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Abstract

Methods for representing the meaning of words in vector spaces purely using the
information distributed in text corpora have proved to be very valuable in various text
mining and natural language processing (NLP) tasks. However, these methods still
disregard the valuable semantic relational structure between words in co-occurring
contexts. These beneficial semantic relational structures are contained in
manually-created knowledge bases (KBs) such as ontologies and semantic lexicons,
where the meanings of words are represented by defining the various relationships that
exist among those words. We combine the knowledge in both a corpus and a KB to
learn better word embeddings. Specifically, we propose a joint word representation
learning method that uses the knowledge in the KBs, and simultaneously predicts the
co-occurrences of two words in a corpus context. In particular, we use the corpus to
define our objective function subject to the relational constrains derived from the KB.
We further utilise the corpus co-occurrence statistics to propose two novel approaches,
Nearest Neighbour Expansion (NNE) and Hedged Nearest Neighbour Expansion
(HNE), that dynamically expand the KB and therefore derive more constraints that
guide the optimisation process. Our experimental results over a wide-range of
benchmark tasks demonstrate that the proposed method statistically significantly
improves the accuracy of the word embeddings learnt. It outperforms a corpus-only
baseline and reports an improvement of a number of previously proposed methods
that incorporate corpora and KBs in both semantic similarity prediction and word
analogy detection tasks.

1 Introduction 1

Understanding the meanings of words is an essential step for natural language 2

processing (NLP) systems. In recent years, there has been an immense interest in 3

methods that learn word (meaning) representations in an unsupervised manner from 4

massive text collections. Such methods often represent the meanings of words in linear 5

algebraic structures such as vectors that capture lexico-semantic information about 6

the word. The usefulness of such word embeddings has been demonstrated by their 7

impressive performances in various NLP tasks, such as name entity recognition 8

(NER) [2], word similarity measurement [3], sentiment analysis [4], word analogy 9

detection [5], syntactic parsing [6] and dependency parsing [7]. Moreover, high-quality 10
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embeddings of individual words can be used to build semantic representations for 11

larger lexical units such as phrases, sentences and documents in a bottom-up manner 12

by recursively applying semantic compositional operators on the word-level 13

embeddings [8]. 14

Two main approaches can be identified in prior work on word embeddings learning: 15

(a) Corpus-based and (b) KB-based approaches. Despite the many success stories of 16

data-driven corpus-based approaches for learning word embeddings in various NLP 17

tasks, those approaches operate on surface-level word co-occurrences, ignoring the rich 18

semantic relations between two words encoded in KBs such as semantic lexicons. 19

KBs-based approaches provide an alternative solution for representing the meanings of 20

words considering the relations such as synonymy, hypernymy and meronymy that 21

exist between words. For example, in the WordNet [9], the word dog has a hypernymic 22

relation with its superclass pets. Such information in the KBs are an invaluable source 23

for learning better word embeddings when it is blended with corpus-based 24

approaches [10,11]. For example, the corpus-based approaches rely on the occurrences 25

of words in the corpus which can be ambiguous, whereas KBs typically group words 26

that have similar senses (eg. WordNet synsets). Moreover, it can be problematic when 27

learning word embeddings purely from a corpus when those words are rare, because 28

the corpus might not be sufficiently large to obtain reliable co-occurrences counts. 29

Although KBs provide valuable information about words relations, such 30

information is manually curated and thus costly to produce. Therefore,learning word 31

embeddings purely from KBs, without considering the rich contextual information 32

that exist in text corpora has several limitations. For example, in a KB, a particular 33

word often has a limited number of entries, which makes it difficult to estimate the 34

strength of the relation between two words. However, in a corpus, we can observe 35

numerous co-occurrences between two words in different contexts. The absence of 36

contextual information of a word in a KB is a disadvantage when applying 37

distributional approaches for learning word embeddings. Moreover, new words or 38

novel uses of existing words (eg. neologisms and semantic extensions) are not very well 39

covered by the manually constructed and maintained KBs. In contrast, a text corpus 40

is likely to capture such dynamic and temporal linguistic phenomena. 41

Considering the above-mentioned complementary strengths when learning word 42

embeddings using the two types of resources, text corpora and KBs, the following 43

question naturally arises: can we learn higher-quality word embeddings by using text 44

corpora and KBs simultaneously than using only one of those resources? 45

As a concrete example of how a KB can complement a corpus to learn better word 46

embeddings, let us assume that the words, dog and cat are recorded in the KB as 47

instances of the word pet, possibly via an IS-A relation. Further assume that the 48

sentence “I like both cats and dogs” is the only sentence in the corpus where the three 49

words cat, dog and like occur. Therefore, if we were to use a corpus-only approach, we 50

would learn word embeddings for those three words that predict the similarity 51

between cat and dog to be equal to that between cat and like, because there is only 52

one sentence containing all three target words. However, in a KB we might find that 53

cat and dog are listed as hyponyms of pet, but not of like. Therefore, such constraints 54

provided by the KB can potentially solve the sparse co-occurrence problem 55

encountered in corpus-only approaches for learning word embeddings. 56

Our main contribution in this paper is a word embedding learning method that 57

uses both a corpus and a KB in a joint manner. The proposed method instigates by 58

randomly initialising the word embeddings with real-valued, fixed, low-dimensional 59

vectors, which are subsequently updated such that the co-occurrences between words 60

in a corpus can be accurately predicted using the learnt embeddings. For this purpose, 61

we extend the objective function of the Global Vectors (GloVe) [12] by incorporating 62
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the knowledge in the KB as a constraint in the optimisation. Specifically, if two words 63

have a particular semantic relationship in the KB, then we require their word 64

embeddings to be similar. 65

In practice, the KB might be incomplete and inconsistent with the information 66

available in the corpus with which we combine for learning word embeddings. To 67

overcome such disfluencies in the KB, we extend our prior work [10] by proposing 68

several strategies to dynamically update the KB with information extracted from the 69

corpus to learn better word embeddings via a joint approach. Specifically, we consider 70

two approaches for expanding the KB by considering the nearest neighbours of a word 71

in the corpus, which we referred to as the Nearest Neighbour Expansion (NNE) and 72

Hedged Nearest Neighbour Expansion (HNE). Our experimental results show that in 73

comparison to not expanding the KB (which we referred to as the Static Knowledge 74

Base (SKB)) both NNE and HNE methods help us learn higher-quality word 75

embeddings. Interestingly, by iterating the expansion process, we show that the 76

accuracy of the learnt word embeddings can be further improved. 77

In our experiments, we use eight different relation types extracted from WordNet. 78

Experimental results on two standard NLP tasks, semantic similarity prediction [13] 79

and word analogy prediction [14] show substantial improvements on the accuracy of 80

the word embeddings learnt by the proposed method. On both tasks, our proposed 81

method using SKB, NNE and HNE statistically significantly outperform the 82

corpus-based baseline and reports an improvement of a number of previously proposed 83

methods that incorporate corpora and KBs for learning word embeddings. We 84

empirically study the effect of the dimensionality of the embeddings, size of the corpus 85

and the KB on the accuracy of the word embeddings learnt. The proposed KB 86

expansion methods can be applied repeatedly with the learnt word embeddings to find 87

better expansion candidates for the KB. Interestingly, we see that by repeatedly 88

applying the proposed method we can further improve the accuracy of the learnt word 89

embeddings. 90

The proposed joint model can be utilised to be applied to various domains. For 91

instance, a line of research has recently shown that learning accurate word or term 92

representations is an important task in the biomedical domain. For example, [15–17] 93

show that it is possible to learn cross-lingual word embeddings from UMLS [18] 94

Metathesaurus to find translations for biomedical terms. In biomedical domain, there 95

are large scale unstructured corpora such as Medline1 corpus, which have been 96

extensively used for text mining tasks. On the other hand, rich ontologies such as 97

Snomed-CT2 are also available for representing meanings of technical terms. An 98

interesting future research direction would be to use our proposed method to utilise 99

both ontologies and corpora available in the biomedical domain to learn better 100

word/term representations. 101

2 Related Work 102

Unsupervised approaches for learning word embeddings from large text corpora have 103

received much attention lately. SOTA performances in a variety of NLP tasks have 104

been reported by using word embeddings as features [2, 19]. Continuous bag-of-words 105

model (CBOW) and skip-gram model (SG) [20] are two popular word embedding 106

learning methods that leverage the local co-occurrences between words in a corpus. 107

Given context words in some co-occurrence context window, CBOW predicts a target 108

word, whereas SG, per contra, predicts the context words given the target word. In 109

contrast, GloVe [12] first builds a global word-word co-occurrence matrix, and then 110

1https://www.nlm.nih.gov/databases/
2http://www.snomed.org/snomed-ct/
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predicts the global co-occurrence count between two words (target and context) using 111

the corresponding word embeddings. Despite their success, the above-mentioned 112

methods use only a corpus as the sole data source to learn word embeddings. 113

On the other hand, Relation Constrained Model (RCM) [21] incorporates 114

knowledge from a KB in the form of word similarity scores, into the CBOW word 115

embedding learning objective, where similar words in the KB are assigned with high 116

sampling probabilities. Specifically, their proposed method instigate by employing the 117

CBOW objective function with the replacement of the context information by 118

relational data found in the KB. Next, throughout a linear combination between the 119

two objectives (CBOW and RCM) they form a joint model utilizing the two sources of 120

data. Similarly, RC-NET [22] jointly learns word embeddings using the SG objective 121

combined with a KB. RC-NET considers both relational (R-NET) and categorical 122

(C-NET) information and represents both words and relations in the same embedding 123

space. Particularly, R-NET incorporates the relational knowledge throughout a 124

regularization function that considers the relationships between entities as translations 125

on the low-dimensional representations of the entities. For C-NET, another 126

regularization function is defined to leverage the categorical information by minimising 127

the weighted distance between shared-attributes words. Next, SG, R-NET and C-NET 128

objectives are combined and trained with backpropagation to learn the word 129

embeddings. Liu et al. [23] proposed a method that represents the semantic knowledge 130

in KBs as word ordinal ranking inequalities, which are subsequently used as 131

constraints in the SG objective. 132

Although we share a similar motivation to the above-mentioned joint approaches 133

for learning word embeddings, our proposed method differs from those prior proposals 134

in several aspects. Firstly, CBOW and SG are the base training objectives for the 135

above models whereas we adopt GloVe as our corpus-based objective. As such, no 136

costly normalisation over the entire vocabulary or negative sampling are required with 137

the proposed method. Specifically, from a computational point of view, CBOW 138

requires normalizing the output probabilities of target words over the entire 139

vocabulary, which is often very large. Consequently, approximate methods such as 140

hierarchical softmax has been proposed to overcome this problem [45]. On the other 141

hand, GloVe does not require such expensive normalizations. Furthermore, in contrast 142

to the aforementioned joint models which consider only the original data existed in the 143

KBs, our proposed method further enhances the joint process by dynamically expand 144

the KB using the corpus co-occurrence statistics. 145

A complementary research direction to us focuses on incorporating the information 146

in KBs into the pre-trained word embeddings, trained purely from a corpus, in a 147

post-processing step. For example, retrofit is an efficient post-processing step that can 148

fit pre-trained embeddings from any word embedding learning method to a semantic 149

lexicon that lists pairs of words belonging to a particular semantic relation [11]. 150

Johansson and Piña [24] proposed a method to obtain word sense embeddings by 151

fitting pre-trained word embeddings to a semantic network. Although the 152

post-processing models have various advantages such as that they can employ any 153

corpus-based word embeddings to fit to a KB, such post-processing approaches do not 154

jointly leverage the KB during the word representations learning phase because only 155

the corpus is used for learning the pre-trained word embeddings. 156

Goikoetxea et al. [25] proposed a method that performs a truncated random walk 157

in the KB graph to generate a pseudo corpus by sequentially recording the words that 158

were visited during the random walk. Next, corpus-based word embedding learning 159

methods are used to learn representations from this pseudo corpus. Unfortunately, 160

this approach is limited to learning word representations only from a KB, ignoring any 161

text corpora that mights co-exist alongside the KB. Bollegala et al. [5] use a relational 162
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graph to learn word embeddings. They represent words by vectors and relations by 163

matrices. Their method can operate on either a manually created or automatically 164

extracted relational graphs. However, their KB remains fixed throughout the training 165

process, and they do not update the KB with the information found in the corpus as 166

we propose in this paper. As shown later in our experiments, by dynamically updating 167

the KB with the information from the corpus we can learn better word representations. 168

Another body of work on jointly utilizing both unstructured text corpora and 169

manually created KBs focus on learning relation and knowledge representations. 170

Toutanova et al. [29] proposed a method that combines a given KB that lists the 171

relations between entities and lexical relations extracted from a corpus using a 172

dependency parsing and then jointly learn continuous representation of KB, lexical 173

relations and entities for the tasks of link prediction and relational extraction. Wang 174

and Li [30] proposed a model that learns a knowledge graph representation by 175

leveraging contextual information in a corpus. They instigate by annotating the 176

entities in the corpus, then construct a co-occurrence network between words and 177

entities and finally an optimization procedure is employed to learn embeddings for 178

entities and relations. 179

3 Learning Word Embeddings 180

We propose a method to learn word embeddings from both a corpus and a KB in a 181

joint manner. First, in Section 3.1, we briefly review GloVe, which forms the basis of 182

the corpus-based objective in our proposed method. Next, in Section 3.2, we describe 183

the derivation of constraints from a KB. Finally, in Section 3.3, we detail the joint 184

learning method. 185

3.1 Global Vectors (GloVe) 186

GloVe [12] learns continuous word vectors from a text corpus by leveraging statistical 187

information computed from a global word co-occurrence matrix. In particular, given a 188

corpus C, GloVe instigates by creating a co-occurrence matrix X, where each target 189

word (i.e. the word that we want to learn a representations for) is represented by a 190

row in X, and the context words that co-occur with it in some contextual window, are 191

represented by the columns of X. The entries Xij denote the total occurrences of 192

target word wi and the context of word w̃j in the corpus. Next, for each word wi in 193

the vocabulary V (i.e., the set of all words in the corpus), GloVe seeks to learn word 194

embedding wi, w̃i ∈ Rd corresponding respectively to whether wi is a target word or a 195

context word w̃i. The boldface wi denotes the word embedding (vector) of the word 196

wi, and the dimensionality d is a user-specified hyperparameter. The GloVe 197

embedding learning method minimises the following weighted least squares loss: 198

JC =
1

2

∑
i∈V

∑
j∈V

f(Xij)
(
wi

>w̃j + bi + b̃j − log(Xij)
)2

(1)

Here, the two real-valued scalars bi and b̃j are biases associated respectively with wi 199

and w̃j . The weighting function f assigns a lower weight for extremely frequent 200

co-occurrences to prevent over-emphasising such co-occurrences, and is given by: 201

f(t) =

{
(t/tmax)α if t < tmax

1 otherwise
(2)

The GloVe objective function defined by (1) attempts to predict the co-occurrence 202

between two words wi and w̃j using the inner-product between the corresponding 203
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vectors wi and w̃j . Those vectors are learnt such that the squared difference between 204

the inner-product and the logarithm of their co-occurrence count is minimised. 205

Mikolov et al. [26] showed that the vector equation king - queen = man - woman 206

approximately holds, for the embeddings of the four words king, queen, man and 207

women. This empirical result implies that we can use the difference between two word 208

embeddings as a proxy for the representation for the relationship between those words. 209

Eq. 1 is constructed such that the learnt words embeddings represent the relationship 210

between two words by their vector difference (offset) [31]. 211

3.2 Incorporating the Knowledge Base 212

GloVe is a corpus-only word embedding method that does not leverage any available 213

KBs. Therefore, it is likely to encounter problems when learning word embeddings 214

from rare co-occurrences and may fail to capture the desired semantics. To address 215

this problem, we derive constraints from the KB that must be satisfied by the learnt 216

word embeddings. Given a KB S, we define an objective JS that considers not only 217

two-way co-occurrences between a target word wi and one of its context words w̃j but 218

rather a three-way co-occurrence between wi, w̃j and the semantic relations R that 219

exists between them in the KB. Although we use WordNet as a concrete example of a 220

KB in this work, there are no assumptions made regarding any structural properties 221

unique to a particular KB. Any KB that defines semantic relations between words can 222

be used as S, such as FrameNet [27] and the Paraphrase Database (PPDB) [28] can be 223

used with the proposed method. The KB-based objective is defined as follows: 224

JS =
1

2

∑
i∈V

∑
j∈V

R(wi, wj) (wi − w̃j)
2

(3)

Here, R(wi, w̃j) indicates the strength of the relation R between wi and w̃j . If R does 225

not hold between the two words, then R(wi, w̃j) is set to zero. Note that in a typical 226

KB we might encounter a large number of different relation types. Eq. 3 is not limited 227

to a particular relation type or number of relation types and can easily be extended to 228

handle multiple relation types Rr as follows: 229

JS =
1

2

∑
r∈R

∑
i∈V

∑
j∈V

Rr(wi, wj) (wi − w̃j)
2

(4)

For the simplicity of the disposition, we would limit our discussion here to KBs where 230

there exist only one type of semantic relation between two words. In our experiments 231

we show results on a wide-range of different relation types. Without loss of generality, 232

the semantic relations are assumed to be asymmetric. In other words, we have 233

R(wi, w̃j) 6= R(w̃j , wi). Both types of relations, symmetric (e.g. synonymy and 234

antonymy) and asymmetric (e.g. hypernymy and meronymy) are considered in our 235

experiments. Eq. 3 formalises the constraint that the words which are connected in 236

the KB by some semantic relations R must have similar word representations. 237

3.3 Joint Objective Function 238

To simultaneously minimise both the Eqs. 1 and 3, we defined a combined objective as 239

their linearly weighted combination given by, 240

J = JC + λJS . (5)

Here, λ ∈ R+ is a regularisation coefficient that controls the influence imparted by the 241

KB on the word embeddings learnt from the corpus. Details of estimating the optimal 242

value of λ is described later in section 5. 243
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The overall joint objective function given by Eq. 5 is convex w.r.t. each one of the 244

variables wi, w̃j , bi and b̃j , if the other three variables are held fixed. We use an 245

alternating optimisation technique where all the parameters are first randomly 246

initialised and then, in a pre-specified order, cycle through the variables updating one 247

at a time, while the other variables are held fixed.

Algorithm 1 Joint word embedding learning.

Input: Word co-occurrence matrix X specifying the co-occurrences between words in
the corpus C, relation strength R(wi, w̃j) specifying the semantic relations between
words in the KB S, dimensionality d of the word embeddings, and the maximum
number of iterations T .

Output: Embeddings wi, w̃j ∈ Rd, of all words wi, wj ∈ V.

1: Initialize word vectors wi, w̃j ∈ Rd randomly.
2: for t = 1 to T do
3: for (i, j) ∈ X do
4: Use (8) to update wi

5: Use (9) to update bi
6: Use (10) to update w̃j

7: Use (11) to update b̃j
8: end for
9: end for

10: return wi, w̃j ∀wi, wj ∈ V.

248

4 Dynamic KB Expansion 249

In practice, a KB might not contain all the words in the corpus. Because we derive 250

constraints only from the KB, the coverage of the constraints derived from the KB 251

might cover only a small fraction of the words in the corpus. To overcome this 252

problem, we propose two methods to expand the KB using the information extracted 253

from the corpus. It is noteworthy that the purpose of performing this expansion is to 254

derive constraints that guide the optimisation process and not to build better KBs. 255

Because the expansion of the KB happens at run time, we call it dynamic expansion. 256

4.1 Static Knowledge Base (SKB) 257

The SKB approach does not dynamically expand the KB, and acts as a baseline for 258

comparing against the two dynamic expansion methods we describe in the following 259

sections. Let us assume a KB where knowledge is represented in the form of relational 260

tuples (u,R, v), involving a relation R that exists between two words u and v, each 261

tuple contributes to a single constraint towards the joint objective given by Eq. 5. In 262

what follows, we denote the set of vertices (vocabulary) in the KB by D, and its set of 263

relational tuples by E . If two words u, v ∈ D have a relation R, then we have 264

(u,R, v) ∈ E . For example, for the synonymy relation in the WordNet, we obtained 265

87,06 tuples. In SKB, we assume the relation strength function R(wi, wj) given by (3) 266

to be a binary function that returns 1 if there exists a semantic relation R between the 267

two words wi and wj in the KB S and 0 otherwise. 268
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4.2 Nearest Neighbour Expansion (NNE) 269

Typically, a corpus would cover a much larger vocabulary and more relations can be 270

derived from it as compared to that by a KB. If we can somehow use the information 271

extracted from the corpus to dynamically expand the KB, then we can derive more 272

constrains for the joint optimisation process, thereby making a better use of the KB. If 273

two words u and v co-occur frequently in a corpus, then it is likely that there exists 274

some semantic relation between those two words. We can compute the strength of 275

association between two words using their co-occurrence count in the corpus, to create 276

a k-nearest neighbour (K-NN) graph where the u is connected to v if and only if v is 277

among the top-k nearest neighbours of u. In our experiments, we use the Positive 278

Pointwise Mutual Information (PPMI) [33] as the association measure, and selected 279

the top-K neighbours according to the highest PPMI values between two words. 280

Denoting the co-occurrence count between u and v in the corpus by c(u, v) and the 281

occurrence of u and v respectively by c(u, ∗) and c(∗, v), the PPMI between u and v, 282

PPMI(u, v) is computed as follows: 283

PPMI(u, v) = max

(
log

(
c(u, v)c(∗, ∗)
c(u, ∗)c(∗, v)

)
, 0

)
(6)

Let us denote the set of k nearest neighbours of u in the corpus by KNN (u). 284

Between a word u that occurs in the KB and a word v that only occurs in the corpus, 285

if v is a nearest neighbour of u (i.e. v ∈ kNN (u)), then we add v to the KB. Moreover, 286

the relation between v and u is set to the default semantic relation of the KB 287

(assuming that the KB is representing one semantic relation type). The relational 288

strength for the appended nearest neighbours are set to their PPMI values with the 289

target word, computed using the corpus co-occurrence counts. 290

Considering that the nearest neighbours are found from the corpus purely based on 291

co-occurrence statistics, they might not actually be reflecting the same semantic 292

relation as in the KB. Moreover, PPMI values computed from sparse co-occurrences 293

can be unreliable. In contrast, the KB might be a cleaner and an accurate semantic 294

resource that is manually created and maintained. Therefore, we must impose a higher 295

level of confidence on the original words and relations described in the KB than the 296

candidates we automatically append from the corpus. To prioritise the words that 297

originally appeared in the KB over the automatically added words from the corpus, we 298

set the relational strength R(u,w) for two words u and w that appeared in the KB 299

prior to dynamic expansion to 1. Meanwhile, the relational strength R(u, v) for a word 300

u that originally appeared in the KB and an expansion candidate v selected from the 301

corpus is set to the normalised PPMI value between u and v, where we normalise the 302

PPMI values by the sum of PPMI values over all k nearest neighbours. Specifically, 303

the relational strength R(u, v) for two words in the KB after the dynamic expansion 304

process is defined as follows: 305

R(u, v) =

{
1, if (u,R, v) ∈ E

PPMI(u,v)∑
v′∈KNN (u) PPMI(u,v′) , u ∈ D ∧ v ∈ KNN (u)

(7)

We call this dynamic expansion method as the Nearest Neighbour Expansion (NNE), 306

and show its pseudo code in Algorithm 2. 307

4.3 Hedged Nearest Neighbour Expansion (HNE) 308

One drawback of the NNE method described in previous section is that it considers 309

the neighbourhood KNN (u) of each word u currently in the KB separately when 310

deciding whether a new word v should be linked to u. This operation can be 311
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Algorithm 2 Nearest Neighbour Expansion (NNE).

Input: Word co-occurrence matrix X specifying the co-occurrences between words in
the corpus C, a KB S = (D, E) with a vocabulary D and a set of relational tuples E ,
hyperparameter K specifying the number of nearest neighbours (NN) to consider.

Output: S = (D, E)

1: for v ∈ C do
2: if ∃u ∈ D s.t. v /∈ D ∧ v ∈ KNN (u) then
3: E ← E ∪ {(u,R, v)}
4: D ← D ∪ {v}
5: end if
6: end for
7: return S.

problematic due to two reasons. First, some hub words that are associated with more 312

than one word such as everything are not suitable as expansion candidates because 313

they lack specificity. PPMI does not necessarily overcome the hub words problem [35]. 314

Second, some words can be ambiguous and if we expand each word individually as 315

done by NNE, we might incorrectly link different senses of a word from the corpus. 316

For example, let us assume that Apple and Microsoft are connected via 317

COMPETITOR relation in a KB. Moreover, let us assume that banana co-occurs 318

highly with Apple in the corpus. Because we do not assume the corpus to be sense 319

annotated, we might incorrectly link Banana to Apple because it is a nearest 320

neighbour of the fruit sense of Apple in the corpus. 321

We propose two modifications to the NNE method to overcome the 322

above-mentioned disfluencies. First, we require a word v to be a nearest neighbour of 323

two words u and h that are already in the KB before we consider v to be an expansion 324

candidate for the KB. This requirement will reduce the attachment of noisy 325

co-occurrences. Second, we require some semantic relations to exist between u and h 326

in the KB before we consider v to be an expansion candidate for the KB. In our 327

previous example, Banana (h) is unlikely to co-occur a lot with Microsoft (u) in the 328

corpus, therefore Banana will not be considered as an expansion candidate. Because 329

of stricter neighbourhood requirement of this method that limits the extent of the 330

expansion, we call it the Hedged Nearest Neighbour Expansion (HNE) method. Once 331

we have identified the expansion candidates satisfying both of those requirements, we 332

will compute the relation strength using Eq. 7 and link v to both u and h. The pseudo 333

code for HNE is shown in Algorithm 3. As shown in our experiments, the dynamic 334

expansion methods can be run multiple times to further expand the KBs. 335

5 Evaluation 336

5.1 Data Pre-processing 337

We used ukWaC [34], a large English web corpus comprising of ca. 2 billion tokens 338

crawled from the web from .uk domain, as the corpus in our experiments. To 339

investigate the effect of the corpus size on the proposed method, we randomly select 340

sub-corpora of varying sizes as shown in Table 1. 341

We use WordNet [9] as the KB in our experiments and consider eight different 342

relation types. For synonyms, we generate all the pairwise combinations of words in a 343

given synset to create synonymous word pairs. The list of synonymous word pairs is 344

considered as the synonyms in Table 2. For other relations, we consider two words u 345
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Algorithm 3 Hedged Nearest Neighbour Expansion (HNE).

Input: Word co-occurrence matrix X specifying the co-occurrences between words in
the corpus C, a KB S = (D, E) with a vocabulary D and a set of relational tuples E ,
hyperparameter K specifying the number of nearest neighbours (NN) to consider.

Output: D (Expanded S)

1: S = (D, E)
2: for v ∈ C do
3: if ∃u, h ∈ D, v /∈ D s.t. v ∈ KNN (u) ∧ v ∈ KNN (h) ∧ (u,R, h) ∈ E then
4: E ← E ∪ {(u,R, v), (h,R, v)}
5: D ← D ∪ {v}
6: end if
7: end for
8: return S.

Table 1. Sub-corpora selected from ukWaC.

% of ukWaC Number of tokens Size

100 2B XL
70 1.4B L
40 800M M
20 400M S
10 200M XS

and v connected by a semantic relation R if R exists between the two synsets 346

encompassing u and v. Table 2 shows the number of tuples extracted for relation type 347

(SKB) and the size of the KB after expanding with the corpus using NNE and HNE 348

methods. Because of the extra requirements imposed by HNE over NNE, HNE is 349

expected to assign fewer number of expansion candidates than NNE.

Table 2. KB size (in no. of edges) for different relation type under
different expansion methods with K = 5 expansion words.

Relation Edges
Type SKB NNE HNE

Synonyms 87,060 108,510 104,123
Antonyms 4,064 7,004 5,325
Hypernyms 119,029 144,199 138,922
Hyponyms 122,926 141,961 138,010
Member-holonyms 11,506 13,716 12,033
Member-meronyms 11,431 12,706 11,651
Part-holonyms 13,082 18,222 16,557
Part-meronyms 13,251 18,191 16,186

350

5.2 Implementation Details 351

We create a word co-occurrence matrix X considering the words that occur at least 20 352

times in the corpus. Following prior recommendations [36], we set the context window 353

to the 10 tokens preceding and succeeding a target word in a sentence and extract 354

unigrams as context words. Co-occurrences are weighted by the inverse of the distance 355

between the target word and a context word, measured by the number of tokens 356

appearing in between. We adopt a decreasing weighting function using the reciprocal 357
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1
d of the distance between two co-occurrences. For example, a context word 358

co-occurring 5 tokens from a target word would contribute to a co-occurrence count of 359

1
5 . The weighting function given by Eq. 2 is computed with α = 0.75 and tmax = 100. 360

We use stochastic gradient descent (SGD) with learning rate scheduled using 361

AdaGrad [32] as the optimisation method. The overall algorithm of the proposed joint 362

word embedding learning method is listed in Algorithm 1. The word embeddings are 363

randomly initialised to the uniform distribution in the range [−1,+1] for each 364

dimension separately. Experimentally, T = 20 iterations was found to be sufficient for 365

the proposed method to converge to a solution. The initial learning rate in AdaGrad 366

is set to 0.01 in all of the experiments. 367

Algorithm 1 in Line 3 iterates over the nonzero elements in X. The estimated 368

overall time complexity for n nonzero elements is O(|V|dTn), where |V| denotes the 369

number of words in the vocabulary. Typically, the global co-occurrence matrix is 370

highly sparse, containing less than 0.03% of non-zero entries. It takes around 50 mins. 371

to learn 300 dimensional word representations for |V| = 434, 826 words 372

(n = 58, 494, 880) from the ukWaC corpus on a Xeon 2.9GHz 32 core 512GB RAM 373

machine. Note that building the co-occurrence matrix and expanding the KB can be 374

done in a single traversal over the corpus. Specifically, we can maintain a priority 375

queue to select the K-nearest neighbours based on the co-occurrence counts while 376

building the co-occurrence matrix. Therefore, the computational overhead due to 377

dynamic expansion is insignificant in practice. The source code for the proposed 378

method and the embeddings trained using the proposed method are made publicly 379

available3. 380

The proposed method learns two embeddings wi and w̃i for each word wi, 381

indicating respectively a target and a context embedding. Prior work in learning word 382

embeddings [36] show that the embedding of a word wi can be better approximated by 383

adding the two embeddings wi + w̃i. This additive operation has been also motivated 384

as an ensemble method in [12]. In our experiments, we followed these prior 385

recommendations and create the final embedding for a word by adding its target and 386

context embeddings. In the remaining sections we consider those word embeddings. 387

5.3 Qualitative Analysis 388

To qualitatively understand the differences among the proposed KB expansion 389

methods, in Table 3 we show randomly selected examples from SKB, NNE and HNE 390

after a single round of expansions. We can see from Table 3 that HNE was able to 391

successfully eliminate some potential noisy expansion words. For example, the words 392

everything, american, soon and amity have been associated as expansion words with 393

autopilot, china and pineapple respectively using NNE, but excluded by HNE. 394

Moreover, because we limit the expansion candidates to the top-K neighbours (K = 5), 395

we can see in Table 3 that some words are included in HNE but not in NNE. In such 396

cases, the top five neighbours according to NNE do not meet the HNE requirements. 397

5.4 Benchmarks 398

We evaluate the quality of the word embeddings produced by the proposed method on 399

two standard tasks: word similarity prediction and word analogy detection. 400

5.4.1 Word Similarity 401

In this task, we measure the cosine similarity between word embeddings learnt by a 402

particular method for two words in a benchmark dataset, and compare that against 403

3https://github.com/suhaibani/JointReps
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Table 3. Examples of KB expansion using NNE and HNE on synonym
relation type. The SKB column denotes the associated synonym words
found in WordNet.

Associated Words
Word SKB NNE HNE

autopilot autopilots everything copilot
land assist
copilot software
assist
american

imagination imagery art sight
resource originality picture
resourcefulness mind sense
imaging unfettered
imaginativeness fascinate
vision

pineapple ananas soon fruit
red pineapples
pineapples flowers
pecan
mango

magyar hungarian culture romania
group language
central culture
re
english

china cathay amity beijing
taiwan europe shanghai
chinaware beijing bhutan
prc south

shanghai
sulfur sulphur fire oxide

test odor
oxide oxygen
hydrogen
reference

the average similarity ratings given by a group of human annotators for those two 404

words. If there is a high degree of correlation between human similarity ratings and 405

the similarity scores computed using the learnt word embeddings, then we can 406

conclude that the word embeddings capture word semantics as perceived by humans. 407

We use the Spearman’s rank correlation coefficient as the evaluation measure for the 408

word similarity prediction task, and use Fisher transformation to test for statistical 409

significance. We use multiple word similarity benchmark datasets: WordSim353 (WS, 410

353 word-pairs) [37], Rubenstein-Goodenough (RG, 65 word-pairs) [38], Miller-Charles 411

(MC, 30 word-pairs) [39], rare words dataset (RW, 2034 word-pairs) [40], Stanford’s 412

contextual word similarities (SCWS, 2023 word-pairs) [42], MEN test collection 413

(3000 word-pairs) [43] and the SimLex-999 (SimLex, 999 word-pairs) [44]. 414
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5.4.2 Word Analogy 415

The vector difference (offset) between embeddings for two words has shown to 416

represent the relationship between those words [45]. Consequently, prior work on word 417

embedding learning has evaluated the accuracy of the trained word embeddings by 418

using them to solve word analogy problems. For this purpose, we use two benchmark 419

datasets: Google dataset [45], and SemEval 2012 Task 2 dataset [46] (SemEval). 420

Google dataset contains five semantic (sem) and nine syntactic (sen) analogy types 421

where (sem) consists of 10, 675 questions and (syn) consists of 8869 questions. 422

SemEval dataset contains 3218 manually ranked word-pairs for 79 paradigms 423

(categories). Given a proportional analogy a : b :: c : d, we compute the cosine 424

similarity between the b− a + c and each candidate word d, and select the most 425

similar candidate word as the answer to the analogy question. We use binomial exact 426

test with Clopper-Pearson confidence interval to test for the statistical significance. 427

For SemEval, we report the MaxDiff scores using the official evaluation tool4. 428

5.4.3 Validation Set 429

We use the WS dataset as validation data for tuning λ in Eq. 5 and the 430

neighbourhood size K in Algorithms 2 and 3. Specifically, we vary the value of λ and 431

K, use the proposed method for learning word embeddings, and measure the 432

Spearman correlation on WS. Finally, we select the hyperparameter values that 433

maximises the Spearman correlation. Overall, we observed that λ = 10, 000 and K = 5 434

found to perform consistently well for all semantic relation types. The process was 435

done for all word similarity and analogy benchmarks. 436

6 Results 437

6.1 Outline 438

In Section 6.2, we first evaluate the benefit of using both a corpus and a KB jointly for 439

learning word embeddings covering a wide range of relation types. Next, in 440

Section 6.3, we evaluate the benefit of dynamic expansion. We investigate the effect of 441

the corpus and KB size on the proposed method respectively in Sections 6.4 and 6.5. 442

Furthermore, we observe the impact of multi-rounds of expansions using NNE and 443

HNE in Section 6.6. Finally, in Section 6.7, we report the impact of the dimensionality 444

d on the word embeddings learnt. 445

6.2 Effectiveness of Joint Learning 446

In Table 4, we compare the performance of the corpus only baseline, which does not 447

use a KB for learning word embeddings (corresponds to λ = 0 in Eq. 5), against the 448

level of performance we would obtain if we had used both a corpus and a KB. In 449

particular, we study the effect of using 8 different WordNet semantic relations as the 450

default relation type for the KB. We use the XL corpus and learn d = 300 dimensional 451

word embeddings using the SKB method for each relation type. 452

From Table 4, we see that by jointly learning with a KB, we can always outperform 453

the corpus only baseline, irrespective of the relation type. This result supports our 454

proposal to use both corpora and KBs jointly for learning word embeddings. Among 455

the relation types, synonymy reports the best performance in RG, MC, SCWS, 456

MEN and SemEval benchmarks, whereas hypernymy reports the best performance 457

in SimLex and effective for answering sem and syn analogy questions in Google 458

4https://sites.google.com/site/semeval2012task2/
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Table 4. Effectiveness of joint learning.

Method RG MC RW SCWS MEN SimLex sem syn total SemEval

corpus only 0.7545 0.6796 0.2522 0.4829 0.7015 0.3274 58.94 65.46 62.50 38.44
Synonyms 0.7879 0.7614 0.2674 0.5103 0.7367∗ 0.3492 59.90 71.02∗ 65.97∗ 39.39
Antonyms 0.7687 0.7018 0.2545 0.4907 0.7142 0.3268 59.54 67.07∗ 63.65∗ 39.01
Hypernyms 0.7774 0.7330 0.2536 0.5034 0.7335∗ 0.3576∗ 60.15∗ 71.91∗ 66.57∗ 39.22
Hyponyms 0.7720 0.7193 0.2616 0.5040 0.7292∗ 0.3575 60.05∗ 70.75∗ 65.89∗ 39.03
Member-holonyms 0.7655 0.6985 0.2536 0.4869 0.7059 0.3310 59.53 65.91 63.01 38.49
Member-meronyms 0.7613 0.6952 0.2537 0.4867 0.7070 0.3332 58.94 65.68 62.62 38.61
Part-holonyms 0.7740 0.7144 0.2682 0.4937 0.7220∗ 0.3298 59.10 67.86∗ 63.89∗ 38.96
Part-meronyms 0.7814 0.7338 0.2714 0.4980 0.7215∗ 0.3317 59.36 67.65∗ 63.89∗ 38.95

dataset. The fact that word similarity benchmarks contain many word pairs that are 459

similar, explains the effectiveness of synonymy. Moreover, part-meronyms, 460

part-meronyms and syonyms are performing well in predicting the semantic similarity 461

between rare words (RW), is important because it shows that by incorporating a 462

semantic lexicon we can learn a better embeddings for words that rarely co-occur even 463

in a large corpora [40]. 464

6.3 Effectiveness of Dynamic Expansion 465

To compare the word embeddings learnt by the proposed method using the two 466

dynamic KB expansion methods NNE and HNE over SKB, we train word embeddings 467

using each method separately. In Table 5, we compare the results that we obtained by 468

expanding the KB in synonymy relation, which is also the best individual relation type 469

according to the analysis in Section 6.2, against the SKB. From Table 5, we can see 470

that both NNE and HNE outperforms SKB in most of the benchmarks. In particular, 471

NNE reports the best performance in RW, SCWS, SimLex, syn and SemEval, 472

whereas the best scores in MC and MEN achieved by HNE. However, the differences 473

among the three methods are not statistically significant after one expansion round. 474

As we later discuss in Section 6.6, NNE and HNE significantly outperform SKB in 475

various benchmarks when we repeat the expansion process multiple rounds. 476

Table 5. Comparisons among SKB, NNE and HNE using synonym relation type on XL corpus.

Method RG MC RW SCWS MEN SimLex sem syn total SemEval

SKB 0.7879 0.7614 0.2674 0.5103 0.7367 0.3492 59.9 71.02 65.97 39.39
NNE 0.7875 0.753 0.2684 0.5128 0.7390 0.3535 59.75 71.25 66.04 39.48
HNE 0.7852 0.7738 0.2682 0.5122 0.7409 0.3515 59.75 71.02 65.91 39.10

In Table 6, we compare the proposed method against previously proposed word 477

embedding learning methods that use both a corpus and a KB. Specifically, we 478

compare against Relation Constraint Model (RCM) [21]. Relational information 479

(R-NET), Categorical Information (C-NET) and the union of Relational and 480

Categorical (RC-NET) [22], and Retrofitting (Retro) [11]. Details of those methods 481

are provided in Section 2. 482

We use the publicly available source codes of Retro to retrofit the vectors learnt 483

by CBOW (Retro (CBOW)), and skip-gram (Retro (SG)). We also retrofit the 484

vectors learnt by the corpus only baseline (Retro (corpus only)). All of the 485

above-mentioned methods are trained using ukWaC as the corpus and synonyms 486

extracted from the WordNet as the KB. Unfortunately, the implementations nor 487

trained word embeddings were available for RCM, R-NET, C-NET and RC-NET 488

methods. Therefore, for those methods we compare the results reported in the original 489
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Table 6. Comparisons against prior work.

Method RG MC RW SCWS MEN SimLex sem syn SemEval

RCM 0.471 - - - 0.501 - - 29.90 -
R-NET - - - - - - 32.64 43.46 -
C-NET - - - - - - 37.07 40.06 -
RC-NET - - - - - 34.36 44.42 -
Retro (CBOW) 0.577 0.5693 0.2512 0.4764 0.605 0.2718 36.65 52.50 38.22
Retro (SG) 0.745 0.7446 0.2498 0.4813 0.657 0.3911 45.29 65.65 38.74
Retro (corpus only) 0.7865 0.7544 0.2552 0.4802 0.673 0.3936 61.11 68.14 38.70
SKB (synonyms) 0.7879 0.7614 0.2674 0.5103 0.7367∗ 0.3492 59.90 71.02∗ 39.39
NNE (synonyms) 0.7875 0.753 0.2684 0.5128 0.739∗ 0.3535 59.75 71.25∗ 39.48
HNE (synonyms) 0.7852 0.7738 0.2682 0.5122 0.741∗ 0.3515 59.75 71.02∗ 39.1

publications. Consequently, it is noteworthy that RCM, R-NET, C-NET and 490

RC-NET are trained with different corpus and KB which can indeed affect the 491

performance. A dash in Table 6 indicates that the performance on that dataset was 492

not reported in the original publication. 493

From Table 6, we see that the proposed method under NNE obtains the best 494

performance on RW, SCWS, syn and SemEval, whereas HNE reports the best 495

performance on MC and MEN. The SKB obtains the best performance on the RG 496

dataset, whereas Retro (corpus only) reports the best results on the sem and 497

SimLex datasets. 498

6.4 Effect of the Corpus Size 499

To study effect of the size of the corpus on the performance of the proposed method, 500

we use the five sub-corpora defined in Table 1, and train word embeddings with the 501

complete WordNet KB. We evaluate the trained word embeddings using the 502

benchmark dataset and report results in Table 7. Overall, as prior work has shown 503

[12] [41], Table 7 shows that a larger corpus size helps for obtaining a better level of 504

performance. All the results reported in Table 7 use the synonym relation. 505

From Table 7, we see that by incorporating the synonym semantic relation using 506

SKB, NNE and HNE with different corpus sizes, the proposed method always 507

outperforms the corpus only baseline on all benchmark datasets. Moreover, we see 508

that NNE and HNE produce better word embeddings over SKB in most of the 509

benchmark datasets. In particular, NNE and HNE obtain a significant improvement 510

over SKB for predicting similarity between words in RW, SCWS and MEN 511

benchmarks across all different corpus sizes. Moreover, in the word analogy prediction 512

task, NNE and HNE constantly outperform SKB on syn and SemEval datasets, 513

irrespective of the size of the corpus. To readily understand the effect of the corpus 514

size on the accuracy of the word embeddings learnt by the proposed method, in Fig 1 515

(a), (b) and (c), we plot the Spearman correlation coefficient against the size of the 516

corpus for respectively MEN, SCWS and SimLex datasets. We selected MEN, 517

SCWS and SimLex here because those datasets have the largest numbers of 518

word-pairs among all the word similarity benchmark datasets. We can clearly see that 519

irrespective of the size of the corpus, it is always beneficial to combine the corpus with 520

the KB to learn higher-quality word embeddings, whereas the differences between the 521

different expansion methods are relatively small. 522

6.5 Effect of the KB size 523

To evaluate the impact of the size of the KB on the proposed method, we randomly 524

select pairs of synonyms from WordNet synsets to create KBs of varying sizes as 525
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Fig 1. Effect of the Corpus Size. The effect of varying the size of the corpus
under SKB, NNE, HNE methods on the (a) MEN (b) SCWS and (c) SimLex
datasets. The full WordNet is used as the KB.
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Fig 2. Effect of the KB Size. The effect of using different lexicon (synonym
relation) sizes on the proposed method with SKB, NNE and HNE evaluated on (a)
MEN (b) SCWS and (c) SimLex datasets. The full ukWaC corpus is used as the
corpus.
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Table 7. Performance of the proposed method using SKB, NNE and HNE against the baseline in various
corpus sizes with synonym relation.

Method Corpus Size RG MC RW SCWS MEN SimLex sem syn total SemEval

corpus only 0.7545 0.6796 0.2522 0.4829 0.7015 0.3274 58.94 65.46 62.50 38.44
SKB XL 0.7879 0.7614 0.2674 0.5103 0.7367∗ 0.3492 59.90 71.02∗ 65.97∗ 39.39
NNE 0.7875 0.753 0.2684 0.5128 0.739∗ 0.3535 59.75 71.25∗ 66.04∗ 39.48
HNE 0.7852 0.7738 0.2682 0.5122 0.7409∗ 0.3515 59.75 71.02∗ 65.91∗ 39.10

corpus only 0.7385 0.6238 0.2275 0.4719 0.6950 0.3235 57.37 64.65 61.35 38.19
SKB L 0.7698 0.7231 0.2363 0.4986 0.7278∗ 0.3461 58.64∗ 68.94∗ 64.27∗ 38.64
NNE 0.7649 0.7171 0.2384 0.5037 0.7302∗ 0.3504 58.28 69.10∗ 64.19∗ 38.74
HNE 0.7712 0.7207 0.2375 0.5017 0.732∗ 0.3481 58.68∗ 69.07∗ 64.36∗ 38.54

corpus only 0.7016 0.5899 0.2029 0.4687 0.6892 0.3157 51.71 62.79 57.76 37.5
SKB M 0.7257 0.6635 0.2078 0.4950 0.7187∗ 0.3327 52.41 65.48∗ 59.55∗ 38.18
NNE 0.7217 0.646 0.2116 0.4966 0.7211∗ 0.3366 52.54 65.55∗ 59.65∗ 38.17
HNE 0.7225 0.652 0.210 0.4981 0.7226∗ 0.3342 52.36 65.59∗ 59.58∗ 38.26

corpus only 0.6948 0.5904 0.1681 0.4509 0.6704 0.2978 43.08 56.77 50.56 37.24
SKB S 0.7145 0.6616 0.1774 0.4740 0.6923∗ 0.3113 43.27 58.22∗ 51.44∗ 37.48
NNE 0.71 0.6287 0.1782 0.4765 0.6943∗ 0.3163 43.38 58.44∗ 51.61∗ 37.73
HNE 0.7118 0.6648 0.1775 0.4762 0.6963∗ 0.3126 43.42 58.25∗ 51.52∗ 37.52

corpus only 0.6408 0.6227 0.1632 0.4446 0.6404 0.2636 31.72 48.99 41.15 36.33
SKB XS 0.6522 0.6725 0.1759 0.459 0.6565 0.2741 32.01 49.61 41.62 36.58
NNE 0.6529 0.6632 0.1764 0.4622 0.6580 0.2772 32.16 49.73 41.76 36.78
HNE 0.657 0.6726 0.1739 0.4624 0.6595 0.2749 32.10 49.69 41.71 36.52

shown in Table 8. We jointly train with each KB and the entire ukWaC corpus. 526

Figures 2 (a), (b) and (c) show the impact of varying the semantic lexicon size on the 527

proposed method evaluated respectively on MEN, SCWS and SimLex benchmarks. 528

Similar trends were also observed with other benchmark datasets. We fixed the corpus 529

size with XL and perform the experiments with various lexicon sizes. The horizontal 530

lines in the three Figures correspond to the corpus-only baseline, which is unaffected 531

when the corpus is not varied. We see that the proposed method using SKB, NNE, 532

and HNE continuously increase performance when we increase the size of the KB. 533

This result suggests that we can still learn high-quality word embeddings by creating 534

KBs with better coverage on top of what we can learn about word semantics from a 535

large corpora. HNE, unlike NNE, requires expansion candidates to be mutual 536

neighbours. With smaller KB, it is difficult to find such mutual neighbours, which 537

results in HNE performing poorly compared to SKB and NNE. However, when we 538

increase the size of the KB, HNE’s performance increases. 539

Table 8. Different semantic lexicon sizes (synonym relation) randomly
selected from WordNet

% of synonym Edges Size
word-pairs SKB NNE HNE

100 87,060 108,510 104,123 XL
70 60,941 75,957 72,886 L
40 34,824 43,404 41,649 M
20 17,412 21,702 20,824 S
10 8,706 10,851 10,412 XS
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6.6 Multi-Rounds of Expansion 540

The NNE (Algorithm 2) and HNE (Algorithm 3) methods can be repeatedly used to 541

expand a KB using the word embeddings learnt from previous rounds. Specifically, 542

once we have expanded the KB using either NNE or HNE, we run Algorithm 1 with 543

the same settings T=20 and λ = 10, 000 to learn word embeddings. Next, we use those 544

word embeddings to find the nearest neighbours used in NNE and HNE. We then 545

expand the KB using Algorithms 2 or 3. Because the word embeddings learnt after 546

expanding the KB could be better than the original word embeddings, by using the 547

newer word embeddings we can hope to find more nearest neighbours, thereby further 548

expanding the KB. Similar to all the above experiments in the previous sections, we 549

use the WS dataset as validation data for tuning the number of expanding rounds. We 550

observed that 10 rounds were sufficient where with further expansion the performance 551

start falling behind the SKB baseline. We also observed that 5 rounds represent, on 552

average, the peak point for most of the benchmark datasets. In Table 9, we compare 553

the results that we obtained by expanding the KB with 5 rounds of expansion in all 554

the 8 different WordNet semantic relations against the SKB. From Table 9, we can see 555

that both NNE and HNE outperforms SKB in most of the benchmarks irrespective of 556

the relation types. In particular, NNE on synonyms, hypernyms, part-holonyms and 557

part-meronyms reports the best performance on most of the benchmarks, whereas 558

HNE works better on hyponyms, member-holonyms and member-meronyms. 559

Table 9. Comparisons among SKB, NNE and HNE using different relation types with 5 expansion rounds
on XL corpus.

Method Relation RG MC RW SCWS MEN SimLex sem syn total SemEval

SKB 0.7879 0.7614 0.2674 0.5103 0.7367 0.3492 59.9 71.02 65.97 39.39
NNE synonyms 0.7896 0.7552 0.2706 0.5281 0.7434 0.3651 59.98 71.44 66.24 39.52
HNE 0.7883 0.7745 0.2694 0.5198 0.7436 0.3627 60.1 71.36 66.21 39.23

SKB 0.7687 0.7018 0.2545 0.4907 0.7142 0.3268 59.54 67.07 63.65 39.01
NNE antonyms 0.7668 0.7022 0.2553 0.5106 0.7166 0.3284 59.86 67.24 63.89 39.07
HNE 0.7682 0.7029 0.2561 0.5114 0.7169 0.3275 59.79 67.36 63.92 39.05

SKB 0.7774 0.7330 0.2536 0.5034 0.7335 0.3576 60.15 71.91 66.57 39.22
NNE hypernyms 0.7792 0.7392 0.2543 0.5162 0.7372 0.3647 60.13 72.71 67.02 39.36
HNE 0.7724 0.7043 0.2554 0.5122 0.7385 0.3633 60.14 72.63 66.96 39.28

SKB 0.7720 0.7193 0.2616 0.5040 0.7292 0.3575 60.05 70.75 65.89 38.49
NNE hyponyms 0.7738 0.7214 0.2633 0.5105 0.7318 0.3582 60.22 70.83 66.02 39.31
HNE 0.7771 0.7193 0.2645 0.5109 0.7336 0.3583 62.2 70.79 65.99 39.22

SKB 0.7655 0.6985 0.2536 0.4869 0.7059 0.3310 59.53 65.91 63.01 38.49
NNE member 0.7698 0.7067 0.2546 0.4882 0.7072 0.3368 59.64 66.09 63.17 38.64
HNE holonyms 0.7671 0.7015 0.2551 0.4897 0.7096 0.3339 59.71 66.16 63.23 38.72

SKB 0.7613 0.6952 0.2537 0.4867 0.7070 0.3332 58.94 65.68 62.62 38.61
NNE member 0.7644 0.6988 0.2555 0.4895 0.7092 0.3355 59.28 65.92 62.92 38.88
HNE meronyms 0.7637 0.6973 0.2547 0.4891 0.7093 0.3354 59.38 65.97 62.99 38.72

SKB 0.7740 0.7144 0.2682 0.4937 0.7220 0.3298 59.10 67.86 63.89 38.96
NNE part 0.7791 0.7264 0.2688 0.5019 0.7266 0.3325 59.24 67.92 63.98 39.27
HNE holonyms 0.7782 0.7252 0.2694 0.5002 0.7269 0.3316 59.31 67.95 64.03 39.18

SKB 0.7814 0.7338 0.2714 0.4980 0.7215 0.3317 59.36 67.65 63.89 38.95
NNE part 0.7854 0.7349 0.2758 0.5028 0.7237 0.3328 59.64 67.97 64.19 39.26
HNE meronyms 0.7822 0.7352 0.2742 0.5016 0.7252 0.3334 59.45 67.75 63.98 39.18

To readily understand the impact of the multi-rounds of expansion, in Fig 3 (a) 560

and (b), we plot the Spearman correlation coefficient on SCWS and SimLex datasets 561

against the number of expansion rounds with NNE and HNE. The horizontal line 562

corresponds to the SKB method that does not expand the KB. From the same figure, 563

we can see that on (a) SCWS for both NNE and HNE, the performance increases 564
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Fig 3. Multi-Rounds of Expansion. The impact of multi-rounds of expansion
using NNE and HNE with synonym relation evaluated on the (a) SCWS and (b)
SimLex datasets.

with the number of expansion rounds, until approximately the 9-th round, where the 565

performance saturates. Whereas on (b) SimLex the performance reaches its peak 566

earlier on the 3-rd round for both NNE and HNE and steadily decreases until 567

approximately the 10-th round where the performance starts falling behind the SKB 568

baseline. Similar trends were observed in all benchmark datasets, where multi-round 569

expansion improves performance over single-round expansion in all cases but the 570

performance either saturates or degrades because more noisy and irrelevant expansion 571

candidates are introduced in later expansion rounds. Similar trends have been 572

observed in bootstrapping methods for relation or entity extraction [1]. Determining 573

the ideal number of rounds and preventing noisy expansions require further research. 574
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6.7 Effect of Dimensionality 575

To study the impact of the dimensionality d on the performance of the proposed 576

method, we train word embeddings with different dimensionalities using ukWaC as the 577

corpus and synonymy relation on WorNet as the KB. Fig 4 shows the performance on 578

the semantic similarity benchmark datasets. We can see from the same figure that 579

even with a wide range of dimensionalities the proposed method reports a relatively 580

stable performance. Interestingly, with as small as 300 dimensions, we can capture 581

semantics of words, corresponding to prior work [45] [12]. Importantly, Fig 4 shows 582

that adding more dimensions does not result in any decrease in the performance due 583

to overfitting, which is encouraging. 584
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Fig 4. Effect of Dimensionality. The impact of the dimensionality of the word
embeddings learnt evaluated on the RG, MC, RW, SCWS and MEN datasets.

7 Conclusion 585

We proposed a method that utilises the information contained in KBs to learn a 586

better word embeddings as compared to corpus-only approaches. In particular, we use 587

the corpus to define a learning objective subject to the constraints extracted from the 588

KB. Moreover, we proposed two methods for expanding the KB using information 589

extracted from the corpus, for the purpose of learning high-quality word embeddings. 590

Our experimental results on a range of benchmark datasets for semantic similarity and 591

word analogy show that the proposed method obtains improvements over a 592

corpus-only word embedding learning methods, and previously proposed joint word 593

embedding learning methods. Furthermore, empirical experiments conducted with 594

varying sizes of corpora and KBs show that the proposed method reports consistent 595

improvements over a wide range of different configurations of resources. Interestingly, 596

by repeatedly expanding the KB, we can further improve the accuracy of the learnt 597

word embeddings. In future, we plan to apply the proposed method to learn word 598

embeddings from different types of KBs such as medical or legal ontologies. 599
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Appendix

The gradients of the objective given by Eq. 5 w.r.t. the four variables are computed as
follows:

∂J

∂wi
=

∑
j

f(Xij)w̃j

(
wi

>w̃j + bi + b̃j − log(Xij)
)

+λ
∑
j

R(wi, wj)(wi − w̃j) (8)

∂J

∂bi
=

∑
j

f(Xij)
(
wi

>w̃j + bi + b̃j − log(Xij)
)

(9)

∂J

∂w̃j
=

∑
i

f(Xij)wi

(
wi

>w̃j + bi + b̃j − log(Xij)
)

−λ
∑
j

R(wi, wj)(wi − w̃j) (10)

∂J

∂b̃j
=

∑
i

f(Xij)
(
wi

>w̃j + bi + b̃j − log(Xij)
)

(11)
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