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 2 

Abstract 18 

Japanese encephalitis virus (JEV) is a mosquito-transmitted Flavivirus that is 19 

closely related to other emerging viral pathogens including dengue, West Nile (WNV) 20 

and Zika viruses. JEV infection can result in meningitis and encephalitis, which in 21 

severe cases cause permanent brain damage and death. JEV occurs predominantly in 22 

rural areas throughout Southeast Asia, the Pacific islands and the Far East, causing 23 

around 68,000 cases worldwide each year. In this study, we present a 2.1 Å resolution 24 

crystal structure of the C-terminal β-ladder domain of JEV non-structural protein 1 (NS1-25 

C). The surface charge distribution of JEV NS1-C is similar to WNV and ZIKV but differs 26 

form DENV. Analysis of the JEV NS1-C structure, with in silico molecular dynamics 27 

simulation and experimental solution small angle X-ray scattering, indicates extensive 28 

loop flexibility on the exterior of the protein. This, together with the surface charge 29 

distribution, indicates flexibility influences the protein-protein interactions that govern 30 

pathogenicity. These factors also affect the interaction of NS1 with the monoclonal 31 

antibody, 22NS1, which is protective against West Nile virus infection. Liposome and 32 

heparin binding assays indicate that only the N-terminal region of NS1 mediates 33 

interaction with membranes, and that sulfate binding sites common to NS1 structures 34 

are not glycosaminoglycan binding interfaces. This study highlights several differences 35 

between flavivirus NS1 proteins and contributes to our understanding of their structure-36 

pathogenic function relationships.  37 
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Importance 38 

JEV is a major cause of viral encephalitis in Asia. Despite extensive vaccination, 39 

epidemics still occur. Non-structural protein 1 (NS1) plays a role in viral replication and, 40 

because it is secreted, it can exhibit a wide range of interations with host proteins. NS1 41 

sequence and protein folds are conserved within the Flavivirus genus, but variations in 42 

NS1 protein-protein interactions among viruses likely contribute to differences in 43 

pathogenesis. Here, we compared characteristics of the the C-terminal β-ladder domain 44 

of NS1 between flaviviruses including surface charge, loop flexibility, epitope cross-45 

reactivity, membrane adherence, and glycosaminoglycan binding. These structural 46 

features are central to NS1 functionality and may provide insight into the development 47 

of diagnostic tests and therapeutics.  48 
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Introduction 49 

JEV is a positive-sense single strand RNA virus with a 10.9 kb genome, which is 50 

translated into a polyprotein consisting of three structural proteins (capsid, membrane, 51 

and envelope protein (E)), and seven non-structural proteins ((NS)1, NS2A, NS2B, 52 

NS3, NS4, NS4B, and NS5). Flavivirus NS1 is a multifunctional glycoprotein that has 53 

drawn attention because of its importance in viral replication, immune modulation, and 54 

immune evasion. Mutagenesis and trans-complementation assays have established 55 

that flavivirus NS1 is essential for RNA replication (1-5) and co-localizes with the 56 

replication complex (2). Transcomplementation suppressor mutagenesis studies 57 

indicate that YFV NS1 interacts with NS4A (6) and WNV NS1 interacts with NS4B (7). 58 

WNV NS1 forms a physical complex with NS4B based on coimmunoprecipitation 59 

experiments (7). NS1 has been described as a complement fixing antigen (8-11), and 60 

DENV NS1 binds to complement pathway components C1s, C4, C4b (12, 13) whereas 61 

WNV NS1 also can interact with factor H (14) to which protect infected cells from 62 

complement-dependent clearance. NS1 also may interfere with the dsRNA sensor Toll-63 

like receptor 3 (TLR-3) (15) to escape host pathogen recognition receptor detection.1 64 

DENV NS1 can induce inflammatory cytokine production, endothelial cell permeability, 65 

and changes to the glycocalyx (16) possibly through interactions with TLR-4, all of 66 

which appear to contribute to the development of severe dengue (17, 18). Although 67 

direct interactions between JEV NS1 and TLR-4 have not been evaluated, it may play a 68 

role in JEV pathogenesis, becasue deletion of the TLR-4 gene enhances resistance to 69 

JEV (19). 70 
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A signal sequence at the C-terminus of E protein translocates NS1 to the 71 

endoplasmic reticulum (ER) where it undergoes cleavage and posttranslational 72 

modification (20). There are two characterized forms of NS1: a membrane-associated 73 

dimer (~49 kDa per monomer), found on ER surface and the plasma membrane, and a 74 

secreted hexamer (52- 55 kDa per monomer) (20). The mass of the two NS1 forms are 75 

different due to differential glycosylation. Structures of full-length WNV (21, 22), DENV 76 

(22), and ZIKV NS1 (23, 24) proteins have been reported. Most NS1 proteins contain 77 

six conserved disulfide bonds. NS1 shares a conserved N-linked glycosylation site at 78 

Asn 207. YFV, DENV, WNV, and JEV share a second glycosylation site at Asn 130, and 79 

most of the JE serogroup NS1 proteins have a third glycosylation site at Asn175 linked 80 

to high-mannose carbohydrate, but this is not present in JEV NS1 iteself (20, 25-27). 81 

The NS1 monomer of WNV, DENV and ZIKV contains 3 domains: β-roll (amino acid 82 

residues 1-29), wing (38-151), and β-ladder domains (181-352) (22-24). NS1 forms a 83 

homodimer by extending the β-ladder domain and connecting at β-roll domain forming a 84 

cross shape protein. One face of the dimer comprises of the protruding β-roll and part of 85 

the wing domain. The hydrophobic surface of the β-roll and wing domains may mediate 86 

the interaction with the cell membrane (22) via a number of amino acid residues 87 

identified from ZIKV, including 28, 115, 118, 123, and 160-163 (23, 24). The opposite 88 

side is composed of loops linking the surface β-strands of the ladder domain. This 89 

region is a potential host protein interacting surface due to its hydrophilicity. Three NS1 90 

dimers can assemble to form a hexameric pore, which can act as a lipid depot (22, 28). 91 

DENV NS1 expression on the infected cell surface may occur via a 92 

glycosylphosphatidylinositol (GPI) anchor, for which a hydrophobic carboxy-terminal 93 
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GPI-addition signal peptide at the N-terminus of NS2A is required (29-31). Soluble NS1 94 

also binds to uninfected cell membranes via glycosaminoglycans (GAGs), primarily 95 

heparan sulfate and chondroitin sulphate E (32). 96 

Secreted NS1 is used as diagnostic marker for flavivirus infection, as it is found 97 

in the blood at early stages (33, 34). Alternatively, detection of anti-NS1 IgM and IgG 98 

can be used (34, 35). Immunization of NS1 in mice or passive transfer of anti-NS1 99 

antibodies can confer protective effects against flavivirus challenge (34, 36-39). 100 

However, some anti-DENV NS1 antibodies reportedly are autoreactive and bind to host 101 

extracellular matrix components, platelets, and endothelial cells (8, 20), which may have 102 

pathogenic consequences. Flavivirus NS1 transferred with blood meal was found to 103 

enhance viral infection in mosquitoes by downregulating mosquito midgut immune 104 

genes (40). 105 

Most of our knowledge of JEV NS1 has been inferred from studies of DENV and 106 

WNV NS1. Although the protein sequences are highly conserved (Fig 1) and the DENV, 107 

WNV, and ZIKV NS1 structures display the same protein fold, there are important 108 

differences. For example, polyclonal antibodies raised against DENV NS1 in mice were 109 

shown to cross-react with proteins on epithelial cell: ATPase, protein disulfde 110 

isomerase, vimentin, and heat shock protein 60. The cross-reactive epitope was 111 

mapped to amino acid residues 311-330 on DENV NS1 (41) (Fig 1). Although JEV NS1 112 

shares these conserved epitopes, antibodies against JEV NS1 did not react to any of 113 

these host cell targets (41). NS1 alone was shown to cause endothelial leakage in 114 

DENV, but this was not detected in WNV, consistent with the non-vascular leakage 115 

phenotype of WNV disease (42). Similar to WNV, other encephalitic flaviviruses 116 
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including JEV may vary in their NS1-endothelium interactions. As another example, 117 

WNV NS1 binds the alternative complement pathway regulator, factor H, whereas JEV 118 

NS1 does not (8). 119 

NS1’ is an extended form of NS1 with 52 extra amino acids from the NS2A N-120 

terminus, generated by a -1 ribosomal frameshift (43). It is specific to the JE serogroup 121 

of flaviviruses. NS1’ was found in dimeric form (monomer molecular mass around 58 122 

kDa), detected in both cell lysate and culture media (44, 45), and suggested to play a 123 

role in neuroinvasiveness; selectively abolishing NS1’ production reduces WNV 124 

mortality in mice (43, 46). NS1’ co-localized with viral RNA replication complex, and can 125 

substitute for NS1 in cells (45). However, there is a discrepancy between the results of 126 

in vitro and in vivo studies. WNV NS1’ provides an advantage only in in vivo studies 127 

(47). There is also variation of NS1’ involvement in replication among different viruses. 128 

Whereas WNV NS1’ does not contribute to viral replication in vitro, JEV NS1’ mutants 129 

have less infectivity in a cell model (47, 48). Therefore, the role of NS1’ in the JEV life 130 

cycle and pathogenesis remains unclear. 131 

Here, we report the crystal structure of the C-terminal domain (amino acids 172-132 

352) of JEV NS1 and compare it with published DENV, WNV, and ZIKV NS1 structures. 133 

Our findings reveal a diversity in protein surface charges. Furthermore, the solution 134 

conformation of the protein was examined by small-angle X-ray scattering (SAXS) and 135 

molecular dynamics (MD) simulations along with analysis of cell membrane association. 136 

Importantly, we define a cross-reactive epitope on NS1 using an antibody that shows 137 

protective activity against WNV infection. Our study shows the common and contrasting 138 
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features of flavivirus NS1 structure, which contributes to our knowledge of the molecular 139 

basis of multiple NS1 functions. 140 

  141 
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Results 142 

Structure of C-terminal domain of JEV NS1 and NS1'. The crystal structure of 143 

the C-terminal region of JEV NS1 determined at 2.1 Å resolution is similar by fold to all 144 

previously solved flavivirus NS1 structures (Fig. 2a). The electron density is visible for 145 

residues 177-352, whereas the first 5 residues at the N-terminus are not visible. The 146 

monomer consists of 10 β-strands on one side and 4 helices and unstructured loops on 147 

the other side. Between each β-strand are β-turns and short loops, apart from β4 and 148 

β5 which are separated by a long unstructured loop (residues 218-273) (Fig. 2a-b). The 149 

protein contains four conserved disulfide bonds (C179-C229, C280-C329, C291-C312, 150 

and C313-C316) and hydrogen bonds between β-strands and loops. JEV NS1-C forms 151 

20 β-strands oriented in a head-to-head arrangement in the dimer, as do ZIKV, WNV, 152 

and DENV NS1 with the dimer length of 9.65 nm at its widest point (Fig. 2c). The dimer 153 

interface is created by 21 residues from each monomer with an average distance of 2.9 154 

Å (Tables 1 and 2). Eight of these interface residues are conserved among flavivirus 155 

NS1 (Table 1, score 7-9). The dimer is connected by 12 hydrogen bonds. When 156 

comparing the hydrogen bonding network at the dimer interface of the C-terminal 157 

domains of ZIKV (PDB ID 5IY3), WNV (4OIE), and DENV NS1 (4OIG), there are 6 158 

common residues with the same bond arrangement: Thr (JEV, ZIKV, WNV)/Ala (DENV) 159 

186 , Val (JEV, ZIKV, WNV)/Ile (DENV) 188, Thr (JEV, WNV)/Ser (ZIKV, DENV) 228,  160 

His 254, and Thr 230 –Trp 232 (Tables 1, 2, 3, and Fig. 3). In addition, we solved the 161 

structure of JEV NS1'-C, which is distinguished from NS1 by an extra 52 amino acids 162 

from the C terminus of the protein, to 2.6 Å resolution. The structure revealed the same 163 

protein fold and dimer orientation. However, it showed only 2 extra amino acids in 164 
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 10 

comparison with the C-terminal domain of JEV NS1 (0.348 Å Cα RMSD) (data not 165 

shown). The C-terminus is disordered, so the electron density is not visible. 166 

Solution model of JEV NS1-C dimer. The dimeric nature of JEV NS1-C was 167 

confirmed by SAXS studies performed on the protein in solution. The SAXS profiles 168 

calculated from the monomer and dimer of JEV NS1-C crystal structure were compared 169 

with the JEV NS1-C experimental SAXS data (Fig. 4a). A monomer of JEV NS1-C 170 

yielded a poor fit to the experimental data with χ of 14.11, whereas a dimer provided an 171 

improved fit with χ of 4.02. The radius of gyration of 27.02 Å was obtained from Guinier 172 

analysis, which agrees with the value extracted from the pair distribution function, 27.08 173 

Å. The pair distribution function of JEV NS1-C shows characteristics of a lengthy ovoid 174 

particle with the maximum intra-particle distance (Dmax) of 94.1 Å, similar to the widest 175 

point of JEV NS1-C dimer crystal structure (96.5 Å) (Fig. 2c and 4b). The calculated 176 

molecular mass was 45.5 kDa, corresponding to the dimeric form of C-terminus NS1. 177 

An averaged ab initio model was generated at 30 Å resolution with good similarity 178 

agreement (normal spatial discrepancy (NSD) = 0.513 ± 0.016) and compared with the 179 

JEV NS1-C dimer crystal structure (Fig 4c). The structures are well-matched although 180 

there is an extra region of mass near the dimer interface in the SAXS model (labelled M, 181 

Fig. 4c). This feature also is seen in the SAXS model of WNV, suggesting the NS1 182 

crystal structures of JEV and WNV may not fully represent the structure of the protein in 183 

solution (21). Analysis of the crystallographic atomic mean-square displacements or B-184 

factors in our JEV NS1-C crystal structure indicates that surface regions of loop 218-185 

272, particularly sub-loop 235-237, have high conformational freedom within the crystal 186 

lattice (Fig. 4d-e). A 40 nanosecond all atom molecular dynamics (MD) simulation of the 187 
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JEV NS1-C dimer at 37oC confirmed that movement of this loop is unrestrained in both 188 

monomers (Fig. 4d-e). We hypothesized that the apparent extra region of mass 189 

observed in the JEV NS1-C and WNV SAXS structures could be accounted for by the 190 

dynamic nature of the loop 218-272 and the resulting expansion of volume in the 191 

solution structures. To model JEV NS1-C behaviour in solution more accurately we 192 

created a pool of possible structures with varying loop 218-272 conformations and 193 

compared them with our SAXS data. Using this approach, we improved the fit to the 194 

experimental SAXS data from χ of 4.02 to 1.48 (Fig 4a). 195 

Comparison of JEV NS1-C with other flavivirus NS1-C structures. JEV NS1-196 

C has the same fold as ZIKV (2.2 Å resolution), WNV (2.6 Å resolution), DENV (3 Å 197 

resolution), and superposition gives Cα RMSD closest to WNV NS1 (1.162 Å for ZIKV, 198 

0.959 Å for WNV, and 1.333 Å for DENV) (Fig. 2c). The structural superimposition 199 

showed low positional conservation only at the N-terminus, C-terminus, and β-turns. 200 

The electrostatic surface potential maps of known NS1-C domains (ZIKV, WNV, and 201 

DENV) showed symmetric patterns consistent with homodimers. On the β-ladder 202 

surface, all displayed neutral charge in the central regions flanked by negatively 203 

charged regions (Fig. 5). This negatively charged region is small in DENV, larger in 204 

WNV, and expanded diagonally from the top left to bottom right in JEV and ZIKV. 205 

Adjacent to it, toward the ends, are small positively charged pockets that are seen 206 

clearly only in JEV and ZIKV, and the tips of all NS1-C have mixed charge. The loop 207 

surface is more variable than the ladder surface. DENV has a distinct positively charged 208 

central region, whereas JEV and WNV have negative charge in their central area. ZIKV 209 

is different, as the middle region displays both positive and negative charge. The 210 
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adjacent area has positively charged pockets in all NS1 structures (Fig. 5, Table 4). 211 

Three pockets are found in WNV and DENV, whereas ZIKV has only pockets 1 and 2, 212 

and JEV has pockets 1 and 3. The residues building the positively charged pockets are 213 

conserved in pocket 1 and partially conserved in pocket 2, pocket 3, and front pocket on 214 

ladder surface (Fig. 5b, Table 4). 215 

Cell membrane interaction via GAGs determination. Sulfate molecules were 216 

found on the surface of JEV NS1-C (Fig. 6, Table 5) similar to ZIKV (PBD ID 5K6K), 217 

WNV (4O6C), and DENV (4OIG). Moreover, they are distributed near the positively 218 

charged pockets. Hence, it is possible that this positively charged area is the binding 219 

site of negatively charged ligands. Sulfate containing molecules, such as GAGs, which 220 

are involved in NS1-dependent membrane attachment (32), could interact here. To test 221 

if the interaction with GAGs occurs via sulfate binding sites at the C-terminus, JEV NS1-222 

C binding to heparin agarose beads was analysed. However, the 20 kDa JEV NS1-C 223 

was found only in the flow-through and wash fractions (Fig. 7a) indicating that it did not 224 

interact efficiently with heparin. The interaction of heparan sulfate, chondroitin sulfate, 225 

and dermatan sulfate polymers with JEV NS1-C was investigated by protein thermal 226 

shift assay. No JEV NS1-C stabilizing effect was observed for any of GAG polymers 227 

tested even at high concentration of GAG (100 µM). The absence of GAG binding was 228 

consistent with the pull-down experiments. 229 

An interaction of JEV NS1-C with lipids common to cell membranes was tested 230 

using a liposome binding assay. JEV NS1-C did not associate with liposomes at either 231 

pH 7.5 and 5.5 (Fig. 7b). As full-length NS1 can bind liposomes (22, 49), it appears that 232 

the NS1 C-terminus is not responsible for membrane binding. We note that the 233 
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hydrophobic residues of β-roll and wing domains have been suggested to play a role in 234 

membrane binding (22-24). 235 

JEV NS1-C and JEV NS1’-C complexed with 22NS1 Fab. Comparison of the 236 

22NS1 antibody epitope of WNV-NS1-C with JEV NS1-C showed that 9 of 16 residues 237 

(Trp232, Ser239, Tyr260, Lys261, Thr262, Glu289, Arg294, Arg314, and Ser315) are 238 

conserved between the two viruses (Fig. 1) (36). Indeed, 22NS1 mAb cross-reacts with 239 

JEV NS1-C and NS1'-C protein, which was confirmed by Western Blotting analysis (Fig. 240 

8, lower left inset) and size exclusion chromatography (Fig. 8). JEV NS1-C and 22NS1 241 

Fab alone eluted at retention time of 7.9 and 8.3 min, respectively. JEV NS1-C 242 

incubated with 22NS1 Fab eluted faster at a retention time of 6.9 min corresponding to 243 

complex formation with a small amount of free 22NS1 Fab fragments left. The eluted 244 

fraction was analyzed by SDS-PAGE and 2 peaks representing JEV NS1-C and 22NS1 245 

(~25 kDa) were identified. This confirms that NS1 and 22NS1 mAb interact in solution 246 

(Fig. 8, lower right inset). The incubation also generates a small peak at retention time 247 

of 6.1 min. This may represent a higher order oligomer of JEV NS1-C, which recruits 248 

multiple 22NS1 monomers into a complex which higher hydrodynamic radius than the 249 

2:2 complex observed at 6.9 min. In support of this idea, we note the absence of the 250 

NS1-C species eluting at ~7.4 min in the complex chromatogram. The protein-Fab 251 

complex also was analysed by SAXS. The complex experimental profile was compared 252 

to the WNV NS1-C-22NS1 complex (PDB ID 4OII) calculated SAXS scattering profile 253 

(Fig. 9a and c). The complex (4OII) however, gave a poor fit to the experimental SAXS 254 

data with χ of 6.82. Guinier analysis gave the radius of gyration of 52.89 ± 0.34 Å, which 255 

coincides with 52.50 Å extracted from the pair distribution function. The pair distribution 256 
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function of the complex has multiple peaks which signify the multi-domain geometric 257 

shape with Dmax of 154.9 Å (Fig. 9b). The calculated molecular mass was 149.96 kDa. 258 

An averaged ab initio model was generated at 30 Å resolution. The Fab part of WNV 259 

complex (4OII) did not fit into the SAXS envelope and shifted from the positions in 4OII 260 

model, whereas the WNV NS1-C dimer fit well (Fig. 9c-e) indicating flexibility of Fab 261 

epitope in solution. We generated a pseudo-atomic model of the JEV NS1-C antibody 262 

complex by replacing the WNV-NS1-C with JEV NS1-C and optimizing the position of 263 

the Fab molecules. This model with the 2 Fab molecules shifted away from its primary 264 

location in 4OII model had better fit to the SAXS data (χ of 6.82 to 3.09; Fig. 9a, 9c-e). 265 

Both JEV NS1-C and NS1’-C are able to cross-interact with the protective WNV 22NS1 266 

mAb in which JEV NS1-C interact with some flexibility.  267 
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Discussion 268 

Flavivirus NS1 proteins have generated much interest because of their multiple 269 

functions in viral replication, cell signaling, and immune evasion. Since 2014, the 270 

structures of nine NS1 proteins have been solved (21-24, 50). These proteins were 271 

expressed in bacterial or insect cell expression systems. Here, we expressed JEV NS1 272 

C-terminus in E. coli after the failure of several attempts to express full-length JEV NS1 273 

in E. coli, insect cells, and mammalian cells. We describe the first structure of E. coli 274 

expressed JEV NS1 C-terminus, which when compared to other NS1 structures as well 275 

as JEV NS1’-C, shows a high degree of structural conservation. As expected for NS1’, 276 

the same fold could explain the similar functions in vitro of NS1 and NS1’. However, the 277 

specific role of the extra amino acids is not clear yet, although WNV lacking the NS1' 278 

form are less neuroinvasive (43).  279 

The availability of WNV, DENV, and ZIKV NS1 structures has allowed us to 280 

assess similarity and differences which may be relevant to their functional behavior. All 281 

NS1 proteins are dimeric in crystallo, even though the recombinant protein contains only 282 

the C-terminal domain (21, 23). The molecular mass and low resolution model 283 

generated from SAXS data confirm the dimeric nature of the isolated C-terminal domain 284 

in solution. In contrast to previous work, which suggested that the β-roll domain is 285 

responsible for dimerization (49), we propose that 6 common residues which form 286 

hydrogen bonds at the dimer interface of all NS1 structures mediate dimer formation 287 

(49). In principle, inhibition of dimer formation by interposing a ligand at this site could 288 

facilitate anti-flavivirus drug development. 289 
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Both faces of the JEV NS1-C dimer display electrostatic surface charge diversity. 290 

However, when considering the full-length flavivirus NS1 protein structure (22-24), the 291 

ladder face of the C-terminal domain is positioned underneath the β-roll domain. The N-292 

terminus protects the central region of the ladder face from the environment. Besides 293 

that, the β-roll domain is contained by a hydrophobic region that is suspected to interact 294 

with the cell membrane or form a lipid cargo pore in NS1 hexamer making it harder for 295 

the ladder face to make an interaction. This model conflicts with a suggestion that the β-296 

ladder might bind to the complement control protein domain (sushi domain) of 297 

complement proteins (51). In comparison, the loop face in the JEV NS1-C is fully 298 

exposed with its diverse surface charge when compared to ZIKV, WNV, and DENV. 299 

Particularly, DENV has the most distinct positive central area whereas the rest are 300 

negatively charged. Positively charged pockets found on the loop face of the NS1 301 

crystal structure could mediate anionic ligand binding. Moreover, the pockets, especially 302 

pocket 1, are composed of conserved sequences and are found in all known NS1 303 

structures. The presence or absence of each pocket in NS1 from different flaviviruses 304 

may confer upon the individual NS1 proteins the ability to interact with different target 305 

proteins or ligands in a virus-specific manner. Sulfate molecules distributed on the NS1 306 

surface agree with previous findings for DENV and ZIKV and indicate the potential for 307 

anionic ligand interaction. We thought that NS1 might interact with uninfected cell 308 

membranes via these sulfate binding sites (32), but further experiments confirmed that 309 

JEV NS1-C cannot bind efficiently to heparin, heparan sulfate, chondroitin sulfate, or 310 

dermatan sulfate polymers. Thus, the sulfate binding sites are not GAG binding 311 

interfaces and could represent a crystallographic artifact. Moreover, JEV NS1-C cannot 312 
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bind to liposomes. Our results also suggest that NS1 C-terminal is not responsible for 313 

binding to the cell membrane through GAGs. Instead, cell membrane interactions may 314 

occur at the β-roll and wing domains, as was suggested previously (22-24). 315 

B-factor and MD analyses suggest that loop 218-272 is conformationally 316 

dynamic. Although the B-factors are high for this region, the X-ray structure does not 317 

show disorder. Loop 218-272 links strands β4 and β5 and is the longest JEV NS1-C 318 

loop. Interestingly, the 22NS1 epitope forms part of this loop (Trp232, Gly235, Ile236, 319 

Leu237, Ser239, Asp240, Asn253, Try260, Lys261, and Thr262). Binding with antibody 320 

may stabilize the loop as seen in the WNV NS1-C-22NS1 complex (4OII). We suspect 321 

that the dynamic 218-272 loop may harbor distinct protein-protein interaction functions, 322 

a phenomenon which was found independently in WNV (21). NS1 from other 323 

flaviviruses may share this characteristic. Taken together, the models agree that the 324 

membrane-associated NS1 dimer orients with the N-terminus facing the endoplasmic 325 

reticulum or cell membrane and the loop facing outward (21, 22, 24) making an 326 

interacting interface, and likely mediating the biological functions of the protein. 327 

Therefore, the loop domain could be a candidate for sturture based drug targeting. 328 

The anti-WNV NS1 mAb, 22NS1, is protective in mice and did not cross-react 329 

with DENV-2 (36). We demonstrated that this mAb can cross-react with the more 330 

closely related JEV NS1-C at the same epitope, but with some conformational flexibility. 331 

This finding agrees with our MD result showing elasticity in the epitope loop, which may 332 

affect the antibody-NS1 structure in solution. Even though the JEV NS1'-C has extra 333 

amino acids at the C-terminus, JEV NS1'-C can interact with WNV 22NS1 mAb 334 

indicating the C-terminal tail does not obstruct the binding surface of 22NS1. The C-tail 335 
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may then locate at the side flanking the dimer. The presence of NS1' is a shared 336 

characteristic of JE serocomplex viruses, and NS1' may have specific properties that 337 

contributes to the propensity of JE serogroup viruses to cause encephalitis.  338 

Despite Flavivirus NS1 proteins having a conserved protein fold, these proteins 339 

differ in their charge distribution, which may enable unique interactions with host 340 

proteins (8, 41). The fact that WNV 22NS1 mAb interacts with JEV NS1 is consistent 341 

with close similarity of charge distribution of WNV and JEV NS1. This similarity also 342 

extends to ZIKV. Overall, these results provide structural details that aid NS1 function 343 

determination and highlight both similarities and contrasts among NS1 othologs, which 344 

may be a productive avenue for developing common diagnostic and therapeutic 345 

strategies against this important group of Flavivirus diseases.  346 
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Materials and methods 347 

Protein expression and refolding. JEV strain SA14 (GenBank: M55506) was 348 

used as a template. Synthetic DNA optimized for expression in E. coli of JEV NS1 was 349 

acquired from Life Technologies. To create JEV NS1-C (amino acid residues 172-352) 350 

the target sequences were cloned into pET303 at XbaI/XhoI cloning site by using 351 

forward primer 5’ gctctagaatgCGTGAAGAAAGCACCGATGAATGTGAT 3’, reverse 352 

primer 5’ ccg ctcgagTTATGCATCAACCTGGCTACGAACCAG 3’. Synthetic JEVNS1’ 353 

was purchased from GenScript (Piscataway, NJ, USA). The full-length NS1’ was the 354 

NS1 sequence with 156 additional nucleotides. The frameshift sequence was manually 355 

added by insertion of thymine at position 3561 as a result of -1 ribosomal frameshifting. 356 

JEV NS1’-C were generated from the synthetic JEVNS1’ by using forward primer 5’ 357 

gctctagaatgCGTGAAGAAAGCACCGATGAATGTGAT 3’, reverse primer 5' 358 

ccgctcgagTTAATGCAGATGATAACCCCATGCATctg 3’. Proteins were expressed in E. 359 

coli by autoinduction and refolded by using method modified from previously described 360 

in Edeling et al, 2014. The theoretical molecular weight of JEV NS1-C and JEV NS1’-C 361 

are 20.54 kDa and 25.98 kDa. Protein yield and purity were analysed by SDS-PAGE. 362 

Protein crystallization and data collection. JEV NS1-C (~6 mg/ml) and JEV 363 

NS1’-C (5-7 mg/ml) were screened using commercial crystallization screens. Successful 364 

conditions were optimised by hanging drop method. Needle crystals of C-JEVNS1 were 365 

produced from 1 M Ammonium sulphate and 0.1 M MES pH 5.5. The crystals were flash 366 

frozen in reservoir buffer added with 20-25% ethylene glycol. The JEV NS1’ -C also 367 

crystallized in needle form in 1 M Ammonium sulphate and 5% propanol. The JEV NS1’-368 

C was cryo-protected in reservoir buffer with 20% glycerol. 369 
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X-ray data were collected at cryogenic temperature, wavelength of 0.98 nm, at 370 

beamline PROXIMA 1 at Soleil synchrotron, France and at beamline I02 at Diamond 371 

Light Source, UK. Data reduction was carried out by XDS programs (52) or iMosflm 372 

(53). The protein structure was determined by molecular replacement using the 373 

structure of WNV NS1 C-terminal domain (PDB: 4OIE, sequence identity >70%) as a 374 

starting model by MOLREP (54) in the CCP4 program suit. The structure was refined by 375 

REFMAC5 (55) and built in COOT (56). Data collection and refinement statistics are 376 

shown in Table 6 The JEV NS1-C refinement statistic of Ramachandran plot is 95.98% 377 

favoured and 0% outliers. MolProbity score is 1.6. The JEV NS1’-C refinement statistic 378 

of Ramachandran plot is 94.89% favoured and 0% outliers. MolProbity score is 1.84. 379 

Protein structure analysis. Assembly analysis was performed by program PISA 380 

(57). Conservation scores of residues on protein structures was given by Consurf (58) 381 

using 21 homologous sequences. The input homologous sequences of NS1 C-terminus 382 

were searched by the program and existing NS1 structure sequences were added 383 

manually. Electrostatic surface maps were generated by using PDB2PQR (59) to 384 

convert PDB files into PQR files and Adaptive Poisson-Boltzmann Solver (APBS) for 385 

electrostatics calculations (60) without pKa prediction. 386 

JEV NS1 C-terminus-22NS1 complex formation. Complex formation was 387 

confirmed by Western blot analysis, with 22NS1 (36) and goat anti-mouse IgG-HRP 388 

(Santa Cruz Biotechnology, sc-2055) used as primary and secondary antibodies, 389 

respectively. Purified JEV NS1 C-terminus and 22NS1 fragment antigen-binding (FAb) 390 

(prepared from 22NS1 IgG mAb using Pierce™ Fab Preparation Kit, Cat No. 44985) 391 

were mixed overnight at 4°C at 1:1 ratio JEV NS1-C to 22NS1 and purified by Agilent 392 
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Bio SEC-3 4.6 300 or GE Superdex 200 10 300 GL. Eluted fractions were analyse by 393 

SDS-PAGE. 394 

SAXS data collection and processing. The JEV NS1-C at a concentration of 395 

3.4 mg/ml and JEV NS1-C-22NS1 Fab complex at concentration of 3 mg/ml in TBS 396 

buffer (20 mM Tris-HCl pH 7.4, 150 mM NaCl) were analyzed with SEC-SAXS on 397 

beamline SWING at Soleil synchrotron, France. Samples were loaded onto an Agilent 398 

BioSEC-3 4.6/300 column at a flow rate of 0.25 ml/min, 15°C. Data were collected at a 399 

distance of 1.8 m and X-ray wavelength of 1 Å. Data processing was conducted in 400 

PRIMUS (61). Comparison of scattering profile was done in FoXS (62). Ab initio model 401 

was the average from 10 (JEV NS1-C) or 20 (protein complex) independent model 402 

calculations with (protein complex) or without symmetry (JEV NS1-C) using DAMMIF 403 

(63). The model was averaged with DAMAVER (64) and refined with DAMMIN (65). The 404 

low resolution model surface representation was created in CHIMERA (66) using 405 

‘molmap’ command. The molecular mass was calculated from Porod volume (67). 406 

Molecular dynamics (MD) simulations were performed using GROMACS 4.6.5 and 407 

GROMOS96 54A7 force field in a cubic box solvated with single point charge-E water 408 

molecules on JEV NS1-C dimers. A neutral charge was introduced at 150 mM NaCl. 409 

The distance between JEV NS1-C dimers and the box edge was set to 10 Å. Long 410 

range interactions were defined using the particle mesh Ewald algorithm and other non-411 

bonded interactions were restricted to 10 Å. An energy minimization was performed 412 

using the steepest descent algorithm followed by a 100 ps NVT ensemble at 310 K and 413 

a 200 ps NPT ensemble at 310 K and 1 bar. Production MD was performed at 310 K 414 

and 1 bar for 40 ns. Cα displacement was calculated with the GROMACS RMSF 415 
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function. Torsion angle MD was performed with CNS at 100,000 K for 37.5 ps with 416 

sampling every 7.5 fs in eight separate simulations. The best structure was found with 417 

FoXS using experimental data over data range 0.017<q<0.25 Å-1 and was refined with 418 

another eight separate 7.5 ps simulations and energy minimization in GROMACS using 419 

the procedure described above. Models again were compared with FoXS. Freeing loop 420 

214-243 gave a fit with experimental data of 1.66. Expanding the flexible region to 218-421 

272 allowed us to improve the fit to 1.48. 422 

Liposome binding assay. Liposome preparation was modified from previous 423 

publications (49, 68). Liposomes were prepared from cholesterol (CHOL) (Sigma, 424 

C8667) and 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (PC) (Sigma, P4329) at 1:9 425 

CHOL to PC (22, 49, 68). CHOL and PC powder were dissolved in chloroform. To 426 

achieve total 400 nmol, 40 nmol of CHOL and 360 nmol of PC were mixed together in a 427 

2 ml tube, and the lipid mixture was dried under nitrogen gas stream. To hydrate the 428 

lipid sheets, 50 µl of buffer (50 mM Bis-Tris pH 5.5, 50 mM (NH4)2S04, 10 % glycerol or 429 

150 mM KCl, 25 mM Tris-HCl pH 7.5, 1 mM DTT, 0.5 mM EDTA.) was added and 430 

incubated at room temperature on a shaker for 30 min. Then, the lipid was sonicated 431 

with an exponential probe at amplitude 4 for 30 sec with 30 sec interval on a warmed 432 

water bath for 5 times. Liposome binding reaction (50 µl) was setup at 400 nmol, 125 433 

nmol and 25 nmol of total lipid and mixed with 5 µg of protein. The reactions were 434 

incubated at 37°C for 45 min. After that, the reactions were centrifuged at 16000 x g for 435 

30 min at 22°C and the supernatant was transferred to a new tube. The lipid pellet was 436 

resuspended in 200 µl buffer and also transferred to a new tube. Liposomes were 437 

pelleted again and the supernatant was discarded. The liposome pellet was 438 
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resuspended in 30 µl of 1x SDS-PAGE sample buffer. Bovine cytochrome bc1 complex, 439 

membrane proteins, was used as positive control in 25 mM phosphate buffer pH 7.5, 440 

100 mM NaCl, 3 mM NaN3, 0.015 % DDM buffer. The supernatant and pellet fractions 441 

were analyzed by SDS-PAGE. 442 

Heparin binding assay. Small scale 50 µl column was setup in pipette tip by 443 

using heparin agarose beads (Affi-Gel heparin gel, BIO-RAD). The binding buffer was 444 

20 mM HEPES pH 7.4, 150 mM NaCl, and the elution buffer was 20 mM HEPES pH 7.4 445 

supplemented with 1.5 M and 2 M NaCl. The column was equilibrated with 400 µl of 446 

binding buffer. JEV NS1-C (5 µg) was applied to the column and incubated on a roller 447 

for 30 min at 4°C. The column was washed with 400 µl binding buffer 3 times before 448 

eluted twice with 100 µl of 1.5 M and 2 M NaCl elution buffer. Superoxide Dismutase 3 449 

(SOD3), which contain heparin binding domain, was used as positive control. Samples 450 

from each step: load, flow-through, wash, and elute, were analysed by SDS-PAGE. 451 

Differential scanning fluorimetry (DSF). Polymers of heparan sulfate (average 452 

molecular weight 30,000), chondroitin sulfate (62% chondroitin 4-sulfate and 33% 453 

chondroitin 6-sulfate, average molecular weight 45,400), and dermatan sulfate (average 454 

molecular weight 41,000) from Iduron at final concentration of 100, 50, 25, 10, 5, 1, 0.5 455 

µM were mixed with JEV NS1-C and Sypro Orange 5000X (Invitrogen) at final 456 

concentration of 10 µM and 10X, respectively. The reaction volume was 10 µl The 457 

experiments were set in 96 well-plates and performed using StepOnePlus™ Real-Time 458 

PCR Systems (software version 2.3) (Applied Biosystems). The reactions were 459 

equilibrated at 25 °C for 2 min followed by increase to 95 °C at 1 °C min-1. The 460 

experiments were performed in three replicates. 461 
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FIGURE LEGENDS 671 

Figure 1. Sequence alignment of full-length Flavivirus NS1 produced from 672 

Clustal W (1). An asterisk indicates fully conserved residue. A colon indicates 673 

conservation between groups of strongly similar properties. A period indicates 674 

conservation between groups of weakly similar properties. The amino acid sequences 675 

were used for X-ray structure studies: DENV1 U88535 for PDB ID 4OIG, DENV2 676 

M84727 for 4O6B, WNV 196835 for 4O6C and 4OIE, ZIKV KU365779 for 5IY3, and 677 

ZIKV AY632535 for 5K6K and 5GS6. The 22NS1 light chain epitopes are highlighted in 678 

red and heavy chain epitopes are in black squares. 679 

Figure 2. The C-terminal domain structure of JEV NS1. (a) Ribbon model of 680 

JEV NS1-C monomer. One side is built of 10 β-strands and the opposite is the non-681 

structured loops. Disulfide bonds are shown in yellow. (b) Topology diagram of JEV 682 

NS1-C. Four disulfide bonds are indicated as white spheres. β represent the β-sheet 683 

and η represent 310 helix. (c) Superimposed ribbon diagram of NS1-C of JEV 684 

(magenta), ZIKV (PDB: 5IY3, blue), WNV (PDB: 4OIE, green), and DENV1 (PDB: 4OIG, 685 

gold). 686 

Figure 3. Dimer interface of JEV NS1-C. (a, b) The surface of 21 residues from 687 

one monomer involved in dimer interface is colored in lime green and the surface that 688 

form hydrogen bonds are colored in dark green. Similarly, another monomer interfacing 689 

surface is in magenta and surface forming hydrogen bonds are in dark magenta. (c) 690 

Residues involved in hydrogen formation at the dimer interface are highlighted in lime 691 

green and magenta, respectively. Hydrogen bonds are indicated by dashed lines. 692 
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Figure 4. Solution model of JEV NS1-C dimer. (a) SAXS scattering curve. 693 

Experimental scattering curve is shown in black scattering. Scattering profile of JEV 694 

NS1-C monomer, dimer, and the best molecular dynamic simulation structure calculated 695 

with FoXS are shown in blue, green, and red, respectively. (b) Pair distribution functions 696 

(c) Low-resolution model of JEV NS1-C calculated from SAXS profiles docked with the 697 

crystal structure of the JEV NS1-C dimer. An extra region of mass is labelled with M. (d) 698 

RMSF plot of the molecular dynamic simulation at the flexible loop. RMSF values of 699 

each monomer are in black and red. Average β-factor of each residue is in grey. (e) The 700 

best molecular dynamic simulation structure (red) was superimposed with JEV NS1-C 701 

crystal structure (blue). The flexible loop 218-272 shown in yellow. 702 

Figure 5. JEV NS1-C compared to other flavivirus NS1-C structures. (a) 703 

Electrostatic surface map of NS1-C from JEV, ZIKV, WNV, and DENV. Surface is 704 

colored by electrostatic potential from -5 kT/e (red) to 5 kT/e (blue). Positive potential 705 

pockets are depicted in dash circles. (b) Surface model color-coded by conservation. 706 

The most conserved residues are represented in dark magenta and the most variable 707 

residues are represented in dark green. 708 

Figure 6. Sulfate molecules bound to the loop surface of JEV NS1-C. Sulfate 709 

molecules were found not only for JEV NS1, but also in DENV 4OIG, ZIKV 5K6K, and 710 

WNV 4O6C. Thus, it is suspected to be an importance sulfate binding interface. 711 

Figure 7. Cell membrane interaction via GAG determination. (a) Heparin 712 

binding determination. JEV NS1-C was incubated with heparin agarose beads. Total 713 

JEV NS1-C loaded to the column is shown in lane 1. Lane 2 is flow-through fraction. 714 

Lane 3-4 are wash fraction. The column was eluted with buffer supplemented with 1.5 M 715 

 on F
ebruary 21, 2018 by U

niversity of Liverpool Library
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/


 32 

NaCl shown in lane 5. Three independent experiments were conducted. (b) Liposome 716 

binding assay. The experiments were conducted at pH 7.5 (upper) and pH 5.5 (lower). 717 

Supernatant and pellet fractions separated by centrifugation were analysed by SDS-718 

PAGE. Lanes 1, 2, and 3, were pellet of 400 nmol, 100 nmol, and 25 nmol reactions, 719 

respectively. Lanes 4, 5, and 6, were supernatant of 400 nmol, 100 nmol, and 25 nmol 720 

reactions, respectively. Three independent experiments were conducted. 721 

Figure 8. JEV NS1-C complexed with 22NS1 Fab. JEV NS1-C was detected by 722 

22NS1 mAb (lower left inset). JEV NS1-C was incubated with 22NS1 Fab at 1:1 molar 723 

ratio protein to Fab fragment and the complex formation was analysed on an Agilent 724 

BioSEC-3 4.6/300. The lower right panel show SDS-PAGE analysis of each elution 725 

fraction. 726 

Figure 9. SAXS analysis of JEV NS1-C-22NS1 Fab complex. (a) SAXS 727 

scattering curve. Experimental scattering curve of JEV NS1-C-22NS1 Fab complex is 728 

shown in black scattering. Calculated scattering profile of WNV NS1-C -22NS1 complex 729 

(4OII) is displayed in green, and JEV NS1-C -22NS1 Fab complex manually fit model is 730 

shown in orange. (b) Pair distribution functions shows multiple peaks signify the multi-731 

domain structure. (c) WNV NS1-C-22NS1 complex (4OII). WNV NS1-C is colored in 732 

deep sky blue. 22NS1 Fabs are coloured in salmon. (d) WNV NS1-C-22NS1 complex 733 

(4OII) fit to the JEV NS1-C -22NS1 Fab complex ab initio model (upper). A pseudo-734 

atomic model JEV NS1-C -22NS1 Fab complex are manually fit to the ab initio model 735 

(lower). (e) JEV NS1-C-22NS1 Fab complex pseudo-atomic model. JEV NS1-C is 736 

coloured in light green. 22NS1 Fab is colored in orchid and another Fab is colored in 737 

sky blue. 738 
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Figure 10. JEV NS1 homology model. JEV NS1 full length model created by 739 

using SWISS-MODEL Homology Modelling. Dimerization was generated by 740 

superimposition of the JEV NS1 homology model to ZIKV NS1 PDB ID 5GS6. (a) 741 

Cross-shaped homodimer NS1. One subunit is coloured in grey and another is coloured 742 

by domain. β-roll (amino acid residues 1-29) domain is coloured in green, wing (38-151) 743 

domain is coloured in blue, and β-ladder domains (181-352) is coloured in brown. (b) 744 

Side view of NS1. Residues 108-128 of the JEV homology model are indicated in 745 

magenta. Residues 108-128 are disordered and not visible in DENV 4O6B, WNV 4O6C, 746 

but they are visible in ZIKV 5GS6 (shown in yellow) and 5K6K. Hydrophobic residues 747 

(28, 115, 118, 123, and 160-163) suspected to involve with cell membrane interaction 748 

are labelled. 749 

  750 
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Table 1 JEV NS1 C-terminus dimer interfacing residues 751 

Number Residue ASA (Å2)1 BSA (Å2)2 ΔG (kcal/mol)3 Conservation4 

1 Gly181 23.56 6.81 0.03 3 

2 Ala182 91.29 45.68 0.30 1 

3 Ile184 22.47 16.36 -0.18 5 

4 Gly185 40.33 16.05 0.26 7 

5 Thr186 37.46 36.73 -0.22 7 

6 Ala187 63.58 21.49 0.34 9 

7 Val188 64.98 63.40 0.34 6 

8 Lys189 181.59 9.98 0.16 8 

9 Gly190 63.17 54.83 0.30 5 

10 His191 110.70 33.66 0.74 1 

11 Trp210 60.01 29.42 0.08 5 

12 Glu227 104.51 54.79 0.51 5 

13 Thr228 120.12 94.74 0.66 6 

14 His229 54.08 52.04 0.90 9 

15 Thr230 24.89 21.26 -0.20 9 

16 Leu231 48.09 48.09 0.77 8 

17 Trp232 95.68 59.18 0.38 5 

18 Gly233 39.95 30.60 -0.02 4 

19 Asp234 91.67 54.93 0.26 6 

20 Asp235 128.72 0.58 -0.01 1 

21 His254 13.56 10.75 0.73 8 
1 ASA= Accessible Surface Area 752 

2 BSA= Buried Surface Area 753 

3 ΔG= Solvation energy effect 754 

1,2,3 Assembly analysis in the program PISA. 755 

4Amino acid conservation score are given by Consurf. (9 = conserved and 1 = variable)756 
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Table 2 Hydrogen bonds between JEV NS1 C-terminus dimer interfacing residues 757 

 758 

 759 

 760 

 761 

 762 

 763 

 764 

 765 

 766 

 767 

 768 

 769 

1 Assembly analysis in the program PISA. 770 

 771 

Number Structure 1 Distance (Å)1 Structure 2 

1 Gly190 [N] 2.93 Ile184 [O] 

2 Val188 [N] 2.86 Thr186 [O] 

3 Thr186 [N] 2.89 Val188 [O] 

4 His229 [NE2] 2.83 Gly190 [O] 

5 His254 [NE2] 2.94 Thr228 [O] 

6 Trp232 [N] 2.96 Thr230 [O] 

7 Ile184 [O] 2.93 Gly190 [N] 

8 Thr186 [O] 2.86 Val188 [N] 

9 Val188 [O] 2.89 Thr186 [N] 

10 Gly190 [O] 2.83 His229 [NE2] 

11 Thr228 [O] 2.94 His254 [NE2] 

12 Thr230 [O] 2.96 Trp232 [N] 
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Table 3 Residues forming hydrogen bond at dimer interface compared with 772 

existing flavivirus NS1 773 

JEV 
ZIKV WNV DENV 

5k6k 5gs6 5iy3 4o6d 4o6c 4oie 4o6b 4oig 

 
Asp1 His1 

 
Asp1 Asp1 

   

 
Val2 Val2 

 
Thr2 Thr2 

 
Ser2 

 

 
Cys4 Cys4 

 
Cys4 Cys4 

 
Cys4 

 

 
Ser5 Ser5 

 
 

    

 
Val6 Val6 

 
Ile6 Val6 

 
Ile6 

 

 
Phe8 

  
 

    

 
Ser9 

  
 

    

    
Arg10 Arg10 

   

 
Lys11 

  
 

    

 
Glu12 

  
Glu12 Glu12 

   
    Leu13     

 
Arg14 Arg14 

 
Arg14 Arg14 

 
Lys14 

 

 
Thr17 Thr17 

 
Ser17 Ser17 

 
Ser17 

 

 
Val19 Val19 

 
Val19 Val19 

 
Ile19 

 

 
Phe20 Phe20 

 
Phe20 Phe20 

   

 
Ile21 Val21 

 
Ile21 Ile21 

 
Ile21 

 

 
Tyr22 Tyr22 

 
 

    

 
Asn23 Asn23 

 
Asn23 Asn23 

 
Asp23 
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JEV 
ZIKV WNV DENV 

5k6k 5gs6 5iy3 4o6d 4o6c 4oie 4o6b 4oig 

 
Asp24 Asp24 

 
Asp24 Asp24 

   

 
Arg31 

  
Arg31 Arg31 

   

 
Tyr32 

  
Tyr32 Tyr32 

   

 
Asp157 Asp157 

 
 

    

    
 

  
Tyr158 

 
    Phe160     

 
Thr165 

  
Thr165 Thr165 

   

    
Ser181 Ser181 

   

    
Lys182 Lys182 

  
Arg182 

Ile184 Ile184 Ile184 Ile184  
    

    
 

   
Ser185 

Thr186 Thr186 Thr186 Thr186 Thr186 Thr186 Thr186 Ala186 Ala186 

Val188 Val188 Val188 Val188 Val188 Val188 Val188 Ile188 Ile188 

 
Lys189 

  
Lys189 Lys189 

  
Lys189 

Gly190 Gly190 Gly190 Gly190  
   

Asp190 

  
Lys191 

 
Asn191 Asn191 

   

 
192Glu Glu192 

 
 

    

 
193Ala 

  
 

    

 
Glu203 

  
Glu203 

    

 
Lys227 Lys227 Lys227  
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JEV 
ZIKV WNV DENV 

5k6k 5gs6 5iy3 4o6d 4o6c 4oie 4o6b 4oig 

Thr228 Ser228 Ser228 Ser228 Thr228 Thr228 Thr228 Ser228 Ser228 

His229 His229 His229 His229  
    

Thr230 Thr230 Thr230 Thr230 Thr230 Thr230 Thr230 Thr230 Thr230 

Trp232 Trp232 Trp232 Trp232 Trp232 Trp232 Trp232 Trp232 Trp232 

 
Thr233 Thr233 Thr233  

  
Ser233 Ser233 

 
Asp234 Asp234 Asp234  

  
Asn234 Asn234 

His254 His254 His254 His254 His254 His254 His254 His254 His254 

 774 

Note: shared residues are shaded in grey.775 
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Table 4 Residues forming positively charge pockets compared to existed C-NS1. 776 

JEV ZIKV WNV DENV 
Conservation1 

 5IY3 4OIE 4OIG 

Pocket 1  

Gly259 Gly259 Gly259 Gly259 9 

Tyr260 Tyr260 Tyr260 Tyr260 9 

Lys261 Arg261 Lys261 Phe261 1 

   Ala265 1 

Ser292 Gly292 Gly292 Gly292 1 

Lys293 Thr293 His293 Asn293 1 

Arg294 Arg294 Arg294 Arg294 9 

Cys313    9 

Arg314 Arg314 Arg314 Arg314 9 

Ser315 Glu315 Ser315 Ser315 5 

Cys316 Cys316 Cys316 Cys316 9 

Glu334 Glu334 Glu334 Glu334 9 

Pocket 2  

 Thr262 Thr262 Thr262 6 

 Met264 Asn264 Thr264 1 

 Lys265   1 

 Gly295 Gly295 Gly295 9 

 Pro296 Pro296 Pro296 4 

  Gly332  6 

 Met333 Met333 Met333 9 

 Thr351 Asn351 Ser351 3 

Pocket 3  

Gly295    9 

Pro296    4 

Ser297  Ala297 Ser297 9 
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JEV ZIKV WNV DENV 
Conservation1 

 5IY3 4OIE 4OIG 

Val298  Thr298 Leu298 1 

Arg336  Arg336 Arg336 9 

Pro337  Pro337 Pro337 9 

Met339    3 

   Glu340 2 

  Glu342 Glu342 8 

Leu345  Leu345 Leu345 6 

Arg347  Gln347 Lys347 3 

 777 

1Amino acid conservation score are given by Consurf. (9 = conserved and 1 = variable) 778  on F
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Table 5 Sulphate contact residues from assembly analysis in the program PISA 779 

(57) 780 

Area C-JEV 
ZIKV WNV C-DENV 

5K6K 4O6C 4OIG 

Tip 

Arg347 Ser342  His309 

Gln349 Glu343  Glu310 

Thr302 Thr302  Lys339 

Ser304 Ser304   

Lys306 Arg306   

Thr343    

Thr344    

Positively charge pockets 
Arg294 Arg294   

Arg314 Arg261   

Central 

Asp235  Gly235 His181 

   Lys206 

   Thr210 

   Ser228 

   Trp232 

   Asn234 

   Gly235 

 781 

 782 

  783 
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Table 6 Data collection and refinement statistics. 784 

 785 
 JEV NS1-C JEV NS1’-C 

Data collection   

Space group I212121 I212121 

Cell dimensions   

a, b, c (Å) 49.42, 78.24, 163.18 50.32, 77.94, 163.49 

a, b, g  (°) 90, 90, 90 90, 90, 90 

Resolution (Å) 47.3-2.10 (2.21-2.10) 81.75-2.6 (2.72-2.6) 

Rmerge 

Rpim 

0.103 (0.907) 

0.045 (0.383) 

0.2 (1.413) 

0.141 (1.030) 

I / σI 11.5 (2.3) 7.1 (2.1) 

Completeness (%) 

Redundancy 

99.8 (99.6) 

6.3 (6.5) 

99.9 (99.9) 

5.3 (5.2) 

   

Refinement   

Resolution (Å) 47.3-2.10 81.75-2.6 

No. reflections 17944 9719 

Rwork / Rfree 0.189/0.228 0.166/0.225 

No. atoms 

  Protein 

  Sulfate ion 

  Ligand 

  Water 

B-factors 

  Protein 

  Sulfate ion 

  Ligand 

  Water 

1574 

1398 

60 

24 (MES) 

92 

 

41.516 

90.121 

86.736 (MES) 

50.187 

1573 

1418 

60 

4 (POL) 

91 

 

38.612 

85.148 

61.722 (POL) 

48.669 

R.m.s. deviations   

Bond lengths (Å) 0.016 0.016 

Bond angles (°) 1.785 1.741 
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