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New findings: 

What is the central question of this study? 

Can iNOS modulation reduce pain behaviour and pro-inflammatory cytokine signalling 

in a rat model of neuropathic pain? 

 

What is the main finding and its importance? 

Nitric oxide synthase based therapies could be effective for the treatment of peripheral 

neuropathic pain.  
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Abstract (250 words) 

Peripheral neuropathic pain (PNP) resulting from injury or dysfunction to a peripheral nerve, 

is a major health problem affecting 7-8% of the population. It is inadequately controlled by 

current drugs, and is characterized by pain hypersensitivity which is believed to be due to 

sensitization of peripheral and CNS neurons by various inflammatory mediators. Here we 

examined, in a rat model of PNP: a) whether reducing levels of nitric oxide (NO), with 

1400W, a highly selective inhibitor of inducible NO synthase (iNOS), would 

prevent/attenuate pain hypersensitivity, and b) the effects of 1400W on plasma levels of 

several cytokines that are secreted post iNOS upregulation during chronic pain states. The 

L5-spinal nerve axotomy (SNA) model of PNP was used, and 1400W (20mg/kg) 

administered intraperitoneally at 8 hour intervals for three days starting at 18 hours post-

SNA. Changes in plasma concentrations of 12 cytokines in SNA rats treated with 1400W 

were examined using multiplex ELISA. SNA rats developed behavioural signs of mechanical 

and heat hypersensitivity. Compared with the vehicle/control, 1400W significantly: a) limited 

development of mechanical hypersensitivity at 66 hours post-SNA, as well as heat 

hypersensitivity at 42 hours and at several time-points tested thereafter, and b) increased the 

plasma concentrations of IL-1α, IL-1β, and IL-10 in the SNA rats. The findings suggest that 

1400W may exert its analgesic effects by reducing iNOS and altering the balance between the 

pro-inflammatory (IL-1β and IL-1α) and anti-inflammatory (IL-10) cytokines and that 

therapies targeting NO or its enzymes may be effective for the treatment of PNP.  
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Introduction (500 words) 

Chronic peripheral neuropathic pain (PNP) is defined as pain resulting from nerve 

dysfunction/lesion of the somatosensory system, and affects approximately 7-8% of the 

general population (Bouhassira & Attal, 2016). In humans, PNP is presented in the clinic by 

spontaneous/ongoing pain and hypersensitivity to normally painful stimuli (hyperalgesia) or 

non-painful stimuli (allodynia) (Bonica, 1990). PNP is inadequately controlled by currently 

available drugs, most of which lack efficacy and/or have adverse side-effects. Despite its 

clinical importance, the underlying mechanisms of PNP are not fully understood. However, 

preclinical studies using animal models of PNP, including the L5-spinal nerve axotomy 

(SNA) rat model (Kim & Chung, 1992), suggest that PNP is due to both sensitization of 

primary afferent nociceptive neurons (peripheral sensitization) and CNS neurons (central 

sensitization) (Campbell & Meyer, 2006; Costigan et al., 2009; von Hehn et al., 2012). 

Numerous inflammatory mediators, often termed “sensitisers”, including pro-inflammatory 

cytokines and reactive oxygen and nitrogen species (ROS/RNS) such as nitric oxide (NO), 

contribute to peripheral and central sensitization (Ren & Dubner, 2010; Kim et al., 2011; 

Schomberg et al., 2012). 

NO is produced by NO synthase (NOS) from L-arginine and is an important 

signalling molecule in cell-to-cell communication. Of the three isoforms of NOS (endothelial, 

neuronal and inducible), inducible NOS (iNOS) is the primary active isoform of NOS that is 

upregulated at early stages post injury and during chronic inflammatory processes (Gühring 

et al., 2001; Conti et al., 2007; Hamza et al., 2010). The key cells that produce NO following 

nerve lesion are those residing in and around the injured nerves, such as activated glial cells 

and infiltrated macrophages that induce prolonged iNOS transcription in response to nerve 

injury (Aley et al., 1998; Amitai, 2010; Bradman et al., 2010; Benarroch, 2011). NO-has also 
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been shown to mediate neuronal hyperexcitability in the chronic constriction injury (CCI) 

pain model (Makuch et al., 2013) (Mukherjee et al., 2014). 

Pro-inflammatory cytokines have been shown to be correlated with pain severity in 

chronic pain states (Marchand et al., 2005; Uceyler et al., 2006; Koch et al., 2007b; Uceyler 

& Sommer, 2008; Leung & Cahill, 2010). The NO and in turn cytokines produced post-injury 

sensitize neurons and exacerbate hypersensitivity (von Hehn et al., 2012). We hypothesized 

that reducing levels of NO specifically produced by iNOS at an early stage post nerve injury 

with 1400W, a highly selective inhibitor of iNOS (Tang et al., 2007), would prevent 

development of pain hypersensitivity, which is believed to result from hyperexcitability of 

both peripheral and CNS neurons and also reduce the milieu of cytokines produced post 

injury which could exacerbate this hypersensitivity. This hypothesis was based on our recent 

findings that 1400W significantly reduced neuronal hyperexcitability in a rodent model of 

temporal lobe epilepsy (TLE) (Puttachary et al., 2016), as well as a study by Makuch et al. 

(2013) showing 1400W to be effective in a  CCI pain model. 

We tested this hypothesis, in the SNA rat model of PNP that exhibits behavioural 

signs of allodynia and hyperalgesia, which are similar to the clinical signs observed in human 

patients with peripheral neuropathy (Chung et al., 2004). We also examined the impact of 

1400W on the plasma concentration of several cytokines which are upregulated during 

chronic pain states. We used 1400W, because it has been shown to be efficacious in reducing 

NO levels both in vivo and in vitro (Garvey et al., 1997) and it is a promising agent in other 

neurological conditions including traumatic brain injury (Jafarian-Tehrani et al., 2005), TLE 

(Puttachary et al., 2016), and CCI whereby 1400W enhanced morphine’s anti-nociceptive 

effects (Makuch et al., 2013).    



 
 

5 
 

Methods 

Ethical Approval 

All experimental procedures were performed under a UK Home Office licence and complied 

with the UK Animals (Scientific Procedures) Act 1986, establishment licence X70548BEB 

and project licence 40/3401 and ethically approved by the University’s Animal Welfare 

Committee. All the experiments also conform to the principles and regulations, as described 

in the Editorial by Grundy (2015). Adult male Wistar rats (180-280g) purchased from Charles 

River, UK were housed in a temperature-controlled room (22-25˚C) with food and water ad 

libitum on a 12-hour light/dark cycle in the University of Liverpool animal facilities. A total 

of 22 rats were used for this study; naïve + vehicle n=3, naïve + 1400W n=3, L5-SNA+ 

vehicle n=7and L5-SNA+1400W n=9. The investigators of this study fully understand the 

ethical principles under which this journal operates and that all the work carried out in this 

study complied with the animal ethics checklist. 

Preparation of the SNA model of PNP 

L5-SNA surgery was performed under deep anaesthesia in sterile and aseptic conditions. The 

SNA model was produced by tight ligation and transection of the left L5 spinal nerve using a 

modification of the procedure described originally by (Kim & Chung, 1992). Briefly, under 

gaseous isoflurane anaesthesia (1:1 ratio of O2 to N2O, 2L/min) rats were placed in a prone 

position, the surgical site (lumbar spine) was prepared and Videne antiseptic cream was 

applied. The hip bone was located and a paramedian incision was made through the lumbar 

epaxial muscles to expose the spinal processes of the vertebrae including the L6 transverse 

process. Using a sterile bone cutter, part of the L6 transverse process was removed to allow 

access to the L4-L5 spinal nerves. The L5 spinal nerve was exposed, a tight ligature was 

placed around the nerve with a 6-0 silk suture (Ethicon, Brussels, Belgium; Look, Taunton, 

UK) and the nerve was cut distal to the suture to prevent regeneration. Using a polysorb 
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thread, the muscles were sutured before the skin incision was stapled. The L5-SNA rats were 

randomly divided into two groups. The experimental group was treated with 1400W, and the 

vehicle control group received an equal volume of physiological saline. A separate sham-

operated group was not used for this study because previous studies have found no significant 

phenotypic differences in both mechanical and thermal hypersensitivity between L5-SNA 

sham rats and the normal un-operated naïve rats (Ma et al., 2003; Djouhri, 2006; Djouhri et 

al., 2012). No other drugs were administered post-surgery as this was justified in the Home 

Office project licence on the grounds that post-operative analgesia would impact the 

experimental results due to the possible effects on the complex physiological processes that 

result in the formation of chronic pain. 

Drug Administration 

1400W (N-[[3-(Aminomethyl) phenyl] methyl]-ethanimidamide dihydrochloride (Tocris 

Bioscience, UK) or vehicle (physiological saline) was administered intraperitoneally at 

5ml/kg beginning at 18 hours post-L5 SNA. 1400W treatment (20 mg/kg) or vehicle 

administration was repeated at 8 hour intervals for the first three days post-surgery. Injections 

were given after behavioural testing had been performed; this was to ensure that the 

behavioural responses were not affected by any stress or discomfort due to scruffing or 

injection. The optimal dose of 1400W was determined based on pilot studies of dose response 

experiments. The rationale for the treatment regime was based on previous studies by 

Parmentier et al. (1999) and Pearse et al. (2003) stating  that iNOS activity develops 

approximately 18-24hrs post insult and the 8-hour interval between doses was chosen as it 

has been shown that ability of 1400W to suppress iNOS was detectable at 6hrs but inefficient 

at 9hrs. This study did not aim to completely block iNOS activity but rather to suppress the 

pathological levels of iNOS mediated NO production following nerve injury. The dosage and 
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treatment course have been shown to be effective in iNOS suppression and in reducing 

neuropathological outcomes in various experimental models (Garvey et al., 1997; Parmentier 

et al., 1999; Puttachary et al., 2016). 

Behavioural sensory testing  

All of the rats used in the present study maintained good health and normal levels of 

exploratory, feeding, and grooming activities, and their weight gain during the course of the 

experiment was indistinguishable from naïve rodents. The behavioural tests were performed 

in specialised behaviour testing chambers (Ugo Basile, Italy). All animals were acclimatised 

to the cages and nociceptive responses performed once exploratory and grooming behaviours 

had stopped. We assessed responses to both mechanical and heat stimuli to assess mechanical 

and thermal hypersensitivity, the two forms of evoked pain behaviours that are routinely 

observed in clinical pain settings (Kim et al., 1997; Backonja & Stacey, 2004). The stimuli 

were applied to the mid-plantar surface of the ipsilateral hind paw (L4 dermatome), avoiding 

the footpads. Habituation was performed 2–3 days before testing for the baseline pain values 

(pre-SNA). Assessments for the baseline values were carried out 1 day before SNA surgery. 

Pain behavioural tests were also conducted every 8 hours starting at 18 hours post-L5 SNA 

for 3 days, followed by every 24 hours for 10 days. The researcher who carried out the 

behavioural studies was blinded to the drug treatment and comparisons between pain-related 

behaviours were made in 2 groups only: 1400W-treated and vehicle-treated L5 SNA rats. For 

each behavioural test, each stimulus was applied four times and the Mean±SD values for each 

time point was calculated for all the groups. The two forms of evoked pain (mechanical and 

heat hypersensitivity) were assessed by measuring the following parameters:  

 

a) Withdrawal threshold to mechanical stimulus 
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The automated von Frey/dynamic plantar electronic aesthesiometer (UgoBasile, Italy) was 

used to evaluate mechanical hypersensitivity (mechanical allodynia). A blunt probe was 

applied at increasing force intensities, from 0-50g over 15 seconds, through an elevated mesh 

floor, to the plantar surface of the animal’s hind paw whilst the rat was held in a Perspex 

cage. Tests were repeated four times and the mean of these trials was used for each time point 

for each rat. The withdrawal threshold was recorded in grams (g). Mechanical 

hypersensitivity was inferred from the decreased mean paws withdrawal thresholds to a 

mechanical stimulus as described previously (Weng et al., 2012).  

 

b) Withdrawal latency to noxious heat 

As described previously (Djouhri, 2006; Weng et al., 2012), heat 

hypersensitivity/hyperalgesia was inferred from a decrease in the mean paw withdrawal 

latency (in seconds) to the heat stimulus using a Hargreaves analgesiometer (Ugo Basile, 

Comerio, Italy). Each rat was placed on a 2mm thick glass floor under which the laser heat 

source was aligned. The thermal stimulus (50
o
C) was applied from a concentrated circular 

9mm round heat source. The withdrawal response time (latency) to the heat stimulus was 

measured in seconds. The onset of heat stimulus activated a timer that stopped automatically 

when the evoked paw withdrawal was detected. Three measurements of latency were taken 

and averaged for each hind paw and for each rat. To minimize sensitization, the rodent hind 

paws were tested alternately with 5 minute intervals between stimuli on the same hind paw. 

Plasma cytokine expression profiles 

At the end of the experiments, all animals were euthanized with an overdose of 

pentobarbitone (60 mg ⁄ kg, i.p.). Under terminal anaesthesia, the caudal vena cava was 

transected to collect blood for the cytokine ELISA. Immediately afterwards, transcardiac 

perfusion was performed with 4% paraformaldehyde in PBS in 0.1M (PBS-PFA) for tissue 
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collection for studies not reported here. Ideally, repeated samples would have been taken 

throughout the study but this was not allowed due to the nature of the Home Office licence 

and the volume of blood needed for the assays. The blood was immediately placed in plasma 

separation tubes containing 3 I.U Heparin/ml of blood. All samples were stored on ice, 

protected from light, and then centrifuged at 2000g for 10 minutes. The supernatant 

containing the plasma was separated and immediately frozen at −20°C prior to cytokine 

profiling. A rat pro-inflammatory multiplex ELISA kit (Qiagen, UK) was used to determine 

plasma concentrations of 12 inflammatory cytokines (IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, 

IL-12, IL-13, IFN-γ, TNF-α, GM-CSF and RANTES) which are known to be involved in 

pro- or anti-inflammatory processes following injury to the nervous tissue (Schäfers et al., 

2003; Sung et al., 2004; Zhang & An, 2007; Wang et al., 2012). The multiplex ELISA was 

carried out as per the manufacturer’s instructions with appropriate positive and negative 

controls. The multiplex ELISA plates were read in a SPECTROstar Nano Microplate Reader 

(BMG LabTech, Germany) within 30 minutes of adding the stop solution. The optical density 

(OD) values were obtained and once blank corrected, Mean±SD was calculated for each 

sample and then appropriate statistical analysis performed.   

 

Statistical Analysis 

The behavioural data were normally distributed and were therefore, expressed as mean ± SD. 

A repeated measures ANOVA followed by a Tukey Pairwise Comparison was used to 

analyse the behavioural data for each of our 5 time points with a full 16 animal datasets 

(Minitab Inc, PA, USA).  For plasma cytokine analysis, a general linear model followed by a 

Tukey`s Post-hoc test was performed (Minitab Inc, PA, USA). Statistical significance was 
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defined as P ≤ 0.05 and the significance level is indicated on the graphs as follows:  *P< 

0.05; **P < 0.01, and ***P < 0.001. 

 

Results 

1400W limits development of mechanical hypersensitivity after L5-SNA  

To determine whether reducing levels of iNOS-mediated NO levels with 1400W would 

attenuate mechanical hypersensitivity/allodynia associated with nerve injury, we measured 

the paw withdrawal thresholds (PWT) to a mechanical stimulus (using an automated von 

Frey type system, see Methods). The data were collected before and at several time points 

after L5-SNA in SNA rats treated with 1400W (1400W group), and in vehicle-treated SNA 

rats.  There was a significant effect of treatment (F(1,56) = 8.86; P<0.01), and time (F(3,56) = 

13.67; P<0.001) ) on mechanical hypersensitivity and a significant interaction between 

treatment and time (F(3,56) = 6.21; P<0.01). Comparison of PWT values at various time points 

(18, 42, 66, 90, 162 and 258 hours) after the L5-SNA in the vehicle group with the pre-

operated (pre-SNA) values, showed significant decreases (P<0.05) in the mean PWT at all 

the time points (Fig. 1) indicating development of mechanical allodynia in vehicle-treated 

SNA rats. Interestingly, the mean PWTs in the 1400W group were significantly higher at 66 

hours post treatment compared to those in the vehicle group. The mean PWT at the latest 

point tested (258 hours) was also similar to the pre-axotomy (pre-SNA) value. However, as 

shown in Fig. 1, there was no significant change in the mean PWT at other time points (18, 

42, 90, 162 hours) in the drug treatment group when compared with the vehicle group.   

1400W limits development of heat hyperalgesia after L5-SNA 

Comparisons of the mean paw withdrawal latency (PWL) values between the vehicle treated 

at the different time points post-surgery and the pre-operated (pre-SNA) values show that at 
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all the time points tested (Fig. 2) there were significant decreases (P<0.05) in the mean PWL, 

indicating development of heat hypersensitivity/hyperalgesia in the vehicle-treated  SNA rats. 

1400W significantly increased the mean PWL at several time points (42, 66, 162 hours) when 

compared with the vehicle group (Fig. 2).   Overall, there was a significant effect of treatment 

F(1,56) = 110.33; P<0.001), and time (F(3,56) = 2.73; P≤0.05) on mechanical hypersensitivity 

and a significant interaction between treatment and time (F(3,56) = 3.64; P<0.05). 

1400W treatment increases the plasma concentrations of IL-1α, IL-1β, and IL-10 

cytokines in L5-SNA rats 

Having established that 1400W limits heat and mechanical hypersensitivity in SNA rats, we 

examined our hypothesis that 1400W may exert its analgesic effects by altering the levels and 

ratios of pro- and anti-inflammatory/nociceptive cytokines. To investigate this, we analysed 

plasma concentrations of 12 cytokines (IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12, IL-13, 

IFN-γ, TNF-α, GM-CSF and RANTES).  

Eight of the 12  measured cytokines (IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, 1L-12 and IFN-γ) 

were significantly upregulated post axotomy when compared to naïve rats as shown in figure 

3 (P<0.05). In addition to this, when examining the L5-SNA treated rats, 1400W treatment 

post-surgery caused a significant increase in the plasma concentrations of IL-1α, (P<0.05), 

IL-1β (P<0.01) and IL-10 (P<0.01) when compared with the vehicle group.  

Discussion 

In this study, we investigated for the first time, whether the selective iNOS inhibitor, 1400W 

limits pain hypersensitivity in the rat L5-SNA model of PNP. We found that 1400W 

administered intraperitoneally at 8 hour intervals starting at 18 hours post-SNA is more 

effective in preventing development of heat hypersensitivity/hyperalgesia than mechanical 
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hypersensitivity/allodynia. Whilst the L5-SNA model itself  is known to induce the release of 

several inflammatory cytokines, as in human counterparts (Strong et al., 2012), but the 

interesting aspect of this study is that compared to the vehicle-treated SNA rats, 1400W 

increased the plasma levels of the anti-inflammatory cytokine (IL-10) and the pro-

inflammatory cytokines (IL-1α and IL-1β) in the SNA rats.  

1400W limits the development of both mechanical and heat hypersensitivity in SNA 

rats.  

The L5-SNA model used in the present study is one of the most widely used models of PNP; 

numerous studies have shown this model to exhibit long-lasting (more than 8 weeks) 

behavioural signs of mechanical allodynia and heat hyperalgesia (Chung et al., 2004; Jaggi et 

al., 2011). As reported previously (Djouhri et al., 2012), these two evoked pain behaviours 

were indicated by significant decreases in the mean PWT from a mechanical stimulus, and in 

the mean paw withdrawal latency from a noxious heat stimulus respectively. The most 

significant finding of the present study is that 1400W prevented the development of both heat 

hypersensitivity/hyperalgesia and mechanical hypersensitivity/allodynia albeit to different 

extents. Fluctuations in the release of pro- and anti-inflammatory cytokines and the altered 

balance between these cytokines at different time points could underlie why we observed a 

significant reduction at only one time point in the mechanical hypersensitivity study. A 

limitation of this study was that cytokine concentrations were only measured at the end point 

as outlined in the methods and it would be very interesting to explore the temporal profile of 

all the 12 cytokines measured over time. This pain hypersensitivity is believed to result, at 

least partly, from hyperexcitability of primary afferent dorsal root ganglion (DRG) neurons 

(von Hehn et al., 2012). However, since in the L5-SNA model, the axotomized L5-DRG 

neurons are disconnected from their peripheral target in the hind paw, the anti-hyperalgesic 

and anti-allodynic effect of 1400W, in this model, must involve excitability modulation 
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(hyperexcitability) of the adjacent L4-DRG neurons (whose nerve fibres intermingle with the 

degenerating fibres of the L5-DRG neurons in the partially injured peripheral nerve) which 

are necessary for transmission of evoked pain signals to the CNS.  

We have previously demonstrated that axotomy increases the levels of nNOS in neurons, and 

iNOS in satellite glia cells (Schwann cells) and the infiltrated macrophages (CD68
+ve

 cells) in 

the DRGs (Bradman et al., 2010). iNOS levels have also been shown to be significantly 

upregulated during 12-24 hours post-nerve injury and to persist for a long period in both 

DRGs and the spinal cord (Iadecola et al., 1995; Levy & Zochodne, 1998; Levy et al., 1999; 

Parmentier et al., 1999; Perez-Asensio et al., 2005; De Alba et al., 2006; Martucci et al., 

2008). Although nNOS has a protective role in axotomized DRG neurons (Thippeswamy & 

Morris, 1997; Thippeswamy & Morris, 2002; Thippeswamy et al., 2004), the excessive NO 

produced from glia and infiltrated macrophages after peripheral nerve injury is known to 

sensitize both injured L5- and neighbouring uninjured L4-DRG neurons, as well as spinal 

cord neurons (Scholz & Woolf, 2007). Given that we have previously shown 1400W to 

suppress hyperexcitability of brain neurons for a prolonged period when administered soon 

after brain insult (Puttachary et al., 2016), it is possible that 1400W exerts its analgesic 

effects by reducing the sensitizing effects of NO on the uninjured L4-DRG neurons. 

However, a central mechanism of 1400W action by way of interfering with the central 

sensitization processes cannot be excluded, since we have demonstrated that 1400W crosses 

the BBB (Puttachary et al., 2016).   

Our findings that 1400W reduced neuropathic pain behaviours in the SNA rats are consistent 

with those of previous studies showing that blocking iNOS by intrathecal administration of 

1400W prior to induction of inflammation reduced inflammatory hyperalgesia in two 

experimental rat models of inflammatory pain (Tang et al., 2007), and that 1400W reduced 

inflammatory pain in a rat model of arthritis when administered at a prophylactic dose (Rocha 
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et al., 2002). The dosing regimen of 1400W tested in the present study is based on 1400W’s 

pharmacokinetic profile, and on the previous studies showing 1400W to be inefficient if 

given at intervals of longer than 9 hours (Parmentier et al., 1999; Perez-Asensio et al., 2005). 

 

1400W increases plasma concentrations of inflammatory cytokines in SNA rats. 

In the present study, we have investigated the plasma concentrations of 12 commonly known 

cytokines in SNA rats treated with 1400W because nerve injury-induced cytokines are 

expected to be released into the circulation. 1400W has previously been shown to ameliorate 

the pathogenesis of numerous neurological conditions (Parmentier et al., 1999; Pearse et al., 

2003; Jafarian-Tehrani et al., 2005), and with its similar structure and molecular weight to L-

arginine suggest it is BBB permeable. Indeed, we have previously demonstrated that 1400W 

can cross the BBB and exert its effects in rats, by reducing the serum albumin and 3-

nitrotyrosine (3-NT) levels in the hippocampus in the rat model of TLE (Puttachary et al., 

2016). Another study by Ryu and McLarnon (2006) outlined how 1400W can prevent BBB 

leakiness and reduce 3-NT levels in the hippocampus and is effective in modulating the target 

molecules within the brain and therefore able to cross BBB. The effects of 1400W reported in 

this study also imply that this selective inhibitor of iNOS may also act, at least in part, in the 

periphery, although the plasma studies carried out here investigated the systemic effects that 

1400W may have. We found that out of the 12 cytokines examined, the levels of IL-1α, IL-10 

and IL-1β were significantly elevated in the 1400W treated SNA rats. One possible 

mechanism for the effectiveness of 1400W in limiting the development of heat hyperalgesia 

and mechanical allodynia in SNA rats is by altering the balance between the pro-and and 

anti-inflammatory cytokines. This is because both IL-1α and IL-10 are typically thought to 

have anti-nociceptive effects (Vale et al., 2003; Wang et al., 2012; Zychowska et al., 2013; 
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Willemen et al., 2014). However, IL-1β is a widely reported pro-inflammatory mediator/pro-

nociceptive (Zychowska et al., 2013).  

The roles of IL-1α and IL-1β in nociceptive signalling have not been well characterised, but 

IL-1α expression levels are upregulated following nerve injury. However, a study by Mika et 

al. (2008) found that contrary to what might be expected with a pro-inflammatory cytokine, 

IL-1α administration had both anti-allodynic and anti-hyperalgesic properties (Rothman & 

Winkelstein, 2010; Kras et al., 2014). IL-1α and IL-1β have both been shown to cause 

increased expression of substance P in DRG neurons in vitro (Skoff et al. (2009). These 

findings are difficult to reconcile with the proposed anti-nociceptive and pro-inflammatory 

role for IL-1α (see above) because substance P is involved in the generation of neurogenic 

inflammation and is widely considered to be an algogenic substance, although low doses of 

substance P have been reported to  produce analgesia in a rodent pain model (Frederickson et 

al. (1978). The results presented in this study of increased plasma concentrations of IL-1β in 

SNA rats, compared with naïve rats, are consistent with those of previous studies of 

peripheral nerve injury (Sweitzer et al., 1999; Sommer & Kress, 2004; Zhang & An, 2007; 

Uceyler & Sommer, 2008). Our findings in this study show elevated levels of IL-1β in SNA 

rats treated with 1400W which is unexpected because IL-1β is considered as a pro-

nociceptive factor (Zychowska et al., 2013), and its upregulation is expected to exacerbate 

and not ameliorate neuropathic pain symptoms. However, IL-1β has been shown by some to 

also possess anti-nociceptive properties (Souter et al., 2000).  

Our findings of increased plasma concentrations of IL-10 in SNA rats are consistent with 

those of previous studies showing increased plasma concentrations of IL-10 in human 

patients with neuropathic pain and in rodent models of neuropathic pain (Koch et al., 2007a; 

Khan et al., 2015). IL-10 is believed to be effective in preventing or reducing pain in animal 

models by suppressing the synthesis of the pro-inflammatory mediators such as IL-1β and 
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TNF-α (Milligan et al. (2005); Soderquist et al. (2010); Clark et al. (2013); Zychowska et al. 

(2013), and to mediate both anti-inflammatory and anti-nociceptive functions (Austin & 

Moalem-Taylor, 2010). Based on these findings, and on our findings of elevated levels of IL-

10 in SNA rats treated with 1400W, one mechanism by which 1400W could prevent 

development of heat hyperalgesia and mechanical allodynia after L5-SNA is by way of 

increasing IL-10 levels in the microenvironment of uninjured L4 DRG neurons. These could 

in turn reduce levels of pro-inflammatory mediators and therefore the neuroinflammation 

associated with SNA. It is noteworthy, however, that any given cytokine may behave as a 

pro- as well as an anti-inflammatory cytokine depending on various factors including its local 

concentration, its target cell, or even the experimental model (Cavaillon, 2001). The ultimate 

outcome of any cytokine-signalling is also dependent on the type of the cytokine receptor 

being expressed and activated. For example, activation of IL-1 type I receptor mediates the 

inflammatory action of IL-1, whereas type II receptor activation supresses IL-1 binding 

activity (Arend, 1991; Kuno & Matsushima, 1994) suggesting that mere upregulation of 

ligands does not necessarily result in change of target cell functions. But in light of these 

data, and the behavioural study carried out on these L5-SNA treated rats, it is plausible that 

1400W may function by increasing the anti-nociceptive mediators (IL-1α and IL-10) to 

counteract and balance the neuro-immune response and in turn reduce neuronal 

hypersensitivity. 
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In conclusion, NO is one of the most potent known pro-inflammatory species. We found that 

inhibiting NO synthesis with a highly specific iNOS inhibitor, 1400W, limits the 

development of heat and mechanical hypersensitivity in the L5-SNA model of PNP. The 

measurement of concurrent increases in IL-1α, IL-1β, and IL-10 concentrations in the plasma 

of 1400W treated rats suggests that iNOS contributes to the pathophysiology of PNP and that 

1400W may exert its analgesic action by altering the balance between the pro- and anti-

inflammatory cytokines. These data suggest that therapies that target NO or its enzymes may 

be effective for treatment of PNP.  
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Figure legends 

Figure 1. Effects of 1400W on SNA-induced mechanical hypersensitivity/allodynia. 

Intraperitoneal administration of 1400W at 8 hour intervals starting at 18 hours post-surgery 

limited the development of mechanical hypersensitivity as evidenced by a significant 

reduction in the mean paw withdrawal threshold (PWT) to a mechanical stimulus at 66 and 

258 hours post-SNA compared with vehicle (n=9 for 1400W group; n=7 for the vehicle 

group; P<0.001 repeated measures ANOVA with Tukey post hoc test).  

 

Figure 2. Effects of 1400W on SNA-induced heat hypersensitivity/hyperalgesia. 

Intraperitoneal administration of 1400W at 8 hour intervals starting at 18 hours post-surgery 

prevented development of heat  hypersensitivity as evidenced by a highly significant 

reduction (P<0.001) in the mean paw withdrawal latency (PWL) to a heat stimulus at 3 of the 

time pointed tested post-SNA..  
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Figure 3. Plasma concentrations of cytokines in naïve and L5-SNA rats. The data in this 

figure are presented as median, with the median values of plasma concentrations of cytokines 

being represented with the horizontal lines within the rectangular boxes. The boxes represent 

the interquartile range of the values of measured cytokines, whereas the whiskers span 

minimum to maximum measured values including outliers. For all cytokines measured, there 

were no significant changes in cytokine concentrations between the naïve + vehicle and the 

naïve + 1400W however in the pain states (denoted by L5-SNA underneath), 1400W caused 

a significant increase in the median levels of the pro-inflammatory cytokines IL-1α (P<0.05) 

and IL-1β (P<0.01) as well as a highly significant increase (P<0.001) in the anti-

inflammatory cytokine IL-10 compared with the vehicle group. The figure also shows how 8 

of the 12 cytokines examined were significantly higher in L5-SNA rats compared to the naïve 

rodents. The statistical analysis was carried out using the General Linear Model and a Tukey 

post hoc test (significance denotes as p<0.05, naïve+vehicle n=3, naïve+1400W n=3, L5-

SNA+vehicle n=6, L5-SNA+vehicle n=6). 
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