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Abstract

We examine the link between financial market illiquidity and macroeconomic dynamics by fitting a
Bayesian time-varying parameter VAR with stochastic volatility to UK data from 1988Q1 to 2016Q4.
We capture liquidity conditions in the stock market using a battery of illiquidity proxies. This paper
departs from previous studies examining macro-financial linkages by using theoretically grounded sign
restrictions, and conducting structural inference in a non-linear framework. We document both statisti-
cally significant differences in the transmission of these shocks, and substantial increases in the economic
importance of these shocks during the 2008 recession.

Keywords: stock market illiquidity, time-varying parameter VAR, macro-financial linkages, sign
restrictions
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1. Introduction

The importance of adding financial channels to macroeconomic modelling has only recently received
increasing attention. For instance, Federal Reserve Bank of Boston President Eric Rosengren (2010)
argued that the seriousness of the recent financial crisis was underestimated by economic forecasters
because the provision of liquidity to the real economy was “only crudely incorporated into most macroe-
conomic modeling” (p.221). Writing in The Financial Times in November 2012, former Bank of England
(BoE) Monetary Policy Committee Member Deanne Julius (2012) flagged the importance of adding
financial channels in the BoE’s econometric model. Both views were reinforced by the Head of the Mon-
etary and Economic Department at the Bank of International Settlements Claudio Borio (2014) who
noted that for most of the post-war period “financial factors in general progressively disappeared from
macroeconomists’ radar screen”(p.182).

The main contribution of this paper is to assess the structural dynamics between financial market
illiquidity shocks and macroeconomic fundamentals. We fit a time-varying parameter VAR (TVP VAR)
with stochastic volatility to UK macroeconomic data, and two measures of stock market illiquidity, from
1988Q1 to 2016Q4. As noted by Granger (2008), TVP VARs are an attractive modelling strategy since
they offer an approximation to any non-linear model. There are two novelties in our approach. First, we
identify an illiquidity shock using theoretically grounded contemporaneous sign restrictions. Second, we
conduct structural inference in a generalised framework. The above sets our paper aside from the existing
literature exploring time-varying macro-financial linkages, such as Prieto et al. (2016) and Ellington et al.
(2017). The importance of conducting structural inference in a manner consistent with the modelling
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strategy is twofold. First, structural analysis using linear techniques undermines imposing non-linear
relationships on variables within the estimated model. Second, overlooking changes in variances and
covariances over the impulse horizon may omit an important transmission mechanism of the shock of
interest; thus giving rise to the possibility of distorted policy recommendations.

There are various channels through which stock market illiquidity can affect the real economy. As
noted in Ellington et al. (2017), liquidity in the stock market may uncover the information set of investors.
During episodes of uncertainty regarding the future state of the economy, investor’s portfolio adjustments
from high risk assets into safer assets, such as government bonds, may signal their expectations around the
wider economy. Adding to this, if investors anticipate a sudden decline in market liquidity, their portfolio
compositions may mirror this with greater proportions of wealth directed toward liquid assets. The
former and the latter are known as the ‘flight to safety’ and ‘flight to liquidity’, respectively (Longstaff,
2004)1. Florackis et al. (2014) note that these effects become more prominent during periods of financial
tightening where the behaviour of institutional investors and market participants tend to positively
covary.

Brunnermeier and Pedersen (2009) deduce a model that links shocks to funding and market liquid-
ity. During periods of financial turmoil, market liquidity becomes highly sensitive to funding conditions
which leads to a mutually reinforcing mechanism known as “liquidity spirals.” In particular, the interac-
tion between securities’ market liquidity and financial intermediaries capacity to provide funding, forces
institutional investors to shift greater proportions toward low margin stocks. Furthermore, Levine and
Zervos (1998) advocate that a liquid secondary market increases the propensity to invest into longer
term less liquid projects. As a result, long-term productivity rises thereby promoting economic growth.
From an asset-pricing perspective, Amihud (2002) and Acharya and Pedersen (2005) show that liquidity
has a first-order effect on the premium of investors’ demands to hold risky assets. Therefore, a liquid
stock market can lower cost the of capital for firms, boost higher returns on projects that, subsequently,
stimulates productivity and earnings growth (Levine, 1991).

This paper links with three main areas of literature. First, we contribute to empirical studies investi-
gating the explanatory power and forecasting performance of stock market illiquidity. In general, results
not only show that stock market illiquidity is linked to the business cycle, but also yields predictive power
for future recessionary periods. This supports the view that investors’ adjust portfolio holdings across
the business cycle, and suggests that liquidity variation links with a ‘flight to quality’ during slumps.
For example,Næs et al. (2011) and Chen et al. (2016a) examine forecasting performance of stock market
illiquidity with real activity using US data2. The former demonstrate that linear models including stock
market illiquidity yield favourable in and out-of-sample properties over and above conventional control
variables. The latter estimate a Markov-switching model and find that stock market illiquidity both
increases the probability of pushing the economy into recession, and the economy remaining in recession.
Both papers find that the illiquidity of small firms yields stronger predictive power for US real activity.

More recently, Chen et al. (2016b) examines the predictive power of a battery of break-adjusted
decomposed stock market liquidity proxies for economic activity and stock returns using US data from
1948 to 2015. Their results show that aggregate illiquidity proxies contain information regarding the
future state of the economy. Building on this, Apergis et al. (2015) studies the real effects of stock market
illiquidity for the UK and German economies, and report both economies slow down as aggregate liquidity
dries up. Adding to this, they confirm the findings of Næs et al. (2011) and Chen et al. (2016a), in that
the liquidity of small-capitalisation firms is relatively more important than that of large-capitalisation

1Kaul and Kayacetin (2017) show that the order flow differential forecasts output growth for the US, over and above
illiquidity proxies such as the Amihud (2002) return-to-volume ratio.

2Næs et al. (2011) also use Norwegian data.
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firms. Focussing on the UK economy, Florackis et al. (2014) examine the forecasting performance of
stock market illiquidity for real GDP growth. In particular, they show that a non-linear model with
regimes defined by liquidity conditions outperforms an array of forecasting models; including one used
by the Bank of England.

Second, the empirical literature is growing with regards to the role of financial markets and the
macroeconomy using time-varying models (see e.g. Eickmeier et al. (2015), Hubrich and Tetlow (2015),
Abbate et al. (2016a) Prieto et al. (2016) and Ellington et al. (2017)). The aforementioned all identify
the structural model assuming a block recursive structure of the VAR’s covariance matrices. Our analy-
sis departs from existing studies by using theoretically grounded sign restrictions to identify a financial
market illiquidity shock whilst relaxing the assumption that parameters remain constant when imple-
menting structural inference. In relaxing this assumption, we allow for the propagation of other shocks,
and account for parameter change over the impulse horizon in the spirit of Koop et al. (1996).

Third, our results correspond well with the DSGE literature incorporating financial frictions. For
instance, Jaccard (2013) and Shi (2015) deduce tractable models able to explain the contractionary
impact of liquidity shocks by identifying a causal link to real activity through the investment channel.
This channel is coherent with the liquidity shock hypothesis in Kiyotaki and Moore (2012) referring
to sudden declines in asset market liquidity that cause investment, and consequently, output to fall.
Furthermore, results in Christiano et al. (2010a) show that shocks stemming from the financial sector,
through the investment margin, contribute more than 60% toward the volatility in US investment; and a
contraction of between 0.66 and 1.5 percentage points in US GDP growth. Our results lend themselves
to the aforementioned studies, highlighting the importance of accounting for financial market liquidity
in macroeconomic models.

Our paper differs from the above in a variety of ways. Those examining the forecasting performance
of stock market illiquidity predominantly rely on linear and/or single equation specifications. We ex-
tend on this literature by relying on sophisticated and flexible non-linear multivariate models. Perhaps
more importantly, this literature contains no discussion on the structural links between financial market
illiquidity and the real economy. This paper investigates the structural relationship between financial
market illiquidity shocks and the real economy, whilst conducting structural inference in a generalised
framework; something that, to the best of our knowledge, is undocumented.

The remainder of this paper proceeds as follows: Section 2 explains how we proxy stock market
illiquidity, discusses economic data and provides an outline of our econometric model. Our main results
and robustness analysis are reported in Section 3. Finally, Section 4 provides concluding comments.

2. Data and Methodology

2.1. Stock Market Illiquidity and Economic Data

To capture stock market illiquidity, our initial analysis relies on two price impact ratios. The first
is the Return-to-Volume (hereafter RtoV) ratio of Amihud (2002). The RtoV ratio captures the price
response to, in our case, £1 trading volume. The second measure is the Return-to-Turnover (hereafter
RtoTR) ratio proposed in Florackis et al. (2011). Essentially, this measure replaces the denominator
in the Amihud (2002) ratio, the trading volume of a stock, with its turnover ratio; eliminating the
possibility of any size bias (Florackis et al., 2011). The RtoTR ratio has a similar interpretation to
RtoV, in capturing the price response to 1% of turnover3. The empirical appeal of these ratios are that
they can be easily computed for long periods of time without delving into intradaily or microstructure

3For detailed discussion on the advantage of using RtoTR over RtoV in an asset pricing framework, see Florackis et al.
(2011).

3



data. As noted in Amihud (2002) the RtoV ratio, but also the subsequent RtoTR ratio, are more coarse
and less accurate than finer measures of liquidity; such as transaction-by-transaction market impacts.
However, Goyenko et al. (2009) provide evidence substantial in support of using the Amihud (2002)
measure if one wishes to capture price impact.

As well as having empirical appeal, both RtoV and RtoTR have strong theoretical links to the price
impact coefficient in Kyle (1985). The price impact coefficient tracks the sensitivity of asset prices to the
order flow. Price impact connects well with the propagation of liquidity shocks in the DSGE models of
Kiyotaki and Moore (2012), Jaccard (2013) and Shi (2015). Specifically, entrepreneurs sell their holdings
for liquid assets to finance investment opportunities due to binding borrowing constraints. As a result,
liquidity in these models relates to the resaleability of assets. Price impact ratios assume that the net
order flow changes asset prices. As successive orders change trading costs, the ease of reselling assets
changes. Specifically, when prices become more sensitive to the order flow, the ease of reselling assets
declines. In turn, trading costs rise, investment diminishes and, ultimately, output falls.

We compute stock market illiquidity for all stocks listed on the London Stock Exchange, including
delisted stocks, from 1987 to 20164. More formally, RtoV and RtoTR are defined as:

RtoVi,D = 1
ND

D∑
d=1

|ri,d|
VOLi,d

(1)

RtoTRi,D = 1
ND

D∑
d=1

|ri,d|
TRi,d

(2)

where |ri,d| is stock is absolute return on day d; VOLi,d is stock is trading volume on day d in units of
currency; TRi,d is stock is turnover ratio on day d; ND is the number of days examined over a period (in
our case ND is three months). We obtain daily stock prices, trading volume, market capitalisation and
number of shares outstanding for all stocks listed on the London Stock Exchange from DataStream. We
adopt a set of filtering criteria similar to Amihud (2002) that admits individual stocks into our aggregate
stock market illiquidity proxies5. The aggregate is taken as the cross sectional mean of all individual
stocks that meet our filtering criteria. Our baseline price impact ratios include between 93 and 894 stocks
with an average of 519 stocks included per year. An increase in both price impact ratios constitutes a
decline in market liquidity, therefore both ratios are measures of stock market illiquidity. Figure 1 plots
our stock market illiquidity proxies from 1988Q1-2016Q4 expressed as % deviations from their respective
1-year moving averages.

Given our main focus is on the impact of illiquidity shocks for real activity, we omit investment
within our baseline results; this is because output is affected through the investment channel(Kiyotaki
and Moore, 2012)6. Therefore, we use UK macroeconomic data on annual real GDP growth, yt; the
annual rate of consumer price inflation, πt; and the Bank of England Bank rate, it. Real GDP and
the consumer price index data are from the Office for National Statistics (ONS) database; the Bank
rate is available from the Bank of England’s Statistical database7. Figure 2 plots UK macroeconomic
data from 1988Q1-2016Q4. We also plot in Figure 2, the shadow rate proposed in Wu and Xia (2016).

4Our sample is dictated by the availability of data. More specifically, trading volume data on UK stocks is sparse prior
to 1987.

5Specifically, we admit stocks into our aggregate measures if they have at least 100 days of return and trading volume
data in the previous year. We drop stocks with a price less than £5 at the end of the preceding year. Finally, we eliminate
outliers by removing stocks’ illiquidity estimates that are in the top and bottom 5% tails of the distribution for the current
year; conditional on satisfying the former criterion.

6In Section 3.2.1 we extend the information and directly include investment into the model, this does not influence the
conclusions deduced from our main results.

7Our price index data from the ONS is the long term indicator of prices of goods and services (code: CDKO). Our
results are robust to replacing consumer price inflation with both retail price inflation, and the GDP deflator.
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The former show that the shadow rate is a useful tool to summarise important information regarding
monetary policy stance at the zero lower bound (ZLB); we use the shadow rate as part of our robustness
checks provided in the Supplementary Materials.
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Figure 1: UK Stock Market Illiquidity, RtoV and RtoTR from 1988 to 2016
Notes: This figure plots the RtoV and RtoTR ratio for all stocks listed on the London Stock Exchange that meet
a standard set of filtering criteria similar to Amihud (2002). Our aggregate illiquidity measures are expressed as
the % deviations from their respective 1-year moving averages. Grey bars indicate UK recession dates and blue
bars indicate the three rounds of Quantitative Easing implemented by the Bank of England following the Great
Recession.
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Figure 2: UK Macroeconomic Data from 1988 to 2016
Notes: This figure plots the annual rate of UK real GDP growth, yt (top panel); the annual rate of consumer price
inflation, πt (second panel); the Bank of England Bank rate, it (third panel); and the UK shadow rate proposed
in Wu and Xia (2016), ishad

t (bottom panel), from 1988Q1-2016Q4. Grey bars indicate UK recession dates and
blue bars indicate the three rounds of Quantitative Easing implemented by the Bank of England following the
Great Recession.

2.2. A Time-varying Parameter VAR with Stochastic Volatility

We work with the following TVP VAR model with p lags and M endogenous variables:

Yt = β0,t + β1,tYt−1 + · · ·+ βp,tYt−p + εt ≡ X
′

tθt + εt (3)
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where Yt is defined as Yt ≡ [πt, yt, it, S
illiq
t ]′ , with πt being the annual rate of consumer price inflation;

yt is annual real GDP growth; it is the short term interest rate; and Silliq
t is stock market illiquidity

using either the RtoVt or RtoTRt ratio, expressed as the % deviation from their 1-year moving averages,
respectively. Xt = (IM ⊗ (1, Y ′t−1, ..., Y

′
t−p)) contains lagged values of Yt and a constant; θt is an M ×Mp

matrix with θt = (β′0,t, ..., β
′
p,t)′. In our case, M = 4, and we set a lag length p = 2 which is standard

in the TVP VAR literature. As in Cogley and Sargent (2005), the VAR’s time-varying parameters are
collected in θt and evolve as

p(θt|θt−1, Q) = I(θt)f(θt|θt−1, Q) (4)

where I(θt) is an indicator function that rejects unstable draws. Therefore, we impose a stability con-
straint on the VAR where, conditional on the roots of the VAR polynomial lying outside the unit circle,
f(θt|θt−1, Q) follows a driftless random walk8.

θt = θt−1 + νt (5)

where νt v N(0, Q). Q is a full matrix capturing the drift in the states, allowing both parameters
within each equation, and across equations to be correlated. If Q=0, the model reduces to a constant
parameter VAR with a stochastic volatility structure. The innovations in (3) follow εt v N(0,Ωt). Ωt is
the time–varying covariance matrix which we factor as

V ar(εt) ≡ Ωt = A−1
t Ht(A−1

t )
′

(6)

The structure of the time–varying matrices, Ht and At are:

Ht ≡


h1,t 0 0 0
0 h2,t 0 0
0 0 h3,t 0
0 0 0 h4,t

 At ≡


1 0 0 0

α21,t 1 0 0
α31,t α32,t 1 0
α41,t α42,t α43,t 1

 (7)

in (7), hi,t evolves as a geometric random walk and αt ≡ [α21,t, α31,t, . . . , α43,t]′ follows a random walk,
respectively

ln hi,t = ln hi,t−1 + ηt (8)

αt = αt−1 + ζt (9)

The innovations in the model are jointly Normal
ut

νt

ζt

ηt

 v N(0, V ), V =


IM 0 0 0
0 Q 0 0
0 0 S 0
0 0 0 W

 (10)

8As Cogley and Sargent (2005) note, adding an indicator function that rejects draws for the coefficient matrices in every
t truncates and renormalises the prior. This stability constraint imposes a belief, apriori, that explosive representations of
real GDP growth, inflation, the interest rate and stock market illiquidity are implausible. Gaĺı and Gambetti (2009) label
this constraint as imposing local stationarity for all time periods, t.
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where ut is such that, εt ≡ A−1
t H

1
2

t ut. The matrices Q, S, W are all positive definite and we follow
Primiceri (2005) by imposing S is a block diagonal matrix:

S ≡ V ar(ζt) =

 S1 01×2 01×3

02×1 S2 02×3

03×1 03×2 S3

 (11)

where S1 ≡ V ar(ζ21,t), S2 ≡ V ar([ζ31,t, ζ32,t]
′) and S3 ≡ V ar([ζ41,t, ζ42,t, ζ43,t]

′). This implies that
the non–zero and non–unit elements of At that belong to different rows evolve independently. This is a
simplifying assumption that allows us to estimate (the non–zero and non–unit elements of) At equation
by equation. The prior specification of our models are similar to Baumeister and Peersman (2013a) and
Cogley and Sargent (2005). To calibrate the initial conditions of the time-varying coefficients, θ0, we use
the first 10 years of data and estimate a constant coefficient VAR model; therefore the effective estimation
sample is from 1998Q3 to 2016Q4. The prior mean and variance are set to the OLS estimates from the
observations used in the training sample, θ̂OLS and 4 times the variance of the estimated parameters,
4 · var(θ̂OLS) from the constant coefficient VAR, respectively. Priors on the matrices Ht, At, Q, S,W

are set consistent with Cogley and Sargent (2005) and details can be found in the Online Appendix.
The model is estimated using Bayesian methods allowing for 20,000 iterations of the Gibbs sampler. We
discard the initial 10,000 draws as burn in, and of the remaining 10,000 draws, sample every 10th draw to
reduce autocorrelation. Also in the Online Appendix, we report an outline of the Markov Chain Monte
Carlo (MCMC) posterior simulation algorithm, as well as convergence diagnostics.

2.3. Identification of Structural Shocks

We depart from existing studies examining time-varying macro-financial linkages in two ways. First,
we impose contemporaneous sign restrictions in the spirit of Uhlig (2005). Second, we relax the assump-
tion that parameters remain constant over the impulse horizon. More specifically, we adopt a Monte
Carlo integration procedure, similar to Koop et al. (1996) and Baumeister and Peersman (2013a), and
conduct structural inference in a generalised framework. The prior literature looking to quantify the ram-
ifications of the financial sector for the real economy both identify structural shocks using a Cholesky
decomposition, and conduct structural inference in a linear framework (see e.g. Hubrich and Tetlow
(2015), Prieto et al. (2016) and Ellington et al. (2017)). Table 1 reports our identification restrictions
for the financial market illiquidity shock (hereafter illiquidity shock), uILLIQ

t . In conjunction with our
identified illiquidity shock, we identify a monetary policy shock following Benati (2008).

Table 1: Contemporaneous Sign Restrictions
Notes: This table reports the contemporaneous sign restrictions imposed when identifying a stock market illiq-
uidity shock, uILLIQ

t . Silliq
t represents stock market illiquidity proxied by either the RtoV or RtoTR ratio.

yt πt it Silliq
t

uILLIQ
t ≤ ≤ ≤ ≥
uMP

t ≤ ≤ ≥ ≥

Following the liquidity shock hypothesis in Kiyotaki and Moore (2012), we impose that output re-
sponds negatively to increases in illiquidity. Furthermore, we assume that as liquidity declines, inflation
and the interest rate fall. Our assumptions on the response of inflation and the interest rate requires
further discussion.

We start by noting that there are conflicting theories between the theoretical and empirical results
with regards to financial shocks and inflation dynamics. Theoretical models assuming that aggregate
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demand effects dominate the transmission mechanism, including Gertler and Karadi (2011) and Curdia
and Woodford (2010), predict that prices should increase following sudden expansionary financial shocks.
Within the former, financial shocks relax banking constraints thereby allowing firms to rent more capital
and hire more workers. The surge in labour demand increases wages and consequently puts pressure on
prices. The latter, assume that lower borrowing costs give consumers an incentive to borrow to increase
consumption, and subsequently, prices.

However, if aggregate supply effects dominate, expansionary financial shocks can lead to falling in-
flation. Nekarda and Ramey (2013) postulate that the key determinant of firm’s pricing decisions are
current and expected future marginal costs. Building on this, should firms need to borrow in advance to
partially finance wage costs, then marginal costs are also determined by borrowing rates (see e.g. Fiore
and Tristani (2013) and Christiano et al. (2010b)). Building on this, Gilchrist et al. (2017) calibrate a
model where liquidity constrained (unconstrained) firms increase (decrease) their prices during financial
crises. Their results show that inflation, on aggregate increases during financial crises due to the presence
of liquidity constrained firms; thereby offering a possible explanation toward the mild disinflation in the
US during the financial crisis. Abbate et al. (2016b) provide empirical evidence in support of Gilchrist
et al. (2017) and help rationalise why inflation does not rise as a result of expansionary financial shock
using the theoretical underpinnings of Nekarda and Ramey (2013) and Fiore and Tristani (2013).

We initially estimated models allowing for the inflation rate to remain unconstrained with respect
to an illiquidity shock in light of the above theoretical ambiguities. In this framework, the observed
sign of inflation to an illiquidity shock indicates the net effect of the demand and supply side channels.
The results obtained by imposing no restriction on inflation are the same as those we report in the next
section. This suggests that, for our data, the demand side effects dominate the inflationary impact of
illiquidity shocks. Therefore for our analysis we impose, apriori, that financial market illiquidity causes
prices to fall following Curdia and Woodford (2010) and Gertler and Karadi (2011).

We postulate that the interest rate declines based on the ‘flight to safety’ and ‘flight to liquidity’
considerations in Longstaff (2004). Implicitly, we assume that investors adjust portfolio holdings into
safer, more liquid assets such as government bonds or Treasury Bills during illiquid periods. Therefore,
the yields on these assets, and consequently interest rates in the economy, falls. Our imposed sign
restrictions are supported by the data, and are indicative of reality. For example, in the UK, while
our illiquidity measures peak in late 2008, the corresponding trough in inflation and interest rate cuts
occur in early 2009. In the Online Appendix we show that identifying illiquidity shocks using a Cholesky
decomposition also results in a decline in inflation and the interest rate.

Our identified monetary policy shock modifies that of Benati (2008) by imposing that a contractionary
monetary policy shock causes illiquidity in the stock market to rise. We impose this restriction following
Hameed et al. (2010), who show that contractionary monetary policy leads to declines in liquidity.
We have also implemented structural inference imposing no restriction on the sign of the response of
stock market illiquidity and we obtain similar results; available on request. To obtain the time-varying
structural impact matrices, we follow the algorithm in Rubio-Ramirez et al. (2010).

Specifically, we obtain the time-varying impact matrix A0,t in the following manner. Given the
current state of the economy, let Ωt = PtDtP

′
t be the eigenvalue-eigenvector decomposition of the VAR’s

time-varying covariance matrix at time t. We draw an M×M matrix K from the N(0, 1) distribution and
compute the QR decomposition of K, normalising the elements of the diagonal matrix R to be positive;
the columns in Q are orthogonal to one another. We compute the time-varying structural impact matrix
as A0,t = PtD

1
2
t Q
′ retaining only those matrices that satisfy our sign restrictions9.

9Appendix B of the supplementary material reports how we compute generalised impulse response functions and provides
a structural analysis of monetary policy shocks.
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3. Empirical Results

3.1. Baseline Results

Figure 3 reports the posterior median and 10th and 90th percentiles of the distribution of estimated
illiquidity shocks stemming from our baseline models. As we can see, there are clear positive spikes
in the structural errors during the burst of the dot-com bubble in 2001. Furthermore, prior to the
Great Recession, structural illiquidity shocks are persistently negative. Thereby suggesting markets were
liquid prior to the financial crisis; a widely noted phenomenon during this period and consistent with
Borio (2014). Then during the 2008 recession, the estimated shocks are strongly positive in conjunction
with the notion that liquidity dried up during the financial crisis. Based on the movements in the
estimated illiquidity shocks, we postulate our identification strategy is valid, and indeed captures liquidity
conditions within the financial market.

1999 2008 2016
−3
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−1

0

1

2

3

4

Posterior Median, TVP VAR using RtoV
Posterior Median, TVP VAR using RtoTR

Figure 3: Posterior Distribution of Structural Illiquidity Shocks from 1998 to 2016
Notes: This figure plots the posterior median and the 10th and 90th percentiles of the distribution of structural
illiquidity shocks from 1998Q3-2016Q4. The two grey bars indicate the burst of the dot-com bubble during 2001,
and the Great Recession of 2008-2009.

In Figure 4, we report the posterior median impulse response functions of UK macroeconomic variables
from 1998Q3-2016Q4 over a 20 quarter horizon. The impulse response functions have been normalised
such that the illiquidity shock causes a 200% and 100% deviation in RtoV and RtoTR from their respec-
tive 1-year moving averages. Deviations of these sizes are comparable to peaks in late 2008. Panels A and
B of Figure 3 report the results from our models that proxy stock market illiquidity using the RtoV and
RtoTR ratios, respectively. It is clear that the respective sensitivities of GDP growth, inflation, and the
interest rate with respect to illiquidity shocks increase during the 2008-2009 financial crisis. More specif-
ically, in 2008Q4–and notably, immediately following the collapse of Lehman Brothers–the contraction of
GDP growth, on impact, is 1.89% and 2.17% from models using RtoV and RtoTR, respectively. In the
very same period, these shocks imply inflation falls by 1.78% and 3.79% from our models using RtoV and
RtoTR to proxy stock market illiquidity, respectively. Panels A and B clearly show there is a persistent
impact of illiquidity shocks on GDP growth and the interest rate. Specifically, the posterior median
response of GDP and the interest remains negative for 10 and 20 quarters, respectively. Contrastingly
however, the response of inflation is short-lived; lasting around one year.

Figure 5 provides the posterior median and the 80% posterior credible sets (i.e. 10th and 90th

percentiles) of the distributions of the impulse response functions for real GDP growth, yt (left column);
inflation, πt (middle column); and the interest rate, it (right column), over selected dates from 2001Q1 to
2016Q4. From Figure 5, it is clear that real GDP growth and inflation responds significantly to illiquidity
shocks across all periods we consider. However, the response of the interest rate is insignificant in 2016Q4
of our sample for our model using RtoV. For the model using RtoTR there is marginal significance in the
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Figure 4: Impulse Response Functions of Macroeconomic Variables with Respect to an Illiquidity Shock
from 1998 to 2016
Notes: This figure plots the posterior median distribution of the impulse response functions of UK macroeconomic
variables with respect to a one standard deviation illiquidity shock from 1998Q3 to 2016Q4 over a 20 quarter
horizon. Panel A reports the results from our TVP VAR model using the RtoV ratio in Amihud (2002) to proxy
stock market illiquidity. Panel B reports impulse response functions from our TVP VAR model using the RtoTR
ratio in Florackis et al. (2011) to proxy stock market illiquidity.
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Figure 5: Impulse Response Functions of Macroeconomic Variables with Respect to an Illiquidity Shock:
Selected Dates
Notes: This figure plots the posterior median and the 10th and 90th percentiles of the distribution of the impulse
response functions of UK macroeconomic variables with respect to a one standard deviation illiquidity shock over
selected dates (i.e. 2001Q1, 2006Q1, 2009Q1, 2016Q4) from 2001 to 2016. The left column presents the impulse
response functions of real GDP growth. The middle and right columns report the response of inflation and the
interest rate respectively.
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response of the interest after 8 quarters10. On the whole, Figures 4 and 5 reveal that there is substantial
evidence in favour of economically significant time-variation in the response of macroeconomic variables
to illiquidity shocks.

Following Cogley et al. (2010), we examine whether there is statistically significant time-variation in
the impulse response functions of macroeconomic variables to illiquidity shocks. In doing so we account
for the entire posterior distribution at each time period. Figure 6 reports scatterplots of the accumulated
1 year impulse response functions of macroeconomic fundamentals. Panel A uses results from our TVP
VAR that proxies stock market illiquidity using the RtoV ratio. Panel B reports results from our TVP
VAR that proxies stock market illiquidity using the RtoTR ratio. The first row of Panels A and B
reports the accumulated 1 year impulse responses for GDP growth, yt; the second and third row report
the same for inflation, πt and the interest rate, it, over 5 year intervals respectively. Column 1 reports
the joint distribution of the accumulated 1 year impulse response functions in 1998Q4 (x-axis) against
2003Q4 (y-axis); columns 2, 3 and 4 reports the joint distribution of the accumulated 1 year impulse
response functions in 2003Q4 (x-axis) against 2008Q4 (y-axis), 2008Q4 (x-axis) against 2013Q4 (y-axis),
and 2013Q4 (x-axis) against 2016Q4 (y-axis), respectively. We add a 45◦ line to each scatterplot for ease
of interpretation. We characterise statistically significant differences over time when 95%, or more, of
the joint distribution lies above or below the 45◦ line.

Three factors emerge from Figure 6. Firstly, there are no statistical differences in the impulse response
functions of UK macroeconomic fundamentals with respect to illiquidity shocks in 1998Q4 relative to
2003Q4, and 2016Q4 relative to 2013Q4. Second, the distribution of impulse response functions in 2008Q4
relative to both 2003Q4 and 2013Q4, reveal that GDP growth and inflation, become more sensitive to
these shocks during the Great Recession. More specifically, in Panel A, it is clear that more than 99%
of the joint distribution lies below and above the 45◦ lines in columns 2 and 3 respectively. The same
holds for the analogous plots in Panel B. Third, the interest rate is evidently more sensitive to illiquidity
shocks during the Great Recession, with the entire joint distribution lying above and below the 45◦ in
columns 2 and 3 respectively. Therefore, this plot provides statistically significant evidence in favour
of time-variation in the transmission mechanism of illiquidity shocks during 2008Q4, relative to 2003Q4
and 2013Q4 respectively.

Table 2 reports the posterior median forecast error variance shares, at a 20 quarter horizon (in %)
along with the 68% posterior credible intervals, of illiquidity shocks for UK macroeconomic variables at
three year intervals. Panels A and B show results from our models where stock market illiquidity is prox-
ied using the RtoV and RtoTR ratios, respectively. To examine the possibility of statistical differences
in our choice of price impact ratio, Panel C reports the posterior median and 68% posterior credible
intervals of the distributions of relative forecast error variance decompositions (FEVDs)11. We compute
distributions of relative forecast error variance decompositions (RFEVDs) for our macroeconomic vari-
ables from our models using RtoV and RtoTR to proxy stock market illiquidity. More specifically, for
every quarter t and each of the states, we scale the forecast error variance decompositions obtained from
our model using RtoV by the forecast error variance decompositions from our model using RtoTR.

10Note that from 2010Q1 onwards, the response of the interest rate from both models is only marginally significant based
on 80% posterior credible sets. We assess the influence of the zero lower bound in the next section.

11Relative FEVDs have been used in Rossi and Zubairy (2011) to assess whether fiscal policy changes the forecast error
variances of traditional monetary policy shocks. Relative FEVDs in the former are expressed as percentage changes in
FEVDs from a VAR model including government spending, and one without. Monetary policy shocks are identified using a
Cholesky decomposition with the interest rate ordered last. Our approach differs in that we assess the statistical significance
of the shares in forecast error variances accounting for the entire posterior distribution of parameter draws of our TVP
VAR models.
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Figure 6: Scatterplots of Distributions of One Year Accumulated Impulse Response Functions over 5 Year
Intervals.
Notes: This figure reports scatterplots of the one year accumulated impulse response functions of macroeconomic
variables with respect to an illiquidity shock. Panel A uses results from our TVP VAR that proxies stock market
illiquidity using the RtoV ratio inAmihud (2002). Panel B reports results from our TVP VAR that proxies stock
market illiquidity using the RtoTR ratio of Florackis et al. (2011). The first row of Panels A and B reports one
year accumulated impulse response functions of GDP growth, yt; the second and third row report the same for
inflation, πt and the interest rate, it respectively over 5 year intervals. Column 1 reports the joint distribution of
forecast error variance shares of 1998Q4 (x-axis) against 2003Q4 (y-axis); columns 2, 3 and 4 reports the joint
distribution of forecast error variance shares of 2003Q4 (x-axis) against 2008Q4 (y-axis), 2008Q4 (x-axis) against
2013Q4 (y-axis), and 2013Q4 (x-axis) against 2016Q4 (y-axis), respectively. We add a 45◦ line to each scatterplot
for ease of interpretation.
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Formally, the RFEVD of illiquidity shocks, uILLIQ
t ,for variable i, at horizon h and time t is given by

RFEVDILLIQ
ih,t =

FEVDILLIQ0
ih,t

FEVDILLIQ1
ih,t

(12)

where FEVDILLIQ0
ih,t denotes the contribution of illiquidity shocks to variable i at horizon h and time t

from our model using RtoV; and FEVDILLIQ1
ih,t denotes the contribution of illiquidity shocks to variable

i at horizon h and time t from our model using RtoTR. We characterise a statistical difference in the
forecast error variance shares if the 68% posterior credible intervals do not include 1.

From Table 2, both Panels A and B reveal that illiquidity shocks are economically meaningful. From
Panel A, and turning our attention to posterior median estimates, illiquidity shocks explain 29%, 35%
and 56% of the variation in GDP growth, inflation and the interest rate in 2008Q3 respectively. Similarly,
from Panel B, these shocks explain, 23%, 29% and 61% of the variance in GDP growth, inflation and the
interest rate in 2008Q3, respectively. Overall, Panels A and B suggest there is considerable time-variation
in the forecast error variance shares explained by illiquidity shocks. Evidently from Panel C, our results
suggest there are no statistical benefits in using the RtoV ratio over the RtoTR ratio (or vice versa).

In general the time profile of the responses of GDP growth and inflation to shocks stemming from the
financial sector are consistent with Prieto et al. (2016) and Ellington et al. (2017), whom both use US
data. The short-lived response of inflation links well with the theoretical results in Gertler and Karadi
(2011). Adding to this, the substantial declines in the interest rate suggest investors perpetually adjust
their portfolio holdings in response to illiquidity shocks. Furthermore, the response of the interest rate
during the financial crisis implies asymmetries (over time) in the ‘flight to safety’ and ‘flight to liquidity’
effects outlined in Longstaff (2004).

Our results also corroborate with Hubrich and Tetlow (2015), Abbate et al. (2016b), and Ellington
et al. (2017), who find that during times of elevated financial stress, the ramifications for real activity
are amplified. In examining the joint distribution of cumulated impulse response functions, we provide
statistically significant evidence in support of an increase in the economic importance of illiquidity
shocks during the 2008 recession. It is our conjecture that this episodic response of macroeconomic
fundamentals to illiquidity shocks is linked to the reinforcing mechanism between funding and market
liquidity proposed in Brunnermeier and Pedersen (2009). We posit that the increased sensitivity of
market liquidity to funding liquidity intensifies the transmission mechanism of these shocks for the real
economy.

From a policy perspective, and confluent with Claessens et al. (2012), the implication is that liq-
uidity provision during financial crises is necessary to prevent large swings in macroeconomic variation.
Therefore our results lend themselves to Kapetanios et al. (2012), by justifying the response of UK poli-
cymakers in implementing successive rounds of Quantitative Easing to inject liquidity into the economy.
As in Joyce et al. (2012), we argue that investment is stimulated because investors observe increases in
their cash holdings in exchange for selling government debt. The increase in cash holdings is used to
buy other assets, since investors perceive cash as an imperfect substitute for government debt; known as
the portfolio rebalancing channel. Intuitively, as investment increases, so does output. Conceptually this
might be thought of as policy response to negate the liquidity shock hypothesis in Kiyotaki and Moore
(2012).
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Table 2: Percent Share of Forecast Error Variance Explained by Illiquidity Shocks at a 20 Quarter Horizon,
and Relative Forecast Error Variance Decompositions from 1999 to 2016 at 4 Year Intervals
Notes: Panel A of this table reports the posterior median, along with 68% posterior credible intervals of the
percent share of forecast error variance at a 20 quarter horizon of real GDP growth, yt; inflation, πt; and the
Bank rate, it explained by stock market illiquidity shocks using the RtoV ratio in Amihud (2002). Meanwhile
Panel B of this table reports the posterior median, along with 68% posterior credible intervals of the percent
share of forecast error variance at a 20 quarter horizon of real GDP growth, yt; inflation, πt; and the Bank rate,
it explained by stock market illiquidity shocks using the RtoTR ratio in Florackis et al. (2011). Finally Panel
C of this table report the posterior median and 68% posterior credible intervals of the distribution of relative
forecast error variance decompositions, also at a 20 quarter horizon. These are computed by taking each of the
500 draws of the forecast error variance of UK macroeconomic variables from our TVP VAR model using RtoV,
and dividing each draw by the forecast error variance of the variable of interest from our TVP VAR model using
RtoTR. A significant difference in relative FEVDs is observed when the 68% posterior credible intervals do not
include 1.

A) TVP VAR using RtoV
yt πt it

1999Q3 15.37 [9.16 23.65] 18.98 [12.26 26.71] 33.22 [19.95 53.11]
2002Q3 17.61 [11.38 24.74] 19.92 [14.17 27.03] 33.67 [20.15 51.34]
2005Q3 15.76 [9.28 25.77] 18.07 [11.48 27.09] 37.72 [22.05 53.95]
2008Q3 28.94 [17.52 40.59] 34.97 [23.56 46.59] 55.96 [40.44 67.22]
2011Q3 14.20 [8.16 22.64] 16.99 [10.65 25.41] 27.47 [14.15 45.68]
2014Q3 20.42 [12.26 29.38] 20.47 [13.89 28.79] 28.60 [16.31 44.07]
2016Q4 18.78 [10.81 31.32] 18.77 [11.81 29.42] 24.04 [12.23 40.98]
B) TVP VAR using RtoTR

yt πt it

1999Q3 16.28 [9.43 24.81] 19.22 [12.07 26.36] 39.58 [21.05 55.59]
2002Q3 20.30 [12.73 29.01] 22.87 [15.83 32.09] 41.72 [24.91 58.27]
2005Q3 21.43 [13.06 30.79] 23.41 [15.89 34.75] 47.27 [30.04 62.38]
2008Q3 22.99 [13.36 34.71] 29.39 [18.03 40.39] 61.12 [45.19 69.30]
2011Q3 15.06 [8.54 22.33] 17.05 [11.03 25.69] 29.68 [14.63 50.56]
2014Q3 19.91 [13.47 28.80] 20.73 [14.44 29.66] 34.27 [18.38 51.97]
2016Q4 19.95 [11.71 30.68] 19.83 [12.13 30.23] 26.74 [13.07 43.16]
C) RFEVDs: RtoV vs. RtoTR

yt πt it

1999Q3 0.98 [0.47 1.87] 1.00 [0.57 1.80] 0.90 [0.48 1.75]
2002Q3 0.84 [0.50 1.62] 0.88 [0.54 1.38] 0.82 [0.44 1.50]
2005Q3 0.77 [0.39 1.45] 0.74 [0.43 1.38] 0.80 [0.45 1.40]
2008Q3 1.28 [0.66 2.24] 1.22 [0.72 2.00] 0.95 [0.64 1.29]
2011Q3 0.95 [0.48 1.99] 0.98 [0.52 1.81] 0.94 [0.42 2.05]
2014Q3 1.02 [0.54 1.73] 0.97 [0.55 1.66] 0.83 [0.42 1.73]
2016Q4 0.96 [0.46 1.97] 0.96 [0.50 1.83] 0.92 [0.42 2.03]
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3.2. Robustness Analysis

For the sake of brevity, we provide two robustness checks below; the first extends our initial infor-
mation set, and the second investigates the impact of alternative proxies. Within the Supplementary
Materials, we report a number of different robustness checks to further assess the plausibility of our main
results. More specifically based on the findings in Næs et al. (2011) that illiquidity of small capitalisa-
tion stocks possess a stronger link with real activity, we construct aggregate illiquidity proxies stemming
from small and large stocks. Our results show that there are no statistical or economic differences in the
transmission of these shocks. We also provide evidence that our results are not affected by our choice of
prior specification or driven by the zero lower bound.

3.2.1. Extending the Information Set
In accounting for only illiquidity within the stock market, our main results rely on a small information

set; which may impact the space spanned by the impulse response functions12. One stream of the time-
varying macrofinancial linkages literature, including Koop and Korobilis (2014), use indices to capture
overall financial conditions deriving from large datasets. The former estimate a financial conditions index
from a time-varying factor augmented VAR (FAVAR) model incorporating 18 financial series. Adding to
this, the transmission of monetary policy and other economic shocks using FAVARs is well documented
(see e.g. Korobilis (2013), and Ellis et al. (2014)). The appeal of indices estimated from principal
components or factor models are that they permit a large amount of information to be incorporated into
econometric models in a parsimonious manner.

1999 2008 2016
−3

−2

−1

0

Financial Factor 1, Λ1,t

Financial Factor 2, Λ2,t

Figure 7: UK Financial Factors, 1988 to 2016
Notes: This figure plots the our estimated financial factors, Λ1, Λ2 from our constructed financial dataset for
the UK economy. Factors are estimated as the first two principal components following the method outlined in
McCracken and Ng (2016). Grey bars indicate UK recession dates and blue bars indicate the three rounds of
Quantitative Easing implemented by the Bank of England following the Great Recession.

To assess the robustness of financial market illiquidity shocks, we construct a dataset of 19 series
capturing the broader UK financial sector and macroeconomy. The variables we include in our dataset
are in the spirit of Koop and Korobilis (2014) and Amisano and Geweke (2017); see Appendix C in
the Online Appendix for details. Following McCracken and Ng (2016), we estimate static factors via
principal components from our dataset. We implement the Expectations Maximisation (EM) algorithm
of Stock and Watson (2002) that allows for missing values in the panel of time series. In the spirit of
Bai and Ng (2002), we test for the number of factors using the PCp criteria and find that the number
of significant factors is equal to 213. Figure 7 plots our estimated financial factors, Λ1,Λ2 from 1988 to
2016.

12We thank an anonymous referee for bringing this to our attention.
13The P Cp penalty we use in this analysis is the P Cp2 = N+T

NT
ln(min(N, T )) of Bai and Ng (2002).
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We estimate four variants of our baseline model that include either of our financial factors providing
us with a slightly larger specification of 5 variables14. We also estimate a further two, 5 variable TVP-
VAR models by adding investment growth, κt to our baseline empirical models; Table 3 reports a
summary of our six extended models15. These models use the same number of iterations and posterior
simulation algorithm as those estimated in previous sections Based on the pro-cyclical nature of our
financial factors and investment growth, we impose, on impact, negative signs to: Λ1,t; Λ2,t; κt, with
respect to an illiquidity shock in Models 1-6.

Table 3: Variables Included in Larger Model Specifications
Notes: This table reports a summary of variables included into each of our models that include financial factors.
yt is real GDP growth; πt is inflation; it is the interest rate; RtoVt is stock market illiquidity proxied by the
Return-to-Volume ratio in Amihud (2002); RtoTRt is stock market illiquidity proxied by the Return-to-Turnover
ratio in Florackis et al. (2011); Λ1,t is our first estimated financial factor; and Λ2,t is the second financial factor
estimated from our constructed dataset. Included in Models 5 and 6, is annual investment growth, κt.

Model 1: yt πt it Λ1,t RtoVt

Model 2: yt πt it Λ1,t RtoTRt

Model 3: yt πt it Λ2,t RtoVt

Model 4: yt πt it Λ2,t RtoTRt

Model 5: yt πt it κt RtoVt

Model 6: yt πt it κt RtoTRt

Figure 8 plots the posterior median and 80% posterior credible sets of the impulse response functions
of macroeconomic variables from 2001 to 2016 over our selected dates. Panel A reports results from
Models 1 and 2; whilst Panels B and C report results from Models 3 and 4, and Models 5 and 6
respectively. We can see from Panels A and B, that the time-variation of the response of macroeconomic
variables, particularly GDP growth and inflation, is in the magnitude of the contractions during the 2008
recession. This is similar to the findings of our baseline analysis. It is also noteworthy to mention that the
impact of an illiquidity shock on our financial factors yields substantial variation in the magnitude during
the financial crisis. From Panel C of Figure 8, we can see that the response of GDP, inflation and the
interest rate are similar to those presented in our baseline analysis. These models report negligible time-
variation, from posterior median estimates, in the response of investment growth in terms of magnitude
and persistence.

On the whole, it is clear that the economic impact of illiquidity shocks is consistent with our main
results, even after including extra variables within our models. We show that the time-variation, in
terms of magnitude, of the response of GDP growth, inflation and the interest rates are consistent
with our main results. In estimating factors from a constructed dataset, we have also documented
the contractionary effects these shocks have on a broad panel of macro-financial entities. Notably,
model specifications including principal components imply considerable time-variation in the transmission
mechanism of illiquidity shocks to the broader macro-financial sector. Overall, these results imply that
the space spanned by the impulse response functions generated from our estimated models are not
sensitive to including additional variables.

14Incorporating both financial factors into the same model leads to convergence issues within the MCMC. This may be
due to a combination of the following: i) the relatively short estimation sample; and ii) the strong correlations these factors
have with GDP growth and the Bank rate. More specifically, the contemporaneous correlation between Λ1,t and yt is 0.70,
and between Λ2,t and it is 0.63.

15We add investment growth to our baseline models following the liquidity shock hypothesis in Kiyotaki and Moore
(2012).
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C) Models using Investment growth
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Figure 8: Impulse Response Functions of Macroeconomic Variables with Respect to an Illiquidity Shock
from 1998 to 2016
Notes: This figure plots the posterior median and the 10th and 90th percentiles of the distribution of the impulse
response functions of UK macroeconomic variables with respect to a one standard deviation illiquidity shock
over selected dates from 2001 to 2016. Panel A reports results from TVP VARs estimated using Factor 1, Λ1,t.
Panel B reports results from TVP VARs using Factor 2, Λ2,t. Panel C reports results estimated from TVP
VARs that include annual investment growth, κt. The left column presents the impulse response functions of
real GDP growth. The middle left and middle right columns report the response of inflation and the interest rate
respectively. The right columns in Panels A and B report the response of our Factor estimates, and the right
column in Panel C reports the response of annual investment growth.

3.2.2. Alternative Illiquidity Proxies
Although price impact is our main focus, we cannot discount other dimensions of liquidity, such as

trading costs and market depth, and their influence on real activity. Næs et al. (2011) and Chen et al.
(2016b) show that a battery of illiquidity proxies all yield predictive power for US GDP growth. Our
study differs from the forecasting literature in that we are looking to investigate the impact of illiquidity
in a structural model. Therefore it is necessary to ascertain that our main results are not driven by our
choice of proxy. We utilise five alternative measures that capture different dimensions of illiquidity. Our
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first two measures simply replace the numerator, |ri,d|, in RtoV and RtoTR with 1:

V−1
i,D = 1

ND

D∑
d=1

1
V OLi,d

(13)

TR−1
i,D = 1

ND

D∑
d=1

1
TRi,d

(14)

These measures are used in Lou and Shu (2017) within an asset pricing study. However, Apergis et al.
(2015) uses trading volume and turnover as proxies of liquidity to forecast real activity. Therefore the
reciprocal of the trading volume and turnover, are both measures of illiquidity; representing the depth
of the market16.

The following two alternative measures are spread proxies; or measures of transaction costs. The first
is the FHT measure proposed in Fong et al. (2017), and the second is the effective spread estimate of
Roll (1984). These illiquidity proxies, for the i-th firm are given by:

FHTi,D = 2σ̂i,DΦ−1
(

1 + ZEROSi,D

2

)
(15)

Rolli,D = 2
√
−ĈOV(Ri,d,D, Ri,d−1,D) (16)

In (15), σ̂i,t is firm i’s daily return volatility over time interval D. ZEROSi,D is the fraction of zero
return days out of total trading days during time interval D, and Φ−1(·) is the inverse cumulative
normal distribution. Before aggregating, we winsorize our proxies by removing firms that are in the top
and bottom 5% tails of the distribution for the current year, then we take the cross-sectional average of
the remaining stocks to construct our aggregate measures. In (16), Ri,d,D (Ri,d−1,D) is the return for the
i-th firm on trading day d (day d− 1) of time interval D and ĈOV represents the sample covariance17.

The FHT measure is a simplified version of the Lesmond et al. (1999) proxy. It is shown to outperform
both the former, and an augmented Lesmond et al. (1999) proxy in Goyenko et al. (2009). The intuition
behind the FHT measure rests on the idea that a zero return is the result of the true return being
in-between the upper bound given by the transaction cost for buying, and the lower bound given by the
transaction cost for selling. As can be seen in (16), the FHT measure is an increasing function of return
volatility and the proportion of zero returns in the period of examination18.

Our final alternative illiquidity proxy, in the spirit of Chen et al. (2016b), is the first principal
component extracted from our baseline proxies and those discussed above. We estimate our illiquidity
factor, ILLIQF

t , following McCracken and Ng (2016), Stock and Watson (2002), and Bai and Ng (2002).
This factor explains 66.4% of the total variance of the six illiquidity proxies. By construction, ILLIQF

t

captures and combines each dimension of our individual illiquidity measures. We provide plots of our
alternative proxies in the supplementary material.

In Figure 9, we plot the posterior median and 80% posterior credible sets of the impulse response func-
tions of macroeconomic variables stemming from TVP VARs estimated using each of our five alternative
illiquidity proxies from 2001Q1 to 2016Q4, at our pre-specified dates. In Panel A we report results using
V−1,TR−1, and Panel B plots impulse response functions from TVP VARs using FHT,Roll, andILLIQF .

16We adopt the same filtering criteria for V−1
i,D and TR−1

i,D as we implement for RtoVi,D and RtoTRi,D.
17Rolli,D is only defined when the first-order autocovariance of daily returns for the corresponding period is negative.

Empirically, the first-order sample covariance can be positive. Following Goyenko et al. (2009) and Chen et al. (2016b),
we set Rolli,D to zero when a positive value is observed.

18Holding return volatility constant, a greater frequency of zero returns in the period t, implies wider bounds, and
therefore a wider spread. Similarly, holding the proportion of zero returns constant, a higher volatility implies that the
transaction cost bounds and the bid-ask spread must be larger in order to achieve the same proportion of zero returns.
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On the whole, the response of GDP growth, inflation and the interest rate are consistent with our main
results. More specifically, across all our alternative measures, the contraction in macroeconomic variables
are more severe during 2009Q1 relative to other dates considered in Figure 9. From posterior credible
set, differences in the significance of the impulse response functions are negligible, relative to our models
using price impact ratios.

These results conform with the findings of Næs et al. (2011), Apergis et al. (2015) and Chen et al.
(2016b); the real effects of liquidity are not dependent on the proxy used. Based on the above, we
conclude that our main results in examining the structural dynamics of financial market illiquidity is
not conditional on the measure. Furthermore, this section reveals that the transmission mechanism of
these shocks are episodic in nature, with greater contractions to real activity occurring during the Great
Recession, and providing further support for the conclusions of our main analysis.
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Figure 9: Impulse Response Functions of Macroeconomic Variables with Respect to an Illiquidity Shock
from Models using Alternative Illiquidity Proxies Across Selected Dates
Notes: This figure plots the posterior median and 80% posterior credible sets of the impulse response functions
of GDP (left column); inflation (middle column); and the interest rate (right column), from 2001 to 2016. Panel
A reports results from models using V−1 and TR−1. Panel B plot impulse response functions stemming from
respective models using FHT, Roll, and ILLIQF.

4. Conclusions

In this paper we fit a Bayesian time-varying parameter VAR with stochastic volatility to UK macroe-
conomic data, spanning the period 1988Q1-2016Q4, and two proxies of stock market illiquidity; namely
the RtoV ratio in Amihud (2002), and the RtoTR ratio in Florackis et al. (2011). We depart from
the prior TVP VAR literature examining macro-financial linkages in two ways. First, we identify an
illiquidity shock using theoretically grounded contemporaneous sign restrictions, whereas previous stud-
ies identify structural shocks using a Cholesky decomposition (see e.g. Hubrich and Tetlow (2015) and
Ellington et al. (2017)). Second, we relax the assumption that parameters remain constant over the
impulse horizon, and conduct structural inference in a non-linear framework following Koop et al. (1996)
and Baumeister and Peersman (2013b).

A summary of our results is as follows: First, illiquidity shocks during the 2008 recession cause
annual GDP growth and inflation to decline on impact by 1.89% and 1.78%, respectively. Second, we
provide statistically significant evidence in favour of an episodic response of GDP gorwth, inflation and
the interest rate in conjunction periods of financial stress. More specifically, the contractionary impact
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of illiquidity shocks intensifies during the Great Recession. Third, forecast error variance decompositions
uncover that the economic importance of these shocks is substantial. Fourth, there are no statistical
benefits in using the RtoV ratio in Amihud (2002) over the RtoTR ratio in Florackis et al. (2011); or
vice versa. Finally, we find no statistical or economic differences in the transmission of illiquidity shocks
from small or large stocks for the real economy.

We assess the consequences of the zero lower bound and show our main conclusions are consistent with:
i) imposing a binding constraint zero lower bound constraint within our structural analysis analogous
to Baumeister and Benati (2013); and ii) replacing the Bank rate with the shadow rate proposed in Wu
and Xia (2016). Furthermore, we conduct a battery of robustness tests and provide substantial support
that our results are: not sensitive to the prior specification; our choice of illiquidity proxy; or extending
the information set. For policymakers, our study warrants liquidity provision to financial markets during
periods of persistent financial stress (Claessens et al., 2012).
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Gaĺı, J., Gambetti, L., 2009. On the Sources of the Great Moderation. American Economic Journal:
Macroeconomics 1 (1), 26–57.

Gertler, M., Karadi, P., 2011. A Model of Unconventional Monetary Policy. Journal of Monetary Eco-
nomics 58 (1), 17–34.
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