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Stochastic differential equations with multiplicative noise need a mathematical prescription due to different
interpretations of the stochastic integral. This fact implies specific algorithms to perform numerical integrations
or simulations of the stochastic trajectories. Moreover, if the multiplicative noise function is not continuous
then the standard algorithms cannot be used. We present an explicit algorithm to avoid this problem and we
apply it to a well controlled example. Finally, we discuss on the existence of higher-order algorithms for this
specific situation.
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Stochastic, ordinary, or partial differential equations are
very common tools in far from equilibrium systems in phys-
ics or in other disciplines where stochastic fluctuations are
necessary for an appropriate description of the phenomenol-
ogy involved �1,2�. In the most interesting problems these
equations cannot be solved analytically and stochastic nu-
merical �simulation� algorithms have to be used to extract
explicit results �3,4�.

Most problems involve the dynamics of a variable x
which obeys the Langevin stochastic equation

ẋ = f�x� + g�x���t� , �1�

where ��t� is a Gaussian white noise with zero mean and
covariation

���t���t��� = 2��t − t�� , �2�

where we have reduced the complexity to a minimum. Al-
though the meaning of Eqs. �1� and �2� has no mathematical
problem when g�x�=const �additive noise�, important diffi-
culties appear when g�x� is a function of x. In this last case,
the above Eq. �1� is mathematically not well-defined and
different interpretations are possible. Two of them have been
extensively studied: Itô and Stratonovich �5–7�. The former
is popular between mathematicians because its nonanticipat-
ing property and the latter among applied researchers due to
the fact that the standard rules of calculus can be used. The
interpretations imply different Fokker-Planck equations for
the probability distribution p�x , t�. So a natural question
arises: which is the correct interpretation for a problem de-
fined by Eqs. �1� and �2�? The answer is not straightforward
and it does depend on the way these equations were derived.
If they were obtained from a master equation a good choice
is the Itô interpretation. If the origin is a Newton equation
where the inertia �mass� has been discarded then Itô is also
the choice. Nevertheless, if the noise ��t� represents an ap-
proximation of a realistic process �nonwhite or colored�, then
Stratonovich is the answer. More elaborated arguments can
be found in Ref. �8�.

Let us summarize the mathematical origin of the interpre-
tations. A formal integration of Eq. �1� from a time t to
t+�t is

x�t + �t� = x�t� + �
t

t+�t

f�x�t���dt� + �
t

t+�t

g�x�t�����t��dt�.

�3�

As usual, one can Taylor expand f�x�t��� and g�x�t��� around
x�t� arriving to a simple algorithm to get x�t+�t� from the
knowledge of x�t�. Then the first integral can be substituted
by

�
t

t+�t

f�x�t���dt� � f�x�t���t , �4�

which is the lowest contribution in �t. Nevertheless, due to
the very special character of the white noise the second in-
tegral in Eq. �3� is not univocally defined even to the lowest
order in �t.

There is a rich literature on the mathematical properties of
stochastic integrals and how they are related with the prop-
erties of Gaussian white noise and Wiener random processes.
A very recent work addresses this matter focusing on the use
of the continuous-time random walk �CTRW� �5–7�.

It is our statement that any proposed algorithm should be
a direct outcome of the corresponding interpretation of the
stochastic integral. Let us review now the main characteris-
tics of the most used interpretations.

The Itô prescription is very simple. The second integral in
Eq. �3� is evaluated as

�
t

t+�t

g�x�t�����t��dt� � g�x�t����t� , �5�

where ��t� is the Wiener increment �Gaussian process� de-
fined as �6�

��t� = �
t

t+�t

��t��dt�, �6�

with zero mean value and second moment

���t�2� = 2�t . �7�

The Wiener process can be related with the CTRW �7,9�. It is
worth to remark here that the non–anticipating property of
the Itô integral Eq. �5� fulfills the causality principle.
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Using the above results, the lowest order algorithm
�Euler-Maruyama� �4,10� for the Itô case is

x�t + �t� = x�t� + f�x�t���t + g�x�t����t� + O��t3/2� , �8�

where the stochastic generation of ��t� is a well controlled
matter �2�.

The Stratonovich prescription is �5,6�

�
t

t+�t

g�x�t�����t��dt� � g	 x�t� + x�t + �t�
2


��t� . �9�

Nevertheless, the above expression �Eq. �9�� drives to an
implicit algorithm. The standard and simple procedure to
avoid the implicit term and which had been used so far, is
based in the assumption of continuity for the multiplicative
function g�x�t��, and the use of Eq. �8�,

g	 x�t� + x�t + �t�
2


 � g�x�t�� +
g��x�t��g�x�t��

2
��t� ,

�10�

which drives to the lowest order Stratonovich algorithm

x�t + �t� = x�t� + f�x�t���t + g�x�t����t�

+
g��x�t��g�x�t��

2
��t�2 + O��t3/2� , �11�

which is also called the Milstein scheme �11,12�.
Moreover, it is well-known �6� that the Stratonovich in-

terpretation of Eqs. �1� and �2� can be transformed in the Itô
interpretation as

ẋ = f�x� +
1

2
g��x�g�x� + g�x���t� . �12�

Accordingly, this equation can be numerically integrated
with the Itô algorithm �Eq. �8��. Thus, why bother about
Stratonovich algorithm? Well, an important difficulty appears
here, which is the main concern of this communication. If
the function g�x� is not continuous, neither the transforma-
tion in Eq. �12� nor the above algorithm �Eq. �11�� can be
used. This is also extended to more elaborated algorithms
�11–15�. But, what is the origin of this discontinuity? Piece-
wise ratchet potentials have become a very useful tool in the
dynamical description of molecular machines and nonequi-
librium systems �16,17�. If we assume that a part of this
potential is a random process, then we will have discontinu-
ous functions for f�x� and g�x�. If we take now for simplicity
that this random part can be approximated by a Gaussian
white noise, then we arrive to the situation of our interest: a
Langevin equation with a discontinuous multiplicative white
noise function.

As we cannot make use of a nondefined g��x� we can
check alternative algorithms for the Stratonovich case that do
not use the derivative of this function. They are based on
predictor-corrector schemes �18�, using the Itô algorithm
�Eq. �8�� as the predictor step. The explicit algorithm is

xI�t + �t� = x�t� + f�x�t���t + g�x�t����t� ,

x�t + �t� = x�t� + f�x�t���t + g	 x�t� + xI�t + �t�
2


��t�

+ O��t3/2� . �13�

Here we will denote it as algorithm I, which is compatible
with the stochastic Stratonovich interpretation.

It is worth to relate algorithm I to the widely used Heun
algorithm �2,3,14,18�, which substitutes the corrector step in
�Eq. �13�� obtaining

x�t + �t� = x�t� + f�x�t���t +
g�x�t�� + g�xI�t + �t��

2
��t�

+ O��t3/2� �14�

The third term on the right-hand side of Eq. �14� implies
another prescription for the Stratonovich stochastic integral
�Eq. �9��, but in the case of a continuous g�x� this algorithm
is compatible with Eqs. �10� and �11� working quite well in
this situation �2,14,18�.

We will see below in an example that both algorithms
�Eqs. �13� and �14�� converge to solutions different from ana-
lytical ones with important systematic errors.

One can conclude that the intrinsic difficulty of the Stra-
tonovich interpretation is to find an appropriate approxima-
tion for the implicit term in the stochastic integral. In order
to avoid this problem one can try to make use of a not well-
known theorem which states that the Stratonovich prescrip-
tion is the limit of a nonwhite �colored� noise when its co-
variation time goes to zero �19�. Although the theorem was
proved for a multiplicative function g�x� with continuous
first derivative, we will explore numerically if this theorem
also works for discontinuous functions.

We proceed by simulating Eq. �1� with a colored noise
such as the Ornstein-Uhlenbeck process, �OU�t�, which fol-
lows the Langevin equation

��̇OU�t� = − �OU�t� + ��t� , �15�

and where ��t� is a white noise �Eq. �2��. The white noise
limit of �OU�t�→��t� is achieved for �→0.

A first order algorithm for the system in Eq. �1� with �OU
�Eq. �15�� is standard �11�, and it reads

x�t + �t� = x�t� + f�x�t���t + g�x�t���OU�t��t + O��t3/2� ,

�OU�t + �t� = �OU�t��1 −
�t

�
 +

��t�
�

+ O��t3/2� . �16�

We will call it algorithm II and numerical results will be
presented below. A value of � smaller than any other charac-
teristic time of the problem but much larger than �t has to be
used. The last step in Eq. �16� can be substituted by other
more refined methods to mimic exactly the Ornstein-
Ulenbeck process �13,14,20�. Moreover, the methods pre-
sented in Refs. �13,14� do not have the restriction �t��.
Algorithm II is our proposal to simulate stochastic trajecto-
ries for a discontinuous multiplicative white noise in the
Stratonovich prescription. In order to validate the new algo-
rithm II �Eq. �16�� we need an example with an exact theo-
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retical prediction to check its results and to make a compari-
son between different algorithms.

Our benchmark is a system that consists of an ensemble
of noninteracting Brownian particles in a one dimensional
container of length L with two different temperatures in each
half side. The Langevin equation is

ẋ = g�x���t� , �17�

where g�x� is the temperature profile

g2�x��x�L/2 = Ta, g2�x��x	L/2 = Tb, Ta 	 Tb. �18�

A continuous representation of this function is

g2�x� =
Tb + Ta + �Tb − Ta�tanh��x − L/2�/
�

2
, �19�

where the above limiting values appear for 
→0. The vari-
able x is in the domain �0,L� with reflecting boundaries at
x=0 and x=L.

The corresponding Fokker-Planck equations for the two
interpretations are �6�

�p�x,t�
�t

=
�2

�x2g2�x�p�x,t�, �Itô� , �20�

�p�x,t�
�t

=
�

�x
g�x�

�

�x
g�x�p�x,t�, �Strat.� . �21�

The steady solutions are constant profiles in each half side,

pItô�x� �
1

g2�x�
, pStrat.�x� �

1

g�x�
, �22�

and from the numerical simulations we will analyze the ra-
tios R= pb / pa,

RItô =
Ta

Tb
, RStrat. =�Ta

Tb
, �23�

where pa= p�x�L /2� and pb= p�x	L /2�.
In Fig. 1 we present the numerical results for the different

algorithms. We have performed very large time and en-
semble averages to reduce the statistical errors and to en-
lighten the systematic errors. For the Itô algorithm �Eq. �8��
the agreement theory simulation is perfect. Algorithm II �Eq.
�16��, for the Stratonovich interpretation, exhibits the same
level of accuracy than the Itô algorithm, even for a not too
small �. Thus the agreement with the theoretical prediction is
well controlled now. In contrast, algorithm I �Eq. �13�� for
the Stratonovich interpretation, involves important
systematic numerical errors: 9% for Ta /Tb=16 and 44% for
Ta /Tb=64. This constant drift from the exact solution is also
present for the Heun algorithm �Eq. �14��, obtaining similar
systematic numerical errors.

Moreover, for algorithm II we have found that the use of
a colored noise whose time increments are correlated needs a
careful attention if a reflecting boundary is present. When a
particle is reflected at the boundary we need to change the
sign of the colored noise �velocity� �OU�t+�t� in the next
integration step. In Fig. 2 we present evidences of this phe-
nomenon. If we do not invert the colored noise when a par-

ticle hits the wall, we found an anomalous density of par-
ticles near the reflecting walls �circles�.

Higher-order algorithms make use of the derivatives of
f�x� and g�x�. Consequently, if these functions are not con-
tinuous, we cannot expect a much better algorithm than a
Heun approximation for improving the deterministic term

�
t

t+�t

f�x�t���dt� �
f�x�t�� + f�xI�t + �t��

2
�t , �24�

which can be incorporated either in Eq. �8� complemented
with the predictor step or directly in Eq. �16�.

Summarizing we have presented a lowest order algorithm
�Eq. �16�� to simulate multiplicative white noise Langevin
equations in the Stratonovich interpretation when function

1 10 100 1000
Ta/Tb

1

10

100

1000

p
b/p

a

Itô

Stratonovich

FIG. 1. Theoretical predictions �lines� and numerical simulation
�symbols� results for different algorithms and stochastic interpreta-
tions in a log-log scale. Itô algorithm �Eq. �8�� �squares�, Stratonov-
ich algorithm I �Eq. �13�� �full circles�, Heun algorithm �Eq. �14��
�circles�, and Stratonovich algorithm II �Eq. �16�� with �=10−3

�crosses�. Parameters: L=1, �t=10−5, n	107 time steps, and
N=100 trajectories.
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x
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1

10

p(
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FIG. 2. Theoretical steady probability densities �lines�. Itô algo-
rithm �squares�, Stratonovich algorithm II without noise inversion
at the reflecting boundaries �circles� but adjusted to the bulk density
and Stratonovich algorithm II with noise inversion �crosses�.
Ta /Tb=9. Other parameters as in previous figure.
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g�x� is not continuous. We have shown that for this specific
case the standard algorithms used commonly present a sys-
tematic drift, which is due to a biased estimation of the sto-
chastic integral in this interpretation.

The proposed algorithm uses a colored noise with a small
time scale and it is based in a mathematical theorem �19�.
Nevertheless the algorithm goes beyond the conditions of the
mathematical proof of this theorem. We expect that this Brief
Report will stimulate mathematical approaches to establish
rigorously these numerical results.

Finally as a by-product, we have shown that when the
problem involves reflecting boundary conditions, algorithm
II �Eq. �16�� has to include the inversion of the colored noise
at the boundaries.
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