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Abstract

Introducing a new drug to market is a lengthy and expensive process (typically

10-15 years and $1.7 billion). Better understanding of how and why a drug

molecule binds to a target and what changes in the atomistic structure and

chemistry could improve the binding affinity and shorten the process. In

addition to structure-based approaches, the role of thermodynamics and

molecular motions in binding selectivity and efficiency have attracted

increasing attention. Whilst calorimetric methods can quantify total free energy

and entropy change, it is difficult to estimate contributions from the different

components of entropy, one of the largest unknowns being the magnitude of

the configurational entropy. Molecular dynamics (MD) simulations of the drug

and target protein can provide more details of the different atomistic

movements contributing to the total entropy change, thus potentially providing

valuable clues for lead optimisation.

In this study we use the well characterised N-terminal domain of the Hsp90

chaperone protein as a model system to study the changes in conformational

flexibility (configurational entropy) upon binding of small molecule inhibitors

using MD simulations, NMR and ITC. We show that the two inhibitors studied

cause different changes in the protein dynamics. These effects were seen with

NMR relaxation dispersion methods and with MD but the dynamic changes

however are not reflected in the global ITC parameters. Here the water is

assumed to have a dominating effect in the overall entropy change.

However, as some Hsp90 clients have been shown to preferentially interact

with only one conformation of the protein, we propose that the changes seen

with NMR and MD could be of interest for drug design. Manipulating the

dynamics by small molecules could favour interaction with a subset of client

proteins, without affecting the interaction of others, all together providing

specificity and potentially allowing to design an ‘ideal’ drug that only prevents

the folding of ‘bad’ cancer related proteins without affecting Hsp90 functions

in the normal cells. As the MD simulations also reflect these dynamic changes,

we propose that simulations could be also used as a screening tool for

selecting which inhibitors could be taken for further development in the lab.
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Chapter 1

Introduction

1.1 Background

Molecular recognition is key to all cellular processes, from signal transduction

to DNA replication, and it has been studied widely over the last few decades.

Thanks to advances in X-ray crystallography, Nuclear Magnetic Resonance

spectroscopy (NMR), and electron microscopy techniques, we have a wealth

information on different biomolecular structures, accompanied by functional

details. However, proteins are not simply static objects within a cell, but are in

constant motion and, as a result, they can adopt and populate ensembles of

different conformations. It is accepted that these conformational dynamics do

not just present minor fluctuations around an average native structure.

Instead, the changes to the structure, and also to the equilibrium population

of conformations that a protein adopts, can affect the function and choice of

binding partners [1-3]. Understanding these “wiggles and jiggles” is the key to

both understanding life at the molecular level and how it could be manipulated

by pharmaceuticals. Here, the ability to fine tune the equilibrium population by

designing small molecule inhibitors that only interact with a particular subset

would clearly be of much interest.

In this work, we set out to explore the dynamic landscape of proteins further

and to specifically investigate how small molecules may change protein

dynamics. Below, we describe the underlying thermodynamics that is vital for

understanding molecular recognition. This is followed by a review of the

methods used to access the thermodynamic information, as well as a

description of the model system used for this study.

1.2 Thermodynamics and drug binding

The process of a drug binding to a protein has traditionally been described by

lock and key mechanisms, where the shape and chemical composition of a
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ligand determines whether interaction with the protein will take place. Whilst it

is true that both shape and bonds do have an effect to binding, changes in the

structure of binding partners also play a role. Although the connection

between thermodynamics and structure is not well understood, it is better to

use thermodynamics to describe the binding interaction, since this also takes

into account the flexibility of the system [4, 5].

If thermodynamic parameters are used to describe the binding interaction, the

change in the free energy (ΔG) dictates whether an interaction will take place, 

i.e. whether a drug will bind to the protein target or not. Here, the more

negative the free energy change, more readily the reaction will happen. The

overall free energy change is made up from contributions from chemical

interactions that arise from for example hydrogen bonding, and ionic

interactions between the drug and the target. These changes are described

by the enthalpy (H) term. The second contributor to the total free energy

change is the entropy (S) term, which describes changes in the dynamics of

the system. Both the enthalpy and entropy terms include contributions from

water, the target protein and the drug molecule, as shown in Figure 1.1 [6].

Figure 1.1: Thermodynamics plays a key role when the ligand binds to the
target protein. To determine the overall binding free energy,
contributions from water molecules (interface desolvation) need to be
taken into account, as well as the chemical interactions between the
protein and the drug, that are encompassed in the enthalphy (ΔH) term. 
Changes in the shape of both the protein and the drug also play a role
in the overall binding free energy change, and these are described by
the entropy (ΔS) term.  
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The free energy change (ΔG°) upon drug binding can thus be described by 

Gibb’s free energy formula, where ΔH° is enthalpy, ΔS° entropy and T 

temperature:

°ܩ∆ = °ܪ∆ − ܶ∆ܵ (eq.1)

Alternatively, free energy can also be calculated in the following way if the

association constant (Ka) is known:

°ܩ∆ = −ܴܶ lnܭ (eq.2)

where R is the gas constant and T temperature.

It should be noted that in both cases, the changes in free energy (as well as

and enthalpy and entropy) calculated by equation 1 are relative to standard

conditions, as shown by the ° superscript. This means that any changes

observed are relative to those measured using standard conditions, which are

1 atm pressure, a temperature of 298 K, and 1 M reactant (protein and ligand)

concentrations [7]. Thus, any positive or negative changes per se lack

physical significance, because if different conditions were chosen, the zero-

point would change.

Whilst the changes in free energy will determine the binding affinity, for drug

design, the thermodynamic descriptions that include the changes in the

enthalpy and entropy are of more interest. The entropy and enthalpy terms

help to understand why the ligand-protein interaction happens, and how the

ligand could be manipulated to make it a ‘better’ drug molecule. The enthalpy

term reflects the specificity and strength of the molecular interactions between

the ligand and target. These include hydrogen bonds, electrostatic and van

der Waals interactions. The change in enthalpy also includes contributions

from water, as the bonds between the solvent (water molecules) and the

solute (ligand and protein) may be broken or formed upon complex formation

[8]. The entropy term, which reflects the changes in dynamics, similarly

include contributions from the solvent, as well as from the protein and ligand.

The solvent reorganisation, where water molecules are released to bulk

solution from the ligand and protein surfaces upon binding, is often a major

contributor to the overall entropy change. The solute contribution to the

entropy change is a combined effect from changes to translational and
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rotational motions (i.e. the overall tumbling) of the molecules, as well as

changes in the intra-molecular structure resulting from bond stretching and

angle bending [9].

A lot of effort has been made to understand and assign values to the different

parameters that govern the thermodynamics of drug and ligand binding over

the years as well as assigning values to the parameters [10]. These include

attempts to isolate and estimate the individual contributions functional groups

and H-bonds make to the binding energy. For example, H-bonds have been

calculated to contribute between 2-10 kcal/mol to the binding energy,

depending on the functional groups involved in the binding and whether they

are buried or solvent exposed [11]. Functional group contributions to drug-

receptor interactions have similarly been estimated. In general the more

electronegative the group, the stronger the binding energy; for example an OH

group has been estimated to contribute between 2.5-4 kca/mol to the free

energy of binding compared to 3.2-4 kcal/mol for C=O group or 0.8-1.8

kcal/mol for nitrogen [12, 13]. Similarly, energetic penalties resulting in the

loss of the rotational and translational degrees of freedom have been

estimated [10, 14, 15]. These estimates have subsequently been used to build

models to estimate the overall free energy upon binding. For this, each

physical process, from restriction of rotations to burial of hydrophobic groups,

has been assigned a value and a factor by which they increase the binding

energy [16]. However, estimation of the free energy is not as simple as adding

up the various constituents. There are many examples, where attempts to

increase affinity by focusing on the the enthalpy component, for example by

addition of H-bond motif, carry an entropic loss due to structuring of both the

ligand and the binding site [17]. On the other hand, some binding interactions

have been demonstrated to be more than sum of their parts. For example,

studies with thrombin ligands found that addition of a H-bond (enthalpic effect)

and increasing the size of a hydrophobic group (thus affecting entropy), had

in fact a co-operative effect. Here the affinity gain from the two modifications

to the ligand was larger than either on its own [18]. This additive affect has

also been seen with fragment based drug design, where the affinity of a larger

molecule (where the individual fragments are linked) can be greater than the

combined affinity of either fragment. The additive affect in the case of thrombin
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was suggested to depend on changes in the dynamic properties of the

molecule [19].

Generally, the estimations of binding energy as described above do not take

into account any changes to the target protein. In the past, the enthalpy term

describing the chemical interactions has received more attention in drug

design efforts. However, in recent years the static ‘lock and key’ mechanism

used to describe drug and protein association has been adapted to include

the changes in the conformations of the target protein as well as yielding the

induced fit and conformational selection models. In the induced fit model a

ligand binds to an inactive form of the protein and the interactions between

ligand and protein upon binding induce the protein to change to an active form.

The conformational selection model assumes that the protein exists in active

and inactive forms and the ligand binding to the active form subsequently

shifts the existing equilibria [20]. To understand these protein dynamics, the

entropy term, which describes changes in the different conformational states

that a system can adopt, is the key [21]. This will be the main focus point for

this study.

1.3 Experimental approaches to probe the protein dynamics

It has been said that ‘Heat does not come in many colours’ [22]. Whilst all the

thermodynamic parameters (ΔG, ΔH and ΔS) can be determined analytically 

with techniques such isothermal titration calorimetry (ITC), the global entropy

value obtained by ITC includes contributions from both solvation and the

changes in the macromolecular structure. However, understanding what the

global value means, in terms of the dynamics of individual components of the

binding system that determine configurational entropy at the molecular level,

is not possible. This is due to the fact that it is not possible to distinguish what

percentage of the change is due to the protein, or due to the drug ligand, and

also what effects to the structure of the protein these changes may have.

Apart from ITC, many biophysical techniques can be used to get clues about

thermodynamics of binding and contributions from conformational re-

arrangements, but like ITC, most provide limited resolution either in terms of
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detail of dynamic timescales or lack of atomistic detail. Techniques, such as

surface plasmon resonance, allow the determination of the binding kinetics,

but lack in structural detail [23]. In principle, hydrogen-deuterium exchange

mass spectrometry allows the determination of both binding kinetics and some

details of the structure of the protein. However, the structural information

obtained from this technique is of very low resolution, and falls into the same

category of ‘rough shape and size’ as the structures obtained via neutron

scattering, or small angle X-ray scattering [24-26]. With correctly chosen

labelling, or with the aid of mutational studies, fluorescent microscopy

techniques can give information about structural re-arrangements that occur

upon binding. However, the structural detail is limited to those areas adjacent

to the fluorescent labels [27]. Cryo-electron microscopy (cryo-EM) and X-ray

crystallography on the other hand allow determination of atomic structures,

and can provide some detail of the dynamics. Cryo-EM structures have been

used to give details of the dynamics, even back when the structures were

‘fuzzy’. This is because the populations of the different conformations can be

extracted from large datasets of imaged particles. Also, given the recent major

advances in the resolution of cryo-EM structures, it has become possible to

get atomistic detail of the structures, although the technique is suitable only

for large protein systems [28]. X-ray crystal structures of proteins on the other

hand are by definition rigid, but dynamic regions can still be inferred by using

the per atom calculated B-factors that contain information about the thermal

fluctuation of the atom in question. A small value for the B-factor describes

rigid atoms, larger numbers suggest some fluctuations [29]. However, the

dynamic information, in terms of timescales, obtained via the cryo-EM and X-

ray crystallography techniques, is not very detailed. To fully understand the

ligand-drug interaction, detailed information of both the atomistic structures

and the dynamics including the timescales they occur are needed.

Protein motions are thought to occur in timescales spanning from picoseconds

to seconds. This is to account for the bond vibrations to protein domain

movements and for protein folding, as shown in Figure 1.2. To understand the

dynamics of proteins, techniques which can span these timescales and

provide atomic resolution are needed. Here one should look into nuclear
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magnetic resonance spectroscopy (NMR) and all atom molecular dynamic

simulations (MD).

Figure 1.2: Protein motions cover the local bond vibrations to larger scale
domain re-arrangements and these events take place in different
timescales from nanoseconds to seconds. The changes in structure
require different magnitudes of free energy change and can be imaged
as peaks and troughs in the free energy landscape. Local bond
vibrations can be thought to reside in single energy well, whereas for
larger domain movements or protein folding/unfolding events which
require larger energy changes similarly require more time to cross
energy barriers (modified from [30]).

Both NMR and MD can provide information on different timescales. For

classical MD simulations, the lower time limit is related to picosecond bond

vibrations and whilst using special computer infrastructure millisecond

simulation times have been achieved, normally the simulation times are

currently in realm of hundreds of nanoseconds [31]. Nevertheless, with longer

simulation times and use of replica simulations, the energy landscape can be

explored adequately to observe dynamics resulting from ligand-protein

interactions. NMR on the other hand is very powerful technique, as with the

right choice of isotope atom labelling and pulse sequence, the dynamics

ranging from the picosecond bond vibrations to protein folding that can be

measured in milliseconds can be observed, as seen in Figure 1.3 [30]. NMR

experiments can also measure slower processes from seconds to hours.
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As both the atomistic structure and details of timescales are needed to further

the understanding of dynamics and configurational entropy of

macromolecules, we will use MD simulations and NMR techniques to study

the protein and ligand dynamics. The pharmaceutically interesting protein,

heat shock protein 90 (Hsp90), which is an active cancer drug target is used

as a model system to be studied by NMR and MD techniques. Further, ITC

measurements will be conducted to get an idea of global vs local entropy

effects.

Figure 1.3: Atomistic scale techniques for probing protein dynamics at
different timescales. Protein motions range from local bond vibrations
to global domain re-arrangements and folding events. These different
motions happen in various timescales, from nanoseconds to seconds.
To probe these motions, NMR is a very powerful technique as different
NMR techniques can examine the very fast, as well as the slow,
events. Whilst different computer simulation techniques can access
similar timescales, coarse graining approaches are required to
measure the slower time scales.

1.3.1 Dynamic Hsp90 is used as model system to probe the role

of protein dynamics in ligand and drug interactions

The molecular chaperone Hsp90 is one of the most abundant proteins in a

cell. It is involved in maturation of large number of client proteins during the

later stages of protein folding [32]. To date, hundreds of diverse clients of

Hsp90 have been identified, ranging from kinases to nuclear receptors. As

many of the clients are oncoproteins, Hsp90 is also an active cancer drug

target [33, 34].
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Given that Hsp90 is vital for cell function, it is perhaps slightly surprising to

find it as a drug target. The pharmaceutical industry took note of the

chaperone during the 1990s after a natural product geldanamycin was first

found to revert cancerous phenotype in cell screens. Follow up studies using

pull down assays with geldanamycin found that it interacted with a 90 kDa

protein, which turned out to be Hsp90 [35]. After nearly two decades, there is

a wealth of Hsp90 data, including over 200 structures deposited into the

protein data bank on human Hsp90. A recent review found 280 published

Hsp90 ligands, with thirteen inhibitors, that are undergoing clinical trials [36-

38].

Hsp90 is a highly dynamic multi-domain protein made up of a N-terminal

nucleotide binding domain (NTD), a middle domain, which has been implied

to play a role in substrate and co-chaperone interactions, and a C-terminal

domain (CTD) which is used for dimerisation. Hsp90 forms homo-dimers and

fluctuates between wide variety of structurally distinct states [39]. Some of the

early crystal structures defined the open and closed states of Hsp90, where

the conformation change was regulated by ATP binding and hydrolysis. Here,

in the apo-form, the Hsp90 adopts a V-shaped open conformation, where the

dimer connections are formed via the C-terminal domains (Figure 1.4) [39].

Upon ATP binding to the NTD, the lid segment closes the binding pocket and

this slowly leads to the whole chaperone changing from an open V-shape to

a twisted closed conformation, where the two N-terminals also make contact

upon strand exchange. The ATP binding also has an effect on the NTD and

middle domain interface. Here, a highly conserved arginine residue of the

catalytic loop of middle domain interacts with the ATP bound to the NTD and

thus the middle domain contributes to the ATP hydrolysis. After ATP

hydrolysis, and subsequent ADP release, the Hsp90 returns to the original

open conformation [39-42]. The open and closed forms as defined by early

crystal structures are not the only conformations the Hsp90 adopts. SAXS and

EM studies have demonstrated that ATP binding and hydrolysis only shift the

equilibria between a pre-existing set of conformational states, which range

from open to closed structures with various intermediates and open structure

where the subunits are much further apart [41, 43]. Interestingly, although the

dynamic cycle between the open and closed forms of Hsp90 has been well
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established, mutational studies of the full length protein with non-functional

nucleotide binding domain found that both open and closed forms were also

populated in the absence of the nucleotide. This suggests that the chaperone

population exists in a dynamic conformational equilibrium [44].

Figure 1.4: Hsp90 undergoes large conformational re-arrangements upon
ATP binding and hydrolysis from V-shaped open conformation (E.coli
Hsp90 structure – PDB:2IOQ) to tightly packed closed conformation
(Yeast Hsp90 – PDB:2CG9). The chaperone is made up of three
domains, the N-terminal domain (NTD), the middle domain (Middle)
and the C-terminal domain (CTD). The N-terminal domain, where the
inhibitors bind to, is depicted in blue on the right of the figure.

The highly dynamic cycle that Hsp90 undergoes has an effect on both the co-

chaperone interactions as well as client binding. The Hsp90 co-chaperones

have been shown to interact with, and stabilise, different conformational states

during the ATP driven open-closed cycle [45]. Recent studies have also

suggested that different pools of Hsp90 may be involved in different functions

or pathways. Here, pull down assays have shown that the Hsp90 inhibitors,

whilst binding to the same N-terminal pocket, only interact with a small portion

of the total cellular Hsp90. The inhibitors also cause different cellular

phenotypes to occur, suggesting that they have different biological effects [42,

46-48]. For client protein interactions, no common sequence or motif has been

identified responsible for the interaction with the Hsp90. The current belief is

that the different conformational states of Hsp90 are associated with different

co-chaperone complexes, and that these interact with different clients. The

chaperone conformation will have different effects on the client
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folding/misfolding [39, 42, 49]. This conformational equilibrium is interesting

for the pharmaceutical industry; if particular clients interact with only a certain

conformation of Hsp90, it may be possible to selectively inhibit only a certain

pool of cellular proteins. This could help with toxicity issues associated with

the Hsp90 inhibitors.
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Hsp90 has been a cancer drug target for over a decade, and most drugs target

the N-terminal nucleotide binding domain. Two early inhibitors that have been

the subject of many studies were geldanamycin and radicicol. A large number

of inhibitors from different chemical classes have been added to the growing

list of Hsp90 inhibitors [37]. Both computational and NMR studies have shown

that nucleotide (ADP/ATP) binding causes changes in the N-terminal domain

dynamics of the chaperone, which are likely to be linked to the open-closed

states of the full length protein [50, 51]. It has also been demonstrated that the

changes in the N-terminal domain observed upon ligand binding also affect

the conformation of the middle and C-terminal domains in the full length

protein [52]. To examine whether small inhibitors also cause differences to the

chaperone dynamics, rather than merely inhibit the function by blocking the

ATP hydrolysis step, we selected two different ligands from a panel of Hsp90

inhibitors to carry out biophysical characterisations using NMR and computer

simulations. The two ligands selected for the studies were a large 17-DMAG

molecule [37], which is a more soluble derivative of geldanamycin, and a small

nucleotide mimic GVK0153 (see Figure 2.1 in Chapter 2 for structures). The

N-terminal domain of the human Hsp90 was used for the studies, as its size

is still amenable to both NMR methods and longer timescale MD simulations.

For the inhibitors, both molecules studied have been removed from active

drug research due to issues with in vivo toxicity. Since the Hsp90 is used here

purely as a model system to study dynamics, rather than to develop new

inhibitors, these side effects do not matter for this study.

1.3.2 Isothermal titration calorimetry

NMR and molecular dynamic simulations are used in this study to estimate

configurational entropy change. We also carry out isothermal titration

calorimetry (ITC) experiments, that allow the direct measurement of the

changes in enthalpy (H), as well as stoichiometry (n) and affinity (Ka) for

biomolecular processes in aqueous solution [53] [22]. These parameters allow

the calculation of free energy, and entropy values, using equations 1 and 2
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(shown in Section 1.2 and below). Thus, all thermodynamic parameters can

be obtained from a single experiment.

ܩ∆ = −ܴܶ lnܭ = ܪ∆ − ܶ∆ܵ (eq. 1 & 2)

The ITC instrument has two cells, a reference cell filled with the assay buffer

and a sample cell containing the macromolecule of interest to which the ligand

is going to be titrated. A schematic of the instrument is shown in Figure 1.5.

The reference and sample cells are connected together with thermo-coupled

circuits that detect any temperature differences between the cells caused by

the binding reaction of sample cell upon ligand titration. Depending on whether

the reaction in the sample cell is endo- or exothermic, the resulting sample

cell heat change causes power to either be applied, or reduced, to maintain

identical temperature between the two cells [54]. The changes in the feedback

power applied to the sample cell is measured, and recorded. This gives the

total heat change per injection, which can be plotted as a power-vs-time plot

to obtain the values of ΔH° and Ka.

Figure 1.5: Schematic of Isothermal calorimetry instrument. The sample
cell, into which the ligand is titrated, is thermo-coupled to a reference
cell. Depending on the reaction, power is applied or withdrawn from the
sample cell to keep the temperature constant between the reference
and sample cells. Figure adapted from [53].

This image has been removed by the author of this

thesis for copyright reasons
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Figure 1.6: Example of data from an ITC experiment, where GVK0153
inhibitor was titrated into Hsp90. The top panel shows the power
applied to the sample cell to maintain constant temperature between
the reference and sample cells, thus reporting on heat changes. The
bottom panel shows the integrals of the peaks, together with a line of
best fit that is used to estimate ∆H, Kd and stoichiometry (n).

As seen on the top panel of Figure 1.6, the changes in power are generally

large during the first few injections due to the excess of macromolecules, and

these maximum peaks correspond to enthalpy of binding (ΔH°). The changes 

in the heat become smaller with further titrations as the binding sites are being

filled. Eventually, a proportion of the titrated ligand will remain free in the

solution. The slope of the middle section of the plot, between the initial large

changes and final small changes in heat, can be used to estimate Kd. This is

the dissociation constant, and the inverse of Ka. Finally, if the concentrations

of the macromolecule and the ligand are known accurately, the stoichiometry

(n) can be determined from the graph [53].

Whilst all the thermodynamic parameters of interest can be determined by

ITC, the values obtained are global values and conformational entropy



15

contributions cannot be separated from the effects of water and rotational and

translational components of the macromolecules. Also, ITC experiments are

sensitive only to certain affinity windows. Very strong interactions between the

ligand and target produce too steep a curve without sufficiently many points

to determine the Ka (i.e. slope). Vice versa, very weak interactions produce

flat curves, which make slope determination similarly imprecise. Nevertheless,

ITC is a popular method, and the global entropy values can give guidance as

to whether the magnitude of the configurational entropy obtained from other

techniques is the overall driving force of the binding reaction.

1.3.3 Nuclear Magnetic Resonance Spectroscopy (NMR)

It is close to four decades since the first protein structures were determined

by NMR. The technique has since been developed with many other

applications in mind. This includes NMR being used as a tool to study

structural ensembles, to identify ligand binding and protein-protein interaction

sites and to probe conformational dynamics, as well as binding affinity to name

a few applications [55, 56]. Proteins are not rigid, but populate different

conformational states. What makes NMR a particularly powerful technique is

the possibility of obtaining not only information about the structures a

macromolecule adopts in solution, but also the possibility of examining the

dynamics that govern these structural fluctuations. This includes obtaining the

global parameters for µs-ms exchange processes, such as the exchange rate

constants (kex), chemical shift differences between different states, as well as

populations to characterise protein dynamics. NMR also allows the

characterisation of local (site or residue-specific) ps-ns dynamics. Here NMR

experiments provide information about rigidity (by using order parameters, S2)

of individual bonds in the protein and the time scale of these motions [55].

NMR techniques were thus used for this study to probe the dynamic behaviour

of the Hsp90-NTD, when it is in complex with different inhibitors. This included

obtaining the assignments for the ligand bound Hsp90-NTD, and using

chemical shift perturbation (CSP) analysis to look into changes in structure

and/or dynamics of the protein upon ligand binding. As CSP analysis only

indicates that some changes in protein structure or/and dynamics has

occurred, but we cannot say what exactly happened, we also used relaxation



16

dispersion methods to look into protein dynamics. These methods are

described below.

1.3.3.1 NMR protein 2D and 3D experiments and assignments

Protein NMR relies on monitoring magnetically active nuclei (typically these

include 1H, 15N and 13C for biological macromolecules). After a labelled protein

has been produced for the study, the NMR experiments often start with

assignment of the protein backbone atoms.

Here, the 2D heteronuclear single quantum coherence (HSQC), or transverse

relaxation optimized spectroscopy (TROSY), on backbone amides is often the

first multidimensional experiment run, as it can inform on spectral quality [57].

The HSQC experiment is generally used for smaller proteins, while the

TROSY is used for larger systems (14-20+ kDa), and in higher magnetic fields.

Although some side chains can also be seen (Trp, Asn and Gln), NH TROSY

experiments mostly report on the backbone amides, and generally one peak

can be seen for each amino acid backbone residue, although there are

exceptions, such as Proline residues. If the assignments of the apo protein

are available, and the peak positions in the amide 2D spectra of the protein in

the presence and absence of different ligands are similar enough to transfer

the existing peak assignments between the spectra, NH TROSY is often used

as a sole experiment for finger printing the binding interactions using 15N

labelled protein [58].

For protein backbone assignments, 3D triple-resonance experiments

HNCACB and HNCOCACB are used [59]. These link the backbone atoms with

their neighbours. As apo Hsp90-NTD assignments were available, here we

used ‘an incomplete set’ of experiments - TROSY versions of triple-resonance

experiments such as HNCA, HNcaCO and HNCOca as well as HNCO, that

are often used to assign larger proteins. The HNCA/HNCOca and

HNCO/HNcaCO 3D experiments link the neighbouring carbons (Figure 1.7).

In the HNCA experiment, the magnetisation is passed from H to N and then

to Cα and Cα-1 via the heteronuclear one-bond or two-bond J-coupling between

the N and Cα or Cα-1. Then the magnetisation is passed back again to HN for

detection, as shown in Figure 1.7. In the resulting 3D HNCA spectra, each

backbone HN bond is represented by two peaks. These have the same
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chemical shifts in 1H and 15N dimensions, and different chemical shifts in the

13C dimension, one corresponding to Cα and the other to Cα-1, which is normally

the weaker of the two peaks. Similarly, for HNCOca, the magnetisation is

passed from H to N and to CO and to Cα and back again for detection. The

resulting 3D HNCOca is similar to the HNCA spectra, but a peak is only

observed from the Cα-1 residue in the carbon dimension. HNcaCO and HNCO

form a similar pairing to HNCA/HNCOca, where for HNCO, a single peak in

the CO dimension is seen from ‘i-1’ residue, and in the HNcaCO spectra the

carbon dimension has two peaks, one for the residue ‘i’ and the other from ‘i-

1’. For the HNCO experiment, the magnetisation is passed from H to N and

then to the CO, via N-CO J-coupling and on the carbon dimension on the

HNCO spectra, the CO from the ‘i-1’ residue is seen. For HNcaCO, the

magnetisation is transferred via H to N, then to Cα and finally to CO via Cα-CO

J-coupling, and back again for detection. As the amide nitrogen is coupled

both to its own Cα and that of the previous residue, for each backbone NH

bond, two carbonyl groups COi and COi-1 are seen, where the COi peak is

normally more intense.

The information from the HNCA/HNcaCO and HNCO/HNCOca experiments

can be used to connect a residue with its preceding neighbour (i.e. ‘i’ with the

previous ‘i-1’). Identification of the Ca or CO and preceding Ca-1 or COi-1 peaks

allows the building of strips of connected residues, as shown in the bottom

panel of Figure 1.7. As some residues, such as Glycine, have very typical Ca

chemical shifts, these can be used to ‘anchor’ the strips to a particular set of

amino acid sequence in the protein structure [60]. Whilst the HNcaCO and

HNCOca are needed to link the residues together to build strips of linked

residues for assignment, the HNCA and HNCO spectra are also useful,

especially for weaker peaks, as they are more sensitive experiments.

Even if protein assignments are available, triple resonance experiments are

often required to verify peak assignments and/or identify peaks for residues

affected by ligand binding, as discussed in the next section. Additionally, 3D

experiments (particularly HNCO) help to resolve overlapped peaks in the 2D

amide spectra. In this project, TROSY, HNCA, HNCO and HNcaCO

experiments are used to verify previously published assignments of Hsp90-

NTD (BMRB:7003), and assign the ligand bound Hsp90-NTD spectra [61].
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Figure 1.7: Schematic overview of the heteronuclear NMR experiments
HNCA, HNCO and HNcaCO commonly used for the assignments of
backbone resonances. Circles indicate the correlations that are
recorded in the given experiment. Red circles represent nuclei for
which chemical shift is recorded and blue circles are nuclei for which no
chemical shift is recorded, but that are used for coherence transfer. The
strips on the right of the figure show expected peaks and intensities in
the carbon dimension of the spectra. The bottom panel of the figure
shows an example of how the Cα carbon shifts can be used to link up
the residues in a protein structure.

1.3.3.2 Chemical shift perturbation analysis

Chemical shifts are resonance frequencies of a magnetically active nuclei

which are influenced by the nearby electrons. Thus in a protein molecule,

where atoms are connected through bonds and space, chemical shifts differ

even for residues with the same amino acid type. This results in differences in

peak positions in the spectra. As chemical shifts are very sensitive to the

electronic environment of a nucleus, even very small changes in the chemical

environment can be detected. Measurements of changes in chemical shifts

(i.e. chemical shift perturbations or CSPs) are commonly used to study

protein-ligand binding. CSP measurements provide a valuable tool to

characterise structural and dynamic changes in macromolecules, for example

due to interactions with small molecule ligands.

The CSP analysis is used to identify site-specific differences between two

protein states, for example, between the apo-protein and protein-ligand

complex. Depending on the protein size, and complexity of the system under

study, 2D or 3D NMR spectra are collected for the two states (apo and ligand

bound), and peak positions for individual residues are analysed. If a ligand

does not bind, no changes in chemical shifts are observed in NMR spectra.

Detecting changes in peak positions upon ligand binding allows localisation of

ligand-binding sites. This is because the protein residues involved in direct

binding are likely to have changes in their peak positions. If ligand binding

causes long-range structural and/or dynamic changes in the protein,

perturbations in the magnetic environment of nuclei result in changes in peak

positions of residues that are not directly involved in ligand interactions. If the

crystal structure of the protein is known, and its NMR spectra assigned, the
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observed chemical shift perturbations can be mapped onto the crystal

structure. This allows us to identify residues that are directly affected by

binding, as well as sites with ligand-induced long-range conformational

changes [57].

Usually for small ligand binding, 2D TROSY or HSQC spectra in the apo and

ligand bound form are recorded to detect chemical shift perturbations for the

protein backbone amides, i.e. 1H and 15N chemical shifts. For each residue (or

NH bond), the total chemical shift change (௧௧ߜ∆) is calculated using the

following equation [62]:

௧௧ߜ∆ = ඥ(∆ߜு)ଶ+ ேߜ∆0.154) )ଶ (eq.3)

where ுߜ∆ and ேߜ∆ are the chemical shift differences for 1H and 15N.

For larger, more complex systems, 3D HNCO spectra, that provide 15N, 1HN

and 13CO chemical shifts are often used in CSP calculations instead of 2D

TROSY/HSQC to resolve peak overlap.

To analyse the chemical shift perturbations, the observed chemical shifts (ߜ∆)

are quantified to separate ‘genuine changes’ from experimental noise before

mapping the changes onto the protein structure. Here a commonly used

method is to calculate the standard deviation for all the observed chemical

shift changes. Next, all the residues that have a very large ߜ∆ (e.g. greater

than 2 or 3 standard deviations) are excluded from the dataset to avoid biasing

the distribution. Then the standard deviation is recalculated. The genuine

changes can then be defined as those residues whose observed chemical

shift is larger than the standard deviation [57].

1.3.3.3 NMR relaxation dispersion experiments to study µs-ms protein

dynamics

The micro- to millisecond timescale dynamics are often relevant for small

molecule binding events [63, 64]. The current view of proteins is that they exist

in an ensemble of different states. In turn, ligand binding can shift the

equilibrium of this conformational ensemble [65]. Thus, understanding the

dynamics that govern the exchange between the states, as well as the

structural information about the states, is needed to better understand the

underlying biomolecular recognition events.
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Provided that there is a difference in chemical shifts (ߜ∆) between the states

and exchange between states is on the micro- to millisecond timescale,

different peak patterns can be seen in the spectra, depending on the

exchange regime (kex) between the states (Figure 1.8).

݇௫ = ݇ + ݇ (eq. 4)

where kAB is the exchange rate constant from state A to B and kBA the

exchange rate constant from B to A.

A single peak is observed when the exchange rate constant between the

states is significantly faster than the chemical shift difference (ߜ∆) between

the peaks corresponding to individual states (kex>>∆ߜ) (Figure 1.8). In this

case, the observed peak position can be used to calculate the populations of

individual states using the following equation (provided here for state A):

 = −௦ߜ) ߜ)/(ߜ − (ߜ (eq. 5)

Here pA is the population of state A, obsߜ the chemical shift for the observed

peak and ,Aߜ Bߜ are the chemical shifts for states A and B respectively.

At the other end of spectrum, where the rate of exchange between two states

is a lot slower than the difference in chemical shifts (kex<<∆ߜ) between the

states, the spectra shows two peaks. For each peak, its height is proportional

to the population of the corresponding state (Figure 1.8). Between the fast and

slow exchange rates falls the intermediate range, where the exchange rate

constant is roughly equal to the difference in chemical shifts between the two

states (kex~∆ߜ). In this case, interconversion between state A and state B

‘interferes’ with the chemical shifts, resulting in ‘exchange broadening’ of the

observed NMR peak.

In general, these differences in the peak pattern and peak width can be

studied using line shape analysis. Line shape analysis can be used to

estimate exchange rate constants and the population of individual states.

However, for more careful quantitative analysis, relaxation dispersion

measurements using the Carr-Purcell-Meiboom-Gill (CPMG) method are

commonly used [30, 55].
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Figure 1.8: Overview of NMR dynamics experiments using the classic two-
site chemical exchange example. If the exchange between the two
states (A and B) is slow, two peaks are observed where the height
distribution reflects the population of each state. For fast exchange,
only a single peak is visible with its the position based on the
population. Intermediate exchange, where the exchange between the
two states is roughly equal to their chemical shift difference, results in a
broad peak. (Figure modified from [55]).

The CPMG approach allows re-focusing the broad peaks caused by

intermediate exchange. The basic idea behind these experiments is to

quantify the effective line width of peaks as a function of number of refocusing

pulses. Without refocusing, the line widths are broad due to dephasing of

magnetisation caused by stochastically changing between two states (states

A and B). In the absence of refocusing pulses, state A changes to state B
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randomly, resulting in defocusing magnetisation in the XY plane. This causes

a broadening of the resulting NMR peak (Figure 1.9, top). To re-focus

magnetisation in XY plane, a variable number of 180° re-focusing pulses in

the same delay period can be applied. As the refocusing pulses become more

frequent, i.e. there is less time between 180° pulses, there is less of a chance

for the state A to change to state B. The CPMG sequence can thus refocus

magnetisation, and lead to sharper peaks (Figure 1.9). An elegant analogy of

the CPMG experiment has also been suggested by Lewis Kay [66]. Here

runners and walkers are used to describe the spins of the two different states

(A and B), while differences in their speeds can be used to describe

differences in chemical shifts between A and B. As states A and B can

interchange, runners can start walking and walkers can start running. At the

beginning of experiment runners and walkers are set off to run a lap around a

field. In the absence of exchange (or if an exchange is very slow), there will

be two populations of finishers; one group crosses the finish line first (runners)

and another later (walkers). In this scenario, there will be two peaks in the

NMR spectrum (one for state A and one for state B). If, on the other hand, the

exchange rate constant is very fast (all runners became walkers many times

over and vice versa), all the runners and walkers will finish together as one

group, and here one peak is observed in the NMR spectrum. In the case of

the intermediate exchange rate, some runners slow down to a walk once or

twice, others five times and so on, during the lap of the field. As a result, all

the runners and walkers finish at different times, and this would lead to a broad

peak in the NMR spectrum. To refocus this group of runners and walkers, a

CPMG experiment can be used. Here, the runners and walkers are again set

off around the field, but this time, if a whistle is blown (representing the 180°

pulse), all the runners and walkers will turn around. If there is no exchange

(i.e. runners will keep running and walkers walking), two peaks are seen on

the spectrum. If runners start randomly walking and walkers running, as in the

case of intermediate exchange, if the whistle is blown, some of the runners

may start walking back to start line and thus will not cover the same distance

as they did on the way out. Here, not everyone will cross the start line at the

same time. This would again lead to a broader peak in the NMR spectrum.

However, if a larger number of whistles are blown to keep turning everyone
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around again and again, the group should stay much less dispersed. As the

period between whistles gets shorter, there is less time for runners to start

walking and then running again. The distances covered running or walking are

shorter and the participants are spread across a far smaller part of the field.

This means that they are more likely to cross the finish line at the same time,

equating to a sharper peak on the NMR spectra [66].

Figure 1.9: Schematic of a CPMG relaxation dispersion experiment peak re-
focusing. If the two states of the system, A (in blue) and B (in red),
interchange roughly at the same rate as their chemical shift difference,
a broad peak is seen in spectra. The exchange between states A and B
is shown as dashed red or blue line. The use of an increasing number
of refocusing pulses (grey boxes) results in peak refocusing, as a peak
from only one state is observed, as seen on the right panel. The bottom
panel shows simulated data from CPMG experiments, where the peak
is refocused when the CPMG frequency is increased. (Figure modified
from [67] and [66])
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Whilst CPMG experiments probe only µs-ms time scales, they have become

a valued tool in studying ligand-protein binding, folding pathways and enzyme

reactions [68-70]. To obtain exchange parameters such as the interconversion

rate (kex) and the population of each state, as well as the chemical shift

differences between two interconverting states, relaxation dispersion

experiments need to be recorded at multiple magnetic fields. These

parameters provide information on global and local dynamics and the

thermodynamics of the exchange process [66]. Moreover, this approach

allows characterisations of minor populations (smaller than 1%) [71]. In turn,

information about chemical shift differences between the major and minor

conformations can be used to obtain insights into structure and dynamics of

the minor (populated less than 1%) state, which is not possible by any other

experimental method.

From the CPMG data, the transverse relaxation rates (R2eff) at different CPMG

field strengths can be calculated from peak intensities using the following

equation [72, 73]:

ܴ2 = −
ଵ

்ುಾ ಸ
ln

ூ

ூబ
(eq. 6)

Here, TCPMG is the constant time used for the CPMG experiment, I the peak

intensity and I0 the reference peak intensity.

In this work the relaxation dispersion method is used to study the differences

in µs-ms dynamics between the different Hsp90:inhibitor systems, and to

allow comparison, and validation, of computer simulation data.

1.3.4 Molecular dynamics simulations

Molecular dynamics simulations (MD) are a tool to describe, and visualise, the

movement of atoms making up biomolecules using classical Newtonian

physics. MD has provided insight into molecular movements since the early

simulations were completed in the 1970s [74]. The early simulations, which

included work on the 58 amino acid long bovine pancreatic trypsin inhibitor,

were only a few picoseconds in length. With the advances in supercomputing,
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larger systems, and even millisecond simulations, using specifically designed

computer architecture have been achieved [74, 75].

As this study uses standard ‘flavour’ MD simulations, that have been widely

adopted as a tool in biological research, a brief overview of the underlying

principles for MD is provided. This is followed by a review of the different

methods of obtaining entropy values from simulation data.

1.3.4.1 MD simulations - main principles

To run a molecular dynamics simulation, a co-ordinate file (typically from X-

ray or NMR structures, but possibly also a homology model) for the system of

interest is used as a starting structure. Next, a set of parameters to describe

atom types, bond length and charges are applied to the structure. After this,

the forces acting on each atom are calculated, based on classical mechanics,

and subsequently each atom is moved based on the force acting upon it. A

snapshot of the new system is taken, and the process is repeated over and

over again to get a trajectory file of the molecular movements [76].

For MD simulations, the forces acting on the atoms are described by a force

field, which contains terms for bonded and non-bonded interactions between

the atoms, as shown in equation 7 [77]. The bonded interactions include terms

for bonds, angles and dihedrals, to describe bond stretching, bending and

twisting, as shown in the first three sums of the equation 7. The final term

sums up the non-bonded interactions arising from van der Waals and

electrostatic forces.
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The energy term for the bonds is modelled using two spheres connected by a

spring, to which a different stiffness (k) is applied depending on the atoms

involved in the bond. The letter r denotes the distance between the two atoms

connected by the bond, and this term describes the bond stretch compared to

the equilibrium position (see Figure 1.10). For angles, k is the force constant
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for the angle bending, whose value depends on the types of atoms. The force

constant depends on how large or small the angle (θ) between the atoms is in

comparison to the equilibrium position. The dihedrals represent a torsional

term describing the rotation about the chemical bond. This is described by a

sinusoidal function that shows the energy differences between staggered and

eclipsed conformations. This is the difference in energy of the atoms when

they are furthest from, or closest to, one another due to bond rotation. As the

bond could rotate around 360°, the same conformations can be reached at

multiple times during the cycle ( ∅݊). The γ term accounts for shifts in the

maxima and mimima positions. The dihedral term often includes terms for

improper torsions, to maintain a particular geometry.

Figure 1.10: Different force field parameters shown at the atomistic level.
The bond stretch, angle bend and dihedral terms describe interactions
between connected atoms, whereas van der Waals and electrostatic
terms are included in the non-bonded interactions.

The non-bonded terms, that are given in the last part of equation 7, are

calculated for Van der Waals (VdW) interactions using the Lennard Jones 6-

12 potential. When the atoms are sufficiently close to one another, there is an

attractive force (
ೕ

ோೕ
����ల). The attraction term becomes weaker as the distance

between the atoms increases. When the atoms are too close, there is an

additional repulsive force (
ೕ

ோೕ
���భమ). The electrostatic interactions are modelled by

Coulombic laws, using atom-centred point charges [78].
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Whilst the bonded terms are easy to handle in potential energy calculations,

issues can arise with how great a distance the non-bonded interactions stretch

to. In principle, all non-bonded atoms should be considered for the

calculations, but in practice, this slows down the computations too much. To

speed up the calculations, short range forces (i.e. VdW) are normally treated

with a cut off value. For long range forces, i.e. electrostatics, more

sophisticated algorithms, such as the particle mesh Ewald (PME) algorithm,

are normally adopted. Additionally, simulations are normally run in periodic

boundary conditions, where the simulation box is virtually surrounded by

identical boxes. Here, if the molecule drifts to the edge of the box during the

simulation, it does not simply disappear into space, but re-appears on the

opposite side of the box (see Figure 1.11).

Figure 1.11: Virtual Periodic Boundary box. Simulations are normally run
with ‘imaginary’ boxes surrounding the actual simulation box as shown
on the left (greyed out cats for the virtual box vs black and white cat for
the simulation box). This prevents the drifting of the molecules into
space when they end up at the edge of the simulation box. The
molecule that leaves the box on the right, simply re-appears on the left
of the box, as depicted in the figure on right.

For MD runs to produce realistic atomic movements, the energy terms

described above need to be parametrised based on the types of atoms.

Collectively, these parameters are called a force field. The parameters are

derived from ab initio calculations and from a range of experimental data to

reproduce peptide and dihedral angles and protein crystal structures. These

parameters include, for example, the radius of atoms, partial charges to
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calculate the non-bonded terms, bond lengths, stiffness of the bonds, angles,

and dihedral parameters [76]. There are few commonly used force fields,

including those from Amber and CHARMM, that have been heavily tested by

the simulation community. These force fields have subsequently improved

over the years, in an attempt to make sure that they produce realistic

movements [79] [80]. Whilst the commonly used force fields for biological

macromolecules work reasonably well for protein and nucleic acid simulations,

they have limited parameters for organic molecules. This is mainly due to

difficulties with the accurate parametrisation of the significantly larger

chemical space that small molecules cover, compared to the 20 standard

amino acids and 5 different bases for DNA and RNA molecules.

To partly get around this issue of small molecule parametrisations, Amber

developers have written a General Amber Force Field (GAFF) to enable more

realistic simulations of organic molecule (i.e. drug) and protein or nucleic acid

interactions [81]. The description of atomic charges is the key to

understanding the chemical reactivity and physical properties of the

molecules. The atomic charges are often calculated separately, using

quantum-chemical ab initio methods, to obtain more accurate charges. These

values are fed back into Amber to produce library files that make up specific

force field parameters for the small molecule in question [82, 83].

1.3.4.2 Running a MD simulation

To run a simulation, first the forces acting on a system are calculated using

classical mechanics formulas. Then the atoms are moved, proportional to the

force acting on them. This two-step process is repeated over and over again.

For the force calculations, each atom is considered as a single point and the

forces (F) acting upon the atom can thus be calculated by:

=ܨ⃑ ݉ ܽറ (eq.8)

where mi is the mass of atom i and ai the acceleration. The force could

alternatively be described by the gradient of potential energy (Etotal from

equation 7):

=ܨ⃑ −∇ܧ௧௧ (eq.9)
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where ∇ is the three dimensional derivative operator giving details of the x,y

and z positions. This describes the force acting on atom i.

Combining these two equations allows us to compute the acceleration of the

atom:

റܽ= −
ଵ

 
∇ܧ௧௧ (eq. 10)

Equation 10 can be numerically integrated, via a choice of different algorithms,

to get the position and velocity of the atom. Thus with the initial input of the

position of the atoms, and known initial velocities and acceleration, the

calculation can be repeated as long as necessary, to obtain a trajectory [78].

Whilst there are several slightly different implementations of how to integrate

the above equation, this is not the crucial factor. Rather, what is important is

to decide the length of the time step, given that a balance must be struck

between the time taken to obtain a trajectory of sufficient length, and the

accuracy of the calculations. The time step for the integration cannot be longer

than the fastest motion in the system, which is the bond-stretching vibrations,

typically in the order of 10 fs, and thus a routinely used time step for

simulations is 2 fs [84].

Finally, as biological molecules in a cell are in an aqueous environment, to get

a realistic picture of what is happening to the molecules, the MD simulations

are normally carried out in water. Here there are several choices of water

model, which range from explicit solvent (i.e. the water is modelled as

individual water molecules) to implicit solvent model, where a force presenting

bulk solution is applied to the surface of the biological molecule. The explicit

water model is generally accepted to provide a more realistic description of

water, although there is a large computational cost due to the sheer number

of atoms required. Implicit models on the other hand, which describe the effect

of water by simply adding forces, are often used when simulating very big

systems (>10,000 atoms). Here, addition of explicit water molecules would

simply make the system too large [85]. The calculation times are similar to

explicit water simulations, but the motions of the molecules in simulation are

accelerated. This can be explained by analogy - it is faster to run along the

beach than in waist deep water. Improving the accuracy of the modelling of

water is an active field of research in its own right, and a topic for another
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thesis. For this study, the priority is to select the most suitable water model for

the force field used. The chosen water model should match the water model

which was used for the force field parametrisation and validation, for example,

Amber ff99SB force field was parametrised using the three point TIP3P water

model [77].

1.3.4.3 Configurational entropy calculations from molecular dynamics

trajectories

MD simulations provide information on the flexibility and structural

heterogeneity of macromolecules. When MD simulations are run for long

enough to adequately sample the conformational space, the trajectory can be

used to calculate the number of microstates (Ω) a system can adopt, together 

with the probability (pi) of finding the system in a particular microstate. This

information can be used to estimate entropy. Unsurprisingly, attempts to

estimate the conformational entropy of macromolecules using MD simulations

have been made for nearly as long as there has been simulation data

available [86, 87].

The entropy calculations are based on the Boltzmann’s formula, where the

knowledge of the number of microstates (Ω), together with their probabilities, 

enables the calculation of the system’s entropy (S) [88]:

ܵ= ݇ logΩ (where k is the Boltzmann constant ) (eq.11)

There are two commonly used methods to calculate configurational entropies

from simulation data; the quasi-harmonic approximation and the histogram

method. Both methods are based on the above Boltzmann’s formula, but they

differ in the way the shape of the underlying energy landscape is

approximated. The quasi-harmonic approach assumes that the fluctuations of

the shape of the molecule during a simulation fit into a single large energy

well. The macromolecule oscillates harmonically in this well, and a Gaussian-

like distribution can be fitted to describe the well to estimate the entropy

(Figure 1.12). In contrast, the histogram methods divide the conformations

observed from the trajectory into different microstates that reside in different

energy wells. Here, the size and steepness of the wells describes the

likelihood of the molecule been found in each state. This gives the probabilities
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that are needed for the entropy calculations [89]. In practice, the quasi-

harmonic analysis works well for molecules that do not undergo large

conformational fluctuations, whereas the histogram methods can be used for

flexible molecules as well. However, for the histogram methods, issues do

arise regarding how to define what are different microstates versus

fluctuations within one state. Often an internal bond angle torsion (BAT)

coordinate system is used for the histogram methods, rather than the

Cartesian co-ordinates used to run the simulation. This is because it is easier

to define limits using bond angle fluctuations. These two methods are further

described below.

Figure 1.12: The quasi harmonic approximation and histogram methods for
entropy calculations both assume different underlying potential energy
landscapes. The quasi harmonic approach assumes a single energy
well, as shown on left, in which the macromolecule oscillates. The
histogram methods’ energy landscape is depicted on right. Here the
macromolecule is assumed to occupy several energy wells and the
shape and steepness of the energy well gives the probability of it being
occupied.

For the quasi-harmonic approach, the configurational entropy is generally

assumed to originate only from the internal motions of the molecule, rather

Quasi harmonic

approximation energy

landscape

Histogram based method’s

energy landscape
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than the overall tumbling of the molecule (i.e. rotational and translational

motions). Moreover, the Cartesian co-ordinate system is normally used for the

entropy calculations, as this allows the bond rotations and vibrations to be

added together in a linear fashion. For the calculations, the fluctuations in

atomic positions are converted into a mass weighted co-variance matrix that

described the fluctuations of each Cartesian coordinate relative to its average

position during the simulation. The co-variance matrix can then be

diagonilised to obtain eigenvectors and eigenvalues, where the largest

eigenvectors describe the dominant movements of the system. The total

entropy (S) can then be calculated using the following formula [89, 90]:

ܵ=
ଵ

ଶ
݇∑ ln(1 +

்మ

ℏమ
ଷேି
 (ߛ (eq.12)

Here the areߛ the eigenvalues of the mass weighted co-variance matrix. The

last logarithmic form is a correction term suggested by Schlitter, to reduce

“numerical noise” from the very smallest eigenvalues that lie outside classical

regime [90].

Quasi-harmonic approximation for conformational entropy is widely used.

Although it has been found to overestimate entropy, due to the assumption

that the internal vibrations are not correlated, the method has been

demonstrated to give reasonable estimates of the relative entropies for both

DNA and protein-ligand systems [14, 91]. The method has also been added

as a ‘standard tool’ to many molecular dynamics software packages. The

advantage of QHA is that it can help to rationalise the underlying biological

movements that lead to entropy changes. This is because it is based on

principal component analysis (PCA) with its use of eigenvectors and

eigenvalues. The eigenvectors can be used to provide insights into the

underlying biological system; the largest eigenvectors show where the major

conformational changes are taking place and the eigenvalue describe the

amplitude of the movement [92, 93].

One issue with the quasi harmonic approximation is that it breaks down if the

underlying movements are anharmonic. The method works remarkably well

for DNA, which is more rigid due to the ordered hydrogen bonds linking the

bases [91, 92]. However, issues can arise with using the method to study more

flexible and intrinsically disordered systems, which can be very anharmonic.
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Also, due to the use of Cartesian co-ordinates, the trajectory needs to be first

re-imaged, (i.e. all the simulation frames are aligned with a reference

structure) to remove any rotational and translational movements. This again

may present issues for flexible molecules.

Next, we describe in greater detail the histogram method for estimating

configurational entropy from MD simulations. In this method, the microstates

that are sampled during the simulation are divided into different bins to obtain

a probability density function of the states. This can be used to calculate the

entropy. Here, the probability density in a bin () is calculated first:

=




ଵ

∆
(eq.13)

Where the ∆ is the size of bin and ݊ is the number of times the macromolecule

is found in the particular microstate during the simulation, compared to the

total number of samples .݊ This information can then be added to the formula

below to get the entropy:

ܵ= −݇∆  ln

௦

ୀଵ

(eq.14)

As explained earlier, how to define a microstate is often an issue with the

histogram method. Often the trajectory data are converted to an internal co-

ordinate system, where the ‘bond-angle-torsion’ (BAT) angles are used to

define the bins. The problem is that the BAT co-ordinates only consider the

bond twisting motions and ignores the contributions from bond stretching.

Defining averages is also not easy with BAT co-ordinates, due to periodic

movements of the bond rotations.

The advantage of the histogram method compared to the quasi-harmonic

approximation is that it does not break down with anharmonic systems.

However, the entropy value is often either over or under estimated, due to the

difficulty of defining the bin sizes. It is not easy to estimate what constitutes a

different microstate (and thus a different bin) as opposed to minor fluctuations

within a state (and thus within the bin). There have been attempts to define

the optimum dihedral angle to be used when defining the microstates, but the

suggested values vary from 1° to 5° [94, 95]. In complex macromolecules,
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correlated motions can play a large role. The configurational entropies may

be overestimated, if this is not corrected by selecting only a subset of the

dihedral angles of the macromolecule to be included in the entropy

computations. Consequently, the histogram method tends to work relatively

well for smaller molecules, but issues often arise with larger and more

complex macromolecules, where correlated motion is an issue.

Whilst the quasi-harmonic and the histogram methods differ in how the

underlying energy landscape and the probability distribution of the microstates

is approximated, they can provide comparable entropy estimates, at least for

calculations done on small molecules. An example of this was a study by

Gilson’s group, who tested their histogram method based the Mining Minima

algorithm against the quasi-harmonic approximation on Ampenavir drug

binding. The computed configurational entropy values were less than 1

kcal/mol apart, (calculated as 11.6 kcal/mol with the Mining Minima histogram

method, compared to 12.3 kcal/mol by quasi-harmonic approximation) [14].

For larger molecules, comparative entropy values obtained using quasi-

harmonic analysis and the histogram method have also been demonstrated.

A general issues with all the currently used methods for computing entropy is

convergence. When further MD data are processed, the entropy value

increases. This highlights the issue with using finite simulation data to sample

the nearly infinite energy landscape of complex molecules [96].

More recently, new methods for obtaining entropies from MD simulations have

been suggested. One of these methods is using atomic forces instead of

atomic positions for the calculations. This circumvents anharmonicity issues,

but so far it has had only limited use in examining the entropy of water. It

remains to be seen if it will be adopted for biomolecules [97]. Attention has

also focused on accelerated MD techniques that improve the sampling of the

conformational space. A study using an accelerated MD run, followed by per

residue re-weighted dihedral entropy calculations, demonstrated that the

‘accelerated MD entropies’ corresponded better with the entropy values

calculated from NMR dihedral analysis, compared to those from conventional

MD simulations [98]. Despite recent developments, one of the main problems

that remains is comparing the calculated entropy values to actual

experimental data. Only NMR relaxation techniques allow the estimation of
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configurational entropy at the atomistic level, rather than having to make

comparisons with global entropy changes. Here, fast nanosecond methyl

sidechain and amide backbone bond vector motions as measured by NMR

have been used to calculate order parameters, which show how flexible or

rigid the particular bond vector is [55, 99]. These order parameters can also

be calculated from MD simulations and have been used as a proxy for global

changes in protein dynamics to calculate changes in entropy [100-102]. The

fast motions have been shown to be relevant to the overall entropy change,

as work with thermo- and mesophile enzymes showed that the fast time scale

motions can increase in some parts of a protein upon ‘rigidification’ of some

other distal part of the enzyme [103]. Despite these advances, the

configurational entropy calculations using NMR data also rely on similar

assumptions to computations based on MD simulation data, where for

example unharmonicity and correlated motions remain an issue. Indeed,

whilst a number of studies have used the nuclear relaxation rate derived order

parameters as a proxy for entropy, there are concerns on how well the limited

number of measurements of internal motions characterise the overall protein

dynamics, as often only amide bond vectors or methyl side chain motions are

used [104]. Further, the side chain order parameters require different fit

parameters depending on the residue type before they can be used for

entropy estimation. These parameters also seem to be somewhat system

specific. Issues arise also from correlated motions, as well as the effects on

global flexibility affecting the general rotational term. To date the best results

of configurational entropy values have been quoted to have been achieved

using a rigid CAP protein [105].

1.4 Aims of project

The main aim of the project is to gain further insight into how protein dynamics

is influenced by small molecule binding using the Hsp90 chaperone as a

model system.

The interaction between protein and ligand are guided by thermodynamics,

which can be examined by ITC and other methods that measure the overall

binding affinity. However, examining the changes in configurational entropy,
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which report on structural dynamics, could be of more interest. This is because

it could enable conformational selection of only a certain pool of Hsp90, and

consequently a particular downstream pathway. The binding of a ligand would

further shift the conformational ensemble towards a certain ligand stabilised

conformation. To examine the configurational entropy, the effect of small

inhibitor binding to the Hsp90 protein was examined by NMR and MD

techniques. These atomistic scale results were compared to the global values

obtained from ITC. The overall aim of the study is not method development,

but to gain further understanding what different thermodynamic signatures

mean in the atomic level for protein dynamics.

The first chapter provides background on thermodynamics, the model system

and the main techniques used to probe dynamics. The second chapter

focuses in detailed description of the materials and methods used as well as

describing method optimisation and validation experiments. Chapter 3

describes the results from experimental (NMR and ITC) and computational

studies (MD simulations) of the effect small molecule binding has on Hsp90

dynamics. The results from the different techniques are compared and we try

to rationalise the global entropy change in the light of protein conformational

fluctuations. Chapter 4 focuses on configurational entropy calculations using

MD simulation data. Here, both the quasi-harmonic analysis and the

histogram methods are used to calculate entropies, with emphasis on

highlighting issues with the methods. A further issue relating to the entropy

calculations using MD simulation data relates to whether sufficient

conformational space has been explored by the molecule during the

simulation. We also try to answer the question of when ‘enough’ space has

been explored by representing the analysis of a large number of replica

simulations. Finally, Chapter 5 contains the overall conclusions of the studies.
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Chapter 2

Materials, methods and method optimisation results

This ‘Materials and Methods’ chapter describes both the experimental and

computational methods and how the materials were prepared. Results from

validation studies and optimisation trials are also presented.

2.1 Materials and reagents

2.1.1 Small ligand inhibitors

The chemical structures of the initial panel of six Hsp90 small molecule

inhibitors are shown in Figure 2.1. The panel included three commercially

available inhibitors of Hsp90; geldanamycin and one of its derivatives 17-

(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG) as well

as radicicol. These three compounds were obtained from Cayman Chemicals.

The other three compounds, CNF2024, GVK0153 and GVK0161 were

received from AstraZeneca. All ligands were dissolved in dimethyl sulfoxide

(DMSO) to make 100 mM stock solutions.

2.1.2 Hsp90-NTD DNA template

The pET28a-6His-TEV-Hsp90(D9-E246) plasmid encoding for the human

Hsp90-NTD was obtained from AstraZeneca. The plasmid has a kanamycin

resistance gene for selection. The size of the Hsp90-NTD including the His-

tag and thrombin cleavage site is around 26 kDa. The sequence of the Hsp90-

NTD(D9-E246) used is shown below.

DQPMEEEEVETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE

SLTDPSKLDSGKELHINLIPNKQDRTLTIVDTGIGMTKADLINNLGTIAKSGTK

AFMEALQAGADISMIGQFGVGFYSAYLVAEKVTVITKHNDDEQYAWESSA

GGSFTVRTDTGEPMGRGTKVILHLKEDQTEYLEERRIKEIVKKHSQFIGYPI

TLFVEKERDKEVSDDEAE
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2.1.3. Chemicals

Standard chemicals were obtained from Sigma Aldrich and Fisher Scientific

unless otherwise stated.

2.1.4 Heavy isotopes

Per-deuterated glucose, 13C glucose, 15N ammonium chloride, deuterium

oxide (D2O) and Celtone complete medium D as well as Celtone complete

medium 13C, 15N were purchased from Cambridge Isotope Laboratories.

Figure 2.1: Chemical structures of the small molecule inhibitors used in this

study. The inhibitors included three nucleotide mimic compounds,

GVK0153, GVK0161 and CNF2024, shown on the left and middle of

the second row. The other three compounds were geldanamycin and

its derivative 17-DMAG as well as radicicol, which are shown on the

right and middle of the top row.
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2.2 General analytical methods

2.2.1 Quantifying plasmid DNA concentration

The plasmid DNA concentration was measured by using absorbance at 260

nm with the NanoDrop using the standard manufacturer’s protocol [106].

2.2.2 Quantifying protein concentration

To measure protein concentration, the samples were diluted in 6 M guanidine

HCl in 1:100 dilution prior to measuring the absorbance at 280 nm (Abs280).

The protein concentration was calculated using the Beer-Lambert law (A=Ɛcl), 

where absorption (A) depends on the extinction co-efficient (Ɛ), concentration 

(c) and the length of the path that light travels through (l), which in this case is

1 cm. The value used for Ɛ for Hsp90-NTD was 15,930 of M-1 cm-1 which was

obtained from the Expasy server. The algorithm used by Expasy to obtain the

value for Ɛ calculates the molar extinction coefficients at 280 nm for tyrosine, 

tryptophan and cysteine residues, and afterwards sums these up [107].

2.2.3 SDS-polyacrylamide gel electrophoresis

To prepare samples for gel electrophoresis, 5 µl of 4XSB buffer (900 µl 4x

Laemmli sample buffer (BioRad) and 100 µl 2-mercaptoethanol) was added

to 10 µl of sample. After mixing, the samples were put on a heat block (99°C)

for 2 minutes before loading. The samples were loaded on to precast BioRad

MiniProtean TGX Precast Any kD gels. BioRad Precision Plus Protein

Unstained Standard was used as the molecular weight marker. The gels were

run at 200 V/400 mA for approximately thirty minutes. After this, the gels were

stained for half an hour with BioRad Bio-Safe Coomassie G250 stain and de-

stained with water. The His-tagged Hsp90-NTD band was expected to be

around 26 kDa.

For samples that came from un-lysed bacterial cultures, 0.3 OD/ml of culture

was taken. The cells were centrifuged after which the pellet was resuspended

in 30 µl 8 M urea and 15 µl 4XSB buffer, prior to heating the sample briefly

and loading the sample to gel as described above.
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2.2.4 Preparation of agar plates and culture media

2.2.4.1 LB-agar plates

To make LB-agar plates for bacterial cultures, 25 g/l of Luria-Bertani media

(10 g tryptone, 5 g yeast extract and 10 g NaCl for one litre) was mixed with

15 g/l of agar and dissolved in distilled H2O. The media was next sterilised by

autoclave (20 minutes at 121°C) and let to cool to 50°C before 25 µg/ml of

kanamycin was added. After this LB-agar solution was poured onto plates to

set. The plates were stored in 4°C.

2.2.4.2 M9 media

For M9 media preparation, 6.5 g Na2HPO4, 3.0 g KH2PO4, 0.5 g NaCl, 1 g

NH4Cl, 2 g D-glucose, 120 mg MgSO4, 11 mg CaCl2, 10 mg biotin and 10 mg

thiamine were weighed and dissolved into 1000 ml of H2O or D2O. If isotope

labelling was required, ammonia and glucose were replaced by labelled

ammonia or glucose (15NH4Cl and 13C-glucose or per-deuterated glucose) as

needed. Here, for the relaxation dispersion experiments, per-deuterated

glucose and 15NH4Cl were used in order to obtain protein with 100% 2H and

15N labelling. The M9 media for expression of Hsp90-NTD used for

assignments on the other hand were prepared using 13C glucose and 15NH4Cl

to get ca. 70-80% 2H, 13C, 15N protein. After this, the media was filter sterilised.

Finally, kanamycin and 10 ml of LB was added to make up the M9 culture

media. LB was replaced by 10 ml Celtone complete labelled medium if 2H,

13C, 15N isotope labelling was required.

2.3 Protein expression and purification

2.3.1 Transformation

To transform the plasmid into bacterial cells, 1 µl of pET28-Hsp90-NTD

plasmid was added to a 50 µl aliquot of competent E.coli BL21 (DE3) cells.

The tube containing the DNA and the bacterial cells was left to incubate on

ice for 30 minutes. Following the incubation, the tube was placed on a 42°C

heat block for 45 seconds, after which 500 µl of LB broth was added and the

cells were placed in a shaker (250 rpm) to grow for 1 hour at 37°C. The cells
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were centrifuged briefly and the cell pellet re-suspended to 100 µl of LB broth

before plating them onto LB-Agar plates containing kanamycin antibiotic for

selecting the plasmid containing cells.

2.3.2 Preparation of DNA stock

To prepare plasmid stock for Hsp90-NTD expression, the pET28a-6His-TEV-

Hsp90(D9-E246) was transfected into E.coli DH5α cells following the heat 

shock method described above. A colony from the plate was picked to grow

in 5 ml LB plus kanamycin overnight at 30°C. The following morning, the cells

were harvested by centrifugation and DNA extracted using the Invitrogen

Purelink Quick plasmid miniprep kit for plasmid DNA extraction according to

manufacturer’s instructions.

2.3.3 Protein expression trials

To optimise the expression protocol for the Hsp90-NTD using the M9 media,

a small scale protein expression trial was carried out. For the trial, the effects

of different expression temperatures (37°C, 30°C and 20°C) and IPTG

amounts (0.1 mM and 1 mM) were tested.

First, a transformed E.coli BL21 (DE3) colony containing the pET28a-Hsp90-

NTD plasmid was picked from the LB-Agar plates and added into 5 ml of

LB/kanamycin media. The bacteria were left to grow in an incubator for 4 hours

(37°C, 250 rpm). After this, 1 ml of the starter culture was taken to seed 25 ml

cultures. The cells were further grown as above, until the, optical density of

the culture measured at 600 nm (OD600) was around 1.00. After this, the

expression of the plasmid encoded Hsp90-NTD was induced with either 0.1

mM or 1 mM IPTG and the culture was left to grow at either at 37°C for 4 hours

or at 30°C or at 20°C overnight. Samples from the cultures were taken before

and after the induction and these were run in SDS-PAGE gel, as specified in

Section 2.2.3.

2.3.4 Large scale protein expression (un-labelled)

To express the Hsp90-NTD protein, a transformed E.coli BL21 (DE3) colony

containing the pET28a-Hsp90-NTD plasmid was picked from the LB-agar

plates and added into 5 ml of LB/kanamycin media. The bacteria were left to



43

grow in an incubator for four hours (37°C, 250 rpm). After this, about 2 ml of

the starter culture was taken to seed 50 ml of M9 media in a baffled flask. The

cells were further grown as above until the optical density of the culture

measured at 600 nm (OD600) was around 1.00. Next, the culture was

transferred to 500 ml M9 media to grow further until the OD600 again reached

1.00. After this, protein expression was induced by addition of 1 mM IPTG to

a final concentration and the culture was left to grow overnight at 20°C.

The following day, the cells were harvested by centrifugation (5000 rpm for 20

min at 4°C). After this the samples were kept on ice to prevent any proteolysis

and the pellet was re-suspended in 35 ml of Buffer A (40 mM HEPES pH 8,

300 mM NaCl and 5 mM DTT). The pellet was then flash frozen at -80°C until

purification.

2.3.5 Expression of labelled protein

The above protocol was used to produce labelled protein, except that the

starter culture was grown overnight at 30°C to allow for the slower bacterial

growth in deuterium oxide.

2.3.6 Protein purification

To purify the His-tagged Hsp90-NTD, the cell pellet was defrosted. After this

20 mg/ml lysozyme and a protease inhibitor P8849 tablet (Roche) were added

to the sample. The tube was briefly mixed, and the cells were left to incubate

on ice for thirty minutes. After incubation, the sample was sonicated using a

six seconds on, six seconds off cycle for ten cycles, after which the lysed cells

were then centrifuged for 20 minutes at 20,000 rpm.

After centrifugation, the soluble fraction containing the His-tagged Hsp90-NTD

was loaded onto a HisTrap HP column (GE Health Care) using the ÄKTA

FPLC purification system. The unbound fraction was collected after which the

column was washed first with five column volumes of Buffer A containing 10

mM imidazole followed by a second wash again with five column volumes of

Buffer A containing 20 mM imidazole. Finally, the His-tagged protein was

eluted with Buffer A containing 250 mM imidazole and the fractions containing

the Hsp90-NTD were collected.
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2.3.7 Buffer exchange

Following the purification, the fractions containing the purified Hsp90-NTD

were pooled and dialysed against 500 ml of 20 mM sodium phosphate, pH 7.5

buffer (20 mM Na2HPO4 and 20 mM NaH2PO4) (NaPi buffer) for around twenty

four hours at 4°C with two changes of the dialysis buffer.

If the protein sample required concentrating, this was done using a 10 K

Amicon centrifuge tube until the desired concentration (350 μM for NMR

samples) was reached.

2.3.8 NMR sample preparation

The samples for NMR measurements contained additionally 1% AEBSF

hydrochloride protease inhibitor (from Biochemica) and 5% D2O to allow the

lock signal setting that stabilizes the magnetic field strength of the NMR

instrument.

2.4 Isothermal titration calorimetry

The isothermal titration calorimetry (ITC) experiments were performed using

a MicroCal iTC-200 instrument at 25°C. For the measurements, 20 µM Hsp90-

NTD and 200 µM GVK0153 ligand, 400 µM 17-DMAG or 300 µM of CNF2024,

geldanamycin, GVK1061 or radicicol were prepared in 20 mM sodium

phosphate buffer (20 mM Na2HPO4, 20 mM NaH2PO4, pH 7.5) assay buffer

with matched 2% DMSO concentration in both the protein and ligand samples.

For the experiments, 200 µl of 20 µM Hsp90-NTD protein solution was placed

in the ITC instrument sample cell and the concentrated ligand solution in the

40 µl syringe. Nineteen injections of 2 µl of ligands were added into the protein

sample and the mixing/equilibration time between samples injections was set

to 150 seconds.

The ITC data were processed using an automated algorithm in Nitpic software

to correct the base line [108]. The titration data was fitted using one site model

and a non-linear least squares curve-fitting Levenberg and Marquardt

algorithm with the Origin 7 Software from MicroCal.
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2.5 Heat capacity measurements

ITC measurements were also used to determine the heat capacities (Cp) for

the GVK0153 and 17-DMAG Hsp90-NTD complexes. The ITC measurements

were conducted, as specified above, using the automatic MicroCal Auto-

iTC200, except for the ligand concentration which was set to 300 µM. The

measurements were repeated at 7°C, 14°C, 25°C, 32°C and 37°C for both

GVK0153 and 17-DMAG ligands. The data were analysed as described above

and the enthalpy values from the different measurements were plotted against

the temperature to obtain value for the heat capacity (Cp) from the slope of the

enthalpy versus temperature plot.

2.6 NMR methods

2.6.1 NMR experiments - general conditions

NMR experiments on the Hsp90 protein were carried out using 600 MHz, 750

MHz and 950 MHz Bruker spectrometers equipped with TCI-cryoprobes. All

spectra were recorded at 25°C using the spectrometers either in the NMR

facility in Leeds or the National Institute of Medical Research in Mill Hill,

London. For NMR experiments, we used 350 µM Hsp90-NTD protein and 700

µM inhibitors and the samples were prepared in 20 mM Sodium Phosphate,

pH 7.5 buffer (20 mM Na2HPO4 and 20 mM NaH2PO4) with 1% AEBSF

hydrochloride protease inhibitor (from Biochemica) and 5% D2O.

2.6.2 TROSY and HNCA, HNCO, HNcaCO

The backbone assignments of human Hsp90-NTD apo form have been

published previously [61]. To transfer these assignments we used a set of

triple resonance experiments: NH Transverse Relaxation Optimized

Spectroscopy (TROSY) and a TROSY version of HNCA [109, 110]. The

spectra were recorded with a Bruker 600 MHz for the GVK0153:Hsp90-NTD

and 17-DMAG:Hsp90 complexes; the Bruker Avance III HD 950 MHz was

used for the apo sample. For the TROSY version of HNCO and HNcaCO

[110], the Bruker 950 MHz magnet was used for the GVK0153:Hsp90-NTD
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complex and the 750 MHz magnet for the apo and 17-DMAG:Hsp90-NTD

samples.

2.6.3 NMR spectra processing

All spectra were processed with NMRPipe [111] and analysed using Cara

[112] and Analysis [113] software.

2.6.4 NMR - chemical shift perturbations

To identify the residues that experience perturbations between apo and

ligand-bound forms, pairwise comparison of chemical shifts was performed.

For each residue, the change in peak positions was calculated using the

formula:

௧௧ߜ∆ = ඥ(∆ߜு)ଶ+ ଶ(ேߜ∆0.154) [62] (eq. 3)

Here the ΔߜH and ΔߜN are 1HN and 15N chemical shift differences between

apo and ligand bound forms and 0.154 is the weighting factor for 15N. The

changes in CSP were classified as: significant (>0.06 ppm and/or 0.6 ppm for

amide 1H and 15N atoms) or large (larger than 0.3 ppm for Δߜtot).

2.6.5 NMR relaxation dispersion experiments

The 15N relaxation dispersion experiments were acquired at 600 and 950 MHz

fields for inhibitor:Hsp90-NTD complexes and 950 MHz only for the apo

protein. The samples were 15N labelled and deuterated with saturated molar

excess of ligands. We used the NH TROSY version of the Carr-Purcell-

Meiboom-Gill pulse sequence [114] with the 180° refocusing pulses set at 2,

4, 6, 8, 12, 16, 20 and 24 repeats (corresponding with CPMG field strengths

of 50, 100, 150, 200, 300, 400, 500 and 600 Hz) with the CPMG pulses

implemented in a constant time which was set to 40 ms.

For data analysis, only unambiguous residues, i.e. peaks that were not

overlapped by any other, were included. Next, the transverse relaxation rate

(R2eff) at different CPMG field strengths was calculated from peak intensities

using the following equation [72, 73]:

ܴ2 = −
ଵ

்ುಾ ಸ
ln

ூ

ூబ
(eq. 15)
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Here, TCPMG is the constant time used for the CPMG experiment, I the peak

intensity and I0 the reference peak intensity. The relaxation rate (R2eff) was

next plotted as a function of the CPMG field strength to identify residues with

exchange broadening.

Uncertainties were estimated from duplicate or triplicate measurements. The

residues with observable micro- to millisecond dynamics were classified using

the criteria that overall standard deviation of the peak intensities had to be

0.02 or larger, demonstrating the refocusing of the peak width upon increased

CPMG field strength with error less than 5% between the repeat

measurements.

2.6.6 NMR experiments on ligands

NMR spectra of the ligands were recorded using a 500 MHz Varian Inova

spectrometer. For the ligands, 10, 50 and 200 µM concentrations were

prepared in aqueous buffer (10 mM KPi, 50 mM KCl, 0.02% NaN3, 5 mM

MgCl2 and 5 mM DTT in D2O). One dimensional (1D) hydrogen spectra were

obtained at 298 K and 318 K using the presat pulse sequence to suppress the

water signal.

2.7 Crystal structures of Hsp90-NTD and ligand complexes

We used the previously solved X-ray crystal structures of the Hsp90-NTD in

complex with 17-DMAG (PDB:1OSF) [115] and GVK0153 ligands

(unpublished data from AstraZeneca). Both structures are of reasonably high

refinement (1.75 Å for the 1OSF and 2.07 Å for the GVK0153 bound structure)

thus allowing the use of the co-ordinates for the molecular dynamics (MD)

simulations.

Ligand and protein contacts were analysed by the LigPlot programme using

the crystal structures [116]. The crystal structures (apo Hsp90-NTD and

Hsp90-NTD in complex with GVK0153 or 17-DMAG) were compared using

structural alignment algorithm in VMD software. Root mean square deviation

values between the structures were calculated, as well as the solvent

accessible and hydrophilic and hydrophobic surface areas with standard tools
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in VMD [117]. For surface area calculations, we used a standard 1.4 Å cut off

value.

2.8 Molecular dynamics simulations

2.8.1 Molecular dynamics packages used

The MD simulations on apo Hsp90-NTD, 17-DMAG:Hsp90-NTD and

GVK0153:Hsp90-NTD complexes were performed using GROMACS (v 4.6.5)

with the Amber ff99SB force field and TIP3P water model [118, 119]. The

ligand only simulations were run using Amber 14.

2.8.2 Supercomputing resources

The simulations were run on various supercomputers, including the ARC1,

ARC2 and Polaris machines in the Leeds High Performance Computing

facility. Computing time was also obtained from the national ARCHER

supercomputer as well as the BlueGene in the Hartree centre. Simulations of

the Hsp90-inhibitor system and of free ligands were run using graphical

processing units (GPUs) with Amber’s pmemd GPU optimised code [120].

2.8.3 Generating files for MD runs

Before the MD runs can take place, the co-ordinate files also need

accompanying parameters to describe the system. As the preparation of the

files can be complex especially when small molecules are also included in the

simulation, the workflow in Figure 2.4 shows an overview of the different steps

taken for MD file preparation and these different steps are described in more

detail below.
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Figure 2.2: Workflow for the production of the MD simulation files starting
from crystal structures, parametrisation to MD production runs.

2.8.4 Ligand parametrisation

Whilst the Amber force field contains the parameters for the protein, small

ligands need to be separately parametrised including assigning atom types

and partial charges before they can be used in the MD runs. For this, the initial

co-ordinates for the ligands were obtained from the X-ray structures

(1OSF.pdb and un-published GVK0153:Hsp90NTD structure file from

AstraZeneca). Hydrogen atoms were added to the crystal structures using the

Chimera software [121].

2.8.4.1 Generalised Amber force field

As the Amber ff99SB force field used for the protein does not contain all

parameters for small organic molecules, Amber tools package ‘Antechamber’

was used to generate the force field parameters for the ligands. The

Antechamber uses general Amber force field (GAFF), which contains extra

atom types and the corresponding parameters for bonds and angles to cover

small organic molecules. The parameters for the ligands were thus generated

Crystal
structures

• Xray structures used as starting structures to obtain co-ordinates for protein and
ligands for simulations

• Same 'protein' template for all simulations (1YET.pdb):

• VMD used to align Hsp90 backbone from 17-DMAG:Hsp90 and GVK0153:Hsp90
crystal structures & 'cut and paste' ligand co-ordinates to '1YET.pdb' file.

Parametrisation

• Prepare parameter files for protein and ligand

• Ligand: charges calculated with Gaussian-03, Amber Antechamber and Amber
Generalised Force Field (GAFF) for other parameters

• Protein: parameters generated using standard Amber force field (ff99SB)

• 'xleap' in Amber to combine ligand and protein topology files

• Generate simulation box, add water and ions with either Amber 'xleap' or
Gromacs 'grompp'

MD simulations

• Minimise structures

• Thermalise and equilibrate

• MD production runs
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by the Antechamber using the GAFF force field with extra input of files

containing partial charges for the ligands derived from Gaussian quantum

mechanical calculations as described below [81].

2.8.4.2 Calculating partial charges for the ligands

Whilst the Amber GAFF force field contains general parameters for bonds,

angles and dihedrals, the charges for atoms need to be calculated separately.

Here, the partial charges for the ligands were derived by using quantum

mechanical calculations using the Hartree Fock (HF) level of theory and the

6-31G* basis set, which allows the calculation of the electron densities around

the molecule. The restrained electrostatic potential (RESP) can be

constructed from these data and fed back into Amber to use in the

parametrisation. The HF/6-31G* has also been used to derive the ff99SB

Amber force field parameters and thus the ligand charges and rest of the force

field parameters will be compatible [119].

For the partial charge derivation, first the ligand (.pdb) files were converted to

xyz format that is compatible with the Gaussian-03 using Open Babel [122].

After this, the Gaussian-03 package was used to first optimise the geometry

of the ligands using B3LYP/6-31G*, which is a faster method to calculate

charges based on density functional theorem to calculate point energy of each

atom to allow finding a optimise geometry at local energy minimum [123]. The

geometry optimisation results were checked with tools in the Molden

programme after which the final configuration was entered back to Gaussian-

03 for calculation of partial charges using HF/6-31G* [124].

2.8.5 Preparing protein structure files

To ensure that the different simulations (i.e. apo, 17-DMAG:Hsp90-NTD and

GVK0153:Hsp90-NTD) could be compared, i.e. that any differences observed

were only due to ligand and not due to any differences in protein structures,

the protein co-ordinates from a single Hsp90-NTD crystal structure file were

used for all simulations. For this, the 1YET.pdb file was chosen to be used for

the protein co-ordinates. This structure is one of the first human Hsp90-NTD

structures in complex with geldanamycin [125]. For the apo protein, the

geldanamycin ligand co-ordinates were simply deleted from the file. For the
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two different ligands, a ‘docking’ approach was used. To ‘dock’ the ligands to

the Hsp90-NTD structure from the 1YET.pdb, the geldanamycin ligand was

removed by cutting out the co-ordinates corresponding to the small molecule.

Next, both the “apo-1YET” structure and the structures of 17-DMAG:Hsp90-

NTD (PDB:1OSF) [115] and GVK0153:Hsp90-NTD (unpublished data) were

opened with VMD and the protein structures were next aligned using the

structural alignment tool within the MultiSeq extension of VMD [117]. After

alignment, the new coordinates of the aligned structures were saved and the

ligand co-ordinates simply cut and pasted to the end of the 1YET-Hsp90-NTD

co-ordinate file and the atom numbers were corrected. The resulting structure

was visually inspected for correct location of the ligand.

2.8.6 Generating the starting structures for MD

Once the co-ordinate files were ready, the xleap tool in Amber was used to

generate the necessary files for the MD runs. Here the crystal structure co-

ordinates were read in together with the GAFF force field and library files for

the ligands as generated before and the ff99SB force field for protein to allow

the topology file generation for the complex. Next, the systems were

neutralised by addition of sodium counter ions and merged into periodic box

surrounded by ~45,000 water molecules. The systems were then minimised,

thermalised and equilibrated using standard protocol of initial 4 step structure

minimisation followed by 8 equilibration steps where the temperature is

increased in a step-wise fashion and non-water atoms are initially constrained

with the constraining forces slowly moved over number of steps [126]. The

final equilibrated structures were used to run 500 ns unrestrained MD

simulations with periodic boundary conditions at constant pressure (1 atm)

and temperature (298 K). Shake was used to constrain all bonds involving

hydrogen atoms with time step of 2 fs for integration of Newton’s equations

and a 12.0 Å cut off was used for non-bonded interactions. For replica

simulations, the same starting structures were used but the values for initial

velocity were assigned using the random seed generator in Gromacs. The

input files for the energy minimisation (em.mdp) and the equilibration steps

(md1.mdp, md2.mdp and md3.mdp) as well as the production MD input are

shown in Appendix.
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For ligand only simulations, the parametrisation and MD starting file

preparation was carried as above with the simulations run using Amber’s GPU

accelerated code.

2.8.7 Post-simulation trajectory file editing

After the simulation runs had completed, the solute (water and ions) were

stripped from the files and the protein was re-imaged (i.e. centre of mass

aligned to the centre of the simulation box) to remove the diffusion of the

complex around the simulation box. The frames for the first 15 ns

corresponding to the equilibration were removed using standard tools within

Gromacs and Amber. There were issues with Gromacs imaging commands

with the ligand-protein files as only the protein was centred and the ligand

seemed to ‘jump out’ of the protein binding pocket when the trajectory was

viewed. To get around these imaging issues, the trajectories were loaded into

the VMD programme and the ‘Align’ option in the ‘RMSD Trajectory Tool’

within VMD was used to re-image the Gromacs trajectories to centre both the

ligand and protein thus ‘get the ligand to stick in the protein pocket’. The re-

imaged trajectories were then saved to Amber file format with VMD [117].

2.8.8 Simulation data analysis

For the simulation data analysis, root mean square fluctuation (RMSF) of the

backbone Cα residues were calculated for each simulation. Next principal

component analysis was used to gain insight for the main motions of simulated

systems. For principal component analyses, which enables one to find out the

dominant molecular motions from the trajectory, we used the PCAzip

compression and analysis toolkit [93]. The PCAzip calculates the average

atom co-ordinates from the MD trajectory to get a co-variance matrix which is

diagonalised to get a set of eigenvectors with corresponding eigenvalues to

get the direction and amplitudes for the main motions in the simulation. These

files can also be converted to short animations to visualise the largest motions

and extreme structures of the simulated system.

We also calculated the entropies of the simulated systems using the Schlitter’s

quasi harmonic method [90]. For this, an in-house code ‘X2S’ to produce the

mass weighted co-variance matrix of atom positions that allows the calculation
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of maximum entropy was used. For the entropy calculations and the PCA

analysis the N- and C-terminal loops as well as the C-terminal part of flexible

helix 2 were removed to leave the globular core, to able the analysis of the

smaller amplitude movements of the protein.

2.9 Method optimisation and validation results

2.9.1 Protein production trials

Prior to any large-scale protein expression, expression protocol optimisation

trials were carried out. For this, small 25 ml cultures were grown as specified

in section 2.3.3, after which the expression of the plasmid encoded Hsp90-

NTD was induced with either 0.1 mM or 1 mM IPTG. The cultures were left to

grow at either 37°C for four hours or 30°C or 20°C overnight (see Table 2.1

for summary of the different conditions used). The protein yield from the

different temperatures and IPTG amounts was analysed by running a SDS-

PAGE gel and comparing the band intensities (Figure 2.3).

The 1 mM IPTG induction followed by 20°C overnight culture produced the

highest yield of the Hsp90-NTD, as seen in the induced band intensities in

SDS gels (Figure 2.3). This condition was thus adopted for the large scale

protein expression.

2.9.2 Protein expression yields

The yields of Hsp90-NTD from 500 ml culture in per-deuterated M9 media

were typically 1 ml of 300 μM (~7.2 mg) protein and about twice the amount

for bacteria grown in M9 media prepared in H2O. The protein was purified as

specified in Section 2.3.5. Figure 2.4 shows results of a typical purification

with the over expressed Hsp90-NTD on lane four, that contains fractions

eluted by 250 mM imidazole.
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Table 2.1 Protein optimisation trial conditions

Temperature after

induction (°C)

Amount of IPTG

(mM)

Growth time after

induction

37 1 4 h

30 1 Overnight

30 0.1 Overnight

20 1 Overnight

20 0.1 Overnight

Figure 2.3: Small scale expression trials using M9 media. 25 ml cultures of
E.coli containing the Hsp90-NTD containing plasmid were grown in M9
media until OD600 was 1.00. The expression of the protein was next
induced either with 1 mM or 0.1 mM IPTG (see Table 2.1) and the
culture were left to grow for 4 hours or overnight at different
temperatures as specified on the sample lane labels. The band around
26 kDa present in the induced cultures (labelled with ‘+ IPTG’),
corresponding to the Hsp90-NTD is indicated.
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Figure 2.4: Purification of the His-tagged Hps90-NTD using affinity
chromatography. The SDS-page gel shows results of a typical
purification using the HisTrap HP column. Lane 1 contains the total
cellular protein (i.e. sample that was loaded onto the column), lanes 2
and 3 show washes with increasing Imidazole concentration (10 mM
and 20 mM respectively). Lane 4 the eluted fractions (250 mM
Imidazole wash) which contains the majority of the over expressed
Hsp90 as indicated.

The Hsp90-NTD was stable in the presence of protease inhibitors at room

temperature for several days. This was tested by the 2D NMR NH TROSY

spectra that were recorded at the start and end of the several day long NMR

experiments. Both spectra were identical and did not show any sign of

presence of unfolded protein peaks (data not shown). The oligomerisation
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state of the Hsp90-NTD in the high concentration required for NMR (350 µM)

was not measured, we assumed that the protein was monomeric.

2.9.3 Inhibitor selection for in depth studies

We were interested in whether different inhibitors binding to Hsp90-NTD have

any effect on protein dynamics. As both in-depth NMR studies and MD

simulations require considerable time investment for each different protein-

ligand system, it was decided to concentrate on two different ligands. We

describe here how the two ligands were selected.

A panel of small molecules was used for initial studies. The main criteria for

selecting the compounds for the initial panel included the availability of crystal

structures of the human Hsp90 in complex with the ligand, to allow for

molecular dynamics studies. Additionally, we wanted to choose compounds

that have similar binding affinities but different entropic contributions to

binding. Finally, the compound of interest should be soluble enough in H2O

buffer in the absence of Hsp90. The initial set of six compounds (shown in

Figure 2.1) included geldanamycin [127], its derivative 17-DMAG [128],

radicicol [129] as well as three new nucleotide mimic compounds obtained

from AstraZeneca, named; CNF2024, GVK0153 and GVK0161.

Early studies on yeast Hsp90 demonstrated that the geldanamycin and

radicicol have very different entropic contributions to the Hsp90-ligand binding

signatures [130]. No prior thermodynamic data was available for the new

AstraZeneca compounds.

We conducted ITC experiments on all the compounds and recorded 2D

protein NH TROSY amide spectra of Hsp90-NTD in complex with the

inhibitors. Based on the initial biophysical characterisations using NMR and

ITC, 17-DMAG and GVK0153 were selected for detailed NMR and MD

analysis. The 17-DMAG molecule was chosen based on ITC studies, which

showed the binding to be entropically driven (results from ITC are shown in

Chapter 3). From the other ligands in the initial panel, GVK0153 and GVK0161

from the AstraZeneca compound library were shown to have a small entropic

penalty upon binding, thus differing from the 17-DMAG. The CNF2024 and

radicicol bound to Hsp90-NTD too tightly to be measured accurately with ITC,



57

as the nanomolar affinities suggested by the data resulted in a slope that is

too steep for accurate Ka determination.

The 2D protein NH TROSY amide spectra of Hsp90-NTD in complex with the

different compounds were all well resolved. The spectra for the AstraZeneca

compounds were very similar, with only a few shifts in the protein backbone

peak. The GVK0153 ligand had a few different shifts in the peaks, compared

to GVK0161 and CNF2024 spectra, which could be of interest. This was the

reason for selecting the GVK0153 compound for further studies.

2.9.4 MD simulation benchmarking and optimisation

Long simulation times and multiple replica simulations are needed in order to

explore the conformational space adequately for entropy determination.

Therefore we optimised the molecular dynamics runs for trajectory data

generation speed. In the past, the Amber platform has been used by the Harris

group. However, since the Gromacs software has been coded to optimise the

data output, it was decided to conduct a benchmarking study to test the output

speed of Amber versus Gromacs platforms. For this, short simulations of the

apo-Hsp90 were prepared as specified in Section 2.8. These simulations were

run on both the Amber and Gromacs engines using the ARC2 computer with

a different number of central processing units (CPUs). The Hartree centre’s

BlueGene computer’s performance was also compared to the ARC2.

As the supercomputing resources are, in general, shared between different

users, there is a balance to be struck between requesting a large number of

computer cores and the queuing time for the simulations. Generally, less

cores equals shorter queue times. MD runs were thus submitted on ARC2

requesting 16, 32, 64 or 128 CPUs. These runs had queue times ranging from

few hours to few days, which was quite acceptable for our purposes. Both

Amber and Gromacs packages were used in the benchmarking study. From

this benchmarking, the best Amber run produced 4.5 ns/day on 32 CPUs

(Amber runs on a larger number of CPUs were slower). The best Gromacs

runs were obtained using 128 CPUs, achieving 30.4 ns/day. For production

runs, it was noticed that on ARC2, the best performance was achieved when

all the CPUs used for the calculation were on the same node, rather than using

any free CPUs in different nodes. When sole use of all CPUs in a node was
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requested, this dramatically reduced the time spent on communication

between the CPUs whilst performing parallel calculations. Here, the

performance increased from 30 ns/day to 100 ns/day when calculations were

carried out on a node. For Amber, a similar increase in simulation time was

achieved, when all the calculations were done in one node with the top

simulation speed around 20 ns/day. Table 2.2 shows a comparison of the

simulation data speed with optimised conditions. The BlueGene architecture

on the other hand was a lot slower with 50 ns/day obtained using four times

as many CPUs.

As the benchmarking study showed that Gromacs runs were nearly five times

faster than Amber, Gromacs use was adopted for the study. The simulation

speed gain, which is normally the bottle neck in computational studies, far out

weighted the time required for converting the Amber files to Gromacs format

and back to Amber for analysis.

Finally, we obtained some graphical processing units (GPUs) and tested these

with the GPU optimised Amber code. Here, the GPU speed was comparable

to the ARC2 supercomputer, where 2 GPUs produced the same speed as 128

CPUs on the ARC2. As the GPUs were for the sole use of the Harris group,

there was no queuing time. This makes the new GPU technology very

promising in terms of output speeds, whilst being very economical in

comparison to supercomputing.

Table 2.2: Optimised production MD simulation times

Computer MD engine Simulation speed (ns/day)

ARC2 Gromacs / CPU 100 ns/day (128 CPUs)

ARC2 Amber / CPU 20 ns/day (128 CPUs)

GPU Amber / GPU optimised 35 ns/day (2 GPUs)

BlueGene Gromacs / CPU 50 ns/day (512 CPUs)

2.9.5 Molecular dynamics simulations - replica data

In an attempt to cover as much conformational space as possible for entropy

calculations, around 80 replica simulations were run. The total amount of
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simulation time was 40 µs from these multiple replica simulations. Table 2.3

shows the number of replicas run for each different system.

Some of the simulations were sampled every 2 fs and these data were used

for in depth analysis of the dynamics of Hsp90-NTD. A larger number of replica

simulations were also ran with the aim of obtaining an estimate of how large

a conformational space a single simulation explores. This would enable us to

have some idea of the number of replicas, and length of simulations required

to get a realistic representation of the conformational space. Due to the large

number of simulations and thus data storage requirements, data from these

replica simulations were saved every 10 fs.

Table 2.3: Summary of simulation data and total trajectory time

Complex Simulation

length

Number of

replicas

Total simulation

time

apo Hsp90-NTD1 600 ns 3 ~1.5 µs

Hsp90-NTD:17-DMAG1 550 ns 3 ~1.5 µs

Hsp90-NTD:GVK01531 550 ns 3 ~1.5 µs

Hsp90-NTD:17-

DMAGs*

500 ns 50 25 µs

Hsp90-NTD:GVK0153* 200 ns 25 5 µs

Apo Hsp90-NTD* 75 ns 10 750 ns

1These simulations were sampled every 2 fs and were used for in depth

analysis of differences in Hsp90-NTD dynamics of different complexes

*These simulations were sampled with every 10 fs and used to estimate how

much conformational space is sampled with each replica
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Chapter 3

Characterisation of Hsp90 and inhibitor dynamics

The chaperone Hsp90 is a highly dynamic protein and it has been suggested

that the changes in the structure of the chaperone may influence the choice

of binding partners [48]. To investigate the role that dynamics play in Hsp90-

inhibitor interactions, we analysed experimental ITC and NMR data as well as

performing a computational analysis based on MD simulations.

ITC is often seen as the gold standard method for determining Gibb’s free

energy, enthalpy and entropy of binding, as well as the binding (and

dissociation) constant [53]. However, ITC only provides data on ‘global’

changes that include effects from protein, ligand and solvation. To understand

the structural mechanisms of binding, one needs to know the individual

contributions from the protein, the small molecule ligand and the solvent.

These need to be complemented with information about the atomistic changes

in protein and ligand structure and dynamics. We employed NMR and MD

data to obtain these atomistic details.

The results from different NMR techniques and MD simulations that report on

protein flexibility are presented and compared. These atomistic scale results

are also compared with the ITC data. The apparent discrepancy between the

overall entropy change upon binding (as reported by ITC) and the changes in

configurational entropy is discussed. The latter changes were indirectly

measured using changes in protein dynamics with NMR and MD techniques.

To attempt to rationalise this discrepancy, the effect of the possible changes

in the solvation structure is discussed.

3.1 Analysis of the inhibitor:Hsp90-NTD crystal structures

Crystal structures of both GVK0153 and 17-DMAG in complex with human

Hsp90-NTD have been solved and these show that both molecules bind to the

N-terminal ATP/ADP binding pocket ([115], unpublished data from

AstraZeneca). To better understand, and interpret, the thermodynamic data,

we performed a preliminary analysis of these protein structures by root mean
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square difference (RMSD) of the backbone atomic coordinates, by examining

the ligand-protein contacts, as well as by looking at the surface areas of the

protein molecules.

The general structure of the human Hsp90-NTD is globular, with a number of

alpha-helices surrounding a central cavity, where the ATP/ADP and inhibitors

bind (Figure 3.1). Beta-sheets make up the bottom of the binding pocket [125].

One of the edges of the binding pocket is a so called ‘lid region’, which is made

up of alpha helices 4 and 5. This region has been shown to be highly dynamic

and changes conformation upon ATP/ADP binding [50].

The backbone RMSD between the apo protein and the 17-DMAG and

GVK0153 Hsp90-NTD complexes was calculated by the VMD programme

[117]. The Hsp90-NTD:17-DMAG (PDB:1OSF) and :GVK1053 (unpublished)

complexes show very minor differences, with backbone RMSD of 0.75 Å

between the two structures. This RMSD difference is very similar to that

between the apo Hsp90-NTD (PDB:1YES) and the 17-DMAG:Hsp90-NTD

and GVK0153:Hsp90-NTD structures, which are 0.73 Å and 0.75 Å

respectively. The main difference between the 17-DMAG and GVK0153

bound proteins is the position of the loop 4 (L4), which connects the helices 4

and 5 within the lid region. The loop is orientated towards the binding pocket

in the GVK0153 bound structure and away from the pocket in the 17-

DMAG:Hsp90 complex (see Figure 3.1). As the 17-DMAG compound is about

twice the size of the GVK0153 compound (molecular weights of the two

compounds are 617 g/mol and 312 g/mol respectively). The orientation of the

loop is likely caused by the larger area the 17-DMAG occupies within the

binding pocket. Interestingly, this difference in the loop structure has also been

observed in the apo Hsp90-NTD ‘open’ and ‘closed’ structures (PDB: 1YES

and 1YER respectively). Here, the loop 4 orientation is either towards the

binding pocket for the ‘closed’ form or away from it for the ‘open’ form [125].

The loop orientation in the GVK0153 structure is similar to the apo ‘closed’

structure and the larger 17-DMAG protein is similar to the loop in the apo

‘open’ structure. In contrast, when Hsp90 is in complex with either ADP or

ATP, the loop is in the ‘open’ position (PDB: 1BYQ for the ADP bound

structure and 1TC0 for the Hsp90 ER paralogue in complex with ATP) [131,

132].
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The contacts between the ligands and protein were analysed using the LigPlot

software, which plots H-bonds and hydrophobic contacts [116]. Both ligands

interact with the same seven amino acids (Asn51, Ala55, Asp93, Met98,

Leu107, Phe138 and Thr184) within the binding pocket (Figure 3.2). The

ligands also make a number of ‘unique’ contacts with the protein. These are:

Ser52, Lys58, Asp54, Ile96, Asp 102, Asn106, Lys112, Gly135, Val136 and

Gly137 for the 17-DMAG ligand, and Leu103, Tyr139, Val150 and Trp162 for

the GVK0153 ligand. These unique contacts are located at the bottom of the

binding pocket for the GVK0153 ligand and around the top of the pocket for

the 17-DMAG inhibitor. Looking at the X-ray structures of the protein-ligand

complexes, it is evident that the GVK0153 ligand inserts deeply into the

pocket, whereas the larger 17-DMAG ligand sits closer to the top of the pocket.

The LigPlot analysis also suggests that for both ligands, most of the

interactions are via hydrophobic contacts. There is only one hydrogen bond

between the GVK0153 ligand and the Asp93 residue of the protein (Figure

3.3). The 17-DMAG ligand on the other hand makes four H-bonds; with

residues Lys58, Asp93, Phe138 and Thr184 (Figure 3.3.). The smaller

GVK0153 ligand has fewer contacts - to only 11 amino acids, compared to 17

different amino acid contacts made by the larger 17-DMAG ligand.

The contacts between Hsp90-NTD and its natural substrate ADP were also

analysed using LigPlot (PDB:1BYQ) [131] to allow comparisons. Here, the

nucleotide and the protein make the same contacts that were also shared

between both 17-DMAG and GVK0153 ligands; i.e. Asn51, Ala55, Asp93,

Met98, Leu107, Phe183 and Thr184, as shown in the Figure 3.2. There are

several additional interactions between ADP and Hsp90-NTD, that include the

residues Asn106, Val136 and Gly137. These are a subset of the contacts that

were unique to the 17-DMAG ligand. These residues are located on the top of

the binding pocket and indeed, ADP does not insert as deeply into the pocket

as the GVK0153 ligand. The ADP molecule forms three hydrogen bonds with

the protein; to Asn51, Phe138 and Asp93. There are no crystal structures of

human Hsp90 in complex with ATP, only of yeast Hsp90 or human

endoplasmic reticulum Hsp90 paralogue. These crystal structures, whilst

similar in terms of structure and sequence, are not identical to the human
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cytosolic protein. Thus the ligand-protein contact analysis, which would have

allowed direct comparison, could not be done.

The solvent accessible surface areas (SASA), which can been used to

estimate the solvation contribution to the global thermodynamics, were

calculated for the ligand:Hsp90-NTD complexes (PDB:1OSF and unpublished

AstraZeneca structure) as well as the apo protein ‘open’ and ‘closed’

structures (PDBs: 1YES and 1YER respectively) [133, 134]. As expected from

the RMSD analysis (which suggested high similarity between all the crystal

structures), the total surface areas are also similar, ranging from 10,197 Å2 to

10,868 Å2. The overall surface areas of the ligand bound structures are slightly

larger than that of the apo structures; a difference of 560-670 Å2 for the apo

and GVK0153 bound structures and 220-340 Å2 difference between the apo

and 17-DMAG:Hsp90-NTD complex. There is also a small difference between

the surface areas of the two ligand bound structures, where the GVK0153

bound structure is ~350 Å2 larger (see Table 3.1). The two apo Hsp90-NTD

crystal structures also differ slightly in their overall surface areas. Recall that

the two apo states are defined as ‘open’ and ‘closed’. The overall surface area

of the ‘closed’ structure is slightly larger. Similarly, the GVK0153 bound

structure surface area is larger than the 17-DMAG bound protein. As both

‘closed’ structures (apo Hsp90-NTD and GVK0153 bound protein) have

slightly larger surface areas, it is likely that the loop 4 orientation towards the

pocket increases the overall surface area.

The surface areas were divided further into hydrophobic and hydrophilic for

additional analysis. The nature of the surface area can affect the surrounding

water structure and thus play a role in entropy [135]. The hydrophobic surface

area of the GVK0153 bound protein is slightly larger than the 17-

DMAG:Hsp90-NTD structure (2,732 Å2 for 17-DMAG bound protein compared

to 3,010 Å2 for the GVK0153:Hsp90 complex). The hydrophilic surface areas

of the ligand bound structures are more similar (~60 Å2 difference). The

hydrophobic surface areas of the apo “open” and “closed” structures on the

other hand differ only by 10 Å2. The apo protein hydrophilic surface areas

follow a similar trend to the ligand bound protein, where the ‘closed’ loop 4

orientation results in a slightly larger hydrophilic surface area. Although there

are some differences in the overall, and hydrophobic, surface areas between
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the crystal structures, these are all very small (6-10%). They are unlikely to

have a large effect on the binding energy. However, the data from the surface

area analysis is used later in this chapter in an attempt to rationalise the role

that water plays in the overall binding reactions.

Figure 3.1: Crystal structures of Hsp90-NTD in complex with 17-DMAG and
GVK0153. Both inhibitors bind to the same nucleotide binding pocket,
that is located in the N-terminus of the protein, as can be seen in the
top panel. The residues that are involved in the binding interactions, as
predicted by LigPlot software, are coloured red in each protein structure
on top panel. It can be seen that the larger 17-DMAG ligand makes
more extensive contacts with the protein [116]. The loop 4 (L4), which
is coloured in blue in the top structures, also has different orientation in
the two different ligand bound complexes. When bound to the 17-
DMAG, the loop is away from the binding pocket (i.e. ‘open’) and in
contrast, the loop points towards the pocket in the GVK0153:Hsp90
structure (PDB: 1OSF for the 17-DMAG [115]; (structure from
AstraZeneca, data not published). The bottom panel shows a close up
of the amino acid contacts each ligand makes. It can be seen that the
amino acids involved in the binding of the smaller ligand, on the right,
are located towards the bottom of the binding pocket. The 17-DMAG
contacts are mostly on the top edge of the pocket.
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To summarise, the analysis of the crystal structures suggests that there are

very minor structural differences between the ligand bound complexes. The

crystal structure analysis data presented here is used later on in this chapter

to interpret MD simulation data and the solvent accessible surface area

estimations can help with interpretation of thermodynamic data from ITC.

Figure 3.2: Summary of the residues involved in binding interactions
between 17-DMAG and GVK0153 respectively, with the Hsp90-NTD,
as predicted by LigPlot [116].

Figure 3.3: Polar contacts shown as dashed green line between (A)
GVK0153 and Hsp90-NTD and (B) 17-DMAG and Hsp90-NTD as
predicted by LigPlot [116].

A
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Table 3.1: The protein surface areas (solvent accessible, hydrophobic and
hydrophilic) of the different crystal structures

Crystal structure Total surface

area (SASA)

(Å2)

Hydrophobic

surface area

(Å2)

Hydrophilic

surface area

(Å2)

apo Hsp90-NTD

“open” (PDB:1YES)
10,197 2,654 7,542

apo Hsp90-NTD

“closed”

(PDB:1YER)

10,311 2,644 7,667

17-DMAG:Hsp90-

NTD (PDB:1OSF)
10,532 2,732 7,800

GVK0153:Hsp90-

NTD (un-published)
10,868 3,010 7,859

B
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3.2 ITC experiments on 17-DMAG and GVK0153 binding to

Hsp90

Isothermal titration calorimetry (ITC) allows the determination of the

thermodynamic parameters for ligand binding (dissociation and association

constants as well as changes in Gibb’s free energy, enthalpy and entropy)

from a single experiment. ITC is a widely used technique in drug discovery

[53]. In this project, ITC was used to study the binding of 17-DMAG and

GVK0153 inhibitors to Hsp90-NTD. These measurements can be used to gain

insight into any differences between the ligands, and to obtain global

thermodynamic values. These values can be compared with those obtained

from computer simulations.

The ITC data showed that both ligands bind to Hsp90-NTD, as the isotherms

demonstrated that the Hsp90-NTD binding site became saturated upon

titration of a ligand (Figure 3.4). The dissociation constant for both ligands was

in the nanomolar range; 20 nM for the GVK0153 ligand and 54 nM for the 17-

DMAG ligand. The free energy change for the binding of the smaller GVK0153

ligand was -9.14 kcal/mol; the enthalpy change was -9.71 kcal/mol and the

TΔS° term was 0.625 kcal/mol (Table 3.2). The ΔG° for the 17-DMAG ligand 

on the other hand was -8.57 kcal/mol. The entropy term (TΔS°) was the larger 

of the two contributors to the overall free energy change with -5.66 kcal/mol,

compared to the enthalpy change of -2.91 kcal/mol for the 17-DMAG ligand

(Table 3.2).

Table 3.2: ITC binding data for 17-DMAG and GVK0153

ΔG° 

(kcal mol-1)

ΔH° 

(kcal mol-1)

-TΔS° 

(kcal mol-1)

N

17-DMAG:

Hsp90-NTD

-8.566±0.165 -2.906±0.110 -5.661±0.990 2.073±0.19

GVK0153:

Hsp90-NTD

-9.140±0.100 -9.766±0.160 0.625±0.180 0.759±0.04

(± errors are standard deviations between repeats)



68

Figure 3.4: Isotherms from the ITC experiments for the 17-DMAG and
GVK0153 ligands. Isothermal titration calorimetry experiments were
carried out to determine the thermodynamic parameters for the binding
of GVK0153 (left panel) and 17-DMAG (right panel) to Hsp90 N-
terminal domain.

The titrations of both inhibitors were carried out in triplicate. In general, the

ITC data were highly re-producible, as seen from Figure 3.5. The largest

standard deviation was 159 cal/mol in the enthalpy values between the

repeats, accounting for less than 2% of the total enthalpy value.

Whilst the ITC data were very reproducible, looking at the isotherms in Figure

3.4, it can be seen that the stoichiometry (n) is differs from the expected 1:1

binding constant for the 17-DMAG ligand. The stoichiometry value depends

on the accurate estimation of both the ligand and protein concentrations, as

well as the amount of active protein. However, the shape of the isotherm (‘flat

curve’ indicative of a small heat change) observed for the 17-DMAG is typical

for entropy driven binding. Additionally, crystal structures and other published

data suggest that there is only a single binding site for the 17-DMAG ligand.

Thus, we assume that the ligand and/or protein concentrations were

inaccurate, rather than the ligand interacting with two sites. This error in

stoichiometry does not change the thermodynamic parameters, and the
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overall binding signature where entropy contribution is the major component

to the overall binding free energy is still valid. This is because the heat change

upon titration of ligand is not affected by stoichiometry value. Similarly, a large

entropic contribution (~10 kcal/mol) to the binding affinity has also been

observed with 17-DMAG binding to the full-length Hsp90 [136].

Figure 3.5: The repeat ITC measurements gave very consistent enthalpy
(ΔH°) values, as seen from the graphs. The standard deviation for ΔH° 
values between the repeats was 110 cal/mol for the 17-DMAG and 159
cal/mol for GVK0153.

Now it is time to compare the two ligands. From the ITC data of Hsp90-

NTD:GVK0153 and Hsp90-NTD:17DMAG, it was apparent that whilst the

affinities are of a similar micromolar magnitude (dissociation constant Kd

values were 20±0.02 µM for GVK0153 and 54±0.09 µM for the 17-DMAG),

the two systems have different entropic contributions to the overall Gibb’s free

energy change (Figure 3.6 and Table 3.2). The binding of the smaller

GVK0153 ligand is entirely enthalpy driven. In contrast, for the larger 17-

DMAG ligand, the entropy term is the dominant contributor to the overall

binding energy.
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Figure 3.6: The binding signatures of GVK0153 and 17DMAG. Both
inhibitors bind to the Hsp90 chaperone with similar affinity. The Gibb’s
free energy change (ΔG) is around 9,100 cal/mol for the GVK0153 
ligand and 8,500 cal/mol for the 17-DMAG. However, the enthalpic and
entropic contributions to the binding affinity differ between the ligands.
The error bars show the standard deviations from repeat
measurements.

Our ITC data suggest that 17-DMAG and GVK0153 have different

thermodynamic binding signatures. This means that the ligands are likely to

have different binding mechanisms. However, it is not possible to obtain

mechanistic insights from these global ITC parameters. The affinity (Kd) and

Gibb’s free energy (ΔG) terms are straightforward to understand in terms of 

binding in drug design. Normally compounds with tighter binding are selected

for further development. The enthalpy and entropy terms on the other hand

are not as straight forward. Negative enthalpy values are caused by bond

formations resulting in the release of heat. The net ΔH° effect, as observed by 

ITC, is a result of a large number of bonds being formed and broken [135].

The entropy change is similarly complex. A negative value for the –TΔS° term 

(i.e. when ΔS° is positive) reflects an increase in the disorder of the system. 

This can arise from increase in the ligand and/or protein flexibility, or from the

release of water molecules to bulk solution. Thus, enthalpy and entropy terms

are difficult to interpret as it is not possible to separate the contributions from

the protein, the ligand and changes in solvation from the global ITC
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parameters. Indeed, the large difference of ~6,200 calories observed in

entropic binding signatures between 17-DMAG and GVK0153 (Figure 3.6,

Table 3.2), could arise from changes to the protein and ligand dynamics upon

complex formation, from solvent re-organisation due to the release of tightly

bound water to bulk solvent, or from changes to the burial of hydrophobic

residues [8].

In conclusion, the ITC data suggest that the binding of the larger 17-DMAG

and smaller GVK0153 ligands to Hsp90-NTD have different balance of driving

forces. 17-DMAG binding has larger entropic contribution, whereas GVK1053

binding is entirely enthalpy driven. These differences in the enthalpy and

entropy contributions to the overall binding signatures are not unique to Hsp90

ligands, but have been observed in many different systems [137, 138]. Whilst

the global values suggest differences in their binding mechanism, the

structural and molecular details cannot be obtained from the thermodynamic

data alone. To obtain mechanistic insights into the binding of these two

inhibitors, we used NMR and MD experiments, that allow the investigation of

the interactions in atomistic detail.

3.3 NMR experiments on Hsp90-NTD complexes

Chemical shift perturbation analysis was used to characterise conformational

changes in Hsp90-NTD, when in complex with the 17-DMAG and GVK0153

ligands. To characterise the changes in µs-ms dynamics upon ligand binding,

we employed CPMG relaxation dispersion experiments. As a preliminary step,

protein backbone assignments, in the presence and absence of inhibitors,

were obtained using previously published assignments for the apo Hsp90-

NTD as a starting point.

3.3.1 Hsp90-NTD backbone resonance assignments

The backbone assignments for apo and inhibitor bound Hsp90-NTD were

obtained using a TROSY versions of 3D triple resonance HNCA, HNCO and

HNcaCO experiments [109, 110]. These experiments were described in

Chapter 1.
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NMR backbone assignments of the apo state of the human Hsp90-NTD have

been obtained previously (BMRB code 7003) [61]. These assignments were

transferred to our apo Hsp90-NTD sample, which was prepared using similar

experimental conditions. We recorded a set of triple resonance spectra for the

apo Hsp90-NTD; all of them were well resolved. For the majority of the

residues, peak positions in our apo protein spectra matched the published

assignments. The original assignments included amide peaks for 152 out of

205 non-proline residues (there are total of 209 residues in the Hsp90-NTD

construct). Assignments were transferred for 145 residues. We could not

transfer assignments for seven residues (Ala27, Lys100, Leu103, Asn105,

Asn106, Met119, Asp157), most likely due to significant line-broadening

observed in the NMR spectra for these residues. Additionally, we identified

nine further residues (Thr65, Leu76, Ala166, Gly167, Thr176, Glu200, Gln212,

Phe213, Ile214). In total, we obtained assignments for 74% of the apo Hsp90-

NTD.

The sets of 2D HN TROSY, 3D HNCA, HNCO and HNcaCO experiments were

performed for the 17-DMAG:Hsp90-NTD and GVK0153:Hsp90-NTD

complexes. The 2D amide TROSY spectra of 17-DMAG and GVK0153 bound

Hsp90-NTD are overall similar to the spectrum of the apo protein (Figure 3.7).

Thus, the apo-protein assignments were used as a starting point to assign the

17-DMAG and GVK0153 bound Hsp90-NTDs. For the residues, which have

similar or identical peak positions in the spectra of the apo and the ligand

bound protein, backbone assignments were transferred from the apo protein.

These assignments were confirmed using HNCA spectra. Approximately 30%

of Hsp90-NTD residues experienced significant changes in peak positions

upon 17-DMAG or GVK0153 binding. The positions of the majority of the

shifted peaks differed between the two ligands (Figure 3.8). The majority of

shifted peaks were assigned using a set of 3D triple resonance experiments.

In total, we obtained assignments for 72% of the Hsp90-NTD:17-DMAG

complex and 64% for the Hsp90-NTD:GVK0153 complex. Figure 3.9 shows

the Hsp90-NTD structures, where the assigned versus un-assigned regions

for the two protein-inhibitor complexes, as well as for the apo-Hsp90-NTD are

highlighted.
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Figure 3.7: Superposition of the NH TROSY spectra of apo (black contours)
and 17-DMAG:Hsp90-NTD (red contours). Whilst the majority of the
peaks overlap between the apo and the 17-DMAG bound spectra, there
are also significant shifts in the peak positions for certain residues (see
Figure 3.7 below). This indicates structural changes. The cross peaks
are labelled for the apo state. The assignments for the crowded area in
the middle of spectra are shown in the insert underneath. Here, only
the apo peaks are shown for clarity. The 17-DMAG spectra was
recorded at 600 MHz magnet and 950 MHz magnet was used for the
apo sample.
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Figure 3.8: A zoomed in view of the NH TROSY spectra shown in Figure
3.6. The red contours correspond to 17-DMAG:Hsp90-NTD, blue
contours to GVK0153:Hsp90-NTD and black contours with labelled
peaks to apo Hsp90-NTD. The peaks, which shift their position upon
ligand binding, move differently in direction and in magnitude,
depending on the ligand. For example, the position of the blue and red
peaks next to residues G137 and T171 are different. The red peaks
corresponding to 17-DMAG bound protein move upwards and the blue
peaks corresponding to the GVK0153 bound protein move downwards.
The 17-DMAG and GVK0153 bound spectra was recorded at 600 MHz
magnet and 950 MHz magnet was used for the apo sample.
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Figure 3.9: The Hsp90-structures, showing the amino acids for which we
have obtained NMR assignments. The regions of the Hsp90-NTD that
were assigned are shown in blue. The grey colour indicates the
residues where no assignments were obtained.

3.3.2 Chemical shift perturbation analysis

To identify residues directly affected by ligand binding, we carried out

chemical shift perturbation analysis (CSP). This also identifies possible ligand-

induced long-range perturbations in the protein conformation [57]. The

chemical shift difference of Hsp90-NTD in the presence, and absence, of its

inhibitors enables the identification of residues involved in the binding

interaction. Additionally, long range perturbations may also be observed in the

residues that are located far from the binding site. For this study, the crystal

structures of Hsp90-NTD were used in combination with the CSP data to

identify the residues involved directly in the binding interactions. The crystal

structures also helped to identify the residues with long-range perturbations

located away from the binding site.

For the CSP analysis, the changes in peak positions upon ligand binding were

calculated as described in Chapter 1, using the following equation:

οߜ௧௧ = ඥሺοߜு )ଶ  ሺͲǤͳͷͶοߜே )ଶ) (eq. 3)

To define statistically significant changes we used the following criteria:

residues with significant CSPs should have at least one of their amide

chemical shifts (i.e. ு�orߜ (�ேߜ larger than 0.06 or 0.6 ppm respectively. The

0.06 and 0.6 ppm values for proton and nitrogen chemical shifts correspond
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to two standard deviations, calculated from all CSPs observed upon ligand

binding [57, 139]. We also defined residues that had undergone large

changes as those with οݐݐߜ> 0.3 ppm. An example of the significant and non-

significant changes in the peak positions is shown in Figure 3.9.

Figure 3.10: Examples of the peaks, for a ‘non-significant CSP change’ (left
hand peaks) and significant CSP change (right hand peaks). The
significant changes were classified as either οߜ௧௧ of larger than 0.3
ppm, or ு�orߜ ே�largerߜ than two corresponding standard deviations; i.e.
0.06 or 0.6 ppm respectively.

Using CSP analysis, significant and large changes were observed for 39 of

the 149 assigned residues upon binding of the 17-DMAG ligand. For the

GVK0153 ligand, this figure was changes in 50 of the 133 assigned residues

(Figure 3.10). As expected, most of the significant changes were observed in

the residues directly involved with the inhibitor binding (residues that are

coloured red the crystal structures in Figure 3.1). These residues were defined

as those that were within 5 Å of the ligand in the X-ray crystal structures [140].

About half of the residues that underwent significant chemical shift

perturbations were classified as long range perturbations, e.g. CSPs observed

for the residues located at least 5 Å away from the corresponding ligand.

These changes are coloured in blue in the crystal structures in Figure 3.11.

These CPSs indicate structural and/or dynamic changes in residues that are

not directly involved in the ligand interactions.

Similar long range chemical shift perturbations upon ADP/ATP binding to

Hsp90-NTD have also been observed in yeast Hsp90 [141] and also in human

Hsp90-NTD [50], as shown in the bottom panel of Figure 3.11. Interestingly,

H

146E
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some of these changes occurred in the alpha helices that make up the ‘lid’

region of the protein (Ala111-Val136) (grey panel in Figure 3.11). This region

is known to be highly dynamic; no residues could be assigned in the apo

Hsp90-NTD spectra for the start of the lid region (residues 111-116). This is

often suggestive of flexible residues that are involved in microsecond to

millisecond motions, and thus too broad to be observed in NMR spectra. The

B-factors of the X-ray structures that can indicate atomic vibrations are also

higher for the two alpha helices making up the lid region [61, 125]. A previous

NMR study looking into Hsp90-NTD structure, when the chaperone is in

complex with ADP or ATP-mimic (non-hydrolysable AMPPNP), found that the

lid region structures differed in these complexes. The residues making up the

lid region were absent on the AMPPNP bound spectra, which the authors took

to be indicative of microsecond dynamics. These peaks were observed for the

ADP bound structure. This suggests that the ADP bound protein does not

undergo microsecond timescale dynamic changes [50]. From our data, this

seems to case for the 17-DMAG and GVK0153 complexes. As can be seen

from Figure 3.11, the smaller GVK0153 inhibitor causes more shifts within the

residues making up the lid region (highlighted with grey background in Figure

3.11), compared to the 17-DMAG inhibitor. For the GVK0153 ligand, seven

peaks disappeared upon binding, suggesting large changes in conformation

and dynamics. An additional two residues showed large perturbations. In

comparison, only three residues showed large perturbations in the 17-

DMAG:Hsp90-NTD complex within the same (Ala111-Val136) segment. This

suggests that the binding of the smaller inhibitor causes larger changes to the

protein structure, or dynamics, within the lid region.
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Figure 3.11: Amide backbone chemical shift perturbation analysis (CSP)
show changes in the peak positions both for residues making up the
binding pocket, as well as long range perturbations. (A) The histograms
of the CSP changes show per residue perturbations, where the red
bars are the residues with large ௧௧>0.3ߜ∆) ppm) or significant changes
(where at least one of the shifts, i.e. ு�orߜ ே�isߜ larger than two
corresponding chemical-shift errors; i.e. 0.06 or 0.6 ppm respectively).
The red circles indicate residues that disappeared upon ligand binding.
CSPs for individual residues were calculated using the differences in
the chemical shifts for backbone amide 1H ுߜ∆) ) and 15N ேߜ∆) ) using the

equation ௧௧ߜ∆ = ඥ(∆ߜு )ଶ+ ேߜ∆0.154) )ଶ . The lid region (Ala111-Gly135)
is highlighted in grey in the histograms. This area is also circled in grey
in the 17-DMAG and GVK0153 bound structures. (B) The crystal
structures in panel A show the CSP changes upon GVK0153 and 17-
DMAG inhibitor binding. Here, the green colour indicates the residues
where significant CSP changes were observed and that are involved in
ligand contacts. The blue coloured regions are those were significant
CSP changes were observed in residues that are not involved directly
in the ligand interactions (further than 5 Å of the ligand). (C) In
comparison to small molecule inhibitor induced CSP changes, panel C
shows the CSP changes reported upon AMPPCP or ADP binding. Here
the changes are similarly observed both in the residues that are in
direct contact with the ligand (green colouring), as well as those not
involved in direct ligand interactions (blue coloured residues). The
bottom AMPPNP and ADP bound structures were adapted from [50].

3.3.3 Relaxation dispersion measurements

Are the differences in the CSP profiles caused by changes in protein

millisecond-microsecond dynamics? To further examine the differences in

CSP pattern observed in the ligand binding signatures, we used 15N relaxation

dispersion measurements (Carr-Purcell-Meiboom-Gill, CPMG [55]) on the apo

Hsp90-NTD and the protein in complex with the two ligands. This method can

report on protein dynamics (i.e. structural changes) in the micro- to milliseond

timescale as explained in Chapter 1. Intermediate or slow time scales were

thought to be relevant for the Hsp90, as broad peaks were observed in the

Hsp90-NTD spectra. Also, previous studies looking into the differences in ADP

or ATP complexed chaperone suggested that slower timescale motions,

rather than fast pico- to nanosecond ones, are relevant to the Hsp90-NTD

dynamics due to line broadening [50].

In our study, 15N CPMG relaxation dispersion profiles were measure for apo

Hsp90-NTD and the protein complexed with the two ligands. A total of 97

residues for the GVK0153 bound protein and 109 residues for the 17-DMAG
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bound and apo Hsp90 were used for our analysis. All these residues have

non-crowded peaks and thus, any change in peak intensities can be

unambiguously analysed. Relaxation dispersion profiles (Figure 3.12)

indicative of micro- to millisecond dynamics were observed for 17 residues,

located in multiple regions of the Hsp90 nucleotide binding domain. Examples

of the dispersion data plots are shown in Figure 3.13. The dispersion data

plots for all residues with micro- to millisecond dynamics are shown in

Appendix.

Micro- to millisecond timescale changes in structure were observed in both

apo and ligand bound proteins around the histidine 154, which is located in a

loop region in the N-terminal domain and middle domain interface of the

Hsp90 protein. Similarly, micro- to millisecond dynamics were observed for all

protein states for residues Glu158 and Asn155, which are close to the His154.

Additionally, for GVK0153-Hsp90-NTD complex, µs-ms dynamics was also

observed for Asp175 that is located close in space to His154 in the

GVK0153:Hsp90-NTD spectra. The peaks for this residue were located in

over-crowded regions of the 17-DMAG and apo spectra, so for these states

data are not available. These micro- to millisecond dynamics around His154

are likely to be reporting on the different protonation states of the His154

imidazole ring at pH 7.5, where depending on the orientation of the ring, the

H-bond pattern with surrounding residues is likely to differ.

Micro- to millisecond dynamics around His154 (His154, Asn155 and Glu153)

were observed for all the different protein states (apo and ligand-bound). This

suggests that the experimental conditions (including pH and temperature) in

the different samples were the same or very similar. Consequently, any

additional changes in µs-ms dynamics observed between apo and ligand-

bound states of Hsp90-NTD should report on ligand effects and are not

caused by small variations in pH, experimental temperature, protein

concentration, etc. between different samples.

In addition to His154 protonation, our analysis revealed several other regions

with micro- to millisecond dynamics (Figure 3.12). Moreover, we also

observed changes in the micro- to millisecond dynamics between different

ligand-bound states. One of these regions includes residues within and
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around the helices making up the lid region (Ala111-Gly135) (Figure 3.12,

residues around Ile34). These near-lid residues showing µs-ms dynamics in

the apo and GVK0153 bound state, but not in the 17-DMAG bound state.

These residues include Ile34, Ile43, Gly135, Val136, Ser164 and Ala166.

Residues Ile26, Ile128 and Ser129 were excluded from the analysis because

CPMG dispersion data were available only for the apo state, while no data

were available for either ligand complex (see Table 3.3).

Figure 3.12: Hsp90-NTD structures, where red spheres are highlighting the
residues for which relaxation dispersion profiles indicative of µs-ms
dynamics, were observed. All the complexes show µs-ms dynamics for
and around the His154 residue. The apo and GVK0153 bound proteins
additionally show dynamics around the lid region (residue Ile34 and
those surrounding it). These dynamics are absent from the 17-DMAG
bound structure. There are further two regions, where intermediate
timescale dynamics were observed; around Leu70 for the ligand bound
structures and the C-terminal residues (Ile206) for the 17-DMAG and
apo structures. No data were available for the Leu70 residue for the
apo structure and C-terminal residues for the GVK0153 bound protein.

These findings suggest that the lid became more rigid on the micro-to

millisecond timescale upon binding of the larger 17-DMAG ligand.

Interestingly, previous crystallographic data (Table 3.1) suggests that the

larger 17-DMAG ligand makes a contact with the glycine 135 and valine 136

[115]. No lid contacts with the smaller GVK0153 were observed (unpublished

X-ray structure data from AstraZeneca). Thus, we hypothesise that the Val136

interaction in the 17-DMAG:Hsp90-NTD complex stabilises the whole lid and

the surrounding region.

In addition to the residues located near His154 and the lid; residue Leu70

showed micro- to millisecond dynamics for both ligand bound forms (Figure
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3.12). Unfortunately, for the apo protein, the peak corresponding to Leu70 was

located in a crowded area and CPMG data for the apo state could not be

Figure 3.13: Examples of the CPMG relaxation dispersion profiles. The
His154 showed relaxation dispersion profiles indicative of µs-ms
dynamics for all complexes (left panel of graphs). In comparison, for the
Ile43 shown on the right, relaxation dispersion profiles indicative of µs-
ms dynamics were observed only for the apo and GVK0153 complex.
The 17-DMAG bound protein shows a flat profile for this residue. The
red data points correspond to data obtained from the 950MHz magnet
and the blue ones to data from the 600 MHz one.

analysed. Leu70 is located at the end of a long alpha helix (helix 2). The C-

terminal end of the helix 2 has no contacts with other parts of the Hsp90-NTD,
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and thus, enhanced flexibility is expected for Leu70. In line with these CPMG

results, our molecular dynamics simulations also show enhanced flexibility for

this region (see Section 3.6.2 below).

Dynamics on a µs-ms timescale were also observed for Ala101 in the absence

of ligands. No µs-ms dynamics were observed in the presence of 17-DMAG.

CPMG data were not available for the GVK0153 bound protein, as no Ala101

peak was found in NMR spectra for GVK0153 bound Hsp90-NTD. Ala101 is

located relatively close to His154 and the non-flat dispersion profile for Ala101

may be due to His154 protonation/deprotonation. Alternatively, Ala101

dynamics may be linked to micro- to millisecond dynamics around the lid area,

as Ala101 is located at the edge of the flexible region making up the lid [125].

Finally, residues Ile206 and Val222, located near the C-terminus, showed

non-flat relaxation dispersion for the apo and 17-DMAG bound proteins.

Unfortunately, these peaks overlap in the GVK0153 bound spectra and were

not included in the analysis. The observed micro- to millisecond dynamics for

these residues may be due to the fluctuation of the C-terminal part of the NTD.

In summary, the analysis of CPMG data revealed several regions in Hsp90-

NTD that are affected by micro- to millisecond dynamics. These include the

functionally important lid region. We found that for the smaller GVK0153 ligand

and apo protein there are lid fluctuations on the micro- to millisecond

timescale. In contrast, the larger 17-DMAG, which interacts directly with the

lid residues Gly135 and Val136, halts lid fluctuations.
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Table 3.3: Summary of the residues with observable relaxation dispersion
profiles.

Residue

number

apo Hsp90-

NTD

17-DMAG:Hsp90-

NTD

GVK0153:Hsp90-

NTD

Ile26 + no data no data

Ile34 + - +

Ile43 + - +

Leu70 no data + +

Ala101 + - no data

Ile128 + - no data

Ser129 + - no data

Gly135 - - +

Val136 + no data +

His154 + + +

Asn155 + + +

Glu158 + + +

Ser164 + - +

Ala166 + - +

Asp175 no data no data +

Ile206 + + no data

Val222 + + no data

(+) Relaxation dispersion observed (i.e. µs-ms dynamics) and (-) no relaxation dispersion

(i.e. no µs-ms dynamics)

3.4 Molecular dynamics simulations and flexibility

What kind of motions does the Hsp90 protein undergo? NMR is a powerful

technique, reporting on dynamic processes in atomistic detail. The results of

the NMR experiments tell us that something is happening, but not what. To

study the possible causes of the motions and changes in the structure
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observed by the NMR techniques, we ran 500 ns full atom molecular dynamics

simulations of the three systems (apo protein, and Hsp90-NTD in complex

with 17-DMAG or GVK0153) in triplicates.

3.4.1 Measuring flexibility using root mean square fluctuations

To start the MD data analysis, root mean square fluctuations (RMSF) of the

backbone Ca positions were calculated. The RMSF is used as a convenient

and quick method to quantify differences in protein flexibility between the apo

Hsp90 and the ligand bound protein. The calculation of RMSF of the protein

structures takes a matter of minutes, compared to a few days of computation

time for more complex principal component analysis. The fluctuations in the

Ca backbone atoms were calculated separately for each replica trajectory.

These data were combined to calculate the average fluctuation of a complex

with standard errors. The RMSF data were plotted as histograms, that show

per residue fluctuations for each system. These histograms are shown in

Figure 3.14. From the histograms it can be seen that the N-terminal and C-

terminal coil regions, as well as various loop regions within the protein, were

highly flexible, as expected for non-structured elements. Pairwise

comparisons of the RMSF values demonstrate that the apo structure is more

flexible than either of the Hsp90-ligand complexes studied. These data

suggest that the ligand-protein interactions stabilise the protein. Interestingly,

there were differences in the backbone flexibility when the protein was in

complex with the 17-DMAG compared to GVK0153 bound structure. Here, the

17-DMAG complex showed slightly higher fluctuations around two coil regions

(end of the long helix two and coil connecting helix 4 and 5). In comparison,

the residues making up the alpha helices in the lid region (around residues

110 to 135) were more flexible in the GVK0153 bound protein. These

differences are highlighted in the Hsp90-NTD crystal structure in Figure 3.15.

In the structure, the red coloured areas refer to the regions where the 17-

DMAG bound protein was more flexible. The blue coloured region correspond

to the areas of greater flexibility in the GVK0153 bound protein. The

differences observed in the lid region using the RMSF data agree with the

NMR relaxation dispersion measurements. In these, the 17-DMAG bound

protein did not have any µs-ms dynamics around this region but the

GVK0153:Hsp90-NTD complex did.
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Figure 3.14: RMSF of the Ca backbone atoms calculated from MD
simulations. The most flexible areas, seen as large bars in the graphs,
correspond to the N- and C-terminal residues as well as residues
making up loops and random coils.
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Figure 3.15: Hsp90-NTD structure coloured to highlight the regions of
greater flexibility, as observed in the pairwise comparison of the Ca

backbone of GVK0153 and 17-DMAG bound Hsp90-NTD by RMSF
analysis. The regions coloured as red correspond to the more flexible
parts observed in the 17-DMAG:Hsp90-NTD complex. The blue
coloured regions were more flexible in the GVK0153 bound protein.

3.4.2 Principal component analysis

The RMSF analysis showed that there were differences in the backbone Ca

flexibility between the apo and the ligand bound Hsp90-NTD complexes. To

analyse these movements further, we used principal component analysis

(PCA). For PCA, the Cartesian coordinates of atom positions from simulations

are converted into eigenvectors. The largest eigenvector corresponds to the

biggest movements. The power of the PCA method can be thought as “helping

to see the wood from the trees”. This is because the largest eigenvectors can

be used to analyse concerted motions, such as movements of alpha helices,

rather than attempting to make sense of the ‘wiggles and jiggles’ of individual

atom positions of unprocessed MD trajectory data. The PCAzip tool used in

this work also allows the generation of short animations illustrating the

movement of the molecule along the eigenvector of choice [93]. These movies

of the first few eigenvectors, that correspond to the motions with largest

amplitude, can be used to identify flexible regions of the protein, and to

visualise the motions.

As PCA reports on the largest fluctuations, removal of highly flexible regions,

such as the N- and C-terminal ‘tails’ may help the data analysis. This is

because the flexibility of these coils corresponds to thermal noise rather than

Helix 4



88

functional movement. They may mask smaller, but potentially biologically

relevant motions. Therefore, both the N- and C-terminal ‘tails’ were removed

from the analysis, as the RMSF data showed that the flexibility of these

regions were several magnitudes larger than the rest of the protein. From

initial PCA visualisations, it was also apparent that the C-terminal end of the

long alpha helix 2 was very flexible. The bending of the helix 2 dominated the

first few eigenvectors and ‘hid’ other movements. As this helix was highly

flexible in all simulations, this region was also removed from data analysis.

This left a globular core for further in-depth analysis.

The PCA analysis carried out on the globular core of Hsp90-NTD showed that

the largest movement is that of helices 4 and 5, making up the lid region. We

used the PCA animations to view these motions. The PCA animations portray

the Brownian diffusive motions the protein undergoes during the simulations

as symmetrical motions. Viewing these animations, the helices 4 and 5 seem

to undergo concerted movements that are ‘seesaw’ like, i.e. periodical

fluctuations back and forth. These fluctuations are larger in the apo Hsp90-

NTD and in the smaller GVK0153 bound protein, compared to the 17-

DMAG:Hsp90-NTD complex. These movements are shown in Figure 3.16,

where the different frames of the Hsp90-NTD PCA animation have been

superimposed. The PCA data ranks the apo and GVK0153 bound HSP90 as

being more flexible than the 17-DMAG bound protein. Although the timescales

between the MD simulations and NMR CPMG analysis differ (500

nanoseconds of simulation data compared to micro- to millisecond dynamics),

this PCA data is in agreement with the NMR relaxation dispersion results.

Here, the 17-DMAG:Hsp90-NTD complex did not show any µs-ms dynamics

in the lid region. This is in stark contrast to the apo and the GVK0153 bound

protein.
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Figure 3.16: Hsp90-NTD structures showing the superimposed frames from
PCA animations of the largest eigenvector movements for the apo and
ligand bound Hsp90-NTD. The time steps are coloured from blue to
red, and wider lines indicate larger movements. It can be seen that the
apo protein movements are largest, and 17-DMAG:Hsp90-NTD
complex is the least flexible.

3.4.3 Can crystal structures help to explain why the 17-DMAG

bound protein is less flexible?

Both NMR and MD simulations suggested that the lid region of the 17-DMAG

bound Hsp90 is less flexible, compared to the apo and GVK0153:Hsp90-NTD

complex. To try to pinpoint the potential cause for the differences in flexibility,

we returned to the crystal structure analysis. The contacts between the two

ligands and protein were analysed using LigPlot, as explained in Section 3.1

and shown in Figure 3.2 and Figure 3.3 [116]. The LigPlot analysis shows

that the 17-DMAG ligand interacts with the lid residues Gly135, Val136 and

Gly137. On the other hand, the smaller GVK0153 ligand, which inserts deeper

in the binding pocket does not interact with these or any other lid residues. In

line with this observation, the NMR CSP data show that there are also large

CSPs for these residues in the 17-DMAG bound Hsp90-NTD compared to the

apo protein (Figure 3.11). As the helices around the lid region move as one, it

is likely that the contacts between the 17-DMAG and the protein residues 135

to 137 prevent the movement by providing a counter force against the

“seesaw” like motion that was seen in the apo and GVK0153 bound protein.

Helix 2

Helix 4

Helix 5
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3.5 NMR experiments for characterisation of isolated ligands

As well as characterising the Hsp90-NTD protein dynamics, we had also

hoped to analyse the changes in the ligand dynamics upon binding to the

protein. This would have allowed a more comprehensive view of what is

happening to the configurational entropy of the whole system upon complex

formation. To initially examine ligand dynamics, we used NMR. One

dimensional hydrogen spectra of the ligands in in aqueous buffer (10 mM KPi,

50 mM KCl, 0.02% NaN3, 5 mM MgCl2 and 5 mM DTT in D2O) was recorded.

Our preliminary analysis of 1H experiments on small molecule ligands suggest

that the quality of NMR data is not enough for detailed dynamic analysis. For

the larger 17-DMAG spectra, very poor signal to noise ratio was observed

(Figure 3.17) because of line-broadening. This was most likely caused by

unspecific aggregation of the isolated ligand in water, even though no

aggregates were observed in sample tubes. The spectra quality did not

improve with use of different temperatures or ligand concentrations (data not

shown). Due to the poor ligand only spectra on the isolated 17-DMAG

inhibitor, no further NMR experiments on the 17-DMAG ligand were possible.

The smaller GVK053 ligand 1D spectra on the other hand looked promising

for further studies. However, data from both ligands in isolation and in complex

with the Hsp90-NTD would be required for the comparison of the two systems.

As the 17-DMAG ligand was not suitable for further experiments, no further

studies were conducted on either of the compounds.
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Figure 3.17: Example of NMR 1H spectra of ligands. The smaller GVK0153
compound spectra has sharp peaks as expected for small molecules
(above spectra). The larger and more hydrophobic 17-DMAG spectra
shown below has broad peaks. Thus this compound is not suitable for
further NMR studies on ligand dynamics.

3.6 Comparing the ITC data and results from NMR and MD

Both the NMR and MD data suggest that the binding of the larger 17-DMAG

ligand makes the Hsp90 protein less flexible compared to the apo and

GVK0153 bound chaperone. The ITC data on the other hand showed that the

17-DMAG ligand binding has large entropic contribution. As entropy gain is

normally associated with increased disorder, at a first glimpse, it seems that

ITC results do not agree with the atomistic scale investigations.

Thermodynamic values from ITC provide information on the combined effect

of changes in the protein, the ligand, as well as the water molecules. This
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means that any comparison of the ITC results with the atomistic details of

protein flexibility is not comparing ‘like with like’. The total entropy change from

ITC includes contribution from water, ligand and protein. Furthermore, the

global entropy changes arise from rotational and translational movements, as

well as internal changes reflected in the configurational entropy term, as

shown by equations 16 and 17 below.

∆ ௧ܵ௧= ∆ ௪ܵ ௧+ ∆ ܵ௧ + ∆ ܵௗ (eq. 16)

∆ (ܵ௪௧/௧/ௗ) = ∆ ܵ௧+ ∆ ௧ܵ௦+ ∆ ܵ (eq. 17)

Whilst it is not possible to separate the contributions, or to assign a magnitude

that the protein, ligand or water make to the overall entropy change using ITC

data alone, we tried to measure the heat capacities of the complexes. The

structural information was also used to qualitatively assess the potential

causes for the apparent discrepancy between the atomistic and ITC data.

3.6.1 Can heat capacity measurements help to solve solvation?

The heat capacity (Cp) value, can be used to aid the understanding the role of

water in the binding reaction. To obtain heat capacities, ITC measurements

are performed for a range of temperatures, to obtain enthalpy values as a

function of temperature. These values can be plotted to obtain the heat

capacity from the slope of the plot. A popular model, derived from protein

folding and unfolding studies, links the changes in the heat capacity to

changes in the polar and non-polar surface areas [135, 142]. Here, the burial

of nonpolar residues during folding leads to a decrease in the ΔCp value due

to the displacement of water with the magnitude of heat capacity change being

proportional to the change in the surface area [143]. Although this surface

area model for explaining heat capacity data does not always work with the

small magnitude changes observed upon ligand binding, perhaps as the

model links the changes in thermodynamics exclusively to solvation effects,

the method is still in use [135, 144]. Another technique relating the role of

water contribution using ΔCp measurements, is to repeat the experiment in

“normal” (H2O) and heavy water (D2O). As the deuterium bonds are stronger

than the hydrogen bonds, the difference in the heat capacities in otherwise

identical systems should be solely linked to the change in the bond strengths.
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This difference can be used to work out the contribution of water to the

enthalpy change. Few studies have been completed using this method and it

has been suggested that the water re-organisation accounts for 25-100% of

the enthalpy change in binding reactions, depending on the system [145].

To obtain an experimental value that would allow comparisons with the

qualitative estimations of the effect of water to ligand binding to Hsp90-NTD,

ITC measurements at different temperatures were carried out to obtain the Cp

values for the two ligands. These measurements were done initially in ‘normal’

H2O buffer.

The ΔCp for the GVK0153 binding to NTD was negative (-173 cal K-1 mol-1),

as can be seen from Figure 3.18, which is typical for small ligand binding

reactions. Unfortunately, the change in heat capacity for the larger 17-DMAG

could not be determined. This was because the changes in enthalpy values

for the lower concentration of the 17-DMAG ligand used for the ΔCp

measurements (compared to the ITC measurements reported earlier) were

too small to be accurately measured at all but the highest temperatures. Due

to this, no comparisons could be carried out for potential magnitude of

solvation changes upon binding of the two different ligands using ITC.

Figure 3.18: Heat capacity change for GVK0153 binding to Hsp90-NTD
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3.6.2 Desolvation effect – general theory

As the heat capacity measurements did not manage to produce results to

compare the role of water in the binding of the two ligands, we attempted to

rationalise this from theoretical point of view.

The effect of water is often thought to be the dominating component in the

overall entropy change [146]. This is partly explained by the vastly larger

number of water molecules compared to atoms making up the protein and the

ligand. In the simulations of ligand bound Hsp90-NTD that were run as a part

of this study, the ligand-protein complex accounted for only ~4,400 atoms out

of a total 45,000 atoms. However, only the water molecules that change state

matter for the water entropy. These are the water molecules that were part of

hydration shell surrounding the molecule which get released to bulk water

upon binding, or vice versa bulk water molecules that becomes more ordered

hydration water. Again, given the sheer number of water molecules in a

simulation, the state of each individual water molecule is very difficult to

measure during the cause of the simulation.

The effect of water on the binding reactions can be thought of in terms of

surface areas. Here the size, the shape and polarity matter. The general

assumption is that a water molecule in bulk solution has larger entropy

compared to the hydration water, which is the water making up the solvation

shell around the solute. The hydration water that surrounds the solute also

interacts with the solute, and thus have reduced movement. With regards to

surface areas, generally speaking, the bigger the area of solute (here a ligand

and/or protein), the larger the entropic gain upon binding. This is because the

water molecules surrounding the solute are released to the bulk solvent [147].

The nature of the solvent groups also matters. Both NMR and MD studies

have demonstrated that water molecules around polar and nonpolar groups

have different decay times (i.e. how long a water molecule is ‘attached’ to one

place). This suggest that the solvation shell structures differ between the polar

and nonpolar groups [148]. This effect can be explained by changes in the

hydrogen bond network. Near to hydrophobic surfaces, water molecules form

hydrogen bonds with the neighbouring water molecules, rather than with the
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solute. This pulls water away from the surface of the solute. This model was

justified by a recent molecular dynamics simulation study, which showed that

the water molecules around a non-polar solute adopt more structured

tetrahedron structures with slightly larger number of hydrogen bonds [149].

This would lead to a decrease in the entropy of water. Polar groups on the

other hand participate in the hydrogen bonding with water and this causes

water to adopt a different structure. MD studies have suggested that the decay

times differ around polar and non-polar groups. The average decay time for a

water molecule up to 3.2 Å away from a polar group is 100 ps, compared to

50 ps decay time of water within 4.5 Å of a hydrophobic group. [150]. This is

because water around polar groups is bound into favoured positions, with

hydrogen bonds between water and the polar surface, resulting in a decrease

in entropy.

3.6.3 Desolvation of ligands upon binding

To enable the examination of the effect of desolvation of ligands upon binding,

the surface areas of the ligands were analysed. Recall that the size and

polarity of the solute surface areas can be related to the changes in the water

structure. These changes in the water is one of the contributors to the overall

entropy change upon binding.

The 17-DMAG ligand is nearly a third larger than the GVK0153 molecule; its

solvent accessible surface area is 845.6 Å2 compared to 508.5 Å2 of the

GVK0153 ligand. The larger 17-DMAG ligand is also more hydrophobic; the

computationally predicted logP (‘lipophilicity’) and logS (‘solubility’) values for

the 17-DMAG are 1.84 and -4.47, respectively, compared to logP of 1.00 and

logS of -3.00 for the GVK0153 inhibitor [151]. The larger surface area and the

greater hydrophobicity values suggest that there is a more favourable entropy

gain with the larger ligand binding to the Hsp90-NTD due to the release of

hydration water to bulk solution compared to smaller GVK0153 ligand. This

release of water would contribute to the overall binding entropy, and agree

with the entropically driven binding signature of the larger 17-DMAG ligand

(more water being released by 17-DMAG desolvation compared to the

desolvation of the smaller GVK0153 ligand).
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Looking at the polarity of the two ligands, the larger 17-DMAG, whilst being

more hydrophobic in general, has seven oxygen atoms that can act as

hydrogen bond acceptors, compared to only one in the GVK0153. Hydrogen

bonding between the water molecules and the solute, here the ligands, will

increase the structure of the water. A simple model for analysing the

magnitude of potential entropy change upon moving the ligand from solute to

a binding pocket was recently suggested (Richard Henchman, personal

communication). The release of a bonded water molecule to bulk solution

upon ligand binding is estimated to be around -1.7 J K-1 mol-1 [152]. Hydrogen

bond formation with the solute would have an effect of 5 surrounding water

molecules [152, 153] . Based on these numbers, the entropy change, due to

release of water, could be calculated using:

∆ ௪ܵ ௧ = −1.7( ௪݊ ௧− 5 ு݊) (eq. 18)

,where ௪݊ ௧ is the number of waters in the hydration shell and ு݊ the

number of H-bond acceptors. Using this method, the rough estimates for

ΔSwater upon binding of 17-DMAG (i.e. due to release of solvent) is -142.8 J K-

1 mol-1 and -108.8 J K-1 mol-1 for GVK0153 (109 water molecules, 5 acceptors

for the 17-DMAG and 69 water molecules, 1 acceptor for GVK0153). These

figures equate to ~10.2 kcal/mol ΔSwater for 17-DMAG and ~7.8 kcal/mol for

the GVK0153 ligand at 25°C. The larger 17-DMAG ligand desolvation has a

larger entropically favourable signature, agreeing with the ITC data.

In conclusion, looking at the surface areas and the hydrogen bonding, both

effects would result in gain in entropy from release of structured water upon

binding. This effect is larger for the 17-DMAG ligand, i.e. the desolvation of

ligand is enhancing the entropic contribution to binding signature. The

increase in entropy from desolvation of ligands is likely to counteract some of

the loss of entropy due to ‘stiffening’ of the protein when in complex with the

17-DMAG, thus helping to rationalise some of the ITC data.

3.6.4 Protein solvation

The change in the Hsp90-NTD shape upon ligand binding, as suggested by

NMR chemical shift perturbation analysis, will also have an effect on the

surrounding water structure. The surface areas of the Hsp90-NTD crystal

structures (apo protein and 17-DMAG and GVK0153 bound Hsp90) were
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analysed in Section 3.1. This analysis showed that binding of either ligand

increases the protein surface area, which would equate to entropic penalty,

as the solvation shell is slightly larger. However, the 17-DMAG bound Hsp90-

NTD structure is around 340 Å2 smaller compared to the GVK0153 bound

protein. This means that the entropic penalty is smaller for the 17-DMAG

binding interaction. To try to quantify this difference, a diameter of a water

molecule is approximately 2.75 Å2. The difference between the two ligand

bound structures would be maximum of 124 water molecules, assuming the

water molecules are tightly packed [154]. Based on the surface areas, the

entropic penalty due to increased protein solvent accessible surface area

upon ligand binding would be larger for the GVK0153 bound structure, as it

has larger surface area compared to the 17-DMAG bound protein. This implies

that the 17-DMAG binding to Hsp90-NTD has a smaller entropic penalty

compared to the binding of GVK0153. However, the estimations here do not

take into account of release of water from the binding pocket of the apo protein

upon ligand binding, which would counteract some of the entropic penalty of

increased surface areas. ‘Cavity water’ has been described as being ‘more

structured’ than hydration shell water, thus lead to larger entropic gain upon

release [155].

To summarise, the ligand desolvation should cause a favourable entropy

effect upon binding and the effect is larger for the 17-DMAG ligand. Similarly,

the changes in the protein surface area are smaller with the 17-DMAG

complex formation, compared to GVK01053 structure. It is also likely that

there will be some favourable contribution to overall entropy from release of

the water from the ligand binding pocket. Thus the combined effect of the

desolvation is likely to counterbalance the configurational entropic penalty of

the 17-DMAG binding that makes the protein less dynamic.

Finally, to get a feeling of the magnitude of the difference the water may play

to the overall entropy values from ITC, we performed the following ‘back of the

envelope’ calculation. The difference between the entropic signatures of the

GVK0153 and 17-DMAG binding as measured by ITC was ~6,300 cal/mol,

which seems quite large. The release of one solvent molecule to bulk solution

has been estimated to contribute between 2 to 7 cal mol-1 K-1 [156]. When the

entropic difference between the two ligands is converted to the same per
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degree of Kelvin units, the difference of the entropic values between the two

ligands is 21 cal mol-1 K-1 (6,286 cal/mol divided by 298.15 K). This difference

would convert to three to ten more water molecules released to bulk solvent

by the larger ligand. Additionally, a smaller increase in protein surface area for

the 17-DMAG:Hsp90 complex compared to the GVK0153:Hsp90 complex

should also contribute into the experimentally observed differences in the

entropic contributions between the two ligands. Altogether, the apparent

discrepancy in entropic signatures as measured by ITC compared to the

changes in protein flexibility does not seem as alarming. These data suggest

that for Hsp90-ligand binding, the solvation contributions into the entropy of

binding are significantly larger than the contributions from the changes in

protein dynamics. We believe that these results will help to develop better

small molecule inhibitors for the chaperone as we now have a better

understanding of the relationship between protein dynamics and the

thermodynamic binding signatures.

3.7 Conclusions

The Hsp90 chaperone is known to be a dynamic protein. We have shown that

the dynamics of the chaperone can be altered by small ligand inhibitors, but

the effect of water is still the dominating factor in binding of ligands. For the

protein dynamics, in particular the lid region dynamics were different when the

protein was in complex with the larger 17-DMAG inhibitor, compared to the

smaller GVK0153, with the larger inhibitor suppressing the dynamics of the lid

region. The differences in the dynamics were seen both by NMR relaxation

dispersion techniques and from simulation data, where molecular flexibility

was analysed using RMSF and PCA. This is promising, as it can mean that it

is possible to use simulations to predict dynamic behaviour of a drug target.

This could inform which compound should be taken for further testing and

development in the wet lab.

The global thermodynamic parameters, obtained from ITC experiments,

however, suggest that for Hsp90, protein dynamics provide only a minor

contribution to the binding free energy. On the contrary, effects from water

molecules (i.e. solvation and desolvation of the ligand and protein upon
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binding) overcome the protein dynamic contribution and drive the binding

reaction. Indeed, the global thermodynamic parameters did not reflect the

decreased dynamics (configurational entropy penalty) of the 17-DMAG bound

protein, as the total entropy change as measured by ITC was favourable for

the system. Thus, the overall effect was likely to be caused by changes in

solvation structure that masked the changes in protein flexibility. This

highlights the issue with the use of global entropy values, which include

configurational changes as well as rotation and translation of all molecules in

the system to validate the changes at the atomistic level in only one

constituent of the system (here the protein configurational entropy). The end

goal, whether it is to optimise the binding free energy, or to further understand

the changes in flexibility of the molecule under study, will dictate the choice of

methods.

The Hsp90 chaperone has been a notoriously difficult target for

pharmaceutical development due to various toxic effects. This is presumably

due to its role in helping the maturation of over a hundred different clients. Our

results suggest that manipulating the configurational dynamics of the

chaperone by small molecules could help to select only a certain subset of

targets. However, the results presented here are preliminary and further

studies are needed to see if the changes seen in NTD dynamics do have an

effect in the context of full length protein. Further, it should be checked

whether the dynamic changes caused by the inhibitors have any effect for co-

chaperone recruitment. However, understanding the differences in dynamics

caused by the different inhibitors may lead to a more targeted drug design

approach.
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Chapter 4

Multiple replica MD simulations and configurational entropy

The results presented in the previous chapter showed that the NTD of Hsp90

has different dynamics when it is in complex with different ligands. To

understand what the differences in the dynamics mean, in terms of

configurational entropies, this chapter focuses on configurational entropy

calculations, and exploration of the conformational space, using molecular

dynamics simulation data. For this, data from multiple replica simulations were

used (50 replicas of 17-DMAG:Hsp90-NTD complex and 25 replicas for the

GVK0153:Hsp90-NTD complex, totalling 25 µs and 5 µs of trajectory data

respectively).

The configurational entropies can be used to quantify the changes in flexibility.

We compute the configurational entropies from the different simulations using

the quasi-harmonic approximation (QHA) approach to check on the

robustness and suitability of this approach for the NTD of Hsp90 protein. The

entropies are calculated using both the more frequently sampled simulation

data of apo, 17-DMAG: and GVK0153:Hsp90-NTD systems (that were used

in the data analysis in Chapter 3), and the large, not so frequently sampled,

replica dataset. This allows us to explore one of the issues with configurational

entropy calculations - the more data, the larger the entropy. We also attempt

to answer the question “How much simulation data are needed to adequately

sample the conformational space?”.

4.1 Issues with configurational entropy calculations

Molecular dynamics simulations provide information on the flexibility and

structural heterogeneity of macromolecules. When MD simulations are run for

long enough to adequately sample the conformational space, the trajectory

can be used to find the number of microstates (Ω) a system can adopt with 

the probability (pi) of finding it in a particular microstate. This information can

be used to estimate entropy [88]. Configurational entropy computations using

simulation data have been attempted nearly as long as molecular dynamics
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simulations of macromolecules have been run. However, there are still major

issues relating to the entropy estimations from simulation data, some of which

will be explored in this chapter.

One of the main issues in obtaining configurational entropy from simulations

relates to sampling, where finite simulation data is used in an attempt to obtain

an entropy for nearly infinite phase space. For this we use replica simulation

data to try to answer the question of how much sampling is enough, even if

full convergence cannot be achieved.

Secondly, whilst the molecular dynamics force fields have improved over the

years, and shown to produce comparable data to experimental NMR results,

the methods in use to calculate entropies have not undergone similar

development [81, 89]. The two main methods currently in use for calculating

configurational entropies from simulations are the quasi-harmonic approach

(QHA) and the histogram based method, which were introduced in Chapter 1

[89]. Both of these methods have limitations. The histogram method, where

the dihedral bond rotations are normally used to define different states, has

been successfully applied to small molecules and more recently also to

peptides and proteins [96, 157]. However, this approach tends to have

convergence issues with complex systems. Furthermore, the choice of bin

sizes, where the bins are used to define what constitutes a different state,

rather than fluctuations within a state, remain problematic. Moreover, in the

histogram method, traditionally only internal bond rotations are used as co-

ordinates. This means that only rotational movements are considered, and

any vibrational movements from bond stretching are ignored. As a result, the

entropy values from the histogram method can be significantly underestimated

[89].

On the other hand, the quasi-harmonic approach (QHA) uses Cartesian

coordinates to calculate the fluctuations of the macromolecule in order to

obtain the probability distribution required for entropy computations [89]. This

approach takes into account both bond rotations and vibrations. However, the

QHA method often overestimates entropies, as it is assumed that the different

motions are independent. The main assumption behind QHA is that the

molecule of interest resides in, and oscillates around, a single large energy
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well, which can be described by a Gaussian-like distribution. As a result, the

QHA does not work for flexible molecules, which have an energy landscape

with multiple energy minima. Nevertheless, this approach has been

extensively tested, and shown to work for larger systems such as proteins and

DNA [91, 158] [90].

To further examine some of these issues with configurational entropy

calculations using simulation data for relatively large dynamic protein systems,

we ran multiple replica simulations of the NTD of Hsp90 model system. The

overall aim is not to extensively test, and compare, the configurational entropy

values obtained by the QHA method with other methods. Instead we want to

test its suitability for Hsp90. The effect of simulation time and sampling of

conformational space is also explored to see how it affects the convergence

of entropy calculations.

4.2 Can the quasi-harmonic approach be used for Hsp90-

NTD?

One of the key assumptions for the configurational entropy calculations using

the quasi-harmonic approach is that the system resides in a single energy

well, where it oscillates around the average structure. Whilst the harmonic

oscillator model describes well the movements of more rigid molecules such

as DNA, proteins are expected to have a rougher energy landscape containing

multiple minima, and any larger structural re-arrangements will break the

applicability of the model [159]. To test the suitability of the QHA entropy

computation for the Hsp90-NTD system, configurational entropies of the 500

nanosecond long replica trajectories of apo Hsp90-NTD and 17-DMAG or

GVK0153 complexed protein were computed. These data are the more

frequently sampled set of trajectories, which was used for the analysis of

protein flexibility in Chapter 3 (i.e. three ~500 ns long trajectories of each apo,

17-DMAG and GVK0153 bound Hsp90-NTD, see also Table 2.3).

As shown in Chapter 3, PCA analysis of the MD data revealed differences in

the protein dynamics between the different Hsp90 conformations. Moreover,

these computational results are in good agreement with our NMR analysis.
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The differences in dynamics can be used to make a ranking of individual

Hsp90 states, where the apo state was found to be most dynamic, followed

by GVK0153 bound protein and finally, the most rigid 17-DMAG complex. As

increased flexibility means higher entropy, the same ranking was expected of

the configurational entropy values the different Hsp90 complexes. Next, we

calculated the configurational entropies using the same trajectory data (three

replica trajectories of each system), as used for the PCA analysis in Chapter

3.

The configurational entropies were calculated using the Schlitter’s quasi-

harmonic method, as described in Chapter 1, where the mass weighted co-

variance matrix of atomic positions is diagonalised [90]. For the analysis, to

allow direct comparison of the entropy values for the three systems, the

ligands were ‘cut out’ from the 17-DMAG:Hsp90-NTD and GVK0153:Hsp90-

NTD trajectories to match the atom numbers of apo Hsp90-NTD simulations.

The entropies for each separate trajectory were computed both for the total

500 ns trajectory length, as well as for smaller windows. This is because the

overall entropy has a hidden dependency on trajectory size; the longer the

simulation is run, the more conformational space is explored. Consequently,

the longer simulation times result in a larger entropy value, due to more

microstates being populated. This means that entropy is increasing over the

length of the simulation. However, for a smooth energy landscape (i.e. where

there is only one deep minimum), it is possible to get around this problem by

dividing the simulated data into smaller windows, from which the entropies are

calculated separately [91]. The entropy values are then plotted as a function

of the length of the sampling window to get the rate of increase over simulation

time. The resulting curve can be fitted, using the equation below, to estimate

the total configurational entropy value as it approaches a stable limit (S∞):

ܵ= ஶܵ +


௧
, (eq.19)

Here, A and n are fitting parameters and t is the size of the sampling window

[91].

The MD data from the apo and ligand bound Hsp90 simulations were

processed as described above (Figure 4.1). It can be seen that the entropy of
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the apo protein is converging to the largest value (Figure 4.1, green data

points). This is followed by the GVK0153 bound protein entropy (Figure 4.1,

blue data points). The configurational entropy for the 17-DMAG:Hsp90-NTD

complex is significantly less than the other two values (Figure 4.1, red data

points). Moreover, the 17-DMAG:Hsp90-NTD complex has significantly

smaller entropy values than that of the apo and GVK0153 bound Hsp90. This

matches the ranking expected from the NMR relaxation dispersion

experiments (Chapter 3.3.3) and from the MD trajectory PCA analysis

(Chapter 3.4.2). This suggests that the quasi-harmonic approximation is

suitable for entropy estimations for the Hsp90-NTD system.

Figure 4.1: Configurational entropy values as calculated by quasi-harmonic
analysis over the length of the sampling window, for the apo Hsp90-
NTD and the Hsp90-NTD and inhibitor complexes.

Whilst the entropies calculated via quasi-harmonic approximation produce the

expected ranking of configurational entropy values, as can be seen from the

curves in Figure 4.1, the entropy values have not yet reached a stable limit,

but are steadily increasing. Thus, to get a total entropy value, the data were

fitted, as described above, using equation 19. Figure 4.2 shows an example

of the fit of the 17-DMAG:Hsp90 trajectory data. The configurational entropies

values obtained for each system were: 4,165±20 kcal/mol/K for the apo

protein, 4,040±45 kcal/mol/K for the GVK0153 bound structure and 3,810±45

kcal/mol/K for the 17-DMAG:Hsp90-NTD complex. The entropies were

calculated separately for each of the three replicas of each protein complex,

and the errors in the entropy value were calculated as the standard deviation
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between the different replicas. The ranking of the data from the graphs, and

the estimated configurational entropy values suggest that the apo Hsp90-NTD

and GVK0153 bound protein have similar entropies. This result is in

agreement with the similar dynamics of the apo and GVK0153 bound Hsp90,

as observed by the NMR relaxation dispersion methods. The more rigid 17-

DMAG bound protein has a smaller configurational entropy, as expected.

Finally, to check whether the underlying assumption of the smooth energy

landscape was true for Hsp90-NTD, the range of the entropy values computed

from different windows along the trajectory were examined. For a smooth

energy landscape, the QHA entropy should not vary based on the position of

the sampling window. Instead, the data points should be interspersed with

only a minor spread between the values calculated from different windows.

For example, the entropy should not vary much between the first quarter and

the last quarter of the simulation data. Figure 4.3 shows the configurational

entropies, calculated using different position of the sampling window, for the

apo protein. It can be seen that the entropy values are very similar, both within

the same simulation (Figure 4.3, same colour points), and between different

repeats (Figure 4.3, different colour points), as the points corresponding to

different sets of data overlap. The maximum difference in the data points for

ten nanosecond window size was 37.5 kcal/mol for the apo protein. This

corresponds to 1% variation in the entropy value. The spread of values for the

GVK0153 and 17-DMAG simulations were very similar to the apo Hsp90

entropies, 1% and 4% respectively. This relatively small spread of entropy

values, calculated over the different windows of the whole trajectory, supports

the assumption that the protein oscillates within one energy well, and does not

undergo large conformational re-arrangements, at least during the simulation

time (500 ns).
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Figure 4.2: A fit of the average Schlitter entropy (red line) against window
size (blue data points) for 17-DMAG:Hsp90-NTD.

Figure 4.3: The spread of entropy values for the apo Hsp90-NTD
simulations, as calculated for the short trajectory window sizes.

4.3 The size of conformational space

Hsp90-NTD configurational entropies calculated from 500 ns MD trajectories

agreed surprisingly well with the ranking predicted from NMR experiments that

characterise protein flexibility on µs-ms timescale. However, the entropy

values were still increasing over the 500 nanosecond simulations, suggesting

that the sampling of conformational space is not complete.
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Adequate sampling of protein conformational space is one of the main issues

of computing the configurational entropy from MD simulations. Indeed, the

configurational entropy is a measure of the volume of the conformational

space that the molecule can visit at a given temperature. The size of

conformational space can be given as 3N-6 dimensions, where the N is the

number of particles in the system [160]. To sample sufficient conformational

space for entropy values to converge, the Hsp90-NTD system should sample

at least 9660 dimensions. Each dimension has an undetermined number of

configurations the system can adopt. This estimate of the number of

dimensions is based on the assumption that each dimension is a perfect

smooth well, which is unlikely to be true given the general roughness the

energy landscape. Given the complexity of macromolecular landscape, even

with the recent advances in computer hardware and software, that have

enabled micro- and even millisecond simulation times to be reached, it is

probable that simulation data still presents only partial exploration of the

available space [31]. Indeed, a study conducted a few years ago suggested

that molecular dynamics simulations may never reach an equilibrium, as the

entropy from different replica simulations seemed to be increasing even after

70% of the conformational space was explored [96]. Similar conclusions have

also been reached by other groups [161]. Nevertheless, whilst simulations

may never produce a complete energy landscape, it is clear that the more

space visited, the better the entropy estimations. Thus we set out to explore

how much simulation data is required to sample the Hsp90 energy landscape.

4.3.1 Conformational space sampling by replica simulations

One of the issues with simulations is the time taken to collect sufficient data.

It is generally thought that data from multiple replica simulations can represent

the conformational landscape better than one long simulation, which can be

trapped in a local energy minimum for long periods of time [162]. Data

collection is also faster when simulations are run in replicate, as these can be

run in parallel. Whilst accelerated simulation methods, such conformational

flooding and meta-dynamics, have gained popularity over the last few years,

the question remains as to how accurate the energy landscape produced is.

This is due to the biases that are introduced to enhance the sampling [163].

The accuracy of sampling the relevant states that the system visits is vital for
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calculations of thermodynamic parameters. At the same time, the ‘standard’

force fields have recently been shown to re-produce the structures and

fluctuations of several molecules to the same accuracy as NMR data, as well

as reproducing transient states in protein folding pathways [164] [165]. Thus,

we ran fifty 500 nanosecond long replica simulations of the 17-DMAG:Hsp90-

NTD system using ‘standard’ MD methods, in an attempt to answer the

question “How many simulations should be run to get an adequate coverage

of the conformational space?”. Collecting this replica dataset took just under

two calendar months using the supercomputing resources in Leeds University.

In comparison, obtaining a single 25 µs long trajectory would take 250 days,

assuming that there was no time spent queuing for the supercomputing

resources.

The replica simulation data were converted to eigenvectors and eigenvalues

using principal component analysis. This conversion of the data from

Cartesian coordinates to eigenvector space considerably reduces the

complexity of the data, as each vector component can be thought to represent

one dimension in phase space. To further simplify the analysis of the volume

of space explored by different simulations, the projections of the two largest

eigenvectors (principal components 1 and 2, i.e. PC1 and PC2), which made

up 25% of the total dynamics, were chosen to represent the conformational

space. The projections of PC1 and PC2 produce a two dimensional volume to

which standard geometrical analysis can be applied. It also makes the data

easy to visualise. In contrast, to achieve eighty percent coverage of the

movements seen during the simulations, the analysis would need to include

the fifty largest eigenvectors.

To start the analysis into the conformational space exploration by the different

replica simulations, PC1 versus PC2 volumes were plotted for each individual

simulation. These plots were used to check that the different replicas indeed

did explore different parts of the conformational space. The data for the

individual PC1 vs PC2 plots were further broken into four separate time

windows, that were plotted using different colours, to view the path each

simulation processed along. A sample of the resulting graphs are shown in

Figure 4.4. From the plots it can be seen that the different replicas do explore
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different areas of the conformational space, as both the shape and the volume

of the areas explored differ. Some replicas produced similar shaped areas, for

example ‘V-shaped’ graphs were quite common, as shown in the third row in

Figure 4.4. However, the path taken to produce the shape differs, as can be

seen from the coloration of the frames making up the trajectories. Only a few

trajectories produce a continuous area, the majority seemed to suddenly

‘jump’ from one conformation to another.

Figure 4.4: Volume plots of the first two eigenvector projections of the
replica simulations. The different colours correspond to different
hundred nanosecond windows of the trajectory. This shows the path
(from dark blue, light blue, dark purple to light purple) the molecule
explores the conformational space.

Whilst it was clear that each replica simulation visited slightly different areas

of conformational space, it is not possible to tell the size of the overall space

the simulations collectively explored. Although the largest movements making

up the PC1 and PC2 occurred in similar areas of the protein, as seen in Figure
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4.5, the dot products used to compare the similarities of the largest

eigenvectors demonstrated that the eigenvectors were not identical between

the replicas, even when the ‘shape’ of the area was similar. This is probably

caused by the complex nature of the underlying energy landscape and

‘softness’ of proteins. Helix movements for example are a combination of

many smaller twists that can take different directions. To get around this issue,

the trajectories from the different replica simulations were joined together to

form one long trajectory, for which the PCA analysis was completed. This

ensured the largest eigenvectors describe the same movements.

Figure 4.5: The animations of the largest eigenvectors for different replicas.
Whilst there are movements observed in the same three areas as
indicated by the circles, the magnitude and direction of the movement
differs.

The projections of the two largest eigenvectors of the concatenated trajectory

data produced a continuous 2D volume in the shape of an ellipse, as shown

in Figure 4.6 (top panel on the left). The ellipse shaped volume clearly differs

from the discontinuous areas the individual simulations explored, as shown in

Figure 4.4. This confirms that, collectively, the fifty replicas making up a twenty

five microseconds trajectory had explored a much larger part of the

conformational space. For the analysis here, it was also assumed that the

combined replica dataset had explored the total conformational space

available (at least for the two largest dimensions examined), as no new space

was visited after 22 microseconds.
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Although replica simulations can be run in parallel, routinely running fifty

replica simulations is computationally costly, at least from pharmaceutical

industry point of view. The key point is to make sure enough conformational

space is explored. Therefore, we wanted to estimate how many replicas need

to be run in order to achieve coverage of the majority of the conformational

space. For this, the dataset was divided into smaller parts (half, quarter, eight,

sixteenth) and these partial datasets were superimposed on top of the total

dataset, to see how much the explored space was reduced. From the plots in

Figure 4.6, it can be seen that half of the data (25 replicas/12.5 µs) covers

almost the same area as 50 replicas do (95%). Similarly, a quarter of the data

(12.5 replicas/6.25 µs) also explores 86% of the conformational space. On the

other hand, an eight of the data (6.25 replicas), whilst covering two thirds

(78%) of the total space, has some discontinuity in the area covered. Finally,

three replicas cover only 63% of the total space, and one 500 nanosecond

long trajectory explores a fifth (22%) of the area. This analysis suggests that

at least six replica simulations should be run to get 75% coverage of the

conformational space, at least for the Hsp90-NTD system under study.

Figure 4.6: The PC1 and PC2 of the combined trajectory data were plotted
to produce an area plot showing the space explored. The data was
then halved, again and again, to try to estimate how many simulations
would be enough to explore a similar area as the full dataset of fifty
replicas.
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4.3.2 What about the probability distributions?

The analysis of the conformational space exploration by replica simulations

suggested that six replica simulations provide a reasonable coverage (>75%)

of the total space. However, to get good data for entropy computations, it is

not enough just to explore as much of conformational space as possible. The

sampling of the explored space is also vital to get an accurate ensemble

distribution. A heatmap was produced showing the probability distribution of

the different areas of the conformational space visited by the simulations. The

heatmap is shown in Figure 4.7, where white areas correspond to the most

frequently sampled regions, followed by yellow, orange and purple, with the

darker areas only explored very rarely. Comparing the heatmap of

conformational space in Figure 4.7 to the total area plot shown in Figure 4.6,

it is very clear that not all areas are sampled extensively. There is a clear

tendency for the system to be found in a few ‘hot spots’. These ‘hot spots’

were visited around 2800 times during the simulation, compared to only a few

visits to the outer edges of the volume.

With the question still in mind; “How much simulation data are needed to

explore ‘enough’ conformational space?”, the combined replica dataset was

divided into smaller parts. These were used to produce heatmaps of the

conformational space explored, to see if the amount of data affected the

probability distribution. As can be seen from the bottom panel of Figure 4.7,

25 replicas produce a similar probability distribution to the total 50 replica

dataset. Some perturbations from the distribution are already seen when only

a quarter of the data are used. This corresponding to around 6 microseconds

of simulation data (12.5 replicas from the total dataset). These perturbations

become larger as the dataset is reduced further, as seen on the lower panel

of Figure 4.7. The heatmap analysis thus suggests that more than 12 replicas

should be run to get a similar statistical distributions of the microstates to the

full 50 replica dataset.
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Figure 4.7: Probability distributions of the sampling of the conformational
space by the 17-DMAG:Hsp90 replica trajectories. The large plot on the
top panel of the figure shows the distribution for the full dataset of 25
µs. When half of the data (25 replicas/12.5 µs) is used to obtain the
distribution, the shape of the data looks nearly identical to the full
dataset. However, the distribution starts to skew when only a quarter or
less of the data is used.
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4.3.3 Is the sampling of conformational space system dependent?

To look into how the molecular constraints effect the size and sampling of

conformational space, we also ran replica simulations of the GVK0153 bound

protein. As the GVK0153:Hsp90-NTD system was shown to have different

dynamics, and in particular larger entropy, compared to the 17-DMAG bound

protein analysed in the previous section, comparing these two systems would

allows us to examine the effect flexibility has on the sampling of

conformational space. For this, we ran 25 replicas of 200 nanosecond long

simulations of the Hsp90-NTD:GVK0153 complex.

The GVK0153 bound Hsp90-NTD replica dataset was concatenated with the

17-DMAG:Hsp90-NTD replica trajectories of the same amount (5 µs). The

concatenated dataset was used to generate a combined set of eigenvectors

to repeat the analysis described in Sections 4.3.1 and 4.3.2.

The resulting volume of space plots are shown in Figure 4.8. The area that

the systems collectively visit is shown in purple; and the area visited by the

GVK0153 bound protein correspond to the blue volume, and the red volume

is for the 17-DMAG:Hsp90-NTD space. From the plots it can be seen that the

more flexible Hsp90-NTD:GVK0153 system explores a much greater

percentage of the combined space (91%) compared to the 17-DMAG bound

protein, which visits only half of the combined space (55%).

The heatmaps shown in Figure 4.9 also demonstrate the differences in the

space exploration by the two systems, where the GVK0153 bound protein

clearly explores two different areas of space frequently, compared to the one

clear ‘hot spot’ seen by the 17-DMAG bound Hsp90.

The overall sampling of the space differs between GVK0153 bound Hsp90-

NTD compared to the protein in complex with 17-DMAG, as suggested by

both the entropy calculations and the principal component analysis. Both the

volume plots and heatmaps also reflect the more flexible nature of the

GVK0153 bound structure. This means that PC (using heatmaps and/or

volume plots) analysis could be used in conjunction with the entropy

calculations to explore differences in the dynamics.
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Figure 4.8: Two dimensional volume plots of the PC1 and PC2 projections
of the combined 17-DMAG and GVK0153 datasets are shown in
purple. The blue volume shows the area GVK0153 bound protein
explored, and the red volume that of 17-DMAG:Hsp90 complex.
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Figure 4.9: Probability distributions of the sampling of the conformational
space by the concatenated 17-DMAG:Hsp90 and GVK0153:Hsp90
trajectories.

4.3.4 Convergence of configurational entropy

As configurational entropy has a hidden dependency on the length of the

simulation dataset, the entropies were also calculated using the larger

datasets. These values were compared to those computed in Section 4.2 from

the 500 nanosecond more frequently sampled triplicate trajectories. The

difference here was that for the more frequently sampled trajectories, we
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calculated the entropy separately for each replica, in comparison for the larger

dataset, where concatenated trajectories were used. For the larger dataset,

the entropies were calculated from seven microseconds of data, as any larger

dataset caused the software to run out of memory.

The values for configurational entropy obtained from the 500 nanosecond long

trajectories were 4,040±45 kcal/mol/K for the GVK0153 bound structure and

3,810±45 kcal/mol/K for the 17-DMAG one (see section 4.2). In comparison,

the configurational entropies were significantly higher when seven

microseconds of data were used for the calculation and data fitting; 4,935

kcal/mol/K and 4,465 kcal/mol/K respectively (Figure 4.10). This difference in

the entropy values is likely to be caused by differences in fitting with more data

points available. The spread of the entropy values calculated for a 5

nanosecond window is very similar for the shorter 500 nanosecond and

concatenated 7 microsecond datasets. The difference between the largest

and smallest value calculated for the 5 nanosecond window was 130

kcal/mol/K with standard error of 15.3 kcal/mol/K for the concatenated dataset,

compared to 168 kcal/mol/K with standard error of 6.7 kcal/mol/K for the 500

nanosecond long more frequently sampled repeats. Despite the difference in

the configurational entropy values from the short and long trajectories, the

ranking of entropy values matches, and both datasets show the differences in

the flexibility between the two ligand bound proteins. The take home message

is that whilst the actual entropy values do not seem to converge, the ranking

of the configurational entropies does. Therefore, the entropy data should still

be useful from the drug design point of view.
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Figure 4.10: Configurational entropy values calculated by quasi-harmonic
approach for the larger (5 µs) concatenated datasets.

4.4 ‘Naïve entropy’ using the histogram based method

Since we have already calculated the probability distribution of states from the

2D energy landscape (in Section 4.3.2), we used these data to calculate the

‘naïve’ entropy using the histogram method. We call this ‘naïve’ because the

entropy calculated is not the total configurational entropy of the molecule; it

only takes the two largest movements of the system into account. One of the

issues with the histogram method is the selection of a suitable window width

for the bins. The above data allows to study this effect on overall

configurational entropy.

For the calculations, the two dimensional area obtained from the two largest

principal component projections of the 17-DMAG:Hsp90-NTD replica dataset

was divided into smaller bins. Here, a bin corresponds to a microstate. The

bins were then used to calculate the entropy using the ‘standard’ Boltzmann

formula, where entropy is related to a weighted sum of the logarithms of each

microstate:
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ܵ= ߢ− ∑ �௦௧௧௦�ln (eq. 20)

Here the ߢ is the Boltzmann constant and pi is the probability of finding the

system in microstate i [88]. The calculations were repeated using different bin

widths, and an example of the differing bin sizes is shown in Figure 4.11.

The number of bins used to calculate probability distribution ranged from ten

to ten thousand. The entropy values for the different bins are shown in Figure

4.12. The very coarse grain approach of using only 10 bins resulted in an

entropy value three times smaller compared to when 10,000 bins were used.

Figure 4.12 clearly shows that entropy value is increasing when smaller

sampling windows are used. This increase is more pronounced when a very

coarse sampling strategy is adopted. Whenever a decreasing window size is

used (total bin number of 5,000 or greater), the entropy values start to tend

towards a stable limit. This demonstrates the importance of selecting a

sufficiently small sampling window. In principle, how many bins are used to

calculate entropy, should not affect the comparison of differences in entropy

between complexes. However, the selection of the bins is crucial if the

absolute entropy is calculate as this value is dependent on the number of

possible states (i.e. bins). For protein configurational entropy calculations,

window widths ranging from 1 to 5 degree rotations around di-hedral angles

have been suggested [89]. The issue remains on how to choose a suitably bin

size; too large a bin results in coarse data that skews the entropy value, too

small a bin is computationally expensive and may be biologically irrelevant.
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Figure 4.11: Illustration of the effect of bin sizes on conformational space
sampling for the 17-DMAG:Hsp90-NTD dataset. The left hand image
presents data where each PC divided into 100 bins is and the image on
the right is divided into 25 bins.

Figure 4.12: The configurational entropy values calculated by the histogram
methods vary over three-fold for the same system when the bin size is
increased from 10 to 10,000. This illustrating how critical it is to select a
small enough sampling interval. It can be seen that as the number of
bins is increasing, the entropy value starts to reach a stable limit.
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4.5 Configurational entropy of ligands – un-harmonicity at

play

Often the choice of the method used to calculate configurational entropies

depends on the system. This final section illustrates this using simulation data

for the two small ligand Hsp90 inhibitors, 17-DMAG and GVK0153. The ligand

entropies were first calculated using the quasi-harmonic approach, as was

done for the Hsp90-NTD protein in Section 4.2. The histogram method using

dihedral angle calculations were also attempted for the smaller GVK0153

ligand. The ligand only simulation data were analysed by two undergraduate

Physics students, Peter Adkins and Max Holme, for their final year project

under my supervision, and it is these results that are presented here.

4.5.1 Ligand entropies calculated with the quasi-harmonic

approach

MD trajectories were collected for one hundred nanosecond long simulations

of the two inhibitors 17-DMAG and GVK0153. Given the smaller size of the

molecules compared to the protein (44 atoms for GVK0153 and 92 for 17-

DMAG versus ~3500 for Hsp90-NTD), this trajectory length was thought to be

reasonable to obtain adequate sampling of conformational space.

The QHA was then used to calculate the configurational entropy as a function

of sampling window for both molecules. The resulting entropy plots are shown

in Figure 4.13. From the graphs it can be seen that the larger 17-DMAG

molecule entropy seems to have stabilized over the 100 nanosecond

simulations, as the entropy values have begun to reach a stable plateau over

the larger time frames. The entropy calculations for the smaller GVK0153

molecule did not produce the expected logarithmic curve approaching a stable

limit (right panel in Figure 4.13). Instead, the entropy seems to increase and

decrease randomly as the simulation progresses.
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Figure 4.13: The configurational entropy of the 17-DMAG and GVK0153
ligands as calculated using the quasi-harmonic approach, and plotted
against the sampling window length. The configurational entropy could
be estimated by fitting the data as described for the larger 17-DMAG
ligand, shown on the left. The data for the small GVK0153 molecule did
not produce the expected logarithmic curve, thus the configurational
entropy could not be estimated. (Graphs prepared by Peter Adkins)

For the 17-DMAG entropy, the spread of the entropy values over the smaller

time windows, which are shown by blue error bars, has stabilised after fifty

nanoseconds. For the GVK0153 on the other hand, the spread of points that

present the average entropies along the same amount of sampling is very

large as can be seen from the error bars. This suggests that the GVK0153

molecule is more flexible and the underlying energy landscape cannot be

described as a single energy well.

The 17-DMAG molecule has a smooth enough energy landscape for the

entropy to be calculated using the quasi harmonic approach. Therefore the

data were fitted using ܵൌ ஶܵ +


௧
, as was done for the protein data in Section

4.2. The entropy for free 17-DMAG ligand was estimated to be 114 kcal/mol.

In comparison, the configurational entropy of the protein bound 17-DMAG

ligand was calculated to be 92 kcal/mol, suggesting a small penalty in

configurational entropy upon binding.

To get an idea of the accuracy of the bound versus unbound 17-DMAG

entropy results, a literature search of molecular dynamics and NMR studies

was conducted on the 17-DMAG ligand. The 17-DMAG ligand is a derivative

of geldanamycin and they share an identical 19-membered ansamycin ring

(see Figure 2.1 in Chapter 2). This macroring has 14 single, and thus

17-DMAG GVK0153
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rotatable, bonds. As the two structures share the same ‘backbone’, the

published geldanamycin data was used as a model for 17-DMAG. The solid

state structure of geldanamycin has been solved, and early crystallography

work on the protein bound molecule suggested that the ‘free’ and ‘bound’

forms are remarkably different. The crystallography work suggested that the

‘free’ form was more open compared to the tight C-shape structure of the

bound ligand (see Figure 4.14). The geldanamycin thus required trans-cis

isomerisation upon binding to the Hsp90. Subsequently, the difference in the

free and bound forms has been calculated using MMPBSA methods, which

suggested that there is a -3.4 cal/mol/K to -5.4 cal/mol/K penalty upon binding

of geldanamycin to Hsp90 [115]. However, a few years later, the solution

structure of the inhibitor was solved. Here, the authors found that there are

twelve different conformations of geldanamycin in the equilibrium population,

each nearly equally likely to be occur. Hsp90 would simply selectively bind to

a pre-populated state of geldanamycin. This is in contrast to the earlier studies

suggesting that the inhibitor had to go through trans-cis isomerisation [166].

Studies on 17-DMAG also supported the view that the ansamycin ring does

not undergo isomerisation upon binding [136]. Given the results from the

literature, the difference we found in the configurational entropy between the

free and bound 17-DMAG forms seems to be of a reasonable magnitude.

Figure 4.14: The two different conformations of geldanamycin as predicted
from structural and simulation data (Figure from [115]).
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Given the atypical data for the GVK0153 molecule, both trajectories were

further analysed using root mean square deviation (RMSD) of the simulated

structures relative to the starting structure. The RMSD data over time is shown

in Figure 4.15. From the graphs it can be seen that the 17-DMAG molecule

fluctuates around an average position. GVK0153 seems to undergo larger

structural changes, as the graph of RMSD over time shows large ‘jumps’. This

RMSD plot of the GVK0153, showing large structural changes, explains the

atypical configurational entropy graph, where the entropy was not only

increasing over the duration of simulation, but also decreasing with large

errors between the window sizes. The main assumption of the quasi-harmonic

approximation for entropy calculation is that the molecule resides in a single

large energy well, with small fluctuation around the average structure. From

the RMSD data, the GVK0153 molecule clearly visits different states in

multiple energy wells, thus does not satisfy the QHA assumption.

Figure 4.15: RMSD graphs of the simulations of the two ligands. The 17-
DMAG ligand on the left fluctuations around similar average
conformation. Larger conformational changes are seen for the
GVK0153 ligand on the right. (Graphs prepared by Peter Adkins)

4.5.2 Dihedral angle analysis suggests three separate energy

wells for GVK0153

To investigate the changes in the GVK0153 structure suggested by the QHA

and RMSD data analysis, it was decided to analyse the data further by using
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the dihedral angle fluctuations. This approach is similar to that used in entropy

estimations by the histogram based method.

As can be seen from Figure 4.16, the GVK0153 molecule is made up of a

purine scaffold that is connected to an aryl moiety by a CH2 linker [167]. Both

ring structures of the GVK0153 are rigid due to the double bonds, but the CH2

linker as well as amide and methyl groups, highlighted in Figure 4.16, contain

rotatable bonds. These rotatable bonds were selected for the dihedral angle

fluctuation analysis.

The dihedral angle fluctuations over the simulation time were calculated using

the Amber ptraj tool [80]. The bin sizes, that define what contributes a different

conformation, was set to 10 degrees.

Based on the molecule structure, the methyl and the amide group dihedral

angle fluctuations were expected to exhibit small fluctuations around an

average position, rather than larger conformational re-arrangements. For the

methyl group attached to the purine scaffold of GVK0153, the dihedral angle

analysis showed three separate states around 60, 180 and 300 degrees, as

seen in Figure 4.16. The size of the each peak was roughly the same,

suggesting that the methyl group adopted three equal rotational states. A

methyl group is made up of three equal hydrogens connected to a carbon.

Given the bond geometry, these are expected to produce three

interchangeable states. The three different states that were observed matched

the expected distribution. The amide group dihedral angle analysis also

produced the expected distribution of a single state, based on the chemical

connectivity (data not shown).

In contrast to methyl and amide groups attached to the two different rings, any

changes in the dihedral angle of the CH2 linking the two rings, would result in

large conformational changes in the GVK0153 molecule. From the dihedral

angle analysis we observed three maxima centred around 65, 160 and 300

degrees. The probability distribution for the maxima was roughly 50%, 5% and

45% respectively. The least likely conformation is that of the two rings being

stacked, as seen in the Figure 4.16. These different conformations of the

molecule cause the underlying energy landscape to have multiple energy

minima, rather than the single harmonic one, as is assumed by the QHA. This
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explains why the configurational entropy calculations by the quasi harmonic

approach did not converge.

Figure 4.16: To look further into the structural fluctuations of the GVK0153
molecule, three different dihedral angles were selected for analysis as
indicated on the left by the G1, G2 and G3 arrows. The right panel
shows the probability distribution of the G1 and the G3 dihedrals. The
resulting changes in the molecule conformations for the G3 dihedral is
shown in the bottom figure. (The histogram distribution were calculated
and plotted by Max Holmes)

4.6 Conclusions

In this chapter we explored the use of the quasi-harmonic approach method

to compute configurational entropies of Hsp90-NTD in complex with inhibitors.

We also explored the amount of simulation data required to get an accurate

description of the underlying conformational space.
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The results presented here show that the quasi-harmonic approach can be

adopted with relative ease for both smaller and more complex systems, as

long as the system does not undergo large conformational re-arrangements.

The quasi-harmonic approximation provided the expected ranking of the

configurational entropy values (Sconf) for the different Hsp90 systems.

However, the calculated values may not reflect the exact entropy; when more

simulation data were used for calculations, the entropy value increased.

Despite this, the calculations can be used to produce ‘entropy ranking’. This

reflects the dynamics of the system, and this information can still be of use for

drug design, if effects of molecule flexibility are of interest. Moreover, obtaining

a value (here Sconf) to compare flexibilities of different systems will provide a

more objective measure, rather than comparison of flexibilities of certain

regions of the protein of interest, as in Chapter 3 using RMSF analysis and

looking at PCA fluctuations in Chapter 3.

We also wanted to attempt to answer the question - how many simulations

are needed to provide a “good coverage” of the conformational space (75%

or greater)?. Here the results of the two largest eigenvector movements that

were used to describe the conformational space suggested that at least 6

replica simulations that collectively provide several microseconds of data are

needed. When the coverage of the underlying energy landscape is of interest,

these results highlight the potential issue with the common practice of running

three replica simulations. We have shown that data from three replica

simulations cover under two-thirds the total conformational space. However,

in Chapter 3, we found that the differences in the flexibility of the different

Hsp90 complexes could be seen from analysis of only three replica

simulations. The configurational entropies also provided the expected ranking

when only 3 simulations were used for calculations, but the value was

considerably larger when more replica data were used for the computations.

The larger dataset is likely to provide a more accurate configurational entropy

value and the question of how many replicas should be run will depend on

what the data is used for; ranking of complexes or trying to obtain an accurate

value for configurational entropy.

Finally, the method of choice for configurational entropy calculations does

depend on the flexibility of the system under study. QHA cannot be used for
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very flexible molecules, which occupy multiple energy minima. There are

issues with the dihedral method relating to selection of the bin sizes and the

complexity of the system it can describe, due to collective motions. This

means that it may not be easy to compare the entropies of different systems,

especially if they have been calculated by different methods. Thus it is clear

that the currently used methods for entropy estimations still do not tell the

whole story. It remains to be seen whether simply correction terms could be

added to the existing methods to solve these issues, or whether a completely

new way of looking into quantifying the flexibility of soft biomolecules is

needed.
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Chapter 5

Overall summary and conclusions

Introducing a new drug to market is a lengthy and expensive process, typically

it takes 10-15 years and costs $1.7 billion [168]. The main problem is that only

around 3% of the new drug projects manage to produce a successful drug

molecule [169]. Whilst the majority of failures occur in the later stages of the

process, during clinical trials, there is still room for improvement in the initial

drug discovery stages. An overall success rate of ~35% is typical during the

drug discovery process, problems leading to failure may arise due to issues

with understanding the underlying biology, lack of lead molecules, poor

potency or selectivity to name but a few [169]. Given this very high failure rate,

are the methods used by the pharmaceutical industry to find new drugs

suitable for the task? The current process of initial high throughput screening,

followed by structural studies focuses on finding compounds that bind. These

steps are followed by lead optimisation, where efforts are made to modify any

promising lead compounds sometimes with help from structural data to further

improve the binding affinity. Binding affinity, although providing a tool with

which to rank the potential drug compounds, is a global value that includes

changes in the systems flexibility, structure as well as changes in solvation.

As proteins are dynamic rather than static structures, and dynamics plays an

important role in binding affinity (in terms of the entropy), a better

understanding of dynamics, and how they could be manipulated, could be one

way of improving the process. The details of any changes in flexibility of the

system cannot be readily accessed from the global affinity value, or the

structural data.

In this study we used the Hsp90 chaperone, which is also a cancer medication

target, to study the effects small molecules have on protein dynamics. We

demonstrated that the structure and binding affinities, do not tell the whole

story of what is happening to the protein upon complex formation. The X-ray

crystal structures of 17-DMAG and GVK0153 bound Hsp90-NTD are nearly

identical, and both ligands bind the protein with similar nanomolar affinity.

However, a more in depth study into the protein dynamics showed that the

larger 17-DMAG ligand suppressed the lid-region dynamics; this did not

happen in the apo and the GVK0153 ligand bound structures. These
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differences were seen both with NMR relaxation dispersion measurements

and from analysis of MD simulation data.

From this study we have learned that dynamics also play a role in protein and

ligand interactions. Further, the changes in dynamics may play a biologically

relevant role. Hsp90 is known to be a highly dynamic protein with a large

number of client proteins in whose maturation Hsp90 plays a role [39]. The

current view of the Hsp90 chaperoning action is that not all cellular Hsp90 are

the same, but the diverse client interactions are determined and regulated by

different co-chaperones [39]. The Hsp90 co-chaperome is complex. Some of

the co-chaperones are client specific (for example the Cdc37 is a kinase

specific co-chaperone), whereas others are not [32, 170]. The co-chaperones

play diverse roles ranging from client recruitment, regulating the Hsp90

ATPase activity or seem to ‘trap’ the Hsp90 complex in a certain conformation,

to name but a few. The diverse co-chaperones also interact with different parts

of Hsp90, some binding to the NTD, others to the CTD, and others contacting

all three domains [32]. It has also been shown that different co-chaperone

complexes are required for the client maturation. For example, the

glucocorticoid receptor maturation. only requires Hop as well as the

chaperones Hsp70 and Hsp90 for activity. However, a different steroid

receptor, the progesterone receptor also requires the p23 and Hsp40 co-

chaperones, in addition to Hsp70, Hsp90 and Hop for maturation [171, 172].

On top of the co-complex co-chaperone network, it has also been shown that

different Hsp90 inhibitors interact with different cellular pools of Hsp90. For

instance, geldanamycin and a purine analogue, will interact with different

cellular pools of Hsp90 [47, 173]. H/D exchange mass spectrometry studies

demonstrated that the binding of small molecule inhibitors and Cdc37 co-

chaperone to the Hsp90 N-terminal domain, change the orientations of the N-

, middle and C-terminal domains of the full length Hsp90, compared to the apo

protein [52]. Given the large number of diverse Hsp90 clients, and the fact that

there is no single co-chaperone, or client protein interactions site, it is likely

that the conformational dynamics do play a role in chaperone’s function.

Indeed, it has been shown that some clients, such as HSF1, interact with only

a single Hsp90 closed conformation, that is only present for a short time within

the Hsp90 open-closed cycle. Other clients, such as HIF1α, interact with 
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multiple conformations [48]. The natural ligands, ADP and ATP, also change

the N-terminal dynamics of Hsp90, suggesting that dynamics is likely to play

a functional role in the chaperone activity [50]. Further understanding of the

role that dynamics play in regulating Hsp90 activity is thus likely to be

important, both for the underlying biology, and with regards to how it can be

manipulated by small molecules. Here we have shown that 17-DMAG binding

can lock the Hsp90-NTD into a more rigid conformation. This could favour

interaction with a subset of client proteins, without affecting the interaction of

others. All together this provides specificity. Potentially, this allows one to

design an ‘ideal’ drug that only prevents the folding of ‘bad’ cancer related

proteins, without affecting Hsp90 functions in normal cells.

Whilst our results suggest that manipulating the conformational dynamics of

the Hsp90 chaperone by small molecules could help to select only a certain

subset of targets, further studies are needed. As it is known that some clients

interact only with a certain conformation of the Hsp90 using open and closed

form mutants, follow up studies are needed to understand what effects the

differing lid-region dynamics, that we found, play at cellular level [48]. The

differences in dynamics may play a role in client recruitment, or effect the co-

chaperone composition. Also, it would be interesting to study the effects of the

two inhibitors have in the dynamics of the full length Hsp90. This would be

particularly important as the changes in the N-terminal structure have been

shown to have an effect on the NTD and middle domain interface [39]. Thus

the full length chaperone may adopt different conformations when in complex

by the two different ligands.

We used both atomistic level techniques and global thermodynamic

measurements to study the dynamics of Hsp90. In contrast to the changes in

protein flexibility seen by NMR and MD methods, the global thermodynamic

parameters from ITC suggest that for Hsp90, protein dynamics provide only a

minor contribution to the binding free energy. The effects from water

molecules (i.e. solvation and desolvation of the ligand and protein upon

binding) overcome the protein dynamics contribution, and drive the binding

reaction. Although some studies have found good correlation between the ITC

data and changes in protein flexibility, as measured by NMR, the effect of

water has also been demonstrated to be the major driving force in the binding
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of other drug molecules [50, 146]. Our results thus suggests that whilst

understanding the underlying dynamics may be important to better manipulate

the different cellular pools of Hsp90, further understanding of the role that

water plays is also needed to optimise solvation energy. The end goal,

whether it is to optimise the binding free energy, or to further understand the

changes in flexibility of the molecule under study, will dictate the choice of

methods.

Whilst MD data did reproduce the differences in the protein dynamics seen by

NMR methods, the results obtained here were from a multi-disciplinary

approach. The global thermodynamic parameters with differing entropic

binding signatures suggested that there may be differences in the underlying

dynamics. However, it turned out that the dynamic changes are masked by

the effect of water in the binding signature. NMR studies on the protein-

inhibitor complexes highlighted differences in the micro- to millisecond

dynamics in the Hsp90-protein lid-area. This helped to pinpoint areas to focus

on in the MD data analysis. Interestingly, the differences in the lid-region

dynamics could be seen by PCA analysis, using 500 nanosecond long

trajectories. Finally, the differences in the lid-area dynamics could be

explained by analysing the ligand-protein contacts using X-ray crystal

structures. It is likely that a similar multi-disciplinary approach is needed, if the

study of differences in dynamics is to be incorporated into the drug discovery

process. The simulations can be used to predict the dynamic behaviour of

drug target. Crystal structures can then be used to pinpoint any residues or

regions which may drive, or stabilise, the dynamic regions. These results

could be used to decide, which compound should be taken for further testing

and development in the wet lab. However, one should remember that

optimising the target binding affinity is only one parameter that needs to be

considered in the drug discovery process. Other parameters that need to be

considered include oral bioavailability, the ADME/DMPK values (absorption,

distribution, metabolism, and excretion/drug metabolism and

pharmacokinetics), toxicology issues, patient demographics to name but a few

[174]. Interestingly, it has been noted that optimisation of the enthalpic

component of the drug-target binding by later generation statins and HIV-1

protease inhibitors lead to better pharmacokinetic and drug resistance profile
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[174]. This suggests that it may be beneficial to keep in mind multiple

parameters during each step optimisation to get a better end product.

Finally, we showed that calculations of the configurational entropies using MD

data can be used to quantify the differences in the dynamics. This provides a

‘value’, which can be used in ranking molecules; this is similar to the currently

used ranking based on binding affinity. However, it is difficult to understand

the underlying biology from numbers alone. Viewing the main motions during

the simulation is a far superior way to see what is happening, and to

understand the underlying biology. This would be a similar method to the

current use of visualising X-ray structures of the targets, for example to identify

additional areas where the drug molecules could be extended in fragment

based drug design in order to improve affinity. To investigate these protein

dynamics better, it is more efficient to run multiple replica simulations. For

replica simulations, based on our data, the commonly used three replica

simulations explore just over half of the underlying energy landscape. We

recommend that six or more replicas are run as this provides a much better

description. However, how much simulation data is needed will ultimately

depend on the question the simulation is seeking to answer, and of course, of

the system under study. The recent advances in computer technology have

speeded up the simulations considerably, The GPU technology has brought

down the potential setup costs for ‘faster’ simulations considerably. With the

continued improvements in the computing, it may be possible to run very large

systems routinely, which may give a better picture of what is happening in the

cell, rather than the reductionist approach that is currently used. Here, rather

than simulating a part of the Hsp90-chaperone, a simulation of the full length

protein, with the co-chaperone complex, may be possible in the future. This

would allow us to see in ‘real time’ what effect manipulating the lid-region

dynamics may have on the client protein selection.
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Appendix 1 - NMR samples and experiments

Samples and experiments:

Sample 1: Hsp90-NTD (D9-E246) (2H, 13C, 15N), 20 mM Na2HPO4, 20 mM
NaH2PO4, 1% AEBSF, 5% D2O

Sample 2 and 3: As sample 1 plus 750 µM ligands (either GVK0153 or 17-
DMAG)

Conditions: pH 7.5; temperature: 25°C

Experiments:

1H15N-TROSY

TROSY-HNCA

TROSY-HNCO

TROSY-HNcaCO

Hsp90-NTD FASTA:

DQPMEEEEVETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIRYE

SLTDPSKLDSGKELHINLIPNKQDRTLTIVDTGIGMTKADLINNLGTIAKSGTK

AFMEALQAGADISMIGQFGVGFYSAYLVAEKVTVITKHNDDEQYAWESSA

GGSFTVRTDTGEPMGRGTKVILHLKEDQTEYLEERRIKEIVKKHSQFIGYPI

TLFVEKERDKEVSDDEAE
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Appendix 2 – MD parameter files

em.mdp (energy minimisation)

; VARIOUS PREPROCESSING OPTIONS =
title =
cpp = /lib/cpp -traditional
include =
define = -DPOSRES

; RUN CONTROL PARAMETERS =
integrator = steep
; start time and timestep in ps =
tinit = 0
dt = 0.001
nsteps = 10000

; ENERGY MINIMIZATION OPTIONS =
emtol = 0.00001
emstep = 0.1
nstcgsteep = 1000

; OPTIONS FOR ELECTROSTATICS AND VDW =
; Method for doing electrostatics =
coulombtype = PME
rcoulomb = 1.2
rlist = 1.2
; Method for doing Van der Waals =
vdw-type = Cut-off
rvdw = 1.2
; Spacing for the PME/PPPM FFT grid =
fourierspacing = 0.12
; FFT grid size, when a value is 0 fourierspacing will be used =
fourier_nx = 0
fourier_ny = 0
fourier_nz = 0
; EWALD/PME/PPPM parameters =
pme_order = 4
ewald_rtol = 1e-05
ewald_geometry = 3d
epsilon_surface = 0
optimize_fft = no

*************************************
md1.mdp (equilibration)

; VARIOUS PREPROCESSING OPTIONS =
title =
cpp = /lib/cpp -traditional
include =
define = -DPOSRES
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; RUN CONTROL PARAMETERS =
integrator = md ; leap-frog integrator
nsteps = 5000
dt = 0.002 ; 2 fs

; Output control
nstxout = 500 ; save coordinates every n ps
nstvout = 500 ; save velocities every n ps
nstxtcout = 500
nstfout = 0
nstenergy = 500 ; save energies every n ps
nstlog = 1000
nstcomm = 10
nstcalenergy = 10
xtc-grps = Protein

; Bond parameters
continuation = no ; Restarting after NVT
constraint_algorithm = lincs
constraints = all-bonds ; all bonds (even heavy atom-H bonds) constrained
lincs_iter = 1
lincs_order = 4 ;
; Neighborsearching
ns_type = grid ; search neighbouring grid cells
nstlist = 10
rlist = 1.2 ; short-range neighbour list cutoff (in nm)
rcoulomb = 1.2 ; short-range electrostatic cutoff (in nm)
vdw-type = Cut-off
rvdw = 1.2 ; short-range van der Waals cutoff (in nm)
; Electrostatics
coulombtype = PME
pme_order = 4
fourierspacing = 0.12
epsilon-rf = 1
tcoupl = V-rescale ; modified Berendsen thermostat
tc-grps = Protein Non-Protein
tau_t = 0.1 0.1
ref_t = 100 100
pcoupl = Berendsen
pcoupltype = isotropic
tau_p = 1.0
ref_p = 1.0
compressibility = 4.5e-5
refcoord_scaling = com
; Periodic boundary conditions
pbc = xyz ; 3-D PBC
; Dispersion correction
DispCorr = EnerPres
; Velocity generation
gen-vel = yes
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gen-temp = 100
gen-seed = 32926

***********************************

md2.mdp (equilibration)
; VARIOUS PREPROCESSING OPTIONS =
title =
cpp = /lib/cpp -traditional
include =
define = -DPOSRES

; RUN CONTROL PARAMETERS =
integrator = md ; leap-frog integrator
nsteps = 5000
dt = 0.002 ; 2 fs

; Output control
nstxout = 500 ; save coordinates every n ps
nstvout = 500 ; save velocities every n ps
nstxtcout = 500
nstfout = 0
nstenergy = 500 ; save energies every n ps
nstlog = 1000 ; update log file every n ps
nstcomm = 10
nstcalenergy = 10
xtc-grps = Protein

; Bond parameters
continuation = yes
constraint_algorithm = lincs
constraints = all-bonds ; all bonds (even heavy atom-H bonds) constrained
lincs_iter = 1

lincs_order = 4

; Neighborsearching
ns_type = grid ; search neighboring grid cells
nstlist = 10
rlist = 1.2 ; short-range neighborlist cutoff (in nm)
rcoulomb = 1.2 ; short-range electrostatic cutoff (in nm)
vdw-type = Cut-off
rvdw = 1.2 ; short-range van der Waals cutoff (in nm)
; Electrostatics
coulombtype = PME
pme_order = 4
fourierspacing = 0.12
epsilon-rf = 1
; Temperature coupling is on
tcoupl = V-rescale ; modified Berendsen thermostat
tc-grps = Protein Non-Protein
tau_t = 0.1 0.1
ref_t = 100 100
; Pressure coupling is on
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pcoupl = Berendsen
pcoupltype = isotropic
tau_p = 1.0
ref_p = 1.0
compressibility = 4.5e-5
refcoord_scaling = com
; Periodic boundary conditions
pbc = xyz ; 3-D PBC
; Dispersion correction
DispCorr = EnerPres ; account for cut-off vdW scheme
; Velocity generation
gen-vel = no ; Velocity generation is off
gen-temp = 100

***********************************************

md3.mdp (equilibration)

; VARIOUS PREPROCESSING OPTIONS =
title =
cpp = /lib/cpp -traditional
include =
define = -DPOSRES

; RUN CONTROL PARAMETERS =
integrator = md ; leap-frog integrator
nsteps = 5000
dt = 0.002 ; 2 fs

; Output control
nstxout = 500 ; save coordinates every n ps
nstvout = 500 ; save velocities every n ps
nstxtcout = 500
nstfout = 0
nstenergy = 500 ; save energies every n ps
nstlog = 1000 ; update log file every n ps
nstcomm = 10
nstcalenergy = 10
xtc-grps = Protein

; Bond parameters
continuation = yes
constraint_algorithm = lincs
constraints = all-bonds ; all bonds (even heavy atom-H bonds) constrained
lincs_iter = 1
lincs_order = 4
; Neighborsearching
ns_type = grid ; search neighboring grid cells
nstlist = 10
rlist = 1.2 ; short-range neighborlist cutoff (in nm)
rcoulomb = 1.2 ; short-range electrostatic cutoff (in nm)
vdw-type = Cut-off
rvdw = 1.2 ; short-range van der Waals cutoff (in nm)
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; Electrostatics
coulombtype = PME ; Particle Mesh Ewald for long-range electrostat
ics
pme_order = 4 ; cubic interpolation
fourierspacing = 0.12 ; grid spacing for FFT
epsilon-rf = 1
; Temperature coupling is on
tcoupl = V-rescale
tc-grps = Protein Non-Protein
tau_t = 0.1 0.1
ref_t = 300 300
; Pressure coupling is on
pcoupl = Berendsen
pcoupltype = isotropic
tau_p = 1.0
ref_p = 1.0
compressibility = 4.5e-5
refcoord_scaling = com
; Periodic boundary conditions
pbc = xyz ; 3-D PBC
; Dispersion correction
DispCorr = EnerPres ; account for cut-off vdW scheme
; Velocity generation
gen-vel = no
gen-temp = 100

********************************************

md9.mdp (production MD)

; VARIOUS PREPROCESSING OPTIONS =
title =
cpp = /lib/cpp -traditional
include =
define = -DPOSRES

; RUN CONTROL PARAMETERS =
integrator = md ; leap-frog integrator
nsteps = 25000000 ; 2 * 25000000 = 50ns
dt = 0.002 ; 2 fs

; Output control
nstxout = 500 ; save coordinates every 1 ps
nstvout = 500 ; save velocities every 1 ps
nstxtcout = 500
nstfout = 0
nstenergy = 500 ; save energies every 1 ps
nstlog = 1000 ; update log file every 2 ps
nstcomm = 10
nstcalcenergy = 10
xtc-grps = Protein

; Bond parameters
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continuation = yes
constraint_algorithm = lincs
constraints = all-bonds
lincs_iter = 1
lincs_order = 4
; Neighborsearching
ns_type = grid
nstlist = 10 ; 20 fs
rlist = 1.2 ; short-range neighborlist cutoff (in nm)
rcoulomb = 1.2 ; short-range electrostatic cutoff (in nm)
vdw-type = Cut-off
rvdw = 1.2 ; short-range van der Waals cutoff (in nm)
; Electrostatics
coulombtype = PME ; Particle Mesh Ewald for long-range
electrostatics
pme_order = 4 ; cubic interpolation
fourierspacing = 0.12 ; grid spacing for FFT
epsilon-rf = 1
; Temperature coupling is on
tcoupl = V-rescale ; modified Berendsen thermostat
tc-grps = Protein Non-Protein ; two coupling groups - more accurate
tau_t = 0.1 0.1
ref_t = 300 300 ; reference temperature, one for each group, in K
; Pressure coupling is on
pcoupl = Berendsen
pcoupltype = isotropic ; uniform scaling of box vectors
tau_p = 1.0 ; time constant, in ps
ref_p = 1.0 ; reference pressure, in bar
compressibility = 4.5e-5 ; isothermal compressibility of water, bar^-1
refcoord_scaling = com
; Periodic boundary conditions
pbc = xyz ; 3-D PBC
; Dispersion correction
DispCorr = EnerPres ; account for cut-off vdW scheme
; Velocity generation
gen_vel = no ; Velocity generation is off
gen-temp = 100
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Appendix 3 – CPMG data
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