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Abstract 

The main organic component in dentine is collagen type I, which provides mechanical 

support and strength. Any cross-linking or genetic mutations occurring during collagen 

formation can cause incorrect collagen fibril formation. Osteogenesis Imperfecta 

associated with Dentinogenesis Imperfecta (DI type I) and Dentinogenesis Imperfecta in 

teeth alone (DI type II) are genetic disorders which may affect the ultrastructure of 

dentinal collagen fibrils. Very little is known about the possible changes in collagen 

ultrastructure and impact on physical properties of dentine, particularly in primary teeth. 

 

Aim: Identify the ultrastructure and investigate the mechanical properties of dentinal 

collagen; 

1. Measurement of bulk dentine hardness. 

2. Exposure of collagen by applying a demineralisation protocol. 

3. Investigation of the differences in collagen ultrastructure between DI types I&II and 

control primary teeth. 

 

Methods: Primary teeth were categorized in three groups with five teeth per group: 

Control, DI type I and DI type II. Samples were sectioned and the median hardness was 

measured by Wallace Indenter and calculated. Samples were prepared using a 

demineralisation with different agents and deproteinisation techniques in each group; 

37% Phosphoric acid for 15 seconds, then 6.5% Sodium Hypochlorite for 5 seconds, 

and 17% EDTA for 30 minutes to expose collagen networks. Fourier Transform 

Spectroscopy (FTIR) was used to analyse demineralisation. Exposed collagen fibril 

ultrastructure was characterised by using Scanning electron microscopy (SEM) and 

Atomic force microscopy (AFM).  

 

Results: Dentine hardness value significantly decreased in DI types I and II compared to 

the control group (P ≤ 0.0001). FTIR showed phosphate peak reduction and amide I 

peak intensification after demineralisation in all groups with Phosphoric acid, indicating 

effective demineralisation. In control teeth, fibrils were exposed with uniform 

arrangement and collagen D-band periodicity was homogenous. In DI type I, collagen 

fibrils were identified but D-banding periodicity was not clearly visible. The collagen fibrils 

in DI type II were difficult to identify, due to smear layer formation subsequent to 

demineralisation. Demineralisation with EDTA was performed on both DI teeth groups to 
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expose collagen ultrastructure. Collagen fibrils were identified but D-banding periodicity 

was not clearly visible. Both DI types collagen fibrils demonstrated local swellings in 

multiple areas. 

 

Conclusion: There was a significant difference in dentine hardness between control and 

DI primary teeth (P ≤ 0.0001). On a microscopic level there were differences in collagen 

structure between the three groups. 
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Chapter 1 Introduction 

 

1.1  Collagen structure  

 

1.1.1  Definition  

 

Collagen provides mechanical support and strength to tissues and it is constructed as a 

complex hierarchical arrangement in the extracellular matrix and connective tissue. The 

human body contains 30% collagen and approximately 90% of the collagen is type I (Di 

Lullo et al. 2001). 

 

1.1.2				Types	of	collagen	
Numerous collagen types are present in human tissues: 

• Fibril forming collagen 

• Non-fibril forming collagen 

• Fibril-associated collagens with interrupted triple helices (FACITs) 

• Network-forming collagens 

• Transmembrane collagens 

• Endostatin-producing collagens 

• Anchoring fibrils 

• Beaded-filament-forming collagen 

 

The two largest groups of collagens: are 1) fibril forming and 2) non-fibril forming. The 

first type includes collagen types I, II and III while the second type includes type IV, VIII 

and X collagen fibrils. 

 

The morphology of collagen can be altered by the fibril configuration (Kadler, 2007). 

Collagen structure is composed of three polypeptide chains; one of α2, and two of α1  

that build the triple helical structure (Rest and Garrone, 1991a). These polypeptide 

chains have a repeating system of amino acids; their arrangement is either in Glycine-

Proline-X arrangement or Glycine-X-Hydroxyproline, where X indicates any other type of 

amino acid. The triple helix is made up of the three polypeptides chains that intertwine at 

the Glycine residue (Rest and Garrone, 1991b). Every Glycine chain has an Hydrogen 
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atom that attaches to Nitrogen by a peptide bond, that links to the nearby polypeptide by 

carboxy (C=O) to form the helical structure. The amino acids on each chain repeat at 

every third position so the chain condenses to form a helical structure. Changing the 

type of amino acid in the chain will prevent the formation of the triple helix (Kadler et al., 

1996). 

 

The majority of the fibril forming collagens consist of collagen type I, then type II and III.  

Bone, vertebrae, dentine, tendon ligaments and skin are predominantly comprised of 

collagen type I (Abou Neel et al. 2013). This research will focus on fibrillar collagen 

(predominantly type I), so will be the main focus of the rest of this thesis. 

 

1.1.3		Collagen	synthesis	
 

For type I collagen to be synthesised, procollagen is made by fibroblast-lineage cells that 

has globular C- and N- propeptides, which form the terminals of the triple helix structure, 

and formulate the collagen monomer that transforms to collagen fibril by monomer 

assembly. The structure of type I collagen fibril is made up of polypeptide which form 

sequenced chains, as shown in figure 1-1.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1-1: Collagen type I Synthesis and Structure of collagen molecule. Pro-collagen is 

contained of two alpha-1 chains and one alpha-2 chain tangled into a triple helix. Pro-
peptide domains at the carboxy-terminals and amino-terminals are cleaved, causing in 

formation of mature collagen. Fan et al. Tissue Repair (2012) 
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Procollagen is formed by gathering the three alpha chains (Gelse 2003). Subsequently, 

procollagen is secreted into the extracellular matrix by a cleavage process and forms 

tropocollagen. which assemble by cross linkage to create a collagen fibril. The primary 

stabilisation of the 3D tropocollagen structure is by hydrogen bonding, whilst the 

covalent bond stabilises the collagen fibril and within the tropocollagen molecules 

(Figure 1-2).  

 

The arrangement of these molecules in a quarter-staggered arrangement forms the 

overlapping region called “D-banding periodicity, (the distances between two adjacent D-

bands is approximately 67nm) and each D-band represent five tropocollagen molecules 

(Hodge and Petruska, 1963), as shown in Figure 1-3. This D-period represents the 

overlap and gap zones (Chapman et al. 1990), where the light bands indicate an overlap 

area and the dark bands indicate gap areas. More collagen molecules are found in the 

overlap than the gap regions, as the molecules in the overlap area are strongly 

saturated, and create a crystalline structure (Wess et al., 1998). Collagen fibrils 

resemble a cord like structure, and this topological feature is caused by repetition of a 

coil of the molecules of the collagen and the filament interactions (Bozec et al., 2005). 
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Figure 1-2: Tropocollagen formation and assembly by covalent bond to form collagen fibre 

(Adapted from Griffiths et al 2000) 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 
Figure 1-3: Nanoscale of type I collagen fibril in bone tissue showing the alternative gap 

and overlap zones in D-periodic spacing which is approximately equal to 67 nm. Copyright 
© 2012 Bone Biology And Mechanics Lab (bbml) 
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1.1.4		Function		of	collagen:	
 

Bone, vertebrae, dentine, tendon ligaments and skin are predominantly comprised of 

collagen type I and non-collagenous proteins (Abou Neel et al. 2013). Collagen provides 

numerous functional roles in the body. The main function of collagen is mechanical, such 

as; scaffolding, restoring and morphogenesis (Abou Neel et al. 2013). Force 

transmission between the bone and the adjacent tissues is one of the collagen functions 

that is associated with the collagen in tendons and ligaments, as well as joining between 

muscles and bone to support the movement of the body skeleton. 

 

In mineralised tissues as bone and dentine, collagen is joined with hard substances such 

as hydroxyapatite. Collagen in these mineralised tissues provides an amount of 

flexibility, and helps these tissues with resistance to fracture. On the other hand, 

collagen in skin, blood vessels, cartilage and muscles provides a degree of flexibility.  

The corneal tissues also contain collagen, but the arrangement of the collagen networks 

are well aligned in order to enhance the optical characteristic of the tissue and deliver its 

mechanical stability (Abou Neel et al. 2013). 

 

This research will focus on fibrillar collagen (predominantly type I), as this is the type of 

collagen found in dentine. There is limited research regarding collagen in primary teeth 

and in Dentinogenisis imperfecta (DI) teeth. Thus, the main concentration in this 

research is on dentine in primary teeth in healthy and DI teeth. The composition and 

collagen configuration of dentine is described in the next section. 
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1.2	Dentine	

The structure of any given human tooth consists of an anatomic crown and one or more 
roots (Figure 1-4). The internal tooth structure is composed of a pulp chamber 
surrounded by a relatively tough material known as dentin and an external layer of a 
very hard material known as enamel (Aiello and Dean, 2002) 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.1	Dentinogenesis		
 

Odonotoblasts originate from the mesenchymal cells of the dental papilla, and are 

important in dentine formation. They produce a complex arrangement of unmineralised 

predentine in a process that arises after enamel formation. Dentinogenesis is the 

process of conversion of the unmineralised predentine into mineralised dentine (Hart & 

Hart, 2007). The structure of dentine is 20% organic component, 70% inorganic and 

10% water.  The inorganic component is composed of hydroxyapatite mineral matrix 

(HA). Of the organic phase, 90% is collagen type I, with dentine phosphoprotein (DPP) 

the main of the non-collagenous part of the organic matrix, which is about 50%.  

 

Odontoblasts play an important role in dentine formation by secreting type I collagen into 

the predentine layer, during the bell stage of tooth formation. Odontoblasts secrete the 

Figure 1-4: Vertical section of tooth, showing the internal structures. 
(Courtesy of Aiello and Dean, 2002) 
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organic matrix by migration and elongation of the cells towards the centre of the dental 

papilla, leaving cytoplasmic extensions, known as the odontoblast process. 

Odontoblasts then increase in their size, migrate and the matrix becomes dominated by 

parallel oriented type I collagen towards the dentino-enamel junction that forms 

mineralised dentine that is known as “Primary Dentine” (Barron et al., 2008). The smaller 

extracellular space results in more tightly packed collagen fibrils that are then 

mineralized. Secondary dentine forms after completion of root formation. In case of 

tertiary dentine, it is created when any external stimuli such as caries or trauma disturb 

the tooth.  

 

	

1.2.2		Dentine	structure		
 

Type I collagen is the major component that found in the organic matrix and type III and 

V are present in minor amounts, with the remaining 10% of organic matrix is consisting 

of non-collagenous protein. In addition, the most abundant protein found is dentine 

sialophosphoprotein (DSPP) that is made of dentine phosphoprotein (DPP) and dentine 

sialoprotein (DSP).  

 

These non-collagenous proteins are formed by odontoblasts and are important in 

dentinal mineral deposition regulation (Nanci, 2008). The DSPP molecule has a C-

terminal proteolytic cleavage product that is for DPP while the N-terminal proteolytic 

cleavage product is DSP (MacDougall et al., 1997). Due to the capability of DPP to bind 

with huge amount of calcium, it has been proposed that DPP plays an important role in 

the mineralisation of dentine (Milan et al., 2006). Nevertheless, the function of DSP is 

still not fully understood. It has been suggested that DSP can stimulate the growth of 

hydroxyapatite as part of a reaction of matrix mineralisation crystals, since they are more 

dominant in some of dentinal parts (A. Boskey et al., 2000).  

 

One of the non-collagenous proteins found in predentine is Proteoglycan. The main core 

of it consists of polypeptides that attach to one or multiple glycosaminoglycan (GAG) 

chains. The main function of proteoglycan is to maintain and stabilize the fibrils of 

collagen. 
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1.2.3		Dentine	composition	
 
Dentine is composed of three types (as shown in figure 1-5): 

1) Primary dentine 

2) Secondary dentine 

3) Tertiary dentine. 

 

The first type is primary dentine, which forms the majority of the dentine structure. 

Primary dentine develops during teeth formation, with mantle dentine as the first layer 

that forms, and is located at the dentine-enamel junction (DEJ). Dentine in this area is 

less mineralised and contains collagen and non-collagenous proteins.  

 

The formation of secondary dentine starts when the teeth begins to erupt and during 

formation of the roots. This formation is carried out by the same odontoblasts that 

formed primary dentine, and they continue in dentine deposition but in slower pace. 

Secondary dentine formation occurs due to normal physiological factors or different 

stimulus (Avery, 2002).  Histologically, primary dentine can be distinguished from 

secondary dentine by a demarcation line. This is due to irregularity of the dentinal 

tubules and the uneven deposition of organic matrix. These changes in dentinal 

deposition can be observed at the edge of the pulp chamber (Nanci, 2008). 

 

The third type of dentine is tertiary dentine that is known as “reparative” dentine, which is 

formed as consequence of pathological stimuli, such as caries, attrition or dental 

treatments.  The deposition of dentine only at specific positions by damaged 

odontoblasts or undifferentiated cells recruited from pulp cells that differentiate to 

become odonotoblasts as a reaction to injury. The dentine deposition rate depends on 

the degree of injury. In severe injury, rapid deposition of dentine occurred, and cells 

become trapped in the newly formed matrix affecting the tubular pattern, resulting in 

irregular or absent tubules arrangement in tertiary dentine (Mjör, 2009).   
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Figure 1-5: Histology of dentine under light microscope, showing types of dentine in 
longitudinal section of the tooth; A) Tertiary dentine, B) secondary dentine and C) Primary 

dentine. (M. Islam, 2010) 

 

 

	

1.2.4		Histology	of	dentine		
	
Numerous structures of dentine can be recognized under microscope: dentinal tubules, 

peritubular and intertubular dentine, interglobular dentine, incremental growth lines and 

the granular layer of Tomes. The dentinal tubules are formed by odontoblasts processes 

that run across in canaliculations in the dentine layer from DEJ to the pulp. Dentine 

tubules are cylindrical and each tubule diameter alters depending on the age of the 

person. They are approximately 2.5µm in diameter closer to pulp, 1.2µm in the middle of 

the dentine and 900nm next to DEJ (Nanci, 2008). The number of dentine tubules 

increases towards the pulp, with approximately 20,000 tubules per mm2 at the DEJ and 

around 50,000 per mm2 in the pulp (Marshall et al., 1997b). Each dentinal tubule is 

enervated by nerve fibres involved with the odontoblastic process and extracellular fluid 

(ECF). These microtubular components play a role in providing tooth sensation 

(Tidmarsh, 1981). The configuration of dentinal tubules can be observed in two 

curvatures. S shaped curvature that is called primary curvature from outer surface of 

dentine to dentine around the pulp in the coronal section of the tooth (Avery, 2002) 

whereas the secondary curvature is wrinkly in texture. This curvature is formed by 

odontoblasts throughout dentine formation. Figure (1-6) 

A	

B	

C	
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Figure 1-6 Dentinal surface observed under polarized light microscope. (A) the 
characteristic S – shape curvature of dentinal tubules mode of arrangement in Permanent 
dentine. (B) dentinal tubules in Primary dentine keep on a straighter path. (Chowdhary & 

Subba Reddy 2010) 

 

 

The dentine tubules have a branching scheme depending on the location. The major 

branches are found more in the root part where they are more numerous than those in 

the coronal dentine (Nanci, 2008). Each dentinal tubule is engaged by nerve fibers 

involved with the odontoblastic process and extracellular fluid (ECF). These microtubular 

components play a role in providing tooth sensation and nutrition (Tidmarsh, 1981). 

 

Peritubular dentine, or intratubular dentine, is the dentine surrounding the dentine 

tubules. The size of this area is about 1 to 2µm and the quantity volume differs in regard 

to the location from 3 vol% at DEJ to 60 vol% near to pulp (Gotliv et al., 2006). The 

composition of peritubular dentine is made of hydroxyapatite about 60 vol% combined 

with small portion of collagen fiber (GW Marshall et al., 1997). Peritubular dentine has 

less water and organic substances compared to intertubular dentine. It is suggested that 

peritubular dentine is formed by non-collagenous and glutamic acid-rich proteins that are 

a significant inducer for the mineralisation process by encouraging nucleation of the 

apatite which results in high amount of mineralisation of peritubular dentine (Linde, 

1989). In the early phase of dentinogenesis, odontoblasts play an important part in the 

non-collagenous protein foundation near the end of crown formation, which produces 

less arranged peritubular dentine in the root area (Weiner et al., 1999). 
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Inter tubular dentine is found between dentine tubules. The main component is an 

interlaced network of collagen type I, with the collagen fibrils perpendicular to the 

dentinal tubules (Kramer, 1951). Intertubular dentine contains about 45 vol% 

Hydroxyapatite (Marshall et al., 1997), amorphous ground substance containing of non-

collagenous proteins and some plasma proteins (Nanci, 2008).  

 

Figure 1- 7: Scanning electron microscope (SEM) images dentine, showing the dentinal 

tubules in cross section (A) and longitudinal section (B) in primary tooth, scale bar 10 µm. 

(Courtsy of Ibrahim, 2015) 

 

 

1.2.5		Physical	properties	of	dentine:	
	
The hardest tissue in the tooth is enamel, followed by dentine, which is harder than 

cementum. Dentinal tubules make the dentine even harder than bone, because of their 

arrangement and the composition of the organic matrix in dentine. The dentinal tubule 

architecture also provides greater tensile and compressive strengths (Marshall, 1993). It 

is believed that the hardness of dentine is not affected with age (Dalitz, 1962). However, 

it has been found that the permeability is strongly affected by age, when compared with 

dentine in young teeth (Tagami et al, 1993). The dentine hardness varies, depending on 

the location; it is believed that the hardness of deep dentine is reduced compared to 

superficial dentine. The arrangement of minerals and distribution between the mesh of 

the collagen in intertubular dentine has a significant role in increasing dentine hardness 

(Kinney et al, 1999). However, other studies found that the hardness of inner dentine 
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near to the pulp is constant up to the dentine surface close to DEJ in permanent teeth 

(Fuentes et al., 2003) and as well as the primary teeth (Mahoney et al., 2006).  

 

 

Calcium and phosphate levels in dentine play an important role on the hardness. The 

higher the mineral levels of intertubular and peritubular dentine, the higher the hardness 

(Hirayanma, 1990). Therefore, the hardness of dentine in permanent teeth is greater 

than primary teeth (Hosoya et al., 2006; Hosoya et al., 2005). Various studies have 

proposed that the alterations in the mineralisation in primary and permanent dentine 

effect the hardness (Johnsen, 1994; Hosoya et al., 2000). This alteration will weaken the 

bonding strength of adhesion restoration materials. In addition, the porosity of primary 

dentine reduces the hardness of it. (Sumikawa et al.,1999). Dentine mechanical 

characteristics are strongly affected with collagen presence in dentine, especially 

collagen type I (Marshall, 1993).  

 

Methods to measure the hardness of dentine have included; abrasion (Wright et al., 
1938; Taketa et al., 1957), pendulum (Karlstrom, 1931), scratching (Burg, 1921; Hodge 
et al., 1933; Totah, 1942) and indentation (Gustafson et al., 1948; Atkinson et al., 1953; 
Caldwell et al., 1957; Hodge, 1936; Phillips et al., 1948; Klinger, 1940). For indentation 
tests, a diamond indenter that has pyramidal configuration is preferred, as the indenter 
penetrates the specimen surface with a specified load (Marshall, 1993). The short 
diagonals of the pyramid configuration of the indenter reduce the measurmaent error. 
Thus, the pyramidal shape indenter penetrates about twice as far into the specimen  as 
the more shallow indenters like Knoop indenter  (Knoop et al., 1939; Lysaght et al., 
1969; Lesheras, 1981).  

 

1.2.6		Collagen	in	Dentine:	
	
Dentinal collagen is more intertwined with crossing fibrils than the collagen in bone 

(Habelitz et al., 2002). The function of collagen in dentine is mainly structural, by 

embracing the extracellular protein matrix together as a well-designed unit (Silver et al., 

2003). A complex network in the spaces between cells, called the extracellular matrix 

(ECM), holds a variety of collagen and non-collagen proteins, such as proteoglycans and 

glycoproteins. Induction of the nucleation of hydroxyapatite occurs due to collagen of 
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dentine that affords nucleation sites (Silver and Landis, 2011). 

 

1.2.7		Ultrastructure	of	Dentinal	Collagen:	
 

In dentine, odontoblasts secrete procollagen arranged into fibres and insert them into the 

predentine (Leblond, 1989). The structure of each collagen molecule is rod-like in shape, 

the diameter is ~1.5nm, and the length is about 300 nm. The density of the collagen 

network increases around the predentine and dentine interface, and decreases in 

density as they get closer to the odontoblast cells (Avery, 2002). Dental collagen 

originates from procollagen, odotoblasts synthesize the dentinal collagen which takes 

place in rough endoplasmic reticulum (RER). The structure of the chain of procollagen 

contains a main central α segment that has two terminal ends: (C-terminal) indicates 

Carboxy and (N-terminal) represents amino propeptides. Between these terminal ends, 

disulphide bonds form and supports the alignment of the triple helix. The modification of 

the synthesized chains is arranged in the endoplasmic reticulum lumen. The modification 

includes elimination of the two terminals of the propeptides chain to be termed a 

tropocollagen. Assembly of tropocollagens happens in extracellular area to create 

microfibril (Minor, 1980). Another extracellular collagen modification occurs post 

translational; lysine residues oxidation arises by a specific enzyme, lysyl oxidase. This 

enzyme is important in the formation of covalent bonding among the molecules of 

tropocollagen, for formulation of collagen fibrils and its stabilization (Minor, 1980). The 

stabilization of the fibrils occurs due to cross-linking of the inter-covelant particles 

caused by alteration of the lysine and hydroxylisine residues. During fibril formation, the 

diameter of the fibrils starts small with limited length, with time and tissue maturation, the 

length and the size of these fibrils increase.  

 

To identify the collagen network structure of dentine, studies have used electron 

microscopy (Lin et al., 1993, Perdigao et al., 1999). Atomic force microscopy (AFM) has 

also been used to identify and analyse collagen fibrils in dentine. Gwinnett concluded 

that dehydrated dentine can cause collapse of the collagen structure, and is prevented 

by preserving the surface of dentine under wet-state (Gwinnett, 1994). Another study 

showed that the collagen of dentine is affected by the etching time. It demonstrated as a 

damage of dentinal collagen structure after increasing the etching time by unrevealed 

collagen fibrils and the difficulty to detect (El Feninat et al., 1998). Habelitz et al detected 
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the collagen fibril structure in permanent teeth by adding a controlled deproteinisation 

method after demineralisation of the dentine with acid etching. D-banding periodicity was 

revealed in the hydrated collagen fibril, between 67 and 68 nm, whilst the distribution of 

the D-banding in the dehydrated samples varied between 57 nm, 62 nm and 67 nm 

(Habelitz et al., 2002). SEM and AFM were used to investigate collagen structure in 

permanent teeth, as well as examining the mechanical properties of dentinal collagen 

and D-banding periodicity (Marshall et al., 1993, Balooch et al., 2008, Fawzy, 2010, 

Bertassoni et al., 2012). Yet, to date, little is known about the ultrastructure of the 

dentinal collagen in primary teeth.  

 

1.2.8		Role	of	dentinal	collagen	in	clinical	dentistry		
	
Collagen is essential in increasing the durability and strength of bond in any dentine 

adhesive system. The competence of adhesive bonding systems relies on the 

micromechanical retention that is produced by infiltration of the resin into the 

demineralized surface of the dentine, in which a hybrid layer will form subsequently 

(Pashley et al., 1995) Nakabayshi et al described the hybrid layer as “a layer that allows 

the impregnation of the resin monomer into the intertubular collagen network and 

dentinal tubules” (Nakabayashi et al., 1982). The hybrid layer was produced by using 

acid etching that is used for collagen exposure, followed by removal of the smear layer 

off the surface of dentine. Numerous studies has been developed to find the ideal 

adhesive system protocol that can be applied to the dentine surface  (Nor et al., 1996, 

Hosoya et al., 2000, Pioch et al., 2003). The key for exposing collagen is to obtain an 

optimum etching time of the dentine surface (Van Meerbeek et al., 1992). Each tooth 

needs to be treated with acid etch to remove the smear layer, any increase in etching 

time will cause excessive demineralisation and thus effect the dentinal structure in 

intertubular and peritubular dentine (Perdigao and Lopes, 2001). Following excessive 

demineralisation, dentine collagen collapses. This then increases the risk of failure due 

to formation of a thick hybrid layer on the dentine surface (Hashimoto et al., 2000). 

Therefore, it is very important to maintain the integrity of collagen structure to achieve 

good adhesion for restorative material. 
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1.2.9		Primary	vs	permanent	teeth	dentine:	
	
The dentine microstructure of primary and permanent dentitions are not the same. In 

primary teeth, the thickness of the dentinal surface from the DEJ to the pulp is less than 

it is in permanent teeth. The S-shaped curve of the dentinal tubules can be seen in 

longitudinal ground cut in permanent teeth, whereas in primary teeth, the dentinal 

tubules follow a straight path. The S-shaped curves came from crowding of odontoblasts 

as they shift from margins toward the centre of pulp (Nanci, 2008). Conversely, the 

straight course tubules in primary teeth are due to less odontoblasts crowding and the 

thinner layer of dentine near the pulp (Chowdhary and Reddy, 2010).  

 

The diameter of the dentinal tubules in primary teeth is significantly larger than in 

permanent teeth. The density of the dentinal tubules in primary teeth is unclear, with one 

study suggesting it is higher in primary teeth compared to permanent teeth (Sumikawa et 

al., 1999), whereas it has been reported that the dentine in primary teeth has less 

tubular density at 0.4 to 0.5mm from the pulp surface when compared to permanent 

teeth (Koutsi V et al., 1994).  

 

 

 

 

 

  
 

 

 

 

Figure 1-8 Scanning electron microscope (SEM) images of superficial, middle, and deep 
dentinal layers correspondingly, as seen in primary and permanent teeth. (A) Primary teeth 

dentinal sections, and (B) Permanent teeth. (Lenzi et al, 2013) 

 

The hardness of dentine in both primary and permanent dentine is similar around the 

pulpal and peripheral dentine but differerent in coronal and apical areas. It has been 

found that the hardness value in primary teeth dentine is 60 KHN (Knoop Hardness 
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Number) and 69KHN to 82KHN in permanent teeth (Johnsen, 1988). This is because the 

dentine of permanent teeth is more mineralised than primary teeth (Sumikawa et al., 

1999). There is less inorganic mineral concentration in peritubular and intertubular 

dentine in primary teeth than permanent teeth (Hirayama, 1990).  

 

Whilst there is limited research into primary tooth dentine, more is known about bone, 

which is similar in structure to dentine.  

1.3		Bone	ultrastructure:	Collagen	and	Matrix		

1.3.1		Matrix	Composition	

		
Bone matrix is of composed of hydroxyapatite (HA) crystals in a meshwork of collagen 

fibrils. In addition, the extracellular matrix (ECM) contains numerous macromolecules 

called proteoglycans (PGs) that are important in synthesizing the collagen fibrils and 

preserving its structural integrity (Huber 2007; Shapiro 2013) 

1.3.2	Bone	collagen	in	relation	to	Osteogenesis	Imperfecta		
	
Collagen in bone can categorized by its organisation; fibrillar and non-fibrillar, or by 

molecular and histochemical changes (Burgeson and Nimmi, 1992). Fibrillar collagen is 

classified into; major fibrillar collagen (type I, II and III) that provide tissue rigidity and 

aligned architecture, and minor fibrillar collagen (type IX and X) that regulate 

fibrillogenesis (Van der Rest and Garrone, 1991; Adachi and Hayashi, 1986; Wenstrup 

et al., 2004). The main type of collagen found in bone is type I  (Paschalis et al., 2003). 

Several studies have discovered different types of collagen as type VI and IX (Nerlich et 

al., 1998), type X (Aigner et al., 1998), types XII and XIV (Walchli et al., 1994), and type 

XXIV (Koch et al., 2003). The importance of type XII and XIV is to support molecular 

bridging between the matrix component and the fibrils (Walchli et al., 1994).  

1.3.3		Fibril	architecture		
Since the majority of bone collagen is composed of fibrillar collagen type I, the 

arrangement of the fibrils is different in various tissues. Parallel arrangement of the 

collagen fibrils in found in trabecular and cortical bone. This is not the case in dentine, 

wehre the fibrils are not uniformly distributed in arrangement (Tzaphlidou et al., 2000). 
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Collagen fibril strength derives from intermolecular cross-links. This cross-linking is an 

outcome of their three-dimensional alignment (Bank et al, 2000). These cross-links occur 

when aldehyde side chains interact with amine groups of collagen molecules. There are 

two types of cross-link; enzymatic cross-link (lysine hydroxylases and lysyl oxidase) and 

non-enzymatic cross-link (glycation end product) (Bank et al., 2000). Any failure during 

the cross-linking mechanism to form the collagen fibril will affect in the bone formation. 

Subsequently, bone abnormalities and fragility may develop such as Osteogenesis 

imperfecta (Knott and Bailey, 1998) 

1.4	Collagen	associated	disorders	

1.4.1		Introduction	of	Collagen	disorders	
	
Various disorders are associated with collagen defects such as Ehlers-Danlos 

syndrome, Marfan’s syndrome, Caffey’s disease, scleroderma, Osteogenesis Imperfecta 

and Dentinogenesis Imperfecta (Myllyharju & Kivirikko, 2001)  

 

 

1.5		Osteogenesis	Imperfecta:		

	1.5.1		Definition	and	Classification:	
 

Osteogenesis Imperfecta (OI) is a genetic disorder that occurs in bone characterised by 

bone fragility and low bone mass. Other manifestations that can be associated variably 

with this disorder include blue sclera, dentinogenesis Imperfecta (DI), hyperlaxity of 

ligaments and skin and hearing impairment. Patients with OI are likely to have a 

mutation in one of the two genes that encode the chains of collagen type 1 COL1A1 and 

COL1A2 (Rauch & Glorieux, 2004). Other genes have also been suggested such as 

CRTAP (responsible for OI type VII) and P3H1 (responsible for OI type VIII). The 

prevalence of OI ranges between 1:5000 to 1:20,000 among US population (Huber, 

2007) 

 

Sillence proposed four classifications of OI Imperfecta in 1979 based on the clinical and 

radiographic findings and inheritance mode (Sillence et al, 1984, Sillence et al, 1979). 

This classification was used to describe the intensity and clinical manifestation of OI with 

the mutation of collagen type I gene.  
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OI type I inheritance is predominately autosomal dominant, and presents with blue 

sclera, bone fragility, and presenile deafness or family history of deafness. New born 

babies rarely have multiple bone fractures at birth. Mild to moderate long-bone deformity 

and scoliosis in this OI group. This syndrome is also known as Van der Hoeve’s 

syndrome, OI with mild long-bone disease, OI tarda levis, (Sillence et al, 1979) 

 

Type II OI is autosomal dominant, where children were either stillborn or die in the 

newborn period. The newborn present with short bowed legs and the radiographs show 

concertina-like femora, beaded ribs and poor ossification of the cranial vault. This 

syndrome is also called lethal OI or OI letalis Vrolik (Sillence et al, 1979) 

 

Progressive deformity of long bones and the spine through childhood into adult life, blue 

sclerae in infancy, normal to mild blue sclerae by adolescence and dentinogenesis 

imperfecta are the characteristics of OI type III. In patients with autosomal dominant 

inheritance, all patients had fractures during the first year of life or at birth. OI type III 

was described as osteopsathyrosis idiopathica of Lobstien, OI congenital, OI tarda 

gravis and OI with severe long-bone disease. (Sillence et al, 1979) 

 

Patients with OI type IV have dominant inheritance of fragile bone without blue sclerae 

and DI, but no findings of presenile hearing loss.(Sillence et al, 1979) 

 

In 2004, the Sillence classification was expanded by adding three more types of OI; type 

V, type VI and type VII (Rauch & Glorieux, 2004).  OI type V is autosomal dominant and 

there is no evidence of gene type I collagen abnormality. Patients have moderate to 

severe bone deformity, formation of hyperplastic callus at fractured sites. Calcification in 

the interosseos membrane of the forearm in early life lead to limitation of hand 

movement and secondary dislocation of radial head. There were no findings of blue 

sclerae and dentinogenesis imperfecta (Rauch & Glorieux, 2004) 

 

The autosomal recessive inheritance OI type VI relies on the histological findings of 

bone abnormalities that show elevated amount of osteoid lamellation (fish-scale pattern), 

while concentration of calcium and phosphorus in serum are normal. The clinical 
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conclusions illustration white sclerae and no dentinogenesis imperfecta. (Rauch & 

Glorieux, 2004) 

 

Type VII OI was identified only in a community of Native Americans in North Quebec. 

The clinical features presented bone fragility, and absence of dentinogenesis 

imperfecta.(Rauch & Glorieux, 2004) 

 

 

Carbal et al proposed an additional classification in 2007, the autosomal recessive 

inheritance Type VIII Osteogenesis imperfecta. The clinical and radiographic findings 

manifest a severe and lethal form of bone deformities to perinatal; thin skull, multiple 

fractures in long bones due to irregular callus formation.(Cabral et al., 2007) 

 

Table 1-1: Clinical manifestation of Osteogenesis imperfecta (Marini, 2007) 

 

In OI type IX, it is recessive autosomal form that is equivalent clinically to type II and 

type III that are severe. Dentinogenesis imperfecta (DI) has not been reported in patients 
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with OI type IX. It has been reported that chromosome 15q22.31 mutation in PPIB gene 

is causing OI type XI. (Van Dijk, 2009) 

 

The autosomal recessive OI type X is one of the forms that has bone deformities and 

bone fractures in multiple areas, blue sclera, osteopenia and DI. (Christiansen, 2010). 

 

It has been reported that patients with OI type XI have severe deformative progression 

and contracture of joints. DI was not reported in OI type XI patients. (Kelley, 2011). 

 

OI type XII is categorised as an autosomal recessive form of OI. Clinically, patients have 

normal white sclera, recurrent fractures with bone deformities. The dentition is normal 

(no DI) but the eruption of teeth is delayed. (Lapunzina, 2010) 

 

Many studied has reported bone deformities in OI type XIII. In 2012, Martinez-Glez et al 

defined OI type XIII as an autosomal recessive disorder. It has been labeled that 

patients have no DI, light blue sclera, osteoporosis and growth deficiency. (Martinez-

Glez et al, 2012) 

 

Patients suffer from multiple fractures and osteopenia with OI type XIV as described by 

Shaheen et al in 2012. The occurrence of fracture has been reported prenatally up to six 

years of age. DI has not been reported in this type of OI. (Shaheen et al, 2012). 

 

Keupp et al reported patients with OI type XV have recurrent fractures, bone deformities 

that can cause death of infants and osteoporosis. No abnormalities were found on teeth. 

(Keupp et al, 2013) 

 

1.5.2		Osteogenesis	Imperfecta	Gene	Mutations:	
 

OI and abnormalities of collagen type I are closely linked, collagen mutations are mostly 

expressed in the genes COL1A1 and COL1A2. Some patients may have abnormalities 

due to mutations in different genes such as Cartilage associated Protein (CRTAP) and 

Leucine Proline-enriched Proteoglycan (LEPRE). Partial damage of CRTAP mutation 

encodes prolyl-3-hydroxylase-1 (P3H1) hydroxylation of proline residue in the 

procollagen chain, cause OI type VII (Morello et al., 2006). While LEPRE1 mutations that 
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encrypt P3H1 were defined in OI type VIII (Cabral et al., 2007).  Additional genes have 

been identified in other autosomal recessive forms of OI (Byers and Pyott, 2012). In 

Type VI OI, mineralisation defects were found due to serpin peptidase inhibitor, clade F, 

member 1 mutation (SERPINF1). Collagen P3H1 defects were observed in Type VII, VIII 

and IX OI (CRTAP, LEPRE1, Peptidyl- prolyl cis-trans isomerase B (PPIB). Further type 

of collagen defects was discovered as Collagen chaperone defects in Type X and XI OI 

(SERPINF1 and FKBP10). C-propeptide cleavage enzyme defect seen in Type XII OI 

(Bone morphogenetic protein 1 (BMP1). 

 

1.5.3		Mutations	on	Type	I	collagen		
	
Mutations of collagen can be categorized into two general classes ( Byers & Pyott, 

2012), affecting the production of type I procollagen:  

1. Mutations that cause a decrease in the quantity of normal structure procollagen 

type I made. 

2. Mutations resulting in the production of abnormal molecules, which disturb on the 

structure of procollagen type I. 

Each molecule in collagen type 1 consists of polypeptide chains that build a triple helical 

structure (two α 1 and one α 2 chain). These chains interlace between each other with a 

glycine residue at the third position. The most common mutation of collagen type I is the 

single nucleotide substitution of glycine for another amino acids, affecting the triple 

helical structure of COlA1 or COLA2 . The variation of phenotypes of OI from very mild 

to lethal depends on the affected two chains, the position of the gene substitution in the 

triple helix, and which amino acid is substituted for glycine. (Rauch & Glorieux, 2004) 
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Osteogenesis 

imperfecta type 

Inheritance Phenotype 

 

Gene defect 

I AD Mild Null COL1A1 allele 

II AD Lethal COL1A1 or COL1A2 

III AD Progressive deformity COL1A1 or COL1A2 

IV AD Moderate COL1A1 or COL1A2 

V AD Distinctive histology Unknown 

VI AR Mineralisation defec 

Distinctive histology 

SPRPINF1 

VII AR Sever (Hypomorphic) 

Lethal 

CRTAP 

VIII AR Sever to lethal LEPRE1 

IX AR Moderate to lethal PPIB 

X AR Sever to lethal SERPINH1 

XI AR Progressive deformity FKBP10 

XII  AR Moderate SP7 

XIII AR Sever BMP1 

XIV AR Variable severity TMEM38B 

XV AR 

AD 

Variable severity 

Early onset 

Osteoporosis 

WNT1 

Table 1-2: Expanded Classification of OI. AD, autosomal dominant; AR, autosomal 

recessive (Valaderes et al, 2014) 

 

The mutations that affect the amount of procollagen type I synthesis usually result in one 

null COL1A1 allele and, although only half of the normal amount of type I procollagen 

becomes synthesized, its structure is normal (Gajko-Galicka, 2002). However, type I 

procollagen molecules require a minimum of two pro α 1 and one pro α 2 chains to 

stabilize it. Any changes in the quantity of the number of chains, results in abnormal 

procollagen. As a consequence of incomplete merging of these pro α chains due to 

substitution for glycine residues within the triple helix, and occurrence of mutations in the 

COL1A1 gene is formulated. In addition to this complex process, a premature 
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termination codons formed in COL1A1 gene coding sequence responsible in 

destabilizing in the mRNA due to the skipping events or a process known as nonsense-

mediated decay (Rauch & Glorieux, 2004). In conclusion, the outcomes of these 

mutations is formation of in OI type I in bone as a mild form of Osteogenesis Imperfecta 

(P H Byers, 2000). 

Severe forms of osteogenesis imperfecta involve mutations that cause replacement of a 

triple helical Glycine residue by another amino acid and mutations that alter splice sites 

(Marini et al., 2007). These mutations affect on the sequence of amino acid in the 

COL1A1 or COL1A2 gene and occur either in the triple helical domain or carboxyl-

terminal propeptide of the encoded pro alpha chain. The common mutations in this 

domain are single nucleotide substitutions that alter the amino acid sequence (P H 

Byers, 2000). These substitutions will cause a substitution for glycine. Thus, because of 

the crucial role of the glycine in helix formation, substitution at two out of every nine 

nucleotides will result in a clinically apparent phenotype.  

OI type I is described by the reduction in the amount of collagen whereas OI type II, III 

and IV were results from abnormal production of collagen type I (Marini et al., 2007).  

 

1.5.4  Osteogenesis Imperfecta Associated with Dentinogenesis Imperfecta: 
 

Gene mutations found in OI cause defects in the most major component of bone and 

dentine, collagen type I. as mentioned previously. DI has been reported in more than 

50% of patients suffering from OI (Biria, Abbas, Mozaffar, & Ahmadi, 2012) 

 

1.6		Dentinogenesis	Imperfecta		
	
Dentinogenesis Imperfecta (DI), or hereditary opalescent dentine, is a tooth disorder in 

which dentine quality is altered. Shield et al in 1973 categorized it into three main 

groups: DI type I (DI associated with OI, an autosomal dominant inheritance), DI type II 

(DI not associated with OI, an autosomal dominant inheritance), and DI type III (found in 

a tri-racial population from Maryland, known as Brandywine isolate). It is believed that DI 

occur 1 in 6000 to 8000 people (Takagi & Sasaki 1988). Figure 1-9 demonstrated the 

clinical features between healthy, DI type I and DI type II. 
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1.6.1	Dentinogenesis	Imperfecta	associated	with	Osteogenesis	Imperfecta:	
	
In 1973, Shields proposed a classification of dentine disorders into two main types: 

Dentinogenesis Imperfecta (DIs, types I–III) and Dentine Dysplasia (DDs, types I and II) 

based on clinical features and radiographic findings without the underlying molecular 

pathophysiology. DI was categorized to three subtypes: Dentinogenesis imperfecta type 

I, Dentiogenesis imperfecta type II and Dentinogenesis imperfecta type III. 

 

The association between OI and DI is not fully understood with prevalence varying from 

28 to 73% for DI patients with OI, and DI is most commonly associated with OI type III 

rather than types I and IV (Malmgren & Norgren 2002). 

 

1.6.2		Dentinogenesis	Imperfecta	Type	I:	
	
DI type I is always associated with osteogenesis imperfecta. The clinical findings in both 

the primary and permanent teeth are not similar; the primary dentition is more affected 

than the permanent dentition. The colour of teeth varies from blue-gray to amber brown 

and opalescent. Because of the dentine defect, it is easy to have attrition due to enamel 

is easily broken off (Hart and Hart, 2007). Loss of sensation in the tooth can be seen due 

to obliteration of the pulp (Kim and Simmer, 2007). Radiographically, the crowns are 

short and bulbous, roots are narrow and constricted, and small or obliterated pulp 

chambers and root canals are seen. The pulp of obliteration amounts varies and occurs 

either after eruption or occasionally before eruption (Witkop, 1975, Barron et al., 2008).  

 

The mantle dentine was considered normal in DI patients, possibly due to normal 

function of odontoblast mechanism during the dentine formation that is called “startup” 

matrix formation  (Hall et al., 2002) whereas others suggested that there is a dysplastic 

manifestations in mantle dentine (Malmgren and Lindskog, 2003). Mantle dentine layer 

appeared like normal appearance and that is possibly due to normal function of 

odontoblast mechanism during the dentine formation that is called “startup” matrix 

formation  (Hall et al., 2002).  

 

Hypertrophy that arises from merging the dysplastic dentine with mantle dentine leads to 

pulp chamber and canal obliteration. Subsequently, dentine formation continues by 
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differentiation of mesnchymal cells to odontoblast that form the predentine. Since this 

differentiation is controlled by gene expression, any disruption occurs can affect dentine 

the mineralisation process and dysplastic manifestation is seen. 

 

DI type I is an autosomal dominant trait. There is an association between DI type I and 

OI (type I, III and IV). As well as collagen type I genes mutation (COL1A1 and COL1A2), 

which are responsible in collagen formation that found in OI can be associated with DI. 

Type I collagen is the main component in the organic matrix of bone and dentine. It is 

observed that some patients with OI have normal teeth (Waltimo et al., 1996). In fact, 

There is no strong link between mutations of collagen gene and dental phenotype 

nonetheless in DI type I phenotype presentation can be linked to the collagen 

abnormalities (Ben Amor et al., 2013). 

1.6.3		Dentinogenesis	Imperfecta	Type	II		
	
Due to mutation of DSPP, DI type II is not associated with OI. In contrast to DI type I, 

both the primary and permanent teeth are equally affected, normal teeth are never found 

in DI type II. 

The dental features of  DI type I and DI type II are similar in primary teeth (Hart and Hart, 

2007) . As DI type I, the radiographic features are: pulp chamber obliteration that begins 

earlier to tooth eruption. Crown and root morphology are abnormal with bulbous crowns, 

with marked cervical constriction a typical feature. The roots are often narrow with small 

and short obliterated root canals. The severity, discolouration and attrition are more 

profound in DI type II (Bixler, 1976). In addition, hearing loss has also been associated 

to dentinogenesis imperfecta type II.  

 

The composition of the non-collagenous part of the organic matrix is mainly composed of 

several proteins and the most dominant one is dentine sialophosphoprotien that is 50% 

of the composition. Smaller proteins that are encrypted from DSPP such as dentine 

sialoprotien (DSP) and dentine phosphoprotein (DPP) that are the major component in 

organic matrix and have and important role in tooth development, by spreading mineral 

crystals deposits between the collagen fibrils. Any disruption of the DSPP gene can 

cause DI type II (Xiao et al., 2001, Malmgren et al., 2004). Due to low expression of 

DSPP in bone, bone abnormalities are not associated with DI type II (Kim and Simmer, 

2007). 
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1.6.4		Dentinogenesis	Imperfecta	Type	III		
	
DI type III was found in a tri-racial population known as the Brandy wine isolate from 

Maryland and Washington DC (Witkop et al., 1966). The clinical features were similar to 

those seen in DI type I and II, with severe signs of wear on occlusal and incisal surfaces,  

causing multiple pulp exposures of primary teeth (Shields et al., 1973). A reported case 

of DI type III in children showed the presence of enamel only at the gingival margins and 

the dentine colour was amber brown in colour without evidence of caries (Hursey et al., 

1956). On radiographs, due to dentine hypertrophy, the primary teeth of DI type III 

appeared as hollow “shell” like appearance, (Barron, McDonnell, Mackie, & Dixon, 2008) 

with enlarged pulp chambers surrounded by only a thin layer of dentine. Variation in the 

appearance can be noticed in radiographs ranging from normal to pulpal obliteration 

(Shields et al., 1973). These characters were found only in young children (Witkop, 

1975). In DI type III, genetically the dentin sialophosphoprotein DSPP is an important 

evident in stating Dentinogenesis Imperfecta type III only DPP level is distorted with 

normal levels of DSP. By this alteration teeth would be affected in colour as well as 

mineralisation of dentine matrix (Levin et al., 1983).   
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Figure 1-9: Clinical Intraoral images of healthy and Dentinogenesis imperfecta (DI) in 
primary (left column) and permanent dentition (right column). (A) Healthy teeth. (B) 

primary and permanent teeth with DI type I associated with COL1A1 and COL1A2 mutation 

in Osteogenesis Imperfecta type IV. (C) primary and permanent teeth with DI type II 

associated with DSPP mutation  (Courtesy of EDI)  

 

 

 

1.6.5 Histology in DI: 
	
The three types of DI have the same pattern histologically. The matrix of dentine has 

irregular texture and the number of dentinal tubules is less than normal dentine 

(O’Connell AC, 1999). It has been found that the mantle layer of dentine, which is 

adjacent to the DEJ is normal (Bixler et al., 1969). Enamel in DI teeth is basically normal. 

(A)	

(C)	

(B)	

Primary	 Permenant	
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Loss of enamel does occur, but this is as a result of dentine weakening not because of 

enamel structure composition, nor abnormal DEJ (Majorana et al., 2010). In previous 

studies, it has been believed that the post-eruptive break down of the enamel surface is 

due to a defective in DEJ. On the other hand, a study has been done by using scanning 

electron microscopy showed that the loss of the enamel structure arise from either a 

faulty in the enamel itself or from dentine abnormality and not from a DEJ (Levin et al., 

1980). 

 

 

Several studies have found that the dentine in DI teeth has atubular areas (O'Connel et 

al., 1999; Hall et al., 2002; Ranta et al., 1993; Levin et al., 1978). An irregular kind of 

interglobular calcification is found on the DI dentine surface, and under electron 

microscopy the fibrils can't be characterized due to difficulty in identifying collagens 

cross striations (Gage, 1985). Majorana et al. investigated the dentine in DI teeth that is 

associated with OI, it has been found that the width of mantle dentine layer is normal, 

followed by constriction that is ended in an oversized wavy laminated area close to DEJ. 

In addition, the collagen fibrils direction was parallel to the long axis of odontoblast 

whereas the orientation of the collagen fibrils was random on the areas away from 

odontoblasts. Moreover, the dentine in DI teeth exhibited an inadequate mineralization 

(Majorana et al., 2010). 

 

It has been suggested that odontoblasts can alter the dentinal ultrastructural variations in 

primary teeth affected with OI (Hall et al., 2002). The mantle dentine layer appeared 

normal due to an initial regular odontoblast function. The changes found in the laminated 

area are due to poor mineralisation that alters collagen fibrils and components of the 

matrix (Bateman et al., 1984; Lalic et al., 2000).  

 

 

 

1.6.6		Dentinogenesis	disorders	gene	mutation:	
 

Gene mutations that encode for the organic matrix, including collagen, appear to 

underlie a large portion of the hereditary dentine imperfections. These imperfections or 

defects in OI include transformation or mutation in type I collagen and genes included in 
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arrangement of the collagen can be related with DI type I. Then again, the allelic change 

ofIn addition, the DSPP gene that encodes dentine sialophosphoprotein, the most 

abundant non-collagenous protein in dentine can be associated to DI type II and DI type 

III (Barron et al., 2008). This gene encodes for non-collagenous proteins (NCP) located 

on chromosome 4 q 21. DSPP is responsible for dentine mineralisation, therefore any 

defect in the mineralisation process and quality is due to a genetic mutation in DSPP 

(Lee et al. 2013). 
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1.7  The Experimental Design- Methods for assessing dentinal collagen  

1.7.1		Atomic	Force	Microscopy	(AFM)	 
	
Atomic Force Microscopy is one of the types of Scanning Probe Microscopy (SPM) that 

surface structures to be imaged at a subatomic resolution (Kubinek et al. 2007). Three-

dimensional images can be obtained with AFM that produce high-resolution topographic 

images without the need to stain the samples. The mechanism of scanning is produced 

by the sharp tip that either contact or tap the specimen surface (Horber, 2003). In AFM, 

the most common tips that have been used are rocket, pyramidal and isotropic – tip. 

Calculating the changes in level of the probe point when moved over the surface. This 

tip is attached to a cantilever that is fixed on to a cylindrical piezoelectric tube. The 

method of scanning the sample is by the tip that scans the surface and measurement of 

the deflection of the tip is viewed and reflected onto photodiode. A detector then 

measures the difference in light intensities and converts it to voltage. The information 

feedback across a software control from the computer allows the tip to sustain either a 

constant force or constant height over the sample surface. 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 1-10: AFM mechanism of detection the sample surface and translate it to an 

image. (Adapted from Veeco, 2006) 
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There are three operating modes in AFM system; Contact mode, Non-contact mode and 

Tapping mode that are described as followed (Veeco, 2000); 

• Contact mode: in this study, contact mode was applied on most of the samples 

due to the solid surface. This mode is used mostly on solid and static surfaces. 

During imaging, the cantilever is always in contact with the sample surface and 

the atomic forces produce data by the deflection that passes through the surface 

of the sample. This mode is simple and fast, and not requiring special tip to be 

mounted due the constant contact of the cantilever on the sample. 

 

• Non –contact mode: the sample surface is not in contact with the probe. The 
cantilever it self move backward and forward above the sample surface with few 
nm amplitude. It has been believed that non-contact mode maintain the sample 
without any damage. However, this mode became unpopular since a soft 
cantilever tips have been developed for tapping mode. 

 

• Tapping mode (Intermittent contact mode): the cantilever tip is oscillating up and 

down without a constant contact on the sample surface.  

 

1.7.2		Scanning	Electron	Microscope	(SEM)		

SEM is used for imaging the samples in higher magnifications at the micron scale. The 

mechanism of imaging is by using a highly energetic electron beam that interacts with 

the surface of the sample to produce a topographic data. In such a position, the surface 

of the sample must be electrically conductive. For sample preparation, using a chemical 

fixation such as glutaraldehyde is important to prevent shrinkage. Samples are then 

coated with a conductive metal such as gold, palladium, tungsten or graphite for sample 

preparation.  The electrons pass through the electron probe and travel all along the 

sample surface and secondary electrons produced from the sample surface and the 

electronic signals are identified by a mercuric cadmium telluride detector (MCT). The 

output signals and image will be displayed on TV-Monitor screen (Burgess et al, 1990).  
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Figure 1-11: A simplified schematic diagram of a scanning electron microscope 

(Adapted from NPTEL 2013) http://nptel.ac.in/courses/102103044/18 

 

1.7.3		Demineralisation	protocol	
	
For imaging the samples, all the samples should be prepared by cutting and applying 

demineralisation protocol to expose the collagen fibrils and remove the smear layers. 

	

1.7.7		Background	on	Demineralisation	protocol		
 

In 2002, Hebtelitz et al developed a demineralisation protocol to expose collagen of 

dentine, by etching dentine with 10%vol citric acid for 15 seconds. Citric acid was 

applied to dissolve the minerals of dentine and later dentine was washed with ultra-high 

quality water. Then, the dentine is treated for 120 second with 6.5% sodium hypochlorite 

as a deproteinasing agent (Habelitz et al., 2002). This agent is used to eliminate the 

non-collagenous matrix protein that covers the collagen fibrils (Marshall et al., 2001). At 
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the end, dentine surface area was cleaned with ultrasonication in ultra high quality water 

for 10 seconds. 

 

An existing protocol was created in 2013 as a part of DDent dissertation (Harith 2013), 

exposing the primary tooth dentine surface to 37% phosphoric acid for 3 minutes and 

then rinsing the sample in water steam for 1 minute. An AFM images were taken in 

different application timing, 1 minute, 2 minutes and 3 minutes. The results showed that 

the collagen exposure of dentine was not homogenous, and found areas of 

demineralisation and other areas were not demineralised.  

 

1.7.4		Effect	of	Phosphoric	acid		
It is essential to understand each acid component and action on the mineralised tissues. 

Each acid starts by dissolving the involved minerals and causing softening of the 

minerals itself, while acid solution diffuses inside the structure and triggers the calcium 

and phosphate ions loss (Eisenburger et al., 2004). The phosphoric acid “H3PO4” has a 

buffering effect on hydroxyapatite and dentine component (Wang and Hume, 1988). The 

organic constituents of dentine changes as a result of the acid reaction. This change 

involves morphological alteration of peritubular and intertubular dentine. It is believed 

that the dentinal tubules unclog following demineralisation, and the collagen network is 

left intact (Nakabayashi and Pashley, 1998). Marshall et al reported in a study that any 

increase of etching time on the dentine will cause dissolution of the peritubular zone and 

thus widening of the dentinal tubules with collagen breakdown around the intertubular 

area (Marshall et al., 1993). It has been stated that phosphoric acid moderately dissolve 

the non-collagenous dentine proteins as phosphoproteins, glycosaminoglucans and low 

molecular weight peptides as well as collagen (Nakabayashi et al., 2004). It has been 

implied by Spencer that phosphoric acid might alter the collagen organic components 

(Spencer et al., 2001). 

 

	

1.7.5	Effect	of	sodium	hypochlorite		
	
Sodium hypochlorite (NaOCl) is commonly used in endodontic dental procedures. The 

mode of action of hypochlorite acid that is within the sodium hypochlorite solution is to 



	
	

54	

form chloramines that is able to degrade the amino acids (Estrela et al., 2002). Since 

sodium hypochlorite has deproteinisation effect on dentine, it can alter the dentinal 

mechanical properties as modulus and dentine haedness (Marshall et al., 2001, Sim et 

al., 2001, Correr et al., 2004). NaOCl can affect on the quality of dental restoration by its 

ability to alter the resin infiltration into dentinal structure (Sim et al., 2001). Moreover, it 

can change the organic substrate with no alteration in the inorganic material molecular 

substances(O’Driscoll et al., 2002, Ramirez-Bommer et al., 2007, Morgan A et al., 2010)  

 

1.7.6		Effect	of	Ethylenediaminetetraacetic	acid	(EDTA)		
	
EDTA was introduced for clinical work in 1957 (Ostby, 1957). is effective in 

demineralisation of dentine, it opens dentinal tubules, soften the dentinal structure and 

increase the permeability of the surface (Calt and Serper, 2002, Hulsmann et al., 2003). 

The nature of EDTA solution can promote the chelating and protonation mechanism. 

When pH is neutral, the calcium ions bind to EDTA and increase and enhance the 

hydroxyapatite detachment. Then, a reduction of pH level occur due to proton exchange 

from EDTA with calcium ions. The reaction of protonation continues until it reaches to 

the balance between chelating and protonation mechanism, this method believed to 

reduce the amount of dentine dissolving (Carvalho et al., 1996).  

 

1.7.8		The	Main	Standard	Protocol:	
 

Another modified protocol was created in 2015 also as a part of DDent dissertation 

(Ibrahim, 2015) to investigate and improve the previous demineralisation protocol to 

expose collagen in SEM. The final standardised protocol was developed and its efficacy 

and reproducibility was as well confirmed as shown in figure (1-12). By placing the 

samples for a wash in ultrapure water, then cutting and polishing them. Later, starting 

the demineralisation and deproteinisation process with ultrasonication. Starting with 

insertion the samples in 37% phosphoric acid for 15 seconds then immerse the samples 

in 6.5% of sodium hydrochlorite for 5 seconds. Then the samples submerged into 

ultrapure water ultrasonication for 5 minutes. 

 

It has been found that ultrasonication helps in revealing the collagen meshwork that can 

be seen under AFM, and exposing more collagen ultrastructure characteristics. 
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Sonication is increasing the penetration of the phosphoric acid into the dentine structure 

downward and sideward that allow spreading of acid all along the sample surface area, 

providing a uniform etching and unblocking the dentinal tubules. 

 

Modifying the demineralisation time of applying 37% phosphoric acid from 3 minutes to 

15 seconds showed a good results of exposing collagen structure. The protocol was 

stand for the acid etching time that is used in vivo for restoring the caries lesion in teeth. 

15 seconds of acid etching is adequate for eliminating the smear layer and demineralise 

the dentine surface to expose the collagen network. If the etching time took more than 

15-20 seconds, will change the collagen characteristic and gelatinise it due to 

hydroxyapatite re-precipitation. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

Figure 1-12: Deflection AFM images of demineralised dentine after exposing collagen, 

showing pre- and post modification of the demineralisation protocol of one control 

primary tooth sample. (A) and (B) conventional technique, (C) and (D) modified 

protocol.(Ibrahim S, 2015) 
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It has been discovered that the use of 6.5% of sodium hypochlorite may enhance 

removal of the covering of collagen fibrils which is made of non-collagenous proteins 

(Habelitz et al, 2002 and Marshall et al., 2001). 5 seconds of 6.5% of sodium 

hypochlorite is sufficient to remove the organic materials without distorting the collagen 

structure. 

 

It was decided to follow the latest modified demineralisation and deproteinisation 

protocol to obtain homogeneity of the results and achieve the reproducibility of the 

acquired images. 

 

1.7.9		Fourier	transform	infrared	spectroscopy	(FTIR)		
	
Infrared spectroscopy or Fourier Transform Infrared Spectroscopy (FTIR) is used for 

data collection of variety of materials by measuring the frequency of the atomic bond 

vibration between the molecules. The calculation within the molecules occurs through 

photoconductivity, emission and absorption (Griffith and Haeth, 2007). The data is 

presented as a graph. Horizontal axis shows wavelength or frequency number and on 

vertical axis is IR light absorbance. 

 

 

 

 

 

 

 

 

 

 

 
Figure 1-13: FTIR- ATR spectra on sound dentine and on demineralised dentine that has 

been treated with different materials (Adapted from Tianda Wand et al, 2015) 
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FTIR has three modes of actions that can be used: 

1. Transmission mode.  

2. Reflection mode 

3. Attenuated Total Reflection (ATR) mode.  

In the first mode, thin samples are required for developing the data. The samples for the 

reflection mode are highly smoothed and reflective in able to produce adequate spectra. 

ATR mode samples are relatively thick and opaque. The samples should be prepared to 

accommodate the size of the crystal surface of the instrument. For that case, samples 

should be wide enough to ensure the full coverage of the crystal surface opening to 

prevent any inaccuracy. 

The data can be inaccurate if the used samples are moderately hydrated as the 

possibility of increase the potential absorption that interfere with the spectra. For better 

spectral data results, the samples must be dehydrated either completely or partially.  

 

1.7.10	Mode	of	Action	of	(ATR)	
	
After the sample has been prepared, it should be directly in contact with the ATR crystal, 

which is made with diamond. Infrared beam is directed towards the diamond prism that 

leads to create an internal reflection phenomenon between the sample and the prism. A 

transient wave is created and penetrates the sample surface about approximately 0.5 to 

1.53 µm in depth. (PIKE technologies, 2011). A detector then will absorb the reflected IR 

beam and measure it to create an ATR absorption spectra (Perkin Elmer Life and 

Analytical sciences, 2005)  

 

1.7.11		Hardness	study:		
	
The degree of tissue hardness is determined by its resistance to deformation, 

scratching, or abrasion. Additionally, hardness is described as the capability to resist 

permanent indentation (Craig, 1993) to test the hardness of the tissues, an applied force 

will deform the tissue surface even after the removal of the load (Meerbeck et al., 1993) 

Hardness test has been based on two categorize: macro-harness and micro-hardness. 

Both of the tests are load dependent. The Macro-hardness test load is more than 1 

kilogram-force (kgf) applied on the tissue surface. While in the micro-hardness test the 

load ranges between 1-1000 grams-force (gf). The load test that has been used in this 
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study is 300 gf in weight (2.94N), which is considered a micro-hardness test study. 

Wallace indenter (H.W. Wallace, Croydon, England) has been used in this study to test 

the hardness of primary teeth as shown in figure (1-14). Data was obtained from control 

and DI teeth.   

The measurement of hardness for each sample is calculated by using the formula that 

provides the result as the Vickers Hardness Number (VHN), which is in this Equation (1-

1): VHN = F/A.  

In the equation, F indicates the kilogram-force, d is the average length of the indenter 

diagonally in millimetres. VHN units are kilogram-force per square millimetre (kgf/mm2). 

The determination of VHN is by F/A ratio; F indicated the force applied and A indicates 

the surface area that is obtained from the indentation. Determination of A in this formula 

is derived from the geometry of the indenter as shown in figure (1-14):  

A= d2/ 2sin(136o/2) 

And after evaluating the sin the formula would be: 

A≈ d2/1.8544 

D is the average length of the diagonal left by the indenter in millimeters. Therefore, the 

evaluated formula as follows adapted from (Fuentes et al., 2003): 

VHN= F/A ≈ 1.8544F/d2 

Where F is the load weight in grams and d is the mean diagonal of indentation in 

micrometers.  

To convert Vickers hardness number to Mega Pascals (MPa), the force applied needs 

converting from kgf to newtons and the area needs converting from mm2 to m2 to give 

results in pascals. Thus, the VHN should be multiplied by 9.807 as 1 kg force = 9.807 N. 
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Figure 1-14: Wallace Indenter Microhardness tester. 

 

  
 

 

 

 

 

 

 

 

Figure (1-15): The principle of Wallace hardness indentation, where d is the average length 
of the diagonal measured by the surface area of indentation from the diamond indenter 

(adapted from Wallace indentation hardness tester instruction manual). 
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Chapter 2:  Aim and Objectives 

 

The evidence of the dentine properties in primary teeth is not clearly understood in both 

normal and DI affected primary teeth. Our research question: Are there any differences 

between the collagen ultrastructure in DI and healthy primary teeth? 

 

The objective of this study is to understand the mechanical properties of dentine in 

primary dentition and the dentine ultrastructure. And compare the normal characteristics 

with DI type I and DI type II. In addition, to clarify the factors that lead to altering the 

collagen characteristics and structure. For that reason, the aim and objectives of this 

study are: this question will be answered in the following stages:  

1. Measuring dentine hardness  

2. Applying the previous demineralisation protocol for AFM to access the 

collagen ultrastructure. 

3. Topographical assessment of collagen ultrastructure and morphology 

in control teeth, DI type I and DI type II by using AFM Nanotechnology 

and SEM. 

4. Reliability and reproducibility. 

5. Applying research findings to clinical setting. 
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Chapter 3:  Material and Methods: 

 

3.1	Study	Registration	and	Ethical	Approval		
This study was conducted in the Paediatric Dentistry Department at the Eastman Dental 

Hospital (EDH), University College London Hospital, NHS Foundation trust. Ethical 

Approval for this study was obtained from the National Health Service Research Ethics 

Committee (NHS Rec), registration number 11/LO/0777. 

 

 

3.2		Anomalies	clinic	and	data	collection		
 

The dental anomalies clinic was set up in 2009, as a dedicated clinic for children 

identified as having an enamel or dental defects from the referral letter. The clinic occurs 

fortnightly, and sees approximately 12 new patients per session. All clinicians involved 

with the clinic were calibrated for data collection procedures, which included; patient’s 

demographic details, extra oral examination findings, intra- oral examination involving 

detailed information regarding the enamel and dentine defects (using the DDE index), 

radiographic examination, diagnosis and treatment plan Appendix 3). 

 

Patients and parents who attended the clinic, and were eligible for inclusion were 

informed about the study, and leaflets about the study were given to patients and 

parents (Appendix 1) and the voluntary nature of their participation was reinforced. 

Written consent was obtained from parents if they agreed to participate (Appendix 2). 

three copies were obtained as follows: 

• One copy was given to the patient/parent. 

• One copy was filed in the patient’s notes. 

• One copy was stored by supervisor in a filing cabinet in a locked office.  

 

All data information taken from the patient was collected using a modified version of the 

DDE index (Appendix 3). All forms were stored by the secondary supervisor in a filing 

cabinet in a locked office. All patients attending the anomalies clinic were recorded on a 

password protected database on a shared drive, and any samples were anonymised, 

and given an ID code. Once patient’s data is completed, the data is send to an electronic 



	
	

62	

database under the control of the second supervisor. Each patient’s details became 

anonymous using a coding number. For keeping of any exfoliated teeth from patients, 

they were given a plastic container to store any exfoliated teeth. This was done at the 

end of the appointment, as well as saliva in which was collected as a part of study 

protocol.  

 

 

3.3		Sample	Selection		
 

Patients were diagnosed in the Paediatric Dental Department at Eastman Dental 

hospital with dental anomalies. Patients are attending in dental anomalies clinic for 

examination. The inclusion criteria: 

• Patients diagnosed with DI type I & II 

 

Primary teeth were extracted as part of planned treatment or exfoliated naturally. 

Comparably, control primary teeth were collected for this study by extracting the teeth for 

orthodontic reasons or extracted as part of planned treatment. 
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Table 3-1 Description of relevant patient demographics, sample size, modes of 
acquire, and dental phenotype of samples used in this study 

 

3.4		Sample	Size	
Teeth were categorised into three groups: 

• Control primary teeth. 

• DI type I Primary teeth. 

• DI type II primary teeth. 

 

Samples were sectioned into two or three sections for AFM preparation and SEM 

preparation. Since it was difficult to collect a large sample of DI teeth, these teeth were 

treated with caution during the preparation and sectioning as they worn very easily.  

 

 

 

 

Sample Teeth 

Number 

Mode of obtain & Dental 

Phenotype 

Patient demographics 

(Age & Race) 

Control  URE, ULE, 

URE, LLD 

&ULD 

Normal, carious free, extracted 
for orthodontic reasons 

5 patients; 2 African, 3 
Caucasian, Age from 5-
9, fit & healthy 

DI type I ULD, ULE, 

LRE, LRD, 

LLE 

(LRE, LRD, LLE) carious 
extracted teeth as part of 
treatment plan, with diffuse 
yellowish/cream opacity. 

(ULD, ULE) carious/worn 
extracted teeth as part of 
treatment plan, with diffuse 
yellowish/Brown opacity. 

5 patients; 2 Asian 
aged 6 & 8 years, 3 
Caucasian aged 6-9 
years. All of the OI type 
IV 

 

DI type II URE, ULD, 

LLD, LRD, 

LRE 

Severely worn extracted teeth 
as a part of treatment plan, with 
diffuse yellowish/cream opacity 

4 patients; 3 Asian age 
5 years, 1 Caucasian 
aged 6 years 
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3.5  Sample Storage  
In accordance with Human Tissue Act 2009 in Eastman Dental Institute, 256 Grays Inn 

Road, London, protocols of teeth storage and disinfection were applied. Disinfection was 

made by removing tissue remnants surrounding the extracted tooth and teeth after 

extraction or when obtained were washed thoroughly with the use of micro-brushes and 

scalpel blade, and then placed in 70% concentration ethanol for 3-5 days. Next, the 

teeth were stored in 0.1% concentration Thymol in a locked refrigerator at 4°C until 

prepared. The benefit of sample storage is to prevent the microorganisms to grow within 

the samples as well as prevent the teeth from dehydration. However, Ethanol can cause 

morphological disturbances of the preserved tissue as it replaces the water molecules in 

biological tissues. The physical properties of the biological sample is reversed once the 

sample is re-hydrated as it kept in Thymol (Ritter, 2001)  

 

3.6		Sample	Preparation		
 

3.6.1		Cutting	teeth:		
The tooth sample was positioned on a mounting block and set in by using thermal 

resistant wax. The block then was mounted onto a rotary saw with twin –mounted 

diamond- tipped copper blades (Testbourne, UK). All the samples were cut into one to 

three longitudinal sections under controlling cooling water system and each section is 1-

1.5 mm in thickness. Each section has an exposed dentine of the crown and root. 

Cutting the teeth into longitudinal or diagonal sections (as the tooth is positioned inclined 

on a mounting block) will benefit in overcoming the destruction of the collagen 

ultrastructure since the dentinal tubules is following the direction from pulpal tissue to 

dentine enamel junction (DEJ) And it was showed better topographic images when the 

samples were cut in this method. For homogeneity of the achieved results, it is 

determined to cut all the samples in longitudinal sections. 

The samples were polished using a polishing instrument under flowing water coolant 

(MD Fuga, MD Largo) according to a series of silicone-carbide grit paper (500, 1200 and 

2400 grade). Polishing inhanced the smoothening of sample surface by reducing the 

roughness on the dentine surface after cutting phase. Thus, this method aided in 

producing better topographical images.  
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Figure 3-1: Cutting the tooth in Longitudinal and Oblique section for superior 

topographical images of collagen structure 

 

3.6.2		Hardness	test	Measurement:	
After the cut, each cleaned sample was mounted onto the plate of samples of the 

Wallace indenter. Wallace indenter (H.W. Wallace, Croydon, England) has been used in 

this study to test the hardness of primary teeth. Data was obtained from control and DI 

teeth. 300 grams of load was used and applied for 15 seconds on different random 

locations of dentine surface and data was recorded by taking the depth of the dentation 

(Figure 3-2). Five indentations have been taken for each sample. The sample should be 

flat and steady by making them as plane as possible to the Wallace indenter table to 

reduce any risk of obtaining incorrect reading. The data recording can be affected by 

sample movement or friction, pressure and instruments that are adjacent to the Wallace 

indenter.  

The measurement of hardness for each sample is calculated by using formula that 

provides the result as the Vickers Hardness Number (VHN). 

VHN= F/A.  

 

 

 

 



	
	

66	

 

 

 

	

	

	

	

	

	

	

	

	

3.6.3		Demineralisation	and	Deproteinisation	Protocol		
After cutting the teeth, the demineralization and deproteinisation preparation on the 

samples done by exposing them to 37% Phosphoric acid (Sigma Aldrich) for 15 seconds 

and then to 6.5% Sodium Hypochlorite (ReAgen) for 5 seconds.  

In an ultrasonic bath, sample were exposed to 37% phosphoric acid for 15 seconds, 

rinsed in ultrapure water, exposed to 6.5% sodium hydroxide for 5 seconds, and rinsed 

in ultrapure water. Samples were left to dry before further processing.  

The demineralisation protocol is made for eliminating the smear layer that is packed with 

minerals to expose dentinal collagen by using 37% of phosphoric acid for 15 seconds 

and 5 seconds of deproteinisation with 6.5% sodium hypochlorite afterwards under 

ultrasonication.  

 

3.6.4		Ultrasonication:		
In ultrasonic bathing procedures, cavitation bubbles are encouraged by high frequency 

pressure waves to agitate a liquid. The agitation produces high forces on impurities 

adhering to substrates. This action also penetrates unsighted cavities, cracks, small 

fissures, and recesses (Ensminger, 2008). Because ultrasonic equipment aids high 

frequency sound waves to disturb an aqueous medium; this will therefore support 

Figure 3-2: Longitudinal section of tooth. Blue circles indicate the 
indentation points on dentine surface in random locations. 
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penetration of constricted unreachable spaces and acts on eliminating contaminated 

substances such as blood, dust, oil, grease, polishing compounds, and fingerprints. The 

prepared sample was kept in an ultrasonic bath forming of ultra-pure water for at 

minimum 5 minutes.  

Ultrasonication of the sample in ultrapure water was done at three specific stages of 

sample preparation. First, sonication was done after sample cutting, next in another time 

during demineralisation with phosphoric acid, and finally after deproteinisation with 

sodium hypochlorite prior imaging analysis.  

This ultrasonication procedure was confirmed in this study following a pre-existing 

protocol that has been developed by a former student as a part of DDent dissertation 

titled “Exposure and characterisation of collagen ultrastructure in primary teeth affected 

with Osteogenesis Imperfecta and Dentinogenesis Imperfecta” (Ibrahim, 2015) 

  

3.6.5		Ultra-pure	Water	Routine:		
Ultra-pure water is one that goes under purification methods to control any possible 

contamination and / or proliferation of particles such as bacterial agents, organic, 

negatively charged anionic, and metallic contaminants. It is filtered through a series of 

ultra filtration processes that include use of ultraviolet light, electrode ionization, and 

carbon filters (Nakajima & Shima 1991). All human tissue samples used in this study 

were handled and washed using ultra pure water to avoid any possible contamination, 

which could lead to false results. In addition, ultra-pure water is less conductive than 

normal water. 

3.6.6		Fourier	Transform	Spectroscopy	(	FTIR	)		
As a validation method for evaluating the demineralisation protocol efficacy, FTIR was 

used for each tooth sample. ATR-FTIR spectra were recorded using a PE 2000 FTIR 

spectrometer (Perkin Elmer Spectrum 2000 FT-IR Spectrometer Perkin Elmer I-Series 

FT-IR Microscope). The IR spectra mid-range is (4000-600 cm-1). The data has been 

recorded during to standardise the demineralisation protocol pre and post applying 

etching techniques on the sample surface to analyse their efficacy. The measurements 

were taken for control, DI type I and, DI type II samples. FTIR identify and compare the 

levels of Amide I band that is represents on the collagen surface, and the peak of the 

Phosphates, which is the mineral part on the sample surface (hydroxyapatites). First, the 

record was taken before etching the sample and the normal level of the phosphate peak 
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should be higher than the amide I band. After applying the etching agent (35% of 

phosphoric acid), the phosphate peak almost totally vanished and the amide I peak 

increased, which represents adequate demineralisation of the sample surface. 

 

3.7		Topographic	Imaging-	Atomic	Force	Microscopy	(AFM)		
 

3.7.1		AFM	Imaging:		
After demineralisation and deproteination, the samples were ready to be used for 

topographic imaging. Samples were attached on glass slides that were held in place 

using tapes and mounted on the Dimension 3100 Atomic Force Microscope (Bruker, 

Santa Barbara, CA) 

Using the contact mode in AFM, MSNL-10 (Bruker, Santa Barbara) with a spring 

constant of 0.03-0.1 Nm-1 was mounted on the cantilever holder attached to the optical 

head. A scanning rate average of 1 Hz was used. To optimise the contact forces on the 

tips, the deflection set point of 1,200 V was used for that purpose. Most of the images 

were scanned at 512 x 512 pixels. 

 

Topographic images were taken in several magnification sizes and different locations. 

These locations were divided into three categories: a) Coronal third of dentine b) Middle 

third of dentine, and c) Apical third of dentine which is towards the root. 

 

 

3.7.2		Image	Processing:		
 

Images were obtained and analysed by using Nanoscope Analysis Software (Version 

v140r1, Bruker, Santa Barbara). The software was used for editing and adjusting 

brightness and contrast, and flattening the images into planes to acquire an optimal 

outcome on images. 

 

3.7.3		Measuring	D-banding	periodicity	–	Image	Analysis:		
The collagen fibril D-banding distances were determined from the shape of the fibrils in 

modified images. Analysis was carried out by verifying the step height of individual fibrils. 

The length of the sections were obtained and divided by the number of bands present.  
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3.7.4		Scanning	Electron	Microscopy	(SEM)	imaging		
After using the samples in topographic imaging by AFM, scanning electron microscope 

(SEM) was used as well for imaging the samples at the micron scale.  Samples were 

fixed for 24 hours in 3% glutaraldehyde (Agar Scientific, UK) in 0.1M sodium cacodylate 

solution. Samples were then dehydrated using an ethanol series, before critical point 

drying with HDMS (Sigma-Aldrich, UK). Samples were mounted using carbon adhesive 

tabs to aluminium stubs (Agar Scientific, UK), and coated in Au/Pd. Imaging was 

performed using a Philips XL30 FEG-SEM (FEI, Eindhoven), with an accelerating 

voltage of 5 kV and a spot-size of 3.  

For fixation and dehydration protocol, all the samples should be fixed in 3% 

Gluteraldehyde (Agar Scientific, UK) in 0.1M buffer (Cacodylate) for 10 minutes at 

temperature of 4 degrees Celsius. Then dehydration is done by using graded ethyl 

alcohls at room temperature in series. 70% ethanol for 10 minutes followe by 90% 

ethanol for 10 minutes. Then 100% absolute ethanol for 5 minutes.  

 

 

3.8  Statistical analysis: 
For dentine hardness analysis, the VHN values for all groups were analyzed statistically 

using Origin Pro Software (OriginLab, Northampton, MA). The analysis was done by 

using One Way Analysis of Variance (ANOVA) that is called Kruskal Wallis Test 

Analysis, which is a statistical method used to test differences between the groups. 

Kruskal – Wallis test was performed to analyse the results. It is the generally used form 

of statistical analysis in tests where one measurement and one nominal variable is being 

analysed. It is used as a non parametric method of determining dissemination origin of 

groups of samples studied, and testing whether their mean ranks are similar, (McDonald, 

2008). Kruskal Wallis test was used to analyse topographic data obtained from SEM and 

AFM images of dentinal tubules and collagen fibrils. Variables analysed were dentinal 

tubules number and diameter, and collagen fibril diameter.  

Mann-Whitney U test was implemented to analyse the dentinal tubules data between the 

groups. This test is usually used to compare differences between two independent 
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groups when the dependent variable is either ordinal or continuous, but not normally 

distributed 

Special acknowledges to my colleague (Adam Strange), as he carried out some parts of 

the Statistical Analysis.  
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Figure 3-2: Experiment method Flow chart. 
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Chapter 4 Evaluation of Physical Properties Of Dentine (Hardness of Dentine) 

Hardness of dentine was measured to evaluate its physical property to resist any 

deformities that can be done after application of loads. The hardness of dentine been 

measured after application of 300 grams of load for 15 seconds on 5 different 

indentation area on each tooth of control, DI type I, and DI type II surfaces. The decision 

of characterising the mechanical properties of dentine is made to compare the obtained 

results in this study with the results from other investigators . Hardness of dentine was 

measured before application of any demineralisation protocol on the teeth as the 

purpose of demineralisation was to remove the mineral of dentine. In addition, 

demineralised samples can impact on the results by differentiating the mineral phase 

and the collagen phase and not measuring the dentine surface as a whole sound 

surface. 	

Tables 4-1 to 4-3 show the results of the hardness test in MPa, using Wallace Hardness 

instrument on control teeth. Teeth from 1-5 were control teeth, 6 -10 were DI type I, and 

11-15 were DI type II. These teeth were collected from 14 patients aged between 5 and 

9 years. The VHN was calculated with the use of the previously mentioned formula 

(Equation 1-1). In addition, VHN was converted to MPa by multiplying the VHN by 9.807 

as 1 kg force = 9.807 N.	

Sample Number d (Diagonal) VHN Standard 

Deviation 

Mega Pascal 

MPa 

Control 1 98.2 57.7 ±1.0 565.9 

Control 2 102.6 52.9 ±3.2 518.8 

Control 3 94.5 62.4 ±3.4 612 

Control 4 100.8 54.8 ±2.1 537.4 

Control 5  101.3 54.3 ±2.4 532.5 

Table 4-1: Dentine hardness in Control teeth (n=25 of indentation). VHN Values and MPa 

values at 300 gram of load. 
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Sample 

Number 

d (Diagonal) VHN Standard 

Deviation 

Mega Pascal 

MPa 

DI type I 1 149.8 25.4 ±4.8 249.1 

DI type I 2 160.1 21.8 ±1.6 213.8 

DI type I 3 164.7 20.8 ±3.4 204 

DI type I 4 161.2 21.4 ±2.2 209.9 

DI type I 5 165.9 20.3 ±1.3 199.2 

Table 4-2: Dentine hardness in DI type I teeth (n=25 of indentation). VHN Values 

and MPa values at 300 gram of load. 

 

 

 

Sample 

Number 

d (Diagonal) VHN Standard 

Deviation 

Mega Pascal 

MPa 

DI type II 1 132.1 32.2 ±4.4 317.7 

DI type II 2 129.2 33.5 ±3.6 328.5 

DI type II 3 124.5 36.2 ±4.4 355 

DI type II 4 129.1 33.5 ±2.1 328.5 

DI type II 5 134.2 31.0 ±2.0 304 

Table 4-3: Dentine hardness in DI type II teeth (n=25 of indentation). VHN Values 

and MPa values at 300 gram of load. 
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The obtained VHNs of dentine ranged from 52.9 ± minimum to 62.4 ± maximum for the 

control primary teeth. The mean VHN for dentine of control primary teeth was ± 56.42.  

The VHN in DI type I teeth was recorded from 20.3 ± minimum to 25.4±, and for DI type 

II teeth from 31 ± minimum to 36.2 ±. In comparison with the control teeth, the VHN 

value was reduced in DI teeth compared to the control. Micro-hardness of the teeth 

recorded in this study is showed on Figure 4-1 indicating the the hardness in MPa values 

for control teeth in comparison to DI teeth. 

 

 

 

Figure 4-1: Dentine hardness (MPa) of teeth (5 control teeth in comparison to the 

hardness value of 5 DI type I teeth and 5 DI type II in each group). 

 

4.1  Statistical analysis of dentine hardness  
The VHN values for all groups were analysed statistically using Origin Pro Software 

(OriginLab, Northampton, MA). The analysis was done by using Kruskal Wallis test “one 

way Analysis of Variance (ANOVA)”. Figure 4-2 represents box plot graph comparing 

between the MPa of the three groups; control, DI type I, and DI type II. Medians of VHN 
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values were represented very differently. There were a significant different between 

control and DI type I, control and DI type II, and between both DI groups (P < 0.05). 

 
 
 
 
 

 
 

 
 

 

 

 

 

 

 

 

 

Figure 4-2: Kruskal Wallis Test analysis of Hardness test values (MPa) in control, 
DI type I, and DI type II samples. There is a significant difference between the 3 

groups as the medians are very different. 

 

 

4.2  Summary of Result (Hardness test) and Discussion: 
 

The obtained VHN that has been recorded in this study significant varies in the 3 groups. 

The sample size number is small (5 control teeth, 5 DI type I, and 5 DI type II). Dentine 

hardness test and VHN for both DI type I and II were significantly decreased from VHN 

values of dentine of normal control primary teeth (P ≤ 0.0001). and the dentine hardness 

were significantly different between control and DI type I, and between control and  DI 

type II groups (P ≤ 0.0001). In addition, a significant difference between DI type I and DI 
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type II groups were noted (P ≤ 0.001). The teeth that have been measured for the 

hardness test were also used for topographical imaging.  

The N number equal for each group was 25, which indicated 25 indentations for each 

group. The different dentine locations for indentation was treated as an individual 

dentine sample. The compared results of dentine hardness of five DI type I and five DI 

type II with five control healthy dentine were significantly different in this study. The 

mean hardness value for control teeth was VHN 56.42± 6.1 and the mean VHN value for 

DI type I teeth was VHN 21.98±4.31, and for DI type II teeth the mean value was VHN 

33.3±2.94. The mean VHN values reported in this study for sound dentin (from 52.9 to 

62) is in accordance with previously reported values (57, 60 and 62) with the same 

measurement procedure (Fross et al, 1991, Willems G, 1992, and Fuentes, 2003). The 

resemblance of reported values is positively due to the reproducible micro-indentation 

techniques occupied. The small difference in VHN reading between previous studies 

and this study might be due to some teeth variation and the sensitivity of the use of the 

Wallace hardness test instrument. Alternatively the measurements reading could well be 

affected by the sample flatness and its surface condition (Lysaght et al., 1969; Lasheras, 

1981). In addition, there were no previous studies comparing between the sound and 

diseased dentinal hardness. 

 

 The reduction of hardness of dentine was statically significant between the DI teeth in 

both groups and control group. In addition, there was a significant difference between DI 

type I and DI type II. Which means a reduction in dentine hardness were found more in 

DI type I more than DI type II teeth. This finding states that there is a structure difference 

between DI type I teeth that is associated with osteogenesis imperfecta thus affected by 

mutation in COL1A1 and COL1A2, and DI type II teeth that is affected by DSPP 

mutations. Collagen structure in dentine gives the strength and support to the dentinal 

tissues and any mutation in COL1A1 and COL1A2 will affect on dentinal stability and 

strength. As well as dentinal phosphoprotiene which plays an important role in 

hydroxyapatite crystal formation during mineralisation process of dentine (Weinstock et 

al., 1973,Nanci, 2008). Therefore, any abnormality of DSPP will affect on the hardness 

of DI type II teeth and dentine structure. 
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It is well recognised that dentine hardness is affected by the stability of the intertubular 

dentine (Kinney et al., 1996) and the highly mineralised peritubular dentine (Pashley et 

al., 1989). This study showed that DI type II teeth were relatively higher in dentine 

hardness when compared to DI type I teeth, which means that the mineral content would 

be different in DI type II than in DI type I or either in control teeth. However, since the 

causative factor of DI type I teeth is COL1A1 and COL1A2 mutation that affects the 

collagen stability and elasticity of dentine, It can be assumed that the collagen in dentine 

contributes in dentine hardness of primary teeth. The hardness of all DI teeth in both 

types showed decreased hardness from those of normal dentine. The probable 

justification of reduced hardness of DI type I teeth is the distorted function of odontoblast 

due to the unusual collagen secretion which later affects the dentine matrix secreted by 

the odontoblast. A previous study on hardness has been performed on sound and 

carious primary dentine with the use of Nano-indentation techniques. It has been 

suggested that the hardness of dentine affected by the mineral content and there were a 

reduction in hardness is the carious due to loss of the minerals (Angker et al, 2005) 

 

The overall number of collected primary teeth was five and it was collected from five 

children aged between 5 and 9 years old. This was essentially a convenience sample 

limited by the availability of teeth with DI. There is one previous study compared the 

hardness of dentine in permanent teeth with mature root and open apex in upper 

incisors. It showed that the dentine hardness result was approximately it was 

insignificance statistically between the young patient group that aged between 8 to 10 

years old and from the old patient group that aged between 56 to 60 years old (Dalitz, 

1962). In this study, the aim was to compare among the groups and focused on the 

patient’s age range to reduce the errors in the outcome of the measurements of the 

dentine hardness.  

 

Wallace Hardness Tester Indenter was the equipment of choice to measure the dentine 

of primary dentine in each group of control and both DI types. The measurements were 

taken randomly targeting five indentation locations around the surface area to be able to 

determine the different dentine locations as; peritubular dentine, intertubular dentine, 

DEJ area, outermost area of dentine and innermost zone of dentine close to the pulp. A 

weight of 300 grams was employed in this study. There were numerous previous 

researches of dentine hardness using both 300 grams or 500 grams load (Marshall et 
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al., 1982; Hegdahl et al., 1972). However, the hardness measurements difference due to 

weight dependence will probably be minute in comparison with the differences caused 

by experimental errors (Marshall et al., 1982; Hegdahl et al., 1972).  

 

One of the aspects that can disturb the hardness measurement is the difficulty to 

stabilize the sample (sectioned dentine) during recording of the measurements. The 

difficulty arose particularly when using small models of sectioned and polished dentine. 

The width of each sample which was not more than 4mm, making the handling of each 

sample extremely difficult. In this study, the DI teeth used were upper and lower primary 

molars in almost all the mouth quadrants. It has been a challenge to prepare the sample 

dentine discs of the DI teeth due to the small teeth size and because some of the 

samples and lost various parts of dentine due to occlusal wear. As it is recognized that it 

is essential to obtain a flat surface in the cutting sections for the hardness measurement 

process, the small amount of the DI teeth samples has probably compromised the 

sample preparation thus would have altered the indentation moves throughout hardness 

measurement.  

 

The performed microindentation technique in this study was the Vicker Hardness test 

indentor. It has been used in this study a square shaped diamond with a pyramid base 

that is forced into several polished surfaces of materials under a precise load that is 

chose by the researcher. The Vickers test is appropriate for verifying the hardness of 

extremely delicate materials such as tooth structure (Lysaght et al., 1969). It has been 

stated that the evident increase in hardness with reduction in load is mostly caused by 

two factors: 1) the determination of the size of the indentation, or failure to record the 

final micron of the indentations, specifically when indentations are less than 100µm 

(Lysaght et al., 1969; Colleys et al., 1992), and 2) the elastic recovery of the indentation 

(Lysaght et al., 1969). For Knoop hardness, elastic recovery occurs after unloading the 

force mainly occurs along the shortest diagonal and depth, but the longest diagonal 

stays moderately unaltered (Shannon et al., 1976; Marshall et al., 1982). Thus, the 

hardness measurements taken by this approach are practically insensitive to the elastic 

recovery of the material. Based on this, Vickers hardness test was indicated in this 

research to gauge the dentine hardness of teeth samples.  
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The number of previous studies of dentine hardness is few, and most of the studies were 

comparing between the hardness of sound permanent, sound primary, carious dentine, 

on the dehydrated and hydrated dentine surfaces hardness, as well the hydration of 

dentine in carious lesion (Fusayama et al., 1966; Marshall et al., 2001; Ogawa et al., 

1983; Shimizu et al., 1986; Fuentes et al, 2003). In fact, researches on the dentine 

hardness of sound and teeth affected with DI teeth are very limited. 

 

The previous published studies have concentrated on measuring the mechanical 

properties of permanent teeth dentine (Fusayama et al., 1966; Marshall et al., 2001; 

Ogawa et al., 1983; Shimizu et al., 1986; Fuentes et al, 2003). Very few studies have 

been established to evaluate primary dentine (Angker et al., 2003; Mahoney et al., 

2000), and even less have focused in diseased teeth such as DI teeth in primary 

dentine.  
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Chapter 5 Collagen Ultrastructure Exposure (Demineralisation of Dentine) 

5.1  Adaptation of pre-existing demineralisation protocols: 
	
 Demineralisation of dentine was performed by removing the minerals and smear layer in 

order to expose the collagen ultrastructure. Different demineralisation techniques have 

been established previously on healthy dentine. These techniques have been performed 

by using different acids with different application times. In this study, the protocol 

developed was been adapted from previous studies as mentioned in the introduction and 

applied to all the sample groups. This protocol focussed on the use of 37% phosphoric 

acid applied directly on dentine. To obtain a systematic standard demineralisation 

protocol applicable to all tooth sample, a validation of the method was carried out using 

a spectroscopic approach. The merit of the demineralisation protocol was evaluated with 

an FTIR spectrometer by monitoring the intensity of the phosphate band in relation with 

the amide I band. The success of the demineralisation approach was evaluated by 

recording the  decrease of the intensity of the phosphate peak and increase of that of the 

amide I peak. The FTIR results were found to be reproducible on control samples but not 

on the diseased group. To remedy to this issue, another demineralisation technique was 

applied on the DI type I and DI type II groups by using 17% of EDTA. This was then 

subsequently evaluated with FTIR. 

5.1.1 Evaluation of Main Demineralisation Protocol:  
After cutting the samples, a smear layer formed on the surface of the samples. The 

demineralisation protocol was applied in order to expose the collagen structure. This 

was done by applying phosphoric acid onto the entire sample in an ultrasonic bath for 15 

seconds. FTIR was used prior to this step to compare pre and post collagen exposure 

which was indicated by an increase in the amide I peak intensity. The amide I peak is 

characteristic of the collagen content in the dentine, whilst the phosphate peak is 

characteristic of its mineral contents (hydroxyapatite). Satisfactory AFM and SEM 

topographical images were obtained after demineralisation.  

Obtaining a clear exposure of the collagen meshwork is needed for topographical 

imaging to reveal the collagen ultrastructure. This can be obtained by doing a sufficient 

demineralisation protocol on the sample surface as in Figure 5-1.   
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Figure 5-1: SEM images at two different magnifications of demineralised dentinal 
surface and exposed collagen, showing (A) pre demineralisation and (B) post 

demineralisation protocol of one control primary tooth sample. 

 

 A previous study Figure 5-2 shows pre and post demineralisation infrared spectra of a 

control sample. After acid etching for 15 seconds, (spectrum shown in black in Figure 4-

4), the phosphate peak was greatly reduced and almost completely disappeared 

suggesting sufficient and/or complete removal of inorganic surface minerals. Amide I 

and II bands representing collagen type I was then clearly amplified, suggesting collagen 

exposure. 

Figure 5-2 : Fourier transform infrared (FTIR) spectrum of control primary tooth at 

pre (red spectra) and post (black spectra) demineralisation. 
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Unfortunately, an increase in the demineralisation time can lead to denaturation of the 

collagen fibrils and damage the collagen structure. (Ibrahim, 2015). In order to avoid this 

scenario, a  gradual decrease in the intensity of the Phosphate peak was obtained by 

modulating the exposure time of the acid . In Figure 5-3, the phosphate peak has been 

monitored in different times from 0 point to 15 seconds. The gradual reduction of 

phosphate peak has been recorded in relation with amide peaks. This reduction 

indicates the partial or complete removal of the minerals on the dentine surface.  

 

 

 

  

 

 

 

 

 

 

 

 

Figure 5-3 Fourier transform infrared (FTIR) spectra of control primary tooth. 
Spectra shown in green is at 0 min, prior to acid etching, and light blue spectra is 
post demineralisation spectra after 15 s. the gradual reduction of phosphate peak 

(Blue arrow) is recorded in 5,8,10 toward 15 sec. 
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In this study, it has been decided to apply demineralisation on samples for 15 seconds 

for most favourable results as it has been shown on topographic images in the next 

chapter. On the other hand, 15 seconds of etching is the approximate time that is being 

used on carious lesion restoration with adhesives composites. 15 seconds of acid 

etching that is made of 37% phosphoric acid, was found to be appropriate for acceptable 

demineralisation of dentine surface, smear layer removal, dentinal tubule unblocking, 

and collagen exposure.  

This acid exposure of 15 seconds on healthy dentine produced superior topographic 

images for AFM and SEM since the collagen ultrastructure is clearly revealed as 

presented later on. 

 

5.1.2  Ultrasonication Technique during Demineralisation: 
It was also beneficial to introduce a sonication step in the demineralisation protocol of  

samples. The sonication enabled a deeper penetration of the acid inside the surface 

area and allowed it to spread in multiple directions along the dentinal tubules. The ultra 

sonication of the phosphoric acid created a homogenous etching on the entire surface, 

better penetration and removal of dentinal tubules obturation.  

 

5.1.3  Deproteinisation Method on Dentine:  
A futher step was added, consisting in the deproteinisation of the smear layer that may 

reside at the surface of the demineralised dentine surface. To do so, 6.5% vol of Sodium 

Hypochlorite (NaOCl) was used to eliminate the non-collagenous substances such as 

proteins that cover the surface of collagen fibrils (Habelitz et al, 2002 and Marshall et al., 

2001). NaOCl is a bleaching agent and acts like a solvent, this has been used for root 

canal irrigation throughout clinical endodontic treatment for many years. The benefit of 

using NaOCl as an irrigation solvent was to dissolve and remove the organic substances 

and eliminate any bacterial infection (Yazd, 2008). The prolonged application of NaOCl 

with high concentration may lead to collagen surface dissolution and can modify the 

mechanical properties such as reducing the hardness and modulus of elasticity 

(Marshall et al, 2001). It has been stated that using 6.5% vol of sodium hypochlorite for 5 
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seconds will maintain the structure integrity of collagen without damaging it. This allows 

us to obtain an improved quality of topographical images in both AFM and SEM with a 

clear presence of collagen meshwork. Figure 5-4 showed dentinal surface of control 

tooth post demineralisation application. (A) without deproteinisation, and (B) after 

application of 6.5% NaOcl for 5 seconds. 

 

 

Figure 5-4: SEM images of dentinal surface of control tooth after demineralisation 
with phosphoric acid. (A) without deproteinisation. (B) with deproteinisation by 

using 6.5% NaOCl for 5 seconds. 

 
	

5.2  Application of the Demineralisation Protocol on Control and OI / DI Affected 
Teeth Samples  
In order to evaluate the value of the demineralisation technique and protocol for each 

sample, FTIR has been used pre and post demineralisation at 15 seconds of time with 

phosphoric acids. All the samples of each group (Control, DI type I and DI type II) has 

been assessed.   

5.2.1  FTIR results on Control:  
Examination of the data focussed on the intensities of the  amide I band/peak relative to 

the phosphate peak. As such, the intensities of the Amide I vs Phosphate bands were 

measured pre and post demineralisation on the control samples. A net reduction in the 

intensity in the phosphate peak was observed after 15sec etching as anticipated. This 

implies the complete removal of minerals and exposure of collagen as shown in Figure 

5-5. It is worth noting that these measurements were performed with an FTIR Attenuated 

(A)	 (B)	
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Total Reflectance which has a sampling depth of 2um. This means that we can safely 

assume that the surface of the dentine has been completely demineralised down to a 

depth of 2um.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5 Fourier transform infrared (FTIR) spectra of control primary tooth. 
Spectra shown in black is at 0 min, prior to acid etching, and blue spectra is post 

demineralisation. Spectra after 15 s. 

 

 

In order to have a good surface penetration for the infrared beam and complete 

coverage of the ATR diamond/crystal, the sample surface should be high- quality 

smooth, uniformly flat, and polished. If the sample is not in contact with the ATR 

diamond, air and humidity may disturb on the data and provides an inaccurate reading.  

Additional reports of the demineralisation mechanism are mandatory to observe whether 

etching power (acid concentration), sample nature, and /or collagen rate of denaturation 

are causative factors on exposing the collagen. 
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5.2.2  FTIR on DI teeth: 
Similarly to the control samples, the intensities of the Amide I vs Phosphate bands were 

measured pre and post demineralisation on the DI samples. The results were compared 

with the results obtained on the control teeth. Unlike the control sample, each of the DI 

sample required a different demineralisation time to achieve the complete removal of the 

phosphate band. Thus, the demineralisation of DI teeth was performed by applying the 

acid etch over different times exposure: 5, 10, 15 seconds.  Figure (5-6) presents the 

spectra of the same DI type I tooth sample comparing two different demineralisation 

times (5 and 15 seconds). The phosphate peak has been greatly reduced when the 

etching time was applied for 5 seconds, which suggested removal of the mineral and 

exposing collagen. However, the phosphate peak intensified and became more 

prominent than amide band peaks after application of dentine acid etch for additional 10 

seconds and the total demineralisation time was 15 seconds. It implies that there was 

incomplete demineralisation on the dentine surface of the DI type II sample and the 

collagen was covered up by HA. Figure (5-7) shows SEM images of samples after 

application of 5 seconds and 15 seconds of phosphoric acid. The dentine surface 

presented with over demineralised surface and no collagen ultrastructure was detected. 
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Figure 5-6 Fourier transform infrared (FTIR) spectra of DI type I primary tooth. 
(A)Spectra shown in purple is at 0 min, prior to acid etching, and black spectra is 
5 seconds post demineralisation. (B) Spectra shown in blue is at 0 min, prior to 

acid etching, and red spectra after 15 seconds. 
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Figure 5-7 Scanning electron microscope (SEM) micro photographs of DI type I 

primary tooth dentine samples at different acid etching times by 37 % Phosphoric 

acid. (A) 15 secondes etching, (B) 5 seconds etching time. 

 

 

5.3  Evaluation of Demineralisation with 17% EDTA: 
In order to minimise the acid exposure in the case of the DI teeth, one sample from each 
group been analysed with FTIR after application of 17% EDTA. The reason of using this 
chelation agent is to perform the demineralisation on DI whilst maintaining  an 
undamaged collagen network. Thus, each sample was demineralised with 17% in EDTA 
for 10, 15, and 30 minutes in an ultrasonication bath. Then, the demineralisation 
efficiency was monitored by FTIR as done previously. Figure (5-8) shows pre and post 
demineralisation infrared spectra obtained for the 3 groups. The complete 
demineralisation was observed in DI type I and DI type II in 30 minutes after the EDTA 
had been applied. In contrast, the 30 minutes demineralisation in control group had not 
been accomplished, as the intensity of the phosphate peak was still relatively high. 
Following the demineralisation, all the samples were imaged using SEM. The findings of 
DI groups demonstrated collagen scaffold presence on the dentinal surfaces.  
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Figure 5-8 Fourier transform infrared (FTIR) spectra of DI primary tooth after 
applying 17% of EDTA. Spectra shown in red is at 0 min, prior to demineralisation, 

and Green spectra is post demineralisation. (A) Spectra after 30 minutes on DI 
type I, (B) Spectra after 30 minutes on DI type II. 

 
 

 

Ab
so
rb
an
ce
		

Ab
so
rb
an
ce
		

Date: 6/5/2017

  DI2CITRIC0POINT.001

  di2citric1MIN.001

2015.5 1800 1600 1400 1200 1000 800 571.6
-0.01

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.50

cm-1

A 

Date: 6/5/2017

  di1citric0point.001

  di1citric1MIN.001

2248.1 2000 1800 1600 1400 1200 1000 800 734.3
0.00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.46

cm-1

A 

(A)	

(B)	

Wave	number	cm-1	

Wave	number	cm-1	



	
	

90	

5.4  Merits of the demineralisation protocols: 

 

The aim of this project is to elucidate differences in collagen structure between healthy 

and DI primary teeth. The adapted protocol for demineralisation was to use 37% 

phosphoric acid under sonication to eliminate off debris and the smear layer after cutting 

the teeth, and assist the penetration of the etching acid on the sample surface. 

Phosphoric acid was preferred as it is the conventional etching material used before 

placing an adhesive restoration in the clinical success. The characteristic of the acid is 

really important in when to apply it on this study, it is stated that phosphoric acid is 

potent with pH of 0.9 – 1 (Ferracane et al, 2013). The phosphoric acid used in this study 

was in liquid form. Numerous studies have stated than the strength of the liquid acid is 

higher and more potent when used of the gel form of the acid (Okamoto et al, 1991 and 

Oyarzuan et al, 2000 and Perdigao et al, 1996). In this study, 15 seconds of application 

of 37% phosphoric acid was sufficient to expose the collagen and remove the mineral 

surface on dentine.  

The deproteinisation agent of choice in this study was Sodium Hypochlorite (NaOCL) 

which is used in routinely in endodontic treatment. 6.6% NaOCl for 5 seconds aided in 

optimizing superior images due to capability of removing some minerals such as; 

calcium, carbonate, and magnesium (Heredia et al, 2008 and Sakae et al, 1988). 

The ultrasonication method was included in this study to increase the penetration of the 

acid and unblock the dentinal tubules. In addition, the sonication aided in spreading the 

acid for the demineralisation process in several directions rather than downward 

direction that comes from the gravity.  

However, the demineralisation time which is 15 seconds in the protocol has aided in 

exposing dentine of the healthy samples and it can be modulated by increasing or 

decreasing the demineralisation time for DI I or DI II since we are believing that the 

collagen structure is weakened in DI. In figure 5-9, the AFM images shows the collagen 

fibrils structure on DI I teeth with an evident of that the D-banding periodicity was not 

clear in the image (A) when it is compared to the control tooth (B), and the 

demineralisation protocol was implemented on both of the samples. The 

demineralisation protocol might be affecting on the structure of collagen in DI samples in 

which can produce particular damage on the sample surface and making it very soft 

prior topographical imaging. Otherwise, a smear layer can be created after the 

demineralisation protocol by etching the sample for a longer time on DI teeth or under 
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demineralisation of the DI samples. 

 

 

Figure 5-9: AFM images post demineralisation protocol in DI and Control healthy 

samples (2.6 um). (A) D-banding periodicity is distorted in DI when it is compared 

to the control sample (B). 

 

 

 

5.4.1  Mineral Content  

Spheroid like structures were found in DI type II when sample has imaged with AFM 

(Figure 5-10). It can be due to re- formation of the smear layer of HA that is created with 

the etching acid post demineralisation due to the delicate dentine structure or the 

alteration of the quality of the mineral in DI type II. In fact, these spheroid like structure 

might be a residual of the minerals that were resistance to demineralisation. Additional 

factors can influence in formation of these structures is the surface roughness, 

concentration of the acid etch, and time of demineralisation application. A study was 

done in 2005, suggested that the spheroid structures are Amorphous HA or remnant of 

crystals of calcium phosphate that has been created following demineralisation (Bozec 

et al. 2005). This can be referred as the quality of the mineral is affected by the DSPP 

that plays an important role in mineralisation of dentine and collagen during 

dentinogenesis. In addition, mutation of DSPP is responsible in DI type II 

(A)	
	 (B)	 850nm 950nm 
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Figure  5-10: AFM images post demineralisation with phosphoric acid on DI type II. 

The blues circles indicates the spheroid like structures (variation of sizes) on the 

dentine surface. 

 

 

This study studied as well the demineralisation time on the DI samples and considered 

that the 37% of phosphoric acid could be strong on the diseased teeth. Thus, different 

application times of the phosphoric acid has been employed on DI samples. It has been 

showed that 5 seconds is sufficient to demineralise the teeth as teeth were monitored 

with the use of FTIR. A study been suggested that phosphoric acid can dentaurate or 

distress the collagen of dentine (Okamoto et al., 1991). Therefore, application of 17% of 

EDTA was been performed only on DI teeth to reveal the ultrastructure of dentinal 

collagen network.  Previous studies has been performed application of EDTA for 8 

weeks on sound dentine then observe the dentinal structure under TEM (Waltimo, 

1994). Another study has been done in 2013 used 17% of EDTA and stored is with 

control teeth for 12 months was less erosive and there was an evident of mineral 

removal and dentinal collagen exposure. The chelating action of EDTA will bound the 

non collagneous proteins together as these proteins intimately integrated with the 

hydroxyapatite (Harith, 2013). The findings of this study showed that the application of 

EDTA 17% for 30 minutes on DI teeth is sufficient to demineralise dentine and expose 

collagen with distorting it as it showed in the SEM images. 

  

660nm 660nm 
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Chapter 6 Investigation of Collagen Ultrastructure (Topographical assessment) 
 

After demineralisation of the samples, part of them were mounted for AFM imaging. 

Then the images were viewed and analysed by using Nanoscope analysis software. In 

addition, the number of dentinal tubules was counted, dentinal tubules and the 

periodicity of collagen D-banding were measured randomly from the imaged samples. 

However, some of the data was difficult to obtain from AFM imaging particularly the 

diseased teeth. Then, several modifications in the demineralisation process performed 

on the control and both DI teeth. Since the method of obtaining the AFM images was 

decelerated, the investigation and analysis was performed through SEM images mainly 

and few on AFM images. The reason was that SEM facilitates a greater surface area 

exploration and method of obtaining images is more rapid than in AFM. Images of each 

proposed group contain images of AFM. 5 teeth sample of each group were involved in 

evaluation of collagen ultrastructure. 

 

6.1  Topographic Micro-scale Assessment (SEM imaging): 

6.1.1  Collagen Structure following demineralisation with 37% Phosphoric acid: 

 

 6.1.1.a  Control samples. 
 

Scanning Electron Microscopy (SEM) imaging of samples was performed on 

demineralised control sample. As displayed in Figure (6-1), images showed smooth 

debris free surface with clearly adjusted, unclogged, and well-designed dentinal tubules 

in lower magnification is 650x. Relatively great amounts of dentinal tubules were 

distinguished with an average 6 tubules per 20 µm square area of surface. The mean 

values of diameter of a dentinal tubule ranged between 2 to 4 µm, and few of large 

tubule size up to 6 µm. Table 6-1 displayed the mean value of dentinal tubules per 20 

µm square area of surface in control, DI type I and DI type II. 
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Sample Group Control DI type I DI type II 

Dentinal Tubules 6  2 2 

Table 6-1: The dentinal tubules count per 20 µm square area of surface in control, 

DI type I and DI type II (Data extracted from 5 images in each group). 

 

 

 

  

 

 

 

 

 

 

 

Figure 6-1: Scanning Electron Microscope (SEM) photo micrograph showing 
dentinal tubules distribution at different areas of demineralised control sample 

In higher magnification images as 8000x and above, as shown in figure (6-3) and figure 
(6-2), the collagen fibrils were evidently identifies in both intertubular and intratubular 
zones. The collagen fibril thickness was repeatedly persistent and the mean value of 
diameter ranged between 20 to 80 nm 
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Figure 6-2:  Scanning electron microscope (SEM) photo micrograph showing dentinal 
tubules distribution at different areas of demineralised control sample surface at higher 

magnifications of 15000x and 8000x 

 

 

 

 

 

 

 

 

 

Figure 6-3: Scanning Electron Microscopy (SEM) photo micrographs showing 
collagen ultrastructure of demineralised control sample at high magnification of 

25000x 

 

2 µm 15000x 
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Additional notable finding were the present on the SEM images. Numerous crack like 

areas on the surface of the dentine were seen as shown in figure (6-4) is called 

desiccation cracks. These cracks may be produced at any stage of the sample 

preparation such as; cutting and polishing the teeth, intense dehydration of the sample 

before coating the sample with metal. In addition, etching the samples will reduce the 

dentine integrity and with eliminating the mineral the “crack” appears on the dentine 

surface  

 

Figure 6-4: Desiccation crack like area on the dentine surface pointed with blue 

arrows. 

 

6.1.1.b  Samples of DI type I 
The obtained images for SEM in DI type I sample were taken with high magnification to 
understand the dentine surface and collagen structure. In Figure (6-5), the dentine 
surface observed over-etch with difference in contrasts. It is suggested that there is 
differences in the mineral content and quality of the DI type I sample. The dentinal 
tubules were unclogged and visibly clear with no debris on the surface. The number of 
dentinal tubules was less than the control teeth with mean average of 2 tubules per 20 
µm square surface. 

 

 

 



	
	

97	

 

 

 

 

 

 

Figure 6-5: Scanning electron microscopy (SEM) photo micrographs of DI type I – 
associated with OI demineralised sample, showing dentinal tubules at different 

magnifications of 500x, and 5500x 

 

In higher magnification images as 8000x and above, the collagen fibrils are detected in 
the intertubular area of dentine. In figure (6-6), and the collagen fibril is radiating within 
the dentinal tubules as indicated by blue arrows with no evident of intratubular collagen 
network. It was difficult to detect the D- banding periodicity onthe collagen fibrils. The 
mean value of the collagen fibril diameter ranged from 20 to 90 nm. 

 
Figure 6-6: Scanning Electron Microscopy (SEM) photo micrographs showing collagen 

ultrastructure of demineralised DI type l sample at different high magnifications of 8000x, 

25000x. Blue arrows indicated the collagen fibrils radiating in intertubular dentine area. 
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6.1.1.c  Samples of DI type II 
 
After demineralisation of DI type II sample, dentine showed in figure (6-7) with over-

etched surface similar to DI type I findings. Unlike in DI type I, there were detected areas 

of clogged dentinal tubules and other areas where they were clearly unblocked. The 

dentinal tubules were observed with smaller number less than DI type I with an average 

2 tubules per 20 µm square surface area.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-7: Scanning electron microscope (SEM) photo micrographs of DI type II 
demineralised sample showing dentinal tubules distribution at different 

magnifications of 800x and 650x. 

 

In figure (6-8), a higher magnification been used on demineralised samples as 8000x 
and above. It was noted that the dentine surface was not uniform as showed in areas of 
severe over-etched (red arrow) and areas of smear layer formation on the surface (blue 
arrow). Similar to DI type I findings, it is suggested that the quality of the mineral HA is 
different than healthy teeth and phosphoric acid damaged the dentinal surface thus the 
collagen network. In addition, the collagen fibrils were found inside the dentinal tubules 
and were denaturated and conceivably gelatinised after demineralisation as indicated in 
figure (6-8) in red circle. Another finding was noted that dentinal tubules exhibited poorly 
formed and developed tubule within tubule phenomenon, or internal splitting, was also 
seen as indicated in the blue square. 



	
	

99	

 

Figure 6-8 Scanning electron microscope (SEM) photo micrograph of DI type II 
demineralised sample showing ‘’ tubule within tubule’’ branching phenomenon 

and malformed dentinal tubules ultrastructure at different magnification of 8000x, 
10000x. 

 

 

6.1.2  Collagen structure of DI teeth post Demineralisation with EDTA 17%: 
 
 

It has been noted that each tooth has reacted differently after application of 

demineralisation protocol with 37% of Phosphoric acid. Since the dentine structure is 

compromised in both types of DI teeth, the mineral quality and content could be affected 

following the demineralisation. In addition, the dentine etchant could be strong and can 

damage the collagen ultrastructure network. For that, the concept of using 17% of EDTA 

has been applied on the DI samples. EDTA 17% was applied on the polished samples 

for 30 minutes and monitored by FTIR. The Phosphate and Amide I peak been 

evaluated to test on the effective of demineralisation. The samples only imaged with the 

use of SEM to obtain a faster rate topographic images. In figure (6-9). The dentine 

surface of DI type I sample showed smooth unclogged dentinal tubule (A) and DI type II 

dentine surface showed similar to DI type I findings. 
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Figure 6-9 Scanning electron microscope (SEM) photo micrographs of (A) DI type I 
demineralised sample showing dentinal tubules distribution at magnifications of 

800x and (B) of DI type II at magnification of 650x 

In figure (6-10), the image DI type I sample showed collagen network and D- banding 
periodicity was visible. The collagen was closely packed located in both intertubular and 
intratubular areas on dentine surface, and the behaviour of the collagen organisation 
was similar to the observed collagen fibrils of control samples. In DI type II samples, the 
results is extremely similar to DI type I. However, local swellings of collagen fibrils 
observed in both DI samples as indicated in red circles.  
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Figure 6-10 Scanning Electron Microscopy (SEM) photo micrographs of 
demineralised DI sample showing collagen ultrastructure (A and C) DI type I at 

high magnifications of 12000x and 35000x, and (B and D) DI type II at 
magnification of 12000x and 25000x. The red circles indicates local swellings of 

collagen fibrils. 
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6.2  Topographic Nano-scale assessment (AFM imaging): 

6.2.1  Control samples: 
 
The advantage of the AFM images that is gives a superior imaging quality and the ease 

of investigating the sample in high resolution..  

AFM images for control teeth were taken prior and post demineralisation. In Pre-

demineralisation as in figure (6-11), images showed the dentinal tubules that were 

concealed with a mineral layer. The images were acquired in different magnifications in 

figure 4-. The images interpret that the smear layer is blocking the dentinal tubules and 

the collagen structure not recognized in these images.  

 

  

 

 

 

 

 

 

 

 

 

Figure 6-11: images at different magnifications of a control sample before 

demineralisation protocol is implemented. 

 

The demineralisation technique was applied on the sample, 37% of Phosphoric Acid for 

15 seconds in a sonicated bath followed by 6.5% Sodium hypochlorite for 5 seconds. 

Images were taken topographically and the dentine surface is clear from debris. The 

collagen fibril structure is recognised in various images and the D-band periodicity is 

uniform and visibly aligned as in figure (6-12).  
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Figure 6-12: Atomic Force Microscopy (AFM) images at various magnifications of 

a control samples after demineralisation, and verifying effectiveness of 

standardized protocol on healthy teeth. 

 

6.2.2  DI type I samples: 
 
After applying the demineralizing protocol on DI I teeth, images were taken in different 

length scales under AFM. The D-banding periodicity of the collagen fibrils is not very 

visibly revealed in different areas in the images as indicated by arrows. The collagen 

structure may be different in DI teeth when it is compared to the control teeth. In figure 

(6-13), collagen fibrils were and difficult to identify them. The D-bandings periodicity was 

not clear as shown in control image.  
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Figure 6-13: AFM images showing collagen fibrils in different magnification DI I. 

(collagen fibrils discontinuity and unusual morphology as indicated by arrows) 

 

6.2.3  DI type II samples: 
 
It was challenging  to  recognise the collagen fibrils including their periodicity of the D-

bands in the images of Figure (6-14). The presence of spherical substances with a 

different variation of sizes as implied in circles that are found some areas of the sample 

surface might indicates that the dentine structure and quality is different than in healthy 

and DI I teeth. 
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Figure 6-14: AFM images showing collagen fibrils in different magnification DI II. 

Collagen fibrils and the D-banding periodicity was not clear and spherical 

substances was on the sample surface as indicated by the circles. 
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6.3  Ultrastructural findings in Control, DI type I, and DI type II 
samples: 
The obtained results of the dentinal tubules numbers, diameter and the collagen fibrils 
diameter from each group were investigated by measuring them at numerous random 
locations on the sample surface. The data was assessed through SEM and AFM 
imaging and a statistical analysis been performed and graphs has been created as 
presented for control, DI type I and DI type II groups. 

6.3.1  The Number Dentinal tubules: 

The dentinal tubules numbers were varied among the three groups, this is due the 
alteration of the dentinal structure in DI teeth when compared to control. The dentinal 
tubules count been performed by using lower magnification of 5 images in each group 
and the amount of dentinal tubules in per 20 µm square area were counted form the 
SEM images. The increased number of dentinal tubules found in control teeth N= 972, 
followed by DI type I N= 276 and the least dentinal tubules count found in DI type II N= 
221. 

 

 

 

 

 

 

 

Figure 6-15:  Three graphs displaying the count of dentinal tubules number per 20 µm 
square area in control, DI type I and DI type II. 
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In Figure 6-15, statistical analysis of the samples was carried out and dentinal tubules 
number represented. In control teeth: 972 of dentinal tubules were found in different 
location with a median of 6 tubules per 20 µm square area. However, dentinal tubules 
count of DI type I 276 with a median of 2 tubules per 20 µm square area. Finally, similar 
finding with DI type II dentinal tubule (n= 221), with a median of 2 tubules per 20 µm 
square area of surface. 

Maan Whitney U test analysis was carried out to compare the data findings between the 
groups and Kruskal Wallis test. This test has been chosen because the samples where 
not equally distributed and to compare the values. There was a significant difference in 
the dentinal tubules count per 20 µm square area between control and DI type I, control 
and DI type II and between both DI groups as plotted as a boxplot graph in figure 6-16. It 
has been noted that both DI groups represented with equal median results. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-16:  Kruskal Wallis Test Analysis of dentinal tubule number in control, DI 
type I, and DI type II samples 
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6.3.2  The Dentinal Tubule Diameter: 
There were evident variations of dentinal tubules diameter between the three groups. the 
calculation of dentinal tubules diameter assessed by measuring a multiple random SEM 
imaging.  

In figure 6-17, the statistical analysis showed that in control teeth; 1020 dentinal tubule 
diameter were assessed and measured, and the diameter ranged between 1 µm to 5.5 
µm with the highest percentage at 3 µm. The number of measured dentinal tubules of DI 
type I was 217 and their diameter ranged between 0.1 to 6.6 µm, with a the greater 
percentage between 0.1 µm to 1.5 µm. Lastly, 107 of dentinal tubules of DI type II were 
measured and their diameter ranged between 0.1 µm  to 5.5 µm  with a larger 
percentage between 1 µm to 4.5 µm. 

 

 

 

 

 

 

 

 

Figure 6-17 Three graphs presenting dentinal tubules diameter of control (n=1020), DI type 
I (n=217), and DI type II (n=107).  
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Then, Kruskal Wallis test and Maan Whitney tests were carried out and plotted as in 
figure 6-18. The control, DI type I and DI type II values were compared and the Median 
of the dentinal tubules represented differently. There was a significant difference 
between control and DI type I group, as well as a significant difference between DI type I 
and DI type II. However, there the dentinal tubules diameter difference between the 
control and DI type II was insignificant. 

 

 

 

 

 

 

 

 

Figure 6-18: Kruskal Wallis Test Analysis of dentinal tubule diameter in control (Median = 
3), DI type I (Median = 1), and DI type II (Median = 3) samples. Noting the similarity of the 

Medians of control and DI type II samples.  
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6.3.3  The Diameter of Collagen Fibrils  
Collagen fibrils diameter were assessed and measured randomly at various non-specific 
location of the dentinal surface. The data was obtained through SEM and AFM imaging 
from the three groups. 150 collagen fibrils were measured from control, DI type I and DI 
type II samples and a statistical analysis was performed as showed in figure 6-19. 

 

 

 

 

 

 

 

 

Figure 6-19: Three count graphs presenting collagen fibril diameter of control, DI type I, 
and DI type II. 

In figure 6-20, the collagen fibril diameter was measured and ranged between 35 nm to 
75 nm. The greatest percentage in diameter width was counted between 60 nm and 75 
nm. DI type I collagen fibrils count varied between 20 nm to 90 nm with the highest 
percentage found between an average of 30 nm and 62.1 nm. Finally, DI type II collagen 
fibril diameter ranged between 40 nm to 160 nm with the greatest percentage found at 
85 nm and 110 nm.  

Kruskal Wallis test analysis was performed, the Median in control group was 88.8, DI 
type I was 55.5, and DI type II was 64.8 nm. The results displayed a significant different 
in collagen fibril diameter between control and DI type I samples, control and DI type II 
samples, and between DI type I and DI type II samples.  
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6.3.4  Measuring the D- Banding width: 

The D-banding periodicity is a feature of collagen type I and it is a result from alternated 

self-assembly of individual collagen molecules into a greater fibril. The D-banding 

distances data has been measured by taking a line profile that measures grey value in a 

distance (500 nm) to calculate the width of the D-band. Ten randomised collagen fibrils 

been measured in every image and five images been assessed in each group. In this 

study there was a substantial difference in the D-band width that varied from 65 nm to 74 

nm. Obtaining a baseline data of a control healthy tooth is crucial for future comparison 

between normal and DI collagen fibril D- banding width. Thus, indicates collagen 

malformation.  

In figure (6-20), the collagen type I fibril in control teeth and dentine. The D-banding 

distance in collagen fibril  is approximately 71.4 nm. control (average is 74.0 ± 6.1 nm)  
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Figure 6-20: measuring the D- band width by taking line profile for each collagen 

fibril. 
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6.5  Ultra structure findings and comparisons: 
 

 
 

Figure 6-21: Comparison between collagen fibrils in control and both DI types in 

primary teeth. 
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6.6  Discussion on Topographical assessment results: 

6.6.1  Dentinal Tubules Ultrastructure  
 

Researches of the dentinal structure were established several years ago with various 

techniques and equipment such as; light microscopes, immune-fluorescence 

microscopy, microradiograph, and recently with SEM, AFM, Transmission Electron 

Microscopy (TEM). Most of the studies were employed to observe the dentine surface 

structures such as dentinal tubules distribution, diameter size, dentinal tubules 

branching, and observe dentine in different locations as in coronal, middle and root 

dentine. In addition they also studied the differences of dentine structure in primary, 

permanent teeth. Previous studies have indicated that the numbers of dentinal tubules 

increase relatively when they approach to pulp (Schilke et al, 2000). This study showed 

that the number of dentinal tubules is few in DI teeth when compared to healthy teeth 

when it’s close to the pulp. This is might be due to over-mineralisation and resultant pulp 

obliteration. 

 

The branching of the dentinal tubules in this study was also seen in every group. The 

tubule within tubule and inter- tubular branching was recorded clearly in control and in DI 

type II. As well as comparing the sizes of the dentinal tubules diameter were significantly 

larger in sound primary dentine than in both DI types. These tubules were found larger in 

the middle dentine area in centre part of the tooth. Previous study was done with X- ray 

microtomography (XMT) found similar results regarding dentine diameter size in sound 

healthy teeth (Davis et al, 2015).  

6.6.2  Collagen Ultrastructure: 
	
The process of imaging the samples is by using the contact mode. The cantilever is in 

contact with the sample surface in which translate it to an image by the feedback loop to 

a topographic image. Choosing the contact mode is preferred while the samples are 

solid and static. After applying the demineralisation protocol on DI teeth, it is suggested 

that surface of the sample and the collagen is soft and contact mode may harm and 

damage the collagen. In future, Intermittent contract (tapping) AFM mode might be used.  
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The D-banding distances data has been measured by taking a line profile that measures 

grey value in a distance (500 nm) to calculate the width of the D- band. Previous studies 

on bone found the D- band distance in collagen fibril is approximately 67 nm.  In this 

study there was a significant difference in the d-band width that varied from 65 nm to 74 

nm. Obtaining a baseline data of a control healthy tooth is crucial for future comparison 

between normal and DI collagen fibril D- banding width. Thus, indicates collagen 

malformation. 

 

From previous literature, we know that the D banding periodicity average of the normal 

collagen fibril is always consistent. The D-banding periodicity of the dentinal collagen in 

DI has not studied before. Shapiro studied the D- banding periodicity on collagen of 

bone in OI patient. It has been observed that there is broadening and space variability 

between the D-bands (Shapiro, 2013). A similar result has been noticed in this study 

regarding the broadening of D- banding in DI type I teeth. As well as the morphology of 

the collagen fibril is different than the control group. Presence of wide parts or swelling 

on some areas on the fibril or and areas of constricted fibril diameter or incoherence. In 

1995, a study has been established on collagen fibrils on bone and atypical fibril 

morphology has been found with sudden breakage (Cassella et al, 1995). The 

morphology of bone collagen fibrils in OI type III showed to have a unusual organization, 

described as fused, composite fibrils. The collagen fibre bundles were also distorted and 

swirled (Sarathchandra and Pope, 2005). 

In figure 6-17, the collagen type I fibril in both rat tail and dentine. The classic banded 

fibril structures can be observed clearly in rat tail collagen, which demonstrates the high 

degree of structure and regularity possible in collagen fibres. The D-banding distance in 

collagen fibril of rat tail is approximately 66.6 nm. While in dentine, the D- band width 

was measured approximately 71.4 nm in a control healthy tooth. 
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Figure 6-17: Line profile for Collagen fibrils in rat tail and dentine (line profile in rat 

tail was 66.6 (A), and in dentine is 71.4 (B) (the image of Rat tail adapted from A. 

Strange) 

 

A previous study was established in 2012,  the results in OI affected mice that presented 

significantly greater variability of D banding distances of bone collagen fibril (ranging 

from 56 to 75nm) (Wallace, 2012). There was a significant difference in collagen fibril 

morphology and distribution due to mutation of COL1A1 in gene (G349C) (Wallace, 

2012).  

Further investigations are currently on going to find the topographies in the ultrastructure 

morphology to the modification in the nano-scale mechanical behaviour of type I 

collagen.  
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Chapter 7 Challenges: 
1) Limited Number of samples  

The major limitation of this study that should to be emphasized was the small sample 

number. Great effort was carried out to obtain DI teeth from patients. However, obtaining 

DI teeth was only possible if teeth required extraction as part of their dental treatment 

plan, or donated their exfoliated primary teeth. Second, several of the patients that has 

the teeth criteria declined to take part in this study. It must be remembered that DI is a 

rare dental anomaly with very few patients available to recruit during the course of this 

study. 

 

2) Mirco-indentation for Hardness test 

The stability of the sample during measuring dentine hardness is one of the challenges 

that have been taken in consideration, in which it can affect on the hardness 

measurements. The difficulty developed when preparing small teeth samples especially 

the primary teeth. In addition, the DI teeth surfaces width is smaller due to the wearied 

surface of the tooth. The samples were placed on the indenter and the surface of the 

sample must be flat to reduce the measured reading errors.  

 

2) Demineralisation technique  

Demineralisation of the sample is very technique sensitive. It depends on the acid 

concentration and the applied duration. Any increase in the duration time will have an  

effect on the sample outcome. It is believed that each tooth has its own unique physical 

properties and mechanical properties. Control teeth and DI teeth differs in the quality of 

the structure thus the quality of dentine. The only valid technique that has been used to 

evaluate the accuracy of the demineralisation protocol was FTIR Spectrum. Particular 

number of teeth needs prolonger time to expose collagen and remove the minerals form 

it. In addition, DI teeth need less time for demineralisation process to reduce the damage 

of collagen structure. The study was strictly performed in all group sample with 15 

seconds application of phosphoric acid.  

3) Topographic imaging: 

Teeth required to be dehydrated prior fixation for SEM imaging. This is done by fixing the 

samples first for 24 hours in 3% glutaraldehyde in 0.1M sodium cacodylate solution. 
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Then the samples undergo dehydration procedure by using an ethanol series. In this 

study, crack like areas were found on numerous areas on dentinal surface of the 

sample. Which is believed that excessive dehydration can lead to create this desiccation 

cracks. Thus damaging the collagen fibrils and weakening of the sample. 

AFM generates a high-resolution image of a nanometer-scale surface. Images were 

more superior in resolution when compared to SEM as provides a three-dimensional 

surface profile. Details and information regarding collagen ultrastructure can be gained 

in a single image.  A disadvantage of AFM compared with SEM is the scan image size. 

In one pass, the SEM can image an area on the order of square millimeters with a depth 

of field on the order of millimeters. Whereas the AFM can only image a maximum height 

on the order of 10-20 micrometers and a maximum scanning area of about 150×150 

micrometers.The scanning speed of an AFM is also a limitation. AFM requires several 

minutes for a typical scan, while a SEM is capable of scanning at near real-time, 

although at relatively low quality.  

As with any other imaging technique, there is the possibility of image artefacts, which 

could be induced by an unsuitable tip, a poor operating environment, or even by the 

sample itself. These image artefacts are unavoidable however, their occurrence and 

effect on results can be reduced through various methods. 

Due to the nature of AFM probes, they cannot normally measure steep walls or 

overhangs. Specially made cantilevers and AFMs can be used to modulate the probe 

sideways as well as up and down (as with dynamic contact and non-contact modes) to 

measure sidewalls, at the cost of more expensive cantilevers, lower lateral resolution 

and additional artefact’s. 

 

	
	 	



	
	

119	

Chapter 8 Clinical relevance of the study  
 

It is well known that the bond strength of restorative materials to dentine depends on the 

mechanical properties of the dentine. These involve the dentine depth, dentine hardness 

and mineral components of dentine (Yoshikawa et al., 1999). Therefore, any knowledge 

of dentine hardness of DI teeth from this study will certainly contribute in restorative 

administration on the patients with DI type II or DI type I. This outcome with other 

previous discoveries, would deliver information on how DI teeth would respond during 

clinical treatment and the possibility of structuring various superior materials than 

another, which is suitable for DI dentine. The clinical effectiveness and longevity of the 

materials in lifetime might also possibly be predicted.  

 

It has been examined that several DI type II patients have suffered from tooth wear 

specifically on the anterior teeth. As well as these groups of patients are more prone to 

have early tooth surface loss due to abnormal structure of dentine. Any preventive 

measures and intervention will absolutely advantage these patients. Early plan of 

restorative management is necessary for DI type II patients once their teeth are erupted. 

This would prevent the patients from having progressive wear of their dentition and 

unnecessary extraction.  

 

One of the fundamental difficulties confronted in the clinical dental treatment while 

treating OI/DI patients is the difficulty to restore concerned dentitions. Approach for 

treating DI patients will vary subjecting upon the significance of the clinical expression. 

Actions must be taken while treating patients determined to have DI type I, associated 

with OI, if surgical methodology or forceful extractions that could transmit strengths to 

jaw bone and increment the danger of fracture (American Academy of Pediatric 

Dentistry, 2013). Preventive care through early recognition of dental disease throughout 

regular dental check ups and screening is basic. Stressing on maintaining of oral 

hygiene and directions that involves every day brushing utilizing fluoride toothpastes as 

a part of expansion to a low sugar and low acid diet routine, must be performed. DI 

patients would not typically encounter any kind of dental pain due to pulpal obliteration 

and the moderately normal caries/periodontal disease. Nonetheless, patient's 

conceivable increased anxiety towards any restorative or dental treatment, experience 

concerns, and develop of continuous incident of numerous abscesses that may prompt 
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to early teeth extraction and possible future malocclusion. High occurrence of class III 

malocclusion and posterior cross- bites and open- bites was accounted for in cases of DI 

type I (O’Connell and Marini, 1999). In severe cases of tooth wear, excessive tooth wear 

and notable discoloration of teeth that is aesthetically unpleasing is seen. The composite 

restorations tend to fail in DI patients due to unsuccessfully in bonding capability of the 

adhesive restorations. Glass ionomer materials is frequently used as means of restoring 

DI teeth as it does not require any mechanical interlocking with collagen, (Perdigao, 

2009). On the other hand, the life span of these restorations is questionable. Full 

coverage restorations, for example, stainless steel crowns (SSC) and overlay dentures, 

is not a perfect treatment decision for youthful patients; might become necessary to 

preserve aesthetics, function, and prevent loss of vertical dimension, (Sapir and Shapira, 

2001). 

It is uncertain the mode of restoration application and improper etching of teeth prior to 

performing of dental composites, or possible dentinal matrix or collagen alterations; that 

might be ultra structurally damaged with a reduced quality and mechanically weaker thus 

creating an ineffective hybrid layer during bonding; is the contributing factor. (Yang et al, 

2005) demonstrated that changes in the helical structure of dentinal collagen and 

mechanical properties will have a significant effect on determination of bond strength. It 

is believed that collagen ultrastructure alterations decreases its mechanical properties 

and result in impaired durability of the dentine – resin interface, and effect the quality of 

bonding (Nakabayashi and Pashley, 1998). Selecting the proper etching agent will effect 

on dentine-resin bond and increase the longevity of the resin restoration. This study 

demonstrated that DI teeth could be demineralised with EDTA to remove the smear 

layer rather than using 37% of phosphoric acid that could be damaging to DI teeth thus 

distorting the collagen network.  

In summery, this study showed that demineralisation of dentine can be obtained with 

several agents depending on the tooth condition. In sound dentine, etching with 15 

seconds of phosphoric acid followed by sodium hypochlorite is sufficient to expose 

collagen network, while EDTA could me the material of choice in future dentistry for 

demineralizing DI teeth prior tooth restoration. Further studies are necessary to 

determine the effect of bond strength of restorative materials for agents that were used 

in this study. 
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 Chapter 9 Conclusion 
	
 

Any variations in dental tissues whether it is due to a genetic mutation that leads to 

alteration in development of the tissues (Amelogenesis Imperfecta, Dentinogenesis 

Imperfecta) may produce teeth with different morphological features and mechanical 

properties. This means, extra support is necessary in the rehabilitation process of the 

teeth with possible alteration in clinical and preventive management of these teeth.  

Evaluating hardness has been shown to be a reasonable method of examining the 

mineral content of calcified tissues including teeth in healthy and affected teeth with DI. 

Also, it would help to improve restorative treatment industry and allows prediction of the 

behaviour of dentine-restoration interfaces. It has been found that there is a strong 

relationship exists between microhardness of dentine and the respective bond strength 

(Panighi et al., 1993).  

The dentine hardness in DI teeth is reduced when compared to the healthy primary 

teeth. There was a significant reduction in dentine hardness between DI and control 

group (P ≤ 0.0001), and between DI type I and DI type II (P ≤ 0.001). There is a 

correlation between the hardness of dentine and the mineral content of its structure. The 

responsible factor that led to this alteration is genetic mutation. Decreased in mineral 

content of the tooth structure is strongly associated with developing tooth wear. 

Subsequently, the DI teeth would develop pulpal recession and obliteration and 

formation of Dentine Bridge. Several DI patients are representing the similar features in 

the clinical and radiographical picture of the disease.  

 

There were numerous earlier reports describing the collagen fibrils in dentine, by using 

SEM (Takahashi, 1981; Kobayashi, 1984; Sogaard-Pedersen et al., 1989). A few 

additional stages and various preparations of the samples, including fixation, 

dehydration and demineralization, needed to be done in order to enable images of 

collagen fibrils to be recorded with the SEM instrument. Since DI type I is a disease 

featuring an abnormality in the collagen, efforts will be made to observe the structures of 

collagen fibrils in the DI teeth, as well as collagen in the control teeth in this study. This 

would provide extra information on the difference of structure of DI teeth in comparison 

to normal teeth, which would aid in the future preventive plan and restorative 

management for patients with this disease. Adding different approaches and possible 
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extra software program is to be used in combination with SEM, to compare the results of 

collagen structure and to record the data. In that case, introduction of AFM for 

topographical imaging was included in this study to obtain superior images with high 

resolution. Unlike SEM, The tested sample does not require addition preparation for 

AFM. This study proves that the sample can be easily damaged during preparation and 

handling of the sample prior imaging. Carful sample selection, handling and 

implementing new different technique in future could be beneficial in future studies.  

Phosphoric acid 37% was used in this study to remove the smear layer of the tooth 

surface segment, as it is the material used routinely in the dental clinic for all restorative 

procedures, therefore is practically significant in this study. Previous studies performed 

the demineralisation protocol by application of EDTA 17%. The choice of the acid was 

determined in order to obtain similar outcomes in the clinical settings. 

FTIR procedure was performed to evaluate the significance of the demineralization 

protocol and to evaluate the mineral content removal from the sample surface. 

Developing the same outcomes on the patient’s teeth is challenging, because 

demineralisation procedure is a technique sensitive depends on the operator and 

duration. Any increase of demineralisation duration can affect in minerals removal, thus 

exposure of collagen structure. 

Furthermore, application of the ultrasonication theory through the use of an ultrasonic 

probe during etching, thus aiding in better demineralisation and exposure of collagen 

network.  

In this study there was a substantial difference in the D-band width that varied from 65 

nm to 74 nm. Obtaining a baseline data of a control healthy tooth is crucial for future 

comparison between normal and DI collagen fibril D- banding width. Thus, indicates 

collagen malformation. Further studies of DI/OI collagen mechanical properties will 

hopefully guide us into better understanding of their possible effects on restoration 

bonding and adhesion properties.  
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Chapter 10 Future Work  
• Increase imaging the sample that has been collected in our library. 

• Possible further experimentation with preparation techniques used in demineralisation 

protocols.   

• Experimenting with etching techniques within a clinical setting, and determining the 

applicability of ultrasonication in regards to teeth restoration.  

• Modulate the demineralisation protocol for DI teeth. 

• Quantification of AFM images and compare the results in all groups (D-band width and 

periodicity - collagen fibril morphology) 

• Using different mode for AFM (Tapping mode) 

• Perform AFM mechanics (indentation on teeth - tensile modulus of individual fibrils) 

• Examine the spherites structure  

• Possible teeth staining to investigate scaffold ultrastructure. 
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