, See Figure 4.42).

We used mCSM (Pires et al., 2014) to assess the effect of the MXE variable residue

changes on protein-protein affinity. 13 out of the 15 variable residue changes were

found to be destabilising to the complex (See Figure 4.43). We therefore speculated

that the interactions between these domain 4 regions of the protein may be disrupted,

and that therefore, PKM-008 may only form a dimer (See 4.44).
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Figure 4.42: Illustration of the two PKM isoforms with MXE variable residues shown
in black.
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Figure 4.43: Summary of the mCSM predicted changes in stability for MXE residue
changes located near the protein interface in PKM-008.
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Figure 4.44: The dimeric and tetrameric form of PKM showing MXE variable residues
in the dimer interface (on the left). The right hand picture shows the location of the
dimer interfaces in the tetramer. These interactions are likely to be affected by the
changes in the MXE variable residues. This region is highlighted by a black circle in
the figure on the right for PKM-008.

Most somatic cells produce energy predominantly through oxidative phosphory-

lation, whereas cancer cells produce energy mainly through the less efficient gly-

colytic pathway, followed by lactic acid production under aerobic conditions (Warburg,

1956). PKM-004 (commonly known as PKM2) has been shown to contribute to cancer

metabolism (Wong et al., 2015). PKM2 dimers and tetramers possess low and high

levels of enzyme activity, respectively. The PKM2 dimer reduces the flux of glycoly-

sis, therefore redirects all the glucose-derived carbon towards biosynthesis of cellular

building blocks, and the conversion of of pyruvate to lactate. On the other hand, the

PKM2 tetramer promotes the flux of glycolysis and the massive productive of ATP via

a respiratory chain (See Figure 4.45.)
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Figure 4.45: Schematic illustration of the role of PKM2 in cancer metabolism

Our analyse suggest that PKM-008 that is unlikely to form a tetramer. We mapped

the cancer associated mutations from the COSMIC database to both PKM-004 and

PKM-008. The COSMIC residues coincide with variable residues in the interface

of both isoforms. Currently, no experimental studies have been done on PKM-008

to examine involvement in cancer metabolism. However, our analysis suggests that

there may be a role.
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Figure 4.46: COSMIC mutation residues lie close to the interface of both PKM iso-
forms. MXE variable residues were colored in black, COSMIC mutation residues were
colored in purple/orange.
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4.5 Conclusions

Mutually exclusive exons are characterised by coordinated splicing of exons such

that only one of the two exons is retained, while the other is spliced out. These events

are enriched in proteomics data, suggesting a functional role. Previous analysis by

other groups have demonstrated that the MXEs are evolutionary conserved among

vertebrates (Abascal et al., 2015b) and also demonstrated that these MXE regions

are highly sequence similar and that MXE events do not usually disrupt the structural

domain. However, to date, there are no reported studies in the literature on the likely

functional consequences of MXE events, using structural models.

In this chapter, we first identified the MXE events in human and fly datasets

using an in-house prediction protocol. Most of these MXE genes are associated

with membrane proteins (associated with cell-cell adhesion, signal transduction and

molecule/ion transport) and enzymes (e.g. kinases, transferases, hydrolases and ox-

idoreductases). We managed to annotated about 50% of human and fly MXE with

structural information (i.e. known structures, structural models built using the FunMod

modelling platform described in Chapter 2 and structural mapping) and demonstrated

that about 15% of the MXEs are disordered.

For those MXE events which can be mapped to a structure, they usually have less

than 10 variable residues and they are more exposed to the solvent than the whole

spliced region. Variable residues usually exhibit a significant changes in their physio-

chemical property.We also demonstrated these variable residues have a tendency to

lie close to a known or predicted functional site. These results suggest MXE events

may have a number of important roles in cells generally and also in cancer.



Chapter 5

Conclusions

The last few years have been an exciting era for the protein structural modelling

community. There have been substantial improvements in residue-contact predic-

tion thanks to the use of direct coupling analysis (Jones et al., 2012; Kamisetty et al.,

2013; Marks et al., 2011; Nugent and Jones, 2012), better statistical machine learning

(Adhikari and Cheng, 2016; Eickholt and Cheng, 2012; Feinauer et al., 2014) and the

huge amount of new sequence data that is being provided by metagenome analyses

(Ovchinnikov et al., 2017). Many groups are now employing residue-contact predic-

tion to enhance the performance of their methods (Adhikari and Cheng, 2016; Park

et al., 2016). Better profile methods such as conditional random forest (Joo et al.,

2016) and Markov random fields (Ma et al., 2014) have improved the accuracy of

the template-selection process. There have also been improvements in model quality

assessment methods (through the use of integrated approaches and promising new

approaches using deep learning) (Cao et al., 2016; Jing et al., 2016; Uziela et al.,

2017, 2016) and the structural refinement category (with improved energy functions

and MD simulations) (Della Corte et al., 2016; Feig, 2016; Kim and Kihara, 2016; Lee

et al., 2016; Park et al., 2016).

In the first work chapter, we demonstrated the value of organizing domain super-

families into functional families (FunFams) for template selection in modelling protein

monomers. FunFams group relatives that are highly likely to be of similar structure and

function. They are generated using a new functional sub-classification protocol named

FunFHMMer (Das et al., 2015) which constrains clustering of relatives by ensuring

that any new relatives joining a particular cluster match the highly conserved func-

tional determinants for that cluster (for example likely specificity-determining residues

that influence the type of compounds bound or protein interactions).

The improvement in accuracy for template selection relative to the HMM-based

strategy used by HHsearch is therefore likely to be owing to the fact that the Fun-
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Fam template-selection process only allows very remote relatives to be selected if

they share the same or highly similar residues at key functional sites. Although HH-

search uses a powerful search strategy for remote homologues, there is no explicit

constraint to ensure those equivalent functional residues are matched. Preliminary

results demonstrated that FunFams models (modelled using remote templates) have

a higher local agreement with the native structure compared to HHsearch models.

Having a local similarity is important when we are modelling enzymes or protein com-

plexes, where a better representation of functional sites is crucial. Further investiga-

tion could be done to confirm this finding.

We developed a structural modelling platform named FunMoD (Lam et al., 2017,

2016) that utilised FunFams to select the structural template. Since FunFams only

cover about 70% of the structural domains in CATH, we employed also the HHsearch

strategy that uses different structural template libraries to increase the structural cov-

erage of human and fly proteomes. This modelling platform has been applied to model

up to 70% of structurally uncharacterised sequences in human and fly genomes. In

addition, our analysis demonstrated the advantages of different template libraries (i.e.

there are many query sequences for which only one strategy can build a good quality

model).

In our study, we tested a few model quality assessment methods and found that

all of them performed similarly in selecting the best model. This result conflicts with

results obtained by other research groups. In theory, recent advanced methods such

as ProQ2 (Ray et al., 2012) and ModFOLDclust2 (McGuffin and Roche, 2010) (that

have been performed well in the recent CASP model quality assessment category)

should outperform classical statistical potential methods such as nDOPE (Shen and

Sali, 2006). This agreement between the methods may be due to the low number of

models built for each target (i.e. It is easy to select the best model from 10 decoys)

or the benchmark target dataset used (that consists of mainly close homologue query

targets). Further studies could be carried out to investigate this issue.

We also tested two different alignment methods (HHsearch and MAFFT) and
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found the HHsearch alignment method to be better. We speculate this this is due to

the maximum alignment algorithm employed by HHsearch (that maximises the num-

ber of correctly aligned pairs of residues) and also the filtering step that removes

sequences that are too distant. In order to further improve our template and se-

quence alignment protocol, newer/better sequence alignment methods such as con-

ditional random forest and Markov random field can be explored. Also, the inclusion

of additional templates may improve the model quality, particularly by extending the

coverage of the query sequence (Larsson et al., 2008) or when the templates have

structurally complementary (Chakravarty et al., 2008). Multiple templates also provide

conserved distance constraints, which are not available to single-template protocols

(Cheng, 2008).

Future work could explore the use of better loop/side-chain modelling protocols

(i.e. SCWRL4 (Krivov et al., 2009)), newer structural refinement protocols that in-

volve running MD simulations with physics-based force fields (e.g. AMBER ff14SB

(Maier et al., 2015), and CHARMM36m (Huang et al., 2017)), hybrid potentials which

employ both knowledge-based and physics-based energy functions, building missing

parts in the template regions using ab initio methods, and possibly using co-evolution

information in the structural modelling platform.

In the second work chapter, we demonstrated the value of FunFams in protein

complex modelling. Domain-domain interfaces in FunFams tend to be more con-

served in FunFams than across the CATH superfamily. Intra-chain interfaces are

more conserved than inter-chain interfaces. The difference between conservation

within FunFams and across a superfamily is particularly pronounced for inter-chain

interfaces especially at low sequence identity. Previously, Aloy et al. demonstrated

that pairs of proteins with sequence identity >40% tend to interact similarly. In our

analysis, we found a lot of domain-domain interfaces in FunFams to be conserved

even when sequence identity is lower than 40%. This is a very encouraging result

and suggests that it is capable to use FunFams in protein complex modelling.

We used FunFams in two different modes of template based complex modelling
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methods, one based on sequence similarity and one on structural similarity. We

demonstrated the value of using FunFams to better identify structural templates for

the sequence based methods. Our FunFam based protocol gave significantly more

good quality models compared to a BLAST based protocol and slightly better than

an HHsearch based protocol. This again suggests that it may be valuable to use a

functional family-based protocol to guide template selection in binary protein complex

modelling.

The quality of models of the structural similarity based modelling methods is highly

dependent on the template library. We devised a new template library using FunFams

to remove the remove the redundancy. The template library gave 10% more good

quality models than the widely used publicly available DOCKGROUND template li-

brary. Our protocol managed to rank 44% of good quality models in the Top10. This

is an encouraging start. It is difficult to compare this result against the results of other

groups, since they do not report these statistics. Further work could be carried out

to improve the protocol by incorporating methods employing energy based functions

(i.e. FiberDOCK (Mashiach et al., 2010)) or developing a machine learning approach

based on different molecular distributors. Clearly this work would need to subject to

independent review by participation in CAPRI.

However, we found some domain-domain interactions within FunFams have low

conservation. Possible reasons are due to the pollution of the FunFams (FunFams

are polluted with sequences that are annotated with diverse GO terms), different

multi-domain architectures (MDAs), different oligomeric states, crystal contacts and

other possible issues. Ongoing research in the Orengo group is involved with sub-

classifying these polluted FunFams into functionally pure clusters.

Although there has been significant improvement over the years in complex mod-

elling, there are still very challenging cases that involve multiple binding patches,

cases that involve small interface regions or cases where interface residues lie in

loop regions (Lensink et al., 2017; Soni and Madhusudhan, 2017). Further research

is clearly still needed to improve the complex modelling.
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In the final work chapter, we employed our structural modelling tool to understand

the implications of alternative splicing. Alternative splicing (AS) has been suggested

as one of the major processes expanding the diversity of proteomes in multicellular

organisms. We focused on mutually exclusively exons (MXEs) for which there is more

evidence of translation into proteins from proteomic experiments. Previous analyses

by other groups have demonstrated that the MXEs are evolutionary conserved among

vertebrates (Abascal et al., 2015b) and also demonstrated that these MXE regions are

highly sequence similar and that MXE events do not usually disrupt the structural do-

main (Tress et al., 2017). However, to date, there are no reported large-scale studies

in the literature on the likely functional consequences of MXE events, using structural

analysis.

We first identified the MXE events in human and fly datasets using an in-house

prediction protocol. Most of these MXE genes are associated with membrane proteins

(associated with cell-cell adhesion, signal transduction, and molecule/ion transport)

and enzymes (e.g. kinases, transferases, hydrolases, and oxidoreductases). We

managed to annotate about 50% of human and fly MXE with structural information (i.e.

known structures, structural models built using the FunMod modelling platform and

structural mapping) and demonstrated that about 15% of the MXEs are disordered.

For those MXE events which can be mapped to a structure, they usually have less

than 10 variable residues and they are more exposed to the solvent than the whole

spliced region. Variable residues usually exhibit significant changes in their physio-

chemical property. We also demonstrated these variable residues have a tendency to

lie close to a known or predicted functional site. Coupled with the fact that MXE splic-

ing tends to be preserved at the proteomics level, our results suggest MXE events

may have a number of important roles in cells generally and also in cancer.
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