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Greasing The Wheels Or A Spanner In The Works? Regulation Of 

The Cardiac Sodium Pump By Palmitoylation 

The ubiquitous sodium / potassium ATPase (Na pump) is the most abundant 

primary active transporter at the cell surface of multiple cell types, including 

ventricular myocytes in the heart. The activity of the Na pump establishes 

transmembrane ion gradients that control numerous events at the cell surface, 

positioning it as a key regulator of the contractile and metabolic state of the 

myocardium. Defects in Na pump activity and regulation elevate intracellular Na 

in cardiac muscle, playing a causal role in the development of cardiac 

hypertrophy, diastolic dysfunction, arrhythmias and heart failure. Palmitoylation 

is the reversible conjugation of the fatty acid palmitate to specific protein 

cysteine residues; all subunits of the cardiac Na pump are palmitoylated. 

Palmitoylation of the pump’s accessory subunit phospholemman by the cell 

surface palmitoyl acyl transferase DHHC5 leads to pump inhibition, possibly by 

altering the relationship between the pump catalytic α subunit and specifically 

bound membrane lipids. In this review we discuss the functional impact of 

phospholemman palmitoylation on the cardiac Na pump and the molecular basis 

of recognition of phospholemman by its palmitoylating enzyme DHHC5, as well 

as effects of palmitoylation on Na pump cell surface abundance in the cardiac 

muscle. We also highlight the numerous unanswered questions regarding the 

cellular control of this fundamentally important regulatory process. 

Keywords: acylation; DHHC; palmitoyl acyl transferase, thioesterase; post-translational 

modification; P-type ATPase; ion transport; phospholemman 

1. Introduction 

The transmembrane sodium / potassium pump (Na pump) couples the hydrolysis of 

ATP to the cellular export of 3 sodium (Na) ions and the import of 2 potassium (K) ions 

against their electrochemical gradients, and operates ubiquitously in eukaryotic cells. As 

the most abundant primary active transporter at the cell surface in most cells and tissues 

(including cardiac myocytes), its activity is a key regulator of transmembrane ion 

gradients, secondary active transport, membrane potential, and consequently numerous 



events at the cell surface. Acute and chronic changes in pump activity have profound 

effects on cell and organ physiology.  

Multiple regulatory pathways converge on the cardiac pump. Pathways 

involving phosphorylation and oxidation are undoubtedly functionally important, but 

have been described and discussed in detail elsewhere (Rasmussen et al., 2010, Fuller et 

al., 2013, Liu et al., 2013, Pavlovic et al., 2013a, Bogdanova et al., 2016). This review 

therefore focuses on a pathway of emerging importance in numerous aspects of 

membrane transport: the impact of fatty acylation of specific cysteine residues 

(palmitoylation) in the various constituent subunits of the Na pump on its activity in 

cardiac muscle. As the only reversible lipid modification, palmitoylation facilitates the 

dynamic regulation of the relationship between integral membrane proteins and their 

lipid environment. In order to appreciate the mechanistic impact of palmitoylation on 

the cardiac Na pump, we will first consider the quaternary structure of the pump, the 

(patho)physiological importance of pump regulation, and the regulatory milieu to which 

the pump is exposed (with particular emphasis on regulatory lipid interactions). Before 

that we will explore palmitoylation broadly as a reversible posttranslational 

modification. 

2. Palmitoylation 

Palmitoylation is the reversible conjugation of the fatty acid palmitate to specific 

cysteine thiol groups via a thioester bond. Catalyzed by integral membrane DHHC-

containing palmitoyl acyl transferase enzymes, and reversed by thioesterases, this 

dynamic post-translational modification occurs throughout the secretory pathway. The 

hydrophobicity of the 16 carbon fatty acid palmitate that is attached to proteins is such 

that it must be accommodated within the hydrophobic core of a lipid bilayer, which 



means that palmitoylation reversibly anchors proteins to membranes (Salaun et al., 

2010, Chamberlain and Shipston, 2015). The attachment of myristoyl or prenyl lipid 

groups to proteins achieves only weak or transient membrane association, with stable 

membrane attachment requiring double lipidation (Shahinian and Silvius, 1995). In 

contrast we find that even a single palmitoylation event is sufficient to act as a stable 

membrane anchor (Reilly et al., 2015). The fact that the palmitoylating DHHC enzymes 

are themselves integral membrane proteins probably creates a requirement for most 

substrates to possess some intrinsic affinity for membranes – either through the 

presence of integral membrane domains, other lipid anchors (Hancock et al., 1989), or 

other membrane-interacting sequences (Greaves et al., 2008, Greaves et al., 2009, Plain 

et al., 2017). Thus, palmitoylation can both reversibly recruit soluble proteins to the 

bilayer functionally compartmentalizing them, and significantly restructure intracellular 

loops of transmembrane proteins, leading to functional changes in, for example, ion 

transporters (Shipston, 2011). 

 

2.1 Palmitoylation dynamics: tools and pitfalls 

Whilst the palmitoylation of some proteins is essentially static, it has long been 

appreciated that the palmitoylation of some proteins turns over quickly, 

particularly heterotrimeric and small G proteins (Magee et al., 1987, Mumby et 

al., 1994, Wedegaertner and Bourne, 1994). In recent years unbiased proteomic 

screens have found that a wide-range of palmitoylated proteins (including ion 

transporters and their regulators) rapidly cycle between palmitoylated and 

depalmitoylated states (Kang et al., 2008, Martin et al., 2012). Hence for a 

significant subset of the cellular palmitome, the turnover of palmitoylation is 



sufficiently rapid to mediate acute physiological responses to hormonal and 

environmental challenges. Indeed, the list of dynamically palmitoylated proteins 

grows ever longer.  

Although the experimental tools to investigate depalmitoylation kinetics 

(by targeting thioesterases) are relatively specific, the most commonly-used tool 

to investigate palmitoylation kinetics (targeting DHHC-PATs) is extremely blunt. 

Thioesterases identified to date are all members of the α/β-hydrolase family of 

serine hydrolases (Long and Cravatt, 2011, Lord et al., 2013). The non-selective 

serine hydrolase inhibitor hexadecyl fluorophosphonate (HDFP) largely abolishes 

palmitoylation turnover by blocking all depalmitoylating enzymes (Martin et al., 

2012), while specific, selective and in vivo-active inhibitors of acyl protein 

thioesterases 1 and 2 (APT1, APT2) have been described (Adibekian et al., 2012). 

The commercially-available β-lactone compound Palmostatin B, which was 

originally developed as a specific inhibitor of APT1 (Dekker et al., 2010, Rusch et 

al., 2011), has recently been reported to inhibit the activity of other α/β-

hydrolases, including ABHD17 proteins, which depalmitoylate N-ras (Lin and 

Conibear, 2015). In contrast only a single reagent, 2-bromopalmitate (2-BP), is 

commonly used to pharmacologically manipulate the activity of DHHC-PATs, 

usually at high µM concentrations. Although 2-BP is undoubtedly an effective 

inhibitor of some DHHC-PATs, studies using a ‘clickable’ analogue of 2-BP 

suggest it is extremely promiscuous in its reactivity (Davda et al., 2013). ω-azido 

2-BP fails to react with some DHHC-PAT isoforms, but labels 450 protein targets 

in intact cells, including palmitoylated proteins, transporters, channels and the 

α/β-hydrolase ABHD16A. Clearly the palmitoylation field urgently needs more 

specific DHHC-PAT inhibitors to interrogate cellular events with greater 



certainty, and considerable caution should be used when considering any 

phenotypic consequences of 2-BP application. Indeed, in the absence of 

accompanying supportive genetic evidence (e.g. candidate cysteine mutagenesis, 

DHHC-PAT knockout or silencing), an effect of 2-BP alone should not be taken 

as evidence of a role for palmitoylation in regulating a particular cellular event. 

 

2.2 Palmitoylation and the regulation of cardiac ion transporters 

The Na pump is one of numerous ion transporters regulated by palmitoylation in cardiac 

muscle. Indeed, trans-sarcolemmal fluxes of Na, Ca and K ions are all influenced by 

palmitoylation of the transporters and channels involved. The cardiac sodium/calcium 

exchanger NCX1 is palmitoylated at a single cysteine in its large regulatory intracellular 

loop, which sensitizes it to inhibition by its integral ‘exchange inhibitory peptide’ 

(Reilly et al., 2015, Fuller et al., 2016). Palmitoylation of cysteines in the II-III linker of 

voltage-gated channel sodium SCN5a, which is responsible for the voltage activated Na 

current that initiates the cardiac action potential, increases channel availability and 

hence cardiac excitability (Pei et al., 2016). The regulatory β2a subunit of the cardiac L-

type Ca channel is palmitoylated shortly after being translated; β2a palmitoylation 

enhances L-type Ca channel activity (Chien et al., 1996, Chien et al., 1998). Several K 

channels and their regulatory subunits are also palmitoylated: for example surface 

expression of KCN5A, responsible for Kv1.5, is regulated by palmitoylation (Zhang et 

al., 2007), and the ability of Kv4 family regulatory KChIP subunits to promote 

assembly and surface expression of mature channels relies on their palmitoylation 

(Takimoto et al., 2002). Many aspects of excitation-contraction coupling, Ca handling 

and contractility, and the properties of the cardiac action potential are thus regulated by 



palmitoylation. The importance of these events for the physiological control of cardiac 

function, and their relevance to defects in the mechanical and electrical behavior of the 

heart in disease are gradually becoming more widely appreciated. 

3. The Cardiac Sodium Pump 

3.1 Quarternary Structure of the pump: Cardiac Subunit Composition 

The Na pump is a multi subunit enzyme, with the mature enzyme composed of two 

obligate subunits (α, β), which may be joined by a third regulatory subunit (FXYD). 

The α subunit is the catalytic core of the enzyme, containing the binding sites for 

sodium, potassium and ATP as well as cardiotonic steroids such as ouabain. In order for 

the α subunit to traffic through the secretory pathway to the plasma membrane it must 

assemble with a β subunit in the endoplasmic reticulum (Geering, 1991, Horisberger et 

al., 1991). The third member of the complex, which is called the FXYD protein after its 

conserved extracellular phenylalanine-X-tyrosine-aspartate motif (Sweadner and Rael, 

2000) is not required for assembly of the mature pump, but does regulate its kinetic 

properties and/or substrate affinities.  

There are four isoforms of the α subunit, three isoforms of β, and seven FXYD 

proteins in mammalian genomes. With respect to the catalytic subunit, α1, α2 and α3 

are all detected in cardiac muscle (McDonough et al., 1996, James et al., 1999, Bossuyt 

et al., 2005, Tulloch et al., 2011, Wypijewski et al., 2013), although most investigations 

have focused on α1 and α2 containing pumps, which are both functionally different and 

distributed differently in cardiac myocytes (discussed below). We find the α3 subunit 

associated with FXYD1 (phospholemman, PLM, which is myocyte-specific) in cardiac 

muscle, which implies that the α3 subunit detected in the heart is derived from 



myocytes rather than a non-myocyte pool (Wypijewski et al., 2013). However, the 

functional contribution of α3 to cardiomyocyte Na homeostasis is small under 

physiological conditions, although it may contribute to Na mishandling in cardiac 

pathologies (Semb et al., 1998).   

Until recently the principal β subunit in cardiac muscle was thought to be β1 

(although we have observed the β3 subunit using proteomics to identify pump subunits 

prepared from rat ventricular myocytes (Tulloch et al., 2011, Wypijewski et al., 2013)). 

However, recent work suggests β2 is also a major cardiac subunit (discussed below 

(Habeck et al., 2016)). The principal cardiac FXYD protein is phospholemman (PLM). 

FXYD5 (RIC) has also been found in homogenates from whole hearts (Lubarski et al., 

2005), but whether this derives from a myocyte or non-myocyte population remains to 

be determined. 

3.2 Importance of Pump Regulation in Cardiac Muscle 

The Na pump supports normal electrical activity as well as establishing and maintaining 

ion gradients in all excitable tissues. In cardiac muscle, the Na gradient established by 

the pump drives numerous ion exchange and transport processes critical for normal 

cardiac function. Na-dependent membrane transporters include those responsible for the 

movement of other ions (e.g. Na/Ca exchanger (NCX), Na/H exchanger and Na-HCO3 

cotransporter (Mullins, 1981)), as well as those moving substrates (glucose, mannose, 

creatine, succinate and amino acids (Molitoris and Kinne, 1987)).  

3.2.1 Relationship between Na pump and NCX 

By controlling intracellular Na, the pump regulates NCX and hence cardiac 

contractility, because NCX uses the Na gradient established by the pump to remove Ca 



from the cytosol and hence relax cardiac muscle. Alterations in NCX activity directly 

influence the rate of Ca removal from the cytoplasm and hence diastolic function. 

Moreover since NCX and SERCA essentially compete to remove Ca, alterations in 

NCX activity also indirectly influence systolic function, by changing the sarcoplasmic 

reticulum (SR) calcium content.  Ultimately therefore changes in Na pump activity 

change cardiac contractility, and have the potential to be the driving force behind 

misregulation of Ca handling, which is a primary cause of contractile abnormalities and 

heart failure (Boguslavskyi et al., 2014). 

 Experiments using detubulation (physical uncoupling of t-tubule membranes 

from the peripheral sarcolemma) indicate that in murine ventricular myocytes 

approximately 70% of α2 and 40% of α1 subunit mediated pump activities reside in the 

t-tubules. This is despite the fact that the t-tubules represent only 30% of total myocyte 

surface area (Berry et al., 2007). A similar functional concentration of α2 activity in t-

tubules (Despa et al., 2003) and isoform distribution has been reported for the rat (Swift 

et al., 2007). Both α1 and α2 are functionally coupled to NCX in ventricular myocytes 

(Dostanic et al., 2004), and hence both subunits can indirectly control Ca handling and 

contractility through their influence on NCX. However when α1- or α2-containing 

pumps are individually blocked to give similar rises in intracellular sodium, only α2 

blockade influences the amplitude of the calcium transient, suggesting α2 containing 

pumps are the principal regulators of NCX and hence Ca handling (Despa et al., 2012). 

In support of this concept, transgenic overexpression of α2 maintains cardiomyocyte Ca 

handling and cardiac function in the face of hemodynamic stress, but overexpression of 

α1 does not (Correll et al., 2014). Hence the principal function of α2 appears to be to 

control Ca handling by NCX, leaving α1 to maintain bulk intracellular Na. 



Subunit-specific localization is not confined to the catalytic α subunit in cardiac 

muscle. Immunoprecipitation and immunofluorescent experiments have recently 

indicated that the α2 subunit predominantly located in t-tubules is accompanied only by 

the β2 subunit in human cardiac muscle (Habeck et al., 2016). The t-tubule specific 

α2β2 pump has a higher sodium affinity than the ‘bulk’ sarcolemmal α1β1 (9.8mM vs 

16mM), a considerably lower potassium affinity (7.4mM vs 1.5mM), and lower 

turnover rate. At physiological extracellular potassium concentrations its contribution to 

sodium handling is therefore somewhat small, but the strong voltage dependence of α2 

containing pumps (Crambert et al., 2000, Horisberger and Kharoubi-Hess, 2002) may 

allow the t-tubular α2β2 pumps to contribute particularly during the cardiac action 

potential, or at high heart rates if potassium accumulates in cardiac t-tubules as it does 

in skeletal muscle during prolonged activity (DiFranco et al., 2015). 

3.2.2 Relationship between Na pump and mitochondria 

As well as directly influencing contractile function via its impact on Ca handling, the 

Na pump indirectly influences mitochondrial function and therefore ATP supply in 

cardiac muscle. Mitochondria take up calcium via a uniporter, and extrude it using a 

Na/Ca exchanger. As calcium rises in the cytoplasm so does mitochondrial matrix 

calcium and this activates Krebs Cycle dehydrogenases to increase reduction of NAD to 

NADH, which causes elevated ATP production (Liu and O'Rourke, 2008, Kohlhaas et 

al., 2010). Mitochondrial ATP production is therefore accelerated during periods of 

intensive contractile activity. Fast calcium transients in cardiac mitochondria match 

those in the myocyte cytosol (Maack et al., 2006), enabling mitochondrial Ca to track 

cytosolic Ca, matching ATP supply to demand. The presence of a Na/Ca exchanger in 

the inner mitochondrial membrane links cytosolic Na concentration (ie Na pump 



function) to mitochondrial Ca (Maack et al., 2006): a rise in intracellular Na activates 

Ca extrusion from mitochondria via the exchanger in the inner mitochondrial 

membrane. The impact of reduced mitochondrial calcium is reduced Krebs Cycle flux, 

which prevents ATP supply meeting demand, leaving the heart metabolically 

compromised. In myocytes from failing hearts, which have increased intracellular 

sodium, blockade of the mitochondrial Na/Ca exchanger restores mitochondrial 

function by enhancing mitochondrial calcium accumulation (Liu and O'Rourke, 2008). 

Hence as the principal controller of intracellular Na, the pump influences the supply of 

ATP by cardiac mitochondria, and thus influences all ATP-dependent processes in 

cardiac muscle. 

3.3.3 Pump misregulation in disease 

A reduction in the sarcolemmal Na gradient in cardiac myocytes as a result of reduced 

Na pump function has been observed in both cardiac hypertrophy (Pogwizd et al., 2003, 

Verdonck et al., 2003a, Verdonck et al., 2003b, Boguslavskyi et al., 2014) and failure 

(Swift et al., 2008). Many aspects of excitation-contraction coupling are evidently 

altered in these pathologies. Not all are caused by misregulation of the Na pump, but 

elevation of intracellular Na does directly contribute to the negative force-frequency 

relationship, slowed relaxation, arrhythmias, and impaired mitochondrial energetics 

(Pieske and Houser, 2003, Liu and O'Rourke, 2008, Liu and O'Rourke, 2009) which are 

hallmarks of cardiac hypertrophy and failure. This raises the interesting possibility that 

strategies that increase myocyte sodium efflux by restoring or activating Na pump 

function will restore the Na gradient, and correct many of the functional impairments 

associated with hypertrophy and heart failure. To date, the aberrant palmitoylation of 

pump subunits has not been implicated in cardiac pathologies, but this is likely to 

change, as the field is in its infancy and there is much more work to be done. 



Furthermore, aberrant palmitoylation is known to cause or contribute to a wide range of 

pathologies in the cardiovascular system and beyond: from endothelial barrier 

dysfunction (Beard et al., 2016) and ischemia-reperfusion injury (Hilgemann et al., 

2013, Lin et al., 2013), to cancer (Oo et al., 2014, Tian et al., 2015, Yeste-Velasco et 

al., 2015), intellectual disability, schizophrenia, Huntington’s disease (Young et al., 

2012) and diet-induced impairment of synaptic plasticity (Spinelli et al., 2017). We 

expect that a mechanistic understanding of Na pump regulation by palmitoylation in 

ventricular muscle will offer the opportunity to manipulate this regulatory process to 

enhance pump activity for the treatment of diseases such as heart failure.  

4. Pump Regulation by the Membrane Bilayer 

4.1 Microdomain Localization 

In cardiac muscle essentially all active pump is found in caveolae (Liu and Askari, 

2006), which are small flask-like invaginations of the cell membrane around 50-100 nm 

in diameter. Caveolae are a specialized form of lipid raft, enriched in cholesterol and 

sphingolipids (Brown and London, 2000), characterized by the presence of the 

oligomeric scaffolding proteins caveolin (caveolin 1 and 3 in cardiac muscle) and 

cavins. The presence of the Na pump in cardiac caveolae is thought to be facilitated by a 

caveolin binding motif (CBM (Couet et al., 1997)) in the α subunit transmembrane 

domain 1, which is required for the interaction between caveolin 1 and the α subunit 

(Cai et al., 2008). There is unequivocal support from multiple laboratories that the 

pump directly interacts with caveolin oligomers (Liu et al., 2003, Yosef et al., 2016). 

However, we find that the presence of PLM modifies the interaction between the pump 

and the muscle-specific caveolin isoform caveolin 3, with reduced physical interaction 

between the pump and caveolin 3 in PLM KO hearts, and enhanced interaction between 



the two following induction of PLM expression in engineered cell lines (Wypijewski et 

al., 2015). PLM interacts with the pump α subunit at a considerable distance from the 

proposed CBM, suggesting that there may be more than one mechanism by which the 

pump is directed to caveolae (for example palmitoylation of one or more subunits, 

discussed below). Localization of the cardiac pump to caveolae is necessary to achieve 

colocalization with the signaling complexes that regulate it: PKA (Rybin et al., 2000, 

Head et al., 2005), PKC (Rybin et al., 1999), NADPH oxidase (White et al., 2009), and 

the palmitoyl transferase DHHC5 (Howie et al., 2014). In addition, the phospholipid 

composition of caveolae (in particular the local enrichment of lipids capable of 

regulating the pump, such as cholesterol (Brown and London, 2000)) is functionally 

important for the pump. 

4.2 Pump-Phospholipid Interactions 

Palmitoylation is the only reversible lipid post-translational modification, and it 

modifies the relationship between integral membrane proteins and the phospholipid 

bilayer in which they reside and with which they physically and functionally interact. 

Palmitoylation of NCX1, for example, sensitizes it to depletion of PIP2 (Reilly et al., 

2015, Fuller et al., 2016), while more generally palmitoylation of integral membrane 

proteins regulates their affinity for lipid rafts (Levental et al., 2010a, Levental et al., 

2010b). Like all ion transporters the Na pump interacts with and is influenced by lipids. 

Recent pump crystal structures have identified several specific lipid-protein interactions 

that account for the regulatory effects of particular phospholipids on pump activity 

(Shinoda et al., 2009, Kanai et al., 2013). In order to understand how palmitoylation of 

pump subunits may modify pump activity it is necessary to first consider how specific 

lipid-protein interactions regulate the pump. 



Palmitoyl carnitine and lysophosphatidylcholine potently inhibit the Na pump 

(Abe et al., 1984, Pitts and Okhuysen, 1984), whereas long chain fatty acyl CoA 

derivatives (Kakar et al., 1987) and monoacylglycerols (Askari et al., 1991) stimulate it 

at physiological concentrations. These stimulatory effects are thought to be due to 

specific binding of the acyl-CoA to an intracellular domain of the pump, rather than any 

biophysical effects on the lipid bilayer, or the relationship between the pump and this 

bilayer (Kakar et al., 1987). While the general physical properties of any lipid bilayer 

(for example curvature, thickness, elasticity) will inevitably influence the activity of 

proteins residing within it, specific docking of certain lipids to binding sites on a 

particular protein offer the opportunity for specific regulation of its activity. 

Transmembrane proteins are surrounded by a lipid annulus which can either interact 

with the surface of the transmembrane domains or exchange with the ‘bulk’ lipids in the 

bilayer. Specifically bound, non-annular lipids dock inside the perimeter of this annulus, 

between transmembrane helices or in binding pockets, in long-lived, high affinity 

interactions. In the case of ion pumps, channels and exchangers these interactions can 

regulate activity by stabilizing or destabilizing particular conformations adopted during 

the reaction cycle. In the case of the Na pump, three principal specific lipid binding sites 

have been identified in crystal structures, accommodating several phospholipid and 

cholesterol molecules (Shinoda et al., 2009, Kanai et al., 2013), and accounting for 

long-established functional effects of these lipids on pump activity. 

Na pump activity is regulated by the acidic phospholipid phosphatidylserine 

(PS) (Wheeler and Whittam, 1970), neutral phospholipids phosphatidylcholine (PC) and 

phosphotidylethanolamine (PE) (Haviv et al., 2013), sphingomyelin (Habeck et al., 

2015) and cholesterol (Cornelius et al., 2003). The specific binding of PS and 

cholesterol to a site in the α subunit protects the pump from thermal inactivation 



without directly modifying its activity (Haviv et al., 2007). PC or PE increase pump 

activity by specifically binding to a second site (Haviv et al., 2013), also in the 

transmembrane region. PC or sphingomyelin and cholesterol occupy a third site which 

causes pump inhibition (Habeck et al., 2015). The PS binding site (referred to as ‘site 

A’, Figure 1A (Cornelius et al., 2015)) includes transmembrane domains 8-10 of the α 

subunit and the FXYD protein transmembrane domain, and accommodates multiple 

lipids on both extracellular and cytoplasmic sides of the leaflet. The PC/PE binding site 

(‘site B’, Figure 1A) lies on the other side of the FXYD protein in a cleft between α 

subunit transmembrane domains 2, 4, 6 and 9 and the FXYD protein transmembrane 

domain, on the cytoplasmic side of the bilayer. Notably, the head group of the lipid that 

occupies site B is positioned very close to the intracellular region of the FXYD protein 

(Figure 1). The specific interaction of lipids at both sites has recently been elegantly 

demonstrated by native mass spectrometry of intact α subunit purified from a yeast 

expression system (Habeck et al., 2017).  

The diversity of lipids in biological membranes is not required for either bilayer 

formation or membrane barrier function, but does offer the potential to regulate the 

activity of the proteins that reside within them. The existence of specific regulatory 

binding sites on the Na pump raises the intriguing possibility that acute physiological 

regulation of pump activity and / or protein turnover can be mediated by the lipid 

bilayer in which the pump resides. As the only reversible lipid modification, 

palmitoylation therefore offers the opportunity to dynamically change the relationship 

between an integral membrane protein and its lipid environment, hence dynamically 

regulating protein function. The recent finding that changes to the properties of the 

sarcolemmal membrane can profoundly impact on Na pump activity adds another 

perspective to the regulatory milieu for the cardiac pump. In murine cardiac myocytes 



Ca transients greatly increase Na pump currents at physiological intracellular Na 

concentrations, via a mechanism that is not fully characterized, but appears to involve 

changes to the physical properties of the bulk surface membrane (Lu et al., 2016). 

Given the well-established ability of palmitoylation to modify the relationship between 

a membrane protein and its lipid environment, this highlights yet another potential 

regulatory avenue for the pump. 

5. Pump Regulation by Post-translational Modifications 

5.1 Phosphorylation 

5.1.1 Na pump regulation by phosphorylation - conflicting views 

Post-translational regulation of the cardiac Na pump by signaling pathways has 

been extensively studied. Despite this, however, there is remarkably little 

consensus about either the functional effects or the finer details of the molecular 

control processes, in particular of kinase-linked regulatory pathways. Indeed, 

these regulatory pathways and their reported impacts on pump activity vary 

considerably between different laboratories and model systems. A brief summary 

of the functional effects of PLM phosphorylation by PKA and PKC on the cardiac 

Na pump follows, but it is important to appreciate that several investigators have 

reported that kinases have essentially no effect on pump activity in the heart 

(Ishizuka and Berlin, 1993, Main et al., 1997, Fine et al., 2013, Lu et al., 2016), 

while others report that the same pathways described below to activate the pump 

cause its inhibition (White et al., 2009, White et al., 2010). A detailed discussion 

of kinase regulation of the pump is beyond the scope of this review. Clearly, the 

tools and approaches used to date cannot be regarded as satisfactory since they 



have generated such diverse and conflicting experimental observations. 

Ultimately the relatively mild phenotype of the PLM KO mouse suggests kinase-

mediated Na pump regulation via PLM phosphorylation ‘fine-tunes’ rather than 

drastically modulates pump activity (Bell et al., 2008), implying that the pathways 

responsible for more profound changes in pump activity remain to be identified. 

Nevertheless, the PLM KO is more prone to catecholamine-induced arrhythmias 

(Despa et al., 2008), and a transgenic mouse expressing unphosphorylatable PLM 

exhibits elevated intracellular Na accompanied by reduced Na pump activity 

(Pavlovic et al., 2013b, Boguslavskyi et al., 2014). Both observations are 

consistent with a role for PLM phosphorylation in pump regulation. 

5.1.2 PLM phosphorylation 

PLM was first identified as an abundant sarcolemmal phosphoprotein in 1985 (Presti et 

al., 1985a), and was quickly recognised to be the principal sarcolemmal substrate for 

PKA and PKC in cardiac muscle (Presti et al., 1985a, Presti et al., 1985b). The 

identification of the FXYD family of pump regulators (Sweadner and Rael, 2000), of 

which PLM is a member, led to our current understanding that PLM associates with the 

Na pump in the heart (Crambert et al., 2002, Fuller et al., 2004, Bossuyt et al., 2005, 

Bossuyt et al., 2006, Bossuyt et al., 2009) and modifies its transport properties. 

PLM is phosphorylated at serine 63, serine 68 and serine / threonine 69 by PKC, 

and at serine 68 by PKA (Walaas et al., 1994, Fuller et al., 2009). Experiments using 

PLM knockout models clearly demonstrate that the functional effect of PKA and PKC 

on cardiac Na pump activity requires the presence of PLM (Despa et al., 2005, Han et 

al., 2006). The precise details of these regulatory events are beyond the scope of this 

review, but are covered in detail elsewhere (Fuller et al., 2013, Pavlovic et al., 2013a). 



Briefly, unphosphorylated PLM inhibits the cardiac Na pump, and this inhibitory effect 

is relieved or masked following PLM phosphorylation. PLM phosphorylation at serine 

68 by PKA increases the sodium affinity of both α1 and α2 containing pump isoforms, 

while additional phosphorylation of other PLM sites by PKC increases Vmax of α2 

containing pumps only (Bibert et al., 2008, Bossuyt et al., 2009). 

5.2 Palmitoylation 

5.2.1 Functional Effects of Palmitoylation on the Na pump 

5.2.1.1 FXYD Protein Palmitoylation. Although all Na pump subunits are 

palmitoylated, only the functional effect of palmitoylation of the FXYD protein has 

been well studied. In the heart, a biologically meaningful fraction of PLM is 

palmitoylated, and in intact cells with physiological concentrations of intracellular Na 

and extracellular K PLM palmitoylation leads to Na pump inhibition, while 

unpalmitoylated PLM does not exert an inhibitory effect on the pump (Tulloch et al., 

2011, Howie et al., 2014). There are two palmitoylation sites just after the PLM 

transmembrane domain at cysteines in position 40 and 42. Although both are 

palmitoylated, PEGylation assays (which utilize hydroxylamine-dependent exchange of 

palmitate for a 5-10kDa PEG molecule to reveal palmitoylation as a band shift on SDS 

PAGE) indicate PLM is predominantly single palmitoylated in ventricular muscle 

(Howie et al., 2014). The principal palmitoylation site is cysteine 40: mutation of this 

site to alanine drastically reduces PLM palmitoylation and the inhibitory effect of PLM 

on the pump while mutation of cysteine 42 is largely without effect (Howie et al., 

2014). Although the functional effects of PLM palmitoylation are relatively modest 

(~20% inhibition of pump activity), the steep reliance of NCX activity on the 

transmembrane Na gradient means that even small changes in intracellular Na will 



influence Ca handling and hence contractility. Indeed, intracellular Na exerts a greater 

influence on peak systolic Ca than the activity of any of the cardiac Ca transporters 

(Hilgemann, 2004), so the change in Na pump activity caused by palmitoylation of 

PLM C40 by DHHC5 is likely to be functionally significant in the heart. 

The localization of the cardiac Na pump to caveolae means that its immediate 

environment is rich in sphingolipids and cholesterol. All FXYD family members 

influence the binding of phospholipids to the pump, and PLM in particular stabilizes the 

interaction between PS and the pump α subunit (site A (Mishra et al., 2011)), albeit 

with the principal effect being on pump stability rather than its activity. The fact that 

FXYD proteins in general and PLM in particular can modify the relationship between 

the pump α subunit and specifically bound phospholipids leads us to speculate that the 

inhibitory effect of PLM palmitoylation on the pump is mediated by changes in pump-

phospholipid interactions. The close proximity of the PC/PE head group in the 

α subunit lipid stimulatory site (site B) to PLM cysteine 40, coupled with the need for 

the acyl chain of the conjugated palmitate to be accommodated in the lipid bilayer 

suggests that palmitoylation of PLM at cysteine 40 alters the ability of PC/PE to occupy 

site B and / or stimulate ion transport by the α subunit (Figure 1B). In support of this 

concept, experiments in which recombinant FXYD proteins were reconstituted with the 

Na pump in vitro suggest that in different lipid environments recombinant PLM is 

capable of both activating or inhibiting the pump. Reconstitution of PLM with 

recombinant α1β1 in stearoyl-oleoyl-phosphatidylserine (SOPS) and cholesterol (Cirri 

et al., 2011) or dioleoyl phosphatidylserine (DOPS) (Lifshitz et al., 2006) increases the 

pump’s Na affinity compared to that in the absence of PLM. However when the same 

proteins are reconstituted in liposomes consisting of a mix of phospholipids with a 

broad distribution of fatty acid chains (comparable to a cell membrane), PLM reduces 



pump Na affinity (Cirri et al., 2013). A component of PLM-induced pump activation 

could be explained by the stabilizing effect of PLM on the pump enzyme complex 

(Lifshitz et al., 2007, Mishra et al., 2011). Ultimately however, since recombinant 

(unpalmitoylated, unphosphorylated) PLM can act as both a pump activator or inhibitor 

depending on the lipids used for reconstitution, it is conceivable that palmitoylated PLM 

exerts its effect on pump activity in a physiological setting by changing the relationship 

between the pump complex and its specifically bound lipids. 

Palmitoylation also controls the turnover rate of PLM: unpalmitoylatable PLM 

is degraded more rapidly than the wild type protein. This occurs independently of an 

effect on the degradation rate of the α subunit (Tulloch et al., 2011), suggesting that 

PLM palmitoylation does not influence steady state turnover and therefore abundance of 

the pump. 

5.2.1.2 α and β Subunit Palmitoylation. Experimental evidence (largely from proteomic 

screens) suggests that several isoforms of the α subunit (Yang et al., 2010, Dowal et al., 

2011, Forrester et al., 2011, Martin et al., 2011, Wilson et al., 2011, Serwa et al., 2015, 

Fang et al., 2016, Hernandez et al., 2016, Pinner et al., 2016) and all β subunits (Kang 

et al., 2008, Martin et al., 2011) of the pump are also palmitoylated in various tissues 

and cell lines. The functional effects of palmitoylation of either subunit on pump 

activity and/or localization, as well as relevance to the cardiac enzyme remains to be 

determined. The sole non-extracellular cysteine in the β1 subunit of the pump (cysteine 

46) resides within the transmembrane region, but it must become solvent-exposed even 

if only transiently in order for the side chain to encounter a palmitoylating enzyme. 

Meanwhile several palmitoylation sites have been identified in the α1 subunit. The most 

interesting of these is C374 adjacent to the catalytic aspartate (D376), which becomes 



transiently phosphorylated during the pump’s reaction cycle. A cysteine in position -2 to 

this aspartate is a common feature of many P-type ATPases. Although the structural 

imposition of a membrane anchor so close to the catalytic core of the enzyme would be 

expected to influence pump activity, to date no functional effect has been ascribed to 

palmitoylation of the α subunit of the pump. However direct functional regulation of 

other P-type ATPases by palmitoylation of their α subunits has recently been reported 

in Aspergillus nidulans (Zhang et al., 2016): the DHHC-PAT AkrA controls 

intracellular Ca signaling by regulating the activity of two P-type ATPases. Hence 

palmitoylation of the catalytic subunit may prove to be a universal regulatory feature for 

this class of enzymes. 

5.2.2 Palmitoylating Enzymes 

Our understanding of the forward reaction of palmitoylation, catalyzed by Asp-His-His-

Cys motif containing palmitoyl acyl transferase enzymes (DHHC-PATs), is in its 

infancy compared to other post-translational modifications, but will be aided by the 

recently-described crystal structure of DHHC20 (Rana et al., 2018). These 

transmembrane enzymes, which are found in all compartments of the secretory 

pathway, are first palmitoylated within their catalytic site (the cysteine of the DHHC 

motif) following transfer of palmitate from palmitoyl CoA, before the palmitate is 

transferred to substrate proteins (Jennings and Linder, 2012). DHHC-PATs appear to 

fall into two functional groups. Some form a stable complex with their substrate, with 

palmitate transfer dependent on this interaction and hence highly selective. The binding 

of other DHHC-PATs to their substrates is barely detectable, yet palmitoylation of these 

substrates is in some cases more efficient (Lemonidis et al., 2014). Included in the latter 

group are the Golgi-localized enzymes DHHC3 and DHHC7. The ankyrin-repeat 



containing DHHC-PATs DHHC13 and DHHC17 are in the former group (Lemonidis et 

al., 2015), as is the enzyme responsible for palmitoylation of PLM, DHHC5. 

Although most DHHC-PATs share a common transmembrane structure, with 4 

transmembrane domains and a highly conserved active site in a cysteine-rich 

intracellular loop, the intracellular amino and carboxyl termini show little homology 

between family members. DHHC5 and the closely related enzyme DHHC8 have very 

long (~500 residue) carboxyl tails, which are predicted to be highly disordered (Howie 

et al., 2014). We used a high throughput co-immunoprecipitation approach to identify 

DHHC-PATs that form a stable complex with PLM. DHHC-PATs 4, 5, 6 and 7 were 

found to interact with PLM to a much greater extent than any other DHHC isoforms. 

DHHCs 2, 4 and 5 are the most abundantly expressed in the heart at the level of mRNA, 

and DHHC5 predominantly localizes to cardiac caveolae, where it interacts with PLM 

(Howie et al., 2014). Overexpression of DHHC5 in cultured cells enhanced 

palmitoylation of PLM, while silencing it largely abolished PLM palmitoylation. Hence 

while PLM may be palmitoylated in the secretory pathway by DHHC-PATs that it 

encounters and forms stable complexes with (predominantly DHHCs 4, 6 and 7), when 

resident at the plasma membrane the principal determinant of its palmitoylation status is 

the presence of DHHC5. Not only does this identify DHHC5 as a regulator of the 

cardiac Na pump via PLM, the co-localization of PLM with its acyl transferase in 

cardiac caveolae (along with the rapid phosphorylation-induced change in PLM 

palmitoylation: see section 5.3) also strongly suggests that palmitoylation of PLM is 

dynamic rather than static, as has previously been reported for the related protein 

FXYD5 (Martin et al., 2012). 

Truncation analysis identified a region between N218 and T334 of the DHHC5 

extended C tail that is required for DHHC5 to recruit PLM. Deletion of this region, 



which is predicted to be highly disordered, abolished the physical interaction between 

DHHC5 and PLM, and prevented the palmitoylation of PLM by DHHC5. Hence the 

formation of a stable complex between DHHC5 and PLM is required and precedes 

palmitoylation of PLM by DHHC5.  

Disorder predictions indicate that the majority of human DHHC-PATs consist of 

a core ordered cytosolic cysteine rich domain with relatively disordered intracellular N 

and C termini. This is consistent with the concept that regions outside the cysteine-rich 

domain are responsible for substrate recruitment to DHHCs (Greaves et al., 2009, 

Huang et al., 2009, Nadolski and Linder, 2009). In general disordered domain 

interactions therefore likely underlie substrate recognition by (and hence substrate 

specificity of) some DHHCs. Specifically this occurs between the intracellular carboxyl 

tails of PLM and DHHC5. 

So what regulates DHHC5 palmitoylation of PLM? For now, this remains 

unknown. However, both PLM and DHHC5 are known to undergo multiple post-

translational modifications in the intracellular regions that interact with each other. It is 

therefore tempting to speculate that regulation of palmitoylation is at the level of the 

interaction between enzyme and substrate, rather than enzymatic activity of DHHC5 

itself. No post-translational modifications have yet been identified that regulate 

palmitate turnover in a DHHC-PAT active site. A model in which palmitoylation by 

DHHC5 is regulated by substrate recruitment to the enzyme is consistent with that 

which has been established for DHHC5 in the central nervous system, where δ-catenin 

palmitoylation is regulated by interaction and co-localization with DHHC5 (Brigidi et 

al., 2014, Brigidi et al., 2015), albeit only following the internalization of DHHC5 via 

clathrin coated vesicles mediated by adaptor protein binding to its C tail. Notably the 

available data regarding DHHC5 in the heart suggest that unlike in the brain, it resides 



in the same membrane compartment as its substrates, for example in caveolar 

microdomains with PLM. We speculate that one important difference between the role 

of DHHC5 in the brain and the heart is the timescale of responses. Synaptic plasticity 

tends to both develop and persist for longer periods of time than acute changes in 

cardiac output / function. 

5.2.3 Depalmitoylating Enzymes 

Only a small number of protein thioesterases have been identified to date, one of which 

(PPT1) is lysosomal (Linder and Deschenes, 2007, Tomatis et al., 2010). The cytosolic 

serine hydrolase APT1 (LYPLA1) has been proposed to depalmitoylate H-ras and G 

protein α subunits (Duncan and Gilman, 1998, Duncan and Gilman, 2002). However, 

pharmacological inhibition of this enzyme does not cause global changes in the 

abundance of palmitoylated proteins (Dekker et al., 2010) prompting consideration of 

other serine hydrolases as contributing to palmitoylation turnover and dynamics (Martin 

et al., 2012). Indeed the recent discovery that αβ−hydrolase 17 depalmitoylates PSD-95 

and N-ras suggests that the breadth of depalmitoylating enzymes is much greater than 

had been initially thought (Lin and Conibear, 2015, Yokoi et al., 2016). Although 

palmitoylation of PLM likely turns over relatively quickly (since it is rapidly 

palmitoylated upon phosphorylation – see below), the identity of the depalmitoylating 

enzyme remains un-reported. 

5.2.4 Indirect effects of palmitoylation on the pump 

5.2.4.1 Massive Endocytosis. The role of DHHC5 in cellular and cardiac biology has 

received attention recently with the finding that a novel form of endocytosis, massive 

endocytosis (MEND), in which up to 70% of the cell surface membrane is internalized, 

is controlled by DHHC5 (Fine et al., 2011, Hilgemann and Fine, 2011, Lariccia et al., 



2011, Hilgemann et al., 2013, Lin et al., 2013). Calcium overload leading to 

mitochondrial stress causes transient openings of the mitochondrial permeability 

transition pore (MPTP), releasing of coenzyme A into the cytoplasm where it is 

acylated to form a substrate for DHHC5 to palmitoylate surface membrane proteins 

(Hilgemann et al., 2013). The clustering of acylated proteins in lipid ordered domains 

leads to MEND by as-yet unidentified mechanisms in multiple cells types (Reilly et al., 

2015, Fuller et al., 2016).  

Importantly, MEND occurs during reperfusion of anoxic cardiac muscle (Lin et 

al., 2013), is accelerated in the presence of PLM (Hilgemann et al., 2013), and is 

inhibited by interventions classically reported to reduce MPTP opening and protect 

against reperfusion injury, such as adenosine (Liu et al., 1991) and cyclosporin A 

(Baines et al., 2005). DHHC5 knockout hearts in which MEND is significantly reduced 

show enhanced functional recovery following anoxia-reperfusion (Lin et al., 2013), 

strongly implicating DHHC5 and the MEND pathway in cardiac reperfusion injury. 

Hence palmitoylation of cardiac substrates by DHHC5 controls cellular processes that 

underlie a significant worldwide health burden. Of particular relevance to the cardiac 

Na pump and cardiac ion transport in general is the finding that this type of endocytosis 

preferentially internalizes pumps and ion transporters, probably because these proteins 

have bulky intracellular and small extracellular regions that favor their clustering in 

invaginated curved membrane domains (Reilly et al., 2015, Fuller et al., 2016). Indeed, 

palmitoylated proteins prefer to reside in such highly curved membranes (Larsen et al., 

2015). 

These observations highlight another means by which activity of DHHC5 may 

be regulated – by the availability of its substrate palmitoyl CoA. However, it is 

important to distinguish between ‘pathological’ activation of DHHC5, which remodels 



the cell membrane via MEND, and the ‘physiological’ role of DHHC5, in regulating ion 

transport by the pump. In the absence of MEND-inducing stressors and global 

remodeling of the cellular palmitome, palmitoylation of PLM by DHHC5 modifies 

pump activity, but not its abundance at the cell surface (Howie et al., 2014). 

3.2.4.2 Palmitoylated PLM Oligomers. PLM is not only found associated with the Na 

pump in cardiac muscle, it also interacts with itself. The pool of oligomeric PLM that 

does not interact with the pump can be distinguished by its almost stoichiometric 

phosphorylation at serine 63 by PKC (Wypijewski et al., 2013). Dephosphorylation of 

oligomeric PLM is without effect on pump activity. Indeed, despite its presence in 

caveolar membranes with the Na pump, the PLM oligomer may not be functionally 

linked to the pump, or capable of exchanging with pump-associated PLM. PP2A resides 

in close proximity to pump-associated PLM thanks to its interaction with the pump α 

subunit (Kimura et al., 2011). This population of PP2A maintains the pump-associated 

pool of PLM dephosphorylated at serine 63, as PP2A is capable of dephosphorylating 

PLM serine 63 but not serine 68 or threonine 69 (El-Armouche et al., 2011).  

As well as displaying a different phosphorylation signature, oligomeric PLM is 

also notably more heavily palmitoylated than the pump-associated pool (Wypijewski et 

al., 2013). PLM oligomerises in many cell types and membrane environments 

(Moorman et al., 1995, Song et al., 2011), and FRET measurements suggest that the 

PLM oligomer is a tetramer (Song et al., 2011). A PLM tetramer can be modeled based 

on the 4-helix parallel leucine zipper (PDB code 1C94 (Mittl et al., 2000)) between four 

monomeric PLM transmembrane domains (PDB code 2JO1 (Teriete et al., 2007), 

Figure 2). PLM leucines 16, 27, 30, 33 and 34, and isoleucines 23 and 26 contribute to 

the zipper, while the side chains of phenylalanine 28 (which interacts with the pump α 

subunit (Khafaga et al., 2012)) and cysteine 42 face the bilayer on the outside of the of 



the zipper, with cysteine 40 orientated inside. Palmitoylation at cysteine 40 would 

therefore not be accommodated in the PLM tetramer, while palmitoylation at cysteine 

42 would. This suggests that the PLM palmitoylation site responsible for regulating the 

pump (cysteine 40) can also regulate the formation of the PLM tetramer, although a 

physiological role for this tetramer remains to be identified. 

5.3 Relationship Between PLM Phosphorylation And Palmitoylation 

Although unpalmitoylatable PLM is phosphorylated normally by PKA and PKC 

(Tulloch et al., 2011), there is a relationship between PLM palmitoylation and its 

phosphorylation by PKA. Paradoxically, phosphorylation of PLM at S68 by PKA 

increases PLM palmitoylation (Tulloch et al., 2011). Hence one post-translational 

modification of PLM that activates the Na pump, promotes a second that inhibits it. 

There are many examples of phosphorylation and palmitoylation interacting with each 

other on the same target protein (Tian et al., 2008, Salaun et al., 2010, Gauthier-Kemper 

et al., 2014, Moritz et al., 2015), but palmitoylation usually inhibits phosphorylation 

(and vice versa) because one modification attracts proteins to membranes while the 

other repels them. PLM phosphorylation close to its C terminus either increases the 

mobility of its intracellular C tail to allow DHHC5 to access the juxtamembrane 

palmitoylation sites, or increases the interaction between PLM and DHHC5 to promote 

PLM palmitoylation. The consequences for the cardiac Na pump of increased PLM 

palmitoylation following its phosphorylation by PKA remain unclear because in cardiac 

muscle we cannot distinguish whether C40 (the Na pump regulatory cysteine) or C42 in 

PLM is palmitoylated following PKA activation. If, for example, PKA-induced 

palmitoylation of PLM merely increases the half life of PLM without influencing Na 

pump activity, the resulting increase in cell surface expression of PLM would simply 

increase the number of Na pumps associated with PLM, possibly increasing the ability 



of the pump to respond to a subsequent kinase challenge. Alternatively, if PLM 

palmitoylation influences the formation of the PLM oligomer, PKA-induced 

palmitoylation may modify the ability of PLM to oligomerise but not alter pump 

activity. 

6. Conclusions & Perspectives 

There is much still to learn about Na pump regulation by palmitoylation. In particular, 

we don’t know how PLM is depalmitoylated in cardiac muscle. Nor do we have a full 

picture of how DHHC5 recruitment and palmitoylation of PLM is regulated; although 

PLM phosphorylation and palmitoyl-CoA availability clearly have a role to play, other 

mechanisms and pathways are also likely to contribute. The apparently paradoxical 

enhancement of PLM palmitoylation by phosphorylation (a post-translational 

modification thought to activate the pump) requires further investigation. The 

disordered C tail of DHHC5 is rich in predicted sites of a diverse range of post-

translational modifications. Whether recruitment to / recognition of PLM by DHHC5 is 

regulated by post-translational modification to the enzyme’s C-tail remains to be 

determined, but seems likely. Indeed, whether DHHC5 interacts directly with PLM or 

through another pump subunit, has yet to be definitively shown. In addition, although 

the palmitoylation sites and functional effect of palmitoylation of PLM are relatively 

well understood, all subunits of the cardiac Na pump are palmitoylated and the 

functional consequences of palmitoylation of the pump’s α and β subunits remain 

unknown. 

In conclusion, a picture emerges of palmitoylation as a mechanism that tunes the 

activity of the cardiac Na pump via the associated FXYD protein PLM. This 

relationship is likely to have general significance as all FXYD proteins possess 



juxtamembrane cysteines (Tulloch et al., 2011), which may also be palmitoylated. As 

our understanding of the relationship between the Na pump and its lipid bilayer 

becomes ever clearer, so will the molecular details of how PLM palmitoylation inhibits 

the pump, and how we can intervene for therapeutic gain. The therapeutic potential of 

targeting palmitoylation of individual proteins has recently been demonstrated for the 

melanocortin-1 receptor (MC1R): inhibiting depalmitoylation of MC1R variants 

associated with melanoma prevents melanomagenesis (Chen et al., 2017). Ultimately if 

we can exploit our developing understanding of the cellular events leading to Na pump 

inhibition by palmitoylation, we hope to find that the relationship between DHHC5 and 

PLM is similarly ripe for exploitation to manipulate Na pump activity to ameliorate 

cardiac pathologies.  
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Figure 1. Relationship between the Na pump and specifically-bound regulatory lipids. 

A: Crystal structure of the Na pump purified from the pig kidney, showing α (green), β 

(cyan) and γ (FXYD2, yellow) subunits, based on PDB 3WGV (Kanai et al., 2013). 

Specifically bound lipids are shown occupying sites A (stabilizing) and B (stimulating). 

The third lipid binding site is obscured by the α subunit. B: The stimulatory lipid 

occupying site B lies in very close proximity to the FXYD protein (PLM in cardiac 

muscle). The intracellular C tail of the FXYD protein is not resolved, and structural 

information ceases at an arginine equivalent to R39 in PLM. We speculate that 

palmitoylation of PLM C40 influences the ability of lipid to occupy site B and / or 

stimulate the α subunit. 

Figure 2. Model of the PLM tetramer based on the 4-helix parallel leucine zipper (PDB 

code 1C94 (Mittl et al., 2000)). Each PLM monomer is presented in a different color. A: 

The transmembrane helical domains form a coiled coil which is fastened by the leucine 

zipper. Key residues are shown in sphere representation. F28, which interacts with the 

Na pump α subunit, and palmitoylatable C42 both protrude from the outside of the 4-

helix coiled coil, while regulatory C40 points inwards. B: The transmembrane region 

with one PLM subunit cut away to show the leucine zipper. Leucine and isoleucine 

residues point inwards to grasp one another. C: View down the center of the 4-helix 

parallel leucine zipper from the extracellular space showing leucine/isoleucine residues 

packing tightly together. 
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