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Abstract 

 

Purpose 

This thesis aims to determine the diagnostic performance of in utero MR (iuMR) imaging to 

diagnose fetal brain abnormalities and describes the development, application and 

processing of a 3D volume MR acquisition. 

 

Methods 

A systematic review and meta-analysis of existing evidence was conducted. A prospective 

multicentre study of pregnant women, with a fetal brain abnormality on ultrasound (USS), 

was undertaken – The MERIDIAN study. In addition, an investigation of fetuses with no brain 

abnormality on USS was undertaken. Diagnostic accuracy and confidence, as well as 

positive and negative predictive values, were calculated. A 3D image acquisition technique 

was introduced, its ability to aid diagnosis measured and computational post-processing 

applied.  Fetal brain volumes were extracted from the 3D data using image segmentation 

and these were assessed for reproducibility and validity. Resultant data allowed 3D models 

of fetal brains to be printed. Normally developing fetal brain volumes were plotted graphically 

thereby allowing comparison with abnormal fetuses. 

 

Results 

A total of 570 complete datasets were available from 903 eligible participants. Diagnostic 

accuracy was 68% for USS and 93% for iuMR. 95% of diagnoses made by iuMR were 

reported with high confidence compared to 82% on USS. Changes in pregnancy 

management occurred in 33% of cases. Positive and negative predictive values of iuMR 

were 93% and 99.5% respectively. 3D image quality was diagnostic in 89.6%, of which 

91.4% gave an accurate diagnosis. Intra- and inter-observer agreement of brain volume 

measurements was high. Agreement between computer based and brain model volume 

measurements was also high. 

 

Conclusions 

iuMR imaging improves diagnostic accuracy and confidence for fetal brain abnormalities, 

influencing pregnancy management in a high proportion of cases. 3D imaging enables 

versatile visualisation of fetal brain anatomy and reliable extraction of volumes. This 

additional quantitative information could improve diagnosis in relevant cases. 
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Thesis Aims and Overview 

 

The use of magnetic resonance for imaging the fetal brain in utero (iuMR) has grown 

significantly over the last 15 years and has become an integral part of the prenatal 

assessment when abnormalities are suspected following prenatal ultrasound scanning 

(USS). In spite of this increase the evidence to support its additional value remains unclear. 

IuMR imaging technology has also advanced enabling the possibility of ultrafast acquisitions 

beyond 2D imaging, potentially increasing information regarding fetal brain development and 

improving diagnosis. The aim of this research is to determine the diagnostic performance of 

iuMR as an adjunct to USS, and consists of two separate, but related parts:  

 

1. To measure the ability of iuMR to improve the diagnostic accuracy and diagnostic 

confidence over ante-natal USS for the detection of fetal brain abnormalities. 

2. To report the development, application and clinical evaluation of a 3D volume iuMR 

acquisition for fetal brain imaging.  

 

At the start of this research there had been no formal, unbiased assessment to determine 

the additional value of using iuMR imaging as an adjunct to USS for the diagnosis of fetal 

brain abnormalities, despite a significant increase of its use over the last 10-15 years.  

The first part of this work evaluated the multiple studies already carried out in this field by 

undertaking a systematic review and meta-analysis (Chapter 2). Although this was 

undertaken concurrently with our study to investigate the additional benefit of iuMR (the 

MERIDIAN study, reported in Chapter 3), it was able to provide a baseline with which the 

results of MERIDIAN could be compared. The review protocol followed established 

guidelines to ensure a thorough and complete assessment of all the relevant literature. Our 

aim was to ascertain the improvement in diagnostic accuracy due to iuMR imaging in the 

diagnostic pathway and to identify the strengths and weaknesses of iuMR in terms of 
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abnormalities diagnosed more or less consistently than USS. Although multiple studies had 

been published only 34 met our inclusion criteria and due to small study numbers and 

methodological weaknesses there was still a need to clarify the additional benefit of iuMR.   

The Academic Unit of Radiology, University of Sheffield was one of the first sites in the UK to 

develop and implement MR imaging of the fetus in utero. As one of the leading centres, we 

were given the opportunity to undertake MERIDIAN, a large UK multi-centre study to 

evaluate the diagnostic impact of iuMR imaging, following prenatal USS, in order to direct 

future clinical practice. The study was funded by the NIHR as part of their Health Technology 

Assessment program. MERIDIAN was a large multi-centre prospective study that was 

appropriately powered, provided a comprehensive assessment of iuMR imaging and 

addressed the methodological weaknesses of previous studies.  

 

Although determining the diagnostic accuracy of iuMR in comparison to USS was the 

primary aim of MERIDIAN, an evaluation of the confidence with which the diagnoses were 

made by both iuMR and USS, and its ultimate effect, was a unique and highly relevant part 

of the study. This, along with an assessment of the changes in management of pregnancies 

as a result of iuMR gives a more complete view of the benefit of iuMR. The project took a 

further development when it became apparent that, in order to fully compare the diagnostic 

capabilities of both USS and iuMR, the positive and negative predictive values of both 

modalities needed to be established. Neither MERIDIAN nor any of the studies included in 

the systematic review recruited women whose fetus were considered normal by USS. The 

MERIDIAN Add-on study (Chapter 4) was therefore undertaken in order to recruit a cohort of 

normally developing fetuses to establish the true negative capability of both USS and iuMR 

imaging. For this part of the research we recruited a cohort of 200 pregnant women in whom 

the fetus had no abnormalities identified on routine USS and who subsequently underwent 

fetal brain iuMR imaging.  

Improvements in MR imaging technology have allowed the possibility of the long acquisition 

times normally required for advanced MR sequences to be reduced making them a realistic 
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option for fetal brain imaging. Alongside, but not as a requirement for MERIDIAN, this 

enabled us to develop and test a 3D MR volume sequence in utero. The resultant higher 

resolution and the option for reformatting post acquisition, allowed a more versatile way of 

examining fetal brain anatomy and resolving suspected abnormalities. A limitation of the 3D 

volume sequence is that fetal motion, however small, has a direct impact on the resultant 

image quality of the whole acquisition. As we initially only had anecdotal evidence of its 

'success' we undertook a study to establish its reliability and ability to clearly depict the 

anatomy to facilitate accurate diagnosis (Chapter 5). As a result of incorporating the 3D 

acquisition into our routine fetal imaging protocol we have been able to reduce the number of 

2D sequences.  

 

The resultant MR data from the 3D volume acquisitions also initiated work to explore 

additional advanced post processing methods. Using open source software, we manually 

segmented the fetal brain from the surrounding anatomy, which allowed us initially to 

visualise the external surfaces of the developing brain as electronic 3D models. The same 

data was subsequently used to have 3D printed models produced by the department of 

Advanced Manufacturing within the University. The 3D printed models included a range of 

normal brains at different gestations and a range of brains affected by different abnormalities 

which we used to create a teaching file that could potentially be used to train future fetal 

neuroradiologists. 

 

A further aim of post-processing the MR 3D volume acquisition was to analyse the fetal brain 

quantitatively. This had the potential to provide additional relevant information for diagnosing 

abnormalities. With this prospect in mind it was necessary to define reference values of 

'normal' brain volume at each gestational age, which would utilise data from the MERIDIAN 

Add-on study which recruited a normal control cohort and included the necessary 3D volume 

iuMR acquisitions. We have subsequently processed and analysed 132 datasets, from which 
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the data was used to produce a reference chart of normal fetal brain growth, a unique aspect 

of this work (Chapter 6) 

The final part of this work (Chapter 7) shows how the resultant electronic surface 

representations, 3D printed models and quantitative data has been used to review the most 

common brain abnormalities and to evaluate and analyse several clinical cases. This shows 

how the 3D acquisition and post processing techniques we have developed could be used in 

future clinical practice to improve diagnosis and highlights the potential for quantitative 

analysis of the fetal brain in future studies.  
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1.1 Summary 
 

This chapter provides an overview of the range of neuropathology that occurs most 

frequently in the developing fetus, allowing an appreciation of the range of abnormalities that 

prenatal imaging aims to diagnose. This information is derived from existing literature, 

including textbooks, and is appropriately referenced. An overview of in utero imaging 

techniques, primarily iuMR, and the concept of diagnostic performance are also introduced. 

Again, this information is gleaned from the literature and from the author’s own experience of 

MR imaging.  

It is important to review the range of fetal brain abnormalities to become familiar with the 

common patterns of imaging findings, in order to make accurate diagnoses. The approach 

taken in this work has been to categorise abnormalities into ‘developmental’ and 'acquired' 

pathology of the fetal brain. Ventriculomegaly (VM) is discussed as a separate entity as it is 

the single most common cause for referral for iuMR imaging of the brain and it may result 

from several processes, both developmental and acquired. 

 

1.2 Normal and Abnormal Development of the Brain 
 

The development of the human brain involves many interrelated and overlapping processes, 

evolving to become the most complex organ in the body. Deviation from the normal pathway 

of development results in brain malformations that can have deleterious consequences for 

the fetus and, ultimately, the child/adult. Abnormalities of the fetal central nervous system 

occur in approximately 24 per 10,000 births in the UK (1, 2) and can be the result of genetic 

and chromosomal defects, exposure to potentially toxic substances (e.g. alcohol) and 

infections (e.g. Cytomegalovirus). An understanding of the normal and abnormal 

development of the brain is required to appreciate why both USS and iuMR are needed for 

antenatal imaging. Normal brain development of the cerebral hemispheres is often described 

as four processes: primary neurulation, ventral induction, commissuration and cortical 
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formation. There are many resultant abnormalities with various associations and 

combinations of anomalies that can occur. To discuss all these is beyond the scope of this 

work, therefore only the most common brain abnormalities are reviewed.  A summary table 

 (Table 1.1) of the images showing the abnormalities discussed in this chapter is given 

below. 

Page 
 Table 1.1 Summary of the images showing pathology and the gestational age at which iuMR 

imaging was performed 

31 
1.1 a 

 
Axial T2W ssFSE image of a fetus with a defect in the skull affecting the 
pariato-occipital bones with resultant encephalocele. 

19 weeks 

31 1.1 b 
Sagittal T2W ssFSE image of a fetus with a defect in the midline of the skull 
affecting the occipital bone with resultant encephalocele. 

32 weeks 

32 1.2 a Coronal T2W image showing Alobar holoprosencephaly 19 weeks 

32 1.2 b Coronal T2W  image showing semi-lobar holoprosencephaly 20 weeks 

32 1.2 c Axial T2W image showing lobar holoprosencephaly 19 weeks 

32 1.2 d Coronal T2W  image of a normal fetus 20 weeks 

34 1.3 a Coronal T2W ssFSE showing a fetus with agenesis of the corpus callosum. 33 weeks 

34 1.3 b Coronal T2W ssFSE of a normal corpus callosum for comparison. 33 weeks 

34 1.4 a 
T2W coronal image of a fetus at 22 weeks gestation showing the dark signal 
band of the cortical plate and germinal matrix. 

22 weeks 

34 1.4 b 
Pathology slide of a fetal brain showing the dark signal band of the cortical 
plate and germinal matrix. 

22 weeks 

35 1.5 Coronal T2W ssFSE image of a fetus with Hemimegalencephaly. 23 weeks 

37 1.6 
Axial T2W ssFSE showing a fetus with subpendymal heterotopia lining the 
ventricles. 

32 weeks 

38 1.7 
Axial T2W image of a fetus with thick cortex and agyria as seen in 
Lissencephaly. 

31 weeks 

38 1.8 
Coronal T2W  image of a fetus with multiple abnormal small folds (arrow) 
typical of Polymicrogyria 

28 weeks 

39 1.9 
Axial T2W ssFSE demonstrating clefts in the cortex (arrows) typical of open 
lipped Schizencephaly 

33 weeks 

40 1.1 Sagittal T2W image of a fetus with a Dandy Walker Malformation 21 weeks 

42 1.11 
Axial and sagittal T2 FIESTA images of a fetus with a myolmeningecole and 
Chiari II malformation. 

32 weeks 

44 1.12 
Axial T2W image showing abnormal cerebellum and absent vermis typical of 
rhombencephalosynapsis 

30 weeks 

47 1.13 
Axial and coronal T2 weighted ssFSE images of a with abnormalities as a 
result of CMV infection 

30 weeks 

48 1.14 
Images of a fetus with Right temporal lobe subacute stroke as a result of 
alloimmune thrombocytopenia. 

35 weeks 

49 1.15 
Sagittal and axial views showing an example of thrombus within the sagittal 
sinus 

20 weeks 

50 1.16 
 Sagittal, axial and coronal views showing polymicrogyria and infarction in a 
surviving twin of twin to twin transfusion syndrome.  

25 weeks 

53 1.17 Axial T2W demonstrating unilateral VM, with enlarged left ventricle. 26 weeks 
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1.2.1 Primary Neurulation  
 

Primary neurulation occurs between 3 and 4 weeks gestation in humans and involves the 

formation and enclosure of the neural tube. Developmental problems result from failure of 

the neural tube to form or to close at the head end of the fetus (3). Anencephaly occurs 

when the neural tube fails to form at the cranial end, so the cranial vault and most of the 

brain is absent. This is usually diagnosed on USS (4).  

Failure of the neural tube to close at the cranial end results in a group of abnormalities called 

cephaloceles. A Cephalocele is a defect in the skull which allows the intracranial contents 

(meninges, brain tissue or both) through but are encompassed in a membrane sac (figure 

1.1). This occurs in 1 in 5000 live births (5). The sac contents, the effects on the remaining 

brain within the skull and any other associated abnormalities all have a bearing on the 

clinical outcome (3). A cephalocele is usually seen on USS but if the skull defect is small it 

can be misdiagnosed as a subcutaneous cyst or a cranial haemangioma (6). iuMR imaging 

can more accurately define the contents of a cephalocele and the appearance of the 

remaining brain, which has been found to be particularly helpful in parent counselling (7). 

The failure of the neural tube to close at the caudal end causes the condition of 

myelomeningocele, resulting in a spinal defect, and often has a significant impact on brain 

development due to its association with Chiari 2 malformations (8) (discussed further in 

section 1.2.5). 
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1.2.2 Ventral Induction  
 

Ventral induction occurs between 5 and 7 weeks gestation and involves the differential 

growth of the forebrain structures (future cerebral hemispheres) and the sagittal cleavage of 

the brain. Failure of this process results in a range of abnormalities grouped as 

holoprosencephaly (HPE) (9). Alobar holoprosencephaly is the severest form, consists of no 

inter-hemispheric fissure or falx, and a single ventricle and forebrain with no attempt at 

sagittal cleavage (10). The olfactory bulbs and tracts do not develop and severe facial 

malformations are common (11). Semi-lobar HPE (Figure 1.2) is less severe and there may 

be an element of separation of the posterior hemispheres. The frontal horns of the lateral 

ventricles are absent, the interhemispheric fissure is incompletely formed, although there is 

some development of the mesial temporal structures.  Lobar HPE is the mildest form of the 

disease. Separation of the cerebral hemispheres is almost normal. All other structures are 

present but may not be fully formed. HPE occurs in 1 in 1300 fetuses at 11- 13 weeks 

gestation and it may be related to increasing maternal age and chromosomal abnormalities.  

Figure 1.1 T2 weighted ssFSE images showing two examples of encephaloceles with 

associated cysts. (a) axial image of a fetus of 19 weeks gestation with a defect in the skull 

affecting the parieto-occipital bones with protrusion of the parietal/occipital lobes and the 

posterior lateral ventricles through the defect (star). (b) sagittal image of a fetus at 32 

weeks gestation with a smaller defect in the midline of the occipital bone. Only a small 

portion of the occipital lobes protrude at the defect (arrow). 

a b 
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The septum pellucidum is absent in all forms of HPE (12). Hypoplasia of the optic nerves is 

frequently found in cases of lobar HPE (11).  Prenatal USS is able to detect the more severe 

forms of HPE but often has low sensitivity to lobar HPE, which is frequently misdiagnosed as 

isolated VM (13). iuMR has been shown to be more accurate in identifying all the different 

forms of HPE (14). It is essential that the iuMR imaging includes good quality coronal views 

as these are particularly useful to identify the different structures involved, a key sign being 

fusion of the hypothalamus. 

Figure 1.2 T2 weighted ssFSE images (a, b, coronal orientation and c axial) showing the 
different categories of HPE in fetuses of similar gestational ages. (a) Alobar- ontinuation of 
the cerebral cortex across the midline, arrow (b) semilobar, continuation of the cortex (small 
arrow) and a single ventricle (large arrow) across the midline (c) lobar holoprosencephaly- a 
degree of separation of the two hemispheres (star) with some continuation of the cortex and 

ventricle in the midline (arrows) and (d) shows a normally developing fetus for comparison.  

a b 

c d 
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1.2.3 Commissuration 
 

Commissuration refers to the growth of axons that reconnect the cerebral hemispheres once 

they have been separated by ventral induction. There are several commissural pathways, 

but the corpus callosum (CC) is by far the largest and most important in terms of detecting 

brain malformations in utero (15). The CC is a wide, flat, bundle of axons that connect the 

homologous regions of the two hemispheres of the brain (16). Comissuration starts around 8 

weeks and the CC is fully formed around 20 weeks gestation. There can be a complete 

failure of the CC to form (agenesis of the CC, Figure 1.3) or there may be a partial formation 

(hypogenesis of the CC (17). 

                                                         

Prognosis is variable, which makes prenatal counselling difficult. If, however, agenesis or 

hypogenesis of the CC occurs alongside other brain abnormalities then outcome, in terms of 

neurodevelopment, is worse (15, 16, 18, 19).The main associated brain abnormalities 

include cortical malformations and Dandy Walker malformations (20, 21),   

The corpus callosum itself is difficult to visualise directly on USS unless using transvaginal 

probes, and instead relies on indirect signs to give an indication of its absence (15). The 

USS literature lists these signs as absent cavum septum pellucidum, widely displaced lateral 

ventricles, colpocephaly and upward displacement of the third ventricle (22). Hypogenesis is 

particularly difficult to detect on USS as the indirect signs are not always obvious (7). In 

contrast, the CC can be detected on iuMR imaging by direct visualisation in coronal and 

sagittal anatomical planes. The structure is seen as a band of low signal intensity in the 

midline. Several studies have shown that iuMR is superior to USS in detecting or excluding 

agenesis of the CC and in demonstrating other associated abnormalities (16, 17, 23-25). 
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1.2.4 Cortical Formation Abnormalities 

 

Normal cortical development is by way of three overlapping stages: neuro-glial proliferation, 

migration and organisation (26). Each process is described below. Failure of any of these 

processes will produce a different type of cortical malformation (27). The normal fetal brain 

has several different layers of developing and migrating neurons and glia which can be 

identified on iuMR imaging. The outermost layer (the cortical plate),  and the innermost layer 

(the germinal matrix), can both be seen as dark, low signal bands on T2-weighted (T2W) 

images (Figure 1.4) and bright high signal bands on T1-weighted (T2W) images (28). The 

adjacent white matter is seen as high signal on T2W and low signal on T1W images. These 

layers gradually disappear as the brain develops but the ability of iuMR to identify the cortical 

structure facilitates a greater sensitivity to developmental cortical abnormalities than 

ultrasound. (29).  

  

Figure 1.3 Coronal T2W ssFSE showing agenesis of the corpus callosum (a) and normal corpus 

callosum (b) (arrow) 

a 
b 
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Figure 1.4 (a) Coronal T2 weighted ssFSE image of a fetus at 22 weeks gestational age showing the cortical 
layers and a pathology slide from a fetus at equivalent gestational age (b). Pathology slide reproduced with 
permission by Griffiths, P.et al (30) Atlas of Fetal and Postnatal Brain MR, MOSBY, Elsevier  
 

 

Neuroglial proliferation starts at around 8 weeks gestation in the area of the brain closest to 

the ventricular system (ventricular layer or germinal matrix).  Abnormal proliferation can 

involve either an over proliferation in neurons and glia, producing megalencephaly or an 

overall reduction resulting in microcephaly (3) .  

The most common variety of megalencephaly involves only one hemisphere 

(hemimegalencephaly, Figure 1.5).  As well as overgrowth, the neurons are structurally 

abnormal (large ‘balloon’ cells) and are usually associated with other brain abnormalities 

(31).  

 

 

 

 

 

 

Cortical Plate 

Intermediate zone 

Ventricular zone 

a b 
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Megalencephaly is an increase in the size and weight of the whole brain (3). 

Hemimegalencephaly is less easy to diagnose on USS as it is characterised by a region of 

enlarged echogenic cortex that can easily be mistaken for tumour (32). Nakahashi et al (33) 

examined the ability of MR imaging to identify megalencephaly, hemimegalencephaly and 

the differential diagnosis of cortical dysplasia in 43 patients. They described imaging 

features suggestive of T1 and T2 shortening, abnormal large shallow gyri and poor cortical 

white matter differentiation in the hemimegalencephaly group. Diffusion weighted imaging 

has also been shown to demonstrate restricted diffusion due to the abnormal cell structures 

(34). 

 

Microcephaly due to under proliferation is visualised as a small brain where the head 

circumference is 2 standard deviations below average for any given gestation. The reduction 

in head size is thought to be due to destructive processes, such as infections, or associated 

with developmental abnormalities. USS can accurately measure head size but iuMR is more 

 
Figure 1.5 Coronal T2W ssFSE image of a 23 week 
old fetus with Hemimegalencephaly with the left 
hemisphere affected it being significantly larger than 
the right (arrow) 
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able to distinguish between the different destructive processes and provide additional 

information (35). 

 

After proliferation the neurons must migrate from their periventricular position out towards 

the cortical plate (future cerebral cortex). They are guided by radial glial fibres and detach 

when they reach their correct place in the cerebral cortex (31). Failure of this process results 

in heterotopia or lissencephaly. Heterotopia occurs when neurons fail to migrate to their 

correct locations within the cortex. Subependymal heterotopia can be single or multiple 

clusters of neurons and appear as nodules lining the ventricular wall. Subcortical heterotopia 

are found within the cortex at any location, usually with an abnormal sulcal pattern, and are 

often the cause of epilepsy. Distinctive banding is another form of subcortical heterotopia 

that gives the appearance of a double cortex (36). Heterotopia are easier to diagnose on 

iuMR imaging than with USS, particularly when they are subependymal. They are 

hyperintense on T1W and hypointense on T2W MR imaging (37). They also appear 

isointense to the cortex. Periventricular heterotopia are seen as nodules along the edges of 

the ventricle (Figure 1.6). They have the same signal as grey matter on both T1 and T2W 

MR imaging, are associated with other pathology, and are more easily detected on MR than 

USS (38). IuMR is more accurate at detecting heterotopia if seen on two imaging planes and 

if the fetus is older than 24 weeks gestation (39). Associated features of subcortical 

heterotopias seen on MR imaging include: reduced size of the affected hemisphere in 

unilateral heterotopia, decreased white matter, and thinned overlying  cortex with abnormal 

sulci (40).  
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Lissencephaly is characterised by (Figure 1.7) a thick cortex due to laminar heterotopia. It is 

accompanied an absence (agyria) or reduction (pachygyria) of the cerebral folds giving the 

brain a smooth appearance (36). Lissencephaly is often associated with syndromes (Miller–

Dieker or Norman- Roberts), but can also occur in isolation. It has a poor outcome, so early 

detection is necessary to facilitate management of the pregnancy (41).  

 

Cortical development has been demonstrated by iuMR imaging in the normal fetal brain as 

early as 14 weeks gestation when the interhemispheric fissure can be visualised (42). 

Gyration is very immature before 22 weeks, so diagnosis is difficult before this time. It has 

been found that cortical sulci are detected more easily and at earlier gestation with iuMR 

than with USS (43). Lissencephaly is usually diagnosed in the third trimester when lack of 

sulcation and a thickened cortex is more apparent (44). T2W images provide good tissue 

Figure 1.6 Axial T2W ssFSE showing subependymal 

heterotopia lining the ventricle (arrows) 
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contrast between the brain and the cerebrospinal fluid (CSF) adjacent to it, enhancing the 

outline of the sulci and gyri.  

 

 

 

The neurons which reach the cortical plate in the third stage of development, organise into 

the normal 6 layer structure of the neocortex. Failure of this organisation within the cortex 

results in conditions such as polymicrogyria or focal cortical dysplasia. Both can be difficult 

to detect on imaging, even in children and adults (36). Polymicrogyria (Figure 1.8) is 

demonstrated as excessive number of small folds of the cerebral cortex and can be focal or 

generalised. It is associated with epilepsy and poor speech, motor and neurodevelopment 

(45). Polymicrogyria is visualised on T2W iuMR images as numerous small packed gyri with 

an irregular junction between the white matter and cortex. Gliosis and atrophy also feature, 

seen as abnormal signal on T1W and DWI images (Girard et al. 2009). 

 

Schizencephaly, another example of cortical malformation, results in rare developmental or 

destructive clefts which can be unilateral or bilateral. The cleft extends from the ventricle to 

Figure 1.8 Coronal T2W image of 28 week 
old fetus with abnormal small folds (arrows) 

typical of Polymicrogyria 

1.8 

Figure 1.7 Axial T2 ssFSE image of 
a 31 weeks gestation fetus with 
thickened cortex (arrow) and agyria as 

seen in Lissencephaly 

 1.7 
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the surface of the cortex and can be open or closed (fused).  Schizencephaly nearly always 

occurs with polymicrogyria (31) and can be caused by both acquired and genetic factors 

(46). The contrast between CSF and the brain on T2W MR images allows the cleft in open 

lipped schizencephaly to be seen (Figure 1.9). iuMR allows better visualisation of the cleft 

compared to USS, as it can distinguish between schizencephaly and cysts (47). 

Schizencephaly is not usually identified before mid-pregnancy, and closed lipped 

schizencephaly, due to the absence of CSF within the cleft, is rarely found prenatally (48). 

 

 

 

1.2.5 Developmental Abnormalities of the Infratentorial Brain. 
 

The major difference between the supratentorial and the infratentorial brain is the degree of 

sagittal cleavage created at ventral induction. In the supratentorial brain division into two 

separate hemispheres is virtually complete, whereas, in the brain stem and cerebellum, 

Figure 1.9 Axial T2W ssFSE demonstrating clefts in 

the cortex (arrows) typical of open lipped Schizencephaly 
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sagittal cleavage is relatively minor. As a result, commissuration does not occur 

infratentorially and a different approach is required for classifying brain stem and cerebellar 

abnormalities (49).  One pragmatic approach (described here) uses the size of the bony 

posterior fossa (PF) which encloses the infratentorial brain (50).  

Enlargement of the PF, identified by a raised tentorium and insertion of the venous 

confluence, can be due to several anomalies. The main being Dandy Walker malformation 

(DWM) (51), which occurs in approximately 1:30000 births (52). There are three key signs 

that are used to diagnose DWM: an enlarged posterior fossa (which displaces the tentorium, 

transverse sinuses and torcula superiorly); a variable degree of hypogenesis of the 

cerebellar vermis, and an abnormally wide egress from the fourth ventricle which can be 

seen on sagittal MR imaging (Figure 1.10). Hydrocephalus can also be shown in utero or 

can occur postnatally (53). Developmental outcome in cases of DWM is variable, but is 

worse in all cases of identified DWM if there are other associated malformations (54, 55).  

 

 

Figure 1.10 Sagittal T2W image of a fetus with a 

DWM. The abnormally wide egress from the fourth 

ventricle is clearly seen (arrow). 
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Imaging the PF and its contents by USS is difficult as angulation of the probe can give the 

false impression of an enlarged cisterna magna and vermian defects can be missed (56). 

Several authors claim iuMR is superior to USS in detecting PF abnormalities but when they 

investigated further found the accuracy of iuMR to detect or clarify posterior fossa 

abnormalities to be modest, with performance similar to ultrasound (24, 57). When iuMR and 

postnatal PF imaging findings were compared there was agreement in 59% of cases, with 

additional abnormalities identified in 26% that were missed by iuMR. Postnatal imaging also 

found false positive iuMR findings involving the vermis in 15% of cases (58). Problems 

correctly identifying anomalies of the vermis by iuMR are frequently reported (52, 59, 60) 

mainly due to limited anatomical resolution and partial voluming.  

 

Chiari II malformation is associated with open spinal dysraphism, e.g. myelomeningocele 

(61) and is characterised by a relatively normal sized cerebellum trying to grow into a 

restricted posterior fossa ( Figure 1.11). This produces inferior displacement of the cerebellar 

tonsils, vermis and brainstem, through an enlarged foramen magnum, into the spinal 

compartment. Hydrocephalus is common both pre- and post-natally (3).  Chiari II abnormality 

is thought to be caused by the open neural tube at the caudal end disrupting the normal 

outward pressure from ventricular fluid held in the cranial compartment of the neural tube. 

This pressure usually determines the volume of the cranial cavities but, when atypical, 

normal skull growth is prevented, resulting in a small posterior fossa. As a result, the 

cerebellum, tonsils and vermis do not have enough space in which to grow and expand and 

therefore herniate into the spinal canal (8).  
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USS is able to detect Chiari II abnormality and associated spinal defects, but iuMR can 

better visualise the degree of displacement of the posterior fossa contents, examine the 

brain parenchyma and identify any associated abnormalities. In particular Sagittal T2W 

images can demonstrate displacement of the cerebellar tonsil and assess whether the spinal 

defect is covered or uncovered (62). A typical associated finding of Chiari II malformation is 

the ‘lemon’ shaped head and a ‘tight’ posterior fossa with reduced hindbrain CSF signal 

noted on iuMR (63).    

Figure 1.11 (a) Sagittal T2W image of a fetus with a myelomeningocele spinal 

defect (white arrow) and PF contents herniation (white star) typical of Chiari II 

malformation. (b) Sagittal T2W image showing the herniation of the PF contents and 

(c) Axial T2W image  of the myelomeningocele (white arrow). 

a b 

c 
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Myelomeningocele is the consequence of the failure of the neural tube to close at the caudal 

end, resulting in a sac containing spinal canal contents protruding through a defect in the 

vertebrae, most frequently in the lumbar region (Figure 1.11)  (13). IuMR imaging has been 

found to be helpful in cases of myelomeningocele when the spinal defect is particularly low 

(7). Axial and sagittal images of the spine using the T2W balanced steady state sequences 

are particularly helpful in depicting the fetal intervertebral discs and visualising the level of 

the defect (64) T1W images are useful to exclude lipomas (57). Griffiths et al (65) reported 

the results of a retrospective analysis of 50 fetuses with spinal abnormalities identified by 

USS that were subsequently referred for assessment by iuMR imaging. While USS and 

iuMR were in agreement in 80% of cases, iuMR was able to correct false positive US 

findings in 8 cases and change the diagnosis in 2 cases. These findings were similar to 

those by von Koch et al (66) and Blaicher et al (67). 

 

Rhombencephalosynapsis is a rare disorder of the cerebellum, whereby the vermis is absent 

and the cerebellar hemispheres are fused across the midline, the dentate nuclei and 

cerebellar peduncles (Figure 1.12). Associated abnormalities include ventriculomegaly, 

absence of the septum pellucidum and fusion of the thalamus (68). 

Rhombencephalosynapsis can be detected on iuMR imaging. The cerebellar hemispheres 

appear flat on T2W axial images and there is fusion across the midline characterised by 

continuation of the folia and absence of the vermis (69). Clinical outcome is poor with 

symptoms such as ataxia and gait abnormalities, seizures and psychiatric abnormalities 

(69).  
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1.3 Acquired Abnormalities of the Fetal Brain 
 

Acquired brain abnormalities result from external insults or injury acquired in utero to a brain 

that was otherwise destined to be normal. Causes include maternal trauma, intake of toxins 

such as recreational drug abuse and alcohol, infections, and haemodynamic insults. Other 

causes of acquired pathology can be due to twin to twin transfusion syndrome (TTTS), in 

utero death of a twin, or through premature rupture of the membranes (PROM). Whilst all 

have the potential to have a significant and deleterious impact on fetal brain development, 

infections and stroke are the most common and are described below. 

 

1.3.1 Infections of the Fetal Brain 
 

Infections acquired during pregnancy rarely cause serious problems for the pregnant woman 

in the western world but can potentially have significant consequences for the developing 

Figure 1.12  Axial T2W image showing 

abnormal cerebellum (arrow) and absent vermis 

typical of rhombencephalosynapsis 
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fetus, and it is estimated that infections account for 2-3% of congenital abnormalities (70). 

Infections affect the fetus in utero by ascending or trans-placental routes.  Ascending 

infections residing in the external genitalia of the pregnant women are usually bacterial and 

pass directly to the fetus via the cervix as a result of chorioamnionitis or after premature 

rupture of the membranes (PROM) (71). Infants after prolonged PROM are at risk of 

premature delivery and its complications such as intraventricular haemorrhage, cystic 

periventricular leukomalacia with high rates of poor long term outcomes, for example 

moderate to severe infant neurodevelopmental impairment (72)  

 

Trans-placental infections occur when the microorganisms (usually viral) circulating in the 

maternal blood stream infect the placenta and eventually infect the fetus by hematogenous 

spread. Infections within the placenta also affect its normal function. The most common 

trans-placental infections affecting the fetus in utero are grouped under the acronym of 

TORCH and include Toxoplasmosis, Other (syphilis, varicella-zoster, parvovirus B19), 

Rubella, Cytomegalovirus (CMV) and Herpes simplex virus.  Additional infections include 

HIV, acute maternal sepsis and, more recently, the Zika virus but these are rare in the UK. 

Infections by HIV, Hepatitis C, syphilis, varicella-zoster, parvovirus B19 and Herpes simplex 

virus in the fetus are very rare. Transmission of these is primarily at delivery, although in 

utero infection is possible (73). Primary rubella viral infection has almost been eradicated in 

developed countries due to widespread immunisation, although importation from less 

developed countries, or noncompliance to immunisation, does result in a small number of 

cases. The fetus is more at risk of congenital abnormalities if infection occurs in the first 

trimester (74). Toxoplasmosis, due to infection from toxoplasma gondii, is common in 

humans due to ingestion of infected meat or contamination from cat faeces. This rarely 

causes symptoms but infection during pregnancy causes focal lesions to develop in the 

placenta and, consequently, infection is transmitted to the fetus (75). Infection of the central 

nervous system can cause mild or severe abnormalities. Prenatally they cause 

hydrocephalus and/or intracerebral calcification. Postnatally, convulsions and problems with 
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vision are common (76).  Prevention or limitation of perinatal infections can be achieved by 

vaccine, immunoglobulins, or antibiotics. However, when a pregnancy is affected, disruption 

of normal development in the fetus can occur resulting in a variety of anomalies. When 

infection is suspected, based on serologic testing and USS, further investigation is 

necessary to exclude any effects on the fetus. (77)  

 

CMV is the most common trans-placental infection with occurrence in up to 1-1.5% of 

pregnant women in the UK (78, 79) with primary CMV infection and reactivation of previous 

maternal infection approximately occurring in equal proportions. Previous infection increases 

the likelihood of reoccurrence in subsequent pregnancies (80). CMV resides in humans, 

particularly in young children, and is spread by direct human to human contact. Screening 

for CMV during pregnancy is not routinely performed and it rarely causes any symptoms in 

the pregnant woman, therefore clinical diagnosis is difficult prenatally. Serology testing 

usually confirms the presence of the infection but initial suspicion is often raised by abnormal 

imaging findings (81). The virus invades the germinal matrix and interferes with the normal 

transformation of precursor neuronal cells into neurons. Infection during early gestation 

therefore interrupts, and reduces, neuron migration. This results in microcephaly and 

gyration disorders such as lissencephaly (82) (Figure 1.13). Heterotopia, intraventricular 

haemorrhage and ventriculomegaly are also common findings in infected fetuses but most 

prevalent, and usually the first indication of infection, are calcifications (74). As shown in 

previous studies USS is more accurate in identifying calcification but iuMR is often better at 

demonstrating abnormalities at earlier gestations as well as identifying cortical abnormalities 

(83, 84). Around 10-12% of infected fetuses have symptoms at birth with a high risk of 

neonatal death or more frequently poor neurodevelopmental outcome or sensorineural 

hearing loss (84, 85) 
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1.3.2 Fetal Stroke 

 

A healthy uninterrupted blood supply to the fetus is necessary in order to maintain the health 

and brain development of the fetus. This is reliant on the health of the mother, the placenta 

and umbilical vessels and the vasculature of the fetus. Fetal stroke, a result of disruption of 

the blood supply can be due to an ischaemic or haemorrhagic event (37). Prognosis after 

fetal stroke is often poor with cerebral palsy, postnatal seizures and poor neurodevelopment 

being common in surviving fetuses, although some may be close to asymptomatic (86).  

 

A haemorrhagic stroke as a result of trauma to a vessel wall is rare but a common site for 

this to occur with subsequent haemorrhage is the germinal matrix. This area of the brain has 

a rich blood supply but the vessels are very fragile (87). A hypoxic ischemic event elsewhere 

within the circulatory system can cause ischemia, and subsequent reperfusion within 

germinal matrix results in rupture of the fragile vessels with blood collecting within the 

a b 

Figure 1.13 Axial (a) and coronal (b) T2 weighted ssFSE images of a fetus at 30 weeks 

gestation with VM (black arrow), intraventricular stranding (white arrow), Lissencephaly with 

poorly developed Sylvian fissures (stars) as a result of CMV infection 
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ventricles. Initial haemorrhage often causes obstruction within the venous outflow resulting in 

a combination of acute and chronic response due to repeated insults. 

Hypoxic ischemic stroke occurs as a result of occlusion of a vessel most frequently due to 

thrombus carried to the cerebral vessels from a distal location. Ischemic stroke is often 

caused by placental aetiologies, maternal hypotension, hypoxia or drug use or fetal cardiac 

abnormalities (88). A maternal condition linked to haemorrhagic fetal stroke is alloimmune 

thrombocytopenia, which occurs when a woman becomes alloimmunised against fetal 

platelet antigens inherited from the fetus’s father (89). Resultant haemorrhage is often not 

discovered until the neonatal period where the cause is often mistaken as the result of the 

trauma of birth (90). It is possible to identify haemorrhage due to alloimmune 

thrombocytopenia prenatally and a case is shown in Figure 1.14.  

 

 

Structural causes of stroke which have a predisposition for thrombus and consequent 

ischemic brain injury in the fetus include embryonic malformation of the Vein of Galen, dural 

sinus malformations, and hypo- or aplasia of the internal carotid arteries, all of which are 

Figure 1.14 Images of a 35 weeks gestation fetus with right temporal lobe 
subacute haemorrhagic stroke (arrows) as a result of alloimmune 
thrombocytopenia  (a) Axial T2 ssFSE and (b) Axial T1 weighted FLAIR 

images 

a b 
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relatively rare (91-94). An example of thrombus within the sagittal sinus is shown in Figure 

1.15. 

  

 

 

Twin to twin transfusion syndrome (TTTS) whereby an anastomosis between the 

monochronionic twins vascular supply within the placenta causes an uneven distribution of 

blood to each twin. This often results in the donor twin being much smaller, often with growth 

restriction, than the recipient. TTTS is detected using USS and identified by discordant fetal 

growth and amniotic sac size due to polyhydramnios syndrome (95). TTTS and its primary 

treatment, ablation therapy, carry a risk of morbidity and mortality both prenatally and 

postnatally with ischemic brain injury being common (96) with reports of brain abnormalities 

diagnosed in 24% of recipients and in 25% of donors on post-natal USS (97) (Figure 1.16). 

Fetal demise of the donor twin can cause hypoxic-ischemic damage in the surviving twin due 

to hypovolemia, hypotension and anaemia. Thrombus may also form in the placenta which 

detaches and travels through the vascular system in the surviving twin, occluding the blood 

supply causing injury (98, 99). 

  

b 

Figure 1.15 Sagittal T2W ssFSE (a) and axial T1 weighted FLAIR (b) images of a 

20 weeks gestation fetus with a dural sinus thrombus 

a 
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Disruption of the blood supply in the fetal brain through haemorrhage or infarction results in 

death or malformations of brain tissue, the location and characteristics of which are 

dependent on the vessels involved and the gestational age at the time of insult  (91).  

Although the mechanism of injury through stroke or infection may differ, their manifestation 

in the fetal brain can be similar and an insult during early gestation usually has a greater 

detrimental effect than at later gestations (74, 82). The consequent abnormalities such as 

schizencephaly or polymicrogyria, for example, have been described earlier, but there are 

several unique to infection or vascular insult that usually manifest as an acute or chronic 

response, or more commonly in the fetus, as a combination of the two (100). 

T2W MR imaging is better at detecting cerebral parenchymal abnormalities as it can clearly 

delineate the ventricular walls and sulci compared to USS, particularly when lesions are 

Figure 1.16 Twin to twin transfusion syndrome. (a) sagittal T2 ssFSE of a surviving twin at 

25 weeks gestation after laser ablation at 18w resulting in co-twin (star) demise shortly after. 

(b) coronal and (c) axial T2 ssFSE images of resultant polymicrogyria and infarction (arrows) in 

the brain of the surviving twin. 

a 

 

b 

 

c 

 



49 
 

small. USS demonstrates more efficiently calcifications than IUMR, but it may be visible on 

T1W imaging gradient echo sequences. T1W imaging also highlights haemorrhage (bright 

signal) and T2* sequences can demonstrate by-products of blood breakdown. Diffusion 

weighted images are useful for showing areas of ischaemia and PVL in the acute stages and 

both appear bright on source images (44, 101) 

 

Girard et al (44) collated and report the MR imaging findings from 215 fetuses with hypoxic 

brain damage, and found 178 fetuses with abnormalities as a consequence of infections. For 

both hypoxia and infections VM was the most prevalent finding (77 and 85% respectively). 

Destructive brain lesions were equally prevalent (35% and 34%) with cerebral abnormalities, 

haemorrhage and venous thrombus primarily due to hypoxia. Calcification and cerebral 

malformations were the most prevalent finding as a result of infections.  

In the acute phase, oedema is a primary sign and is easily identifiable as high signal on T2w 

imaging. White matter oedema can lead to necrosis or be a transitionary finding. iuMR 

demonstrates signal changes in the white matter due to oedema, or changes in neuronal 

migration pattern (100). Acute ischemia is difficult to identify in the early stages, and is 

usually only visible on diffusion weighted imaging (101, 102). 

 

VM, calcifications, leukomalacia and germinal matrix abnormalities are chronic responses to 

brain insult. VM is a consequence of haemorrhagic or ischaemic insult in a high proportion of 

cases, and is often the only anomaly detected by USS (37). Unilateral VM is more frequent 

in chronic response to injury, with bilateral VM more likely in malformations. Gliosis is also a 

common response but cannot be seen on standard iuMR but is often present at autopsy. 

Advanced MR techniques such as spectroscopy may demonstrate changes in the resultant 

spectra, but this type of imaging in utero is difficult due to long the long acquisition time and 

small anatomy which provides limited signal from which to derive the necessary information. 

Injury in the parenchyma also includes atrophy, malformations and cystic lesions such as 

hydranencephaly, multicystic encephalopathy and porencephaly, which are cavities that form 
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as a result of infarction. Cystic lesions can vary widely in size and location and are easily 

defined by both USS and MR imaging (91, 101) 

 

Injury to the germinal matrix can also have both an acute and chronic response, with an 

early ischemic lesion within the vasculature often causing haemorrhage when re-

vascularisation occurs. Injury is often between 24 and 32 weeks’ gestation due to the 

presence of the rich blood supply for neuronal proliferation. This frequently leads to 

migration abnormalities, with microcephaly a common finding. Injury results in a thick and 

irregular appearance on MRI, although in the older fetus (after 30 weeks gestation) an 

irregular ventricular wall is seen (44). Intraventricular and germinal matrix abnormalities are 

more easily identifiable on iuMR imaging than USS (103). White matter near the germinal 

matrix can also be injured which results in leukomalacia. Cystic lesions seen as high signal 

on T2W imaging and low signal on T1W often appear adjacent to the ventricles (PVL) but 

can also affect the parieto-occipital white matter or, in severe cases throughout the white 

matter. Early manifestation of leukomalacia is often difficult to identify on iuMR as signal 

intensity is similar to that of the germinal zone and lesions may be indistinguishable from the 

ventricular wall (101).  

 

1.4 Ventriculomegaly 
 

VM, while not necessarily an abnormality of brain development, can be associated with, or 

be the main indicator of, brain abnormality, so is included at this point.   

The ventricles are four interconnected chambers within the brain, the largest being the two 

lateral within the cerebral hemispheres. CSF produced by the choroid plexi circulates in a 

pulsatile manner from the lateral ventricles through the 3rd ventricle, cerebral aqueduct and 

4th ventricle into the subarachnoid space, by way of the foramina of Magendie and Luschka 

(104). 
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The routine assessment of the ventricular system by USS involves measuring the size of the 

trigones of the lateral ventricles. It has been shown that they remain a constant size from 14 

to 38 weeks gestation, measuring 7mm +/- 0.6mm (105). VM is arbitrarily defined as trigone 

measurements of 10mm or over at any stage of pregnancy.  Trigone measurements of 

between 10 - 15 mm were originally considered mild, and over 15mm severe (106).  It is, 

however, now more usual to subdivide the less severely enlarged ventricles into mild (10 -12 

mm) and moderate (13 -15 mm) (107) (Figure 1.17).  

 

 

 

VM is one of the CNS abnormalities most frequently detected at ultrasound, occurring as an 

isolated finding in 0.4 - 0.9 per 1000 births. When other pathology is present, it occurs in 0.5 

- 2 per 1000 births (108). In most cases, a discrete cause of VM is not found. Possible 

causes, however, include destructive processes such as infections, haemorrhage, infarction, 

obstruction to the normal CSF flow (hydrocephalus) and developmental malformations of the 

Figure 1.17 Axial T2W demonstrating unilateral 

VM, with enlarged right ventricle (arrow, trigone  

measurement 12mm). 
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brain (such as agenesis of the CC and Dandy-Walker malformations). Chromosomal 

abnormalities are also known to be associated with VM (109). 

It is known that ventricle size is a predictor of clinical outcome (110, 111), so measurement 

must be accurate. Previous studies comparing USS and iuMR (112-114) have all found good 

correlation between USS and iuMR measurements. Discrepancies mainly occurred when 

there was a significant delay in the time between USS and iuMR, an important factor when 

comparing accuracy of iuMR to USS. Measurement has also been found to be observer 

dependant. Levine et al (115) found that when inter-observer variability was assessed, the 

measurements between ultrasonographers agreed for 60% of the cases measured on USS, 

but only 47% of the measurements made by reporting radiologists on iuMR agreed. This is 

significant as the extent of VM is a predictor of the neurodevelopmental outcome of the 

fetus.    

 

1.5 Fetal Imaging Techniques 
 

This section introduces the two imaging techniques used to image the fetus in utero, with 

emphasis on MR imaging as it is the main focus of this study. 

1.5.1 In Utero Ultrasound 
 

USS is an integral part of antenatal care, being the primary screening tool which provides a 

valuable structural assessment of the whole of the fetus. It is widely available and has 

relatively low cost. USS also enables physiological assessments of the fetal heart, limb, 

body movements and ‘breathing’ (116). It is acknowledged that there are occasions when 

ultrasound may not be optimal, including: difficult fetal position; oligohydromnios; ossification 

of the fetal skull at later gestational ages; and maternal obesity; which all reduce 

visualisation of fetal anatomy (117).  Transvaginal and 3D ultrasound have been shown to 

overcome these limitations to some extent (118), but there are still occasions when USS fails 

to recognise significant pathology (119, 120). Standard practice in the UK is for women to be 
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offered an ultrasound scan at around twelve weeks gestation to date the pregnancy and to 

screen for gross abnormalities such as anencephaly. A further anomaly scan is performed 

between 18 and 21 weeks gestation where detailed assessments of the fetus are made by a 

trained sonographer. If an abnormality is detected, the woman is referred to a fetomaternal 

expert for specialist investigations including a further detailed USS. The aim of these 

investigations is to either confirm or exclude suspected abnormalities or, if present, to 

provide a more accurate and confident diagnosis in order to assist prenatal counselling. 

Despite USS being the imaging modality of choice, in approximately 30% of cases pathology 

is missed or described incorrectly (121-123) . This has significant consequences for 

pregnancy outcome, therefore the exploration of other non-invasive tests in order to improve 

diagnostic accuracy is necessary. 

 

1.5.2 In Utero MR Imaging 
 

In utero MR imaging of the fetus was first attempted in the early 1980’s with the first reported 

account by Smith (124). Scan times were long resulting in significant image degradation due 

to maternal and fetal movement. This, combined with lack of expertise and availability, 

meant that iuMR imaging was considered of little diagnostic value. The earliest reports of 

imaging the fetus in utero by MR concluded that while it had potential as an alternative 

imaging method, it was limited to gross anatomical measurements such as head 

circumference and should be used with caution as its safety profile remained unproven. Poor 

contrast and resolution of resultant images; and the inability to acquire the images in 

different anatomical planes, also limited the usefulness of iuMR (124-126). To overcome 

fetal motion, maternal sedation or muscular blockade of the fetus via the umbilical vein was 

sometimes used (127, 128). 

By the mid-1990s, MR imaging sequences had been developed to the point where Levine et 

al (129) were able to demonstrate detailed fetal anatomy with both T1 and T2 weighted 

images. Advances in technology both of hardware (such as faster gradients), and 
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development of the fast imaging sequences still employed today, and described here, has 

enabled iuMR to be a useful addition to USS.  

 

MR imaging of the fetus in utero remains challenging due to the unpredictable movement of 

the fetus, motion artefacts caused by maternal breathing and arterial pulsation. Fetal 

imaging primarily relies on T2 weighted imaging due to its excellent tissue contrast and fast 

imaging capabilities. The routine iuMR imaging protocol used for imaging the fetal brain at 

the Academic Unit of Radiology in Sheffield, and common to the studies reported in this 

thesis includes a range of sequences and typical scan parameters are presented in Table 

1.2. The two primary T2 weighted sequences utilised are the Single Shot Fast Spin Echo 

(ssFSE) and Fast Imaging Employing Steady sTate Acquisition (FIESTA, GE Medical) and 

are described in detail below.  

 

Table 1.2 Parameters for Fetal iuMR Brain Imaging 
 

T2 ssFSE FIESTA DWI FLAIR T1 MOVIE 

Repetition Time (TR) 
Minimum 

(2000) 
Minimum 

(4.2) 
4000 

Minimum 
(2700) 

Minimum 
(6.2) 

4.6 

Time to Echo (TE) 120 
Minimum 

(2.2) 
Minimum 122 

Minimum 
(3.3) 

3 

Flip Angle - 70 - - 45 45 

Bandwidth (KHz) 62.5 100 250 41 31 166 

Inversion Time - - - 2000 - - 

PREP TIME - - - - 2000 - 

NEX 1 1 4 0.5 1 1 

Slice Thickness/ Slice 
Gap (mm) 

4/0 4/0 4/0.5 4/0.4 4/0 18 

Field of View (cm) 
(Adjusted to patient) 

32x32 38x34 40x36 35x35 38 41 

Freq/ Phase Matrix 256/256 384/256 128/128 256/192 192/128 192/256 

B Value   600-800   - 

Scan Time (Secs) 32 25 64 54 51 30 
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ssFSE is a rapid scan technique that is widely used for fetal imaging as it can provide 

imaging in any desired oblique plane in an ultra-short scan time- approximately 1 image per 

second. Single shot refers to the fact that the entire image is sampled after a single RF 

excitation and is, reconstructed and displayed before the next. Therefore, if the fetus moves 

during acquisition, only the imaging slice(s) where this movement has occurred are affected 

(130).  The fast scan times are achieved by utilising long echo trains and half Fourier 

techniques. The ssFSE sequence begins with a single 90 degree RF pulse followed by a 

long train of echoes created by 180 degree refocusing pulses in a single T2 decay, equal to 

the number of phase encoding steps for one image slice (Figure 1.18). The heavily T2 

weighted images are the result of later echoes with long TEs contributing to overall signal. 

The T2 weighting can be adjusted by arranging for the centre of k-space to be refocused at a 

specific echo time.  Further time reductions are achieved by half Fourier techniques which 

take advantage of the conjugate symmetry of the raw data in k-space. Data is only acquired 

for just over half the phase encoding steps, the rest being estimated from the acquired data, 

resulting in shorter scan times (131). However, to achieve suitable T2 weighting, long 

repetition times (TR ~ 10s) are used with ssFSE. This allows multiple slices to be interleaved 

and shorter echo train lengths allow more slices to be acquired per TR. 

 

GPh 

RF 

180180180 180
o 

18018090o 180180

GSs 

GR 

Signal 

Figure 1.18 Pulse sequence diagram for the ssFSE. RF- radiofrequency excitation pulse, GSs- 

slice select gradient, GPh- phase select gradient, GR- readout gradient.  
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Faster imaging times are usually achieved at the expense of image quality. The long echo 

trains result in weaker signal from the later echoes due to T2 decay. These signals are 

placed at the edges of k-space and determine the high resolution details in the image. As the 

signal from the edges of k-space is weaker than that from the centre of k-space, this can 

appear as blurring in the phase direction (Figure 1.20). The disadvantage of the half Fourier 

method is the loss of signal to noise ratio (SNR), although spatial resolution is preserved. 

Increasing bandwidth may reduce blurring due to shorter echo spacing, which also reduces 

scan time, but this is at the expense of SNR. The resultant ssFSE MR images are heavily T2 

weighted, providing good contrast between CSF and brain structures, and demonstrating the 

different layers of the developing brain and the formation of sulci as the brain matures (29).  

 

Gradient echo sequences are an alternative to ssFSE sequences, and are faster due to 

smaller variable flip angles which allow shorter repetition times (TRs), thus reducing scan 

times. The FIESTA sequence (Figure 1.19) is a fully balanced steady-state coherent 

gradient echo sequence that produces images with high SNR in even shorter scan times 

than the ssFSE sequence. The echo for each k-space phase encoding value is collected 

individually rather than as a complete k-space echo train as used in the ssFSE sequence i.e. 

it is a multi-shot sequence.  Steady state is achieved by the application of multiple RF 

pulses, at times less than the T2 relaxation times of tissues. As a result, the net 

magnetisation, determined by the flip angle and TR, reaches an equilibrium of both 

transverse and longitudinal magnetisations. Phase coherence is maintained, and due to the 

ultrashort TR the signal never completely decays, with residual magnetisation from the initial 

excitation pulse being refocused and contributing to the signal in the next cycle. This process 

is continually repeated and a steady state of non-zero magnetisation is established. The 

resultant equilibrium of magnetisation means that there is minimal T1 or T2 decay 

throughout the sequence, resulting in high SNR and less blurring than the ssFSE (Figure 

1.20). 
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Balanced gradients of equal magnitude and duration (determined by flip angle and TR) but 

of opposite polarity are alternately applied with the initial cycle of excitation and 

magnetisation inducing the FID signal. The second, opposite polarity, as well as producing 

a 

Figure 1.20 Comparison of ssFSE (a) and FIESTA (b) images of a phantom acquired at the same slice 

position. Blurring can be clearly seen in the ssFSE image due to the long echo train.  

Image a; ssFSE acquired using, TR 2000,  TE120,  ETL180  FOV 34x32cm, Matrix 256x256, Slice thickness 

4mm. Image b; FIESTA acquired using, TR 4.2, TE 2.3, FOV 38x34, Matrix 384x256, Slice thickness 4mm. 

b

b 

GSs 

RF

GP 

GR 

αo αo αo 

Signal 

Figure 1.19 Pulse sequence diagram for the FIESTA sequence.  RF- radiofrequency excitation pulse 

(αo – user defined flip angle), GSs- slice select gradient, GPh- phase select gradient, GR- readout 

gradient.  
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transverse magnetisation, acts as a refocusing pulse for residual magnetisation from the 

previous cycle, in the same way the refocusing pulse does in a spin echo sequence 

consequently producing an echo. The FID and SE signal are sampled at the  

same time resulting in a very high SNR.  

 

Because of the ultrashort TR used, contrast is not based on the T1 and T2 relaxation times 

of tissues but rather on the ratio of T1 to T2. Signal from muscle and other tissues appears 

dark but the very high signal of both liquids and fat appear bright, as they have similar T1/T2 

ratios but very different T1 and T2 relaxation times (132). This contrast mechanism means 

that the FIESTA is excellent at demonstrating CSF and tissue boundaries of the fetal brain 

but provides limited contrast between the different components within the brain, particularly 

as there is very little resultant contrast between grey and white matter (133) . Therefore, as 

ssFSE sequences are truly T2 weighted, they provide better tissue contrast of the 

developing fetal brain) (29). The contrast differences of the ssFSE and the FIESTA 

sequences within the fetal brain are demonstrated in Figure 1.21.  The ability of each 

sequence to distinguish between the different tissue types within the fetal brain can also be 

defined quantitatively by calculating and comparing the contrast to noise ratios (CNR). This 

was possible by selecting two regions of interest on the images acquired in-vivo and 

displayed on the vendor workstation (Advantage Workstation, VolumeShare 7 version 4.6, 

GE Healthcare, WI, USA). Two regions of interest (ROI, sub-plate and intermediate zones) 

were selected on an image acquired using a ssFSE sequence and the signal for each region 

recorded (shown in Figure 1.21a). A region of interest was also placed within the field of 

view but in an area void of signal and the standard deviation of the signal displayed by the 

workstation also recorded. CNR was then calculated by subtracting the arbitrary signal of 

one region of interest (S1) from the signal of the other ROI (S2). This was then multiplied by 

the SD noise value (SDN) i.e. CNR = S1-S2/SDN. 
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This calculation was then repeated for the FIESTA sequence using an equivalent imaging 

slice and ensuring the size and positioning of the ROI was identical to the one used for the 

ssFSE measurements. This resulted in four arbitrary signal values- two each for the ssFSE 

and FIESTA (Table 3).  

 The CNR was calculated for each sequence and are shown in Table 3. The results 

demonstrate that the CNR in the ssFSE is three times higher than the CNR of the FIESTA 

highlighting the superior ability of the ssFSE for showing the tissue characteristic of the fetal 

brain.  

 

  

Table 1.3 Comparison of signal intensity, background noise and CNR of two regions of the 
fetal brain measured invivo. (Arbitrary units) 

 Signal 
measurement 

of the sub 
plate (SP) 

Signal 
measurement 

of the 
intermediate 

zone (IZ) 

Differences 
in signal 

 
(SP - IZ) 

Standard 
Deviation of 
Background 

noise 

CNR of the 
SP and IZ 

ssFSE 99.49 83.94 15.55 15.39 1.01 

FIESTA 94.51 90.98 3.53 11.39 0.31 

Figure 1.21 Coronal images of a fetus at 21 weeks gestation comparing the 

resultant contrast of the T2 weighted ssFSE (a) and FIESTA (b). Although the layers of 

the cortex (CP cortical plate; SP subplate; IZ intermediate zone; VZ ventricular zone) 

can be seen in the images using both sequences they are more clearly defined by the 

ssFSE. (Circles in (a) demonstrate the positioning of ROI for CNR calculations). 

 

a b 
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While FIESTA has the advantage of higher SNR, lower SAR due to smaller flip angles, less 

blurring and faster acquisition compared to ssFSE, it does have limitations. Banding 

artefacts, a distinct feature of the FIESTA sequence, are caused by field inhomogeneity 

interfering with phase coherence of the transverse magnetisation from the multiple TRs. If 

the timing of the TRs are not in phase they cancel each other out rather than combining 

resulting in signal void and manifest as banding artefact. Therefore, a uniform magnetic field 

is essential (131). Although the very short TR makes the FIESTA sequence less sensitive to 

field inhomogeneity, banding artefacts are usually prominent at air/tissue interfaces (Figure 

1.22). Slice thickness is often restricted in the 2D FIESTA sequence due to the limitations of 

the gradients, particularly as oblique imaging is required to image each anatomical 

orientation of the fetal brain. A larger field of view (FOV) is also necessary to ensure that the 

banding artefacts do not obscure the area of interest.  

 

 

Figure 1.22 FIESTA image showing banding artefacts at 

air/tissue interface due to signal void (white arrows) 
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To produce T1W images of the fetus remains a challenge due to the high water content of 

the developing brain, resulting in poor contrast differentiation between grey and white matter 

(Figure 1.23a). T1W images are achieved by using ultrafast gradient echo sequences but 

are more prone to movement artefact than ssFSE due to longer acquisition time. Resolution 

is also limited in order that scan time can be kept to a minimum. Because of this, T1W 

images are used to make gross assessment rather than delineate smaller anatomical 

structures. For example, T1W sequences still adequately demonstrate haemorrhage (Figure 

1.23b), fat and calcification (57). Girard et al (100) also highlight the need for T1W imaging in 

the third trimester to demonstrate signal changes from the myelination process, particularly 

when it is abnormal, as it manifests sooner on T1W images than T2W images.  

 

 

A fast fluid attenuated inversion recovery sequence (FLAIR) may also be useful to image the 

fetal brain as it suppresses signal from CSF, increasing contrast between CSF spaces and 

adjacent structures (Figure 1.24). FLAIR can sometimes provide T1 information and be 

useful in clarifying areas of signal change, but like T1 imaging it has a 

 long acquisition time and therefore tends to be affected more by movement (57). 

Figure 1.23 Axial T1 iuMR images typical of the limited contrast 

achieved. Axial T1 of the normal fetal brain (a) and a fetal brain with 

posterior bleed (arrow, b). MR parameters: TR 12, TE ,6,  flip angle 

40, bandwidth 31, preparation time 2000, slice thickness 5mm, 

Matrix 192x128 

 

b a 
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Diffusion weighted imaging (DWI) (Figure 1.25) is sensitive to the random thermal Brownian 

motion of water molecules within tissues. Water molecules are usually free to move in any 

direction, but structures such as cell membranes, macromolecules, and fibres will restrict 

diffusion. The apparent diffusion coefficient (ADC) provides a measure of the magnitude of 

this diffusion process (i.e. the mean displacement of a molecule in a given time) and differs 

for different body fluids and tissues (134). Pathological processes such as tumours, 

abscesses and ischaemia may not always be clearly identified on routine structural MR 

imaging, but have been shown to alter normal diffusion. Normal ADC values for the 

developing fetal brain have been established (135) and consequently changes in diffusion 

demonstrated through signal change in DWI MR sequences highlight pathology (131). 

 

The sequences described so far are part of our routine iuMR imaging protocol to assess the 

fetal brain.  Developing and extending the range of MR sequences may provide further 

clinically relevant information about fetal brain development and improve detection of 

abnormalities.  

Figure 1.24 Axial FLAIR fetal brain image 

acquired using TR 2700, TE 122, bandwidth 

41, echo train length 240, inversion time 

2000, NEX 0.5, slice thickness 5mm, matrix 

224 x 224 

Figure 1.25  Axial diffusion weighted 

(b700) image acquired using TR 4000, TE 

109, bandwidth 250, Nex 4, slice thickness 

4mm and 0.5mmgap, matrix 128 x 128, b-

value 700.  
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1.5.3 MR Safety 

 

The potential hazards of MR imaging are well established for any person being exposed to 

the MR environment, and provided safety screening procedures are adhered to, then MR is 

considered ‘safe’. This assumption cannot be made for the developing fetus as it may be 

particularly vulnerable during the first trimester when organogenesis occurs (136). Exposure 

to the static magnetic field during an MR scan in the adult population may cause mild 

sensory effects such as vertigo, nausea and taste sensations which are harmless. The time 

varying magnetic field may also cause transient peripheral nerve stimulation which may be 

uncomfortable but does not cause adverse effects, although the effect on the fetus, if any, is 

unknown (137). 

The consequences of exposure to the MR environment during pregnancy are difficult to 

assess as the true effect on the fetus cannot be measured directly. The two main areas of 

potential concern that have been highlighted are exposure to the loud noise generated 

during the scan, and possible heating due to energy deposition caused by the 

radiofrequency (RF) pulses. The acoustic noise generated during an MR scan can reach 

over 100 decibels due to the switching of the gradients. The anatomical structures required 

for hearing are fully formed by 20 weeks gestation, and the fetus has been shown to respond 

to noise from this time point (138). Although difficult to replicate experimentally it is thought 

that amniotic fluid may reduce the sound by 30-50%, as described by Glover et al (139), who 

used a hydrophone in a volunteers stomach filled with water to record sound intensities 

during an MR scan. The experiment was designed to replicate the acoustic environment a 

fetus experiences in the uterus. However, it assumed that water has the same attenuation 

properties as amniotic fluid, and did not model the environmental changes experienced by 

the fetus over the full 9 months. The results should therefore be viewed with caution. The 

most conclusive evidence to support the view that the fetus' hearing is not adversely affected 

by noise during MR scanning come from studies which performed follow up hearing tests on 

children exposed to MR in utero and found no significant hearing impairments (140-142). 
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This evidence was confirmed by Reeves (143), who retrospectively reviewed outcomes of 

the hearing tests routinely performed on neonates and found no significant differences 

between those exposed to iuMR and a control group which was not.  

Another safety concern related to iuMR is the potential heating caused by the absorption of 

energy from the electromagnetic RF pulses. The amount of RF energy absorbed per unit of 

mass of an object is known as the specific absorption rate (SAR) and is measured in watts 

per kilogram (W/Kg). Several studies have reported that an increase of fetal temperature of 

more than 1 degree Celsius over 24 hours is potentially teratogenic (144) and can cause 

neural tube and facial defects (145, 146), with the central nervous system (CNS) being 

considered particularly vulnerable (136).  The thermoregulatory response of pregnant 

women is potentially compromised during pregnancy, and that of the fetus is unknown, 

although it is thought that the amniotic fluid surrounding the fetus permits effective heat 

dispersion (147).   

Despite concerns, there has been no conclusive evidence to suggest that iuMR imaging of 

the fetus has any detrimental effects. Consequently the Medicines and Healthcare Products 

Regulatory Agency (148) and the International Commission on Non-ionising Radiation 

Protection (149) state that MR imaging can be performed when the benefit is considered to 

outweigh any risk and the information obtained from iuMR cannot be obtained by any other 

non-ionising means (e.g. USS). It is also recommended that MR exposure should be kept to 

a minimum. Whole body SAR exposure should be limited to normal operating mode. This 

restricts exposure to 2 W/Kg  and prevents a core temperature rise of  more than 0.5 

degrees. This guidance is adhered to for all iuMR imaging performed in the Academic Unit of 

Radiology, hence all fetal imaging acquired and shown in this thesis did not exceed 

recommended SAR limits. 

In practical terms, SAR is determined by the sequences and parameters selected by the 

operator as well as by field and gradient strength. For example, due to the additional RF 
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pulses they use, fast single-shot spin echo sequences produce a higher SAR than gradient 

echo sequences (150). Structuring an MR protocol so that all the information required is 

achieved with minimal SAR should be investigated. The use of a single 3D acquisition to 

replace 2D sequences in each anatomical plane may have the potential to reduce SAR. To 

date, there appears to be little research into this aspect of iuMR imaging. 

 

1.6 Measures of Diagnostic Performance 
 

Diagnostic tests are a fundamental part of healthcare, enabling clinicians to make a 

diagnosis, assess the severity of disease and guide clinical decision making and disease 

management. Before any diagnostic test is accepted into routine clinical use its diagnostic 

performance must be determined by examining every aspect to ensure it is clinically relevant 

and useful in the context to which it is applied (151). 

 

Fryback and Thornbury (152) defined a hierarchal model containing six levels which outline 

the different elements of diagnostic efficacy (Figure 1.26). This model considers all elements 

of the diagnostic pathway, acknowledging that diagnostic performance cannot be measured 

by a single factor but is dependent on the efficacy at each level. Diagnostic performance of a 

test at a higher level is influenced by and dependent on performance at a lower level, so if 

technical efficacy is poor it will reduce performance at all other levels.  

 

LEVEL 1

Technical 
Efficacy

LEVEL 2

Diagnostic 
Accuracy

LEVEL3 
Diagnostic 
Thinking 
Efficacy

LEVEL 4 
Theraputic 

Benefit

LEVEL 5 
Patient 

Outcome

LEVEL 6 

Social 
Efficacy

Figure 1.26 Hierarchal model of diagnostic performance as proposed by Fryback (1991) 
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Level 1 encompasses the performance of the technical aspects of a test. This is the ability to 

physically measure information with precision and reproduce that information reliably (153). 

For diagnostic imaging, this includes the quality and abilities of equipment used, aspects of 

image quality such as resolution, contrast, sharpness, artefacts and the ability of the 

technologist to use the equipment effectively.  

 

Diagnostic accuracy, at Level 2, is usually measured as a binary outcome by comparing the 

results of the new test to the true condition status as determined by a reference standard, 

with results frequently presented as percentages. This simplistic evaluation of diagnostic 

accuracy fails to provide any meaningful statistical analysis or take into account the 

significance of false positive and false negative results and may overestimate test 

performance (154). A more thorough analysis is achieved using a 2 x 2 contingency table 

which takes into account not only true positives and negatives, but also false positive and 

negatives to determine sensitivity and specificity (155). Measures of sensitivity and 

specificity do not determine the severity or anatomic extent of a disease, but calculates the 

proportions of correct and incorrect positive and negative diagnoses made by the diagnostic 

test compared to an outcome reference diagnosis. The positive and negative predictive 

values are also useful measures of diagnostic test accuracy, providing the probability that 

the diagnostic test will correctly identify those with or without the condition under 

investigation (156). 

 

At Level 3, diagnostic thinking efficacy links how the information provided by the diagnostic 

test at Level 2 influences patient management at Level 4, and addresses the question ‘does 

the information influence the clinician’s thinking about the disease likelihood enough to affect 

patient treatment’? (153). Diagnostic thinking efficacy is difficult to measure quantitatively, 

and instead relies on subjective or empirical measures such as the clinician’s estimated 

probability of a diagnosis before and after a test, often referred to as diagnostic certainty or 

confidence (152). When diagnostic confidence is examined it is usually as a separate entity 
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rather than as an integral part of the diagnostic pathway, simply measuring confidence 

before and after any given test (157). Ng and Palmer (158) point out that this fails to take 

into account the effect of wrong diagnoses. They propose a framework in which diagnostic 

accuracy and diagnostic confidence are amalgamated to examine how each of these 

aspects influence clinical management whilst taking into account eventual outcome (correct 

or incorrect diagnosis). This framework, (shown in Chapter 3, Figure 3.1) assigns a ‘route 

score’ according to impact on the patient ranging from +4, representing where the test under 

investigation had a positive contribution which was beneficial to the patient, to -4, where the 

test has a detrimental influence. Where the test has no impact, a score of 0 is assigned. 

Examining diagnostic confidence is a concept rarely considered when investigating 

diagnostic performance, yet it is fundamental to clinical decision making. A clinician who is 

highly confident of a diagnosis is more likely to act upon that diagnosis than if confidence is 

low (159). This directly affects clinical management in that if the confidence is misplaced, it 

can cause treatment to be either given when not needed or withheld when required, and can 

have detrimental consequences for the patient (160). 

 

At Level 4, therapeutic efficacy deals with how a diagnostic test and its interpretation impacts 

on the patient’s treatment, in terms of how therapy planned before a test is altered by the 

results of that test (152). It is possible that a diagnostic test can perform well at lower levels 

but if it has no impact or influence on the management of disease then it may simply become 

a means to reassure the clinician, although this may be of benefit in itself. For example, if 

iuMR adds nothing to the information obtained by ultrasound, it is unlikely to impact on 

patient management. It could be argued that although no further information is obtained, it 

still provides reassurance that the original diagnosis is correct. This may be equally 

important, particularly when decisions are being made which have significant consequences, 

such as termination of pregnancy.  
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The ultimate goal of a diagnostic test is to benefit the patient, a consideration at Level 5 in 

Fryback’s hierarchical model. Patient efficacy is defined as the end result due to the test; for 

example patient deaths avoided, or change in quality of life, regardless of the sensitivity and 

specificity of a test (161). In fetal imaging this can be significant. If iuMR imaging excludes a 

severe brain abnormality previously diagnosed by USS then a decision regarding termination 

of the pregnancy may be reversed, with a resulting successful pregnancy.  

 

The final Level, 6, is societal efficacy which relates to the cost-effectiveness of a new test. 

Resources are limited, and allocation is often prioritised for those services for which the 

benefit is significant enough to justify the expense. This aspect of diagnostic performance is 

often difficult to quantify as diagnostic imaging technologies, unlike medical drugs or 

treatments, rarely have direct measurable long term patient outcomes (162). As a result, 

strategies for cost-effective analysis of technologies have been introduced. Reference case 

analysis uses the calculation of quality-adjusted life years (QALY), the cost of funding the 

new technology and the consequences for the wider patient population (163). 

 

This hierarchical model provides a guide by which to comprehensively assess a diagnostic 

test. Although diagnostic accuracy is an essential aspect to consider when investigating a 

new technology, such as iuMR, in order to assess its true performance all elements need to 

be incorporated by thorough study design.  
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Chapter 2 

A Systematic Literature Review and Meta-Analysis to Determine the 

Contribution of MR Imaging to the Diagnosis of Fetal Brain Abnormalities 

In Utero 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 



70 
 

2.1 Summary  

In order to fulfil the first aim of this thesis it was necessary to establish the ability of iuMR to 

improve the diagnostic accuracy over ante-natal USS for the detection of fetal brain 

abnormalities as evidenced by previous research. This chapter, therefore, reports the 

systematic literature review and meta-analysis undertaken to fulfil this aim. The overall 

conduct and execution of the review was the responsibility of DJ.  This included; 

 Writing the review protocol  

 All literature searches 

 Selection and exclusion of articles at all stages of the screening process.  

 The assessment of methodological quality for included articles 

 Collation of data and analysis of results 

 Writing the manuscript which was published in the peer reviewed journal European 

Radiology:-  

 

 

Jarvis D, Mooney C, Cohen J, Papaioannou D, Bradburn M, Sutton A, et al. A systematic 

review and meta-analysis to determine the contribution of MR imaging to the diagnosis of 

fetal brain abnormalities In Utero. European radiology. 2017;27(6):2367-80. 

 

The systematic review was conducted by DJ over a 2 year period and represents a 

significant portion of this time span (approximately 500 hours). Staff at ScHARR (School of 

Health and Related Research, University of Sheffield) provided support and assistance with 

the review. This included advice on systematic review methodology (Judith Cohen, Diana 

Papaioannou), literature search planning (Anthea Sutton), statistics (Mike Bradburn) and 

preparation of the manuscript for publication. Cara Mooney undertook the role of second 

reviewer for the screening, selection of appropriate studies to be included in the review, data 

extraction and methodological quality assessment.  
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The purpose of this systematic literature review was to provide a comprehensive appraisal of 

previous research investigating the diagnostic performance of fetal brain MR imaging when 

attempting to confirm, exclude or provide additional information to USS after there is a 

suspicion of fetal brain abnormality. In order to identify relevant studies electronic databases 

were searched as well as relevant journals, conference proceedings and reference lists of 

applicable studies. Two reviewers independently identified relevant studies for inclusion in 

the review. Inclusion criteria were original research that reported the findings of prenatal 

USS and iuMR imaging and findings in terms of accuracy as judged by an outcome 

reference diagnosis for fetal brain abnormalities.  

The inclusion criteria were satisfied by 34 studies, allowed diagnostic accuracy to be 

calculated in 959 cases, all of which had an outcome reference diagnosis determined by 

postnatal imaging, surgery or autopsy. The systematic review found that iuMR imaging 

makes a significant contribution to the diagnosis of fetal brain abnormalities increasing the 

diagnostic accuracy achievable by USS alone but further evaluation with improved 

methodology is needed to provide definitive evidence. 

 

2.2 Background  
 

USS is the primary diagnostic imaging method for screening of the pregnancy and 

considered the reference standard for imaging the fetal brain. There are occasions when 

technical limitations can hinder clear visualisation of the fetal anatomy, which could result in 

abnormalities being overlooked (164, 165). As previously outlined in the hierarchal model 

(section 1.5), the satisfactory performance of a diagnostic test in healthcare is essential as 

the results are necessary for clinical decisions and management of disease. iuMR imaging 

was introduced as an adjunct to USS to improve diagnostic accuracy and a growing body of 

literature confirms increasing use of iuMR in detecting fetal brain abnormalities (166-169). 

Despite this, the true clinical value of iuMR has not been established and previous limited 
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statistical evidence has been unable to demonstrate, in terms of diagnostic accuracy, any 

benefit (170).  

A systematic review and meta-analysis allows all relevant evidence from individual studies to 

be combined and evaluated to provide reliable and cohesive proof regarding an intervention 

and to reduce or eliminate any potentially conflicting evidence. Consequently the results of a 

systematic review provide a more accurate assessment of effectiveness and are considered 

more informative for clinical practice than individual studies alone (171) .   

There have been only two other recently published systematic reviews by Rossi and 

Prefumo (172) and Van Doorn et al (173) who aimed to clarify the additional benefit of MRI 

in the diagnostic pathway when used in addition to USS. Rossi and Prefumo reviewed 13 

studies and Van Doorrn et al selected 27 studies for review. Despite similar aims and 

inclusion criteria only 7 studies were included in both reviews. This could, along with date 

differences for searches, be due to the differences in exclusion criteria.  The criteria used by 

Rossi and Prefumo excluded studies without an outcome reference diagnosis (ORD), non- 

English publications and those where the data were reported in graphs or percentages. Van 

Doorns review excluded studies with a sample size of less than 20 and studies where 

diagnoses were inadequately described. The analysis of the results within Rossi and 

Prefumo's review were also fundamentally flawed, which is discussed later. Consequently 

we felt a new systematic review was justified in order to improve upon and update these 

existing reviews, to attempt to limit the number of studies excluded and to identify any other 

studies which may have been erroneously excluded. 

 

2.3 Study Aims 

The aim of this study is to assess iuMR imaging as a technology to aid the prenatal 

diagnosis of fetal developmental brain abnormalities to answer the question:- Is the 

diagnostic accuracy of iuMR superior, equivalent or inferior to USS? The diagnostic 

accuracy of iuMR compared to antenatal USS was assessed through: 
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a) Measurement of diagnostic accuracy of antenatal USS alone (i.e. prior to iuMR) in relation 

to an outcome reference diagnosis (ORD- post-natal imaging, surgery or post-mortem 

examination). 

b) Measurement of diagnostic accuracy of iuMR (following antenatal USS) relative to an 

ORD (post-natal imaging, surgery or post-mortem examination). 

The secondary aims were to determine if prenatal counselling and/or management of the 

pregnancy changes as a result of iuMR imaging and to identify the fetal brain anomalies for 

which iuMR is most useful. 

 

2.4 Methods 

2.4.1 Protocol 

 

The protocol for this research was written in accordance with the Preferred Reporting Items 

for Systematic Reviews and Meta-Analyses (PRISMA)(171) and registered with the 

International Prospective Register of Systematic Reviews (PROSPERO, registration number 

CRD42015010265).  PRISMA are peer reviewed guidelines that provide a robust set of 

standards to ensure that systematic reviews are undertaken and reported in a manner which 

removes ambiguity regarding outcomes. These guidelines were chosen as they were judged 

the most appropriate for the research question and study design and also recommended by 

the experienced systematic reviewer providing advice for this review. 

2.4.2 Eligibility Criteria 

 

All types of study design were considered eligible for inclusion apart from case reports, 

reviews or commentaries. 

Participants 

Pregnant women who had undergone, due to suspicion of an abnormality of their fetus’ 

brain, specialist prenatal ultrasound and subsequent prenatal iuMR and with any findings 

confirmed by an ORD. 
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Reference standards 

Reference standards accepted to confirm the outcome diagnosis were postnatal imaging by 

transcranial USS, MRI or CT and surgery, or, in cases of fetal demise or neonatal death, 

autopsy and post mortem MR imaging.  

Exclusions 

Studies not reported in English were excluded if a translation was unavailable. If an abstract 

was available in English these were scrutinised for relevant information but excluded if the 

information given meant adherence to the inclusion criteria could not be certain. 

2.4.3 Search Methods 

 

All studies were identified in which iuMR imaging was used to supplement USS for imaging 

fetal brain abnormalities in utero. In order to retrieve as many relevant studies as possible a 

sensitive search strategy was compiled and applied to all relevant data sources, adjusting 

truncation and wildcard terms of the search strategy for each database as necessary. 

Medical subject heading (MeSH) terms such as “magnetic resonance imaging”, “ultrasound” 

and “fetus” were used and combined with other free-text terms related to fetal brain 

abnormalities such as  “agenesis of the corpus callosum” or “ventriculomegaly”.   

Databases searched included Medline (via OVID) (1966 to present), EMBASE (1980 to 

present), Cochrane Register of Diagnostic Test Accuracy Studies (accessed 18/03/2015 and 

02/10/2015), and Web of Science (1900 to present). The search strategy as applied to the 

MEDLINE online database is shown in Table 2.1.The reference lists of appropriate articles 

were also scanned for any other suitable studies that were not highlighted by the searches. 

Websites of the relevant obstetric, feto-maternal medicine, and general radiology journals 

were searched including:  Neuroradiology, Radiology, Journal of Ultrasound Medicine, 

Prenatal Diagnosis, Journal of Magnetic Resonance Imaging, Journal of Perinatal Medicine, 

Journal of Ultrasound in Obstetrics and Gynaecology, Paediatric Radiology, Neurology and 

the American Journal of Neuroradiology. In addition, conference proceedings were searched 
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for applicable studies and authors contacted for relevant data. These included the 

Radiological Society of North America (RSNA), the British Society of Neuroradiologists 

(BSNR), European Society of Neuroradiologists (ESNR), American Society of 

Neuroradiologists (ASNR), European Society of Paediatric Radiology, The Fetal Medicine 

Foundation world congress and the Asia Pacific Perinatal Imaging Symposium. 

Electronic searches were conducted in March 2015 without date restriction and later updated 

to identify all relevant reports up to the end of September 2015. Initial searches of all data 

sources and removal of duplicates was undertaken by one reviewer (DJ). 

2.4.4 Data Collection 

 

Selection of Studies 

The screening and selection of appropriate studies was carried out in three stages and each 

performed independently by two reviewers (DJ, CM).  

Stage 1. Titles of all material generated by the searches were screened and excluded if it 

was clear the inclusion criteria had not been met.  

Stage 2. Titles and abstracts of citations remaining after stage one were reviewed and those 

that appeared to meet the inclusion criteria or studies where there was uncertainty regarding 

applicability were selected for stage 3.  

Stage 3. Full reports were located either through online resources or by hand searches and 

reviewed for applicability against the inclusion criteria. Those that met the inclusion criteria 

were selected for final inclusion in the systematic review. 

Any disagreements or ambiguity during each stage of the selection process were resolved 

by consensus. Where only abstracts were available attempts were made to contact the 

authors for full reports. If the same data had been published in more than one publication, 

only the most up to date or complete study was selected. A PRISMA flowchart was used to 

document and report any decisions made during the study selection process (174) (Figure 

2.1).  
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Table 2.1 Medline Search Strategy 
 “Table reproduced from: Jarvis D, Mooney C, Cohen J, et al. (2017) A systematic review and meta-analysis 
to determine the contribution of MR imaging to the diagnosis of foetal brain abnormalities In Utero. Eur 
Radiol 27:2367-2380.” 

  

Database: Ovid MEDLINE(R) In-Process & Other Non-Indexed 
Citations, Ovid MEDLINE(R) Daily, Ovid MEDLINE(R) and Ovid 
OLDMEDLINE(R) <1946 to Present> Search Strategy:- 

RESULTS 
n = 

1 Brain/ (381902) 381902 

2 Abnormalities, Multiple/ 36708 

3 1 and 2  1518 

4 (brain adj5 abnormalit$).mp.  6920 

5 Ventriculomegaly.mp.  1506 

6 "Agenesis of Corpus Callosum"/  1882 

7 corpus callosum.mp.  15290 

8 agenesis.mp. 10526 

9 7 and 8  2720 

10 Arnold-Chiari Malformation/  2609 

11 Chiari malformation.mp.  3070 

12 Dandy-Walker Syndrome/  895 

13 dandy walker.mp.  1258 

14 3 or 4 or 5 or 6 or 9 or 10 or 11 or 12 or 13  16031 

15 Fetus/ or Pregnancy/  720818 

16 Prenatal Diagnosis/  31148 

17 f?etus.mp.  115409 

18 f?etal.mp.  306437 

19 pregnan$.mp.  787645 

20 in utero.mp.  21043 

21 or/15-20  927013 

22 Ultrasonography, Prenatal/ or Ultrasonography/  86794 

23 ultraso$.mp.  313296 

24 22 or 23  313296 

25 Magnetic Resonance Imaging/ 279781 

26 (magnetic resonance imag$ or MRI).mp. 368017 

27 25 or 26  368017 

28 14 and 21 and 24 and 27  338 

29 Comment/  584249 

30 Letter/  840238 

31 Editorial/  355577 

32 (comment or letter or editorial).pt.  1331667 

33 case reports.pt.  1686033 

34 29 or 30 or 31 or 32 or 33  2843406 

35 28 not 34  204 
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2.4.5 Assessment of Methodological Quality of Included Studies 

 

Included studies were assessed independently for methodological quality (DJ and CM) using 

the Quality Assessment of Diagnostic Accuracy Studies (QUADAS 2) tool (175). The 

QUADAS assessment was done in addition to data extraction in order to assess the quality 

of each study and their relevance to the review question. As recommended by the QUADAS 

guidelines, the data collection form was tailored to make the wording and the signalling 

questions specific to this review. The methodological quality of each study was rated in 

terms of the risk of bias using signalling questions to score the four key domains. These 

included: Patient selection, Index tests, Reference standard and Flow and Timing. Studies 

were scored as “Yes”, “No” and “Unclear” for each of the four items. Additional signalling 

questions for this review were introduced for both study design and index tests. These were 

questions to determine prospective versus retrospective study design and details regarding 

USS and iuMR technique and reporting as these were elements considered likely to 

introduce bias (Table 2.2).  The answers to the signalling questions were reviewed and an 

overall score of “Low risk” “High risk” or “Unclear” given for each of the four domains. The 

risk of bias for each domain was decided according to the number of positive answers to the 

signalling questions; where all 4 or 3 responses were positive (yes) the domain was 

categorised as low risk and if there were 2 or less positive responses the domain was 

categorised as high risk. If the study did not report the answer to one of the signalling 

questions or a question could not be answered definitively then the domain was scored as 

unclear.  

Three domains (Patient selection, Index tests and Flow and timing) for each study were also 

examined to determine if there was any concern regarding applicability to the review 

question. This was judged by a single question for each of the three domains. Exclusion 

criteria stated within the review protocol were applied before questions were answered yes 

(Low concern) or No (high concern).  When detail reported was insufficient to answer the 

signalling question an Unclear score was given. 
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TABLE 2.2 Questionnaire to Assess the Quality and Applicability of included studies. 

QUADAS 2 ASSESSMENT:      Answer Y=yes N= no U=unclear 

Does the paper report diagnostic accuracy? 

Is the paper relevant to the review question?  

 If the answer is yes to both questions continue with assessment, if no consider excluding from the 
review. 

DOMAIN 1: Patient Selection 

Bias Assessment 

1.1. Were selection criteria clearly described?     

1.2. Was a consecutive or random selection of patients enrolled?  

1.3. Was case-control avoided?  

1.4 Was the study prospective?  

Overall what is the likelihood the selection of patients introduced bias?  (High, Low Unclear) 

Applicability 

1.5. Do the patients included match the review question? 

 Yes score Low, No score High and Unclear or not reported score unclear 

DOMAIN 2: Index Test(s) 

Bias Assessment 

2.1. Was the execution of US explained in enough detail to allow its replication?  

2.2. Was the execution of MR explained in enough detail to allow its replication? 

2.3. Was the US performed and interpreted by a specialist/fetal maternal expert? 

2.4. Was the MR performed and conducted by a specialist/ experienced radiologist?  

Overall what is the likelihood the conduct of the index tests have introduced bias?  (High, Low , 
Unclear) 

Applicability 

2.5. Did the flow of patients match how USS and iuMR are used in clinical practice? 

 Yes score Low, No score High and Unclear or not reported score unclear. 

DOMAIN 3: Reference Standard 

 Bias Asssessment 

3.1. Was the reference standard interpreted without knowledge of the results of the index tests? 

3.2. Did all participants have a reference standard? 

3.3. Did all participants receive the same reference standard? 

3.4. Was the reference standard used one specified in the review protocol?                            

Overall what is the likelihood the reference standard, its conduct or its interpretation introduced 
bias?  (High, Low , Unclear) 

Applicability 

3.5 Is there concern that the target condition as defined by the reference standard does not match 
the review question? 

  Yes score Low, No score High and Unclear or not reported score unclear. 

Domain 4: Flow and Timing 

Bias Assessment 

4.1. Was MRI performed within 2 weeks of Ultrasound in all cases?                                               

4.2. Was the reference standard conducted within the timeframe specified in the review protocol? 

4.3. Were all participants included in the analysis?                                                                                

4.4. Were withdrawals from the study explained?                                                                               

What is the likelihood the flow of patients could have introduced bias? (High, Low Unclear) 
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2.4.6 Data Items and Analysis 

 

Study characteristics and outcomes of the included studies were extracted independently by 

DJ and CM and documented using a custom designed data collection form (Table 2.2). This 

was piloted on 3 citations to ensure that all the relevant information for analysis was 

captured. Characteristics noted for each study were: date of publication and objective, study 

design and setting, sample size, details of USS and iuMR and time lapse between the two. 

The number of correct and incorrect diagnoses made by both USS and iuMR were also 

recorded as judged by the outcome reference diagnosis confirmed by postnatal imaging, 

autopsy or surgery. Clinical examination was discounted as a reference standard as it is 

rarely able to confirm or refute a diagnosis as the majority of structural brain abnormalities 

are not apparent externally. Where studies reported the results of imaging from multiple 

anatomical areas, only the results of the fetal brain were included. 

It was anticipated that all studies would recruit only (or predominantly) fetuses with a brain 

abnormality diagnosed by USS, meaning the sensitivity and specificity of the imaging 

modalities could not be estimated due to the lack of fetuses without brain abnormality. 

Therefore, the analysis defined diagnostic accuracy for each modality as the percentage of 

cases where the diagnosis was confirmed by ORD. In fetuses with multiple abnormalities a 

primary diagnosis was identified as the abnormality with the most detrimental clinical 

outcome. In cases where both modalities identified the primary diagnosis but one provided a 

more specific diagnosis and/or additional information without fundamentally changing the 

primary diagnosis, our analysis assumed both modalities were correct but the nature of 

disagreements was subsequently investigated. 

A meta-analysis of the diagnostic accuracy of iuMR in relation to USS was conducted using 

the Stata statistical analysis software (176). For each study the odds ratio for the paired 

iuMR and USS accuracies and its standard error were computed using the method of Becker 

and Balagtas, using a 0.5 correction for zero cells (177, 178). Odds ratios were combined 

using a random effects model and the I2 statistic was used as an indicator of heterogeneity  
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within the included studies (179, 180).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.3  Data Items Recorded For Each Study 

 

Author, Year 

Title and Objective 

Publication Type 

Country of Study 

Language of Publication 

STUDY CHARACTERISTICS 

Target Population 

Method of Selection 

Retrospective (R) Prospective (P) 

TOTAL Number in Study 

Number Excluded + Reasons 

FINAL Number Included in Review 

ULTRASOUND DETAILS  

Age range of Fetus’ at USS (weeks) 

Level of USS- Routine (R) or specialist (S) 

Was USS equipment and technique described? (2D, 3D, TV etc) 

Experience of Sonographer 

Problems Encountered? If yes specify 

iuMR DETAILS  

Age of Fetus’ at iuMR 

Time delay between USS and iuMR 

Was iuMR Technique  and equipment described?(Magnet strength, use of 
sedation, sequences used etc) 

Fetal iuMR experience of reporting radiologist 

Was the radiologist blinded to USS report? 

Problems Encountered? If yes specify 

OUTCOME DETAILS 

Reference Standard Used 

Within 6 months? 

ANALYSIS - numbers confirmed by outcome reference diagnosis 

iuMR and USS agreed and correct   

iuMR and USS agreed but both wrong/missed significant finding   

iuMR changed diagnosis (USS wrong)  

USS additional information  to iuMR (USS more exact) 

USS changed diagnosis (iuMR wrong)  

Number Where iuMR Changed Counselling  

Number Where iuMR Changed Management 

Specific Abnormalities where iuMR was most accurate 

Specific Abnormalities where iuMR was inaccurate  
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2.5 Results 
 

Our initial searches generated a total of 1,250 potential studies with 807 remaining for 

additional scrutiny after duplicates were removed. Further screening resulted in 34 published 

studies for final inclusion in the review (17, 21, 81, 83, 120, 181-209), Categories for 

exclusion of full papers reviewed but rejected are listed in the PRISMA flowchart (Figure 

2.1).  

 

Figure 2.1 PRISMA Flowchart of Study Selection  
 “Image reproduced from: Jarvis D, Mooney C, Cohen J, et al. (2017) A systematic review and meta-analysis to 
determine the contribution of mr imaging to the diagnosis of foetal brain abnormalities In Utero. Eur Radiol 
27:2367-2380.”  
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Records After Duplicates removed 

(n = 807  ) 

Total Records Identified:  
1,252 

 

Records Excluded 

(n =  616 ) 

Records Screened 

by Title and 

Abstract 
Full Text Articles Excluded (n=157) 

 

Abstract Only 27 

Untraceable/unavailable 5 
Case reports/Descriptive Reviews/ 
Commentaries 22 

No Outcome Reference Diagnoses 31 

Non English 12 

Duplicated reporting of data 8 

Study design / anatomical area 6 
Prenatal US and MR comparison 
Unclear 46 

  

Studies Included in Review  

 

(n = 34) 

Full-text Articles 

Assessed for 

Eligibility 
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2.5.1 Study Characteristics 
 

The 34 studies were published over a 20 year period (1994-2014) as listed in Table 2.4.  

With regard to study design 19 studies  (21, 83, 120, 181, 183, 185, 188, 191, 192, 198, 202, 

207, 209-214) were prospective and 12 retrospective (17, 81, 84, 184, 187, 190, 195-197, 

203, 206, 215) but this was not specified in 3 studies (189, 200, 216). All studies selected a 

consecutive cohort of patients with either a remit to investigate all fetal brain abnormalities 

(24 studies (120, 165, 181, 184, 188-191, 195-199, 202-205, 209, 214, 217-221)) or to 

investigate a more specific brain abnormality e.g. ventriculomegaly, corpus callosum 

anomalies (10 studies (17, 21, 81, 182, 192, 194, 200, 201, 222, 223))   

USS was performed in a tertiary centre and/or conducted by fetal medicine experts in 21/34 

studies (17, 83, 84, 120, 184, 185, 187, 188, 190-192, 195, 198, 204, 206, 207, 209, 210, 

212, 214, 224), in 12/34 (21, 181, 183, 189, 197, 200, 202, 203, 207, 211, 215, 216) it was 

either unclear or not specified, and in 1 study (196) USS was performed in a routine clinical 

setting. Clear details regarding USS technique (transabdominal or transvaginal imaging 

views obtained) and equipment (manufacturer, transducer) were provided in 21 studies (17, 

21, 83, 120, 181-183, 185-189, 191-193, 195, 199-201, 206, 224). The remaining 13 studies 

provided minimal information or the details were not given (184, 194, 196-198, 202-205, 

207-209). 3/34 acknowledged technical difficulties in some cases which limited the USS 

including fetal lie, maternal obesity and oligohydramnios (189, 201, 207). The age range of 

fetuses reported across studies was 13-41 weeks gestation. Time delay between USS and 

iuMR was less than two weeks in 19/34 (83, 120, 181, 183, 186, 188, 190, 191, 193-196, 

198, 202, 203, 205-208), not specified in 13/34 studies (21, 81, 182, 184, 187, 189, 192, 

197, 199-201, 204, 209) and in 2 studies there were cases in which the time delay was 

greater than 2 weeks (15 and 17 days (17, 185)).  

Details regarding the experience of the clinician reporting the iuMR study were only available 

in 10/34 studies (17, 83, 185, 191, 194, 195, 198, 201, 207, 208), half of these quantified this 

in terms of years (between 1 and 15) and for the remaining a description of ‘experienced’ 
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was given. In 2 studies, the reporting radiologist was unaware of USS findings (17, 198). 

Details regarding MR imaging technique was reported in all papers including manufacturer, 

sequences and types of receiver coils used. Fast T2 weighed sequences were performed in 

all studies with some using an additional range of imaging sequences (T1, DWI, 3D and 

FLAIR). Early studies reported the use of fasting and sedation in order to achieve optimal 

imaging (21, 211).  

 

2.5.2 Methodological Quality 

 

The results of the methodological quality assessments using the Quadas 2 criteria are 

presented in Figure 2.2. Risk of bias for patient selection and applicability was low in 31/34 

(91%) studies (17, 21, 81, 83, 84, 120, 181, 184, 187, 188, 190-192, 195-198, 200, 202, 

206, 207, 209-215, 218, 222), high in 1 (6%) (203) and unclear in 2 (12%) (189, 216) with 

high risk of bias due to patient selection criteria not being defined and retrospective study 

designs. The risk of bias due to conduct and interpretation of the index tests was low risk in 

15/34 (44%) studies (17, 81, 83, 84, 120, 187, 191, 195, 198, 206, 207, 212, 214, 218), high 

risk in 4/34 (12%) studies (184, 196, 197, 203)  and unclear in 15/34 (44%) (21, 181, 188-

190, 192, 200, 202, 209-211, 213, 215, 216, 222).  Assessment of potential bias introduced 

by the reference standard was considered low risk in 19/34 (56%) studies (84, 120, 184, 

187-189, 196, 198, 200, 206, 207, 209, 211-213, 216, 218, 222), high risk in 9 (26%) (21, 

181, 190, 191, 197, 203, 210, 214, 224) and unclear in 6/34 (18%) (17, 83, 192, 195, 202, 

215), as there were a proportion of cases within the study that did not have a confirmed 

outcome diagnosis or it was determined by clinical examination. Bias in the flow and timing 

as judged by timing between USS and iuMR imaging or due to methods used for analysis of 

findings was deemed low in 14/34 (41%) (83, 120, 181, 183, 185, 188, 202, 203, 206, 207, 

214-216), high in 12/34 (35%) (17, 21, 84, 184, 187, 190, 192, 195, 197, 198, 209, 224) and 

unclear in 8/34 (24%) (189, 191, 196, 200, 210-213). The majority of the studies posed no 

concern regarding applicability for each of the three domains, with only 3% posing high and 



84 
 

6% unclear concern regarding index tests and 3% unclear applicability regarding patient 

selection. 

  

 

2.5.3 Diagnostic Accuracy of USS and MRI 

 

The 34 included studies reported a combined total of 2530 fetuses (Median 32.5, Range 10-

834) but of these 62% (n=1,571) were excluded as they did not have an iuMR (n=796), 542 

did not have an ORD, were non-brain pathology (n=159) or other exclusions (n=74). 

Consequently this systematic review reports on the outcomes of 959 fetuses. In 6/34 studies 

(188, 196, 207, 212, 213, 216), all fetuses had an ORD and when combined contributed 

186/959 to the analysis in this review (median 24.5, Range 12-72). The remaining 773/959 

(median 38, Range 10-834) fetuses were from the outstanding 28 studies (17, 21, 81, 83, 

84, 120, 181, 183-185, 187, 189-192, 195, 197, 198, 200, 202, 203, 206, 207, 209-211, 214, 

215).  

 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Risk of Bias Due to Flow and Timing

Concern regarding Applicability of Reference
Standard

Risk of Bias Due to the Reference Standard

Concern regarding Applicability of Index Tests

Risk of Bias Due to the Index Tests

Concern regarding Applicability of Patient
Selection

Risk of Bias due to Patient Selection

Figure 2.2  QUADAS 2 Risk of Bias and Applicability Assessment Results

High Low Unclear
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The overall diagnostic accuracy combined across 34 studies were 75.2% for USS and 

91.0% for iuMR (overall odds ratio=3.10, 95% CI 1.98 to 4.86, p<0.0001; Figure 2.3). 

Although individual studies were heterogeneous (I2 = 45%; p=0.002), nearly all reported an 

improvement in diagnostic accuracy following iuMR. The data is also represented in the form 

of a L’Abbe plot (Figure 2.4) in which the diagnostic accuracies of iuMR and USS are 

presented as percentages, with the different sample sizes being represented by size of the 

plotted circles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Forrest Plot Showing the Odds Ratios of diagnostic accuracy for all studies (First 

Author and Date only) and overall effect Odds Ratio with Confidence Intervals.  

 

NOTE: Weights are from random effects analysis
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Agreement between USS and iuMR 

The reports from USS and iuMR were in agreement and agreed with the ORD in 527/959 

(55%). USS and iuMR were in agreement but discordant with the ORD in 52/959 (5.5%) 

fetuses (Table 2.5 1a, 1b) 

Figure 2.4 L’Abbe plot of diagnostic accuracy of USS and iuMR. Circle size is proportional to sample size of 

each study. The dotted line indicates equal diagnostic accuracy between USS and iuMR and the solid line is the 

overall odds ratio line and represents a ratio of 3.1, estimated by pooling the results from all studies 

“Image reproduced from: Jarvis D, Mooney C, Cohen J, et al. (2017) A systematic review and meta-analysis to 

determine the contribution of mr imaging to the diagnosis of foetal brain abnormalities In Utero. Eur Radiol 

27:2367-2380.” 
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In 160/959 (16.5%) fetuses iuMR and USS were in agreement regarding the primary 

diagnosis but additional information was added- either secondary diagnoses or a more 

concise/confident primary diagnosis given. In this category iuMR provided additional 

information in 146/959 (15%) and USS provided additional information in 14/959 (1.5%) 

cases as confirmed by ORD. 

 

Disagreement between USS and iuMR 

The diagnoses on iuMR and USS disagreed in 222 (23%) cases. Of these, the iuMR was in 

agreement with the ORD in 186 (19%), the majority of which were abnormalities undetected 

by USS (139/186, 75%). The remaining 47/186 (25%) were abnormalities reported by USS 

but correctly excluded by iuMR. In 34 cases the USS diagnosis was incorrectly overturned 

by iuMR, 10 of which were abnormalities wrongly excluded or missed by iuMR and 24/34 

were abnormalities diagnosed by iuMR but not found by USS or on the ORD (Table 2.5 2b 

and 3b). 

Table 2.6 presents the discordant diagnoses between USS and iuMR according to category 

of abnormality. The most frequent areas of disagreement were midline (24%) and posterior 

fossa abnormalities (21%). In particular agenesis of the corpus callosum and the Dandy 

Walker spectrum of abnormalities were frequently missed or, less frequently, wrongly 

identified on USS. The most frequently misdiagnosed anomaly on both USS and iuMR were 

cortical formation abnormalities (17%) such as hemimegalencephly, lissencephaly and 

heterotopia.  

 

Changes in Counselling and Management 

Eleven studies, (120, 187, 189, 190, 196, 206, 207, 209, 212, 213) reporting on 186 fetuses, 

specified the benefit of iuMR in terms of changes to counselling of parents or management 

of the pregnancy. These changes as a result of findings on iuMR affected 78/186 (41.9%) 

fetuses.   
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Table 2.4 Details of the 34 studies included in the review, listed as first author and date 

Author, Year Title/objective 
Country 
of 
Study 

Target Population Method of Selection 

Retrospective 
(R) Prospective 
(P) Not Specified 
(NS) 

TOTAL 
Number 
in Study 

FINAL Number 
included in 
Review 

AMINI, H.et al 
2010 

The clinical impact of fetal magnetic resonance imaging on 
management of CNS anomalies in the second trimester of 
pregnancy.  

Sweden 
Fetuses with suspected 
CNS abnormality on 
USS 

Consecutive P 29 18 

BENACERRA
F, B. et al 
.2007  

What does magnetic resonance imaging add to the prenatal 
sonographic diagnosis of ventricidomegaly?  

USA 
Fetuses with VM on 
USS 

Consecutive P 26 13 

BENOIST, G., 
et al 2008 

Cytomegalovirus-related fetal brain lesions: Comparison 
between targeted ultrasound examination and magnetic 
resonance imaging.  

France 
Fetuses with CMV 
infection 

Consecutive R 49 47 

BLAICHER, 
W.et al 2003   

Magnetic resonance imaging in foetuses with bilateral moderate 
ventriculomegaly and suspected anomaly the corpus callosum 
on ultrasound scan.  

Austria 
Fetuses with suspected 
VM and ACC on USS 

consecutive cases 
with VM and ACC 

P 41 14 

COLLEONI, 
G. et al 2012 

Prenatal diagnosis and outcome of fetal posterior fossa fluid 
collections.  

Italy 
Fetuses with posterior 
Fossa abnormality on 
USS 

Consecutive fetuses 
with Posterior Fossa 
Abnormalities 

R 105 51 

D'ERCOLE, 
C.et al  1998 

Prenatal diagnosis of fetal corpus callosum agenesis by 
ultrasonography and magnetic resonance imaging.  

France 
Fetuses with suspected 
ACC on US 

Consecutive P 14 8 

DONEDA, 
C.et al 2010 

Early cerebral lesions in cytomegalovirus infection: Prenatal MR 
imaging.  

Italy 
Fetuses with CMV 
infection 

Consecutive P 38 13 

FRATES, M.et 
al 2004 

Fetal anomalies: comparison of MR imaging and US for 
diagnosis.  

USA 
fetuses with abn 
detected at US 

Consecutive P 27 16 

GARCIA-
FLORES, J.et 
al 2013 

  Fetal magnetic resonance imaging and neurosonography in 
congenital neurological anomalies: Supplementary diagnostic 
and postnatal prognostic value.  

Spain Fetuses with cns abn Consecutive R 28 24 

GLENN, O. 
A.et al 2005 

Fetal magnetic resonance imaging in the evaluation of fetuses 
referred for sonographically suspected abnormalities of the 
corpus callosum.  

USA 
fetuses with suspected 
CC abn 

consecutive  cases 
selected of fetuses 
with suspected CC 
abn 

R 10 6 

HAGMANN, 
C. F et al 2008 

 Foetal brain imaging: ultrasound or MRI. A comparison between 
magnetic resonance imaging and a dedicated multidisciplinary 
neurosonographic opinion.  

UK 

comparison of stand 
US, specialist US and 
MRI accuracy + change 
in management 

Consecutive R 51 
12 (comparison 
of specialist US 
and MRI only) 
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Author, Year Title/objective 
Country 
of 
Study 

Target Population Method of Selection 

Retrospective 
(R) Prospective 
(P) Not Specified 
(NS) 

TOTAL 
Number 
in Study 

FINAL Number 
included in 
Review 

HAMISA, M.et 
al  2013 

Magnetic resonance imaging versus Ultrasound examination in 
detection of prenatal fetal brain anomalies.  

Eygpt 
Fetuses with suspected 
Brain abnormality on 
USS 

Consecutive P 23 23 

HOSNY, I. A. 
& 
ELGHAWABI, 
H. S. 2010 

Ultrafast MRI of the fetus: an increasingly important tool in 
prenatal diagnosis of congenital anomalies.  

Eygypt 
Fetuses with suspected 
Brain abnormality on 
USS 

Consecutive NS 25 16 

ISMAIL, K. 
M.et al 2002  

Fetal magnetic resonance imaging in prenatal diagnosis of 
central nervous system abnormalities: 3-year experience. 

UK 
Fetuses with suspected 
Brain abnormality on 
USS 

Consecutive R 27 20 

KUL, S.et al 
2012 

Contribution of MRI to ultrasound in the diagnosis of fetal 
anomalies. 

Turkey 
Fetuses with suspected 
Brain abnormality on 
USS 

Consecutive P 184 76 

MALINGER, 
G.et al 2004 

Fetal brain imaging: A comparison between magnetic resonance 
imaging and dedicated neurosonography.  

Israel 
Fetuses with suspected 
Brain abnormality on 
USS 

Consecutive P 42 30 

MALINGER, 
G.et al 2011 

Can syndromic macrocephaly be diagnosed in utero?  Israel 
fetuses with suspected 
macrocephaly on US 

Consecutive R 98 8 

MANGANARO
, L.et al. 2012 

Role of foetal MRI in the evaluation of ischaemic-haemorrhagic 
lesions of the foetal brain.  

Italy 
Fetuses with ischaemic-
haemorrhagic lesions 

consecutive with 
inclusion criteria 

P 271 13 

PERUZZI, 
P.et al 2010 

Magnetic resonance imaging versus ultrasonography for the in 
utero evaluation of central nervous system anomalies.  

USA 
Fetuses with suspected 
CNS abnormality on 
USS 

Consecutive R 26 26 

PHUA, H. et al 
2009 

Magnetic resonance imaging of the fetal central nervous system 
in Singapore.  

Singapo
re 

Fetuses with suspected 
CNS abnormality on 
USS 

fetuses who had an 
mri 

R 31 13 

RESTA, M. et 
al.1994 

Magnetic resonance imaging in pregnancy: study of fetal 
cerebral malformations. 

Italy 
Fetuses with suspected 
CNS abnormality on 
USS 

Consecutive P 15 11 

RUBOD, C.et 
al 2005 

. Role of fetal ultrasound and magnetic resonance imaging in the 
prenatal diagnosis of migration disorders. 

France 
fetuses with suspected 
migration abn on US 

Consecutive NS 14 9 

SALEEM, S. 
N.et al 2009 

Fetal MRI in the evaluation of fetuses referred for 
sonographically suspected neural tube defects (NTDs): Impact 
on diagnosis and management decision. 

Eygypt 
fetuses with suspected 
NTD on US 

Consecutive P 19 19 
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Author, Year Title/objective 
Country 
of 
Study 

Target Population Method of Selection 

Retrospective 
(R) Prospective 
(P) Not Specified 
(NS) 

TOTAL 
Number 
in Study 

FINAL Number 
included in 
Review 

SIMON, E. 
M.et al 2000 

Fast MR imaging of fetal CNS anomalies in utero.  USA 
Fetuses with suspected 
CNS abnormality on 
USS 

Consecutive p 73 23 

SOHN, Y.et al 
2007 

The usefulness of fetal MRI for prenatal diagnosis.  Korea 
Fetuses with suspected 
CNS abnormality on 
USS 

Consecutive R 30 6 

TWICKLER, 
D. M.et al 
2003 

Second-opinion magnetic resonance imaging for suspected fetal 
central nervous system abnormalities.  

USA 
Fetuses with suspected 
CNS abnormality on 
USS 

Consecutive P 72 72 

WANG, G.et 
al 2006 

Fetal central nervous system anomalies: Comparison of 
magnetic resonance imaging and ultrasonography for diagnosis. 

China 
Fetuses with suspected 
CNS abnormality on 
USS 

Consecutive NS 34 34 

WE, J. S.et al 
2012 

 Usefulness of additional fetal magnetic resonance imaging in 
the prenatal diagnosis of congenital abnormalities. 

Korea 
Fetuses with suspected 
Brain abnormality on 
USS 

Consecutive (8yrs) R 81 23 

WHITBY, E. 
H.et al 2004A 

Comparison of ultrasound and magnetic resonance imaging in 
100 singleton pregnancies with suspected brain abnormalities. 

UK 
Fetuses with suspected 
CNS abnormality on 
USS 

Consecutive P 101 100 

WHITBY, E. 
H.et al 2004 

Corroboration of in utero MRI using post-mortem MRI and 
autopsy in foetuses with CNS abnormalities.  

UK 
fetuses  with  prenatal 
US and iuMRI and who 
underwent PM MRI 

Consecutive P 12 12 

YUH, W. T.et 
al 1994  

MR of fetal central nervous system abnormalities. USA 
Fetuses with suspected 
CNS abnormality on 
USS 

Consecutive P 22 19 

Rajaswaran et 
al 2009 

Ultrasound versus MRI in the diagnosis of fetal head and trunk 
abnormalities 

India 
Fetuses with suspected 
head or trunk 
abnormality on USS 

Consecutive fetuses 
with head or trunk 
abn 

P 40 30 

S. LIPITZ et al 
2010 

Value of prenatal ultrasound and magnetic resonance 
imaging in assessment of congenital primary 
cytomegalovirus infection 

Israel 
Fetuses with CMV 
infection 

Consecutive P 38 35 

D. PALADINI 
et al 2014  

Accuracy of neurosonography and MRI in clinical management 
of fetuses referred with central nervous system abnormalities 

Italy 
Accuracy of US and 
MRI 

Consecutive R 834 126 
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TABLE 2.5 Results of the number (n=) and 
percentages (second column) of  fetuses 
within each category of outcome. 

 n= % 

1a iuMR and USS agreed and Correct 527 55 

1b iuMR and USS agreed but Incorrect 52 5.5 

2a 
iuMR more exact/ additional Info to 

USS 
146 15 

2b 
iuMR changed incorrect USS 

diagnosis 
186 19 

3a 
USS more exact/ additional Info to 

iuMR 
14 1.5 

3b 
iuMR incorrectly changed correct USS 

diagnosis 
34 4 

 
 

TOTAL 
959  

2b. Abnormalities identified correctly by 

iuMR but missed by USS                   n=139

                   2b. Abnormalities diagnosed by USS but 

correctly excluded by iuMR               n=47

  

3b. Abnormalities diagnosed by USS but 

wrongly excluded by iuMR               n=10

  
3b. Abnormalities over diagnosed by iuMR 

that were absent on USS and ORD     n=24 
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TABLE 2.6 Discordant diagnoses according to abnormality detected 

Abnormalies Identified  

Abnormalities 
identified 

correctly by 
MRI but 

missed by US 

Abnormalities 
diagnosed by 

US but 
correctly 

excluded by 
MRI 

Abnormalities 
diagnosed by 

US but 
wrongly 

excluded by 
MRI 

Abnormatilies 
over 

diagnosed by 
MRI that were 
absent on US 

and ORD 

US and MRI  
diagnoses both 
wrong (either 

missed or 
overdiagnosed) All 

Groups 

VENTRICULAR 
SYSTEM  

Ventriculomegaly 
Aqueduct stenosis 

5 10 1 1 6 23 

NEURAL TUBE 
DEFECTS           

Anencephaly 
Encephalocoele 
Mylomeningocoele 

5 5 0 1 1 12 

CORTICAL 
FORMATION 
ABNORMALITIES 

Hemi/Megalencephaly 
Schizencephaly 
Lissencephaly 
Heterotopia 
Microcephaly 

21 3 3 5 14 46 

MIDLINE 
ABNORMALITIES 

Holoprosencephaly 
Agenesis/Hypogenesis 
of Corpus Callosum 
Absent Cavum 
Septum 

39 15 2 1 7 64 

POSTERIOR FOSSA 
ABNORMALITIES        

Mega Cisterna Magna 
Blakes Pouch Cyst 
Dandy Walker or 
Variant Cerebellar or 
Vermian Hypoplasia 

28 13 2 2 12 57 

VASCULAR 
ABNORMALITIES 

Haemorrhage 
Haematoma  
Dural Fistula  
Aneurysm 

17 0 1 1 1 20 

 DESTRUCTIVE OR 
MASS CEREBRAL 
LESIONS                

Tumours,  Cysts,   
PVL                                
Other Lesions, 
Dysplasias 

24 1 1 13 11 50 

TOTALS 139 47 10 24 52   
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2.6 Discussion  
 

This systematic review and meta-analysis demonstrate that using iuMR to support USS in 

the diagnosis of fetal brain abnormalities increases diagnostic accuracy by 16% (75% for 

USS alone and 91% for iuMR as an adjunct). The heterogeneity of the included studies was 

moderate (I2 = 45%, p=0.002) according to the definitions of Higgins et al (225), suggesting 

there was methodological and clinical variability and inconsistency in the measurement of 

outcomes within each study. This heterogeneity is also reflected in the results of the 

QUADAS assessment of the included studies with the highest proportion of studies being 

scored as having a high risk of bias in the Reference Standards and Flow and Timing 

categories. This was mainly due to the time delay between USS and iuMR, exclusion of 

cases from analysis and failure to report details regarding outcome reference diagnosis.  

 

Although investigation of heterogeneity as part of a meta-analysis is recommended (225), 

the ability to do so within this review is compromised by the lack of reporting (and indeed 

quantification) of all the ways in which studies differ. The performance of both diagnostic 

tests is influenced by many factors and a limitation of this review was incomplete reporting of 

characteristics that would potentially influence diagnostic performance such as operator 

experience (specified in just a third of included studies) and technical difficulties (three 

studies) (165, 189, 212). iuMR is not without its limitations and our review demonstrated that 

iuMR overestimates the presence of abnormalities more frequently than failing to identify 

them. This could be explained by the nature of fetal iuMR in which the need for fast imaging 

compromises image quality. To the untrained eye artefacts from maternal breathing, fetal 

movement and image aliasing may potentially mimic or obscure pathology (57). It is for this 

reason ‘experience’ should perhaps be defined more specifically, for example by the number 

of fetal brain examinations reported.   
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The timing of USS in relation to iuMR imaging is also relevant in the assessment of both 

tests. The fetal brain develops rapidly and significant delay between the two examinations 

may influence the ability to diagnose accurately either because of natural brain development, 

increase in size of critical anatomical structures or because of disease progression. 13/34 

studies failed to report any delay time, making an overall analysis of effect from this criteria 

unreliable and another area that suggested an element of bias within those studies.  

The extent to which iuMR ultimately contributes to changes in management or in counselling 

regarding the pregnancy is also unclear as this was only reported in a small proportion of 

studies. Equally the impact of a wrong diagnosis made by iuMR was not defined in any study 

despite it occurring in 14/34 studies (84, 120, 181, 187, 188, 190, 192, 195, 196, 198, 202, 

206, 213, 215, 218). 

 

Our review builds on the systematic reviews undertaken by Rossi and Prefumo (172) and  

Van Doorn et al (173).    Rossi and Prefumo identified 2323 potential studies published 

between years 2000 and the end of 2012 and reviewed 13 studies (710 fetuses), having 

excluded 2293 by title and abstract. Van Doorn et al searched for publications between 

years 1990 and March 2014 and identified 2748 and excluded 2577 by title and abstract with 

27 studies (1184 abnormalities detected by USS but only 454 with ORD) reviewed. The 

differences of search dates and of exclusion criteria, described earlier, appear to be the 

factors resulting in the variation of studies reviewed by each study. An important difference 

between the two is that Rossi and Prefumo restricted studies to those where outcomes were 

confirmed by a reference diagnosis, although chose to accept clinical examination as an 

ORD whereas Van Doorns selection criteria did not require an ORD. A strength of our review 

was the requirement of an ORD for any outcomes included in the meta- analysis. As 

previously stated we excluded clinical examination as an ORD. Although this significantly 

reduced the number of outcomes available we felt this was justified as most structural brain 

abnormalities, and consequently diagnostic accuracy, cannot be determined with certainty 

on clinical examination alone.   
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Our analysis included 34 studies, of which, 15 were additional to those included in the 

previous reviews due to more recent searches and differences in selection criteria such as 

unlimited year of publication or sample size within studies. Although Van Doorns searches 

were unrestricted by non-English publications or the requirement of an ORD our review 

included more studies. This may be due to the limitation of sample size of >20 by Van 

Doorn, resulting in 6 additional studies in this review, and the requirement of ‘adequate 

description of diagnoses’ which was not clearly defined by Van Doorn.  

 

Even with subtle differences in methods between all the reviews, findings were similar. Rossi 

reported that iuMR was accurately able to identify brain abnormalities in 94•3% of included 

fetuses, Van Doorn reported 80% and our study 91%, an increase of 15-20% when 

compared to USS alone. Both Rossi and Van Doorn reported the highest proportion of 

disagreement between USS and iuMR was related to midline abnormalities, particularly the 

posterior fossa. iuMR was better able to diagnose abnormalities in this anatomical region, 

also consistent with the findings of this systematic review which incorporates a further 4 

studies published since 2012. One significant flaw, but acknowledged as such by Rossi and 

Perfumo was to undertake pooled sensitivity and specificity analysis of iuMR results as part 

of their review. Whilst ideally this analysis should be performed to adequately assess 

diagnostic performance it was inappropriate in this instance as none of the studies included 

cases that were true or false negative, having all been referred from USS with a suspected 

brain abnormality.  

 

The statistical methods required for a meta-analysis differ from standard methods with 

contribution to analysis weighted according to size of study and data pooled to provide an 

overall measure of diagnostic accuracy and the heterogeneity amongst studies. Rossi and 

Van Doorn did not quantify heterogeneity, although both reviews highlighted the inadequate 

reporting of study characteristics, which may compromise the findings of all three systematic 
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reviews. In order to adequately assess the accuracy of a diagnostic test and determine its 

true benefit in clinical practice optimal study design is necessary [52].   

Replication of the previous reviews is both justified and necessary- it reassures that the 

minor differences in inclusion and exclusion criteria, both at study selection and data 

extraction, do not change the outcomes significantly, thus adding weight to the current 

evidence base. In spite of the different nature of all the studies the diagnostic accuracy of 

iuMR was clearly superior across the studies but the heterogeneity identified may 

compromise these findings. The moderate level of heterogeneity acknowledged by our 

review warranted further investigation but was prevented by insufficient reporting of study 

characteristics. Despite its increasing use in clinical practice poor study design has 

previously brought into question the diagnostic capabilities of iuMR above that which is 

achieved by USS and its benefit in terms of guiding the management of pregnancy. Further 

prospective studies with adequate sample size and unbiased assessment of diagnostic 

accuracy are needed.  

 

2.7. Conclusion 
 

When fetal brain abnormalities are suspected on USS, iuMR imaging is able to contribute 

significantly to the diagnostic pathway, both by clarifying findings and increasing significantly 

the detection rate of abnormalities, particularly in midline and posterior fossa abnormalities. 

The moderate methodological heterogeneity of the studies included suggests that further 

investigation is still required in order to clarify the full impact of iuMR. 
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Chapter 3 

MERIDIAN: A Study to Investigate the Additional Value of iuMR Imaging 

for the Diagnosis of Fetal Brain Abnormalities 
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3.1 Summary 
 

The systematic review highlighted significant methodological weaknesses within previous 

studies, therefore to address those limitations and thoroughly evaluate the role of iuMR 

imaging in the diagnosis of fetal brain abnormalities further research was necessary. 

Previous studies also failed to consider all elements of diagnostic test performance 

consequently the full impact of iuMR had not been established. This chapter presents key 

findings from the MERIDIAN study a large multicentre prospective study that aims to provide 

a comprehensive assessment of iuMR imaging as an adjunct to prenatal ultrasound when 

fetal brain abnormalities are suspected. The MERIDIAN protocol is published at 

http://www.nets.nihr.ac.uk/projects/hta/090601 (226).  

 

The concept, planning and protocol development was completed before DJ worked in the 

Academic Unit of Radiology but timing was such that DJ was involved before 

commencement of recruitment and was named on the proposal as a principal researcher.  

The principle investigator for MERIDIAN is Professor Paul Griffiths, who is also supervisor of 

this work. Project management, administrative support and all statistical analysis for the 

study were undertaken by ScHARR. Patient recruitment was undertaken by feto-maternal 

experts and midwives at sites participating in the study. Funding for MERIDIAN was 

provided by the NIHR, which also funded 60% of working hours for DJ, whose role within 

MERIDIAN has been: 

  

 Lead MR radiographer undertaking approximately 500 of the MR scans in Sheffield 

(500 hours) 

 Answering queries from study midwives from the referring centres regarding 

suitability of possible participants. This included 3 queries requesting more detailed 

information about the scanning process and establishing the MR safety for 6 patients 

with implants.  
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 Entering data onto the central database for approximately 60 cases, and ‘data 

cleaning’. This involved reviewing and correcting any erroneous information entered 

by others (20 hours work). 

 Primary analysis of the processed data to calculate diagnostic confidence score with 

CM and PDG. This entailed reviewing the outcome data for each participant and on a 

case by case basis evaluating each using the diagnostic confidence framework to 

determine the confidence score (60 hours work).    

 Contributing to the preparation of both the primary and secondary manuscripts 

accepted by The Lancet and Clinical Radiology as listed below. This included reading 

the manuscript, correcting grammatical and typographical errors and making 

suggestions with regard to content.  

 

Publications arising from this work. 

1) Griffiths PD, Bradburn M, Campbell MJ, Cooper CL, Graham R, Jarvis D, et al. Use 

of MRI in the diagnosis of fetal brain abnormalities in utero (MERIDIAN): a 

multicentre, prospective cohort study. The Lancet. 2017;389 (10068):538-46. 

 

2) Griffiths PD, Bradburn M, Campbell M, Connolly D, Cooper C, Jarvis D, et al. Change 

in diagnostic confidence brought about by using in utero MRI for fetal structural brain 

pathology: analysis of the MERIDIAN cohort. Clinical Radiology. 2017;72(6):451-7.  

 

 

3.2 Background 
 

The results of the systematic review and meta-analysis demonstrated that iuMR imaging 

gave an overall improvement in diagnostic accuracy of 16% when used as an adjunct to 

USS. Although this finding is clinically significant, the review highlighted substantial 
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methodological limitations and moderate heterogeneity of the studies reviewed, which limits 

the validity of the results.  

Whilst diagnostic accuracy is fundamental to diagnostic performance it is also necessary to 

consider how the additional information provided influences the clinicians, the patient and 

ultimately the management of the pregnancy. Changes in prognosis and perceptions of 

referring clinicians and the pregnant women involved were not considered in any of the 

studies included in the systematic review and the majority (23/34 studies) also failed to 

report if there were changes in the management of pregnancies as a result of iuMR imaging. 

The MERIDIAN study was designed to provide a comprehensive assessment of the 

diagnostic performance of iuMR for fetal brain abnormalities and address the limitations of 

previous research in order to inform the future role of iuMR  

 

3.3 Primary Aims 
 

The primary aims of MERIDIAN, and the focus of this chapter, cover two aspects of the 

study; the diagnostic accuracy and the diagnostic confidence of iuMR imaging in comparison 

to the performance of prenatal USS in relation to an outcome reference diagnosis and the 

influence these had on the management of the pregnancy. The MERIDIAN study also 

sought to determine the clinical impact of the inclusion of iuMR imaging in the diagnostic 

pathway. This aspect of the study was covered by measuring the referring clinician’s 

perception of changes in the prognosis of pregnancies due to iuMR. The opinions of the 

pregnant women involved were also sought, through questionnaire and interview, with 

regard to their experience and perceived benefits or drawbacks of iuMR. However, as I was 

not involved in this work it was excluded from this report. 
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Aim 1. To assess the diagnostic accuracy of iuMR compared to antenatal USS through:  

a) Measurement of the diagnostic accuracy of antenatal USS alone (i.e. prior to iuMR) 

relative to a reference diagnosis (post-natal imaging (CT, MRI or trans cranial USS) or post-

mortem examination). 

b) Measurement of the diagnostic accuracy of iuMR (following antenatal USS) relative to a 

reference diagnosis (post-natal imaging or post-mortem examination). 

 

Primary Hypothesis 

Null 

The diagnostic accuracy achieved by iuMR imaging following detailed antenatal USS for 

suspected brain abnormalities is no greater than that achieved by ultrasound alone. 

 

Aim 2. To assess the change in clinical diagnostic confidence before and after iuMR imaging 

and its influence on the management of pregnancy. 

Secondary Hypothesis 

Null 

The diagnostic confidence achieved by iuMR imaging following detailed ante-natal USS 

examination for suspected developmental brain abnormalities is no greater than that 

achieved by USS alone.  

3.4 Methods 
 

3.4.1 Study Design and Ethics Approval 

 

This is a prospective, observational, cohort study of diagnostic accuracy and diagnostic 

confidence undertaken in accordance with the Medicines for Human Use (Clinical Trials) 

Regulations 2004 and with ethics approval through the Integrated Research Application 

System (62734). The study was designed to include all brain abnormalities suspected or 

diagnosed, at antenatal USS by feto-maternal experts. Selection bias was minimised by 
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prospectively recruiting participants from 16 sites incorporating approximately 44% of the UK 

population, ensuring a wide geographic and socio-economic base. Participants were able to 

withdraw from the study at any time without their clinical care being affected. Consistency of 

data collection across all sites was ensured by providing a central electronic database, 

access to which was password protected to safeguard confidentiality. Each subject was 

assigned a study number to ensure anonymity.    

The conduct of the study was overseen by three groups: a Trial Steering Committee, a Data 

Monitoring and Ethics Committee, both of which were independent of the study, and a Trial 

Management Group, consisting of researchers who were part of the study team.  

 

3.4.2 Calculation of Sample size 

 

It was estimated that the study would recruit from a possible referral base of 564,333 

pregnancies, of which 0.3% were predicted to have a fetal brain abnormality and therefore 

eligible for inclusion (1). The study aimed to recruit a minimum of 750 pregnant women in 

order to provide 504 complete cases in which a definitive reference outcome diagnosis was 

available. It was estimated that fetal brain abnormalities are accurately diagnosed by USS in 

approximately 70% of cases and it was predicted the addition of iuMR would increase this to 

over 80%. This increase was considered clinically important, potentially leading to changes 

in fetal prognosis and management in approximately 5% of cases. Consequently 504 

complete datasets would enable a greater than 10% increase in diagnostic accuracy to be 

detected with 90% power and 95% confidence. This figure also allowed for recruitment of a 

sub-group of 336 women (2:1 ratio) of up to and including 23 weeks gestation in whom the 

management of the pregnancy had been determined before this point. 23 weeks is a key 

date within UK law governing abortion and is therefore considered a significant time-point in 

pregnancy. Based on outcomes of previous studies, data excluded due to loss to follow up 

or lack of outcome data was expected to be 30% (10% of fetuses ≤23 weeks gestation and 
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20% of fetuses ≥24 weeks gestation). A 4% loss of participants was also predicted due to 

non-attendance or failed MRI because of claustrophobia or contraindications (227, 228).  

 

3.4.3 Participants 

 

Pregnant women in whom the fetus had been diagnosed of having, or was suspected of 

having, a brain abnormality diagnosed by USS and who fulfilled the following criteria; 

 Inclusion criteria 

1. The pregnancy was in the late second or third trimester of pregnancy, the fetus being 

greater than 18 weeks gestation at the time of iuMR imaging; 

2. The fetus had, or was suspected of having, a developmental brain abnormality following 

detailed specialist USS. 

3. Had a singleton or multi-fetal pregnancy. 

 

Exclusion Criteria 

Pregnant women were excluded from the study if any of the following criteria were present:- 

1. Unable to give informed consent 

2. MRI was contraindicated due to: 

a) Safety concerns, e.g. the participant had a pacemaker, recent surgery with metallic 

sutures or implant, electronic or metallic implant at risk of malfunctioning or heating due to 

the magnetic field or intra-orbital metallic foreign body; 

b) Previous experience of severe anxiety or claustrophobia in relation to MR imaging; 

3. Unwilling or unable to travel to one of the five specialist MR imaging centres;  

4. Unable to understand English where a satisfactory translation service was unavailable; 

5. The participant was under 16 years of age. 
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3.4.4 Recruitment  

 

Initial assessment included a detailed USS evaluation of the fetus performed by a fetal 

medicine expert who had significant experience in imaging and assessing fetal brain 

development. This was performed on pregnant women in whom the fetus was thought to 

have a brain abnormality, identified by routine second trimester screening as part of their 

routine clinical care.  

It was left to the judgement of the fetal medicine expert to assess whether participation in the 

MERIDIAN study should be offered.  If it was judged participation in the study was clinically 

inappropriate or would delay management of the pregnancy, then participation in the study 

was not offered. Where a pregnant women fulfilled the inclusion criteria, written information 

(Appendix 1) and a full verbal explanation of the study was given to ensure participants 

understood what their participation would entail. Written informed consent (Appendix 2) was 

obtained either by the fetal medicine expert or, where the pregnant woman needed more 

time to consider participation, consent was taken by the neuroradiologist before iuMR 

examination.  

 

The full details of the USS were recorded by the fetal medicine expert on the relevant 

section of the online database (Form D, Appendix 3). This included demographic details, 

technique used (2D, 3D) and difficulties encountered, such as fetal position, body habitus 

etc. All structural brain abnormalities detected were recorded and the fetal medicine expert 

assigned a score which denoted how confident they were for each diagnosis made. This is 

described in detail later in this chapter. The participants were then referred to one of the 

nominated specialist imaging centres for iuMR imaging.  

MR Imaging was carried out at the primary site (Sheffield) or at one of five secondary sites- 

Newcastle, Leeds, Birmingham, Belfast and Nottingham. The secondary sites scanned their 

own recruits and local Radiologists provided the iuMR report and completed the study 

documentation according to their findings. MR imaging was performed at any time point after 
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18 weeks, ideally within two weeks of the specialist USS due to the evolving nature of the 

fetal brain and the possibility of changes which might skew the diagnostic accuracy data. 

Exceptions to this time limit were permitted when there was a clinical need for information at 

a specified time point. These cases were excluded from the primary analysis. All centres 

used a 1.5 Tesla MR scanner and the imaging protocol used was determined locally by the 

reporting radiologist according to clinical indication. As a minimum requirement this included 

T2 weighted images in all 3 anatomical planes relative to the fetal brain and an axial T1W 

sequence with a maximum slice thickness of 5mm. No sedation was used for either the fetus 

or mother, and sequences were repeated as required in order to achieve clinically diagnostic 

images, but with a maximum on table time of 40 minutes. The imaging sequences used in 

Sheffield are described in Chapter one and in Chapter five. Radiologists reported the iuMR 

scan with full knowledge of the USS findings and level of diagnostic certainty. Each 

structural diagnosis identified by USS was either excluded or confirmed, and any new 

pathology identified which was not seen on USS was also recorded. The radiologist also 

recorded details such as the date of the MR examination, the age of the fetus and any 

adverse events or problems (Form E, Appendix 4). A clinical report was also issued to the 

referring centre as per routine radiology protocol.  

 

Participants returned to their referring hospital for the results of the iuMR imaging according 

to each referral centre's standard clinical follow up protocol. The clinicians were asked at this 

point to record any changes in prognosis, management of the pregnancy, and changes in 

counselling as a result of iuMR, using a clinical feedback form (Form G, Appendix 3)  

 

3.4.5 Pregnancy Outcome Reference Diagnosis  

The diagnoses made by USS and iuMR were compared to an outcome reference diagnosis 

(ORD) in order to calculate the diagnostic accuracy of both modalities. Reference standards 

used were different according to pregnancy outcomes as outlined below. 
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i) In cases of termination of pregnancy, intra uterine death or neonatal death, information 

was gathered from the results of autopsy or post mortem MR imaging;  

ii) Where the pregnancy was successful, with a live fetus, outcome information was derived 

from post-natal imaging which consisted of MR, CT or  transcranial USS performed 

within 6 months of birth (term corrected in cases of premature birth). 

 

Where USS and iuMR had shown isolated VM, the outcome reference diagnosis of resolved 

VM was permitted based on either third trimester USS or the post-natal imaging.  

 

3.4.6 Diagnostic Accuracy Data Analysis 
 

Each case was individually reviewed by an independent panel comprised of two neuro-

radiologists. Their role was to decide if there was complete agreement between USS, iuMR 

and the ORD. In cases where the fetus had more than one brain abnormality, the neuro-

radiologists were also asked to identify the primary diagnosis, which was judged as the one 

likely to have the worst prognosis. Where there was complete three way agreement (USS, 

iuMR and the ORD agreed on the diagnosis) no further action was necessary. If there was 

any disagreement about diagnosis anywhere in the data (USS diagnosis compared to iuMR 

diagnosis or, USS and/or iuMR diagnosis compared to the ORD) it was referred to an expert 

panel for review. This panel consisted of three independent consultants (fetal medicine 

specialist, paediatric neuroradiologist and paediatric neurologist), and who did not recruit or 

report for the study. The independent expert panel were blind to the origin of the prenatal 

diagnosis (USS or iuMR; anonymised as scan 1 or scan 2) as far as possible. It was asked 

to decide if either scan 1, scan 2 or neither agreed with the outcome reference diagnosis. 

Secondly, the panel were asked to decide which imaging modality diagnosed the most 

severe clinical outcome. Once a decision had been made, the database was un-blinded by 

the study team so that diagnostic accuracy and diagnostic confidence assessments could be 

carried out. 
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Diagnostic accuracy of iuMR compared to ultrasound was the primary outcome for the study 

and was measured by: 

a) The diagnostic accuracy of antenatal USS alone (i.e. prior to iuMR) relative to, the 

outcome reference diagnosis (post-natal imaging or post-mortem examination). 

b) The diagnostic accuracy of iuMR relative to the outcome reference diagnosis (post-

natal imaging or post-mortem examination). 

 

In cases where a fetus had more than one brain abnormality, diagnostic accuracy 

assessment was based on the primary diagnosis identified by the independent neuro-

radiologists. Diagnostic accuracy, with 95% confidence intervals, is reported as a primary 

outcome with the difference between USS and iuMR (DAMR – DAUS) also stated. McNemar’s 

test was used to assess the significance of differences in diagnostic accuracy achieved with 

and without iuMR imaging.  

 

3.4.7 Assessment of Diagnostic Confidence 

Diagnostic confidence is fundamental to clinical decision making. A clinician who is highly 

confident in a diagnosis is more likely to act upon that diagnosis than when confidence is 

low. Assessing diagnostic confidence was essential to determine if the information provided 

by iuMR influenced the clinician's thinking about the likelihood of disease enough to affect 

patient management. As part of MERIDIAN, diagnostic confidence was used as a measure 

to assess the clinical effectiveness of iuMR imaging by determining the relationship between 

the diagnostic confidence of both USS and iuMR in relation to diagnostic accuracy. 

 

A basic approach used to examine diagnostic confidence is to measure changes before and 

after a diagnostic test, calculated as C2-C1; i.e. at USS (C1) and after iuMR (C2) (157, 229). 

Although this gives the percentage change in confidence, it fails to take into account any 
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change in pre-test to post-test diagnosis. One attempt to address this simply excludes cases 

where a change in diagnosis occurs but this bias prevents the true influence of the 

diagnostic test under investigation being appreciated (229).  Omary, Kaplan (230) attempted 

to correct for change in pre-test to post-test diagnoses. They did this by not only using the 

conventional C2-C1 method but also, in cases where the pre-test confidence is high and there 

is a diagnosis change post-test, by calculating diagnostic confidence as (C2-[100-C1])%. The 

disadvantage of the Omary correction method is that it assumes the diagnostic test is 

accurate.  

 

In order to assess the impact of diagnostic confidence on the MERIDIAN cohort we used the 

method proposed by Ng and Palmer (158), as it seeks to define the ultimate bearing the 

diagnostic test may have on the patient. Ng and Palmer developed a score based weighted 

average (SWA) method which is determined by the application of a framework on a case by 

case basis and allocates a route label and score for each case.  It recognises that the 

diagnosis made by the test under scrutiny may be wrong, the diagnosis made may be more 

or less severe than the correct diagnoses or the diagnostic test may introduce deleterious 

effects which can have a range of consequences for the patient. Ng and Palmer developed 

the SWA assessment to overcome the limitations of other methods and to assess the 

influence of computed tomography (CT) on the diagnostic confidence of clinicians managing 

the treatment of patients presenting with acute abdominal pain. In order to adapt the 

framework for our analysis we replaced any reference to ‘initial diagnosis’ or ‘initial 

confidence’ with USS which was our initial diagnostic method. The diagnostic test under 

scrutiny in Ng and Palmers study, CT, was replaced with iuMR the diagnostic test we were 

scrutinising. All other aspects of the framework were kept the same.  

 

Once each case was complete (comprising USS diagnosis and associated confidence score, 

iuMR diagnosis and associated confidence score and confirmed ORD) it was assessed 

using the framework. The framework (Figure 3.1) determines a route label and associated 
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score by taking into account the level of confidence (high or low), any change in confidence 

level and any change in diagnosis (more or less severe, no change or excluded) between 

USS and iuMR, as well as the ultimate accuracy of the diagnosis (as determined by the 

outcome reference diagnosis and judged by the independent panel). The framework covers 

36 possible outcomes, with associated route label and a score allocated on a 9 point scale 

from -4 to +4 dependent on the positive or negative contribution iuMR made, as shown in 

Table 3.1.  The scores closer to zero represent the reducing influence, either beneficial or 

detrimental, iuMR may have had on the diagnostic pathway for the patient.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When the confidence framework is applied, the highest and lowest scores are only assigned 

in two scenarios. The highest score of +4 is assigned when the diagnosis made by iuMR is 

correct (as determined by the ORD), was made with high confidence and changed the highly 

confident but wrong diagnosis made by USS to a more severe diagnosis e.g. USS 

diagnosed VM but iuMR diagnosed ACC which was confirmed postnatally. Contrary to that is 

 

TABLE 3.1 Diagnostic Confidence Framework Possible Outcome Scores 

 

USS MR Score 

 
Result 

 
Confidence 

 

Result 

 

Confidence 

If reference 

diagnosis 

positive 

If reference 

diagnosis 

negative 

+ High + High 0 -1 

+ High + Low -1 0 

+ Low + High 1 -2 

+ Low + Low 0 -1 

+ High - High -4 3 

+ High - Low -3 2 

+ Low - High -3 2 

+ Low - Low -2 1 

- High + High 4 0 

- High + Low 3 -2 

- Low + High 3 -1 

- Low + Low 2 -1 

- High - High -2 0 

- High - Low -1 -1 

- Low - High -3 1 

- Low - Low -2 0 
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the scenario where a highly confident diagnosis made by iuMR was incorrect, 

underestimating the correct highly confident diagnosis made by USS and consequently 

assigned a score of -4. A neutral score of zero was assigned when the contribution of iuMR 

was deemed to have neither a positive nor negative influence. As shown in Figure 3.1, this 

was allocated in six different situations; - where the iuMR diagnosis is correct and emulates 

USS, or where the iuMR diagnosis is incorrect but made with a lower certainty than the 

diagnosis made by USS. 

 

In order to apply the diagnostic confidence framework to determine the route score in 

MERIDIAN, clinicians were asked to indicate their diagnostic certainty of any diagnoses 

made. This was done immediately after USS by the fetal maternal specialist and by the 

reporting radiologist immediately after iuMR examinations. Diagnostic confidence scores 

were indicated using a 5 point Likert rating scale (231) which allowed a range of responses 

with a percentage value assigned which best represented the degree of certainty the 

clinician had in the diagnosis they made.  

 

 Diagnosis excluded (iuMR only, scored as 90% certainty) 

 Very unsure (10%),  

 Unsure (30%),  

 Equivocal (50%),  

 Confident (70%)  

 Highly confident (90%). 

The confidence scores allocated by clinicians were then divided into two sub groups for 

analysis:- 

 High confidence: - Confident (70%) and highly confident (90%) 

 Low confidence: - Equivocal (50%), unsure (30%) and very unsure (10%) 
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The rationale for the division into two groups was that a confidence score of 50% or less was 

unlikely to have any clinical impact, whereas confidence scores of 70 or 90% were more 

likely to lead to a change in management or the instigation of treatment.  

The SWA method was used to measure the diagnostic impact of iuMR imaging within the 

study and to provide a subjective assessment of the influence of diagnostic confidence on 

clinical management of the patient. All cases where an ORD was confirmed were assessed 

using the SWA flowchart on a case by case basis to determine a route label and score. 

Where a case had more than one diagnosis, the confidence score of the primary diagnosis 

identified by the independent panel was used for analysis (e.g. the confidence score of ACC 

would take precedence over the confidence score of VM). The results of the SWA method 

were also compared to the integer scores as a result of conventional assessment of 

diagnostic confidence and with the Omary correction method described earlier. To do this 

the changes in diagnostic certainty were converted to the same integer 9 point scale as the 

SWA method. For example:  

 

Conventional method- 90% (C2) – 50%(C1) = 40% = +2 

Omary Correction (diagnosis change) = (90%(C2) – [100-90%(C1)])%= 90-10%=80%= +4 

 

The frequency of each integer score for all three types of analysis was tabulated and 

described in terms of the number of cases in which iuMR reported with greater confidence 

(positive scores) and the number of cases with reduced confidence (negative scores). The 

mean and standard deviations of the score and 95% confidence intervals were calculated 

and one sample t-tests were carried out to test the hypothesis that the expected calculated 

scores were zero. 
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Figure 3.1   Flow Diagram of Diagnostic Confidence Framework Showing the Possible Routes and Ultimate 

Scores as Adapted from Ng and Palmer (2007) 
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3.5 Results 
 

A total of 1101 pregnant women with 1109 fetuses were recruited over a three-year period 

(2011-2014) who met the inclusion criteria and consented to participate. After exclusion of 

ineligible or declined participants (n=198), incomplete MR examinations (n=80), patients with 

incomplete outcome data (n= 191) and exclusions due to more than two weeks between 

USS and iuMR there were 570 fetuses with complete datasets for inclusion in the analysis. 

The flow of patients through the study is shown in Figure 3.2. Final numbers within the study 

exceeded those required for the power calculations (Table 3.2) 

 

64% of participants underwent iuMR imaging at the University of Sheffield's Academic Unit 

of Radiology and the remaining 36% were scanned at one of the five collaborating centres.  

Five patients, representing 0.45% of the whole study cohort, could not tolerate the iuMR, 

four because of claustrophobia and one due to physical discomfort. These patients were 

excluded from the analysis as no useful imaging data was acquired. Two further patients 

were also excluded as the iuMR examination was terminated due to the demise of the fetus 

between the USS and iuMR examinations. Consequently, there were a total of 823 (99%) 

completed iuMR examinations from a total of 830 women.  Of these, 570 fetuses fulfilled the  

inclusion criteria, having both iuMR within 2 weeks of USS and an ORD. The final 570 cases 

comprised 502 completed pregnancies and 68 that resulted in termination of pregnancy 

(TOP). Of the 570, 369 (65%) were in the 18 weeks to ≤23 weeks group (110% of required) 

and 201 (35%) in the ≥24 week group (120% of required). 
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Incomplete Data = 191 (191 fetuses) 

- Inadequate or incomplete ORD = 180 

- Lost to follow up = 9 

- Withdrawals after MRI before ORD collected = 2 

Fetuses excluded due to iuMR  >2 weeks after USS= 68 

40  2-3 weeks 

12  3-4 weeks 

16  >4 weeks 

MRI not completed = 80 (82 fetuses) 

- MRI cancelled, abandoned or incomplete= 46 (48 

fetuses)                                    

- Withdrawn before MRI = 34 

Potential participants = 1101 

(1109 Fetuses) 

Ineligible or declined participants =198 (198 fetuses) 

- MRI offered but declined or contraindicated =112 

- MRI not offered = 86 

Eligible participants = 903 

(911 Fetuses) 

MRI completed = 823 

(829 fetuses) 

Complete data sets = 633 

(638 Fetuses) 

570 fetuses included 

369 ≤23 weeks 

201 ≥24 weeks 

Outcome reference diagnosis in 565 

pregnancies 

(MRI within 2 weeks of referral = 570 

fetuses) 

Figure 3.2 Flow of participants through the study 
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Table 3.2 Details regarding participants predicted and number in final cohort 

 Numbers required by the 

power calculation 

Actual numbers in the 

study 

Had a successful iuMR examination 720 fetuses 830 fetuses 

Had an outcome reference diagnoses 560 fetuses 638 fetuses 

Of those, iuMR within 2 weeks of USS 504 fetuses 570 fetuses 

18-23w gestation at the time of iuMR 336 fetuses 369 fetuses 

≥24w gestation at the time of iuMR 168 fetuses 201 fetuses 

Table 3.3 Characteristics of Participants in the Primary Cohort and in Those Excluded 

  ORD available 
(N=570) 

ORD unavailable 
 (N=176) 

Excluded 
 (N=81) 

Gestational age at iuMR (weeks) 

Mean (SD) 24·5 (4·5) 23 ·9 (4·2) 25·7 (3·6) 

≤23 weeks 369 (65%) 127 (72%) 35 (43%) 

≥24 weeks 201 (35%) 49 (28%) 46 (57%) 

Time from USS to iuMR (days) 

Mean (SD) 5·8 (3·5) 5·3 (3·3) 22·6 (8·6) 

        

   <1 week 403 (71%) 134 (76%) 0 

   1-2 weeks 167 (29%) 42 (24%) 0 

   >2 weeks 0 0 81 (100%) 

iuMR site 

Sheffield  380 (67%) 121 (69%) 31 (38%) 

Birmingham 75 (13%) 34 (19%) 15 (19%) 

Newcastle 66 (12%) 6 (3%) 9 (11%) 

Leeds 34 (6%) 12 (7%) 11 (14%) 

Nottingham 12 (2%) 3 (2%) 1 (1%) 

Belfast 3 (1%) 0 (0%) 14 (17%) 

Pregnancy type 

Singleton 539 (95%) 166 (94%) 78 (96%) 

Multiple 31 (5%) 10 (6%) 3 (4%) 
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3.5.1 Diagnostic Accuracy  

Overall of the 570 completed cases, USS gave an accurate diagnosis for 68% and iuMR 

gave an accurate diagnosis for 93%, an improvement of 25% (95% CI 21-29%). USS and 

iuMR were in agreement and correct in 385 cases (68%) but incorrect in 39(7%).  Incorrect 

diagnoses made by USS were corrected by iuMR in 144 cases (25%) and USS gave a 

correct diagnosis in two fetuses (<1%) for which iuMR gave an incorrect diagnosis. The 

diagnostic accuracy of iuMR was similar for both age groups, but USS was less accurate in 

the 24 weeks or older gestational age group than in the younger group (Table 3.4). IuMR 

identified additional abnormalities in 387 (49%) of 783 cases without an ORD, of which 201 

(52%) were apparent on follow up USS. These results did not require an ORD as additional 

abnormalities were not used for the primary analysis of overall diagnostic accuracy. 

 

 

 

 

The most common diagnoses made at USS were; 

-isolated ventriculomegaly (306 (54%) of 570 fetuses); 

-abnormalities within the posterior fossa (83 (15%) of 570 fetuses); 

-failed commissuration (ie agenesis or hypogenesis of the corpus callsosum; (79 (14%) of 

570 fetuses).  

 

Table 3.4 Results of the diagnostic accuracy of both USS and iuMR.  

 USS Correct 
n (%) 

 

iuMR Correct 
n (%) 

 

Percentage Difference  
(95% Confidence Interval) 

 

P value* 

18-23 Weeks 
(n=369) 

258 (69.9%) 341 (92.4%) 22.5% (17.8%, 27.2%) <0.0001 

24+ Weeks 
(n=201) 

129 (64.2%) 188 (93.5%) 29.3% (22.6%, 36.1%) <0.0001 

Combined 
(n=570) 

387 (67.9%) 529 (92.8%) 24.9% (21.1%, 28.7%) <0.0001 
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The fetal medicine expert felt that iuMR provided additional diagnostic information in 387 

(49%) of 783 cases. In just over half (52%) any further anatomical abnormalities were 

apparent at subsequent USS. This additional information, being based on the opinion of the 

fetal medicine experts did not require an ORD, therefore results are based on 783 of 823 

cases (95%). The other 40 cases were excluded due to lack of follow up data, incomplete 

information or withdrawal from the study.  

 

3.5.2 Diagnostic Confidence 

 

USS reported the primary diagnosis (as identified by the panel of independent experts) with 

high confidence in 465 (82%) of 570 cases, of which 124 (22%) of 570 cases were found to 

be incorrect. iuMR reported the primary diagnosis with high confidence in 544 (95%) of 570 

cases, an increase of 13% compared to USS. iuMR made an incorrect diagnosis with high 

confidence in 32 (6%) of 570 cases. USS made more diagnoses with low confidence than 

iuMR, 105 (18%) and 26 (5%) respectively and of these had a higher proportion of incorrect 

diagnoses, Figure 3.3.  
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The frequency for each of the integer scores as a result of the application of the score-based 

weighted average method and the integer scores using both the C2-C1 and Omary corrected 

methods applied to each of the 570 cases, are displayed in Table 3.5.  

 

Analysis of the SWA method revealed that iuMR resulted in an appropriate increase in 

diagnostic confidence (scores +1 to +4) (i.e. iuMR was more confident and/or corrected a 

wrong USS diagnosis) in 178 (31%) of cases. A negative score, indicating a potential 

detrimental influence by iuMR, was recorded in 41 (7%) (i.e. iuMR made an incorrect 

diagnosis with high confidence or made a correct diagnosis with low confidence).   
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The mean difference in confidence on the -4 to +4 ordinal scale was +0·75 (95% CI 0.63 to 

0.87, p<0·0001, Table 3.6). 

When the 570 cases were analysed using the conventional method the Mean difference was 

+0.44 in favour of iuMR (95% CI 0.35 to 0.54, p<0·0001; Table 3.6) with a difference in 

confidence level of any degree in 42%, of which 32% were made with greater confidence 

following iuMR, rather than USS (10%).  

The Omary corrected method resulted in a much higher mean difference on the -4 to +4 

ordinal scale at 1.10 in favor of iuMR (95%CI 0.98 to 1.25, p<0·0001; Table 3.6). 

 A difference in confidence levels of any degree was present in 52% of all cases, 47% were 

more confident on iuMR and 5% more confident on USS. 

 

Table 3.5 Results of Diagnostic Confidence Analysis using all 3 methods 

 

Route Score 
Score Weighted 

Method 
Conventional C2-C1 

Omary Corrected   
C2-C1 

+4 59 16 73 

+3 42 24 64 

+2 43 53 57 

+1 34 91 70 

0 351 331 276 

-1 30 38 22 

-2 10 11 7 

-3 1 4 1 

-4 0 2 0 

Table 3.6 Changes in diagnostic confidence using the conventional method in the first row, with 

Omary correction in the second row and the SWA in the third row. 

    

Difference 
in 
confidence, 
Mean (SD) 

95% 
Confidence 

for Mean 
difference 

Test 
statistic, 

t 
p value 

Conventional analysis 0·44 (1·20) (0·35, 0·54) 8·87 <0·0001 

With Omary 
correction  

1·10 (1·57) (0·97, 1·23) 16·75 <0·0001 

Score-based method 0·75 (1·50) (0·63, 0·88) 11·96 <0·0001 
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3.5.3 Clinical Management 
 

With regard to the influence of iuMR on final clinical management, iuMR was felt to have 'no 

value' in 95 (12%), 'minor influence' in 419 (53%), 'significant' influence in 201 (26%), 'major' 

influence in 49 (6%) and 'decisive' in 19 (3%) of cases. This information was based on 783 

of 823 cases (95%) as no ORD was required.  

 

Out of the 17 cases where the iuMR diagnosis was made with low confidence (Figure 3.4) 

14 cases had a significant influence on final clinical management and 3 were considered to 

have a major influence. There were no cases, made with low confidence, where the 

influence of iuMR was considered decisive.  Of the 252 cases where the iuMR diagnosis 

was made with high confidence, 187 were considered to have a significant influence, 46 a 

major influence and 19 a decisive influence on the final choice of management (Figure 3.4)  
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Figure 3.5 displays a histogram of the integer scores as a result of the SWA analysis in 

relation to influence on final clinical management. They consist of 295 (59%) of the 507 

complete cases in the three most influential levels (significant, major and decisive) and also 

have an ORD, as a requirement of the SWA method. The highest number of cases scored 

as major and decisive occurred when the influence of iuMR was highest (integer +4), with 7 

decisive, 15 major and 14 significant cases.  
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3.6 Discussion 
 

In order to address the primary aim of this thesis a thorough assessment of the diagnostic 

performance of iuMR for diagnosing fetal brain abnormalities was necessary. Multiple 

studies, a large number of which were included in the systematic review, have demonstrated 

that MRI improves diagnostic accuracy when brain abnormalities are suspected by USS. 

However, poor study design, due to inconsistencies and methodological weaknesses has 

limited the validity of findings (119). These were addressed by MERIDIAN as the study was 

appropriately powered, did not exclude any type of brain abnormality, women were recruited 

prospectively, and diagnostic accuracy calculations were based on only those cases where 

iuMR was performed within 2 weeks of USS and the ORD was known. MERIDIAN also 

provided a more full assessment of the diagnostic performance of iuMR by also investigating 

its impact in terms of improvement in diagnostic confidence, therapeutic efficacy and patient 

outcome. 

903 women were recruited, resulting in 823 women who underwent MR imaging, providing 

570 (63%) complete datasets which exceeded the numbers we predicted or were required 

for adequate powering of the study. This may have been because eligible subjects were 

motivated by the desire to gather more information about their pregnancy and hence were 

more willing to participate, or due to an under estimation of either the total number of 

pregnancies or the percentage of fetuses with brain abnormalities in the referral population, 

the figures for which are not yet available.  

 

To substantiate USS or iuMR findings, a confirmed outcome diagnosis was crucial to this 

study, particularly when there was discrepancy between the two. We estimated that in 20% 

of recruits an ORD would not be available, this figure being based on the findings of previous 

studies (120, 191, 215). This figure was a realistic estimate as final calculations confirmed 

an ORD was unavailable in 21.7% of the fetuses who underwent iuMR. Obtaining an ORD 

for all cases is difficult. Postnatal imaging is not required clinically for a 'normal' child, so was 
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unlikely to be offered routinely, and when a pregnancy is terminated autopsy is not 

performed in a high percentage of cases in the UK. A further 68 (10.6%) cases were 

excluded from the primary analysis as the time between USS and iuMR was greater than 2 

weeks. This limitation was necessary to ensure any changes in diagnosis were due to the 

accuracy of either USS of iuMR rather than anatomical changes due to the rapidly changing 

nature of the developing fetal brain.   

 

When safety guidelines are adhered to, iuMR imaging is a safe alternative method for 

visualising the developing fetus in utero with no detrimental biological or physical effects on 

the fetus or mother being reported to date. Claustrophobia is considered a limitation of MRI 

due to the confines of the bore of the magnet and restriction due to the imaging coil. Our 

study found that MRI was tolerated well by the majority (99.5%) of participants with only five 

terminating the examination due to claustrophobia or discomfort before adequate data was 

obtained. It is hard to judge if this is similar to previous comparable studies as most do not 

include this aspect in their reports, but the failure rate of MRI due to claustrophobia in a 

general adult population has been reported as 1-3% (232). 

 

The results of the study showed the diagnostic accuracy achieved by iuMR, following 

detailed ante-natal USS for suspected brain abnormalities, was greater than that achieved 

by USS alone, regardless of the gestational age of the fetus (p<0.0001). When examining 

this improvement in diagnostic accuracy by gestational age, iuMR was able to give an 

accurate diagnosis in 92% of fetuses at 23 weeks gestation or under and in 94% of older 

fetuses representing a 22% and 30% increase respectively over USS. The lower accuracy of 

USS at later gestations is frequently a problem as ossification of the fetal skull and its low 

position within the maternal pelvis is a known limiting factor for USS performance. 

 

Our results confirmed the findings of our systematic review and the reviews by Rossi and 

Prefumo (172) and Van Doorne (173), who all found that diagnostic accuracy is consistently 
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improved when iuMR is part of the diagnostic pathway. This was evidenced by the 80-94% 

accuracy of iuMR, an increase of 15-20% over the diagnostic accuracy of USS.  

There are potentially two shortcomings of our study. Firstly, the radiologists reporting the 

iuMR examination were not blinded to the findings of the USS examination. Although this 

could possibly introduce an element of bias to the findings it was felt that conducting the 

study in this way was justified as it reflects standard clinical practice in the UK and our aim 

was to assess iuMR as an adjunct to USS rather than to replace it. Secondly, the 

involvement of collaborating centres meant that women were recruited from all over the UK, 

but the majority (64%) of the iuMR scans were carried out in Sheffield at the University's 

Academic Radiology Department where the most experienced radiologist was based. 

Although all the radiologists had some experience of reporting iuMR, greater experience is 

likely to influence diagnostic accuracy in favour of iuMR.   

 

The aim of our study was to assess the diagnostic performance of iuMR which is not based 

on diagnostic accuracy alone. We therefore included an assessment of the improvement of 

diagnostic confidence as a result of iuMR and its ultimate effect on patient management. We 

chose to utilise the method proposed by Ng and Palmer (158) as this not only evaluates 

changes in diagnostic confidence as a result of the new test (iuMR) but also takes into 

account if that change is 'appropriate'. The resultant score, is assigned according to the 

ultimate effect the new test may have on patient outcome, whether that be positive, negative, 

or even neutral (zero score). Conventional scores and Omary corrected scores may 

ultimately be misleading as they do not take into account whether the diagnosis made by a 

new test is correct. Our results showed that the conventional method underestimates the 

true influence of iuMR and the Omary corrected method overestimates it. For example, if a 

diagnosis of VM was made by USS with 90% confidence, and a diagnosis with a worse 

prognosis was made by iuMR with 90% confidence, the conventional method (90-90) would 

result in a score of 0 (no change in confidence), and the influence of iuMR would be missed. 

Using this scenario with the Omary corrected calculation the resultant score would be (90-
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[100-90])=80% or +4, showing a positive influence of iuMR even though the diagnosis might 

be incorrect. Ng and Palmers method, being based on the results of an ORD and changes in 

diagnosis and confidence, corrects for these errors. 

 

Our study found that a higher proportion of the diagnoses made by iuMR were made with 

high confidence than those made by USS (95% vs 86%) and that a higher proportion of 

those highly confident diagnoses by iuMR were correct (89%, compared to 60% by USS). 

Although iuMR made 5% of diagnoses with low confidence, this was appropriate as 2% of 

the 5% were incorrect. The results which concerned diagnostic confidence are more easily 

appreciated by the results of the SWA analysis which was able to show that iuMR had a 

positive influence on the diagnostic pathway in 31.2% (178) of cases (scores of +1 to +4). In 

the majority (61.6%) of cases iuMR were scored as 0, with neither a positive or negative 

effect on the diagnostic pathway. In 41 (7%) cases the confidence of iuMR was inappropriate 

with a potential detrimental effect to the patient.  

 

The relationship between diagnostic confidence and the influence of iuMR on the 

management of pregnancy is not definitive and can only be surmised. This is primarily 

because although the fetal maternal experts were asked specifically to indicate the level of 

influence iuMR findings had on the management of the pregnancy, they were not asked if 

the level of confidence with which the diagnosis made by iuMR contributed to that influence.  

In over half the cases (59%) that had an ORD, iuMR was considered to have either a 

significant, major or decisive influence on management of pregnancy. Even when iuMR was 

made with low confidence there were still 3 cases where iuMR had a major influence and 14 

where the influence was significant. The highest number of cases where iuMR was thought 

to be major or decisive occurred in those cases where the SWA was +4. When reviewing the 

cases where the SWA was zero, the influence of iuMR on management was considered to 

be significant in 75 cases, major in 13 cases and decisive in 1 case. This suggests that iuMR 
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provided positive reassurance in a high proportion of cases even though the diagnosis or 

confidence did not change after iuMR.  

 

3.7 Conclusion 
 

iuMR makes a positive contribution in a high proportion of cases when included in the 

diagnostic pathway if fetal brain abnormalities are suspected. Both accuracy and the 

confidence of findings are improved to such an extent that iuMR should be used routinely to 

inform decisions about the management of pregnancy when a brain abnormality is 

suspected on USS.  
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Chapter 4 

The MERIDIAN Add-On Study. 
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4.1 Summary 

 
This chapter reports the findings of the MERIDIAN ‘Add-on study’, which was an adjunct to 

the primary MERIDIAN, study, by providing a normal control group. This prospective cohort 

study aimed to recruit 200 fetuses in whom no abnormalities had been detected on USS. 

The purpose of this was to determine the false negative rate of fetal brain abnormalities in 

this group and thus complete the assessment of the diagnostic performance of 2D iuMR 

imaging for the primary aim of this thesis. 

The Add-on study was supported and funded by the NIHR-HTA as an extension to the 

primary MERIDIAN study, and conducted under the same ethics approval and clinical trials 

regulations. The principle investigator (PDG) undertook the design and planning of the study, 

and the MERIDIAN team at ScHARR undertook the management of the study. With regard 

to MERIDIAN as a whole the Add-on study has been the focus of the author’s time and 

contribution. This has consisted of – 

 Explaining the study to approximately 30 participants in order to obtain informed 

consent 

 Performing  200 of the MR scans (200 working hours) 

  Showing resultant MR images and giving an overview of their babies brain anatomy 

to some participants (n=40).  

 Analysis of findings from the study 

 

This chapter will form the basis of a manuscript for submission to a peer-reviewed 

journal in late 2017.  

 

 

.  
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4.2 Introduction 
 

The results of the systematic review and the MERIDIAN study demonstrated that iuMR 

imaging when undertaken following USS significantly improves the detection of fetal brain 

abnormalities. This improvement in diagnostic accuracy has significant implications for 

clinical practice, but using overall accuracy as a measure of test precision may overestimate 

its performance (154). Overall accuracy is calculated by counting the number of correct 

answers against the number of incorrect answers, but the intrinsic value of a diagnostic test 

is not only its ability to detect an abnormality when one is present (sensitivity) but to also 

correctly exclude the possibility of an abnormality when a patient is healthy (specificity). 

Whilst sensitivity and specificity define the characteristics of a test, positive and negative 

predictive values may be more useful to a clinician as they provide an indication of the 

likelihood a test will give an accurate diagnosis (156). The calculation of positive and 

negative predictive values requires a sample with both ‘diseased' and ‘non-diseased’ 

participants. The primary MERIDIAN study, and all studies investigating the accuracy of 

iuMR for diagnosing fetal brain abnormalities as part of the systematic review, have only 

recruited women in whom the fetus had a brain abnormality suspected on USS. It therefore 

appears that no previous study has investigated the negative predictive rate in this group. 

Recruiting a cohort of normal fetuses would, when used in conjunction with the results from 

MERIDIAN, enable the positive and negative predictive values of both iuMR and USS to be 

calculated. This would provide a more precise analysis of the diagnostic performance of both 

USS and iuMR and of their significance in the diagnostic pathway. 

4.3 Methods 

The Add-on study aimed to recruit 200 women in whom the fetus was not thought to have 

any form of abnormality either of the brain, or somatic, based on antenatal USS examination 

in order to answer the question ‘Does iuMR detect any fetal brain abnormalities in fetuses 

judged to be developing normally on USS?’ This information would be used in combination 

with the results of the primary MERIDIAN study to determine both the positive and negative 
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predictive values of USS and iuMR. Confidentiality of participants data was safe guarded by 

the use of a password protected database, described in Appendix 3, and anonyminity  

ensured by allocation of participant numbers. 

4.3.1 Participants and Recruitment  

 

Study participants for this prospective cohort study were recruited from UK maternity units, 

(through contact with MERIDIAN study midwives), or by publicity through posters, leaflets 

and press coverage. Contact details for the Academic Unit of Radiology in Sheffield were 

provided which pregnant women could use if they were interested in participating in the 

study. At this point, a patient information leaflet (Appendix 7) giving full details of the study 

was sent by email or post to the potential participant. A follow-up telephone call by a 

member of the study team enabled any queries to be answered and initial screening 

questions to be completed (Appendix 8). Eligibility for the study was initially based on verbal 

confirmation during the screening process. A copy of the USS report was then obtained at a 

later time point to confirm the normal development of the pregnancy and background 

information recorded (Appendix 9). 

Upon satisfactory completion of initial screening, eligible participants were offered an 

appointment to attend the Academic Unit of Radiology in Sheffield for the MRI scan.  The 

aim was to perform the iuMR within 1 week of USS, although participants were accepted 

regardless of the interval between ultrasound and iuMR imaging. A participant was deemed 

eligible to participate in the study if the following inclusion criteria were met: 

 The participant had undergone prenatal USS and there were no brain or somatic 

abnormalities suspected regarding the fetus; 

 The participant had no history of previous pregnancy with an abnormal fetus; 

 The fetus would be a minimum of 18 weeks gestation at the time of iuMR imaging. 
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A participant was excluded from the study if she met any of the following criteria: 

1. Had a past history of a fetal brain anomaly in a previous pregnancy; 

2. Was unable to give informed consent; 

3. Had a cardiac pacemaker, intra-orbital metallic foreign body, or recent surgery with 

metallic sutures or implant; 

4. Had previously experienced or was likely to suffer severe anxiety or claustrophobia in 

relation to MR imaging examination; 

5. Was unable or unwilling to travel to Sheffield for specialist MR imaging; 

6. Was unable to understand English (except where satisfactory translation services 

were available); 

7. Was under the age of 16 years; 

8. Was unwilling for her GP to be informed about the study and given copies of scan 

reports. 

Upon arrival at the Unit written informed consent was taken (Appendix 10) after full 

explanation of the MR procedure, this included the discussion of potential risks, her right to 

withdraw from the study at any time and an explicit explanation given that an abnormality 

may possibly be shown by MR imaging that wasn’t previously seen by USS. Part of the 

consent procedure was also to ensure the willingness of participants to allow their GP to be 

informed that they were taking part in the study and to have a copy of the MRI report. iuMR 

examinations were performed at the Academic Unit of Radiology, University of Sheffield on a 

1.5T whole body scanner (HDx, GE Healthcare, Milwaukee) or on a 3T whole body scanner 

(Ingenia, Philips, Netherlands). The iuMR imaging was of the fetal brain only and the 

protocol followed was that used for the primary MERIDIAN study (Table 1.1, Chapter 1). In 

addition, all fetuses were imaged using the 3D volume acquisition outlined in Chapter 5. 

After the scan the woman and her companion(s) were shown the MR images, given some 

immediate feedback regarding the development of the fetus and offered the opportunity to 

capture iuMR images of the baby using their own camera. None of the participants were paid 
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for volunteering for the study but travel expenses incurred by both the participant and her 

partner, friend or relative to attend the unit in Sheffield for the iuMR scan were reimbursed.  

A copy of the USS report was requested from the participant’s maternity centre (if the 

participant had this information in her hand held maternity notes, a copy of this was taken on 

attendance for iuMR).  No further participant contact was required after the visit for the MR 

scan. All iuMR imaging was reviewed by a consultant neuroradiologist with significant 

experience in fetal neuro imaging (PDG) and findings recorded (Appendix 11). A full report of 

the scan performed was sent to the participant’s GP.  If an anomaly was detected, the 

neuroradiologist made contact with the participant’s obstetric consultant and a full clinical 

report was issued. It was the participant’s doctor’s responsibility to take appropriate action if 

further intervention was required in accordance with their own clinical procedures.  

 

4.3.2 Outcome Measures and Statistical Analysis 
 

The decision that a participant’s USS was normal was based on either the second trimester 

anomaly scan, or on a scan performed in the UK by a fetomaternal medicine specialist. The 

study compared the USS diagnosis with the iuMRI diagnosis prenatally, and no follow up 

was planned unless an abnormality was diagnosed on iuMR. The outcome of the pregnancy, 

with regard to brain development, was assumed to be normal unless an abnormality was 

suspected on iuMR imaging. In this instance, diagnostic accuracy was determined by an 

ORD as outlined in the primary MERIDIAN study. The positive and negative predictive 

values of both USS and iuMR were calculated by combining the results of this study with the 

results from the primary MERIDIAN study. The positive predictive value (PPV) refers to the 

probability that subjects with a positive screening test have the disease in question. The 

negative predictive value refers to the probability that subjects with a negative screening test 

do not have the disease in question.  
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The predictive values are calculated by:- 

PPV: = (true positive) / (true positive + false positive) 

NPV: = (true negative) / (false negative + true negative) 

 

The values are dependent on the prevalence of disease in the sample measured. If all other 

factors remain constant, the PPV will increase and the NPV will decrease with increasing 

prevalence (233). 

 

4.4 Results 
 

The study was conducted over a 3.5-year period between November 2013 and May 2017. A 

total of 225 pregnant women made contact with the unit to enquire about the study, all of 

whom met initial screening criteria and appointments were made for each to attend for the 

MR scan. Of this group 21 failed to attend or cancelled their appointment after being 

screened for the study, and 2 women gave birth before their appointment. Three participants 

did not meet the inclusion criteria, due to pregnancy complications, and were excluded after 

the MRI scan had been done. One woman consented to undergo iuMR imaging, but the 

scan was subsequently abandoned before any relevant data could be captured due to the 

participant feeling unwell. In total, 198 participants meeting the inclusion criteria (a total of 

205 fetuses) were scanned. The flow of participants through the study is shown in Figure 

4.1. The final study number included 14 fetuses from twin pregnancies and 191 fetuses from 

singleton pregnancies. The pregnant women recruited were from a wide geographical area, 

with 68 (34%) participants living within 18 miles of the Sheffield MR unit and the remaining 

137 from outside that area. The furthest distance travelled was 189 miles. The age range of 

the pregnant women was 20 – 46 years (mean 31.5 years). The number of fetuses grouped 

by gestational age at the time of iuMR imaging were 54 (26.3%) ≤ 23 weeks and 151 

(73.7%) ≥ 24 weeks. A detailed summary of number of the fetuses scanned at each 
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gestational age is shown in Figure 4.2. For all fetuses the normal USS report was based on 

the routine second trimester screening USS.  

MRI not completed or excluded   

- MRI abandoned or incomplete = 1  

- Withdrawn after MRI = 3 

 

Potential participants  

225 

Ineligible or declined participants  

- MRI offered but declined or failed to attend =                 

21 

- MRI offered but pregnancy ended before  

scan = 2 

Appointments made for MR 

225 

 

Participants attended for MR 

202 

 Participants with MR completed  

198 

(205 fetuses) 

 

203 Normal Fetuses  

2 Abnormal Fetuses 
1) 1 fetus with isolated mild VM confirmed by 
follow-up prenatal USS 
2)  1 fetus with a focal cortical formation 
abnormality confirmed by postnatal MR imaging 

Figure 4.1 Flow of participants through the Add-on study 
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For 203 fetuses the MR scan was performed on a 1.5T scanner (GE HDX Healthcare 

Milwaukee) and two fetuses were scanned on a 3T scanner (Philips Ingenia, Best, The 

Netherlands) when the 1.5T was unavailable.  

 

 

 
 

 

IuMR findings were reported as normal for 203 cases but brain abnormalities were reported 

in two fetuses from separate pregnancies. For both abnormal cases, a formal report was 

issued and sent to the respective fetal medicine consultants. Table 4.1 and 4.2 show the 

number and characteristics of correct and incorrect diagnoses made by USS and iuMR 

according to age category, calculated by combining the results of this study with the results 

from the MERIDIAN study (234). The positive and negative predictive values of USS and 

iuMR, showed that both USS and iuMR have excellent NPV (99.0% and 99.5% respectively) 

but the PPV of iuMR was 93.0%, 25.1% greater than the PPV of USS (Table 4.3.)  
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Figure 4. 2 Chart Showing the Number of Fetuses Scanned at Each Gestational 
Age 
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Table 4.1 Positive and negative values and predictive values for USS according to gestational 
age. (Values in red are taken from the MERIDIAN study) 

≤ 23 weeks ORD +ve ORD -ve Predictive values (95% CI) 

USS + 258 111 PPV 69.9% (67.6-72.1) 
 
NPV 100% 
 

USS - 0 54 

 

 

 

Table 4.2 Positive and negative values and predictive values for iuMR according to 
gestational age. (Values in red are taken from the MERIDIAN study) 

≤ 23 weeks ORD +ve ORD -ve Predictive values (95% CI) 

MRI + 341 28 PPV 92.4% (CI 90.0-94.3)     
 
NPV 100%  

 
MRI - 0 54 

 

 

 

 

 

 

 

 

≥ 24 weeks ORD +ve ORD -ve Predictive values (95% CI) 

USS + 129 72 PPV 64.18% (59.7-68.5)  
 
NPV 98.68 (94.9-99.7) 

 
USS - 2 149 

≥ 24 weeks ORD +ve ORD -ve Predictive values (95% CI) 

MRI + 190 12  PPV 94.1% (CI 90.2-96.5)  

NPV 99.3% (CI 95.5-99.9) MRI - 1 149 

 
These numbers include the 2 abnormal cases from the Add-on cohort which were added to the 
MERIDIAN numbers for true positives and 1 case within the MERIDIAN results, where iuMR failed 
to detect an abnormality identified by an ORD so  was moved to the false negative category 
 

Table 4.3 Total Positive (PPV) and Negative (NPV) predictive values of 

USS and MR  (95% confidence intervals ) 

Modality PPV (95% CI) NPV (95% CI) 

USS 67.9% (65.6-70.2) 99.0% (96.2-99.8%) 

iuMR 93.0% (90.9-94.6) 99.5% (96.6-99.9%) 

These values combine the results of this study and the primary MERIDIAN study 
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iuMR imaging at 26 weeks gestation identified mild VM in one fetus (trigones of the lateral 

ventricles measuring 10mm and 11mm). This was recorded as an isolated finding and no 

other brain abnormalities were identified, but linear measurement of biparietal diameter and 

occipitofrontal diameter indicated a large head size (BPD >97th centile and OFD on the 97th 

centile) shown in Figure 4.3. Follow up USS confirmed the iuMR findings, and the pregnancy 

has since been monitored by USS at regular intervals. The pregnancy is ongoing at the time 

of this report and VM has been confirmed by subsequent USS. 

 

The second abnormal fetus was 35 weeks gestation when iuMR imaging was performed, at 

which time the examination identified focal increased signal in a gyrus of the right frontal 

lobe on T2 weighted imaging suggestive of pathology such as a cortical tuber or focal 

cortical dysplasia (Figure 4.4). Post-natal MR imaging has confirmed the abnormality, but its 

nature is still unknown and the child is under clinical review.  

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.3 Axial T2W ssFSE image showing 

the VM (arrow, trigone measurement 11mm) in 

the fetus of 26 weeks gestation  
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4.5 Discussion  
 

The results of the MERIDIAN study and the systematic review demonstrated a significant 

improvement in diagnostic accuracy when iuMR imaging is used in the diagnostic pathway. 

This might potentially imply that USS fails to detect significant abnormalities during the 

screening process. The Add-on study proved that assumption to be incorrect and the results 

support the role of USS as the satisfactory screening method for imaging during pregnancy 

in the general population, with the use of iuMR as an adjunct when abnormalities are 

suspected.  

 

This study successfully recruited a cohort of pregnancies considered on USS to be 

developing normally. As a result, 205 fetuses were included in our analyses to determine, in 

combination with the results of the MERIDIAN study, the predictive value for both modalities.  

Predictive values indicate the precision of a diagnostic test, i.e. how likely the test is to find 

an abnormality when it actually exists (PPV) or how likely a test is to be negative if no 

abnormality exists (NPV). They therefore useful to clinicians when making decisions about 

the use of different diagnostic tests (235). The NPV of USS was high and comparable to that 

of iuMR (99.02% and 99.51% respectively). The results of the positive predictive values, 

Figure 4.4 (a) Axial T2W  ssFSE and (b) Axial 3D FIESTA images showing the increased signal in the right frontal lobe 

(arrows) in a fetus of 35 weeks gestation. Images (c) axial and (d) coronal of the MR scan of the same baby at 3 weeks old 

confirm the presence of abnormal signal in the right hemisphere. 

b c d a 
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(USS 67.89%, iuMR 92.99%), as expected, are in keeping with the overall diagnostic 

accuracy findings within MERIDIAN (USS 67.89% and iuMR 92.8%), as the same values are 

used. The exceptions to these findings consisted of two cases in which iuMR correctly 

identified abnormal appearances that USS judged as normal. These 2 cases were therefore 

moved into the true positive category of iuMR. There was also 1 case within the MERIDIAN 

results where iuMR failed to detect an abnormality identified by an ORD. This was therefore 

moved into the NPV analysis. Neither of these instances, however, significantly affected the 

results of the calculations significantly. The results of the study also indicated that both USS 

and iuMR were more likely to be accurate at the younger gestational ages with regard to 

correctly identifying true negative cases. This demonstrates the advantage of using 

predictive values to assess a tests diagnostic capability rather than overall accuracy. The 

MERIDAN results found that iuMR was more accurate overall for fetuses ≥24 weeks 

gestation (overall accuracy of iuMR ≤23= 92.4% and ≥24= 93.5%) while the Add-on study 

found that the NPV was slightly higher in the ≤23 age group (NPV iuMR ≤23= 100% and 

≥24= 99.33%), providing a more reliable indication of the accuracy of iuMR. 

 

The diagnostic capability of USS has previously been quantified using sensitivity and 

specificity analysis by reviewing clinical cases that have been scanned as part of the routine 

screening process during pregnancy. A report by the National Institute for Health and Care 

Excellence (NICE)  (236) described the findings from those studies, showing that whilst the 

sensitivity of USS was variable (15% to 85%) the specificity was consistently very high 

(99.4% to 100%). Rossi and Perfumo (172) attempted to define the diagnostic capability of 

iuMR using similar sensitivity and specificity measures. This was based on 'normal' values 

defined by a normal ORD but was initially suspected of being abnormal by USS, rather than 

the recruitment of a normal control group. Review of the literature has not shown that any 

other study performed has recruited normal pregnancies, (identified by USS screening) 

which have subsequently undergone iuMR imaging to determine the positive and negative 

predictive values for these modalities. 
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In order to estimate sensitivity and specificity with precision, sample size must be adequate 

(237) therefore sensitivity and specificity could not be reliably calculated for the Add-on study 

as the sample size was insufficient, the cases confirmed normal by USS being significantly 

under-represented. There are more than 800,000 pregnancies in the UK each year (238), all 

of which potentially undergo at least one USS examination. To effectively represent this 

number to determine specificity with an adequate degree of precision would be extremely 

difficult and cost prohibitive. Consequently, we chose study design and sample size on a 

pragmatic rather than statistical basis. As positive and negative predictive values are 

dependent on disease prevalence within the sample measured they could be reliably 

calculated and provide a useful measure as to the likelihood that USS and iuMR will give an 

accurate diagnosis (239). It is interesting to note that the results of the study reported by 

NICE, being adequately powered were comparable to the NPV in this study. Calculating 

specificity, however, with the cohort size of this study would give an erroneous value of 

52.6%. 

There are several possible limitations of the study, which primarily stem from recruiting 

‘normal’ participants. Firstly, there may be an element of bias within the recruitment process 

as it was reliant on women volunteering for the study. It is unclear if the women who formed 

our sample were fully representative of the obstetric population, as although they were 

recruited from a wide geographical area within the UK, we did not record demographics such 

as ethnicity. Secondly, it was not possible to restrict recruitment to women who could attend 

for iuMR within two weeks of USS. We were reliant on participant’s availability, and 

appointments were made according to their preferences to limit inconvenience. The longer 

time period between USS and iuMR, the greater the possibility of abnormalities evolving and 

hence being visible on MR. This could certainly be true in the fetus diagnosed by iuMR with 

mild VM, as this can develop at any stage of pregnancy and may not have been present at 

the time of the 20-week anomaly USS. The advantage to not restricting the time span 

between USS and iuMR was that a wider age range of fetuses were scanned. In the UK all 
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pregnant women are offered an anomaly screening USS between 18 and 21 weeks’ 

gestation. If the two-week window was adhered to the age range at iuMR would be 18 – 23 

weeks, leading to a biased sample. Thirdly, the diagnostic accuracy of USS for the Add-on 

study was based on routine USS screening rather than on USS by a feto-maternal expert 

which was a requirement of the MERIDIAN study. The availability of suitably qualified staff 

and the cost implications made this criterion unattainable. It is impossible to ascertain 

whether, in the two cases with abnormalities detected by iuMR if these were not present at 

USS or if they were missed by USS. In the case of the fetus with VM, there was a 6 weeks 

delay between USS and iuMR, and there was a delay of 16 weeks between the original USS 

and iuMR in the second abnormal case. It was therefore possible that the abnormality was 

not present at the time of the anomaly USS and even if it was, it is impossible to say whether 

a feto-maternal expert could have identified the cortical abnormality.  

 

The consequences of abnormalities being missed by screening USS during pregnancy are 

variable. Detecting abnormalities accurately allows further investigations if necessary and 

instigates additional monitoring of the pregnancy, or, if the abnormality is severe and 

detrimental to long term outcome allows the option of termination of the pregnancy. Isolated 

mild VM is a common finding during pregnancy and in this category a very high proportion 

have a favourable outcome, but iuMR is necessary to identify additional abnormalities (112, 

113, 240). This finding therefore is perhaps less significant than the cortical abnormality 

diagnosed by iuMR in a fetus of 35 weeks gestation. Cortical dysplasia is exceptionally 

difficult to identify by USS prenatally (39) and can have a range of causes and outcomes. 

Identifying this abnormality earlier may not have changed the outcome in terms of health of 

the fetus, but would have provided vital information and allowed the parents to make an 

informed choice regarding the future of the pregnancy. 
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4.6 Conclusion 
 

The results of this study confirm the ability of both USS and iuMR to accurately identify when 

brain development of the fetus is normal. The high negative predictive value of USS confirms 

the validity of USS as the primary screening imaging method for pregnancy in the general 

population, and the superior positive predictive value of MR further supports the need for 

additional iuMR imaging when abnormalities are detected. 
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Chapter 5 

Three Dimensional (3D) MR imaging of the Fetal Brain in utero 
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5.1 Summary 
 

The second aim of this thesis is to report the development, application and clinical evaluation 

of a 3D volume iuMR acquisition for fetal brain imaging. This aim is fulfilled by the work 

reported in this and the following two chapters and accomplished using the iuMR imaging 

data from the MERIDIAN study, but outside the context of the primary study. The review and 

diagnoses made using the 3D acquisition were carried out by. All other work reported in this 

chapter was undertaken solely by the author and includes the development of the 3D 

acquisition over a 6 month period, anonymization of all images ready for neuroradiologist 

review and the collation and analysis of the results. 

 

This chapter builds on our initial efforts to develop a 3D volume acquisition, which showed 

potential as a useful method for imaging the fetal brain in utero. A pilot study of the first 50 

imaging datasets was published in a peer-reviewed journal; 

 

 Griffiths PD, Jarvis D, McQuillan H, Williams F, Paley M, Armitage P. MRI of the 

foetal brain using a rapid 3D steady-state sequence. The British journal of radiology. 

2013;86(1030):20130168. 

 

The pilot study highlighted the need for further development of the sequence in order to 

improve image resolution and to reduce acquisition time. In this chapter we report how the 

sequence was developed and also evaluate the resultant acquisition regarding image 

quality, diagnostic accuracy and diagnostic confidence. The aim was to assess the 3D MR 

volume acquisition acquired for each case scanned in Sheffield as part of the MERIDIAN 

study. Since its development the resultant 3D acquisition has become part of our routine 

iuMR imaging protocol in Sheffield.  
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The ability to acquire a 3D data set has been beneficial not only in providing a versatile 

sequence to aid diagnosis, with a potential reduction in examination time, but also to 

facilitating the exploration of fetal brain development through both quantitative analysis and 

electronic and 3D printed surface representations of the fetal brain (reported in Chapters 6 

and 7).  

 

5.2 Background 

 

The MR sequences used for imaging the fetus in utero described earlier (Chapter 1) were 

two-dimensional (2D) and usually acquired in all three anatomical planes to provide 

comprehensive information about fetal brain anatomy which would assist in the diagnosis of 

abnormalities. Repeated acquisitions were frequently required if image quality was 

insufficient due to blurring caused by fetal or maternal movement, or through other inherent 

image artefacts such as image wrap around. This resulted in longer examination times and 

consequent MR exposure. Although there are no known detrimental effects of iuMR imaging 

during pregnancy, limiting examination time is recommended in order to protect the 

developing fetus (148) and to reduce maternal discomfort. An alternative approach to 

multiple 2D acquisitions is to acquire a 3D MR data set. This is an established method for 

adult and paediatric imaging, but has not yet been extensively used for fetal imaging.  

The inherent characteristics of a 3D volume acquisition allow reconstruction of the raw data 

into different anatomical planes (including non-orthogonal), potentially reducing the need for 

multiple 2D acquisitions and hence consequently reducing examination time. Despite these 

advantages, no commercial or vendor provided 3D MR sequence with short enough 

acquisition times for imaging the fetus has currently been made available. The evidence 

within the literature of the development and utilisation of 3D acquisitions for in utero imaging 

by other iuMR imaging centres was also limited. As part of the data extraction process for 

the systematic review we recorded MR imaging protocol details. These showed that only a 
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single study, conducted in 2010 (120), recorded the use of a 3D acquisition for fetal brain 

imaging. However, no details were provided other than the sequence type used (3D-steady-

state free precession). In addition, Sun et al (241) reported the use of a 3D FIESTA 

sequence as part of their imaging protocol. By performing volume rendering on the resultant 

imaging data they were able to display the external anatomy of the fetus. Again, information 

about their methods and sequence parameters was limited as, although the abstract was in 

English, translation of the full paper was unavailable. A second paper by the same group 

(242) extended this work by comparing a 3D FIESTA  acquisition and volume rendering of 

resultant images to 2D ssFSE imaging and 3D USS to determine the diagnostic accuracy of 

fetal brain abnormalities for each. They found that the 3D FIESTA was more accurate than 

2D imaging but less accurate than 3D USS but again only the abstract was available for 

review. Liu, Glenn (243) proposed a hybrid 3D imaging technique which used radial k-space 

filling for image formation and time-resolved retrospective image reconstruction. This 

permitted the acquisition of a 3D dataset in a scan time of 3 minutes. Although the method of 

acquisition reduced the effects of fetal movement, its use might be limited in practice due to 

the scan time and the hybrid data acquisition technique. The inherently long scan times of 

3D acquisitions often prevent their consideration as viable options for fetal imaging (244, 

245).  

 

2D and 3D MR acquisitions both need rigorous optimisation of imaging parameters in order 

to enhance image quality whilst limiting scan time. There are, however, several factors that 

make the use of 3D acquisitions more challenging.    

 

3D volume imaging is achieved by the addition of a second phase encoding in the third 

dimension, perpendicular to the frequency and primary phase encoding.  Acquisition time is 

determined by the number of phase encoding steps in the first dimension multiplied by the 

number of phase encoding steps in the second dimension multiplied by the TR value. The 
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partition thickness, determined by the number of partitions of the second phase encoding 

and their contiguity, must be adequate to provide sufficient visualisation of the anatomy even 

when the resultant data is reconstructed into different planes. A consideration when planning 

a 3D acquisition is that image wraparound and truncation artefacts may occur in two 

directions due to the two phase encodings. Extra partitions in both phase directions are 

therefore required to ensure that the anatomy outside the volume does not obscure the area 

of interest. This increases scan time.  

 

To be of practical use for imaging the fetus, which is likely to move during scanning, any 3D 

acquisition had to be achievable in an ultra-short timescale while still providing high SNR 

and adequate image resolution. The 2D FIESTA, which is part of our routine fetal imaging 

protocol, and described in Chapter 1, was initially developed as an ultrafast sequence for 

cardiac imaging. This enabled rapid acquisitions for demonstration of heart function during 

suspended respiration (246, 247) and high SNR made it possible to use a 3D FIESTA 

sequence to visualise the small structures within the central nervous system such as the 

nerves of the posterior fossa, auditory system and lumbar spine (248-250). This adaptability, 

in terms of the potential for ultrafast acquisition time and high SNR, was the primary reasons 

that the FIESTA sequence was used for imaging the fetal brain. Another advantage to using 

the FIESTA sequence is the lower SAR, due to smaller flip angles and hence less energy 

deposition to that of the ssFSE. Our initial pilot study found that the SAR of the 3D FIESTA 

was no greater than that of the ssFSE. In contrast to this Chung et al (251) measured the 

SAR of a steady state gradient echo sequence and found it to be a third lower than that of a 

single shot T2 weighted sequence.  

 

The 2D FIESTA, like the ssFSE, acquires and reconstructs the data for each imaging slice 

before acquisition and reconstruction of the next.  In contrast to this, a 3D volume is a single 

acquisition whereby all the data required to fill k-space for the entire volume is acquired 

before images are reconstructed and displayed. Movement of the anatomy under 
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investigation at any time during the scan, causes misregistration, with consequent blurring of 

all resultant images. This, in addition to the inherent acquisition times required for a 3D 

sequence as opposed those for a 2D scan, meant changes were necessary in order to 

render the acquisition time acceptable for fetal imaging.  

 

To develop a 3D sequence which could be acquired during maternal suspended respiration 

and thus eliminate movement artefact from this source, several time saving adjustments 

were made. These included increasing the receiver bandwidth enabling a shorter TE and 

TR, and partial Fourier technique which used the conjugate symmetry of k-space to acquire 

only 0.75 of the phase encoding steps without reducing voxel dimensions. Thus reducing 

scan time further whilst maintaining resolution. The 3D sequence also had to be of 

sufficiently high resolution to adequately distinguish the small anatomical structures of the 

developing fetal brain. 3D volume imaging has inherently high SNR due to the whole 

imaging volume undergoing excitation at each repetition (as compared to a single slice for 

2D imaging). This higher SNR allowed thinner partitions to be sampled thus improving image 

resolution without significant detriment to image quality (as compared to the equivalent slice 

thickness used in 2D imaging). The homogeneous excitation across the imaging volume also 

results in more uniform slice profiles when compared to 2D imaging as partial saturation of 

signal between slices does not occur. Zero filling of K-space (ZIP) is used to construct new 

data points from the original acquired data. ZIP averages the signal between two adjacent 

pixels to create estimated information for a new data point, thereby increasing the spatial 

resolution. Zero filling in k-space is equivalent to performing linear interpolation in image 

space. 

The 3D FIESTA was acquired in the axial, or (to maximise coverage for larger fetal brains) in 

an axial oblique plane relative to the fetal brain (Figure 5.1). At the time of iuMR imaging 

gestational age and consequent size of the fetus and mother was variable so some of the 

imaging parameters had to be tailored for the individual. The aim for each fetal brain 

acquisition was to attain full anatomical coverage, with the highest resolution achievable, 
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within a timescale conducive to maternal arrested inspiration (≈ 20 seconds).  This primarily 

involved altering partition thickness and/or number of partitions. FOV usually remained 

unchanged unless it was essential to increase it to prevent image wraparound which would 

obscure fetal brain anatomy. The imaging parameters of the 3D volume are shown in Table 

5.1. 

 

 

 

  

 

The 3D FIESTA acquisition was trialled as part of our routine iuMR imaging protocol for 

pregnant women who attended the AUR MR unit at the University of Sheffield for 

assessment of their fetus's brain. This included pregnant women who attended as part of the 

MERIDIAN study.   

Table 5.1 Imaging Parameters for the 3D FIESTA sequence in comparison to the 2D FIESTA 
Parameters 

 
Repetition 

Time 
Time to 
Echo 

Flip 
Angle 

(degree) 

Bandwidth 
(KHz) 

NEX 

Partition  
Thickness/ 
Slice Gap 

(mm) 

Field of 
View 
(mm) 

 

Freq/ 
Phase 
Matrix 
(mm) 

Scan 
Time 
(s) 

3D 
Minimum 
(4.4 ms) 

Minimum 
(2.4 ms) 

70 125 0.75 2.0 - 2.6/0 320x256 320/256 
20-
22 

2D 
Minimum 
(4.2 ms) 

Minimum 
(2.2 ms) 

70 100 1 4/0 380x340 320/256 25 

Figure 5.1 Positioning of the volume acquisition dataset for a 

younger/smaller (a) and older/larger fetus (b) to optimise coverage 

b a 
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The inherent differences in acquisition mechanisms between the FIESTA sequence (both 2D 

and 3D) and the 2D ssFSE as described in Chapter 1 result in different image 

characteristics, which, along with the difficulties of acquiring a diagnostic 3D dataset, might 

have ultimately influenced diagnostic accuracy. A retrospective evaluation of the iuMR 

imaging data acquired as part of MERIDIAN was therefore undertaken. Comparison was 

made between the 3D acquisition and the routine 2D MR imaging sequences. 

5.3 Study Aim 
 

The aim of this research was to compare the diagnostic performance of the 3D FIESTA 

acquisition to the diagnostic performance of the full routine 2D imaging acquired 

prospectively for the MERIDIAN study. This work refers to 2D versus 3D throughout. 2D 

representing the diagnosis made and confidence score given at original MR examination 

(which included the 3D acquisition) as part of the Meridian study and 3D referring to the 

isolated 3D FIESTA acquisition reviewed retrospectively and reported here. This research 

dealt with 3 areas of investigation:- 

 

 Assessment of the image quality of the 3D acquisition;  

 The diagnostic accuracy and diagnostic confidence of the 3D volume acquisition 

compared to the diagnostic accuracy and diagnostic confidence of the 2D iuMR 

imaging;  

 Comparison of ventricular atrial width measurements made using the 3D acquisition 

with measurements made using 2D imaging when a diagnosis of ventriculomegaly 

was made; 
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5.4 Methods 
 

The 3D volume acquisition was separated from the routine 2D MR sequences for each 

MERIDIAN participant and loaded onto the Advantage Windows workstation (GE Medical 

Healthcare, Milwaukee). Each data set was anonymised by removing all patient 

distinguishable information with the only means of identification being the unique MERIDIAN 

number allocated to each case. A minimum time period of 10 months between evaluation of 

the 2D imaging as part of MERIDIAN and separate evaluation of the 3D imaging was 

guaranteed to reduce recall bias. Anonymised documentation of the original clinical referral 

and ultrasound findings was provided for each case in order to replicate the original reporting 

conditions of the 2D iuMR examination. To eliminate reader bias each volume data set was 

appraised by the same neuroradiologist experienced in fetal MR imaging, (PDG) who 

provided the clinical report for the MERIDIAN 2D iuMR examinations. 

 

The 3D imaging for each participant was evaluated and interpreted and a diagnosis made, 

as well as a grading of a certainty of diagnosis. All information was recorded by the 

neuroadiologist using the same Form E to replicate the MERIDIAN protocol as described in 

Chapter 3 (Appendix 2). The method for scoring and recording the degree of diagnostic 

confidence for each abnormality, expressed as a percentage, was also identical to that of the 

MERIDIAN study. The only addition to Form E was an image quality score for the 3D 

volume. The neuroradiologist assessed each 3D volume acquisition and gave a score of 

‘good’, ‘average’, ‘poor’, or ‘non-diagnostic’. This was a subjective assessment based on his 

experience and took into account anatomical coverage, image artefacts and image 

resolution. No formal quantitative assessment was made, the rationale being that the 

primary assessment of the utility of the 3D volume was the ability to make an accurate 

diagnosis. 
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Analysis 

The diagnosis and associated confidence score attributed to each 3D report was compared 

to the corresponding original reported 2D diagnosis and confidence score. The diagnoses 

using both 2D and 3D imaging were compared to the outcome reference diagnosis to 

determine diagnostic accuracy.  

The Null Hypothesis was: The diagnostic accuracy and diagnostic confidence achieved by a 

3D volume imaging acquisition is the same as the diagnostic accuracy and diagnostic 

confidence achieved by 2D MR imaging. 

 

For the purpose of analysis the diagnostic confidence scores were placed into one of two 

categories, either ‘high confidence’ or ‘low confidence’ as below. This replicated the scheme 

used in the main MERIDIAN study.  

 very unsure (10%),  

 unsure (30%),   Low confidence 

 equivocal (50%), 

 

 confident (70%)  

 highly confident (90%) High confidence 

 Diagnosis excluded  

 

Each 3D case was assessed using the score-based weighted average flow chart used for 

the MERIDIAN study (described in Chapter 3). This was achieved by replacing the results of 

USS with the outcomes from 2D imaging and replacing the results of iuMR with the 

outcomes of 3D imaging. 

 

Subgroup analysis of the results was also carried out to assess the influence of gestational 

age on diagnostic accuracy and image quality. Gestational age was separated into two 
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groups, comprising fetuses up to and including 23 completed weeks and those of 24 weeks 

gestation and older. The rationale being that younger fetuses are relatively small and have 

more freedom to move which may influence the ability to acquire diagnostic datasets. 

Influence of image quality on diagnostic accuracy was also analysed to determine the 

relationship between them. In cases where ventriculomegaly was diagnosed, the atrial width 

measurements made on both 3D and 2D imaging were compared. Ventriculomegaly is 

usually categorised as mild (atria 10 -12mm), moderate (>12 - 15mm) and severe (>15mm). 

Although the size of both atria were measured, analysis was undertaken using the larger 

atrium for each fetus in order to best identify category changes concerning the severity of 

ventriculomegaly, which was of importance clinically. 

Statistical analysis was performed using SPSS software (IBM corp, Version 23.0) with chi-

squared used to explore the association of 3D image quality to age of fetus, diagnostic 

accuracy and diagnostic confidence. McNemars Test was used to compare analysis 

between 2D and 3D imaging.  

 

5.5 Results 

5.5.1 Image Quality 

A total of 345 fetuses had a 3D volume acquisition as part of their iuMR examination for the 

MERIDIAN study at the AUR in Sheffield. The resultant 3D data sets were assessed for 

image quality. Of these 221 fetuses were scanned at less than 24 weeks gestation, and 124 

fetuses at 24 weeks gestation or older. The number of 3D datasets assigned to each 

category of image quality is shown in Table 5.2, with representative images of each category 

shown in Figure 5.2. Images were graded as ‘Good’ in 39.4%, ‘Average’ in 34.5%, ‘Poor’ in 

15.7% and ‘Non-diagnostic’ in 10.4%.  Figure 5.3 shows graphical representation of the 

image quality categories shown as a percentage for each age group.   
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A chi-square test was conducted for association between gestational age and image quality. 

There was found to be a statistically significant association between gestational age and 

image quality, χ2 = 13.781, p = .003, with fetuses ≥24 weeks having a higher proportion 

(84.1%) of datasets scored as ‘Good’ or ‘Average’ than fetuses ≤23 weeks (68%).  

 

TABLE 5.2 Image Quality Assessment of the 3D FIESTA   

 Good Average Poor 
Non 

Diagnostic 
Total 

Gestational 
Age 

≤23 
weeks 

Count 73 76 41 29 219 

%  33.3% 34.7% 18.7% 13.2% 100.0% 

≥ 24 
weeks 

Count 63 43 13 7 126 

%  50.0% 34.1% 10.3% 5.6% 100.0% 

Total 

Count 136 119 54 36 345 

%  39.4% 34.5% 15.7% 10.4% 100.0% 

Figure 5.2 Representative 3D volume images for each category of image quality as assigned by the 

Neuroradiologist 

            GOOD                   AVERAGE                        POOR               NON- DIAGNOSTIC 
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For the remainder of the analysis, of the 345 datasets, 19 were excluded as there was no 

outcome reference diagnosis and 36 were excluded as the resultant images were non-

diagnostic. This left 290 for further analysis, of which 175 (60.3%) were ≤23 weeks GA and 

115 (39.7%) ≥24 weeks gestation. 

 

5.5.2 Diagnostic Accuracy 

 

The diagnostic accuracy of 2D and 3D imaging is shown in Table 5.3. 2D imaging gave a 

correct diagnosis in 94.5% and 3D imaging was correct in 91.4%, with both 2D and 3D 

giving a wrong diagnosis in 3.5% (n=10). The exact McNemar's test determined that this 

difference was not statistically significant p=0.078.  

A chi-square goodness-of-fit test indicated there was no significant association between 

diagnostic accuracy and 3D image quality with similar proportions for each category of 

‘Good’, ‘Average’, and ‘Poor’ (X2  = 0.206, p = 0.902). Figure 5.4 shows the number of 

accurate and inaccurate diagnoses made using the 3D acquisition in relation to the category 

of image quality. There was also no statistically significant association between gestational 
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age and diagnostic accuracy for either 2D imaging (X2  = 1.520 p= 0.218) or for 3D imaging 

(X2 1.553 p= 0.213). 

 

  

 

 

 

Table 5.3 Results of Diagnostic Accuracy of 2D and 3D imaging 

 ≤23 wks ≥24wks Total 

2D and 3D Agree and 
Correct 153 (87.4%) 106 (92.2%) 259 (89.3%) 

2D Correct, 3D Incorrect 10 (5.7%) 5 (4.4%) 15 (5.2%) 

3D correct, 2D Incorrect 4 (2.3%) 2 (1.8%) 6 (2.1%) 

Both Incorrect 8 (4.6%) 2 (1.8%) 10 (3.4%) 

Total 175 (100%) 115 (100%) 290 
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A separate review of the incorrect diagnoses made on 3D volume imaging revealed that 

erroneous measurement accounted for the inaccuracies in 13/15 of cases (Table 5.4). This 

included head size (case 2), cerebellum and/or vermis (cases 4,5,7,9,11-13) and over or 

underestimation of the size of the ventricles (Figure 5.7), resulting in pathology being 

excluded or diagnosed incorrectly.  

 

Table 5.4 Comparison of Diagnoses that were Correct with 2D imaging but incorrect with 3D Imaging 

Fetus 2D Report (Correct Diagnosis) 3D Report (Incorrect Diagnosis) 

1 Normal VM, mild 

2 Microcephaly, delayed sulcation Normal 

3 Normal VM, mild 

4 VM, ACC, germinal matrix cyst 
Hypoplasia of the cerebellar vermis, choroid 
plexus cyst 

5 Unilateral VM, cerebellar hypoplasia Normal 

6 Normal Periventricular calcification (CMV) 

7 VM VM,  cerebellar hypoplasia 

8 Normal VM, mild 

9 VM, ACC, CFA- polymicrogyria VM, ACC, cerebellar hypoplasia 

10 Absent CSP, heterotopia, VM VM 

11 VM VM, cerebellar hypoplasia 

12 Normal VM, Blakes pouch cyst 

13 Dandy Walker Spectrum Mega cisterna magnum 

14 Normal VM, mild 

15 Aqueduct stenosis Aqueduct stenosis, cerebellar hypoplasia 

 

 

5.5.3 Diagnostic Confidence 

 

The diagnoses were made with high confidence in the majority (96.2%) of cases on 3D 

imaging, including those where incorrect diagnoses were given with both 2D and 3D having 

similar results (p=0.549). Figure 5.5 shows the sample size for the correct and incorrect 

diagnoses with their associated levels of confidence for both 2D and 3D imaging. The 

percentage of diagnoses made with low confidence was similar for each category of 3D 

image quality (Figure 5.6).  
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2D Correct 2D Incorrect 3D Correct 3D Incorrect
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Figure 5.5 Diagnostic accuracy in relation to diagnostic confidence
The data table shows the number of fetuses for each category which are also 

represented as percentages by the bars.
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Figure 5.6 3D Diagnostic confidence in relation to  image quality
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 Results of the analysis of each case using the score-based weighted average flow chart, 

described in Chapter 3, are shown in Table 5.5. For 163 cases the score was 0, indicating 

that the level of confidence in relation to findings from the 3D acquisition had no impact, 

(either positive or negative) compared to 2D imaging. The level of confidence from the 3D 

acquisition had a positive impact in 7 cases and a negative impact in 20 cases. In 15 out of 

20 cases the diagnosis was incorrect but made with high confidence. In the remaining 5, the 

diagnosis was made with low confidence. In these cases either the diagnosis was correct, or 

the diagnosis agreed with 2D imaging but was incorrect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assessment of cases with ventriculomegaly  

 

Ventriculomegaly was diagnosed in 207 fetuses, either as an isolated finding or in 

conjunction with other brain abnormalities. In comparison to measurements made on 2D 

imaging, measurements made using the 3D acquisition were biased towards an 

overestimation of size (Figure 5.7). Analysis by independent t-test showed there was no 

significant difference between 2D measurements (mean 12.8, SD 4.0) and 3D 

measurements, (mean 13.3 SD 4.2), p=0.179 (two tailed). 

 

 

Table 5.5 Scores as a Result of the Analysis of the 

Influence of Diagnostic Confidence 

Number of Cases Score  

163 0 

6 3 

1 1 

7 -1 

13 -2 
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5.6 Discussion 
 

Evaluation of the diagnostic performance of a new MR imaging sequence is necessary in 

order to ensure that it is reliable and makes an additional contribution to the established 

imaging protocol. This is particularly pertinent in the case of fetal imaging, where limiting the 

exposure of the fetus to the MR environment is recommended. The aim of this research was 

to develop and assess a 3D acquisition for imaging the fetal brain in utero. 
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As described in Chapter 1, image quality is an intrinsic part of diagnostic performance. 

Fryback and Thornbury (152) proposed that adequate technical standards at Level One 

underpinned the higher levels of the diagnostic efficacy hierarchical model. Technical 

aspects include the quality of acquired images which is often assessed quantitatively in 

terms of contrast, resolution, noise and sharpness. These factors are compromised in fetal 

imaging due to the requirement for ultrafast sequences and are therefore not the most 

appropriate method by which to assess image quality in this situation.  An alternative 

approach is to measure image quality by its ability to fulfil its intended purpose. 

Radiologically, this relates to whether the image can be used by the radiologist to solve a 

specific clinical task, and is measured as diagnostic accuracy (252). Diagnostic accuracy 

and diagnostic confidence of the 3D imaging in conjunction with the subjective assessment 

were therefore used as indicators of image quality. The rationale for this was that, if image 

quality is poor, it is less likely to permit an accurate or confident diagnosis. Results of the 

analysis of the 3D imaging showed an accurate diagnosis in 91.4% of cases. Although this 

was lower than the diagnostic accuracy achieved with 2D imaging (94.5%) the difference 

was not found to be statistically significant. However, the non-diagnostic 3D data sets were 

excluded from the analysis as it was not possible to determine a diagnosis in these cases. 

There was also no statistically significant association between the diagnostic accuracy of 3D 

imaging and related image quality, with equal proportions of inaccurate and accurate 

diagnoses regardless of category of image quality. Gestational age did not influence 

diagnostic accuracy significantly but there was a higher proportion of fetuses ≥24 weeks 

whose images were categorised as 'good' and a higher proportion of younger fetuses whose 

images were considered of 'poor' quality. This is likely to be due to the small size of fetuses 

≤23weeks gestation and the available space they have to move freely compared to older, 

larger fetuses.  

 

Diagnostic accuracy is influenced by other factors such as the various radiological features 

of any diagnosed disease, the degree of relevant clinical information given to the radiologist, 
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and the experience and medical knowledge of the radiologist. These confounding variables 

were excluded in our assessment of the 3D volume acquisition as the cohort of patients, 

reporting radiologist and clinical referral details remained unchanged from the original 2D 

assessments. A significant amount of time was allowed between the original imaging and the 

later evaluation of the 3D datasets alone. It is acknowledged though, that limitations of this 

work include the possibility of recognition of the 3D dataset from the original imaging and the 

recollection of the original diagnosis, both of which may have introduced bias in the reporting 

of the 3D volume. Despite this, it was felt that this influence would introduce less bias than if 

a more inexperienced secondary, radiologist undertook the 3D reporting. 

 

The majority of the diagnoses made by both 2D and 3D imaging were made with high 

confidence regardless of whether the diagnosis was correct or incorrect. In 20 cases, 

however, diagnostic confidence had a potentially negative impact, indicated by the negative 

scores using the score-based weighted average assessment. The levels of diagnostic 

confidence were also unaffected by the quality of the 3D imaging. This, along with the high 

level of diagnostic accuracy, was surprising when the image quality was considered poor for 

15.7% of the 3D datasets. This could be due to the subjective assessment and consequent 

categorisation of image quality by the radiologist.  

 

The contrast mechanisms inherent in the FIESTA sequence had the potential to limit the 

ability to distinguish the evolving structures and maturation processes within the brain 

parenchyma (described in Chapter 1), making neuronal developmental abnormalities difficult 

to identify. The diagnostic accuracy achieved from the 3D acquisition did not support this 

suggestion, with the majority of incorrect diagnoses made using 3D imaging relating to the 

measurement of anatomical boundaries. This was particularly evident with regard to atrial 

width measurements in cases of ventriculomegaly. The reason for this disparity was not 

investigated by this study but previous research has demonstrated that discrepancy between 
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USS and iuMR measurements, as well as inter-observer discrepancies when using fetal 

iuMR to measure ventricles, is common (115). 

5.7 Conclusion 
 

Adequate 3D volume iuMR imaging was achievable in a high proportion of cases. Image 

quality of the resultant datasets graded ‘Good’, ‘Average or ‘Poor’ had little impact on either 

diagnostic accuracy or on the confidence with which a diagnosis is made. Whilst the full 

range of 2D imaging sequences achieved a higher rate of accuracy, the difference was not 

statistically significant, suggesting that the inherent image contrast of the 3D acquisition had 

no impact on its diagnostic capability.   
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Chapter 6 

 

Quantification of Total Fetal Brain Volume Using 3D MR Imaging Data 

Acquired in utero 
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6.1 Summary  
 

This chapter describes the method for post processing the 3D volume acquisitions 

introduced in Chapter 5 to determine reference values of total brain volumes. The cases 

used for determining these volumes were primarily from the Add-on cohort with no 

abnormalities on antenatal ultrasonography and in utero MR imaging. They therefore form 

the basis of our ‘normal’ reference data.  

This novel work was undertaken solely by the author, which includes 

 The post processing of the 3D imaging and manual segmentation of fetal brain 

anatomy to establish total brain volumes. This represents approximately 800 hours 

work. 

 Writing and preparation of the manuscript that resulted in the publication given below 

which also forms part of the content of this chapter.  

 

Jarvis D, Akram R, Mandefield L, Paddock M, Armitage P, Griffiths PD. 

Quantification of total fetal brain volume using 3D MR imaging data acquired 

in utero. Prenatal diagnosis. 2016;36 (13):1225-32. 

 

 

Images from 3D volume MR acquisitions of 132 fetuses were used to extract brain volumes 

by manual segmentation. The accuracy of the method for measuring volumes was assessed 

by measuring the volumes of 3D printed brain models of known sizes and also by 

comparison to values reported in the published literature. Reproducibility and reliability of the 

methodology were assessed by analysis of the brain volume results of two subgroups who 

had measurements made by both the primary and a secondary observer. These results 

recently been published in a peer-reviewed journal (253).  

Intra- and inter-observer agreement was high, with no statistically significant differences 

either between or by the same observers (p= 0.476 and p= 0.427, respectively). The results 

of the brain volume assessments are presented graphically with mean and 95% prediction 
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limits alongside estimates of normal growth rates. There was also high agreement between 

our volume measurements, the volumes of the brain models and the volumes of fetal brains 

measured at autopsy. We can conclude therefore that fetal brain volumes can be reliably 

extracted from iuMR imaging 3D datasets with a high degree of reproducibility. The resultant 

data could potentially be used as a reference tool in the clinical setting. 

 

 

6.2 Introduction 
 

It has been demonstrated that iuMR imaging is a valuable adjunct to USS in terms of 

increased diagnostic accuracy and diagnostic confidence. Despite this there is still room for 

improvement. This was evidenced by the 7-8% error rate for iuMR in MERIDIAN and a 

detailed analysis of those errors will be performed in late 2017. One possible explanation is 

the limited anatomical resolution of 2D MR imaging sequences. Acquisition of a 3D MR 

dataset not only permits reconstruction of the raw data into multiple anatomical planes but 

also, the ability to acquire thinner slices and their contiguity allows additional post processing 

techniques. Investigation of the use of the 3D volume was therefore undertaken to explore 

fetal brain growth and development by measuring brain volume for quantitative analysis.  

 

A routine part of the prenatal assessment of the fetus is to monitor fetal growth and this is 

currently undertaken by USS. With regard to the central nervous system, measurement of 

skull dimensions e.g. bi-parietal diameter (BPD), occipital-frontal diameter (OFD) and/or 

head circumference are routinely used as indirect indicators of fetal brain growth. While fetal 

biometry is an important part of prenatal screening to assess brain development there may 

be a disparity between those measurements and brain volume. Quantification of fetal brain 

volume using USS is possible but is not routinely used in clinical practice. In the literature 

volumes calculated using USS are more representative of total intracranial volumes which 

include the ventricles and extra axial CSF (254-256).  
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The post-processing of imaging data to investigate fetal brain development quantitatively is a 

relatively new area of research. Previous work initially focused on extracting the fetal brain 

anatomy from the surrounding tissues using manual segmentation in order to measure fetal 

brain volumes in small numbers of fetuses (257, 258). Manual segmentation has also been 

used to extract brain volume measurements in fetuses with growth restriction or with 

ventriculomegaly, and comparing those volumes to the brain volumes of normal fetuses 

(259, 260). All these reports used the ssFSE images that were acquired for the clinical 

evaluation of the fetal brain to extract brain volume measurements. 

 

The ability of ssFSE sequences to acquire images in ultrafast time scales and the resultant 

high T2 contrast, have made them the preferred choice for post-processing methods. The 

use of 2D ssFSE images in this way has its limitations. Spatial misregistration can occur as a 

result of fetal movement between each individually acquired imaging slice. Misregistration, 

along with the potential for uninterpretable images, could result in the inaccurate estimation 

of brain volume. To combat this, the development of motion correction methods for 

retrospective application to the MR data from ssFSE acquisitions have been developed.  

This uses image registration software that take one image from a single stack of imaging 

slices as a reference. The boundaries of the anatomy on the other slices are then aligned to 

the first image to create a complete motion free dataset (261-263). An improvement on this 

method used a two-step process which, in addition to slice matching, combine several 

imaging stacks of multiple orientations. This first required each imaging stack and orientation 

of the fetal head to be aligned by estimating the degree of movement. When combined with 

signal intensity matching and correction algorithms this created high resolution 3D datasets 

(264, 265). Despite this new approach, the possibility still existed of missing data due to 

movement between imaging slices.  The resultant reconstruction may therefore not have 

been a true reflection of the anatomy as interpolation would have been required to fill in the 

missing data. Further work has sought to try to correct this potential error (266).  
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Sophisticated computer vision algorithms have also been developed to automate 

segmentation of fetal brain anatomy. Automatic methods developed for adult brain 

segmentation have not been successfully applied to the fetal brain. This is due to the 

unpredictable location of the fetus due to movement, the inherently limited MR contrast of 

the fetal brain which also changes as the fetal brain matures, and the variation in tissue 

signal intensities due to the position of the fetal head in relation to the phased array coil and 

magnetic field bias effects (267). 

 

Several automated methods have been developed which use as a basis the more clearly 

defined anatomical boundaries produced by higher resolution motion corrected images. In 

addition, segmentation was based on predefined 3D atlases of fetal brain tissue distribution 

created using the average shape information from manually segmented 2D iuMR images of 

normal fetal brains (245, 268-273). These manually defined atlases of fetal brain anatomy 

were the basis of a number of automated methods. Habas et al (268) used them to create a 

statistical atlas based on the signal intensities of different tissues, and in combination with 

their location within the brain, automated segmentation algorithms were developed. This 

method has been used to both automatically segment different tissue regions within the fetal 

brain (269), the brain as whole, including early folding patterns (268, 274-276) and to study 

the brains of fetuses with mild ventriculomegaly (277). An alternative method for automatic 

fetal brain segmentation used templates from predefined atlases created by manually 

segmented fetal brains at different gestational ages. Using shape and size, rather than 

tissue signal intensities, new subjects were matched to the most appropriate template. This 

non-rigid registration method then initiated automated segmentation (262, 272, 278).  

 

In most implementations a certain amount of user input is required to locate the brain within 

the imaging volume for successful slice to volume reconstruction. However, algorithms have 

recently been introduced to fully automate the process (279, 280). They combine motion 

correction with automated segmentation to create images of the fetal brain which are both 
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anatomically correct and have a high level of detail. There are, however, three potential 

disadvantages to these methods. Firstly, all the methods used to date utilised imaging data 

acquired using the ssFSE sequence, and based automated segmentations on 

predetermined knowledge of the size and shape of a fetal brain at equivalent gestations 

(templates) determined by manually segmented images.  The automated segmentations 

were based on data which may have been inaccurate due to inter-slice motion and 

misregistration of data. The templates therefore have to be corrected to ensure accurate 

data. Secondly, it is unclear how the automated segmentation methods, being based on 

intensity distributions and growth trajectories drawn from healthy fetuses, could be applied to 

cases where fetal development is not following normal trajectories of growth and sulcation 

due to pathological or developmental abnormalities. Even measurements close to normal 

would be biased by the template, to an extent which is difficult to quantify. The brain 

abnormalities in which automatic segmentation has been applied successfully are growth 

restriction and isolated mild VM (277, 281). Neither of these pathologies challenge the 

accuracy of the automated methods as fetal anatomy and brain contours in these cases are 

similar to normal brains. Thirdly, the software and expertise to develop the sophisticated 

computer vision algorithms is rarely available in clinical situations, which precludes the 

routine application of automated motion correction and segmentation methods. 

6.2.1 Study Aims 

 

Having refined a method for acquiring 3D MR data sets of the fetal brain, our aim was to 

establish a reliable method of measuring normal ranges of fetal brain volume using the 

resultant imaging data. This would permit the application of these measurements in routine 

clinical practice and would allow them to be used as a reference for future cases when 

significant deviation from normal brain development was suspected. 

The aims of this research were:- 

 To establish reference values of fetal brain volumes derived from a cohort of 

normally developing fetuses across a wide gestational age range;  
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 To assess the accuracy of our method for measuring brain volumes by using 3D 

printed brain models of known volumes and by comparing the brain volumes with 

those in the published literature; 

 To assess the reliability of the resultant fetal brain volumes by inter and intra 

reproducibility measurements. 

 

6.3 Methods 
 

6.3.1 Participants 

 

Pregnant women whose fetuses had no abnormalities somatic or brain on USS and were at 

no increased risk of brain abnormalities were recruited from one of two sources: the 

MERIDIAN Add-on study, or other research studies sponsored by our Institution (282).  All 

participants consented for their imaging data to be used for research and training purposes. 

The gestational age at which the iuMR study was performed is quoted in relation to the 

estimate of fetal age made on second trimester USS. To confirm normal appearances, the 

iuMR studies were reviewed by a consultant paediatric neuroradiologist (PDG) with over 15 

years’ experience reporting iuMR brain imaging. 

6.3.2 Exclusions  

Datasets were excluded if the entire fetal brain was not included in the MR imaging volume or 

if an abnormality was subsequently suspected after review by the neuroradiologist.  

6.3.3 Data Acquisition and Image processing 

The method for acquiring the 3D MR imaging data sets used for this quantitative analysis are 

described in Chapter 5. The DICOM datasets from each examination were anonymised and 

transferred to a standard PC and converted into Analyse format before being loaded, one 

case at a time, into 3D Slicer, (the image processing and analysis software package, 

(http://www.slicer.org,(283)) for segmentation. 3D Slicer was chosen as it is a free public 
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domain software and is relatively easy to use for a variety of image processing applications 

(the instructions for 3D slicer are outlined in Appendix 12). Anatomical areas of the fetal 

brain were outlined freehand on the axial images due to the higher in-plane resolution of that 

orientation, although the coronal and sagittal planes were used for reference to improve 

accuracy (figure 6.1a-c). The anatomical boundaries of five regions were delineated: 

cerebral ventricles (including lateral, third and fourth ventricles and cerebral aqueduct), right 

and left cerebral hemispheres, infratentorial brain (cerebellum and brain stem to the level of 

the medulla/spinal cord junction) and the extra-axial CSF spaces. Different colour labels 

were used to differentiate each anatomical area (figure 6.1d-e).   

 

 

d f 

c b a 

e 

Figure 6.1 Axial image (a) and reconstructed coronal and sagittal images (b and c) as 

displayed by the 3D Slicer software. Figures d, e and f, the corresponding images with manual 

annotation completed and with the different regions represented by colours: blue for the 

ventricular system, yellow and cream for the cerebral hemispheres, green for the brain stem 

and cerebellum and red for the extra-axial CSF. 

Image reproduced from Jarvis D, Akram R, Mandefield L, Paddock M, Armitage P, Griffiths 

PD. Quantification of total fetal brain volume using 3D MR imaging data acquired in utero. 

Prenatal diagnosis. 2016;36 (13):1225-32. 
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Segmentation of the fetal brain in this way allowed initial analysis of subdivisions (brain 

parenchyma and ventricles), offered the potential for additional analysis of anatomical 

subdivisions in the future, for example right, and left cerebral hemispheres, or supratentorial 

and infratentorial brain. Using the model-making algorithm within 3D Slicer, the resulting 

annotated areas created a 3D representation of the volume that could be visualised and 

rotated. This was a requirement of the software to permit the volume data to be determined. 

Masks representing the segmented tissues were exported in Analyze format and custom 

software written in the C programming language to calculate the volumes of each structure. 

The software interrogates the tissue mask file that was created from the manual 

segmentations in 3D Slicer and sums the number of voxels belonging to each tissue class, 

outputting a volume for each by multiplying the number of voxels by the voxel size in each 

region of interest (ROI). The software outputs the volumes into a text file format that can 

then be loaded into a spreadsheet for further analysis. 

 

6.3.4 Calculation and validation of brain volumes 

 

For this work we calculated total brain volume (TBV) by adding the volumes of both cerebral 

hemispheres and the infratentorial structures. It should be noted that these values did not 

include the volume of the enclosed cerebral ventricles which were analysed separately. The 

resultant volumes were used to chart fetal brain growth in relation to gestational age after 

statistical analysis (see below).  We also plotted total intracranial volume (TICV), i.e. TBV+ 

extra axial CSF+ ventricular volume against gestational age, and against TBV. 

 

The manual segmentation of all cases was performed by DJ (Observer 1) and a subgroup of 

30 randomly selected cases were re-analysed by the same observer, after a 2 month 

interval, blinded to the original measurements in order to investigate intra-observer 

reproducibility. A different group of 30 fetal brains were analysed by a second operator 

(observer 2, RA), who was less experienced in fetal brain segmentation than observer 1, in 
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order to study inter-observer reliability. We also imaged two 3D printed brain models of 

different stages of gestation (23 weeks and 30 weeks) in order to establish the level of error 

that our methods for estimating brain volume might introduce. Volumes for both the models 

were established by placing them separately into a measuring beaker of water and the 

volumes were defined by the amount of water displaced. The brain models, being made of a 

polymer, do not give an MR signal, therefore each was placed in a glass beaker and 

suspended in gelatin (Figures 6.2 a and b). All air bubbles were removed so that these 

would not interfere with the volume of the brain model, as these also do not give an MR 

signal. The gelatin surrounding the models enabled a 3D MR data set to be acquired, with 

the signal void being a true representation of the size and shape of the brain models (Figure 

6.2 c and d).  The MR scanner, coil, imaging parameters (apart from partition thickness) and 

technique used to acquire the 3D data of the brain models were identical to those used for 

the iuMR fetal brain acquisitions. Each brain model was scanned 3 times. The smaller model 

was scanned using partition thicknesses of 2.0, 2.2 and 2.4mm and the larger model using 

2.2, 2.4 and 2.6mm partition thickness in order to replicate the adjustments made for the 

variation in sizes of the real fetal brains. 
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The brain volume measurements were also compared to the published weights of fetal 

brains measured at post mortem examination (284).  It is impossible to know the real 

weights of fetal brains in utero, and therefore their weight was estimated from the volume 

measurements using a density of 1.08g/cm3, a calculation proposed by Breeze et al (285). 

We also included ventricular volume in the calculation of weight from brain volume in order 

to allow for retained CSF when the post mortem brains were weighed. The calculation for 

conversion of each brain volume to weight was therefore;-  

    

(TBV [cm3] x 1.08) + Ventricular volume [cm3] = weight in g. 

 

a b 

c d 

Figure 6.2 23 weeks gestation brain model suspended in gelatin (a) and resultant 

MR image (c) and equivalent images (b and d) for the 30 week brain model 
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6.3.5 Statistical Analysis 

 

All total brain volumes are quoted in cm3 and rounded to one decimal place. Statistical 

analysis on the data was performed using SPSS software (IBM, version 20).  

Intraclass correlation coefficient (ICC) was calculated to convey association within, and 

between, observers for fetal brain volumes, and independent t-tests were used to compare 

differences. Bland-Altman plots were drawn to assess inter and intra-observer agreement, 

variability and bias.  Disagreement between measurements was considered clinically 

significant if differences in volume measurements both between and within raters were 

>10% and statistically significant if p= <0.05. 

Regression Analysis of volumes versus gestational age was performed and regression fit 

chosen on the basis of highest adjusted R2 value selected by successive analysis of 

polynomial fits (linear, quadratic and cubic).  Analysis of the residuals was performed to 

check model fit and best regression fit used to determine 95% confidence intervals (CI) and 

prediction limits. 2 and 3 Standard deviations from the mean were calculated for TBV at 

each time point, based on the original raw data, and are presented in tabulated form. 

Ventricular system volumes were also measured and plotted against both gestational age 

and TBV. 

6.4 Results 
 

6.4.1 Brain volumes 

 

132 normal fetal brains between 18 and 36 weeks’ gestation were analysed.  

The best regression fit was found to be a quadratic model with R2
adj = 0.974 whose 

prediction equation is y=0.53x2 -13.33x+ 89.69. The TBV of all cases are shown in Table 6.1 

and presented graphically in Figure 6.3, which displays the regression fit line. Also displayed 

are the 95% confidence intervals for both the predicted limits of the means and the predicted 

individual y values for each gestational age in relation to the regression line. 



176 
 

The TBV ranged from 20.2cm3 at 18 weeks to 289.8cm3 at 36 weeks gestation, with a mean 

growth rate of 12.8% (range 1.0 - 21.4%) per week. 

 

Figure 6.3 Graphical Representation of Total Brain Volume at each completed week. Dashed lines representing 

95% confidence intervals (prediction limits) and the intervals based on the predicted mean (dotted lines) from the 

regression line for each gestational age.  

Image reproduced from Jarvis D, Akram R, Mandefield L, Paddock M, Armitage P, Griffiths PD. Quantification of total 

fetal brain volume using 3D MR imaging data acquired in utero. Prenatal diagnosis. 2016;36 (13):1225-32. 
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Table 6.1 Total Brain Volume Measurements  

Gestation 
(Completed 

Weeks) 

Frequency 
(n=132) 

RANGE cm3 Values Based on Original Raw Data (cm3) 
PREDICTION LIMITS using Polynomial Regression                 

(R2= 0.974) 

Minimum Maximum Mean SD 
3SD 

Below 
Mean 

2SD 
Below 
Mean 

2SD 
Above 
Mean 

3SD 
Above 
Mean 

Predicted 
Mean 
Value 

Lower 
Predicted 

CI 

Upper 
Predicted 

CI 

Lower 
predicted 

Limit 

Upper 
predicted 

Limit 

18 2 20.3 24.6 22.5 2.1 16.1 18.2 26.7 28.8 19.8 12.6 27.0 -4.6 44.2 

19 3 25.7 31.1 28.6 2.7 20.4 23.1 34.0 36.7 25.9 20.2 31.6 1.9 49.9 

20 4 25.4 44.2 34.1 7.6 11.3 18.9 49.3 56.9 33.0 28.5 37.5 9.3 56.8 

21 11 29.6 45.9 38.8 5.4 22.7 28.1 49.5 54.8 41.2 37.7 44.8 17.6 64.8 

22 10 42.0 56.4 48.7 4.6 34.9 39.5 58.0 62.6 50.5 47.5 53.4 27.0 74.0 

23 9 52.3 73.2 60.3 6.0 42.2 48.3 72.4 78.4 60.8 58.1 63.5 37.3 84.2 

24 11 65.1 93.6 75.4 9.0 48.3 57.3 93.4 102.4 72.1 69.4 74.8 48.6 95.6 

25 5 71.9 102.7 87.7 11.6 52.8 64.4 110.9 122.5 84.5 81.8 87.3 61.0 108.0 

26 4 90.1 112.0 99.3 9.8 69.8 79.7 118.9 128.7 98.0 95.1 100.8 74.5 121.4 

27 7 96.1 137.1 110.6 12.6 72.9 85.5 135.7 148.3 112.4 109.6 115.3 89.0 135.9 

28 10 92.8 144.3 126.5 9.2 98.9 108.1 144.8 154.0 128.0 125.1 130.9 104.5 151.5 

29 20 116.3 169.0 143.2 13.1 104.0 117.1 169.3 182.4 144.6 141.8 147.4 121.1 168.1 

30 4 159.6 177.2 164.4 8.6 138.8 147.3 181.5 190.1 162.2 159.5 165.0 138.8 185.7 

31 8 178.1 205.7 186.9 9.1 159.7 168.8 205.0 214.0 180.9 178.2 183.7 157.5 204.4 

32 6 165.7 227.8 195.5 22.4 128.3 150.7 240.4 262.8 200.7 197.6 203.7 177.2 224.2 

33 4 192.9 252.0 217.3 25.6 140.4 166.0 268.5 294.1 221.5 217.9 225.1 197.9 245.1 

34 7 221.7 262.4 247.0 13.3 207.1 220.4 273.6 286.9 243.3 238.8 247.8 219.6 267.1 

35 5 239.5 292.1 272.0 20.7 210.0 230.6 313.3 334.0 266.2 260.5 271.9 242.2 290.2 

36 2 256.9 292.5 274.7 25.2 199.0 224.2 325.1 350.3 290.2 283.0 297.3 265.8 314.5 
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Total intracranial volumes (TICV) ranged from 39.6 cm3 at 18 weeks gestation to 519.6 cm3 

at 35 weeks gestation which were also plotted against gestational age and presented 

graphically in Figure 6.4. Lines representing 95% confidence intervals and the intervals for 

the predicted means and the predicted y values for each gestational age from the regression 

line are also displayed. This was also found to be a quadratic model with R2
adj = 0.947.  

 

 

 

 
 

Figure 6.4 Graphical Representation of Total Intracranial Volume at each completed week. 

Dashed lines representing 95% confidence intervals (prediction limits) and the intervals based on 

the predicted mean (dotted lines) from the regression line for each gestational age. 
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There was a strong positive correlation between TBV and total intracranial volume (TICV) 

(r [98] = 0.983, p=<0.001, Figure 6.5). The ratio between TBV and TICV increased slightly 

with gestational age (Range 40.6-71.9 cm3, Mean 57.3cm3, SD 5.3cm3, (95% CI 55.8 – 58.1) 

(Figure 6.6). 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 Graph Showing Relationship between Total Brain Volume and Total Intra-cranial Volume 
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Figure 6.6 Graph Showing Relationship between the Ratio of Total Brain Volume to Intracranial 

Volume and Gestation 
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6.4.2. Ventricular System Volumes  

 

Ventricular system volumes (VV) ranged from 1.3cm3 to 11.6cm3 (Mean 5cm3, SD 2.3cm3, 

95% CI 4.6 - 5.4cm3) and the best regression fit was found to be a quadratic model with R2
adj 

= 0.45 (Figure 6.7). The ratio of TBV to ventriclular volume (VV) ranged from 2cm3 to 11cm3 

(95% CI =4.7- 5.7). It showed a negative correlation to gestational age (r = -0.683), and the 

best regression fit was a cubic model R2
adj = 0.633 (Figure 6.8).  

 

 

 

 

 

 

 
 

Figure 6.7 Graph showing Ventricular Volume in Relation to Gestational Age. 
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6.4.3 Reliability and Reproducibility 

 

The intra-rater analysis showed good repeatability of TBV measurements when observer 1 

re-analysed a subgroup of 30 cases after a 2 month period (ICC=0.999, CI, 0.998-1.00, 

p<0.001). A one sample t test revealed that the brain volume differences between 

measurements were not statistically significant, p=0.427, (95% CI -0.68 to 1.57).  The Bland-

Altman plot of the differences between measurements are shown in Figure 6.9 with one 

value outside the 95% CI but no bias between measurements observed (B= -0.001, 

p=0.877). Table 6.2 shows the raw data TBV of first and second measurements and the 

percentage difference between the two measurements, which were between 0.31 and 7.10% 

(Mean 0.93%, SD 3.39%). 

 

Figure 6.8 Graph showing TBV/Ventricle Ratio in Relation to Gestational Age. 
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Inter-rater analysis demonstrated good reliability with no statistically significant difference 

found between measurements: p=0.476 (95% CI, -1.799 to 3.761). The average measure 

ICC was 0.977, p<0.001 (95% CI, 0.952 to 0.989). The corresponding Bland-Altman plot for 

inter-rater agreement (Figure 6.10) demonstrates the limits of agreement with one value 

outside the 95% CI, and a bias toward higher values by the more experienced operator 1 

(DJ)  (B= -0.123, p= 0.001). The changes in measurement between observers as 

percentage difference, range between 0.05 and 9.31% (Mean 1.27%, SD 4.8%) as shown in 

Table 6.3 

Figure 6.9 Bland Altman plot of the differences between the two measurements made by the 

experienced operator (observer 1, DJ) Solid black line=mean. Dashed lines=95% limits of 

agreement.  

Mean Volume Cm3 

V
o

lu
m

e
 D

if
fe

re
n

c
e
 C

m
3
 



183 
 

 

 

 

 

 

 

 

Figure 6.10 Bland-Altman plot of differences between operator 1 (DJ, experienced) and 2 

(RA, newly trained). Solid black line=mean. Dashed lines=95% limits of agreement.  
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Table 6.2 Intra Rater Reproducibility TBV Measurements 
(cm3) 

Case 
Number 

Observer 1 
First 

Measurement 

Observer 1 
Second 

Measurement 

% 
Change 

1 69.6 67.8 -2.5 

2 121.0 125.9 4.1 

3 109.9 108.4 -1.4 

4 25.4 26.3 3.5 

5 44.1 46.7 5.8 

6 88.3 93.2 5.5 

7 107.7 102.7 -4.6 

8 29.6 30.3 2.5 

9 287.6 286.7 -0.3 

10 50.4 54.0 7.1 

11 159.6 160.7 0.7 

12 41.6 43.8 5.2 

13 76.0 73.2 -3.7 

14 114.0 110.0 -3.5 

15 54.0 52.3 -3.2 

16 195.6 196.7 0.5 

17 58.7 61.3 4.3 

18 219.7 217.2 -1.1 

19 81.3 84.5 3.9 

20 41.5 42.6 2.6 

21 257.9 263.7 2.2 

22 155.0 159.2 2.7 

23 65.6 65.1 -0.8 

24 161.2 155.2 -3.7 

25 46.6 48.4 3.8 

26 54.9 55.3 0.7 

27 41.1 39.5 -4.0 

28 129.3 125.9 -2.6 

29 93.6 96.5 3.1 

30 137.1 138.3 0.9 

Mean 103.9 104.4 -0.5 

STDev 68.2 68.1 0.2 
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Table 6.3 Inter Rater Reproducibility TBV Measurements 
(cm3) 

Case 
Number 

Measured 
TBV Observer 

1 

Measured 
TBV Observer 

2 

% 
change 

31 134.5 139.7 3.8 

32 120.4 120.5 0.1 

33 153.7 142.3 -7.4 

34 117.4 121.3 3.4 

35 135.7 139.9 3.1 

36 123.2 132.5 7.5 

37 133.7 146.5 9.5 

38 137.1 144.4 5.3 

39 152.0 146.5 -3.6 

40 188.7 178.4 -5.4 

41 192.2 192.8 0.3 

42 121.3 132.6 9.3 

43 168.9 169.5 0.3 

44 142.5 151.4 6.2 

45 155.7 156.5 0.6 

46 135.7 147.0 8.3 

47 136.9 133.0 -2.8 

48 177.7 177.0 -0.4 

49 154.3 157.0 1.8 

50 124.8 129.7 4.0 

51 165.7 158.9 -4.1 

52 221.7 204.3 -7.9 

53 292.6 282.7 -3.4 

54 127.2 126.1 -0.9 

55 130.4 129.4 -0.8 

56 133.9 141.4 5.5 

57 121.8 128.7 5.6 

58 126.5 123.8 -2.1 

59 126.2 133.1 5.4 

60 150.7 145.9 -3.2 

Mean  150.1 151.1 -0.7 

STDev 36.5 32.3 13 
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The volumes of the brain models used to test the accuracy of our method, when measured 

by water displacement, were 68.0cm3 (23 weeks gestation brain model) and 158.5cm3 (30 

weeks gestation brain model). The results of the manual segmentations showed the 

experiment had recorded between 101.5 and 99.5% of their actual volume (Table 6.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

The mean weights of the fetal brains measured at post mortem examination ranged from 

32.7g at 18 weeks gestation to 319.3g at 36 weeks gestation (mean 153.6g, SD 90.4). The 

mean estimated weights from the iuMR volume measurements were 27.0g at 18 weeks to 

285.8g at 36 weeks gestation (mean 141.4g, SD 90.5). The weights from the measured 

iuMR brain volumes were marginally lower than the post mortem weights (Figures 6.11 and 

6.12). but a one sample t-test revealed no statistically significant differences between the 

two measurements, (p=0.68).  

 

 

Table 6.4 Accuracy of manually segmented 3D volume data compared to ground truth 

volume measurements in two brain models 

Partition Thickness of MR 

Acquisition for the Brain 

Model 

Manually Segmented 

Volume Measured (cm3) 
Relative Accuracy 

Small, 2.0mm 69.0 1.5% 

Small, 2.2mm 68.6 0.9% 

Small, 2.4mm 68.3 0.4% 

Large, 2.2mm 158.4 0.1% 

Large, 2.4mm 157.9 0.4% 

Large, 2.6mm 157.7 0.5% 
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Figure 6.12 Graph plotting the mean weight of fetal brains at each 

gestational age measured at post mortem (red marker) and the mean weight 

as a result of recalculating the iuMR data (blue markers) 

Figure 6.11 Box plot comparing the fetal brain weights at post mortem 

with the estimated weights using iuMR volume measurements. 
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6.5 Discussion  
 

We have demonstrated that quantification of fetal TBV using 3D steady state sequences is 

possible in second and third trimester fetuses. The time required for manual segmentation 

ranged between 1 and 3 hours depending on the complexity of the surfaces (more mature 

fetuses have more complex surfaces because of progressing sulcation/gyration). Despite 

this time requirement, our method appears to be accessible, easily replicated and 

reproducible, even when undertaken by a relatively inexperienced operator. A significant 

advantage to having manually segmented such a large number of fetal brains is the potential 

to use the resultant label maps as templates to form an Atlas of normative brain 

development to guide automated methods. To date this data has not been previously 

available.  The results of 132 normal fetal brains are presented in this Chapter, but recognise 

that we require more cases to consolidate the data, particularly at the upper and lower ends 

of our range of gestational ages. For example, there were only 2 data points at 18 

gestational weeks and 3 at 19 gestational weeks. This has resulted in unrealistic lower 95% 

CI for predicted brain volumes at these early gestations (i.e. below zero at 18 weeks) so 

should be regarded with caution. It is therefore possible that the standard deviations 

calculated from the original TBV data may provide more reliable volume estimations for 

these gestations.  

 

It is not feasible to know the true volumes of the fetal brains but our tests, as judged by the 

segmentation results of the brain models of known volume, suggest our method is accurate 

with only a small margin of error (<2%). The accuracy, reliability and reproducibility of our 

methods, specifically comparing the results of different observers and the results of the 

same observer at different times is important in order to ensure that any deviation from 

values observed in the normal population can be assigned to abnormal development rather 

than to inconsistencies in the methods used to extract the data. Our analysis by ICC and 

Bland-Altman plot have shown that the discrepancies both within the same rater and 
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between raters, were not statistically significant, so it is encouraging that there are not likely 

to be any major systematic methodological flaws. Inter-observer agreement was not as 

closely matched when compared with intra-observer assessments (shown by the wider limits 

of agreement and the bias toward higher volumes by the more experienced observer). 

However, these differences are still small and thus unlikely to cause clinically relevant errors. 

The discrepancies could be due in part to earlier, more inexperienced measurements by 

observer 2 in the training period or due to variation in the practical aspects of segmentation 

such as image windowing. Although 3D Slicer has previously been used for fetal brain 

segmentation and 3D reconstruction (286) (287, 288), the initial information was acquired 

from 2D ssFSE acquisitions which then required post processing algorithms to create 3D 

data sets (266, 289).  Our method has the advantage of acquiring a 3D data set which is 

possible on most clinical scanners. As it does not require and advanced post-processing to 

create the further 3D information required, it could easily be implemented in practice.  

 

One possible solution to reduce the required time for manual segmentation would be to 

automate the process to extract the volume data Although several publications have 

described the development of automated segmentation techniques, they have not reported 

any brain volumes measured using these techniques (273, 281). Those that have published 

values have focused on different anatomical subdivisions of the brain to our own study, 

making it difficult to correlate our TBV findings with the published work. Indeed most 

previous studies report volume data from the supratentorial brain only (281, 290, 291). Other 

studies have reported brainstem and cerebellar volumes but without the paired 

supratentorial data (276, 292, 293). We chose to quantify the fetal TBV as the borders of the 

whole brain can be easily identified due to the contrast between the brain parenchyma and 

CSF. In earlier studies smaller areas within the brain were less consistently identified due to 

poor resolution (281). Clouchoux et al (294) published brain volumes, measured using 

motion correction and automated methods, from 64 healthy second and trimester fetuses. 

Unlike our data which described the relationship between gestational age and brain growth 
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as quadratic, they found a linear relationship. This may be explained by the fact that whilst 

TBV matched at an earlier gestation (25 weeks in both studies) at later gestation (36 weeks) 

the volumes Clouchoux et al measured were greater than the volumes measured by our 

method. The reason for this difference is unclear but a possible explanation is the limited 

number of fetuses measured at this gestation.  

 

We also compared our volume measurements to the weights of total fetal brains recorded at 

post mortem examination (284). The results showed that although there was a good match 

between the two measurements, the post-mortem weights were consistently marginally 

larger than the weight taken from volume measurements. This may have been due to post 

mortem brain oedema. An alternative explanation may be that the method of estimation of 

brain weight from brain volumes was limited by the use of estimated fetal brain density and 

assumption of retained CSF. As far as we were aware there was no published data 

regarding density of the fetal brain. We therefore relied on the density postulated by Breeze 

et al (285).  They estimated average tissue density for the fetal brain based on their findings 

and published paediatric brain densities, but acknowledge that the resultant value should be 

used with caution.  

Egana-Ugrinovic et al (295) calculated TBV (consisting of the supra and infratentorial 

compartments) for 50 fetuses at 37 weeks gestation, and reported mean values of 312.07 

cm3 (SD 40.85cm3). These values included the intraventricular CSF spaces, unlike our data 

which measured brain parenchymal volume only. We were unable to compare our data with 

that of Egana-Ugrinovic et al. directly, because we did not obtain any data for fetuses of 37 

weeks gestation (the maximum age of our fetuses being only 36 weeks), although 

extrapolation of our curves suggests a close match, the mean value being 320cm3.  

Anatomical areas measured by previous studies report a growth rate of 15% per week (260, 

276). Our work demonstrated that a quadratic model provided best fit to describe the 

changes of fetal brain growth relative to gestational age, with a mean growth rate of 12.8% 

(range 1.0 - 21.4%) per week. 
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6.6 Conclusions 
 

This study evaluated a manual method to post-process 3D iuMR data to determine 

quantitative measurements of the fetal brain with a high degree of reproducibility. The 

resultant graph of normal brain volumes across a broad range of gestations, with associated 

prediction limits, could potentially be used as a reference tool in the clinical setting. The 

normative data generated will form the basis of continuing work allowing comparisons to be 

made with the brain volumes of fetuses in whom there is suspected abnormal development, 

for example in fetuses affected by microcephaly. This could potentially provide additional 

and confirmatory evidence beyond routine imaging and biometry, and improve the diagnostic 

capability of iuMR imaging. Part of the ongoing work will also be to increase the reference 

data by studying a larger number of normal fetuses, particularly at the extremes of the 

gestational age range 
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Chapter 7 

 

Clinical Applications of 3D fetal brain MR imaging and post processing. 
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7.1 Chapter Summary 
 

Part of the second aim of this thesis was to investigate the clinical application of the 3D 

volume acquisition. Chapter 5 demonstrated that the 3D volume acquisitions are a reliable 

addition or alternative to 2D sequences in our routine fetal imaging protocol and in Chapter 6 

it was shown that the ability to determine brain volume measurements had additional 

potential for the diagnosis of brain abnormalities. This chapter revisits the key brain 

abnormalities that were first described in Chapter 1 and demonstrates how the additional 

information provided by the 3D acquisition and post-processing methods can be used in 

novel ways to potentially improve diagnosis. This is achieved using images and quantitative 

data to demonstrate how the abnormalities affects the external appearance of the brain and 

its growth relative to gestational age. Case studies of each abnormality are also included to 

show how the additional information could potentially be applied in clinical practice.  

The images and cases presented with abnormalities are from the primary MERIDIAN study 

and normal fetal brains are from the MERIDIAN Add-on study. Approval was also obtained 

from the Institutional Clinical Effectiveness Unit and Research Department to review and 

include two clinical cases. This work resulted in three peer reviewed publications (253, 296, 

297)  

This work in this chapter was undertaken solely by DJ and includes; 

 The manual segmentation of 150 fetal brains affected by abnormalities (700 hours 

work) 

 The preparation of the data files for 3D printing  

 Analysis of VM cases. 

 Writing or contributing to the manuscripts that were published in peer reviewed 

journals as a result of this work. These include; 
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 Jarvis D, Armitage P, Dean A, Griffiths PD. Surface reconstructions of foetal brain 

abnormalities using ultrafast steady state 3D acquisitions. Clinical radiology. 

2014;69(10):1084-91. 

 
 

 Griffiths PD, Jarvis D. In Utero MR Imaging of Fetal Holoprosencephaly: A Structured 

Approach to Diagnosis and Classification. AJNR American journal of neuroradiology. 

2016;37(3):536-43. 

 

 Jarvis D, Griffiths P, Majewski C. Demonstration of Normal and Abnormal Fetal 

Brains Using 3D Printing from In Utero MR Imaging Data. American Journal of 

Neuroradiology. 2016;37(9):1757-61. 

 

 Jarvis D, Griffiths PD. Clinical applications of 3D volume MR imaging of the fetal 

brain in utero. Prenatal Diagnosis. 2017, 37, 556–565 

 

The 3D printed models shown in this chapter were produced by Dr C Majewski at the Centre 

for Advanced Additive Manufacturing (AdAM) at the University of Sheffield, using imaging 

data and segmentations created by DJ.  

 

7.2 Introduction  

Manual segmentation of the fetal brain from the surrounding anatomy using the 3D Slicer 

software creates label maps, which can be used for several different applications. This 

includes generation of the quantitative data previously described, as well as the creation of 

electronic 3D models of the fetal brain. The data obtained can also be saved in the 

stereolithography (.stl) format. As this is compatible with 3D printing technology, we were 

able to utilise this to have several fetal brain models manufactured. 3D printing is being used 
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increasingly in healthcare for anatomical parts either for bespoke implants or to increase 

patient understanding, but the manufacture of the fetal brain models shown in this chapter, is 

a novel application.   

It is important to consider how the additional quantitative information and visualisation 

techniques can contribute to the diagnosis of fetal brain abnormalities. This chapter 

therefore, uses these unique ways of visualising the external surfaces to show both normal 

anatomy and the manifestation of developmental brain abnormalities that were described in 

chapter 1 to show the additional value of 3D imaging. 

7.3 3D Printing 
 

3D Printing (also known as Additive Manufacturing) creates parts in a layer-by-layer manner 

by digitally transforming the electronic 3D data into a series of 2D slices. Our fetal brain models 

were created using laser sintering, a powder bed fusion process, whereby polymer material 

(Nylon-12 powder) is melted by a CO2 laser and deposited one layer at a time. Each new layer 

is sintered to the one below and the re-solidified layers of melted powder eventually make up 

the brain model. Once cooled, unmelted powder is removed using compressed air to reveal 

the finished model. 

The main advantages of 3D Printing are the ability to produce one-off models efficiently and 

cost-effectively. The relatively high mechanical strength that results from the Laser Sintering 

process compared with other 3D Printing processes made this a suitable method for 

manufacturing the brain models that may have to be handled by a large number of people. 

As described previously in Chapter 6, the fetal brains were segmented manually and 

assigned different colours to identify the different anatomical areas on each imaging slice 

within the acquired volume. Each of these anatomical areas is also assigned a numerical 

value in the label map. Each label within the map representing individual parts of the 

anatomy is stored in a separate data file, which was used to create the electronic 3D models 

and subsequently saved as .stl files for 3D printing. The .stl files cannot be edited and the 

resultant 3D printed model is an exact representation of the generated electronic 3D surface 
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model. The electronic model was therefore examined for any extraneous parts to ensure that 

the contours were in keeping with the relevant anatomical detail. Laplacian smoothing within 

3D Slicer was applied at the model building stage in order to smooth contours when 

necessary. In order for the brain model to be 3D printed as a complete, single part, only a 

single label can be identified at the segmentation stage (Figure 7.1) as the .stl data files of 

separate colour label maps would ultimately result in a brain model being printed as 

separate parts. Thus tissues assigned distinct labels in the map may need to be merged 

before 3D printing. 

 

 

 

However, there are scenarios where the ability to segment and print the brain models as 

multiple parts can be used to advantage. Firstly, by segmenting the brain into 3 separate 

cross sections, (Figure 7.2 a-c), the 2D images acquired using T2 FSE imaging were 

transposed onto cross sections of the 3D model. By acquiring the 2D data in the same 

orientation and slice positions as the 3D volume acquisition, the resultant 2D images were 

matched to the relevant cross sections of the 3D printed model as shown in Figure 7.2d and 

7.2e. This could help improve the understanding of fetal brain anatomy and how it relates to 

imaging data. Secondly, the majority of 3D Printing processes produce parts using a single 

colour, but it is possible to use the separate data files to produce a single model of multiple 

Figure 7.1 (a) Single colour label map, (b) resultant electronic 3D surface representation which is 

saved as an .stl file, (c) Resultant 3D printed model  

a b c 
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colours and/or materials. The use of two colours and materials within the same model were 

used to distinguish between the brain parenchyma and ventricular system within a brain 

model (Figure 7.3).  

 

 

 

Figure 7.2 (a) Fetal brain segmented with 3 labels defined in the label map, 

(b) and (c)   3D surface representations which are saved as three separate .stl 

files, (d) resultant 3 part 3D printed brain model and (e) cross sections with the 

relevant 2D images transposed onto the printed model. 

a b c 

d 

e 

Figure 7.3 A two-colour part produced on a Connex multi-material system, produced by 

Loughborough University. The model is of a 21 weeks gestation fetus with ventriculomegaly.  

The use of two materials of different colours allows clear differentiation of the ventricles 

(white material) compared to the remainder of the brain (clear Perspex). (a) inferior view, (b) 

superior view and (c) lateral view. 

 

a b c 
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A potential application for the fetal brain models is to improve anatomical understanding for 

radiologists who are keen to develop their skills in fetal neuroimaging. We have created a 

teaching file that contains several normal fetal brain models at different gestation and a 

number of abnormal cases with accompanying information to the condition demonstrated 

and selected images from both the 2D studies and 3D printed models. The 3D models could 

also be used as a novel visual aid for improving parental understanding regarding the impact 

of brain abnormalities on their fetus and assist in counselling, but further work is required to 

determine this. 

 

7.4 Visual and Quantitative Applications of 3D post-processing 
 

The remainder of this chapter revisits some of the brain abnormalities described in Chapter 

1. The images of surface reconstructions and 3D printed brain models, as well as tables of 

quantitative analysis based on the methods described in Chapter 6 are shown to provide an 

insight into how those abnormalities affect brain development. Several case examples are 

also included, some of which are from the teaching file. Firstly, 3D surface reconstructions 

and printed brain models of normal brains are shown to allow comparisons to be made with 

the brains affected by developmental abnormalities. 

 

 

7.4.1 Normal Brain Development 

 

The fetal brain grows and develops following a predetermined trajectory that results in both 

consistent and predictable sulcation and gyration formation. There may be some 

discrepancy due to natural biological occurrences which may lead to a small delay or 

advancement of cortical folding. The ability to identify early folding in some parts of the brain 

can also be limited due to inherent image resolution restrictions of iuMR imaging (298, 299). 

An understanding and knowledge of the process of cortical development is required to 
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ensure that pathological processes which disrupt or alter the normal trajectories of growth 

can be identified. Included in this section are images of electronic 3D surface reconstructions 

and 3D printed models of fetal brains at 6 different gestational ages (Figures 7.4 – 7.9), and 

images of the ventricular system which are representative of the anatomy regardless of 

gestational age (Figure 7.10). It should be noted that the 3D surface and brain models may 

not be of the same fetal brain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4 20 weeks gestation TBV 43.9cm3 

Figure 7.5 23 weeks gestation TBV 61.4cm3  

Figure 7.6 26 weeks gestation TBV 112.0 cm3                                                                                                        

Figure 7.7 29 weeks gestation TBV 135.7cm3  
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Figure 7.11a shows a photograph of a fetal brain of 28 weeks gestation taken at post 

mortem examination, contrasted with the equivalent 3D surface reconstruction (Figure 

7.11b), from a different fetus, generated using the MR imaging data acquired at an 

equivalent gestational age. Figure 7.12 demonstrates in two orientations the electronic 

surface reconstructions, compared with the resultant 3D printed models and pathology slides 

from the same fetus with a cortical formation abnormality at 26 weeks gestation. The images 

from these two cases demonstrate that the electronic surfaces generated by our post-

processing methods replicate with a high degree of precision the fetal brain from which the 

data was taken.  

Figure 7.9 33 weeks gestation TBV 192.9cm3  

Figure 7.10 Images of the ventricular system of a 28 weeks gestation fetus. Left to right - 

superior, lateral, frontal and posterior views. Ventricular system volume 6.5cm3 

Figure 7.8 31 weeks gestation TBV 188.7cm3 
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Figure 7.12  Images of a 26 week old fetus with focal megalencephaly. (a)  3D 

surface reconstructions superior view, (b) equivalent 3D printed model, (c) equivalent 

pathology slide. (d) 3D surface reconstruction lateral view, (e) equivalent printed 

model, (f) equivalent pathology slide.  

b c 

e 

a 

d f 

a b 

Figure 7.11 (a) image of a pathology slide of a fetal brain of 28 weeks 

gestation (b) an equivalent surface reconstruction from a different fetus at the 

same gestation 

a b 
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7.5 A Review of Fetal Brain Abnormalities 
 

7.5.1 Holoprosencephaly 

 

Although there are no widely accepted classifications to distinguish between the two lesser 

forms of HPE (lobar and semilobar), when additional abnormalities or complex features 

manifest the latter classification is usually assigned. HPE is often missed altogether or 

misdiagnosed by USS. This is demonstrated in case H1, (the 3D printed model and surface 

reconstructions from which are shown in Figure 7.13) which was referred for iuMR at 21 

weeks gestational age following USS. This showed VM and possible ACC. iuMR confirmed 

enlargement of the cerebral ventricles but also noted that they were contiguous over the mid 

line superiorly, and that the cavum septum pellucidum was absent. The diencephalon and 

the anterior portions of the cerebral hemispheres were incompletely separated and there 

was a deep abnormal sulcus extending superiorly from the expected position of the sylvian 

fissures towards the vertex. The frontal lobes anterior to those fissures were significantly 

hypoplastic as well as being incompletely separated. The cerebellum and brain stem were 

also smaller than expected for gestational age. These findings led to a diagnosis of lobar 

holoprosencephaly. 



203 
 

 

 

Table 7.1 shows the surface reconstructions of six cases (H2-6) with differing severity of 

HPE from the MERIDIAN cohort, in whom post-mortem examination or postnatal imaging 

confirmed the diagnosis. The images demonstrate the differing extent of cortical and 

ventricular involvement in each case. A single label was used for the manual segmentation 

of both cerebral hemispheres as the manifestation of HPE prevented the distinction between 

right and left anatomical parts. 

The results of the quantitative analysis of the brain volumes for each case are also shown in 

Table 7.1. The values for each case (identified by a different colour marker) are plotted 

against the graph of the mean and upper and lower prediction limits of the normative data 

reported in Chapter 6 (Figure 7.14). 

Figure 7.13  Case H1. Surface reconstructions and 3D Printed model of a 21 week old fetus 

with semi-lobar  holoprosencephaly. Abnormal appearances are shown on lateral (a and e), 

anterior (b and f) and superior (c and g) views showing the abnormal appearances. The 

ventricles (d) are contiguous over the midline, both at the frontal horns and lateral ventricles. 

a b c d 

g e f 
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Table 7.1 Details of six cases with confirmed HPE  

Case 
Gestation 
(weeks) 

Additional 
abnormalities 

TBV 
cm3 

Ventricular 
System 

cm3 

Head Size (BPD and 
Circumference) 

Images of the surfaces of each case. Left to right: lateral, 
anterior, superior view of brain surface and superior view of 

ventricular system. 

H1  
21 

Bilateral abnormal 

sulcation 
33.6 

6.1 Normal 

See case 1 

H2 
19 No 26.8 

5.5 Normal 

 

H3 
20 No 29.5 

4.4 Lower end of normal 

 

H4 20 

Dandy Walker 

Malformation, 

abnormal sulcus left 

side 

23.6 11.7 
Normal 

 

H5 22 
VM 30.0 

3.8 
Below 3rd Centile 

 

H6   26 

Abnormal skull 

shape 

(trigonacephaly). 

Hypotelorism 

57.5 3.3 
Below 3rd Centile 

 

C
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7.5.2 Agenesis of the Corpus Callosum (ACC) 

  
Failed commissuration (either agenesis or hypogenesis of the corpus callosum) was a 

confirmed diagnosis in 79/570 (14%) of the fetuses within the MERIDIAN study, making it 

the third highest structural anomaly in the cohort. iuMR accurately diagnosed 94.9% of those 

cases, a significant improvement over USS which accurately diagnosed 34.2% of the cases 

(300).  Table 7.2 shows the details and images of 9 cases of ACC from the MERIDIAN 

group. It includes the brain volumes of each fetus, which are also plotted against the mean 

and predictive values of brain volumes from the normal data (Figure 7.15).  

The 2D images, 3D surface reconstructions and 3D printed model of Case A9 are also given 

along with descriptions of the USS and iuMR findings.

T
B

V
 c

m
3

 

Figure 7.14 An abridged graph of HPE Cases plotted against the mean (solid line) and 

predictive values (outer dashed lines) derived from the cohort of normal fetal brain 

volumes. 
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Table 7.2 Details of 10 cases, all with ACC scanned as part of the MERIDIAN study.  

Case Gestation 

(Completed 

Weeks) 

Additional abnormalities 
 

TBV 
Cm3 

Ventricular 

Volume 

Cm3 

Head Size Images of the surfaces of each case. Left to right- 

lateral, anterior (case A1 posterior), superior view of 

brain surface and superior view of ventricular system.  

A1  
20 

Cortical Formation 

Abnormality (well 

visualised on the superior 

view of the surface image) 

35.2 2.9 Normal 

 

 

 

 

A2  
20 

Cortical Formation 

Abnormality (well 

visualised on the lateral 

and superior view of the 

surface images) 

35.9 6.8 Normal 

 

 

 

 

A3  
21 No 34.6 2.8 Normal 

 

 

 

 

A4  
21 Interhemispheric cyst 45.4 4.1 Normal 

 

A5  
21 

Dandy Walker 

Malformation 
48.7 14.9 >95th centile 
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A6  
21 Abnormal face 37.3 2.5 3rd centile 

 

A7  
29 No 150.7 22.9 

90th-97th 

centile 

 

 

A8  30 Interhemispheric cyst 148.2 9.7 Normal 

 

 

 

A9  31 

 
Interhemispheric cyst 224.0 6.3 90th centile 

 

A10  
32 Dilated cisterna magna 235.1 6.1 Normal 
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Case Study A9 (Figure 7.16) 

A 32 year old with singleton pregnancy was referred for iuMR due to unilateral VM and 

arachnoid cyst in the fetus on USS. iuMR imaging was performed at 31 weeks gestation. 

This confirmed the unilateral VM but excluded the arachnoid cyst. An alternative diagnosis of 

multiple interhemispheric cysts to the right side of the falx associated with ACC was made. A 

hypoplastic cerebellar vermis was also noted on iuMR imaging as well as extensive cortical 

formation abnormality (heterotopia) of one hemisphere. Head size was measured at the 90th 

Figure 7.15 Graph showing TBV of fetuses with ACC listed in Table 7. 2, marked against the 

graph of normal fetal TBV data. (lower left section enlarged for  clear visualisation of markers) 
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centile on iuMR and further analysis revealed a TBV of 224cm3, nearly 7SD above the 

mean. All iuMR findings were confirmed at post-mortem autopsy.  

 

 

7.5.3 Lissencephaly  

 

Lissencephaly is a rare disorder that is difficult to diagnose at early gestation as mild 

sulcation delay can cause false positives on iuMR. Diagnosis is therefore more reliable after 

27 weeks gestation (301). Table 7.3 outlines the details of three cases diagnosed with 

lissencephaly and includes the surface reconstructions generated using the iuMR imaging 

data acquired at 2 gestational ages for cases L1 and L2 and for case L3 at a single 

gestation, with volumes plotted on the graph shown in Figure 7.17. Further details and 

images of cases L2 and L3 are given below.  

a 

d e 

Figure 7.16 Images of a 30 weeks gestation fetus with ventriculomegaly, inter-

hemispheric cyst (arrow) and ACC shown on the axial 2D ssFSE image (a) and on 

the superior view on the 3D surface (b) and 3D printed model (d). Left lateral 

views (c) and (e) show the widespread heterotopia, a feature that was confirmed 

at autopsy. 

 

c b 
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Table 7.3 Details of three fetuses with lissencephaly. The first two cases have two MR studies and the third case a single MR study. 

 Gestational 

Age 

(weeks) 

Additional 

Abnormalities 

TBV 

cm3 

Ventricular 

Volume cm3 
Head Size 

Surfaces from each case, left to right, Lateral, Frontal, superior, 

posterior and superior ventricle views 

L1. 

Visit1 

 23 
Germinal matrix 

cyst 
48.8 2.7 Normal 

 

L1. Visit 

2 

27 

Germinal matrix 

cyst 

Small 

cerebellum 

95.2 5.0 Normal 

 

L2.  

Visit 1 

 22  50.1 6.4 Normal 

 

L2.  

Visit 2 

 30  167.3 16.7 Normal 

 

 

 

L3 29 

Severe VM, 

Dandy Walker 

malformation 

86.8 88.2 Normal 
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Case Study L2 (Figure 7.18) 

 

Figure 7.18 shows the images of case L2, a fetus of 22 weeks gestation referred for iuMR 

imaging due to VM and possible ACC on USS. iuMR excluded the possibility of ACC but 

confirmed VM and also demonstrated a possible bilateral cortical abnormality. A repeat MR 

was advised which was carried out when the fetus was 30 weeks gestation. This confirmed 

the VM, and the diagnosis of lissencephaly was made. Both head size and brain volume 

measurements were unaffected and within normal limits. 

 

Figure 7.17 Graph of Lissencephaly cases plotted against chart of 
normal volumes: 
 Case L1- Blue dot visit 1 and blue cross visit 2 
 Case L2 Red dot visit 1 and red cross visit 2 

 Case L3 Yellow marker 
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Case Study L3 (figure 7.19)  

A 24 year old with a singleton fetus at 29 weeks gestational age was found to have severe 

VM and a small cerebellum on USS. These were confirmed by iuMR imaging performed at 

29 weeks, with the cerebellar abnormality classified as Dandy-Walker spectrum. A structural 

diagnosis of lissencephaly was easily made on routine 2D iuMR imaging although the 

surface reconstructions allowed the extent of the cortical abnormality to be understood more 

clearly (Figure 7.19). This case highlights the need to segment out the ventricular system as 

well as the external brain surface. The head size of this fetus (judged by bi-parietal diameter 

on iuMR) was on the 50th centile, but the brain volume, including the ventricles, was large. 

The mean value at this gestational age is approximately 150 cm3, whereas in this case the 

brain volume was 175 cm3. If, however, the ventricular volume and TBV are considered 

separately, the brain volume per se was exceptionally small at 86.8 cm3 - 4 standard 

deviations below the mean, (Figure 7.17 Yellow dot). This discrepancy arose because of the 

severe ventriculomegaly (ventricular volume in this fetus - 88.2 cm3 compared with the age-

Figure 7.18 Images of case L2 from two MR studies. a-e: from the first visit at 22 weeks gestation and from left to right 

(a) axial 2D ssFSE, (b) axial surface reconstruction, (c) axial 3D printed model, (d) lateral 3D surface reconstruction and 

(e) lateral view of the 3D printed model. The same format is shown for the second MR study at 30 weeks gestation in the 

lower row (f - j) 

i 

b 
a c d e 

h f g J 
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matched mean in normal fetuses – 5.8 cm3). All the primary structural abnormalities were 

confirmed on post-natal imaging, but there was an early neonatal death and autopsy was not 

performed.  

 

 

7.5.4 Schizencephaly 

 

Schizencephaly is visualised on routine 2D imaging as a defect in the cerebral hemisphere 

with an abnormal connection between the CSF in the ventricular system and the external 

CSF. Abnormal grey matter lining the cleft distinguishes schizencephaly from destructive 

causes that can have similar appearances. It is often associated with other cerebral 

abnormalities. These include heterotopia, absent CSP with or without septo-optic dysplasia 

(as shown in case S1).  Table 7.4 gives the details of two fetuses with schizencephaly and 

Figure 7.20 plots the brain volumes from those cases against the normative data. 

 

 

a 

e d f 

c b 

Figure 7.19 Case L3. Images of a fetus of 29 weeks gestation with severe VM and 

resultant lissencephaly:  Axial  and Coronal  2D ssFSE images (a and b), Lateral (c and 

f) and coronal (e) and (d) ventricle surfaces. 
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Table 7.4 Details of two fetuses with schizencephaly. 

Case 

Gestational 

Age 

(weeks) 

Additional 

Abnormalities 

TBV 

cm3 

Ventricular 

Volume cm3 

 

Head Size  

S1  21 
Absent CSP, septo-

optic dysplasia 
24.8 4.3 Normal 

Axial (a) and coronal (b) 2D ssFSE MR images and superior, frontal and lateral views of 3D surfaces of 

case S1 (c-e). In all images the open cleft schizencephaly can be clearly seen (asterix). 

 

 

 

 

 

S2  33 VM, microcephaly 99.7 21.8 
 

< 3rd Centile 
 

 

Images of S2 shown in the case study. 

 

Figure 7.20 Brain volumes of schizencephaly cases S1 (blue marker) 

and S2 (pink marker) plotted against the graph of mean and prediction 

limits from the normative data 

* * * 

* 

* 

a b c d e 
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Case Study S2 (Figure 7.21) 

 
A fetal MR was performed on a fetus at 33 weeks gestation following a diagnosis of VM and 

microcephaly on USS. VM was confirmed with trigone measurements of 16mm and 14mm.  

The other parts of the lateral ventricles were also enlarged and somewhat dysmorphic, but 

the third ventricle, aqueduct and fourth ventricle were within normal limits. The corpus 

callosum was present but only one thickened leaf of the septum pellucidum was identified.  

The optic nerves were seen but thought to be slightly small. The posterior fossa structure 

was within normal limits. On iuMR the head size, as assessed by bi-parietal diameter, 

measured below the third centile, confirming microcephaly. This was also matched by small 

brain size, 99.7cm3 (>4 SD below the mean). Focal defects were seen within the cortical 

mantle at three sites: (1) left paracentral region (the site of the largest defect, with the lining 

portions of the hemisphere not in direct contact) (2) mid portion of the right frontal lobe on 

the convexity, (3) medial portion of the right frontal lobe (Figure 21). There were also 

abnormal neural elements lining the clefts at each site, suggestive of open lipped 

schizencephaly, and polymicrogyria.  

 

 

 

 

 
             
 
 
 

 

 

 

Figure 7.21 Images from Case S2 a 33 weeks gestation fetus with schizencephaly defects (stars). Images (a) 

coronal and (e) axial are 2D ssFSE images from the MR study. The other images show the 3D surfaces (b, c and 

d) created from manual segmentation and processing along with the equivalent orientations of the 3D printed 

brain model (f, g and h) 

a b c d 

e f g h 
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7.5.5 Polymicrogyria. 

 

Polymicrogyria manifests as multiple small abnormal folds of the cortex and is difficult to 

depict by surface reconstructions due to the nature of the segmentation process and 

electronic model building. Despite the 3D volume acquisition being of higher resolution than 

our 2D imaging sequences, it is still limited and partial voluming can cause problems. In 

addition, the 3D Slicer software is bound by the voxel size and shape. As this is cuboid it 

cannot always represent the edges of the anatomy, which are often curved. Although 

smoothing is applied at the model building stage to counteract this, it can ultimately add to 

the problem as it may result in the small folds being ‘smoothed’ out and therefore less 

apparent. The following case (PLM 1), however, does allow visualisation of the abnormal 

surfaces of the brain due to polymicrogyria.   

Case Study PLM 1 (Figure 7.22) 

A 28 year old with a singleton fetus was referred for iuMR imaging due to appearances of 

extra axial CSF overlying the brain on USS at 23 weeks gestation. iuMR imaging at 25 

weeks gestation confirmed the extra-axial CSF but also showed VM and a bilateral cortical 

formation abnormality. This manifested as shallow lateral fissures, generalised reduction in 

sulcation, and reduced volume of the superior portions of the frontal lobes (Figure 7.22 a-f). 

Head size as judged by bi-parietal diameter was normal, measuring between the 3rd and 10th 

centile on the MR study but the TBV was 55.2 cm3 i.e. > 2 standard deviations below the 

mean (Figure 7.23). A cortical formation abnormality, probably bilateral polymicrogyria, was 

suggested. At repeat iuMR at 28 weeks gestation all the abnormalities seen at 25 weeks 

gestation were more pronounced (Figure 7.22 g-l) and with very little progression of 

sulcation since the first iuMR. The bi-parietal diameter on iuMR was just under the third 

centile but brain growth had slowed considerably. TBV was 4 standard deviations below the 

mean at 85.1 cm3  (Figure 7.23). Post-mortem studies confirmed extensive polymicrogyria 

and a diagnosis of congenital infection (reactivation of CMV) was made on the basis of 

virology and the demonstration of CMV inclusion bodies in the placenta.
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Figure 7.22 Images associated with case PLM1, a fetus with bilateral polymicrogyria. (a) 

Coronal, (b) sagittal, (c) axial 2D ssFSE images. (d) frontal, (e and f) both lateral projections of the 

cortical surfaces 25 weeks gestation. Images g to l are the equivalent images at follow-up iuMR 

imaging at 28 weeks.  
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7.5.6 Posterior Fossa Abnormalities  

 

There are many developmental abnormalities that affect the formation and structure of the 

anatomy within the posterior fossa (cerebellum, vermis and brain stem), and the size of the 

posterior fossa or the cisterna magna. Subgroup analysis of the MERIDIAN study data 

revealed that anomalies of the posterior fossa were the second most frequently occurring 

abnormalities (302).  iuMR imaging gave an accurate diagnosis of 87.7%, providing an 

improvement in diagnostic accuracy of 22.3% over USS. The errors made on iuMR in 

relation to the posterior fossa consisted of eight cases. This included cases in which iuMR 

reported abnormalities that were not to be present on ORD and two cases in which iuMR 

imaging failed to detect an abnormality subsequently shown on ORD. Table 7.5 gives the 

details of and images from five cases in which the fetus had a posterior fossa abnormality. 

The brain volumes of those cases are also plotted against the graph of normal volumes in 

Figure 7.24

Figure 7.23 Chart of brain volumes associated with a fetus diagnosed with polymicrogyria 

on iuMR (case PLM1) plotted against an abridged chart  from the normal data. Green cross 

marks visit 1 at 25 weeks gestation and green dot marks visit 2 at 28 weeks gestation. 
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Table 7.5 Details and images of six fetuses with different posterior fossa abnormalities  

Case 
Gestational 

Age  
(weeks) 

Posterior Fossa Abnormality 
Additional 

Abnormalities 
TBV 
cm3 

Head size 

Images left to right-  
Cases PF1, 2 and 5- views left to right: posterior, anterior, 
lateral and ventricle surfaces. Case 3- posterior, inferior, lateral 
and ventricles..Case PF4- age matched normal axial ssFSE, 
ssFSE axial from the case, inferior view of the 3D printed model 
and the inferior view of the electronic surfaces. 

PF1  21 Rhombencephalosynapsis Hydrocephalus 70.9 Normal  

PF2 

 
21 Dandy Walker variant  

Hypogenesis of 
the corpus 

callosum, VM 
41.4 Normal 

 

PF3  28 Dandy Walker Malformation - 122.0 Normal  

PF4 

 
30 

Rhombencephalosynapsis 

Pontocerebellar hypoplasia 
(arrow) 

Unliateral VM 150.9 Normal  

PF5 

 

23 

Brain stem malformation 
Walker-Warburg 

syndrome 

28.0 Normal 
See Case Study 

27 77.3 Normal 
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Case PF1 (Figure 7.25)  

A 25 year old with a singleton fetus at 22 weeks gestational age was referred for iuMR 

imaging because of mild ventriculomegaly and an enlarged cisterna magna identified on 

USS. These appearances were confirmed at iuMR imaging performed at 23 weeks 

gestation, but vermian hypoplasia and an abnormal brainstem (Figure 7.25a-d) were also 

demonstrated. The head size was normal on iuMR (biparietal diameter on the 10th centile). 

Sulcation/gyration around the lateral fissures was less than expected for a normal 23 week 

fetus, a feature shown clearly on the surface reconstructions, as was focal reduction of 

volume in the temporal lobes and posterior parts of the cerebral hemispheres. The TBV was 

Figure 7.24 Graph of the brain volumes from the cases with posterior 

fossa abnormalities (Table 7.7) plotted against the mean and prediction 

limits of normal brain volumes. 
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28.0 cm3 (>3 standard deviations below the mean). The combination of a supratentorial 

sulcation abnormality and a brain stem malformation led to Walker-Warburg syndrome being 

considered. A follow-up iuMR study was recommended for clarification and repeated at 27 

weeks gestation.The head size remained within normal limits with a bi-parietal diameter 

close to the 10th centile, but the TBV was 77.3cm3 (2.5 standard deviations below the mean). 

The diameter of the trigones of the lateral ventricles had increased to 15mm bilaterally and 

the abnormalities in the posterior fossa were again demonstrated, and were more 

pronounced. The cortical gyration/sulcation abnormalities on the surface reconstructions 

were more obvious, allowing a more confident diagnosis of lissencephaly to be made (Figure 

7.25 e-h). The findings were consistent with Walker-Warburg syndrome but the fetus was 

stillborn at 29 weeks gestational age and no post-mortem investigations were performed. 

Figure 7.24 shows the TBV of the index fetus at 23 and 27 weeks plotted on the graph of 

normative values (blue dot and cross). 

 
 

a b 
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f 

c 
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Figure 7.25 Images associated with case PF1, a fetus with presumed Walker-Warburg syndrome. (a)  axial, (b) 

Coronal  2D ssFSE images and (c) left, (d) right  lateral projections of the cortical surface at 23weeks gestation. 

Equivalent images at 27 weeks (e-h).  
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7.5.7 Abnormalities of the Ventricular System 

 

Ventriculomegaly was the commonest abnormality within the MERIDIAN cohort at 73.9% 

(421) of the 570 fetuses with an ORD. This was an isolated finding in 306/421 (53.7%) 

fetuses, either as mild VM (10-12mm, 80%), moderate VM (13-15mm, 12%) or severe VM 

(>15mm, 8%). These categories were based on the USS measurements of the largest 

trigone. Image postprocessing and segmentation was completed for 50 mild VM cases. The 

comparison between these and normal and ventricular volumes are summarised in Table 7.6 

and plotted on a graph for comparison (Figure 7.26). An independent samples Mann-

Whitney U test found there was a statistically significant difference between the ventricular 

volumes of fetuses with and without VM (p = <0.001), and between the ratio of TBV to 

ventricular volume of the two groups (p = <0.001). 

A case example, V1, is also reported which demonstrates how enlargement of the 

ventricular system has impact on brain growth and development. 

 

 

 

 

 

 

  

 

Table 7.6 Comparison of ventricular volume between normal fetuses and fetuses with mild VM 

Category 

Number 

of 

Cases 

Gestational 

Age Range 

(weeks) 

 

Ratio of ventricular 

volume to TBV cm3 

Range  

Mean (standard 

deviation) 

Ventricular system 

Volume Range cm3 

Mean (Standard deviation) 

Normal (Add 

on Study) 
132 18-36  

2.0-18.9 

5.2(2.9) 

1.3 to 11.6  

 5.0 (2.3) 

Mild VM 50 20-34 
4.6-22.6 

13.0 (4.5) 

3.7- 40.8 

8.2 (5.5) 
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Case Study V1 (Figure 7.27) 

Severe VM was detected at USS on a singleton fetus of 20 weeks gestational age which 

was subsequently referred for iuMR imaging. Severe VM (largest trigone 23mm) was 

confirmed on iuMR at 21 weeks gestational age. The pattern of ventriculomegaly was 

suggestive of hydrocephalus secondary to aqueduct stenosis (lateral, third ventricles and 

proximal aqueduct involved, fourth ventricle spared and effaced CSF spaces on the surface 

of the brain). The head size was massively enlarged, with a linear measurement much larger 

  Normal Cases 

  Ventriculomegaly Cases 

Figure 7.26 Graph comparing ventricle volumes, with lines for mean and 95% 

confidence limits, from normal fetuses (black) and fetuses with ventriculomegaly 

(red)  
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than the 97th centile on the iuMR study. The brain volume including the cerebral ventricles 

was 104.7 cm3, over twice the age-matched mean volume (45.0 cm3). When measured 

separately, the ventricular volume was massively increased (54.2 cm3 compared with age-

matched mean 3.5 cm3), but the TBV was relatively normal at 50.5 cm3, only 2 standard 

deviations above the mean (Figure 7.28). Congenital hydrocephalus secondary to aqueduct 

stenosis was confirmed on post-natal imaging. 

 

 

 

 

 

 

 

 

a  
 

b c 

e 
f d 

Figure 7.27 Case V1. Sagittal (a), coronal (b) and axial (c) views of the 2D ssFSE images 

of a 21 weeks gestation old fetus with hydrocephalus. Figures d- f show the matched surface 

reconstructions of the brain and the lateral view of the ventricles. 
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7.5.8 Megalencephaly/ Hemimegalencphaly 
 

Abnormal neuro-glial proliferation can affect the whole brain (megalencephaly), one 

hemisphere only (hemimegalencephaly) or part of a hemisphere (focal megalencephaly). 

This condition results in abnormal disordered neocortical architecture and often occurs with 

other cortical abnormalities due to secondary disruption of neuronal/glial migration and 

organization, such as heterotopia and polymicrogyria. Although a relatively rare disorder, two 

cases are included showing examples of fetuses scanned as part of MERIDIAN that 

demonstrate how the 3D surface reconstructions and quantitative analysis (Table 7.7) 

Figure 7.28 Graph of case V1 (red marker) plotted against the mean 

and prediction limits of normal brain volumes. 
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provide confirmatory evidence of the abnormality. Analysis of each cerebral hemisphere is 

reported and plotted on the graph against normal TBV (Figure 7.29). 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

Table 7.7 Details of two fetus' with megalencephaly (Case M1)  and hemimegalencephaly (Case 
M2). 

 TBV and the volume of both cerebral hemispheres represented by a dot and star on the graph (Figure 7.29) for 
each fetus is shown 

Case Gestation Additional 
Abnormalities 

Hemisphere Volumes 
cm3 

TBV cm3 
Ventricle 
volume 

Head size 

M1 
 

23 VM 44.2 43.3 91.6 12.1 >90th Centile 

M2 
 

22 Uni lateral VM 71.6 22.1 97.4 8.9 Normal 

Figure 7.29 Hemisphere volumes of fetuses with megalencephaly (yellow 

markers) and hemimegalencephaly (blue markers) plotted on a graph of normative 

volume data for each hemisphere denoted by different shapes 
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Case Study M1 (Figure 7.30)  

 

A 30 year old woman with singleton pregnancy was referred with suspected ACC and VM on 

USS at 21 weeks gestation. IuMR imaging performed at 23 weeks gestation excluded ACC 

and confirmed increasing VM. Also noted was a bilateral cortical formation abnormality 

(Figure 7.30), with enlarged brain size (TBV 91.6cm3, >5 SD above the mean) matched by a 

large head size (>95th centile). A diagnosis of megalencephaly was made and this was 

confirmed at post mortem autopsy.  

 

 

 

Case Study M2 (Figure 7.31) 

 A 28 year old with dichorionic diamniotic twin fetuses was referred for iuMR imaging at 22 

weeks gestation because of unilateral ventriculomegaly in one twin on the basis of USS. 

IuMR confirmed the unilateral VM but one cerebral hemisphere was shown to be enlarged 

and malformed leading to a diagnosis of hemimegalencephaly. Head size was within normal 

a b c d 

e f g a h 

Figure 7.30 Case M1. Surface reconstructions of a 23week gestation of fetus with megalencephaly (a-

d) and matched 2D ssFSE images (e-h) 
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limits (50-90th centile) as judged by the bi-parietal skull measurement made on iuMR 

imaging. The full extent of the hemispheric abnormality can be seen clearly on the 3D 

surface reconstructions (Figure 7.31). The TBV of the twin with hemimegalencephaly was 

97.4 cm3 (10 standard deviations above the mean), while the normal twin had a TBV of 

51.6cm3, i.e. close to the 50th centile. By analysing the cerebral hemispheres of each twin 

separately we found that the normal hemisphere of the twin with hemimegalencephaly was 

very similar to the hemispheres in the normal twin (22.1 cm3 compared with 23.7 cm3 and 

23.8 cm3), whereas the abnormal hemisphere was over 3 times larger than the normal 

hemisphere (71.6 cm3). This case shows how the segmentation and resultant volumes of 

anatomical sub-regions of the brain can be measured, potentially contributing to the 

diagnosis in cases where the pathology is more subtle. 
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Figure 7.31 Case M2 Images of a fetus from a twin pregnancy with hemimegalencephaly.  

(a) coronal,  (d) axial  2D ssFSE MR imaging and (b) and (e) matched surface reconstructions. 

Figs (c) and (f) surface reconstructions of the normal twin. 
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7.6 Discussion  
 

The use of image processing techniques to produce the 3D surfaces and printed models 

provide a novel and diverse way to visualise the manifestation of some of the fetal brain 

abnormalities described in Chapter 1. For the majority of the cases shown, the diagnosis 

could be made on routine 2D MR imaging, and indeed in a high proportion of the cases the 

3D surfaces or models were not available until some time after the iuMR report was issued. 

There are though, some advantages to the resultant surface representations of the anatomy 

and quantitative analysis that could be useful in the diagnostic pathway. There were 

occasions when the surface representations demonstrated the extent of the abnormality with 

greater clarity and therefore allowed the diagnosis to be made with a higher degree of 

confidence, for example cases PF1 and PLM 1. Cortical formation abnormalities are often 

difficult to identify with certainty at early gestations by iuMR imaging due to the relatively 

smooth appearance of the normal brain before 24 weeks gestation. The electronic surface 

reconstructions, as with case PF1, may help in these situations. 

One of the biggest advantages of manual segmentation is the generation of the volume 

measurements and it is this quantitative data that may provide the biggest clinical gain. 

Whilst it is not possible to draw any definitive conclusions about the advantages of the 

volume measurements due to the small numbers of cases shown, there are some interesting 

facts that warrant further discussion. These relate to three areas: Firstly, the ability to 

segment the intracranial contents or the brain parenchyma into several anatomical areas for 

separate analysis. For example, we were able to compare the ventricular volumes and ratio 

of ventricles to TBV of 51 fetuses with mild isolated VM to the same measurements from 132 

normal fetuses (Figure 7.26). Analysis found the difference in volume measurements 

between the two groups was statistically significant. This supports the findings of Scott et al 

(277) who also undertook a similar study, albeit with a much smaller sample size. Pier et al 

(303) used ventricular volumes to attempt to predict neurodevelopmental outcome, and 

measured the ventricles of fetuses with isolated VM (n=193) and the ventricles of fetuses 
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with VM associated with other abnormalities (n=114). The results indicated that 

measurement of ventricular volume was no more accurate than linear measurements of the 

trigones of the lateral ventricles in predicting outcome. It may be a more useful clinical 

measure to analyse TBV and ventricular volume separately to distinguish between brain 

pathologies involving large ventricles but normal brain volumes (case V1), and pathologies in 

which large ventricles (as in cases of hydrocephalus), cause fetal brain atrophy/destruction 

(large ventricles and small brain volumes, case L3). Analysis of a larger number of cases is 

needed to determine the significance of this data. 

Case study M2 (hemimegalencephaly) also highlighted the benefit of the ability to analyse 

separate regions of the fetal brain (Table 7.9 and Figure 7.27). Although the 

hemimegalencephaly case in this example was easily diagnosed on 2D images, the ability to 

compare the hemispheres is expected to be useful for evaluating asymmetric differences in 

more subtle abnormalities. We plan to use this technique in the evaluation of brainstem and 

cerebellar malformations, as this has been highlighted by the MERIDIAN study as a type of 

pathology which is difficult to diagnose on both USS and iuMR. 

Secondly, there are some abnormalities where brain volumes differ from the normal range 

either in some cases but not others with the same abnormality, or are not affected until later 

gestations (e.g. holoprosencephaly, schizencephaly, lissencephaly).  This information 

suggests that volume data may be useful as an indicator of outcome in some pregnancies 

but this association needs to be proven. 

Thirdly, there are also those cases in which there is a disparity between head size, (defined 

using linear measurements such as bi-parietal diameter) and volume measurements that 

could potentially provide the most clinically useful information.  For ten of the cases 

presented here there was a noticeable difference between the head size of the fetus and 

volume measurements. For example in Cases PLM1 and PF5 head sizes were within normal 

limits but TBV was much smaller than expected, and in cases PF1 and M3 head size was 

again considered normal, but TBV was much larger than expected for equivalent gestational 
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age when compared to normative data. As yet we do not know the significance, or clinical 

benefit, of this information and further formal studies of diagnostic impact are required.  
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Chapter 8 

Conclusions and Future Work 
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The overarching aim of this thesis was to determine the diagnostic performance of iuMR as 

an adjunct to USS for the diagnosis of fetal brain abnormalities. Two separate but related 

areas have been examined; the ability of iuMR to improve the diagnostic accuracy and 

diagnostic confidence over ante-natal USS for the detection of fetal brain abnormalities; and 

the development, application and clinical evaluation of a 3D volume iuMR acquisition for fetal 

brain imaging. The significance of diagnosing a fetal brain abnormality prenatally is 

potentially huge. The expectant mother has to choose between continuing the pregnancy 

with uncertainty about the ultimate effects of the diagnosed abnormality or to terminate the 

pregnancy. An accurate and confident diagnosis is therefore vital. The immediacy and ability 

of USS to visualise the fetus is invaluable and, as it is safe and easily accessible, it is the 

undisputed primary method for screening during pregnancy. Despite this, the technical and 

patient-related limitations of USS, such as high maternal body mass index, reverberation 

artefacts and oligohydramnios, can all prevent adequate visualisation of the fetal brain.  

As outlined in chapter one, diagnostic test performance is not based solely on diagnostic 

accuracy but a hierarchal model that has the technical efficacy of a diagnostic test at its 

foundation and ultimately how the test influences the outcome for the patient.  The technical 

efficacy of routine iuMR imaging is proven, having been used as an adjunct to USS for 

several years but its additional value in clinical practice had not been established. Although 

findings of previous research suggested that iuMR improves diagnostic accuracy, the results 

were considered biased due to poor study design which compromised their validity (119).  In 

addition it was unclear if those studies had investigated the further impact of iuMR imaging in 

the diagnostic pathway.  The first aim of this research, therefore, was to establish the 

diagnostic capability of MR when imaging the fetal brain in utero and was addressed through 

the systematic review, and the MERIDIAN and Add-on studies. 

The ability to acquire a 3D volume iuMR acquisition and to post-process the imaging data, 

has also facilitated further investigation of fetal brain anatomy and potentially lead to 

improved diagnostic performance. The second aim of this research was addressed in 
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chapters 5, and 6, which established the technical and diagnostic efficacy of the 3D MR 

acquisition for imaging the fetal brain in utero, and chapter 7 demonstrated its application for 

several brain abnormalities. 

 

8.1 The Systematic Review and Meta-analysis 

A systematic search and critical appraisal of the literature was undertaken to identify existing 

evidence of the ability of iuMR to diagnose fetal brain abnormalities, and to undertake a 

meta-analysis of the results of the studies selected. Although the MERIDIAN study had 

already been commissioned, there was still value in reviewing previous research so that 

comparisons could be made when the results of MERIDIAN were available.   

The protocol for the review was written in line with the PRISMA guidelines that outlined 

specific inclusion criteria and this, along with the selection of studies by two independent 

reviewers, ensured only the most appropriate and relevant studies were included. 

Consequently, 773 studies were excluded during the screening process, leaving 34 full 

papers for final scrutiny and data extraction. One of the criteria for the meta-analysis was to 

only include cases from each study where diagnostic accuracy could be determined i.e. in 

which the diagnosis made by USS and iuMR was clear for each case and compared to a 

confirmed ORD.  While this reduced considerably (by 62%) the number of cases for analysis 

it was felt that this reduction would provide a more precise calculation of diagnostic 

accuracy.  As a result, 966/2530 complete cases were included in the analysis. The 

diagnostic accuracy of USS was calculated to be 75%, and for iuMR, following USS, to be 

91%. More detailed analysis revealed that cortical formation abnormalities, midline and 

posterior fossa anomalies were the most prevalent areas of misdiagnosis by USS. Incorrect 

diagnoses on MR (9%), of which 5.5% were also incorrect on USS, were more likely to be 

false positive than false negative for the same anomalies, as well as destructive or cerebral 

mass lesions.  
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While our review was in progress, two other systematic reviews were published: by Rossi 

and Prefumo in 2014 (172) and by Van Doorn et al in 2015 (173).  The aims of these reviews 

were similar to ours, but it was felt appropriate to continue with our review as it was possible 

that some relevant studies had been erroneously excluded by Rossi and Prefumo or by Van 

Doorn et al, and further studies had been published. Rossi and Prefumo identified and 

selected 13 relevant articles published between 2000 and 2012, while Van Doorrn et al 

selected 27 studies for review from the literature published between 1990 and the end of 

March 2014. Only 7 studies were included in all 3 systematic reviews, and an additional 15 

studies were included in our report that had not been reviewed previously.  

 

The subtle differences in selection criteria and analysis within each of the reviews did not 

change significantly the results, and conclusions were also similar. All confirmed that iuMR 

diagnosed fetal brain abnormalities more accurately than USS, particularly in the anatomical 

regions of the midline and posterior fossa. Analysis of the data by all three reviews found an 

improvement in the diagnostic accuracy of iuMR compared to USS of between 16 and 24%. 

Rossi and Prefumo based their diagnostic calculations on the findings from 710 fetuses. 

iuMR accurately detected brain abnormalities in 94%, although in some cases the 

measurement of accuracy was based on postnatal clinical examination alone. The review by 

Van Doorn reported the findings from imaging of 1184 fetuses, but only 454 of those had an 

ORD. Based on those numbers, Van Doorn calculated that iuMR gave an accurate diagnosis 

in 80% of cases and USS was accurate in 54% of cases.  

All three systematic reviews came to similar conclusions with regard to the identification of 

compromised validity due to poor study design and inadequate reporting of outcome 

measures. The meta-analysis of the studies we included identified a moderate degree of 

variability across studies. Differences in aims and selection criteria meant sample sizes 

included from each study varied considerably (range n = 6 to 126) as did findings for the 

diagnostic accuracy of iuMR (67 to 100%). A limitation of our review was that further analysis 

of the causes and/or effects of heterogeneity were not possible due to the inadequate 
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reporting and lack of quantification of several study characteristics within the majority of the 

studies. For example, the previous experience of neuroradiologist of reviewing fetal iuMR 

imaging, which could influence diagnostic accuracy, was only recorded in a third of studies. 

Also 13/34 studies failed to specify the time delay between USS and iuMR and both these 

factors are critical to diagnostic accuracy when the rapid development and growth of the fetal 

brain is taken into consideration. The evaluation of the risk of bias and applicability 

undertaken using the QUADAS tool resulted in a judgement of a high or unclear risk of bias 

in at least one category for all reviewed studies due to the methodological weaknesses and 

the limited reporting of study outcomes. These results supported the previous accusations of 

bias and limited validity of previous research and confirmed the need for further 

investigation. The results also highlighted the need to fully assess the additional value of 

iuMR imaging by incorporating all elements of diagnostic performance through adequate 

study design.  

 

8.2 The MERIDIAN Study 

 

The MERIDIAN study aimed to continue the measurement of the diagnostic performance of 

iuMR imaging by assessing not only diagnostic accuracy but also diagnostic confidence, its 

influence on patient management and ultimately the impact of iuMR on patient outcome. The 

study addressed many of the limitations identified in previous research aiming to ensure the 

validity of the findings and to guide future practice within the UK. Study design was such that 

it was adequately powered to detect a statistical significance in diagnostic accuracy for 

fetuses ≤23 and ≥24 weeks gestation. A continuous cohort of participants was recruited from 

a wide geographical area across the UK. The iuMR findings were also compared to an USS 

undertaken by feto-maternal experts at tertiary level hospitals, and a time limit of two weeks 

between USS and iuMR was specified to ensure that any change in diagnosis between USS and 

iuMR was due to the accuracy of iuMR rather than due to changes in fetal condition. The 
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decision as to which imaging modality agreed with the ORD (i.e. gave the accurate 

diagnosis) was made by an independent panel of experts, blinded to the origin of the 

imaging reports, thus also limiting bias.  MERIDIAN recruited 1101 participants, of these, 

570 complete cases met the inclusion criteria and were used to calculate the diagnostic 

accuracy of iuMR and USS. The results of the study found a significant improvement in 

diagnostic accuracy on iuMR, with correct diagnoses in 93% of cases compared with the 

correct diagnoses on USS of 68%. IuMR corrected a wrong diagnosis by USS in 144 cases 

(25%), but failed to provide an accurate diagnosis in 7%. Both results have significant 

implications for clinical practice.   

Gestational age of the fetus was regarded as an important element of the analysis due to the 

need to make decisions regarding the pregnancy at earlier gestations. Screening of the fetus 

by USS is carried out at around 18-20 weeks in the UK. If further investigations, such as 

amniocentesis, are needed they are performed after USS. The results of diagnostic accuracy 

in the age group ≤23 week's gestation were therefore particularly relevant. The final cohort 

of 570 complete cases comprised 369 fetuses ≤23 weeks gestation. In this age group iuMR 

gave the correct diagnosis for 92.4%, with USS correctly diagnosing 69.9% of cases. The 

results for the older group (≥24 weeks gestation, n= 201) were that iuMR was correct in 

93.5% and USS in 64.2% of cases. This shows that when reviewing the performance of 

each imaging modality individually, USS was slightly more accurate in younger fetuses and 

iuMR performed marginally better in the older gestational age group. These findings are 

likely to be due to the known limitations of both modalities. In the case of iuMR, the ability to 

capture diagnostic images is heavily reliant on the immobility of the fetus which at younger 

gestations, is less likely due to the available space in which to move freely. The limitations of 

USS at older gestations relate directly to the progress of the pregnancy with position of the 

fetal head low in the pelvis and the ossification of the skull reducing the visualisation of brain 

anatomy by USS. The improvement in diagnostic accuracy by iuMR support the findings of 
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both our own systematic review and the reviews by Rossi and Perfumo and by Van Doorn et 

al. This implies that bias within previous research did not significantly affect its findings.   

Though diagnostic accuracy is fundamental to diagnostic test efficacy it is only one factor 

contributing to the overall performance and influence of a diagnostic test. The six theoretical 

levels necessary for adequate diagnostic performance, outlined by Fryback and Thornbury 

(152), not only include technical and diagnostic accuracy at Levels 1 and 2, but also 

diagnostic thinking and therapeutic efficacy at Levels 3 and 4. MERIDIAN sought to address 

this by including a detailed analysis of the influence of diagnostic confidence and the 

changes in the management of the pregnancy as a result of MR findings. Assessment of 

diagnostic confidence was made by using the score-based weighted average method 

proposed by Ng and Palmer (158), which takes into account not only the level of diagnostic 

accuracy assigned to USS and iuMR and the differences between them, but also considers 

the impact of diagnostic confidence from the patient's perspective. A score is assigned 

according to the 'appropriate' outcome for each case this is positive when confidence has a 

positive impact and negative when confidence has a negative impact. For example, a 

diagnosis made with high confidence on iuMR has the highest positive score if the diagnosis 

made is correct and changes an incorrect diagnosis made with high confidence on USS. If 

the same scenario were judged with conventional binary measures of diagnostic confidence, 

both USS and iuMR would be considered equal as the scores for confidence are both high. 

These scenarios highlight the advantage of the score weighted method. The results of the 

analysis of MERIDIAN confidence scores demonstrated that iuMR had a higher proportion of 

correct diagnoses made with high confidence than USS (89% vs 60%). Also the confidence 

of iuMR had a positive impact to some degree in 31% (scores +1 to +4). iuMR was found to 

have a negative impact in 7% of cases (scores -1 to -3). Example scenarios might be if iuMR 

made a wrong diagnosis with any degree of certainty but USS was correct, or if both 

modalities were incorrect but the diagnosis by iuMR is made with high confidence and by 
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USS with low confidence. In the majority of cases (48.4%), scores were 0, indicating that the 

impact of iuMR was neither positive nor negative.  

By assessing the influence of diagnostic confidence in such a comprehensive way, the 

MERIDIAN study added a unique dimension to investigations of diagnostic performance of 

iuMR imaging of fetal brain abnormalities. Diagnostic confidence, as far as we are aware, 

has not previously been examined by any other study investigating the role of iuMR in the 

diagnosis of fetal brain abnormalities, yet it is likely to have a significant influence on those 

making decisions regarding the future of a pregnancy. The clinical management of 

pregnancies was influenced to varying degrees (minor, significant, major or decisive) by the 

overall findings of iuMR in 88% of cases. Although the fetal maternal specialists were not 

specifically asked if the level of diagnostic confidence had any influence on changes in 

pregnancy management, clinical management was influenced to either a significant, major or 

decisive extent in 252 cases where the iuMR diagnosis was made with high confidence.  

To design and conduct a research study without any limitations is difficult and MERIDIAN 

was no exception to this. Firstly, there may be have been element of bias in our findings as a 

high proportion (64%) of the iuMR examinations were performed at the primary site in 

Sheffield. Secondly, whilst the results of MERIDIAN provide a reliable assessment of the 

impact of iuMR imaging in pregnancy in the UK and support the future role of iuMR imaging 

in pregnancy, UK USS screening programs may not be comparable to those of other 

countries therefore  further investigation of this may be required.   

 

8.3 The MERIDIAN Add-on Study 
 

The second phase of MERIDIAN, the Add-on study, was undertaken to provide data from a 

cohort of normal pregnancies. This was a vital addition to the main MERIDIAN study of 

diagnostic accuracy as it provided a normal control group to determine the negative ability of 

both USS and iuMR. There is a paucity of research investigating the diagnostic performance 
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of iuMR, as most previous studies have only included fetuses already thought to be 

abnormal on USS. A complete assessment of the accuracy of a diagnostic test requires both 

analysis of its ability to identify correctly an abnormality that is present and to correctly 

exclude an abnormality when none is present. It is not possible to determine this information 

from overall accuracy judged only by binary outcomes (i.e. correct vs. incorrect).  

 

The nature of the Add-on study was such that a different recruitment process and inclusion 

criteria had to be used. It relied on women volunteering and attending for the iuMR at their 

convenience, and although attempts were made to try and limit the time between USS and 

iuMR this was not always possible. In addition, the status of the pregnancy in terms of 

normal development of the fetus was based on routine USS assessment. Pregnancy 

outcome was assumed to be normal unless an abnormality was identified by iuMR. Although 

these were limitations of the study, additional information regarding the diagnosis was 

essential to fully evaluate the value of iuMR imaging. Other studies have sought to define the 

diagnostic accuracy of iuMR in more detail by measuring sensitivity and specificity. Rossi 

and Perfumo (172) and Glenn et al (39) both assessed the sensitivity and specificity of iuMR 

imaging by comparing the findings of iuMR with an ORD. The major limitation of this data 

was that all fetuses were reviewed retrospectively and underwent iuMR imaging due to an 

abnormality suspected on USS. The true negative capability of iuMR was therefore not 

assessed.  

The Add-on study recruited 198 participants without somatic or brain abnormalities reported 

on USS, resulting in data from 205 fetuses. Of these, iuMR confirmed the USS findings in 

203 fetuses but found abnormalities in 2 fetuses. One fetus was diagnosed with VM at 26 

weeks gestation, and a second fetus was thought to have a cortical abnormality at 35 weeks 

gestation. Neither abnormality was identified by screening USS, but follow up USS 

confirmed the VM and postnatal MR confirmed the cortical abnormality. As the initial USS 
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failed to identify the two abnormalities, one might conclude that USS was inaccurate, but that 

assumption would be misleading. In both cases there was a significant time delay between 

USS and iuMR and the abnormalities could have evolved in that period. This explains the 

bias resulting from a failure to restrict the time delay between the two assessments. 

 

Data from the Add-on study was analysed in combination with the results of the main 

MERIDIAN study to determine the positive and negative predictive values of both USS and 

iuMR. Analysis of sensitivity and specificity could not be reliably calculated by the Add-on 

study as the sample size of 'normal' cases was not adequately powered to represent the true 

population, and therefore would have resulted in a distortion of the results of the NPV. 

However, it was possible to calculate positive and negative predictive values as this is based 

on the prevalence of the disease in the sample assessed.  The PPVs for iuMR and USS 

were 93.0% and 67.9% respectively as demonstrated by combining the results from the 

main MERIDIAN and the Add-on studies. The NPV were 99.33% for iuMR and 98.99% for 

USS and support the role of USS as the primary screening method for prenatal imaging 

assessment in the general population as well as the benefit of iuMR in addition to USS when 

abnormalities are suspected.  

 

8.4 3D Volume Imaging of the Fetal Brain 

 

The development, clinical evaluation and application of a 3D acquisition for imaging and 

quantitative analysis of fetal brain development was instigated both from a need to improve 

further the diagnostic performance of iuMR and to take advantage of the progress of MR 

technology. As evidenced by the MERIDIAN study, although accuracy was high, iuMR failed 

to provide a correct diagnosis for 7% of the cases included.  If proven to be reliable, it was 

possible a 3D acquisition might provide additional data, enabling a more detailed analysis of 

brain development, which could lead to improved diagnostic performance and introducing 
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the possibility of reducing the number of 2D sequences required. Although there is emerging 

evidence of 3D acquisitions being used for fetal imaging (120, 241, 242), the publication of 

sequence details has been limited and this, as well as the lack of vendor developed 3D 

sequences suitable for fetal imaging led to the development of our own. The 2D FIESTA 

formed the basis of our 3D sequence with adjustments to parameters such that the resulting 

scan time was short enough for acquisition during maternal suspended respiration and with 

increased resolution compared to the 2D FIESTA and ssFSE imaging.  

The retrospective assessment evaluated the image quality of the 3D acquisition and its 

diagnostic capability and investigated the relationship between the two. Anecdotal evidence 

and measurement of CNR, which suggested that the inherent image contrast of the 3D 

FIESTA, compared to that of the T2 weighted ssFSE imaging, would limit its diagnostic 

capability proved to be unfounded. Results showed that for almost 90% of examinations 

(309/345) the acquired 3D acquisition was considered diagnostic, and of those 309, after 

exclusion of cases without an ORD, an accurate diagnosis was made in 91.4% (265/290). 

An unexpected finding of this assessment, after the exception of non-diagnostic cases, was 

that image quality did not affect diagnostic accuracy, with no statistical significance between 

the categories of poor, average and good. It was also interesting to note that although image 

quality was influenced by gestational age, with more 3D datasets classed as poor or average 

in the 18-23 weeks group than in the older groups, this also had little influence on diagnostic 

accuracy. It is difficult to know how these results compare to the performance of other 3D 

acquisitions as it appears that only one other study (242), as far as we are aware, has 

assessed the diagnostic accuracy of a 3D acquisition for fetal brain imaging in utero. That 

study found a 3D FIESTA acquisition to be marginally more accurate than 2D imaging, but 

less accurate than 3D USS for diagnosing brain abnormalities. Unfortunately, details of the 

methods of assessment were unavailable in English for appraisal. 
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Review of the 3D acquisitions was undertaken by the same experienced neuro-radiologist as 

the initial review and clinical report undertaken as part of the MERIDIAN study. Whilst this 

eliminated reader bias, it introduced the possibility of recall bias which in some cases may 

have influenced the diagnosis made. Attempts were made to address this by measures such 

as anonymising the images, removing prominent cases, (for example those used for 

publications), and introducing a long period between initial clinical reporting and the review 

for the 3D analysis but there may still have been in some cases an element of recall bias. A 

more valid and definitive assessment might have been achieved if a second expert had 

independently reviewed the 3D imaging but this would have introduced variation in reader 

experience, in itself a potential source of bias.  

It is rare in clinical practice that a diagnosis is made by acquiring only a single MR sequence 

for any anatomical area, particularly so in fetal imaging where the fetus is likely to be very 

small and the range of possible abnormalities is considerable. The high accuracy of 

diagnosis using the 3D acquisition highlights the significant advantage of acquiring a 

diagnostic 3D MR imaging dataset in the fetal brain and has allowed us to reduce the 

number of 2D sequences in our iuMR imaging protocol. A further benefit of the 3D 

acquisition is that the resultant imaging data has enabled additional visual and quantitative 

investigation of fetal brain anatomy. This was achieved by manually segmenting fetal brain 

anatomy from the surrounding structures.  

In manual segmentation of fetal brain anatomy, outlining freehand anatomical regions of 

interest, has consistently proven to be a reproducible method for calculating volumes (260, 

281, 304) and our results support this.  Intra and inter-rater reliability were high with ICC of 

0.99 and 0.97 highlighting the advantages of the method even when used by those with 

limited experience of fetal brain anatomy and imaging. The software used, 3D Slicer (283), 

was chosen for segmentation due to its open access, ease of use and reliability, although 

many other software applications are available that allow the placement of manual regions of 
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interest and segmentation of anatomy. The comparisons between known volumes of brain 

models and the volumes derived by manual segmentation resulted in high agreement 

between the two. This confirmed that any error of measurement error directly resulting from 

the software was negligible. 

Segmentation of anatomy using 3D Slicer has not only enabled the quantification of fetal 

brain volumes but also the ability to view and interact with the surfaces of the fetal brain 

electronically as a 3D structure and as models produced using 3D printing technology. This 

has led to the establishment of a novel way of visualising fetal brain anatomy and the impact 

of abnormalities on brain structure. This has provided confirmatory evidence in some clinical 

cases and the 3D printed models have been used to create a teaching file which could 

potentially help in training junior doctors but this is not yet proven. The segmentation process 

also enables brain volumes to be quantified, the measurements being derived form the 

number and size of the voxels in each region of interest. 

A limitation of manual segmentation is the time required to manually outline the relevant 

anatomy on each imaging slice. This was typically 1.5 hours for a younger fetus (<25 weeks) 

increasing to approximately 3.5 hours for a fetus of 36 weeks gestation, due to the 

increasing complexity of cortical folding. An alternative to manual segmentation would be to 

use automated software, but at present this is not readily available. The automated methods 

developed for extraction of adult and paediatric brain volumes assume an immobile head 

enclosed by air, and hence cannot be used to extract fetal brain volumes. Some groups 

have made significant progress in developing automated methods, using a 3 step process. 

Firstly, images from several sequences acquired in multiple orientations are corrected to 

compensate for motion during acquisition, the resultant 2D data sets are then combined to 

create a high resolution 3D composite image of fetal brain anatomy from which automatic 

segmentation can be undertaken (266, 270, 279, 305). While these methods reduce the time 

needed for manual segmentation methods, they need expertise to develop the sophisticated 
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computer vision algorithms required. In addition whilst several papers describe the software 

development and methods of automation, the data published about the resultant volumes 

has been limited either to relatively small numbers of cases or to specific subdivisions of 

fetal brain anatomy (269, 276, 293, 306) 

Previous methods used for segmentation to date, whether manual or automated, have used 

ssFSE imaging data. The potential disadvantage to this method is the nature of data 

acquisition which may result in erroneous measurements. As described earlier, ssFSE 

images are acquired a single slice at a time with the possibility of fetal movement between 

each which can result in incomplete capture of anatomical data. Although the motion 

correction methods can realign the data, any gaps in spatial coverage will be filled by 

interpolation of adjacent regions. Automated segmentation methods frequently rely on 

predefined anatomical atlases and templates, defined by manually segmenting ssFSE 

images again with the potential of error. The reliance of automated methods on predefined 

atlases may also limit their application as they may not be adaptable or may introduce 

significant bias when fetal brain anatomy is divergent from normal trajectories. In 

comparison, the 3D volume sequence data is captured as a single acquisition and 

movement tends to results in non-diagnostic images rather than incomplete capture of 

anatomical information.  The key advantage to acquiring a 3D data set along with manual 

segmentation to quantify brain growth is its simplicity. Acquisition of a 3D imaging sequence 

eliminates the need for the synthesis of multiple 2D acquisitions, it does not require any 

specialist knowledge or bespoke software and manual segmentation is possible for all fetal 

brains regardless of pathology. A significant advantage of the manual segmentation of a 

large number of fetuses across a wide gestational age range undertaken using our method, 

is that the resultant data can be used to create a 3D atlas of normal appearances which has 

not been available previously and will provide the foundation for automated methods. 
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The measurement of 132 brain volumes enabled the construction of a growth chart for 

fetuses across a wide gestational age range (18-36 weeks) which could potentially be used 

as a reference in clinical practice. Growth charts provide a useful reference to monitor fetal 

growth, particularly by USS, and several have charted linear measurements for a number of 

anatomical areas, but our growth chart is the first drawn up using fetal brain volumes from 

such a large cohort. The growth chart provides a unique insight into fetal brain development 

adding significant information to previously published data. Clouchoux et al (294) measured 

the volumes of fetal brains using automated methods and plotted the values against 

gestational age and found a linear relationship between the two. This was in contrast to our 

results which found a quadratic model to be the best fit. When comparing the values 

produced at different gestational ages in the two charts, the volumes at 26 weeks gestation 

were comparable but at older gestations there was a disparity, ours being 30cm3 lower than 

those by described Clouchoux. The reason for this difference is unknown but could be due to 

the limited numbers measured by our study at this gestation. The volumes measurements 

derived using our method were also compared to the volumes reported by Philips et al (284)  

who published the brain weights of fetuses at post mortem examination. Although we had to 

estimate fetal brain density to convert our volumes to weight, the results were comparable 

when brain oedema due to necrosis was taken in to account  

The quantitative evaluation of fetal brain anatomy, to date, has focused on the methods used 

to extract the quantitative data but the ultimate value of this analysis has yet to be defined or 

proven. Linear measurements can be easily quantified on USS and are extensively used 

during pregnancy to assess the growth of the fetus and there may be a similar role for 

quantitative analysis of iuMR once 'normal' parameters have been fully defined. Manual or 

automated segmentation methods would require the investment of additional resources 

which are limited in the NHS. If, therefore, quantitative analysis of the fetal brain is to be 

implemented in the clinical setting it needs to provide additional clinically relevant information 

to help guide the management of the pregnancy and ultimately benefit the patient. Initial 
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investigation of brain abnormalities quantitatively has focused on ventriculomegaly. Scott et 

al and Gholipour et al (271, 277) investigated and reported the changes in ventricular 

volume and morphology in a small number of fetuses diagnosed with ventriculomegaly. 

While these reports demonstrated that ventricular volumes correlated with increased linear 

measurement of ventricle diameter on 2D imaging, it remains unclear how the volume 

information contributes clinically in this situation. 

A proportion of the fetuses who underwent iuMR imaging as part of the MERIDIAN study 

were affected by the developmental brain abnormalities described at the beginning of this 

thesis. Post-processing of the 3D volumes acquired allowed a selection of the abnormalities 

to be visualized as surface reconstructions and the associated quantitative volume data for 

each to be compared to values from healthy fetuses. This gave an insight into the possible 

clinical application of quantitative volume analysis of fetal brain development by providing 

examples of how we have used the information in practice. This highlighted areas where this 

additional information could have diagnostic impact. For example, cortical formation 

abnormalities were more clearly defined by the surface reconstructions than by 2D iuMR 

imaging in a fetus of 23 weeks gestation (case PF1) and by analysing different 

compartments of the brain as shown in case M2. Also important to note were those cases 

where brain abnormalities do not appear to affect brain growth, such as isolated ACC, 

suggesting quantitative analysis may not provide useful information in these cases.  Clearly 

further work is required to establish the normal and abnormal ranges for all abnormalities 

that can affect the fetal brain. 

 

8.5 Summary 

 

This work has demonstrated that iuMR imaging has the ability to provide a 25% increase in 

the detection of fetal brain abnormalities as an adjunct to USS, and that it can influence the 

management of pregnancies in a high proportion of cases. The comprehensive assessment 
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of diagnostic confidence in the diagnostic pathway has shown iuMR appropriately improves 

the confidence with which diagnoses are made. The results of the Add-on study confirmed 

the ability of both USS and iuMR to correctly confirm when brain development of the fetus is 

normal. This highlights the validity of USS as the primary screening imaging method for 

pregnancy and confirms the need for additional iuMR imaging when abnormalities are 

detected. The findings of the MERIDIAN study have major implications for clinical practice 

and consequently it is recommended that iuMR imaging should be performed for all 

pregnancies where USS raises the possibility of fetal brain abnormalities. 

The 3D acquisition has been a useful addition to our routine clinical imaging protocol and 

was achieved in a high proportion of cases. The generation of 3D surface representations 

and printed models have provided a unique insight into the appearance of the developing 

brain. As well as providing the visual representations, manual segmentation of fetal brain 

anatomy produces quantitative data which will be the basis for continuing work on 

segmentation and 3D analysis. The measurement of fetal brain volumes in a cohort of 

normally developing fetuses made it possible to produce a growth chart which can be used 

as a reference, allowing comparison of volumes to be made when a fetal brain is affected by 

an abnormality. Additional information regarding any divergence in brain volume could 

potentially aid diagnosis or improve confidence in some cases. 

 

8.6 Future Work 

 

There are three areas arising from the work in thesis for further investigation that 

predominantly relate to the data generated by the post-processing of the 3D volume 

acquisitions. These include quantitative analysis of fetal brains affected by abnormalities that 

impact on brain growth, such as microcephaly; the development of automated methods for 

segmentation of brain anatomy; and the potential use of 3D printed models for parental 

education and counselling. 
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The review of fetal brain abnormalities in Chapter 7 supports the early indicators of 

diagnostic value in combining routine iuMR imaging with the post-processing of the 3D 

volume acquisitions. As the case studies have shown, there are times when there is disparity 

between skull size, determined by linear measurements, and brain size, determined by 

volume data. This information is potentially significant and further studies would identify 

when it would be of value in clinical situations. Areas of research that may benefit from 

volume analysis are those which rely heavily on head and intracranial measurement as 

primary indicators of an abnormality. One relevant application consists of those cases in 

which the fetus is thought to have microcephaly based on USS linear measurements. There 

have been very few iuMR studies focusing on the evaluation of fetuses with microcephaly, 

and consequently the potential role of iuMR imaging in this group of patients has not been 

adequately investigated. It is important to note that cases of isolated microcephaly were not 

eligible for recruitment into MERIDIAN. Previous MR studies on cases with microcephaly 

have focused on comparing the agreement of linear measurements of USS and MR or 

reporting MR biometric reference values (307, 308). As brain volumes are very difficult to 

quantify on USS, skull size is used as an indicator to diagnose microcephaly but the 

correlation is not perfect (309). Brain volume may be a more accurate marker for diagnosis 

of microcephaly and to predict neurodevelopmental outcome in fetuses where small head 

size is a concern, but a formally powered study is needed. 

Research in this field is hampered by the non-standardised definition of microcephaly. Most 

researchers have to choose between skull sizes that are either 2 SD or 3 SD below the 

mean of the normal population. The choice significantly alters the proportion of individuals 

with pathology and therefore those considered outside the normal population. Although no 

definition of microcephaly is given, EUROCAT (the European Surveillance of Congenital 

Anomalies) reports that approximately 0.025% of pregnancies are affected each year (310). 

Microcephaly is often associated with other brain abnormalities which may indicate a poor 
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prognosis but there is an increased risk of poor neurodevelopmental outcome even in 

isolated microcephaly, i.e. if no other structural brain abnormality is present (311, 312).  

If 2 SD below the mean is chosen as the threshold for a study, then approximately 2.5% of 

the normal population is included, resulting in too many false positives. Alternatively, if 3 SD 

below the mean is chosen then only 0.15% of the normal population will be included and it is 

likely that many cases with additional brain pathology will be overlooked. 

 

Using the benefits of iuMR imaging it will be possible to study other structural brain 

abnormalities in fetuses with microcephaly or micrencephaly (small brain size). A primary 

objective of a formal study would be to determine if there is any value in using iuMRI in 

addition to USS by addressing the research question: ‘is there a fetal head size or brain 

volume below which iuMR should be offered?’ The answer to this question would be defined 

by demonstrating a clinically significant increase in diagnostic accuracy by using iuMR in 

addition to prenatal USS and combining this with brain volume measurements, to stratify the 

risk of poor outcome in cases of isolated microcephaly and micrencephaly. 

Carrying out a multicentre prospective observational study, taking advantage of the proven 

collaboration of the MERIDIAN researchers, would make it possible to estimate the change 

in diagnostic accuracy of USS and iuMR in a cohort of pregnancies affected by 

microcephaly. It would also make it possible to determine whether measurement of skull size 

or an alternative antenatal assessment of brain volume provides a more accurate definition 

of microcephaly and prediction of risk for poor clinical outcome.  

We have shown that our method for generating brain volume data is both reliable, 

reproducible and easy to undertake but the time burden required is currently a significant 

drawback. A further area of work would therefore require the investigation and development 

of easily accessible automated methods for the segmentation of fetal brain anatomy. This 

may prove challenging for cases with extensive abnormalities that greatly distort fetal brain 

anatomy, however it is arguably the more-subtle pathology that is of greatest interest for the 



    

251 
 

application of volume measurements and existing research suggests that this should be 

feasible to solve. Additionally the label maps produced through the manual segmentation in 

this work can be used as a reference Atlas of normal appearances and provide a foundation 

from which automated methods can be developed. Reducing segmentation times and 

subsequent analysis of brain volumes would enable quantitative comparisons of brain 

volumes in fetuses with abnormalities to the normative data made available through this 

research. Ultimately it is hoped this type of evaluation could be made on a routine basis in 

the clinical setting and potentially improve both the accuracy and confidence of diagnoses 

for the detection of fetal brain abnormalities as well as provide a clearer indicator of outcome 

in pregnancies.  

An additional area for potential research is the use of the 3D printed brain models to improve 

parental understanding about the impact of abnormalities on brain development and growth. 

Personalised models have previously been shown to be a useful tool for educating patients 

affected by kidney tumours (313) but as far as we are aware 3D printed fetal brain models 

have not previously been produced and therefore their worth not established. Future work 

would investigate if parental acceptance of abnormalities and their implications are 

increased through being able to visualise and handle the brain models.  

 

8.6.1 Future directions of research 

 The investigation of methods to semi or fully automate the segmentation of fetal brain 

anatomy. This will focus on the exploration of existing software not previously applied 

to iuMR imaging and/or the development of new software. Initially this will focus on 

automated segmentation of normally developing fetal brains, with the ultimate aim of 

the development and successful application of automated methods regardless of the 

formation and structure of the fetal brain. 



    

252 
 

 A study of fetuses thought to have microcephaly following prenatal USS will combine 

routine 2D iuMR imaging and quantitative analysis of brain volume to define the role 

of iuMR imaging and post-processing in the clinical management of these cases. 

 3D iuMR imaging, in conjunction with quantitative analysis, will be used to investigate 

subdivisions of the fetal brain. Initial work will focus on the contents of the posterior 

fossa to help improve diagnostic accuracy in these cases. The accurate diagnosis of 

posterior fossa abnormalities remains a challenge for both USS and iuMR and further 

analysis of diagnostic errors within the MERIDIAN study will identify specific areas of 

inaccuracies and guide analysis.   

 An investigation into the benefit of using 3D fetal brain models, produced using 3D 

printing technology, for parental understanding of the impact of abnormalities on fetal 

brain development. 
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Appendix 1 

The MERIDIAN Study Patient Information Sheet  

 

Invitation paragraph 

Thank you for your cooperation, we do appreciate you taking the time to help us at what is a 

difficult time for you.  We would like to ask you to consider taking part in a research project 

which uses new methods of looking at a baby’s brain while still in the womb.  The project 

involves magnetic resonance imaging (MRI), which is a type of scan already used in many 

hospitals for other reasons.  Please read this information sheet carefully and if there is 

anything that is not clear or you need more information, please do not hesitate to ask us. 

Even if we cannot speak to you immediately, one of our team will get back to you.  

 
Why is the project happening? 
 
Ultrasound scanning is used throughout the country to check for possible problems during 

pregnancy.  Although this technique is good, in fact no medical test is perfect and in some 

cases ultrasound does not provide all the information needed to make a full assessment of 

the unborn baby’s brain development.  Newer MRI scanners like the ones we are using in 

this research project are able to scan much more quickly than we could ten years or so ago.  

This is very useful as a baby often moves during the scan and these faster scanners still 

allow us to take good, clear pictures of the baby’s brain and hence sometimes gather more 

information about any possible problems. 

 

What is the aim of the project? 
 
The aim of the project is to find out how and when MRI should be used to improve the 

information available to parents before birth about the health of their baby.  In particular we 

are concentrating on situations where ultrasound scanning suggests there is a problem with 

the growth and development of their baby’s brain. 

Why have I been chosen? 

As you are aware there may have been a problem with your baby’s brain shown on the 

ultrasound scan performed by your doctor.  We believe that MRI scanning may be able to 

provide you with more information regarding this. 

 

Do I have to take part? 

No. Your participation in this study is voluntary. You may decline to participate. If you decide 

to participate, you will be given this information sheet to keep, and you will be asked to sign 
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a written consent form. You can still withdraw at any time. You do not have to give a reason 

if you withdraw from the study prior to its completion.  This will not affect your treatment. 

  

What will happen to me if I take part? 

If you decide to take part, we will first ask you some routine questions to make sure that MRI 

is a safe procedure for you. If you have a heart pacemaker, you have had previous brain or 

heart surgery, or you have suffered an injury to your eye (such as a metal splinter) you 

should inform us so we may check this before the MRI takes place.  You will be seen by a 

member of staff in the MRI department before your scan and they will explain to you what 

will happen during the scan.  You will also be able to ask questions before and after the scan 

takes place. 

 

The MRI will either take place at the Academic Unit of Radiology in the Royal Hallamshire 

Hospital in Sheffield or it will be arranged by your doctor in the radiology department of your 

hospital.  The MRI scan normally takes around 30 minutes in total, although this may be 

longer if you are carrying twins or if your baby is particularly active during the scan.  You will 

be asked to lie very still.  During the scan you will hear the loud noise made by the MRI 

scanner while it is working.  You will receive earplugs or headphones before the scan starts 

to reduce this noise.   Some people may feel enclosed inside the scanner, and possibly 

experience feelings of “claustrophobia”, so you may wish to have another person present in 

the scanner room with you (for instance your partner, a close relative or friend).  This is OK 

as long as they complete a visitor safety questionnaire so that we know they are safe to 

enter the scanner room. 

 

Following your scan we will ask your doctor to let us know how useful the information from 

the MRI scan has been.  We are also very interested in your views about the MRI scan, and 

we will ask you to fill out two questionnaires, both of them after you have seen your doctor 

and discussed the scan results, one of them a few months after the other.  Once you have 

completed a questionnaire you can give it to a member of staff in clinic or return it to a 

member of the research team in a stamped addressed envelope which we will provide. 

 

With your agreement (which is included on the consent form) we would like to be able to use 

some of the pictures, or “images”, from your scan for teaching purposes or where 

appropriate in other publications relevant to this research.  None of your personal details 

would ever be printed on these images.  We may also, with your agreement (which is 

included on the consent form), wish to gather some information about what happens later on 

in your pregnancy and around the time of delivery. Finally, in order to check how useful and 
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accurate the information from your MRI scan has been we would like to see the results of 

any tests performed postnatally by your doctors up to 6 months term corrected after delivery.  

Sometimes this information can be collected entirely from your medical records, and those of 

your child, and we may not need to contact you directly.  If this is not possible however, then 

either a member of the research team, your midwife or consultant obstetrician would contact 

you to help us check these details. 

 

We may also wish (which is included on the consent form) to contact you regarding future 

studies into your child’s development.  It is entirely your choice whether you agree to the use 

of images for teaching purposes, providing us with information after your child is born, or 

participation in any future studies as your child grows.  It will not affect your care you receive 

if you decide not to take any of these options.   Please note that the doctor who performed 

your ultrasound test will be informed of the results of the MRI study.  They will in fact receive 

a full report which will be discussed with you when you next see them. 

 

What are the possible disadvantages and risks of taking part? 

There are no known problems regarding the use of MRI scanning in pregnant women.  

There are some possible disadvantages to having an MRI scan, as some people can find 

being in the scanner uncomfortable or unpleasant (please see paragraph 7 above “What will 

happen to me if I take part”).  It is important to point out though that most people experience 

little or no problem at all when they are having their MRI scan. 

 

It is possible that the information from your MRI scan might be different from the information 

shown on your ultrasound scan.  This can happen because no single medical test is perfect, 

and sometimes information provided by tests such as ultrasound and MRI may be 

incomplete or difficult to interpret.   If this occurs your doctor will discuss this with you, and it 

will be up to you and your doctor to decide between you how best to use the information 

provided by each of your medical tests. 

 

What are the possible benefits of taking part? 

Researchers, doctors and other health care professionals who are involved in scanning 

babies before birth could benefit from this research by gaining a better understanding of how 

and when to perform MRI scans for pregnant women.  In the future, other pregnant women 

who have been told their baby might have a problem could benefit from the results of this 

research.  As a result of the MRI scan you might also gain some more information about 

your current pregnancy and your baby’s condition. 
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What happens if the research study stops earlier than expected? 

If this is the case, the reason(s) will be explained to you by one or our research team. 

 

Will my taking part in this project be kept confidential? 

All data obtained in the study will be kept confidential. All information provided by you or 

recorded by the research team will be kept under code number and will only be linked 

together with your name where we need to contact you to make an appointment or request 

some further details from you. Data will be made available only to the persons conducting 

the study, your referring consultant and any other individuals where you have given specific 

permission for us to do so (for instance your GP).  All information will be kept in a locked 

room at the Academic Unit of Radiology in the University of Sheffield, within the hospital 

clinic or radiology department where your MRI scan takes place.  Copies will also be stored 

in a locked room and on a secure electronic database at the University of Sheffield School 

for Health and Related Research (ScHARR).  The questionnaires you complete after your 

MRI scan will be stored by a member of the research team in a locked room within the 

University of Newcastle. 

 

Will I get travel expenses? 

We will be able to reimburse reasonable travel expenses if you are asked to travel to 

Sheffield for your MRI scan (and you would not normally have your scans or other hospital 

appointments there).  Please ask the radiologist or another member of staff when you attend 

for your MRI scan, or contact the Academic Unit of Radiology in Sheffield for details 

(address and phone number are shown at the end of this information sheet). 

 

What will happen to the results of the research project? 

Researchers may present the results of this project in research conferences, or they may 

publish in scientific or medical journals.  None of your personal details will be identifiable. 

 

Who has reviewed the project? 

This study has been reviewed and commissioned by the National Institute for Health 

Research (NIHR) Health Technology Assessment Programme.  This is a part of the National 

Health Service (NHS) involved in medical research.  Ethical review is provided by means of 

the Integrated Research Application System (IRAS), and has been approved by a research 

ethics committee (South Yorkshire REC, reference: 11/YH/0006). 

 

What if something goes wrong? 
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Since there are no known health risks specifically associated with this study, it is very 

unlikely that you will be harmed as a result of taking part.  In the event that something does 

go wrong and you are harmed during the research, and this is due to someone’s negligence, 

then you may have grounds for legal action for compensation against the University of 

Sheffield.  You may however have to pay your own legal costs.  The normal National Health 

Service complaints procedure will still be available to you. 

 

What if I wish to make a complaint? 

If you wish to raise a complaint about the way you have been dealt with, or about any harm 

you feel you have suffered, you can contact  Professor Paul Griffiths in the Academic Unit of 

Radiology at the University of Sheffield via email (p.griffiths@sheffield.ac.uk), phone (0114 

2712587) or send a letter to: Professor P D Griffiths, Academic Unit of Radiology, University 

of Sheffield, C floor Royal Hallamshire Hospital, S10 2JF. 

 Alternatively, you can contact the patient advisory and complaints service at your local 

hospital or NHS Trust (Details of relevant local Patient Services Team(PST)/Patient Advisory 

and Liaison Service (PALS) office to be provided here specific to participating site). 

 

Involvement of general practitioner (GP) 

Your GP will not be notified of your involvement in this study unless you specifically ask us to 

do so. 

 

Who is organising and funding the research? 

The funding of this research is obtained from the National Institute for Health Research 

(NIHR), which is a part of the NHS involved in medical research.  The project is part of the 

NIHR Heath Technology Assessment (HTA) programme.   

 

The sponsors of this study will pay the Academic Unit of Radiology for the cost of the MRI 

scan and also for your reasonable travel expenses to allow you to come for your MRI scan.  

The doctor conducting the research will not be paid specifically to perform the scan and  

therefore he/she has no conflict of interest in your care. 

 

Contact for further information 

If you would like further information about the study, please contact Professor Paul Griffiths 

at the Academic Unit of Radiology in Sheffield.   Alternatively you can contact the person 

detailed below who is a member of our research team based at your local hospital or clinic. 
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Paul D Griffiths 
Professor of Radiology 
Academic Unit of Radiology 
University of Sheffield 
C floor,  Royal Hallamshire Hospital 
Sheffield  S10 2JF 
Email:  p.griffiths@sheffield.ac.uk  
Tel: 0114 271 2587 

           Local contact person 
           Address 
           Email 
           Tel 
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Appendix 2 
 

MERIDIAN STUDY CONSENT FORM 26 June 2014, Version 4.1 
 

Centre Number: 
Study Number: HTA Project 09/06/01 (MERIDIAN) 
Patient Identification Number for this trial (if known): 
Ethics reference: 11/YH/0006 
 

Form C 

          Please initial box 
 
1. I confirm that I have read and understood the information sheet dated 26 June 

2014 (version 4.1) for the above study.  I have had the opportunity to consider the 
information, ask questions and have had these answered satisfactorily.  

       
2. I understand that I will have the opportunity to ask further questions about the MRI 

scan itself before this takes place. 
 

3. I understand that my participation is voluntary and that I am free to withdraw at any 
time, without giving any reason, without my medical care or legal rights being 
affected. 

 
4. I confirm that relevant sections of my medical notes and other data collected during 

the study, and after the birth of my child, may be looked at by responsible 
individuals from the Universities of Sheffield and Newcastle, regulatory authorities 
and by staff at the NHS Trust where I receive my clinical care, where it is relevant 
to my taking part in this research.  I give permission for these individuals to have 
access to my medical records and those of my child. 
 

5. I agree that anonymous images from my ultrasound scan, MRI scan and any 
relevant tests performed postnatally may be used in the medical literature and for 
teaching purposes. 

 
6. I agree to take part in the above study. 

 
 

7. I agree to be approached by members of the research team at a later date to ask 
me if I wish to participate in future studies looking at my child’s development. 

 
 

 
Name of Patient            Date  Signature  
 
 
 
Name of Person taking consent           Date  Signature 
 
 

When completed, 1 copy for participant, 1 copy for researcher site file, 1 (original) to be kept 
in medical/maternity notes 
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Appendix 3 
 

The collection and management of the data for the MERIDIAN and MERIDIAN Add-on 

studies were overseen by the study management team at ScHARR (School of Health and 

Related Research). The databases for each of the studies, were developed by the Clinical 

Trials Research Unit’s using the in-house clincial data management system, Prospect, in 

collaboration with epiGenesys a software company owned by the University of Sheffield 

(https://www.epigenesys.org.uk/). Each database was tailored to each study to capture all 

the data necessary.  

Data was stored in a PostgreSQL database on virtual servers hosted by Corporate 

Information and Computing Services (CiCS) at the University of Sheffield. Security was 

ensured using industry standard techniques, including password authentication and 

encryption using SSL/TLS. The system logged activity by users, had a full data audit trail 

and was regularly backed up. Access to Prospect was controlled by usernames and 

encrypted passwords. A privilege management feature of Prospect meant that only the 

minimum amount of data required was available to each individual in order to complete their 

tasks allocated by the study management team at ScHARR. This ensured access to 

personal details was restricted to users with appropriate privileges.  

The design of the databases for the MERIDIAN and Add-on studies provided an overview 

page for each participant, as shown below in figures A and B, with access to the forms for 

each stage of data collection as shown in Appendices 4, 5 and 6. 

https://www.epigenesys.org.uk/
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Figure A. Screen capture of the online database showing the initial data entry page for an individual 

participant of the MERIDIAN Study. 
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 Form D used for the MERIDIAN study to record details of the USS examination. 

Figure B. Screen capture of the online database showing the initial data entry page for an 

individual participant of the Add-on study 
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Appendix 4 
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Appendix 5 
 

Form E used for the MERIDIAN study to record details of the iuMR examination 
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Appendix 6 
 

Form G used for the MERIDIAN study to record details of the clinical feedback following 

iuMR examination.  

 



    

291 
 

 

  

 

 



    

292 
 

Appendix 7 
 

 
 

Patient Information Sheet  

 

 

Magnetic resonance imaging to enhance the diagnosis of fetal developmental brain 

abnormalities in utero.   MERIDIAN Add on study 

 

Thank you for your interest in this research. We would like to ask you to take part in a 

research project which uses new methods of looking at a baby’s brain while still in the womb.   

The project involves magnetic resonance imaging (MRI), which is a type of scan already 

used in many hospitals for other reasons both in and out of pregnancy.   Please read this 

information sheet carefully and if there is anything that is not clear or you need more 

information, please do not hesitate to ask us.   Even if we cannot speak to you immediately, 

one of our team will get back to you.   

 

 

Why is the project happening? 

 

Ultrasound scanning is universally used during pregnancy.   Although ultrasound is good, no 

medical test is perfect and in some cases ultrasound does not give all the information 

needed to make a full assessment of the unborn baby’s brain development.   MRI has been 

demonstrated to be better at looking at some aspects of the developing brain.   We are 

currently trying to identify how much better MRI is than ultrasound.    

 

The aim of the project is to find out how and when MRI should be used to improve the 

information available to parents before birth about the health of their baby.   In this part of the 

project we are looking at babies whose brains are developing normally.   We are going to 

see if a detailed ultrasound and MRI give the same information about brain development.  

The research is set up to look at brain development only and any investigations used by us 

focus on this area alone. 

 

Would I be able to take part? 

The University of Sheffield 

Unit of Academic Radiology 

School of Medicine, Royal Hallamshire Hospital 

Researcher: Prof Paul Griffiths  
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You will be able to take part if you are over the age of 16 years, at least 18 weeks pregnant 

and have had an antenatal ultrasound which showed your baby’s brain was developing 

normally.     

 

Do I have to take part? 

No, your taking part in this study is voluntary.   You may decide not to take part.    If you 

decide to take part, you will be given this information sheet to keep, and you will be asked to 

sign a written consent form.   

You can still withdraw at any time.  You do not have to give a reason if you withdraw from 

the study, this will not affect your medical care. 

  

What will happen to me if I take part? 

If you decide to take part, we will contact you to ask some routine questions to make sure 

that MRI is a safe procedure for you.    If you have a heart pacemaker, you have had 

previous brain or heart surgery, or you have suffered an injury to your eye (such as a metal 

splinter) you should inform us so we may check this before the MRI takes place.    We will 

arrange a date for your scans.   When you come in for the scans we will also take your 

written consent to take part. 

 

The Ultrasound scan and MRI will take place at the Academic Unit of Radiology in the Royal 

Hallamshire Hospital in Sheffield.   You will have a detailed ultrasound scan, this will be very 

similar to previous ultrasound scans that you have had, except  it will be performed by a 

consultant who will only be looking at you baby’s brain development. You will then be seen 

by a member of staff in the MRI department who will explain to you what will happen during 

the MRI scan.   You will also be able to ask questions before and after the scan takes place.   

The MRI scan normally takes around 30 minutes in total, although this may be longer if you 

are carrying twins or if your baby is particularly active during the scan.   You will be asked to 

lie very still.   During the scan you will hear the loud noise made by the MRI scanner while it 

is working.   You will be given earplugs or headphones before the scan starts to reduce this 

noise.    Some people may feel enclosed inside the scanner, and possibly experience 

feelings of “claustrophobia”, so you may wish to have another person present in the scanner 

room with you (for instance your partner, a close relative or friend).   This is OK as long as 

they complete a visitor safety questionnaire so that we know they are safe to enter the 

scanner room. 

 

Extra Options 
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If you agree we would like to be able to use some of the pictures, or “images”, from your 

scan for teaching purposes or where appropriate in other publications relevant to this 

research.   None of your personal details would ever be printed on these images.    We may 

also wish (which is included on the consent form) to contact you regarding future studies into 

your child’s development.    

 

It is entirely your choice whether you agree to the use of images for teaching purposes, or 

take part in any future studies as your child grows.   It will not affect your care you receive if 

you decide not to take any of these options.     

 

 

 

What are the possible disadvantages and risks of taking part? 

There are no known problems regarding the use of MRI scanning in pregnant women.   

Some people can find being in the MRI scanner uncomfortable or unpleasant.   It is 

important to point out though that most people experience little or no problem at all when 

they are having their MRI scan. 

 

It is possible that the information from your detailed ultrasound scan and MRI scan might be 

different from the information shown on your previous ultrasound scan.   This can happen 

because no single medical test is perfect, and sometimes information provided by tests such 

as ultrasound and MRI may be incomplete or difficult to interpret.   We know this could be 

worrying for you. We will make sure your GP and consultant at your hospital have the 

information so they can talk to you about what it might mean.  

 

What are the possible benefits of taking part? 

Researchers, doctors and other health care professionals who are involved in scanning 

babies before birth could benefit from this research by gaining a better understanding of how 

and when to perform MRI scans for pregnant women.   In the future, pregnant women who 

have been told their baby might have a problem could benefit from the results of this 

research. 

You will also be offered an MRI picture of your baby to keep and a £10 voucher. 

 

Will my taking part in this project be kept confidential? 

All data obtained in the study will be kept confidential.    All information provided by you or 

recorded by the research team will be kept under code number.    Data will be made 

available only to the research team staff, your GP and consultant (if you have one).     All 
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information will be kept in a locked room at the Academic Unit of Radiology in the University 

of Sheffield, within the hospital clinic or radiology department where your MRI scan takes 

place.   Copies will also be stored in a locked room and on a secure electronic database at 

the University of Sheffield School for Health and Related Research (ScHARR).    

 

Will I get travel expenses? 

We will be able to pay reasonable travel expenses for your travel to Sheffield for your MRI 

scan.   If you bring a partner, relative or friend their travel costs will also be covered.   

 

What will happen to the results of the research project? 

Researchers may present the results of this project in research conferences, or they may 

publish in scientific or medical journals.   None of your personal details will be identifiable. 

 

What if something goes wrong? 

Since there are no known health risks specifically associated with this study, it is very 

unlikely that you will be harmed as a result of taking part.   In the event that something does 

go wrong and you are harmed during the research, and this is due to someone’s negligence, 

then you may have grounds for legal action for compensation against the University of 

Sheffield.   You may however have to pay your own legal costs.   The normal National 

Health Service complaints procedure will still be available to you. 

 

What if I wish to make a complaint? 

If you wish to raise a complaint about the way you have been dealt with, or about any harm 

you feel you have suffered, you can contact  Professor Paul Griffiths  (see contact details 

below). 

 

Alternatively, you can contact the Patient Service Team at the Royal Hallamshire Hospital at;  

Patient Partnership Department,  B Floor,  Royal Hallamshire Hospital,  Glossop Road,  

Sheffield,  South Yorkshire,  S10 2JF,  tel: 0114 2712400 or via e-mail:  PST@sth.nhs.uk.   

 

Involvement of general practitioner (GP) 

We will write to your GP to let them know that you are taking part  in this study. 

 

Who is organising and funding and reviewing the research? 

This research is being carried out by the University of Sheffield and is funded by the National 

Institute for Health Research (NIHR), which is a part of the NHS involved in medical 
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research.    The research has been approved by South Yorkshire Research Ethics 

committee (reference: 11/YH/0006). 

 

The doctor who oversees the ultrasound scan or MRI scan will not be paid specifically to 

perform the scan and therefore he/she has no conflict of interest in your care.   

 

Contact for further information 

If you would like further information about the study, please contact Professor Paul Griffiths: 

 

Paul D Griffiths       Email:  

p.griffiths@sheffield.ac.uk  

Professor of Radiology      Tel:   0114 215 9605 

Academic Unit of Radiology 

University of Sheffield 

C floor,  Royal Hallamshire Hospital 

Sheffield  S10 2JF 

 

 

Thank you for taking the time to read this information sheet 
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Appendix 8  

Participant screening form for the Add-on study 
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Appendix 9 
Participant background information form for the Add-on study. 
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Appendix 10 Consent Form for the Add-on Study 
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Appendix 11 
Data captured for each participant for the Add-on study following MR examination 
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Appendix 12 
 

3D SLICER USER INSTRUCTIONS: A Beginners Guide For Brain Segmentation. 

 

1. Select Load Data from the start up page of Slicer 

2. From the pop up box click ‘choose files to add’ (1)  

3. Find and select the image file you want to annotate 

4. The file should now appear listed in the box- Click ok 

5. The images will now appear in slicer. 

 

 1 

2 3 
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6. In order to annotate the images select the appropriate colour pane from the drop down 

menu (2)– i.e. choose red if you want to select axial 

7. Using  the mouse LEFT click mouse to zoom images to the size you want 

8. Use RIGHT mouse to alter windowing to appropriate levels. 

9. Middle scroll to move through images and press and hold to grab and centre the images 

10. To start drawing click on the pencil on the tool bar (3)  

11. 11. This will now change the welcome panel on the left to give you the functions to 

annotate (see below) 

12. 12. A pop up box will appear. The default directory is usually Generic Anatomy colours- if 

it isn’t use the drop down arrow to find this choice. Select Apply 

 

 

13. The menu shown below will now appear on the left. 

14. Choose the label colour by clicking (4) Standard colours used are:- 

Blue- no 25 for ventricular system 

Yellow- no 2 for one hemisphere 

Cream- no 14 for second hemisphere 

Green- no 7 for cerebellum/brain stem  

Red- no 5 for remaining intracranial volume  

For annotation it is important to note that you need to work from the inside out as 

Slicer ‘fills in’ any drawing you do. 

Analyze files comes in pairs and need to be kept together. 

Select only the blue file for loading into Slicer 

When annotation has been done in Slicer and saved 

these are the resultant files  

When a model has been built and saved 

there is a file for each colour used 



    

307 
 

15. The tools available for drawing are:- 

5- this gives a circle which you can use to fill in the area you choose. Simply left click 

and hold then release to apply the colour. You can increase the size of the circle by 

either choosing one of the pre-set sizes or by sliding the tool bar (9) below the colour 

selector 

6- free hand line drawing- left mouse and hold to draw- right mouse click within 

drawn area to fill it 

7- spot fill – click with left mouse to fill one pixel at a time 

8- pixel intensity matching- this gives a box which will find pixels of similar intensity 

across the image 
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If you make a mistake you can use the undo/re apply button (10)  

 

NB When moving on to applying subsequent colours it is important to make sure the ‘paint 

over’ (11) button is unchecked unless you do actually want to do this. 

 

NB Remember to save your work at regular intervals. To do this select save (12) and in the 

pop up box tick what you want to save (the label is what you have drawn 13)  Change the file 

format to Analyze(.img) (14) using the drop down arrow. Select where you want to save the 

file to by clicking 15 and choosing file the location. 

5     6      7     8 

 

4 

                                               9 
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When all the anatomy has been annotated a 3D model can be built. This can be done at any 

time point i.e. just to see ventricles etc. but it is important to note – Slicer has a slight bug in 

that if models are continually built at different stages it can corrupt the data and this results in 

missing patches in the model. 

 

Building the 3D Model. 

 

a) Set the view to Conventional (2) in order to see the model when it is built  

b) Select- All models  -then  Model Maker  from the drop down menu (arrow) 

  11 

   10 

12 

13                      14                                 15 
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c) In boxes 16 and 17 use the drop down arrows and choose ‘create new model hierarchy 

d) In box 18 select the label you have drawn from the drop down menu 

e) In model Maker Parameters (19) choose the range of labels you want including eg 1-25 

 

f) Check the Joint Smoothing box and move the slide to 18 (20) 

g) Click Apply 21 

 

The facility to rotate, centre, change background colour etc. can be found behind the pin icon 22 

2 
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 Viewing the model and Quantitative Data 

16 

18
17

           19 

       20 

   21 

22 
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a) Click on icon  

 

 

 

 

b) Click on one of 

the labels listed to 

adjust that label  

 

 

 

 

Quantitative data 

is displayed here 

 

 

 

 

 

 

 

To change the 

opacity as below 

alter the scale here 
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To save images of the model you build you can take screen shots. Click on the          icon 

on the tool bar. 

Click on the view (23) you want to save and give the image a name in the box. Click ok. You 

will still need to save the image to a file location in the same way you save your labelling (12) 

 

 

 

 

 

Re-loading previously annotated data. 

Slicer will save annotated data as a label and can be saved at any timepoint- finished or not. 

To re-load previous label you do this in the same way as selecting the data initially with the 

exception that you not only have to select the original file but also the matching label file by 

using ctrl.  

 

If you have already saved a model you will need to choose each of the model files. A 

reloaded model will be shown as a single colour (grey) but each of the files will be shown 

separately (24) 

 

To reapply the colours to each label double click the grey box for each model label. This will 

bring up a box where you can select the colour you wish to apply.    

 

 

 

23 
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