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SYNOPSIS 

The pre s ent investigation is part of a long t erm 

re s earch programme dealing with the wave action in the 

exhau s t  and induc tion pipe s of a tw o-stroke oil engine 

and their e f f e c t  upon the cylinder scaveng e proc e s s . 

As a devel opment of fundamental res earches carried 

out at the Univ ersity Laboratories using simulated 

cyl inder re l ea s e  pre s sure s in a mot ored engine, the 

pr e s en t  inv e s tigation s e e ks to ext end the established 

data t o  the practical prob l em of the engine under firing 

conditions. 

In this report, the the oretical analysis of 

uns t e ady one-dimensional gas flow, all owing for the 

ef f e c t s  of wal l fric ti on, heat exchange with the surrounding s., 

and t emperature dis continuiti e s  is deve l oped , and the 

Method of Charact eristics is app lied t o  effect a s o lution. 

The or etical exhau s t  pipe and cylinder indicator diagrams 

ar e evaluat ed using this the ory, and compared with the 

experim ental diagrams from the firing engine . 

From p erf ormance trials, the measured air c onsump tion 

us ing a constant air/fu e l  ratio, but different exhaus t  pipe 

le ngths and engine spe eds, is evaluated and p l o t t e d  on a 

dimension l e s s  basis f or c omparison with the previou s 

simu lated work. 
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l .  Introduct ion 

The potential advantage of the t wo-stroke cycle 

engine over the four-st roke cycle engine of equal swept 

volume is substantial . The output torque is more uniform 

and for the same speed of rot ation, the power developed 

is theoretically doubled giving a much improved power-

weight ratio. In addition, the number of moving parts 

is r educed, simplifying maintainance and giving improved 

reliability . In practice, however, considerable difficulty 

has been encountered in at tempt ing to realise the potentially 

high specific ou tput, due primarily to the problem of 

efficien t scavenging. 

Success of thetwo-stroke cycle engine depends upon 

the efficiency of the air exchange process in the cylinder, 

since both the power developed per unit of swept-volume and 

the fuel consumpt ion are closely related to the efficiency 

o f  the scavenge process. In the high speed engine, the 

time available for scavenging the cylinder is very small . 

Hence, to achieve any measure of success, the scavenge air 

must be supplied under pressure, or an appreciable pressure 

difference must be maint ained between the air duct and the 

cylinder. The method of achieving this is usually to use 

either crankcase compression or an external air blower or 

pump driven by the engine. Thus scavenging is achieved 

at the expense of the power developed , a reduction in the 

power-weight ratio , and increased fuel consumption and 
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capit al cos t. 

One of the most significant contributions in the 

development of the two-stroke cycle engine was due to 

M. Kadenacy� who, in 1936, pat ent ed cert ain fe atures of 

port timing and design. His specifications were concerned 

with the means of improving the air exchange process in 

t he cylind er, and engines convert ed to his designs showed 

a consid erable improvement in performance. Evidence in 

support of his theoretical concept of Ballistic Discharge, 

accompanied by supersonic g as velocities, was published by 

Davies
2 

in 1940. 

Davies's conclusions were contested by Mucklow, who 

held the opinion that the results were not due to high 

discharge ve locities, but to pressure waves in the exhaust 

pip e. Extensive theor etical and practical research on the 

sudden release of compressed air from a cylinder into a 

3 
pipe was published by Mucklow and Bannist er in 1948. This 

showed conclusively that the depression in the cylinder 

following r ele ase, the Kadenacy effect, was due solely 

to wave action in the pipe, and that the observed phenomena 

could b e  explained satisfactorily by the laws of thermo­

dynamics and on the basis of a theory of waves of finite 

amplitude du e to Earnshaw and Riemann. 

The work of Mucklow and Bannist er was ext e nded by 

Wallace and MitchelY who examined the discharg e of 

compressed air from a por t ed cylinder lin er into pipes 
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of variable length . The research yielded valuable 

inf ormati on on the variat ion of the coefficient of 

discharge of the exhaust ports  with port opening , cylinder 

pressure and over a limit ed t emperature range. It also 

showed the inf lu ence of wave effec ts in the exhaust pipe 

on the durat i on and magnitude of the depression in the 

cylinder following releas e .  

Further w ork was carri ed out by Wal lace
s

us ing a 

mot ored opp os ed pis ton two-stroke cycle engine , in which 

cylinder release pressures , c omparab le with the firing 

engine , were s imu lat ed, and a full analysis made. 

The pres ent work i s  an ext ensi on of the research 

carried out by Wallace, us ing the same engine but under 

f iring c ondit i ons and the Method of Charact erist ics is 

employed f or the solution of the flow equations. 

The Method of Characteristics is due to Prandtl and 

Bus emann (1929 ) who used i t  in the solution of plane 

super sonic steady flow pr oblems . The meth od was devel oped 

t o  include one dimens i onal non-steady flow by S�uer (1942 ) 

and Schult z-Grunon (1942 ) and a variant of this was 

deve loped by de Hal ler in 1945• It is on this latter method 

that the pre s ent work is bas ed . 
� The work of Jenny , who used the Me thod of Characterist ics 

t o  investigate wave acti on in a pipe following the discharge of 

c ompressed air from a cylinder ,  constitu t ed a gr eat h e lp in 

the devel opment of the theory upon which thi s  the s i s  i s  bas ed. 



(a) 

Plate 1· 
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2. Apparatus 

2.1. General Layout. 

Two views of the apparatus are shown in Plate l 

and the layout is shown diagrammatically in Fig.l. 

Plate 1, however, shows induction pipes fitted to the 

engi ne, but these are not used for the present investigation. 

The vertical opposed piston two-stroke cycle engine 

is flexibly coupled to a swinging field electrical dynamo­

meter, and the combined unit is rigidly mounted on a bed 

plate consisting of two longitudinal R.S.J. sections bolted 

to a concrete plinth set in the laboratory flooro 

An auxiliary drive shaft, driven by the engine 

crankshaft, carries sprockets which provide chain drives 

for the fuel injection pump, the revolution counter, and 

a three phase A.C. tachometer. 

The fuel injection pump is gravity fed from the iuel 

tank via a filter , and its rack is accurately positioned 

by means of a micrometer attachment. The fuel line is 

connected via cocks to two measuring pipettes of capacities 

66 cc and 22 cc arranged in parallel for accurate monitoring 

of the fuel consumption. 

The expansion chambers bolted to the induction pipes, 

are linked by large bore rubber hoses to the air measuring 

box, and the latter is mounted in a cradle straddling the 

dynamometer. To this air box is connected the laboratory 

compressed air supply which is used for starting the engine. 
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The exhaust pipes terminate in large expansion 

tanks which are mounted on castors to facilitate their 

movement, see Fig.2. These tanks also serve as exhaust 

gas collectors and are connected to the laboratory fan 

extraction system. 

One air expansion chamber and one exhaust gas 

collector are connected to water manometers mounted on 

the control panel. 

2.2. Engine and exhaust pipe system. 

The opposed piston two-stroke cycle compression 

ignition engine is of Junkers design, and the cross­

sectional arrangement is shown in Fig.3. 

The engine has a bore of 65 mm. , a combined stroke 

of 210 mm. , and a trapped volume of 609.7 cc. The 

upper or air piston controls the air ports, and is 

carried on a 'crosshead'. Two connecting rods attached 

one on either side of this crosshead, are coupled to 

cranks on either side of the crank controlling the lower 

or exhaust piston. 

The air piston has a stroke of 90 mm. , the exhaust 

piston a stroke of 120 mm. , and their respective cranks 

are asymmetrically opposed, the angle between them being 

165 degrees. This arrangement gives an exhaust lead of 

16 degrees, with an air port closure at 14 degrees after 

the exhaust ports. The pistons have detachable crowns 

and are fitted with 'fire-rings', the edges of which are 

flush with the flat piston tops. 
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Fig.,6 .. 
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The combustion chamber, formed by the cylinder 

and the piston crowns, normally has two fuel injector 

nozzles diametrically opposed, see Section AA, Fig.4. 

For the present research, however, only o�e injector 

is used and the other cylinder boss houses a pressure 

transducer. 

Both the air and exhaust ports are arranged 

symmetrically around the periphery of the cylinder liner, 

see Sections BB and CC respectively, Fig.4. The air ports 

communicate with the air expansion boxes through two ducts, 

180 degrees apart, each having a constant cross-sectional 

flow area equivalent to that of the 211 bore induction 

pipes. The total distance from the air ports to the air 

boxes is approximately 5". 

The exhaust system is similarly disposed to the air 

system, and incorporates exhaust ejectors designed to the 

original Kadenacy specifications. These are, however, 

rendered inoperative by the insertion of short lengths of 

pipe, see Fig.5. The collector ducts between the exhaust 

ports and the 1� '' bore exhaust pipes each have a constant 

cross-sectionai area equivalent to that of the p1pe. 

The exhaust pipes are built up in sections and can 

be varied in length from zero to 11 feet in 6 inch steps. 

The fixing arrangements for pipe to pipe connection and 

pipe to engine connection are shown in Fig.6. 

2. 3. Dynamometer. 

. . t ted from 
The dynamometer, shown 1n Fig.7, 1s cons rue 

' 
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a 220 volt. D.C. shunt wound motor and is arranged to 

swing freely in a cradle which is bolted to the motor 

frame. The cradle is supported at either end on 

trunnions which are mounted in needle roller bearings (B). 

A torque arm, of effective length 2 feet, is 

produced by the bracket (T)bolted to one channel of the 

motor cradle. To the other end of t his bracket is 

attached the balance weight, opposed by the spring balance. 

See also Plate l(b). A balance weight is attached to the 

other channel of the motor cradle. 

The armature and field circuit for the dynamometer 

is shown diagrammatically in Fig.8. When motoring or 

starting the engine, switch (2) is closed in position (a) 

and the engine is brought up to speed by means of the 

starting resistance. When the engine is firing, switch 

(2) is thrown to position (b). Speed control is then 

efjected by using the starting resistance and the field 

reostat for coarse and fine adjustments respectively. 

The starting resistance is shunted by a 7 ohm. resistance 

which may be dispensed with by opening switch (3) for 

engine running under light load. 

2.4. Air Circuit. 

The air box used for air flow measurement consists 

of a fabricated steel drum 6 feet in length and 3 feet 

overall diameter. This is connected to the two expansion 

chambers, which are attached to the engine induction pipes 



by two 3 inch bore flexible rubber hoses, see Figs. 1 and 2. 

Air flow is measured by means of a range of sharp­

edged orifice plates constructed in accordance with the 

B.S.S. recommendations on flow measurement. Each plate is 

used for a limited range of air flow such that the maximum 

pressure differential across the metering orifice does not 

exceed one inch head of alcohol. 

The orifice, Fig.9, consists of a steel carrier plate 

(A ) bolted to the air box (G) by set screws. The bronze 

orifice plate (B) is located in a recess in the carrier and 

the approach to the orifice is unobstructed. The patent 

rubber rings (C) and (D) ensure perfect sealing of the 

orifice plate and carrier respectively. The downstream 

pressure tapping (E) is drilled through the carrier plate 

and leads to the nipple (F). 

The pressure differential across the metering orifice 

is measured by a micromanometer, Fig.l and Plate 1 (b ), 

connected to nipple (F ) by a long length of thick walled 

rubber tubing. The latter provides heavy damping and 

ensures a steady flow reading. The water manometer 

connected in this circuit, Fig.l, is provided to give a 

reading of the pressure in the air box when supplying 

the compressed air for starting. During the starting 

period the rubber connecting tube to the micromanometer 

is clamped to prevent the alcohol from being blown out, 

and the orifice plate is sealed by a rubber plug. 
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2.5. Instrumentation. 

(a) Engine speed measur ement . 

Nominal engine speed is recorded by means of a 

three phase A . C. tachomet er . Accurate measurement of 

the mean eng ine speed is obt ained by a revolut i on counter 

and a st op watch . 

The r evolut i on counter is mounted coaxially with 

a magnet i c  clutch which is chain driven from t he engine 

crankshaf t, Fig.l . The spring loaded sl eeve of this 

clutch carries three dowels, one of which engages w i t h  

the crank on the counter . Engagement is achi eved by 

energi zing t he coi l  surrounding t he sleeve, and 

disengagement is effected by t he spring behind the 

sl eeve when the electric supply is swi t ched off . 

(b ) Exhaust gas temperature measur ement . 

The exhaust gas temperature is measured by 

thermocoupl es mounted in t hin wal led, smal l diamet er 

stainl ess steel tubes . The tubes have one end sealed 

and are f l anged so that they locate in t he p ick-up b osses 

which are provi ded at 6 inch int ervals along the exhaust 

p ipe. 

The six ir on-const antan ther mocouples are connected 

via a six way selector sw itch to a previ ously calibrated 

mi llivolt meter, Fig . 2 .  

(c ) Cy linder and exhaust pipe pressure measurement. 

Pressure variat i ons in t he engine cyl inder and 
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exhaust pipe are recorded by means of a Southern 

Instruments Type Me 112 Engine Indicator, Plate l(a) . 

This is a switched three channel cathode ray oscillograph 

recorder incorporating a two beam cathode ray tube. The 

tube is viewed through a lens system by a rotating drum 

camera which has built in beam suppression contacts. 

The camera drum is driven by a D.C. electric motor, the 

speed of which is controlled by the battery voltage applied. 

Southern Instruments Type G2�water cooled pressure 

transducers with a range of 0 to 15 p.s.i. are used for 

measurement of the pressure in the exhaust pipe. A 

similar G2�transducer with a range of 0 to 75 p.s.i. 

is used to obtain the continuous light spring cylinder 

pressure record. The cylinder pressure at exhaust port 

opening is accurately determined by using a Standard Sunbury 

Electronic Engine Indicator in conjunction with a balanced 

disc cylinder pressure calibrating unit. 

A 'marker disc' bolted to the engine flywheel, Fig.l, 

provides signal pulses at 20 degrees interval of crank 

angle for superimposition on the Me 112 Indicator pressure 

records. A Sunbury Time Base Unit, driven from the 

auxiliary drive shaft of the engine, provides correlation 

between pressure and crank angle when using the Sunbury 

Indicator. This unit gives a signal pulse every 2 degrees 

with identification pulses every 10 and 90 degrees of 

crank angle. 
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A sma l l  two-way c ock , interposed between the 

G204 transducer s  and the measuring point , enables the 

pressure rec ords to  be calibrated by applying known 

value s  of air pres sure directly onto th e transducer 

diaphragm . 

The cal ibrating c ompres sed air supp ly, which is 

als o used with the Sunbury balanced disc pick-up , is 

c ontrolled by an air potent i ometer circuit , Fig . lO. 

Thi s  c on s i st s  of a small pr esssur e vessel  equipped 

with high and l ow pressure gauges for cylinder and pipe 

calibrati ons respectively , and it i s  connected to th e 

two-way c oc k . The pres sure with in th e vessel  is read 

on the appropr iate gauge and regulated by the combined 

u s e  of the a ir supply valve and the blow-off valve. 

Sub-atmospher ic pres sures are obtained by 

extracting a ir from the ves s e l  by means of the water 

ejector , the vacuum obtained be ing regulated by c ontroll ing 

the rate of water f l ow and using the b low-off va lve as 

an air b leed . 

A system of valve s is used to i s olate the vari ous 

secti ons and pressure gauges when they are not in use. 



0 
-

0 
-

� 

-

..J 
..: 
u 

j 

F i.g. �o. 



23 

3. Theory 

3 .1. NOMENCLATURE 

A cr oss-secti onal ar ea (ft2 ) 

a acoustic vel ocity ( f t/se c . ) 

Cd - coe ffici ent of di scharge. 

C
P 

sp ecific heat at constant pre ssure (ft . pdls/lb . ° C )  

C - specific heat at constant vo l u me 
V 

d p ip e  diameter (ft. ) 

F 

f 

H 

k 

K 

L 

m 

M 

n 

p 

wal l fr i ction term (pdls/lb . )  

co e ff i cient of fricti on . 

enthalpy. (ft.pdls/lb . )  

eff ective ar ea rati o, de f ined as 

geo me tr i cal port area 0 total p ipe ar ea x d 

degr e e s  centigrade ab so lute . 

total exhaust pipe length ( ft . ) 

mass (lb . ) 

dimensi onle ss mass f l o w .  

engine spe ed (r.p .m. ) 

pressure (pdls/ft2 ) 

(ft . pdls/lb . °C )  

q 

R 

rate of heat transier (f t.pdls/ft3sec. ) 

r 

s 

gas constant. 

Reyn olds numb er. 

modi f i e d  Reynolds number . 

hydrau l i c  radius . 

entropy 

T absolute temperature (00) 
t time (se cs . ) 
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internal energy (ft.pdls/lb.) 

dimens ionless  part icle velocity. 

part icle velocity (ft./sec.) 

volume (ft3) 

work (ft.pdls) 

dimensionless pressure ratio. 

distanc e along pipe (ft.) 
c 

ratio of specific heats (�) 
CV 

finite change. 

temperature difference (00) 
characteristic c o-ordinate, rightward wave. 

abs olut e viscosity (centipois e s) 

charact eristic co-ordinate ,  leftward wave. 

density (lb./ft3) 

velocity pot ential. 

Suffixes. 

o datum stat e parameters 

1 cylinder s tate paramet ers 

2 pipe stat e  paramet ers 

os - stat e parameters referred is entropically to datum is obar. 

c stat e paramet ers at cylinder port vena contracta. 

a stat e parameters of air in the cy linder. 

e state paramet ers of exhaust gas in the cylinder . 
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3.2 Scope of Theoret i cal Treatment 

Discharge of exhaust produc t s  from the cylinder 

of a two-stroke cycle engine results in the propagation 

of a steep fronted compression wave to  the open end o f  

the exhaust p ipe . Here i t  i s  reflected as a rare­

faction wave which travels back t o  the exhaust port 

where it i s  partially reflected and partially transmitt ed. 

The latter produces a depression in the engine cylinder 

which draws in the fre sh charge f or the next cycle. 

Wall friction, due t o  the pres ence of carbon deposits 

in the exhaust system , and heat loss to the surroundings 

through the pipe walls make the flow process irreversible , 

and their effect is sufficient t o  warrant consideration. 

Further, temperature disc ontinuiti�s exist in the flow 

s inc e there is a cons iderable differenc e in temperature 

between the exhaust gases just leaving the cylinder and 

those discharged by the previous cycle, Henc e the flow 

problem to be solved is one of unsteady motion in a pipe 

with wall friction, heat transfer and temperature 

discontinuiti e s  taken into account. 

The flow i s  assumed to  be one-dimensi onal sinc e, 

due to its nature , a developed veloc ity profile will not 

exist; and although the affect of wall friction and heat 

transfer are not stri ctly one-dimens ional , to  simplify 

the analysis a one-dimensi onal model us ing the appropriate 
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mean quant it ie s is emp l oyed. 

The equations defining the f l o w  ar e derived from 

consideration of mass continuity, momentum and energy, 

(Section 3.3), and the three resulting simultaneous 

e quations are so lved by a finite differ ence calcu lat ion 

procedure dev e l oped from the Method of Charact er istics 

(Section 3.6). Wall frict ion and heat transfer results 

in an entropy gradient in the pipe and al l owance for 

this is made by applying a correction to the local 

acoustic vel ocity re ferr e d  isentropically to the ambient 

pre ssure (Sect ion 3.4). This p ermits evaluation of the 

changes in fluid properties from one region of st at e to 

the next by f o l lowing t wo reversib l e  paths connect ing 

the end stat e s. Thus charact eristic net s can be 

construct e d  which give the solution at any point and 

t ime in the exhaust pipe for al l the fluid properties. 

The true curvil inear charact er ist ic net is, however, 

replaced by a net of straight line chor ds which are 

cl osely space d  so that linear int erpolat ion is permissible. 

Passag e of a wave point through a t e mperature 

discontinuity can be t aken into account analytically 

providing the position of the discont inu ity in the pipe 

at any instant is kn own. The me thod o f  so lut ion is 

discussed for various condit ions of f l o w  in Sect ion 3•7o 
For simplicity, it is assumed that the t e mperature discont i­

nuity is a p l ane at right ang l es t o  the f l o w  and that no 

diffusion or heat conduct ion occurs acr oss the int e rface .  
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The f low conditions at entry t o  and exit from 

the exhaust pipe are determined by the boundary conditions 

which define the flow behaviour for the varying phys ical 

configurat i ons (Section 3.8). Theoretical relationships 

are der ived in a framework of dimens i onless co-ordinat es 

of pres sure and particle  vel oc ity from which boundary 

curv e s  are drawn. Isentropic condit i ons are assumed 

for the cylinder cont ent s and the boundary curves are 

used for relat ing cylinder to pipe c onditions . At the 

open end of the exhaust pipe it is assumed that , f or 

outfl ow ,  equalisat ion with ambient pressure oc curs in 

the plane of the open end , and f or inflow , the end of 

the p ipe behaves as a Borda mouthpiece. 

The theoretical sect ion is  c onc luded by a summary 

of al l the theoretical expressions nec e ssary for the 

s olut i on of one-dimensional unst eady flow in a plain 

exhaust pipe (Sect ion 3 . 9) . 

The Appendices (Sec t i on 9� cont ain the mathematical 

the ory for the so lut ion of two and three partial 

differ ent ial equat ions from which the characteristic 

equati ons ar e derived , and the app licat i on of the Method 

of Characteristics t o  the s impler case of is entropic flow. 
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3.3 Unsteady one -dimensional flow equations in 

a constant cross-s ec tional area duct. 

Consideration of the three basic equations of 

fluid flow viz� continuity of mas s ,  momentum and 

energy , gives analytical expressions which define 

the variation in the state paramet ers for a fluid 

flowing in a duct. 

q Wall friction force 

p p + £Ea.x ax 

p p + £.£ dx ax 

u + 
au dx u ax 

� dx � 
Fig.ll 

Consider the ins tantaneous flow of gas in an 

element of pipe , length dx , of cons tant cross­

sec tional area A .  Assume that the pressure , density 

and particle velocity change from P, p and u t o  

p + 
aP 

+ £.2 dx and au dx , respe ctively , ax dx , p u + -ax ox 

see Fig. 11 • 
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Since the flow t o  be examined is of an unsteady 

nature , a plane velocity profile can be assumed t o  

exist across the pipe at any section ,  hence viscous 

shearing forces within the fluid can be neglect ed. 

At any arbitrary inst ant of time , t ,  the funda-

mental e quat ions of flow are derived as follows: 

(a) Mas s Cont inuity 

The rat e of change of mass within the el ement 

= 

the excess of mas s inflow int o the element .  

Rate of change o f  mas s within the element 

= A dx %t . dt 

Exc e s s  of mass inflow into el ement 

= Apu - A ( p + £,£ dx) ( u + � dx) ox ox 

which neglecting second order terms 

= _ P A El! dx _ A .££ dx 
ox u ox 

E quat ing these two result s gives: 

P 
ou + u £.2 ££ 
ax ax + at = 

(b) Continuity of Momentum 

0 

The net f orce act ing on the el ement 

= 

( 3.3-1) 

the mass accelerat ion of the fluid within the el ement . 

The net force act ing on the element 

= PA - A(P + 
oP.�)- �p A 
ox . 
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where � P = the pressure drop due to  

wall friction. 

As suming that the pres sure drop due to wall 

frict ion is  given by the equation for steady flow and 

can be appli ed ins tant ane ously to  the case of unsteady 

flow without undue error, 

then �� = 
f 

2d 

= F p 

u 
tU I 

where F = the fri ctional resistanc e. 

The factor _B_ is introduced to ensure that the 
JUI 

frictional force always acts in a direction opposite 

to  that of particle motion. 

Then the net force on the element 

= P A - A (P + £.f dx ) - A F p dx ax 

Inert ia force on the element 

= 
Du p A dx Dt 

D 
where the symbol Dt = the subs tant ial derivative with 

respect to time and denot es that the different iation is 

to  be carried out while following a part icular fluid 

part icle. 

Euler's equation of mot ion gives: 

Du au u au 
nt = at + ax 

Hence , the inertia force on the element 

= eau au ) 
P A dx at + u ax 
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Equating the net f orc e and the inertia force , and 

simplifying , yields 

au u au 1 aP + F at + ax + p ax 

(c )  Continuity of Energy 

= 0 (3 . 3-2 )  

No external mechanical work is done by the elemental 

system in the surr oundings and there is no change of 

potential energy of the system , thus the energy balance 

between the system and the surroundings becomes : 

Rate of heat transfer into the system 

= 

rate of change of interna l energy of the system 

+ 

rate of net flow work done by the system 

+ 

rate of change of kinetic energy within the system . 

Rate of heat transfer into the system 

= q . A . dx 

Rate of change of internal energy of the system 

= p A dx � 
Rate of net flow work don e  by the system 

= ( P + a p dx )A ( u + 0 u dx ) - P A u ax ax 
which neglecting second order terms 

= A dx (P �� + u ��) 
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Rate of change of kinetic energy within the system 

u2 
= p A dx J!..(2 ) 

dt 

du 
= p A u dx dt 

The energy balance can therefore be written as: 

q A dx = p A dU + A dx (P au dx dt ox + u aP) ox 

+ 
du p A u dx dt 

Substituting �� = 
au 
at + au u ax' dividing throughout 

by A dx and rearranging gives: 

� u au (au au 1 oP) p � + P- + pu - + u- + - - - q = 
dt ax at ax p ax 0 (3. 3-3) 

Substitution of the momentum equation (3.3-2) and the 

continuity equation (3.3-1 )  in equation (3.3-3) gives: 

dU p 
p - -

dt p (u E.£ + E.£) -
ax at 

Now p dU 
dt 

dP Also dt 

and � 
dt 

hence dU P<ft 

p u 

= 

= 

= 

= 

= 

= 

F - q = 0 

p _£._ (CvT) 
dt 

_.e._ 
Y-1 

d p 
dt (p) 

1 
p(y-1 ) 

dP £2) (p dt - p 
dt 

aP aP 
at + u-

ax 

£12 £12 
at + u at 

1 rap aP P
c££ y-1 at + u --

p at + ax 

(3.3-4) 

u ¥x)] 
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which on substitution in equation (3.3-4) and simplifying 

gives: 

aP aP 
at + u - -

ax 

£E + u 
aP 

-at ax 

:r.__g c££ p at 

Writing 

a2 c££ 
at 

Isentropic Flow 

+ u .££) -ax (y-1) (p u F + q ) = 0 

a2 :r.__g . = g:tves: 
p 

+ u .££) 
ax - (y-1) (p u F + q ) = 0 (3.3-5) 

For isentropic flow, both F and q are equal to zero. 

Further, the energy equation (3.3-5) becomes redundant and 

is replaced by the isentropic state relationship: 

p 
- = constant y 

ap PY-1 £.£ 
i.e. ax 0( 

y ax 

p 

= 

= 

r....E £.£ 
p ax 

a2 
£.e 

ax 

The momentum equation (3.3-2) becomes: 

au au 1 aP 
at 

+ u 
ax + p ax 

= 0 

Substituting equation (3.3-6 ) then gives: 

au au 2 an 
P-+ pu-+ a .;::;..c: 

at ax ax 
= 0 

(3.3-7) and the mass continuity equation (3.3-1)  

(3.3-6) 

(3 . 3-7) 

completely define the flow undar isentropic conditions. 
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3.4  Characteristic Quantity for the Entropy of 

a Gas Layer. 

As a result of wall friction and heat transfer 

to the surroundings, the flow process in the pipe 

is irreversible. Thus changes of state from instant 

to instant in the pipe can only be determined by 

following two reversible paths connecting the end 

states o£ the fluid particle under consideration. 

The most convenient reversible paths to use are those 

of constant pressure and constant entropy, see Fig.12 • 

T 

lT 

T 2 os 
lTos�---------

T o  �----� 

Fig. 12 

2 

Isobars 

s 

In the application of the Method of Characteristics 

to the theory (see Section 3.5),  it is desirable to 

relate all state points isentropically to the reference 

datum pressure P0, and to a0s 
and T

0s 
appropriate to the 

state under consideration, see Fig. 12 • 
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Thus the change of entropy ds in the process from 

state 1 to state 2 can be accounted for by determining 

the change in a 06 from 1a0s to 2aos· 

For a r eversible proc e s s : 

ds = 

therefore, for a finite change along the isobar P 0 

os = 

= 

and as 5 T approaches zero, 
os 

then ds = 

Now a0s
2 = yR T 

os 

i.e. d(log T s) 
e o 

= 

which substituted in equation (3.4-l) gives: 

ds = 

For any revers ible proc e s s: 

ds = 

= 

= 

2 C d(log a ) p e os 

� 
T 

c dT p - + - dV 
V T T 

c dT + R 2:1 T V V 

(3 .4-2) 

(3 ·4 -3) 

For a quasi-perfect gas, i.e. one that obeys the 

characteristic e quation for a perfect gas but has specific 

heats which are a function of temperature, 
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PV = R T  

Taking logs and different iating : 

�+£Y p V 

Also R 

= 

= 

dT 
T 

c 
p 

- c 
V 

Subs t ituti on of these  two e quations in (3 ·4-3 ) 

ds 

which can be written as : 

P ds 
c dt 

V 

W ·t· dP rJ. J.ng dt 

£12 
dt 

= 

= 

= 

= 

= 

= 

dP c - + 
V p c p 

c £g-
V p c p 

s!E_tl� 
dt p dt 

dP _ a2 £12 
dt dt 
oP aP 
at + u ax 

£12 u £.£ 
at + ax 

dV 
V 

� 
p 

and substitut ing in e quat i on (3 .4-4 )  gives: 

then gives 

P ds 
c dt 

V 
= 

oP + u oP _ a2 (£.£ ££) at ax at + u ax 

which from the energ� equat ion (3.3-5 ) 

= (y-l )( pu F + q ) 
c 

Whence ds = (y-1 ) ; ( pu F + q ) dt 

Equat ing equat ions (3 .4-2) and (3o4-5) gives : 

= ( ��1) � ( p u F + q ) d t 
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which on integration gives: 

= exp. (��l) � ( pu F + q ) dt (3 ·4-6) 

The exponential of e quation (3 .4-6) can be expanded, 

and if in the step by step evaluation small intervals of 

time are considered, then se cond and higher order terms 

can be neglected without error, hence 

Substituting: .Q p 

2 
a 

and F 

= 1 + 
(y-1) f u 

2 2(l lUf 

= 

= 

= 

= 

1 + (y -l) l ( p u F + q ) � t 2x P 

y-1 
a 2 cl:.) r os PO 

gives : 

+ Cx-1) .S1 At 2Y P (3 ·4-7) 

where �t is the particle time from state 1 to state 2 
and the variables are the means between states 1 and 2. 

Equation (3 .4-7) is the required e quation denoting the 

change of entropy along the particle path from state 1 to 

state 2. 
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3.5 Application of the Method of Characteristics. 

For characteristics to be found, heat conduction 

and viscous friction within the fluid must be negligible 

since higher derivatives and squares of the first 

derivative cannot be taken into account in the theory. 

The assumption that these effects are negligible was 

made in Section 3. 3 when developing the three basic 

equations given below which define the flow parameters. 

= 0 (3. 3-1) 

au au 
+ 

1 ap 
+ F = u ax 

+ 

at pax 0 (3. 3-2) 

ap ap a
2 

u ££ u ax 
+ 

at - ax a2 � - (y-l)(puF + q) = 0 (3. 3-5) 

The general solution of three partial differential 

equations of this form is given in Section 9. 1 . The 

equations solved therein are of the form: 

Al 
av 

+ Bl 
av cl 

aw 
+ Dl 

aw 
+ El 

az 
+ Fl 

az + 
G

l 0 - + ay 
= 

ax ay ax ax ay 

A2 av + 
B2 

av 
+ c2 

aw 
+ 

D2 
aw 

+ E2 
az 

+ F2 
az + 

G2 0 ay 
= (3. 5-1: ax ay ax ay ax 

A3 av 
+ B

3 
av 

+ c3 
aw aw az az 

ax ay ax 
+ D3 + E

3 + F
3 ay + G3 

= 0 ax ax I 
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It is established Section 9.1. that the partial 

differential equations (3.5-l) can be transformed into 

total differentials along three paths, the slopes of 

which are given by: 

= 0 (3.5-2) 

where � = �� 

Comparison of equations (3.3-l), (3.3-2), and (3.3-5) 

with equations (3.5-1) yields the following 

Al Bl cl Dl El 

p 0 u l 0 

� B2 
c2 

D
2 

E
2 

l 
u 1 0 0 

p 

A
3 

B
3 

c3 
D

3 
E

3 

0 0 2 -a u -a 2 u 

where v = u ;. w .= p; z-:: P; x = x; y = t. 

Fl 

0 

F2 

0 

F
3 

1 

identities: 

G
l 

0 

G
2 

(3.5-3) 
F 

G
3 

(y-1) ( puF+q) 

Substitution of these identities in equation (3.5-2) 

gives the determinant: 



u 9>- 1 

0 

u �-1 

0 

1 IJ 
p 

where � = � 

40 

0 

2 
-a (u �- 1) = 0 

u IJ - 1 

Expansion of this determinant gives: 

which has the following roots: 

(dx
) = u ± a dt I' li 

dx 
dt = u 

(Mach lines) 

(Path lines) 

= 0 

(3.5-4) 

(3.5-5) 

(3.5-6) 

Equation (3.5-5) signifies that disturbances are 

propagated either rightward or leftward with the local 

acoustic velocity relative to the fluid and that wall 

friction, heat exchange with the surroundings and entropy 

gradients have no influence on the propagation velocity 

of a wave point. 

Equation (3.5-6) represents the path lines or loci 

of the fluid particles and shows that they are characteristic 

curves along which the entropy or temperature gradients 

may have discontinuities. 

The general solution obtained in Section 9.1 gives 

the differential equations of the Mach lines in terms of 



the state parameters on substitution of the identities 

given by (3.5-3). 
From Section 9.1: 

(3.5-7) 

where m1 
= 

(� �B2)(c2 �D�) - (A� �-B2)CC2 �-D2) 
(Al �Bl)(C2 �-D2) - (A2 �-B2)(Cl �-Dl) 

(3.5-8) 

and m2 = 

(A2 �-B2)(Cl �Dl) - (Al �-Bl)(C2 �-D2) 
(Al �-Bl)(C2 �-D2) - (A2 �-B2)(Cl �-Dl) 

(3.5-9) 

Substitution of tbevalues for the coefficients given 

by (3.5-3) in equations (3.5-8) and (3.5-9) yields the 

result: 

(3.5-10) 

(3.5-11) 

Hence, using equations (3.5-3), (3.5-10) and (3.5-11), 
equation (3.5-7) becomes: 

dP 

+ [- �f;a._2l i' - (y-1) ( pu F + q ) ] dx = 0 



42 

from which, 

du = l-- � + � (u�- 1)] dP + [-FIJ- Cx-l) (puF +q)(u.0-l )l dx 
a2 p a2 

p 
IJ 

Replacing 9) dt 
= o·ives : 

dx 0 

du = (u dt - dx) -dt 1 dP -l..!L J p dx a2 

-

- F d t - X 21 ( p u F + q) ( u d t -dx) 
a p 

and substituting u dt - dx = + a dt from equation (3.5-5) 

then gives: 

which after putting �� = 
1 becomes: + u -a 

- dP du = + ap F [ 1 + (y-1) � J dt : (�-�) q dt 

f _y_ 2 Replacing F by 2d. IUI 
.u and eliminating p by writing 

1 
a P 

a 
= X P , then 

- a  dP f du = + x P 
- 2d 

u 2 
JUT u [ 1 :;: (y-1) � ] dt 

+ (y-l) � dt X p (3.5-12) 

Equation (3.5-12) can be ma de dimensionless by 

dividing throughout by a , the datum level for the system, 
0 
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thus becoming: 

- 1 a 
= + - -Y ao 

Now 

d(L) PO or a 
c
L) 

PO 

Hence writing U 

= 

g_y = Y-1 

g__y = Y-1 

(see Section 3.4) 

y-1 
- 1 2y 

d [ p 
�-�] (-) PO 

[ cl] d p 2 y 
a os (-) 

po 
Y-1 
2 y u -

for (-) , X ao 
for (L) 

po 

(y-1) � 1 dt 

(3.5-13) 

(3. 5-14) 

and substituting 

equation (3.5-14), equation (3.5-13) becomes: 

(d U)I, IT = + _g_ 

aos (d X'L - ..L _}L u2 [1 + (y-1) u
a J (dt)I, 

n Y-1 a
0 

'I , IT 2d JUI a0 

+ y-l � (dt) 
Y aoP I, JI (3 • 5-15) 
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This is the final equation denoting the change in 

state and particle ve locity along a characteristic in 

the physical plane. 

Equation (3.5-15) may be written as : 

- 2 
= + Y-1 

the last two terms representing the influence of wa ll 

friction and heat transfer with the surroundings . 

Neglecting these correction terms and assuming isentropic 

flow conditions gives the result : 

- - 2 -
(d U)I, li = + Y-1 (d X)I, :n: 

which is identical with that obtained by initially 

assuming isentropic flow . (see Section 9.3) 

(3.5-16) 
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3 . 6  Soluti on of Flow Equat ions Us ing the Method 

of Charact eristic s . 

The graphical solut ion of the flow equations us ing 

the equati ons of the charact eris t ics requires the 

construct i on of a posit i on diagram and a state diagram . 

The f ormer has Mach l ines which repre sent changes in 

position with t ime of points on the pr essure wave under 

c ons iderati on ,  and the latter has line s along which the 

change of stat e is  defined . The Mach lines on the 

position diagram enc lose regions in the pipe whose states 

are defined by the appr opr iat e points in the state diagram . 

The solution of the flow equat i ons for is entropic 

condit i ons in a c onst ant cross-sectional area pipe is 

described in Section 9 .4 .  This method has t o  be modif ied 

for the s o lution of the f l ow equat ions all owing for the 

effe cts  of wall friction and heat transfer from the 

surroundings . Since the process  is  now irreversibl e , 

lines cannot be drawn on the state diagram , as in the 

isentropic cas e , which descr ibe the changes of s tate 

from region t o  region in the pipe . 

The equat ions required f or the c onstruct ion of the 

charact eristic net are developed in Sec tion 3 . 5 .  Thes e  

are repeat ed below for convenience , the charact eristic 

stat e equat i on (3 . 5-15 ) being written in finite 

difference form . 



- 2 
= + 

Y-1 

dx 
dt 

4 6  

(il x1: , rr - -!a_ 

+ 
= u - a 

:: u 

u -
I U I  

(3. 5-15) 

(3 . 5-5) 

(3 . 5-6 ) 

Consider the pos i t i on and s tat e diagrams , Fig . 13 and 

Fig . l4 respectively . Given that the state paramet ers of 

regions 6.4 and 5 . 5  are known and that those of region 6 . 5  

are required t o  be found , the mod ified method of solut ion 

is summarized below .  

1 .  A provisional stat e p o int 6 . 5 ' is  found by constructing 

the characteristics through 5 . 5  and 6 .4 ,  the slopes used 

being those obtained by neglect ing friction and heat 

transfer effe cts , i . e .  from : 

(il U1: , li 

The value s  used for a0s in thi s equat ion ar e those 

of the regions 6.4 and 5 . 5  for the s l opes fr om 6.4 t o  

6 . 5 '  and from 5 . 5  t o  6. 5 '  respectively , and the value 

of y is that appropriat e t o  the regi on in which the 

network is c onstructed .  



t 

a 
Y -1 � 
,--

P o e i t ion Diagr am 

S t a t e  Diagr am 

6 . 5 '  
I 

X 

6 . 4  

F ig. 1 3 . 

Y -1 - ,..-
a 0 

a 
0 8  

P i&• 14 . 

( 6 t Jn 
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2 .  Using the approximat e state 6 . 5 ' , the mean values 

of  u ,  a ,  P ,  f and q between the states 6 .4 and 6 . 5 '  can 

be determined . Hence , in the pos ition diagram , the 

appr oximate Mach lines which complet e the field 

boundaries of region 6 . 5  can be drawn us ing equati on 

(3 . 5-5 ) , and the path line (shown dott ed ) can be drawn 

using equation (3 . 5-6 ) . 

The approximate mean t ime (ll t path ) for particles 

arriving in region 6 . 5  from region 6 .4 can be obtained 

from the position diagram by direct measur ement . 

Substitution of this , t o gether with the mean value s  

for the other variables i n  equati on ( 3 .4-7 )  gives the 

first approximate value of a for the region 6 . 5 .  os 
3 .  The wave t imes (ll t 1: , :rr can be obtained by direct 

measurement from the position diagram and substituted 

in the characteristic state equat i on (3 . 5-1 5 )  t ogether 

with the mean values between 6 .4 and 6 . 5 ' and 5 . 5  and 6. 5 1  

for the variables a , u ,  a ,  P,  f and q .  The stat e os 
equat i ons are then solved giving the first approximation 

for U and X in the regi on 6 . 5 .  

4 ·  The first appr oximat i on t o  state 6 . 5  can be plotted 

in the stat e diagram a nd the pr ocedur e out lined in 

paragraphs 2 and 3 above repeated unt i l  satisfact ory 

c onvergence of the values of U and X are obtained . 
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3 . 7 . Solut i on with temperat ure disc onti nuity. 

A t emperat ure disc onti nuity i n  the gas flow is 

established at the surface of separat ion of the hot 

gases being discharged fr om the cylinder and the 

cooler residual gases fr om the previ ous cycle . This 

int erfac e will be swe pt along the exhaust pi pe with the 

local particle velocity and is thus a path line o In 

general, the volume of t he exhaust pipe is in excess of 

the volume of gases discharged from the cyli nder, a nd 

several disc ont inuities wi ll exist in the pipe at any 

instant . A pressure wave encount er ing a disc ontinuity 

of this nat ure undergoes a change of state due to partial 

reflection .  The transmitted wave is propagated in the 

ne xt gas region at a velocity appr opriate t o  the fluid 

temp erat ure . 

To  analyse the conditions at the interface, it is 

necessary t o  assume that no diffusion or he at conduction 

occ urs betwee n  the hot and cold regions and that the 

disconti nuity is a de finit e plane fluid boundary . Also, 

the fluid pressure and particle velocity immediat ely 

adjacent t o  both sides of the interfac e must have the 

same value s. 

In order to clari fy the method of solut i on ,  the 

problem is considered below in three stages , viz : 

(a ) solut ion for isentropic flow with c onstant spe cific 

heats ; (b) solut ion for ise ntropic flow with var iable 
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spe cific heats ; (c ) solution for irreversible flow 

with variable specific heats . The latter is the 

method of solution required for the firing engine 

analysis. 

In all three cases, the parameters re ferring to 

the hot and cold re gions associated with the 

discontinuity are identified by th e inde x  marks ' and 

" respectively . 

(a) Solution for isentropic fl ow with constant 

specific heats. 

From the state characteristic e quation (3 . 5-16 ) , 

written in finite difference form: 

2 I (6 u I ) I 
= - Y-1 (l\ �) a0 I 

(3 - 7-1) 

(6 ljn ) :n: = 

On either side 

foll owing ise ntropic 

2 " 
+ 

y-1 (6 �) a :n: 
0 

of the temperature 

re lationships 

y-1 
cE ) 2y 

PO 

hold : 

discontinuity the 

(3 - 7-2) 

a" - = 

If the region of state associated with the 

discontinuity is small , then the pressure and particle 
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velocity wil l  be the same for the whole region,  thus : 

and P' 
� 

= 

= 
P" 
po 

From equations ( 3 . 7-1 ) , (3 .7-2 )  and (3 . 7-3 )  it 

follows that : 

(6 u )1 = 
a , ' 

os 
a 

(A X ) I 
0 

a os 
" 

(� U )JI 
2 (6 X) :n:  = + Y-1 ao 

-
where 6 u = 6 U '  = 6 u n 

6 X = � X ' = 6 xn 

Thus the characteristics for the rightward and 
a ' 

leftward moving wave s have slopes (- y�l a
os )I and 
0 

" 2 aos 
( + Y-l ao 

)JI respectively . 

(3 . 7-3 ) 

Consider the beginning of bl owdown with exhaust 

gas entering the pipe at a temperature T ' .  The 

st agnant gas at ambient pressure P0 in the exhaust pipe 

is assumed t o  exist in two distinct temperature regions 

T "  and T " ' as shown in Fig .  15.  

At the instant of port opening , the acoustic wave 
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b c d will travel along the pipe , its propagat ion 

velocity depending upon the temperature of the gas 

regions through which it suc cessively passes . 

The init ial wave 2 is then propagated along 

the pipe , the amplitude and parti c le velocity of 

region 2 . 1  being known from the boundary condit ions . 

Thus state point 2 . 1 l ies on a characteristic of slope 

y-1 ao 
+ 2 � through 1 . 1  in the state diagram . 

os 

On reaching the discontinuity AA ,  partial 

reflect ion of the wave 2 occurs . The partially 

transmit ted wave moving to the right must now satisfy 

the state c ondit ions of the next region at temperature 

T " and thus state point 2 .2 lies on a characteristic 

X-1 ao of slope + 2 a " through 1 . 1 .  
os 

The mean pressures of regions 2 . 1  and 2 .2 must 

have the same value since no mechanism exists in these 

regions to produce any change . It should be noted , 

however , that although no discontinuity in pressure 

and particle velocity exists on either side of and 

immediately adj acent to the temperature interface , a 

variation in part icle veloc ity can exist between regions 

2 .1 and 2 .2 when considering the mean states , since 

these regions are comparat ively large . 

Since x is constant , X for state 2 .2 wi ll have 
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the same value as X for state 2 . 1 ,  and thus the 

intersection of a horiz ontal l ine drawn through 2 . 1 
x-1 ao with the + 2 a " characteristic locates state 

os 
point 2 . 2 . The path of the temperature discont inuity 

in the p o s i t i on diagram can now be plotted using 

equation ( 3 . 5-6 )  and the mean value of u betwe en stat e s  

The rightward moving wave 2 will continue along 

the pipe with uniform ve loc ity unti l  it enc ount ers the 

temperatur e disc ontinuity BB. If it is assumed that 

th is discont inuity is small , then reflect ions from this 

int erface can be neglect ed without undue error , and the 

stat e point 2 . 3 and the discont inuity path line between 

regions 2 . 2  and 2 . 3 can be plott ed in a simi lar manner 

to  that given ab ove . 

The part ial reflection of wave 2 at the disc ontinuity 

AA trave l s  back to  the engine ports and , for convenienc e ,  

the durat i on of region 3 . 2 is made to  coincide with this 

reflecti on . The stat e  point 3 o 2  must lie on a 
a 

characteristic of slope - X2-1 � thr ough 2 . 1 and the a os 
stat e is determined by trans ferring this characteristic 

to the boundary diagram and satisfying the boundary 

conditions (s e e  Sect ion 3 4 8 ) . 

The stat e point 3 . 3  is det ermined by the int ers ection 
Y-1 ao of the two characteristics of s l ope - � and 

2 aos 
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x-1 ao 
+ 2 a-" through state p o int s 3 . 2 and 2 . 2 r e sp e c t iv ely . 

os 

State point 3 . 3  repr e s ents the s t a t e  of the wh o l e  r e g i on 

sinc e the m e ans of the two p ort i ons 3 . 3 ' and 3 . 3 " l i e  

c l o s e  to the t emp erature dis cont inu ity . 

The s o lut ion for further r e g i ons ass ociat ed with 

the temperature disc ontinuity is s imi lar t o  that for 

r e g i on 3 . 3 . 

(b ) Solut i on for isentropic f l ow with variab l e  

spe c i f i c  heats . 

The rat i o  of the specific heat s , x ,  i s  now a func t i on 

of t emperature and X ' �  y " . The r e f ore , although the pr e s sure 

on either s ide of the d is c ontinuity in any particu l ar region 

must be the same , X '  � X" for the hot and cold parts of the 

region respect ively . 

Cons ider the sup erimposition of two waves in a reg i on 

in which a t emperature disc ontinuity exist s , s e e  Fig . 16 . 

Hot Regi on C o l d  Ree_ i on 
t 

X 

Posi t i on Di agram 

Fig. 16 . 



5 6  

From the s tate characteristic e quati on (3 . 5-16 ) 

wri tt en in f inite difference form : 

(Ll U" ) 
:n: 

= 

= 

2 (Ll �) 
y ' -1 a0 I 

+ 2 (6 -a" ) 
Y" -1 a :rr 0 

(3 . 7-5 ) 

If the region of s tat e ass ociated with the discont inuity 

is small , then the pre s sure and particle velocity wi ll be the 

same f or the whole regi on ,  thus : 

u ' 
3 

= 

and P ' :.2_ = 

PO 
21

' 

a ' Y ' -1 

<?-) = 

os  

From equati on (3 . 7-5) . 

= 

= 

= u t1 
3 (3 . 7-6 ) 

p t1 
:.2_ which may be written as : 
PO 

a "  
cif.-) 

os 

+ 

a 
y ' -1 

a 
y"-1 

2t.t1 
Y '-1 

.l. (a " - a2
) 

a0 3 

(3 . 7-7 ) 

(3 . 7-8 )  

Using the equal ity given by equation ( 3 . 7-6 ) and 

subtract ing equat i ons (3 .?-8 ) give s : 

(3 . ?-9) 



From e quat i on (3 .7-7 ) : 

a ' 3 = a ' 
os 

S 7  

X ' -1 .  Y" 
a 11  y " -1 y '  

<?r.) o s  

wh ich on sub s t itut ion in e quat ion (3 . 7-9 ) and rearranging 

gives : 

a " :.2._ 
a " os = [ex �-1) ::� 

2 a "  a u 

(u -u - .:.2_ ....2.§ 1 2 Y " -1 a " a os 0 
+ Y " - 1  a 0 

= 

2. 
+ y ' - 1 

f 
a 0 - - 2 (y ' -1 )  at (U 1-U2 + Y " -1 2 os 

a "  a " 
2 :2. os 

y " -1 a "  a os 0 

2. where K = u1-u2+ y " -1 

Ther efore : 

y" - 1  � 
y I -1 • y "  

a2 2 a1 - + �=·� -- ) X a0 
y ' -1 a0 

1 
2 

y ' -1 

Y " -1 � y ' - 1 .  y " 

a u a " 
X" -1 � 
y ' -l .  y " 

3 
a " os 

= K1 (1 - K ' ?-rr) 
os 

(3 . 7-10)  



where K '  = 
2 

Y " - l 
a " os -
ao 

1 
K 
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Y " -1 Y '  

K
] y ' -1 . y"  

K '  and K1 are unique constants for the step under 

c onsiderati on sinc e  for small changes , the change in y '  

and Y " will be infinite s imally small . 

Expanding equation (3 . 7-10) by the binomial theorem 

and neglecting second and higher orders gives : 

wh ere 

a " a" 
:.L Y "-1 � :2._ 
a n = K1 

( 1 - Y'-I . Y " K ' a " 
) 

os os 

K2 = 

a "  

X "-1 y ' ' y ,  -l • y" • K 

Kl Hence :.L 
a " = l+K1 . K2 

( 3 . 7-11 ) 
os 

y 'L1 [ (Y �-l) (U
1-U

2
) ao 

(y . - 1 )a2 + (y " - l ) al
] Y Ll 

where K1 = ---; + a os  (Y "-1 ) a ' os 

1X' a " 1 and K2 
os 

= -

Y "  Y
1

-l) a 2. a2 2 a1 0 (Ul - u2 + y"-1 
- + Y 1-1 

- ) 
ao a 

0 

To s olve a region of state such as region 3 ,  Fig � l6 ,  
a" :2.._ = X" is obtained from e quation (3 . 7-11 ) using the 
a " 3 os 

:c. 
Y "  
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known values f or the state parameters 

Substituti on in equati on (3 . 7-7 )  then 

of regions 1 and 2 .  
a ' 

gives .;2,- = x; . aos .) 

Us e of the characteristic state e quation (3 . 5-16 ) wi ll then 

yield the value of u3 , and hence the state of region 3 is 

completely defined . 

(c ) Solut i on for irreversible flow with variable 

spec ific heat s .  

The method o f  solut ion for a region in which a 

t emperature discontinuity is pr esent when the effects of 

fricti on and heat transfer are included , is s imi lar t o  

the previ ous case (b ) with the addit i onal c omplication 

of det ermining the change in a for both the hot and os 
c old part s of the regi on .  

From the charact er istic state requat i on (3 . 5-15) , 

written in finite difference form : 

ell U" ) JI  :::: + 2 y " -1 

where (ll Uf+q ) I ,  li represent s the c ombined effect of 

frict i on and heat transfer . 

(3 . 7-12 ) 

Following the same argument as given in case (b ) , 

but using equati on (3 . 7-12 ) instead of e quation (3 . 7-5 ) 

give s the result : 

� = (3 . 7-13 ) 



where : 

- <r' -1) 
2 

and 

K = 4 
2 X ' y" (y '-1) 

8 0  

1 

' 

Cons ider Fig . l7 in which it is as sumed that regions 

3 . 5 , 3 . 6 ,  and 4 . 5  are known , and region 4 o 6  is requ ired 

t o  be found . The method of solut ion is summarized be low .  

1 ·  The appr oximate state point (� 4 . 6 )  is first 

det ermined neglecting the effects of friction and heat 

transfer , i . e .  is entropic flow with variable spe ci�ic 

heat s , us ing the method out lined in (b ) . 

2 .  Using the approximat e  state point (� 4 . 6) ,  the mean 

values of u ,  a ,  P, f and q between the states 4 . 5  and 4 . 6 ' , 

and 3 . 6 and 4 . 6 "  can be det ermined . Hence in the position 

diagram , the appr oximate Mach line s which complete the 

field boundary of region 4 o 6 can be drawn us ing equati on 

( 3 . 5-5 ) , and the path line drawn us ing equati on (3 . 5-6 ) .  

� The appr oximate mean time (6. t path ) for particles 

arriving in region 4 . 6 from region 3 o 5  c an be obtained 
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Path l ine �( Temp. discon t i nu i t y )  

� · 6" 

t 

X 

Po s i t ion Diagram 

,_ 4 . 6 

X 

3 . 6  

4 . 5 

3 . 5  

S t a t e  D iagram 

F ig. 17. 
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from the position diagram by direct measurement . 

Subst ituti on of this , together with the mean values 

for the other variables in equation (3 .4-7 ) evaluated 

for both s ides of the di s c ontinuity gives the first 

approximate value s of a0� and a0; f or region 4o6o  
4 .  The approximate wave times (6 t 1: , n can be 

obtained by direct measurement from .the posit ion 

diagram and subst ituted with the mean values between 

states  4 . 5  and 4 . 6 ' and states 3 .6 and 4 o6 "  for the 

variab les aos ' u ,  a ,  P, f and q to obt ain the value of 

[(.C. U 1f +q )I 
+ 

(.C.U " f +q ) :n: ] ' 

� Equat ion (3 . 7-13 ) is then used to obtain a 
a" 

c l os er appr oximation for � and a cl oser approximation a os 
t o  state 4 .6 evaluated. 

6 .  The pr oc edure out l ined in paragraphs 2 ,  3 ,  4 and 

5 above are now r epeated unt il satisfactory convergence 

of the value s of u4• 6 and P4 • 6 are obtained . 
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3 . 8 .  Boundary condi t i ons . 

The s olut ion o f  the unst eady one-dimensional 

flow equations in the exhau st pipe by the construction 

of charact eristic nets in the phy sical and stat e 

planes is developed in Section 3 o 6 o  At the engine 

ports and at the open end of the pipe, however , the 

boundary r e gions are det ermined f r om the boundary 

conditions . In this Section , the boundary conditions 

are developed and the application of the boundary char t 

described . 

An exact analy sis of the flow process mu st take 

account of unst eady motion in the boundary regions . 

This i s ,  h owever , extreme ly difficult , and plau sible 

appr oximati ons can be made to simplify the analy sis 

without intr oducing undu e  error . 

The assumptions made in th e development o f  the 

flow e quations and the analysis for changes occurring 

in t he c ylinder ar e lis t ed below o 

1 .  Adiabatic quasi- s t eady flow through the air and 

exhaus t  p or t s, and at th e open e nd of the pipe . This 

implies that the s t eady flow adiabatic energy equation 

applies inst antan e ously acr oss the engine p ar t s  and at 

the open end o f  the pip e . Further, t he f low condit ion 

that is valid for st eady flow through a r estriction 

where the e f fective flow area is small in compariso n  

with the upstream and downstream areas holds . This is 
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e quival ent t o  assuming that th e change in flow pattern 

with respect t o  time may be neglected in c omparison with 

the change with resp ect to distanc e .  

2 .  The effect of wave action in the cylinder on the 

proc ess of dis charge decreases s o  rapidly with increase 

in the rat io of cylinder area to pipe area that it may 

b e  neglected for the problem under c onsideration. 

� The cylinder port s are regarded as a sharp edged 

orifice , the coeffic ient of discharge dep ending upon 

the pres sure ratio acr oss them and Reynolds Number 

( see Fig .  28 ) .  

� The rat i o  of t he spe cific heat s , y ,  across the 

port s and at the pipe open end is taken a s  the upstream 

value in e ach case . 

� There is no mixing of the pr oduct s of c ombust i on 

fr om the pr evious cycle with the fre sh air charge drawn 

in during the scavenge process . This means that during 

the scavenge proc es s ,  the cylinder i s  assumed to 

contain two dist inct gas regions s eparat ed by a plane 

fluid b oundary . 

6 .  The fluid in the cylinder is regarded as quasi-

perfect , the appr opriate mean valu e of y being used for 

each step in the process . 

� The t emperature of the air in the cylinder is 

taken to be the temperature of th e air upstream of the 

air port s ,  i . e. no heat energy is ab sorbed by the air 
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after it s admission int o the cylinder . 

B .  The pr essure throughout the cylinder i s  uniform 

instantaneou sly . 

� All proc e s se s ,  excluding the cylinder con�tent s ,  

are adiabat i c  and not nec e s sarily isentropic . 

10. The cylinder proce s s  is isentropic . 

1 1 .  For fluid f l ow from pipe into cylin�er , there is 

no pres sure recovery after the vena contracta,  i . e .  

the pre ssur e in the cylinder equals the pr essur.e at 
I 

the vena c ontract a .  

12.  For f luid flow from cy linder to  pipe, pressure 

recovery occurs aft er the vena contrac ta . 

� For inflow at the open end of the exhaust pipe , 

the pipe end behaves as a Borda mouthpiece . 

As sumpti ons 1 ,  2 ,  3 ,  8 ,  9 ,  10,  11 , 12 , and 13 have 

be en shown by earlier res earch t o  be valid approximati ons . 

(a ) Boundary diagrams for the cylinder . 

The assumption of quas i-st eady fl ow through the 

cylinder port s enables the oretical relationships t o  b e  

e stabl ished between the pressures on e ith er side of the 

cylinder ports , the mass flow through the ports , and the 

assoc iated particle velocity in the pip e .  These relation­

ships can be expressed in the f orm : 

p2 
= f '  (k , 

u2 
Pi 

-) al 

p2 f "  (M, 
u2 - = - ) pl al 
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Us ing the s e  
u 

dependence of _g al 

relat ionship s, curves showing the 
p 

on p
2 for constant values of eff ect ive 
1 

f l ow area k, and mass f low number M ,  are shown in Figs . 18, 
1 9, 20 and 2 1  f o r  val ues of y • 1.3 and y = 1.4 , and for 

bot h  inf low int o, and outflow from, t he cylinder. 

St rictly, the outflow chart s relate to cond i t i ons at 

a p l ane in t he pipe s ome di stance from the port s . Howeve r, 

t hi s  d i s t ance is very s mall in co mpari s on with the pipe 

l ength and can be ignored . 

Out flow f rom the cyl inde r .  

The e quat i ons describing outflow are as follows : 

1 .  Cyl inder t o  vena cont racta 

Ene rgy e quat i on :  

2 2 2 2 uc 
= Y-1 (al - a

c ) 

Is entropi c  s tat e e quation : 
..Si.. 

P a Y-1 
c 

= 
(_£ ) 

PI a l 

Charact e ri s t ic gas e quation : 

Y Pc 
Pc = � ac 

2. Vena cont racta t o  p ip e  ent ry s ect i on : -
Ene rgy e quation : 

Cont inuity e quat i on : 

= 
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A 
which on put t ing k = � become s 

= 

Characteristic gas e quation : 

= 

For sub s onic f low through the ports , the pres sure 

exi s t ing at the c entre of the vena c ontracta may be 

as sumed t o  hold , not only in the gas str e am ,  but al s o  

i n  the s t agnant region surrounding the fluid s tream in 

the pipe entry s ect ion .  Henc e the momentum equat i on 

be app l i ed from the vena contract a t o  the pipe . 

i . e .  P2 - Pc k 
2 u 2 

= Pc uc - p2 2 

So lving the above sys t em of equat ions gives the 

r e s u l t : 

y- 1 
(p2 ) 2y 

= 

pl 

can 

(3 . 8 -l ) 

For s onic f l ow through the p ort s ,  the par t i c l e  

ve l oc ity u at the vena contracta i s  equal t o  the local c 

acous t ic v e l oci ty ac . Us ing this crit eri on ins tead of the 

r e sult : 

(3 . 8 -2 )  
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To det ermine the mass flow relat ionship , it is 

sufficient t o  c ons ider the conditi ons in the cylinder 

and the pipe only . This obviat es the assumption of 

s onic or sub s onic velocit i e s  at the vena contracta and 

the resul t ing re lati onship is valid for al l conditions . 

Furth er , it is convenient t o  introduce a d imensionless 

mass f l ow parameter M, defined as : 

M = = 

The flow equat ions from cyl ind er to pipe ar e :  

Energy e quation : 

2 2 p
l p2 u :: .E::L (- - -) 2 Y-1 pl p2 

Charact eri s t ic gas e quat ion : 

whi ch on 

= 

1 -

rearranging 

p2 
p

l 
u 2 r-1 C_g) 2 a1 

and so lving gives : 

El iminat ing P2 by means of the mass flow parameter M 
pl 

gives the re sult: 

Equat i ons (3 . 8-1 ) , (3 . 8-2 ) and (3 . 8-3 ) plo t t ed for 

constant values of k and M ,  ar e t ermed ' b oundary diagrams ' .  
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Fi.gs . 18 and 19 show the boundary di aE:rams for values 

of y = 1 . 3  and y = 1 . 4 respective ly . 

Inflow into the cylinder . 

Since no pressure recovery is assumed after the 

vena contracta , the flow e quations from t he pipe to the 

vena contracta describe the flow , and are as follows : 

Energy equation : 

= 
2 2 2 - (a2 - ac ) Y-1 

Continuity equation : 

= 

Isentropic state e quation ! 

= 

Solving the 

_gy_ 

= (
a2) 

y-1 
ac 

gives the r e su lt : 

(3. 8-4 ) 

The mass f l ow r e l ationship for inf low is det e rm ined 

by us ing the mass flow parame t e r  M and the i s entropic stat e 

r e lati onship . 

Sub s t i t ut ing P2 
pl 



7 2  

I I 

�:j:':-1--+---+--L------
! 

.. . 

•+--
t:t:t;..:....__, •• 
:n:-01 
.... .. ... 
. � ., .... . 

.. ... ... � . 
011 .... , .. . ... 
. ... . ' ' .  . . . . . .. . .. • .. • l . .. .  . .. o i o o t I . .. .. · · -

. . . . 
. .. . .. . . . . 

I 

. . . . .  ·1 · I • • 0 • t • • • • • • , • •  

.. - -t· .. 

;�----+--

1 0 

- I  



): 
� 

� g'-'----J � -

- - - - -

9o-• 

I 
� • 

Q � .... Ci 
� g 

8 
% 
- �  
l' -

i 
lL .e  

� z 

� � 
I 

7 3  

� 2 � 11'1 2 

- - -
- - - - - -- - -

--

--
--
-- ----

.., 
2 § 

I'll 
2 2 

- - -

' 

F i g � 2 1 ,  



7 4  

(3 .8-5) 

Figs . 2 0  and 2 1  show the inf l ow b oundary di agrams 

for value s of Y = 1 .3 and y = 1 .4 r e spect ively , pLotted 

using equat i on (3 Q 8-4) and (3 o 8-5 ). 

(b ) Var iat i on of pre s sure in cyl ind er dur ing bl ow-down 

and scavenge per i ods o 

Th e pr e s sure change s  that oc cur in the cylinder 

of a reciprocat ing engine can b e  ascribed t o : 

1 .  Mas s  add i t i on and r e j ec t i on through the inl e t  and 

exhaus t port s . 

2 . Change in cylinder volume due t o  the movement 

of the pist ons . 

3 . Heat exchange with the cyl inder boundary . 

The as sump t i on of i s entropic c ondi t i ons within the 

cyl inder means that i t em 3 abov e i s  negl e c t ed in the 

f o l l owing analy s i s . 

Consider an el emental pr o c e s s , of t ime int erval dt , 

dur ing the scavenge per i od .  Let t h e  net incr ease in mass 

of the cyl inder c ontent s (d m1 ) be gi ven by : 

= 

Then the en ergy equa t i on f or the cyl inder ,  neglect ing 

any changes in kine t i c  and pot ent ial energ i e s , i s : 

d Q - d W  = d (m H )  - d (m H )  + d (m U)
1 e a 



where d W is the work done on the pistons by the gas, 

and d Q is the heat transfer into the cylinder. 

The process is assumed to be isentropic, hence 

d Q = 0 and d W = P1 d v1• Also H and U can be replaced 

by CP T and Cv T respectively, where C
P 

and Cv are the 

mean values for the elemental process. Hence the energy 

equation becomes: 

m d T  a a 

Dividing throughout by Te, and putting Cv a 
ma d Ta 

= 0 

since it is assumed that there is no change in internal 

energy of the entering air, gives the result: 

= 

(3.8-6) 

From the characteristic gas equation applied to the 

exhaust gas region: 
pl ve Te = R me e 

which on taking logarithms and differentiating gives: 

= 
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Substituting in equation (�.8-6) for d Te dividing ' 
T 

throughout by me CV and rearranging gives: 
e 

d pl 
cP Ta d m c d m  dV Pl d vl a a Pe a e 

= CV 
m - - - ve 

-
pl .... e m CV m Te CV me e e e e e 

cva T a d m a -
CV e 

Te m e 

Putting Re = (C - C ) in the characteristic 
Pe ve 

gas equation 

pl 
m e Te 

hence d V e 

= 

= 

for the exhaust 
cP e - CV e 

ve 

Substituting for 

gas region gives: 

(3.8-7) 

cP 
replacing � CV e 

by ye and rearranging gives the result: 

- y e 

or written in finite difference form: 

(3.8-8) 
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(3.8-9) 

where the variables are the mean values for� step under 

consideration. 

For the period of blowdown only, i.e. for the period 

when the exhaust ports only are open, all the terms 

involving the incoming air are zero and equation (3.8-9) 

reduces to: 

+ (3.8-1 0) 

The expressions for the associated changes in 

temperature, density and local acoustic velocity for the 

exhaust gas region are obtained by logarithmic differentiation 

of the characteristic 
pl relationship, i.e. Pe 

Thus: 

gas equation and the isentropic 
pl 

= Re Te and = constanto 
p y 

e 

15. T� y -e 1 l:l p1 
Te 

= 

l!l Pe 
= 

Pe 
15. 

ae 
= ae 

Ye 

1 
Ye 

y -e 
2 Ye 

pl 

A p1 
pl 

1 15. pl 
pl 

state 

(3.8-1 1 )  

(3o8-12) 

(3o8-13) 
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Equations (3.8-9) to (3.8-13) inclusive, completely 

define the state parameters for all cylinder changes 

during the blowdown and scavenge periods. 

(c) Open end reflection. 

At the open end of the exhaust pipe conditions of 

outflow and inflow have to be considered. 

1. Outflow 

Only subsonic outflow can occur in the problem 

being considered; and if the inertia of the fluid 

outside the pipe exit is neglected, the state of the 

gas in the plane of the open end can be assumed to be 

that of the surroundings. Hence, under all conditions 
p 

of subsonic outflow the pressure ratio p2 in the exit 
0 

plane can be taken as 1.0, and the state at this plane 

can be represented by a horizontal line through the 

origin of the state diagram. 

g� Inflow 

For inflow, the pressure in the plane of the open 

end is no longer that of the surroundings but must 

satisfy the theoretical relationship for the Borda 

mouthpiece configuration. 

Assuming isentropic quasi-steady flow from the 

surroundings to the pipe inlet plane gives the following 

equations: 



Energy equation: 
_:(__ 

PO 
= 

Y-1 p0 

y p
2 from which -� 

p2 
= 

Momentum equation: 

= 

= 

...:L Y-1 

P u 2 
2 2 

2 Y u2 
p 

(_Q - 1) p
2 
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Equating equations (3o8-14) and (3.8-15), and 

rearranging gives: 

= 1 + 

(3.8-14) 

(3.8-15) 

(3.8-16) 

For inflow, all state points in the plane of the pipe 

open end must lie on the curve defined by equation (3.8-16) 
and this curve can be plotted on the state diagram . Also, 

in the derivation of this equation no assumption was made 

with regard to the flow being sonic or subsonic and hence 

it is valid for all conditions of flow . 

Thus, for both inflow and outflow at the open end of 

the pipe, the boundaiY conditions can be directly super­

imposed upon the state diagram and separate boundary 

diagrams, as in the case of the cylinder ports, are not 

required. 
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(d) Application of the boundary diagrams for the cylinder 

To take the variation in specific heats with tempera­

ture into account for the products of combustion in the 

cylinder, strictly requires the use of a boundary diagram 

drawn for the mean value of y for t he cylinder step under 

consideration. However, it is considered adequate to use 

two boundary diagrams for both inflow and outflow drawn 

for two values of y. The values of mass flow parameter (M), . y-1 
dimensionless pressure ratio [x = c!�) 2y 

J and dimensionless 

particle velocity (U 
then determined by a 

u2 
= --) for the actual value of y are ao 
linear interpolation between the results 

from the two diagrams. Thus, at the cylinder exhaust ports, 

two imaginary state diagrams, one for each value of y used 

for the boundary diagrams, must be inferred and two complete 

sets of calculations performed to obtain the cylinder and 

pipe parameter changes. 

To illustrate the method of analysis, the two boundary 

diagram values of y (and the associated parameters) w.ill be 

denoted by the index marks ' and "; and in the following 

explanation of the method of solution, all remarks, although 

in the singular, apply to both cases where applicable. 

Consider the region of state 9o8, commencing 't' 

seconds after exhaust port opening, see the position diagram 

Fig.22. The initial values of the parameters for this step 

are given by the values at the end of the preceeding step 
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(region 8.7). Using these initial values, the first 

approximate value of k for step 9.8 can be evaluated, 

and knowing k it is possible to position the approximate 

state point 9.8 on the boundary diagram by satisfying 

the following two conditions. 

(i) the state point 9.8 must lie on the k line in the 

boundary diagram. 

(ii ) for isentropic flow, state point 9.8 must be 

situated on the � characteristic through state 

point 8.8. 

Since the solution requires an iteration procedure, 

it is convenient to determine the required state point 

isentropically and then apply the correction for 

irreversible flow. 

For the first approximation to the state 9.8, the 

known state 8.8 is transferred from the state diagram to 

the boundary diagram. This entails the transfer of a 

characteristic between two different sets of co-ordinates, 
y-1 ] Y-1 ] 

viz: [ (�)2'�" ',"
and [� ]'•", to [ c:2)2Y ',"

and r(�2)] ' •". 
o o o L 1 

The slope of the characteristic in the state diagram which 

is to be transferred, is given by equation (3.5�5) in which 

the friction and heat transfer termsare neglected. 

i • e o (!::& U L! , " = [ + _£_ 'II Y-1 (3 .8-17) 
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From equation (3. 8-17), the slope of the 

characteristic relating X and U in the state diagram is 

Y-1 a
o 1 n 

(+ 2 a 
) ' 

• 

os2 

The cylinder parameters, P1 and a1, are taken as 

constant and·equal to the mean values for the region, 

therefore equation (3. 8-17) can be written as: 

I tt 
' 

= 

I 11 
' (3. 8-18) 

The cylinder process is assumed to be isentropic, 

p y-1 

= Cp
1) 2Y, and substitution in equation (3. 8-18) 
0 

gives the result: 

[ p
2 Xi}] I n l .. r

2
-l il(p-) ' 

= 

1 
(3. 8-19) 

From equation (�. 8-19), the slope of the characteristic 

relating [ (! �) r2-:,1 ] 1 ' " 
and [ ( :�) J 1 

' " 
in the boundary diagram 

. ( r.::! �s + -z- The intercept of this characteristic 

With the ordinate axis in the boundary diagram is given by: 

I 11 
' 

= 

' 11 
' (3. 8-20) 
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where 
r p Y=l] · 11 

(-) 2-Y ' 
- PO 

is the intercept with the ordinate 

axis in the state diagram of the characteristic, slope 

a 
(y-1 0 ) 

2 aos2 
' ," , drawn through the inferred state point 

(8.8)',"· The value used for P1 in equation (3.8-20) 

for the first approximation is the initial value for the 

cylinder step. 

Thus the characteristic on which state point 9.8 

is situated, to the first approximation, is completely 

defined in the boundary diagram. Its intersection with 

the k line locates the state point and gives the pipe 

l-
p2 y-1] ' 11 

to cylinder pressure ratio Cp ) 2y ' the exhaust 
l 

gas mass flow parameter M ' , " , and the dimensionless 
u e 

particle velocity (_g)•,n. al 

Assuming that region 9o8 comes within the scavenge 

period, !::. P1 cannot be evaluated until the air mass flow 
� 

is determined. Since the entering air is at the ambient 

condition, y is constant, and the mass flow parameter can 

be determined directly from the boundary chart evaluated 

for y = 1.4, the value used for air. 

The induction duct, being very short, is assumed to 

be a neutral system, i. e. one in which wave action can be 

neglected. Hence, the inflow mass parameter Ma is found 

by plotting on the inflow boundary diagram, Fig. 2 l, the 

steady flow isentropic ellipse relationship, viz: 



[ I=!] 85 

(�)2 p2 2y 2 
(-) al p

l 1 (3.8-21) + 

�po I=!r 
= 

a 2 (�)2 
Y-1 (p-) 2y 

al 1 

where aa is the ambient local acoustic velocity. This 

relationship is derived by assuming that there is no loss 

of total head pressure betw.een the ambient conditions and 

the boundary of the inlet ports. 

The intersection of the line given by equation (3.8-21) 

and the appropriate k line for the air ports gives the 

required mass inflow parameter Ma for t� step. 

The mass flow of air and exhaust gases is then 

determined from the mass flow parameter definition, viz: 

where 6 t is the approximate time for the cylinder step 

obtained by extending the field boundary of region 8.8, 

and the values used for M, a1, p1, and A2 are those 

appropriate to the air and exhaust gas regions respectively. 

Use of the Ll ma obtained yields the value of the 

mean V a and Ll V a for the step, and substitution of these, 

together with the other variables in equation (3.8-8) 

gives the first approximation to Ll P1• The mean values of 

Pl, Te' Pe' ae and ye for the cylinder step can now be 

evaluated using equations (3.8-11), (3.8-12), and (3.8-13), 

and the ye variation curve Fig. 29 o 
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Application of the following identities 

�=�/2i] 
and 

u2 ' " (-) ' ao 

' " ' 

= 

= 

[ P r-1 
(_g) 2y 

pl [ u2 a1 ] • n 
(-)(-) ' 

al ao 

p "(-1 ] 
(....1) 2y 

PO 

' n 
' 

gives the pressure ratio and particle velocity at the 

port boundary within the exhaust pipe, and the approximate 

field boundaries to region 9 . 8 can be constructed in the 

position diagram using equation (3.5 -5 ) .  

Using the nearer approximation to 6 t, and the 

calculated approximate mean values for the cylinder step, 

the above procedure is repeated until satisfactory 

convergence of the value of 6 P1 is obtained. 

Having determined the state of region 9.8 for 

isentropic flow, this now has to be corrected for the 

effects of friction and heat transfer. The correction is 

effected by transferring state point (8 . 8 )', " to the 

boundary diagram and drawing a line of slope 

[6 t2 )/6 ?2) r2;] '
' " from it to the appropriate k line' al Pl 

see Fig. 23. State point (8 . 8 )', " is transferred to the 

boundary diagram using the value of P1 appropriate to 

region 9 . 8, and the slope of the characteristic through 

(8 . 8 )', " is obtained as follows:-

From the characteristic state equation (3. 5-15)  written 

in finite difference form: 



� !..::!]' f 
I 

( P 2Y -) p 0 

Corrected ( 9 
irreversible 

Slope 
y -1 (-2 

a 081) . .. 
a ' 

oe2 

8'7 

\ 
\ 

\ 
\ 

\ 
k M 

\ 
\ 

\ 
\ 

\ 
\ 

\ 

Boundary Diagram 

\ 

\ 

\ 
\ 

M 

u 
<a

2)'," 
1 

from equation 
(3.8-23) 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

flow 

k 

'M 

Fig.23 



(6 U)]r 11 2 
Y-1 

88 

where (� Uf+q)li represents the combined effect of friction 

and heat transfer. 

This characteristic can be transferred to the boundary 
a P J-1 

diagram by multiplying throughout by� Cp0) 2Y, giving: aos 1 

i. e. 

+ [ a::l 

I 11 
' 

c� uf+q) 

= 
[y�l 

:os2] 
osl 

p Y-1 
( --2) 2y 

J 
pl 

Y-l p -

�(_g) 2y 
p

l 

1 n 
' 

' 11 
' 

1 

I 11 
' 

The previously determined provisional value of 

P r-1 
6(p2)2Y and the mean values of the variables between 

1 

(3. 8-23) 

regions 8 . 8 and 9.8 are now used in equation (3. 8-23). 

The corrected state point (9 . 8)'," in 
P2 Y-1 

diagram gives new values of Cp ) 2r , Me and 
1 

the boundary 
u 

(_g) for al 

step 9 . 8. Using these values, the incremental state 
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changes in the cylinder are recalculated and a more 

accurate state point 9.8 plotted, together with the 

associated correction of the field boundaries in the 

position diagram. 

The procedure is repeated using the last found 

values until satisfactory convergence of the state 

changes is obtained. 

During the early part of blowdown, choking of the 

ports occurs, and while this condition persists the 

mass flow number Me is unaffected by changes occurring 

in the e xhaust pipe. Hence correction for secondary 

ef�ects within the pipe will not in�luence the state 

changes in the cylinder. Also, for the period of 

blowdown equation (3.8-10) is used to obtain �P1 instead 

o� equation (3.8-9). 
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3.9. Summary of all equations. 

For convenience and reference, all the equations 

necessary for the solution of the problem are given below. 

Section 3.3. 

Mass continuity 

au � � 0 P ax + u ax + at 
= 

omentum 

au au 1 aP + F at + u ax + p ax 
= 

Energy 

aP aP 
at + u ax 

where F = 

and a2 
= 

- a 2 

IT 
p 

c£12 at + u 

(3.3-1 ) 

0 (3.3-2 ) 

£12) -
ax (y-l)(pu F + q) = 0 (3. 3-5) 

If friction and heat transfer effects are neglected, 

i.e. q = F = 0, then the flow is isentropic, the energy 

equation becomes redundant and is replaced by the isentropic 

state relationship, and the resulting equations of flow are:-

Mass continuity: - as equation (3.3-1 ) above, 

Momentum 

au au 2 an p- + pu- + a .=...c. 
at ax ax 

State equation 

= constant 

= 0 (3. 3-7) 
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Section 3.4. 

The entropy gradient is given by:-

= 
1 + (y-1) f u (.J:!....)2 __ D._t

�
-

2 2d TUT a0s Y-1 
(L)y PO 

+ Y-1 .9. D.t 2y p (3 ·4-7) 

where the prefixes l and 2 refer to the initial and final 

conditions respectively. 

Section 3.5. 

The physical characteristics are: -

d.x 
dt 

= u 

+ 
= u - a (Mach lines) 

(Path lines) 

The state characteristics are:-

where 

and 

(d U ) = :t Y-1 
q I, ll y 

(Y-1) � J (dt)
I, 

li 

(3.5-5) 

(3.5-6) 

(3.5-15) 

and all parameters of state are the mean values between 

the states under consideration. 
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Section 3o7• 

At a temperature discontinuity:-

where 

and 

a 
- (y'-1) aP-

2 os 

lt' 
= 

Y11 Y'-1) 

Section 3.8. 

(a) Boundary diagrams. 

(y'-1) a2 
+ (y"-1) a1 + 

(y"-1) a' 

U '  ) f+q I 

os 

+ c� u" ) J t f+q li f 

1 

Y"-1 
y*-1 

(3.7-13) 

� 
y" 

Outflow from the cylinder is defined by equations 

(3.8-1) (3.8-2) and (3.8-3), and these are shown plotted 

in Figs. 18 and 19 for values of y = 1.3 and y = 1.4 

respectively. 

Inflow into the cylinder is defined by equations 

(3.8-4) and (3.8-5), and these are shown plotted in Figs. 20 

and 21 for values of y = 1.3 and Y = 1.4 respectively. 
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The steady flow isentropic ellipse for inflow with 

zero pipe length is:-

[ p2 
y

2�1] 2 
u 

(_g)2 (-) al 
p

l l (3.8-21) + � po �] 
= 

a 2 (�)2 2 
Y-1 al (-) p

l 

The slope of the transferred characteristic to the boundary 

diagram, which gives the correction for irreversibility 

in the pipe is given by:-

= 
2 

Y-1 (3.8-23) 
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4· Procedure. 

4. 1 .  Determination of the system parameters. 

Included in this Section is the preliminary 

experimental work to obtain the fuel injection system 

characteristics, and the determination, either by 

calculation or measurement, of all the parameters 

required to perform the evaluation of the theoretical 

analyses. 

Fuel pump calibration 

The calibration of the fuel pump was necessary 

to enable the pump rack position to be determined 

accurately and quickly knowing the air �ass flow at 

any given engine speed. 

To calibrate the fuel pump the injection nozzle 

was removed from the engine cylinder and allowed to 

discharge into a collector vessel. At selected motored 

engine speeds, and pump rack micrometer settings which 

varied from 0 . 75 to 3 . 00, the fuel flow was measured 

by means of the pipettes in the fuel line for incremental 

rack settings of 0. 15. The engine speed was accurately 

monitored, with the aid of a stop watch and the revolution 

counter, for the speed range 600 to 1500 rpmo by increments 

of 100 rpm. Corrections, where necessary, for engine speed 

variation from the selected datum was made to all fuel flow 

measurements. 
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The fuel flow rates were then converted to air 

flow rates for an air-fuel ratio of 1?.5 to 1, which 

gives an excess air for combustion of 25% when using 

Shell Gas Oil. 

The resulting family of curves are shown in 

Fig.24. 

Cylinder parameters. 

The evaluation of the cylinder gas parameter 

changes occurring during the blowdown and scavenge 

period requires a knowledge of the variation with crank 

angle of the cylinder volume, the ratio of port area to 

pipe area and the hydraulic radius of both the air and 

exhaust ports. The changes occurring in these physical 

parameters were calculated from the geometry of the 

engine system, and are shown plotted in Figs. 25, 26 

and 27 respectively. 

A further parameter required is the coefficient 

of discharge (Cd) for the engine ports. Owing to the 

experimental difficulties, no data is available concerning 

the variation of the Cd term for a port system at the high 

temperatures encountered in a firing engine. Using the 

cylinder liner and air as the fluid medium, previous 

research4has, however, been carried out to determine the 

coefficient of discharge at temperatures up to 160°F, and 

Fig.28 shows the variation in Cd with modified Reynolds 

number (Rm) , for a variation in pressure ratio across 
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the cylinder ports. 

Modified Reynolds number (�) is defined as: 

= 

where al is the instantaneous local acoustic velocity 

of the cylinder contents, 

r is the hydraulic radius of the ports, 

y is the instantaneous kinematic viscosity of the 

cylinder contents. 

Although no direct evidence is available to confirm 

that Fig.28 is applicable at high gas temperatures, the 

relationships shown therein have been accepted. 

Exhaust gas analysis 

To facilitate the evaluation of the characteristic 

gas constant (R) for the exhaust gases of this engine, 

and the variation of the ratio of the specific heats (y) 

and viscosity (�) with temperature of these exhaust gases, 

Orsat analyses were taken at various engine loads and 

engine speeds using the constant air-fuel ratio of 17.5 to 1. 

No significant variation in gas composition was found, a nd 

the mean composition by weight for a number of samples is 

given below:-

Carbon dioxide 13.93% 

Carbon monoxide 1.01% 

Oxygen 4.57% 

Nitrogen 73-11% 

Water vapour 7.38% 
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The water vapour content was determined from a 

knowledge of the fuel used and the assumption that all 

the hydrogen content burned to water vapour. 

The characteristic gas constant for the exhaust 

gas, using the mass mean of the values for the individual 

constituents is: 

R = 97o80 ft.lb./lb.°C. 

Variation of the ratio of the specific heats (y) for the 

exhaust gases with temperature. 

The values of the specific heats at constant pressure 

and constant volume of the constituents for the exhaust 
7 

gases were obtained from gas tables for a temperature 

range of 500°K to 1180°K. The mass mean values for the 

specific heats were then calculated using the mean exhaust 

gas analysis and their ratio (y) is shown plotted in Fig.29. 

Viscosity of exhaust gases. 

The nomogram� Fig.30, gives the relationship between 

the absolute viscosity and temperature of the individual gas 

constituents. 

The mass mean value for viscosity was evaluated from 

the values for the exhaust gas constituents for a range 

of temperatures and superimposed upon the nomogram. These 

lines were found to intersect within a very small region, 

the centre of which is shown on Fig.30 as the mass mean. 

This mass mean point was used to determine the absolute 

viscosity of the exhaust gases. 
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The assumption of mass mean values for viscosity 

is not strictly correct, but in view of t he probable 

smallness of the error, a full analysis of the problem 

is not justified. 

Heat transfer coefficient for the exhaust pipe. 

Assuming that the temperature gradient across the 

bulk of the fluid is negligible or small in comparison 

to the mean bulk temperature, then the pipe temperature 

can be assumed to be the same as the exhaust gases. 

This neglects the effect of heat conduction along the 

pipe and also the thermal inertia of the pipe material, 

but since the pipe is thin walled, then the error 

introduced is probably small. 

Thus the heat transfer coefficient (q) for the 

exhaust gas can be obtained by evaluating the rate of heat 

transfer from the pipe to the surroundings by natural 

convection and radiation. 
Cf 

The heat transfer by natural convection (he) is 

siven by:-

= 

� .25 2 C K (�) Btu/hroft. °F L (4.1-2) 

where the value of 'a' in equation (4.1-2), for air, is 

listed in reference 9 and 

C is a constant depending upon the shape and 

positio� of the hot surface, 

K is the coefficient of thermal conductivity 

for air in Btu/ft.hr.° F. 
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g is the temperature difference between the 

pipe and the surroundings in fahrenheit degrees, 

L is the diameter of the pipe in feet . 

Hence, using C = 0.45 for horizontal cylinders, and 

changing the units from Btu, hr . ,  ft . ,  F0, to ft . ,  lb .,  

sec . ,  C0, units gives the result: 

h = 9 . 873 KQ (a Q) •25 ft .lb./ft . 3 sec. °C c 
(4.1-3) 

where Q = the temperature difference between the pipe 

and the surroundings in centigrade degrees, 

and 'a' and K are the values listed for air in reference 9 

in Btu . , ft . ,  hr., ° F units . 
Cf 

The heat transfer by radiation (hr) is given by: 

where € is the emissivity of t he pipe surface 

� is the Stefan-Bo�zmann constant 

T2 is the pipe absolute temperature 

T 
a 

is the absolute temperature of the surroundings . 

For steel oxidized at 1100°F, the emissivity t is 
i 

0.79, and its substitution with the Stefan-Boltzmann 

constant in equation (4.1-4) gives the result: 

h 9 158 10-8 ( 4 4 3 ) r = • x - T2 - Ta ) ft . lb./ft .sec. (4.1-5 

Combi.ning equations (4.1-3) and (4 ol-5) gives: 
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3 ft.lb./ft. sec. (4.1-6) 

Equation (�.1-6) evaluated for an ambient temperature 

of 20°0 and for the temperature range 450 to 960°0 absolute 

is shown plotted in Fig.31. 

Friction coefficient for the exhaust pipe. 

Determination of the friction coefficient (f) far 

the inside surface of the exhaust pipes required the 

measurement of the roughness of the soot deposit on the 

pipe inner surface. 

For this measurement, a Taylor Hobson Model 3 

Talysurf was used. Difficulty, however, was experienced 

in obtaining a true reading, the pressure of the Talysurf 

stylus was sufficient to remove carbon from the soft soot 

surface, resulting in a false measurement. 

FTeliminary experiments were carried out using soot 

surface samples obtained by inserting flat plates 

longitudinally in an exhaust pipe. To harden the soot 

surface, a shellac-alcohol solution was lightly sprayed 

onto the surface using a very fine atomizer. The strength 

of the shellac solution was increased, on successive samples, 

until the surface as seen under a microscope was not 'cut up ' 

by the measuring stylus. Plate 2 (d) shows a sample with two 

stylus tracks and the resulting disturbance of the soot on 

an inadequately treated surface. 
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(a) (b) 

(c) l d} 
Pl.ate 2. 
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Using a Vickers microscope at a magnification 

of 40X, and obligue lighting at an angle of approximately 

15° to the plate surface, photographs of a sample before 

and after treatment with the correct strength shellac 

solution, is shown in Plates 2(a) and 2(b) respectively. 

These photographs show that the soot surface was unaffected 

by the treatment. 

Two surface roughness measurements were taken, and 

to show conclusively that after shellac treatment, tracking 

by the Talysurf stylus produced no apparent damage to the 

surface, the sample plate was turned through 90° and the 

stylus taken across the two existing tracks; see Plate 2(c). 

Examination of this latter recording showed no trace of the 

previous trackings. 

To determine the rough.ness of an actual soot surface 

within an exhaust pipe, one section of pipe was removed 

from the engine and the inner surface of the pipe end treated 

with shellac solution. To measure its roughness, however, 

the skid and stylus shield had to be removed from the 

Talysurf since it was too large to insert in the pipe. 

Since the straight line motion of the Talysurf 

carriage head now had to be relied upon to provide the 

datum, the test pipe and the Talysurf had to be placed on 

a specially mounted table having a natural frequency of 

2 c.p.s. This eliminated the possibility of any external 

vibration affecting the equipment. After setting up, the 

equipment was left for a period of time before taking each 
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reading. 

Several recordings were taken with vertical and 

horizontal magnification ofJDOO and 20 respectively, 

and the average mean height of the surface projections 

determined. The surface roughness f , defined as the 

dimensionless ratio of the mean height of the surface 

projections to the diameter of the pipe, was found to 

be 0.000202. 
10 

Using the Colebrooke-White function, and the 

t I 
suggested modification by Moody, yields the following 

close approximation for the variation in the friction 

with Reynolds number (R ): e coefficient (f) 

JI = -2 log10 [ 

where ( is the surface roughness. 

+ 0.270? t] 

Equation (4.1-7) is shown graphically in Fig.32 using 

the determined value far f. 
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4.2. Air consumption trials. 

The engine was operated with a constant air-fuel 

ratio of 17.5 to 1, a constant cooling jacket water 

outlet temperature of 165°F, and with varying exhaust 

pipe lengths. 

The exhaust pipe length was varied by increment s 

of 6 inches from the minimum length of 2 feet 2 inches 

to the maximum length of 10 feet 2 inches, these pipe 

lengths representing the limiting values beyond which 

it was not possible to run the engine without the supply 

of scavenge air. 

For each pipe length used, the engine was operated 

over the speed range of 500 to 1600 rpm., and results 

were recorded at approximately 25 rpm. intervals within 

this range wherever the engine performance was sufficiently 

stable for accurate readings to be taken. 

At each selected test speed, the fuel pump rack 

was progressively adjusted until the air mass flow and 

rack setting were consistent with the appropriate inter­

polated speed calibration curve of Fig.24o 

During the course of each test, the number of engine 

revolutions made during the time taken to use a pipette of 

fuel (either 22 cc or 66 cc depending upon the consumption 

rate) was noted, together with the time taken. Also, readings 

were taken of engine torque, micromanometer head, the 

differential pressures in the air expansion chamber and 
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the exhaust collector, exhaust gas temperatures, and 

the ambient pressure and temperature. 
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4.3. Indicating trial. 

An exhaust pipe length of 6 feet 8 inches was 

chosen as a typical example for the theoretical analysis. 

With this pipe length the engine exhibited a stable 

performance when operating within the speed range 

in which the scavenging was achieved with the primary 

rarefaction wave only. 

The most stable speed within this range was found 

to be just in excess of 1100 rpm. With the engine 

running at this speed, the fuel pump rack was positioned 

to give an air-fuel ratio of 17.5 to 1, as described in 

Section 4.2, and the coolant jacket water flow was 

adjusted to give an outlet temperature of l65°F. 

When steady state condition had been achieved, the 

trial was conducted in two parts, viz: (a) recording of 

all the performance data, and (b) recording of the 

indicator diagrams for the cylinder and at three positions 

along the exhaust pipe. 

(a) Performance data. 

The following readings were noted and checked for 

consistency at intervals of time throughout the trial:­

engine speed and torque, fuel consumption, micromanometer 

head, exhaust gas temperature at six intervals along the 

exhaust pipe, jacket coolant outlet temperature, 

differential pressure of the air expansion chamber and 

exhaust collector, ambient pressure and temperature. 

L 



(b) Indicator diagrams. 
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Preliminary recording trials had shown that 

calibration using the two-way cock introduced serious 

errors. In the case of the cylinder record, the 

sensitivity of the G 2� capacitance transducer to 

large changes in temperature resulted in a marked 

drift of the oscilloscope trace when the relatively 

cold calibrating air was applied to the transducer 

diaphragm. Calibration of the exhaust pipe diagrams, 

however, was not subject to this phenomenon, but the 

recorded traces exhibited spurious oscillations when 

compared with records taken with the transducer inserted 

directly into the pipe socketo These spurious 

oscillations were attributed to wave action in the 

connecting passage between the pipe and the transducer 

diapbragm, their marked effect being due to the 

steepness of the pressure pulseso 

As a result of the above observations, the methods 

of obtaining the cylinder and pipe records were as 

follows. 

The light spring diagram for the cylinder was 

recorded using the G 204 transducer and the Southern 

Instrument Engine Indicator. The transducer was then 

replaced by the balanced disc calibration pick-up, 

and using the Sunbury Engine Indicator, the crank 

angles at which the cylinder pressure balanced a range 

of applied pressures were noted. The exact cylinder 
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pressure at the point of exhaust port opening was also 

found and noted. These latter readings were then used 

to calibrate the light spring diagram previously 

recorded. 

At each of the indicating positions in the exhaust 

pipe, two recordings were made using the G 204 transducers. 

The first was obtained using the two-way cock and 

calibration lines were superimposed on the recordingo 

The second recording was made with the transducer inserted 

directly into the pipe socket and the first recording was 

used for its calibration. 

The procedure for taking the indicator diagram film 

records was as follows:-

1. The drum camera was motored at a speed just less 

than that of the engine. This was done to obtain 

a diagram which contained a little more than one 

cycle. 

2. The pressure and crank angle marker traces were 

adjusted for amplitude and brilliance. 

3. The time sweep was switched off and the tube 

beams suppressed. 

4· The camera trip button was then operated which 

switched on the tube beams for one revolution 

of the camera, thus exposing the fi lm. 

5. The marker trace was switched off and the two-way 

cock was turned to expose the transducer to the 
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calibrating air. The air potentiometer was used 

to apply known values of both positive and 

negative gauge pressures, and operation 4 above 

was performed for each calibration line. An 

atmospheric line was recorded by opening the 

blow-off valve of the air potentiometer unit. 

L 
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5. Results 

5.1. Air consumption trials. 
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5. 2 .  Indicated trial and theoretical results. 

Performance data and deduced results for the 

indicated trials are as follows: 

Exhaust pipe length 

.Ambient pressure 

.Ambient temperature 

Engine speed 

Time for one degree of crank movement 

6 ft. Bins. 

14 . 322 psiao 

19 .67°C 

1110 . 5 rpm. 

15.008xlo-5 

Engine torque 19o4 lb. ft. 

Brake horse power 4 . 1  

secs. 

Fuel consumption 0. 05068 lb. /min. 

Air consumption 0 . 9 3804 lb./min. 

Air-fuel ratio 18 . 5 to 1 

Volumetric efficiency 53-4% 

Cylinder pressure at exhaust port opening 26.0 psig. 

Distance from ports 

Temperature °K 

Exhaust gas temperatures 

11" 2 3" 35" 53" 65" 77" 

677 588 541 501 4 74 397 

Mean exhaust gas temperature 54 7°K 
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1 3 0  
THEORETICAL RESULTS 

STATE PRESSURE PARTICLE 
I - :n: ,  p. s. i . a. VELOCITY 

ft . /sec . 

1 .1 14.322 o . o 
1.1 14 . 322 o . o 
1.1 14 . 322 o . o 
1.1 14. 322 o . o 
2.1 15 . 388 1()4. . 1  
2.2 15.428 97.8 
2 . 3  15.427 97 - 4  
2 .4 15.427 97 . 4  
2 .5 15 . 427 97 - 4  
2 . 6  15.427 97 - 4  
2.7 15.427 97 · 3  
2.8 15 . 424 97.2 
2.9 15 - 423 97 . 0  
2 . 10 15.420 96.8 
2.11 15.416 96 . 7  
2 . 12 15 . 445 92.3 2.12 1 
2.13 15 .427 91.9 
2.14 15 .421 91.3 
2.15 15.449 87 - 3  
2 . 15 '  
2.16 15 .438 86 . 9  
2 . 17 15 . 432 86.7 
2.18 15.429 86.5 
2.19 15.425 86.3 
2 . 20 15.421 86 . 0  
2.21 15.462 81.9 
2.21 ' 
2.22 15.448 81 . 9  
2.23 15.442 81.6 
2.24 15.436 81 . 4  
2.25 15.434 81.0 

3 .2 16 . 418 199 . 0  
3 · 3 16.520 184 . 9  
3 · 3 '  
3 · 4 16.474 184.7 
3 ·5 16 .472 184 - 7  
3.6 16 . 472 184 - 5  
3 · 7  16 . 470 184.3 
3.8 16.469 184 . 1  
3 . 9  16 .466 184 . 0  
3 . 10 16.462 183.8 
3.11 16.458 182 . 4  
3.12 16.501 179.0 

ACOUSTIC 
VELOCITY 
ft . /sec . 

1725 -4 
163 7 . 8  
1550.7 
1457 · 3  
1926 . 3  
1741 . 1  
1741.0 
1740.9 
1740.9 
1740.9 
1740.8 
1740 - 7  
1 740.5 
1 740 . 3  
1 740.0 
1740 - 5 
1653 . 0  
16�2.8 
1652 . 5  
1652.8 
1565.4 
1565.3 
1565.1 
1564 . 9  
1564.8 
1564 - 7  
1565.3 
1471 . 6  
1471 . 5  
1471.4 
1471.4 
1471.3 

1940.9 
1942 . 9  
1755 . 0  
1755.0 
1754 - 9  
1754 - 9  
1754 .8 
1754.8 
1754 · 7  
17 54.6 
1754 · 6  
1755.1 

GAS 
TEMPERATURE 
OK 

724.6 
640.0 
570 . 0  
500.0 
903.2 
737.8 
737.8 
737 · 7  
737 · 7  
737.6 
737 - 6  
737 - 5  
737 - 3  
737 - 2  
737.1 
737 -5 
652 . 0 
651.8 
651.5 
652.0 
580. 9  
580.0 
579 . 8  
579 - 7  
579.6 
579 - 5  
580.0 
509.9 
509.8 
509 .8 
509.7 
509.7 

916.9 
918.9 
749 · 7  
749 . 6  
749.6 
749 · 5  
749 · 5  
749 · 5  
749 ·4 
749 · 4  
749 · 3  
749 · 7 

1.3211 
1.3309 
1.3397 
1 . 3487 
1. 304-6 
1 . 3211 
1.3211 
1.3211 
1.3211 
1.3211 
1.3211 
1.3211 
1.3211 
1.3211 
1.3211 
1 . 3211 
1.3309 
1 .3309 
1.3309 
1 .3309 
1.3397 
1.3397 
1.3397 
1.3397 
1 . 3397 
1 . 3397 
1.3397 
1.3487 
1.3487 
1.3487 
1.3487 
1.3487 

1. 304-6 
1. 3046 
1 . 3211 
1.3211 
1 . 3211 
1.3211 
1 . 3211 
1.3211 
1.3211 
1 . 3211 
1.3211 
1.3211 



STATE 
I - :n: 

4 · 3  
4 · 4 
4 · 4 '  
4 · 5  
4 · 6  
4 · 7 
4 . 8 
4 · 9  
4 . 10 
4 . 11 
4 . 12 

5 ·4 
5 . 5  
5 . 5 '  
5 . 6 
5 · 7  
5 . 8 
5 . 9 
5 . 10 
5 . 1 1 
5 . 12 
5 . 13 
5 . 13 '  
5 . 14 
5 . 1 5  
5 . 16 
5 . 17 
5 . 18 
5 . 19 

6 . 5 
6 . 6 
6 .6 '  
6 . 7 
6 . 8 
6 . 9  
6 . 10 
6 . 11 
6 . 12 

7 . 6 
7 · 7  
7 · 7 ' 

p u 

16 .487 2 08 . 2  

16 . 614 192 . 0  

16 . 561 192 . 0  
16 . 560 191 . 8  
16 . 560 191 . 6  
16 . 558 191 .4 
16 . 556 191 . 2 
16 . 552 191 . 0  
16 . 548 190 . 0 
16 . 589 186 . 1 

16 . 709 229 . 0 

16 . 855 211 . 1  

16 . 798 210 . 9  
16 . 798 2 10. 7 
16 . 797 210 . 5 
16 . 795 2 10 . 3  
16 . 790 2 10. 1 
16 . 786 2 09 . 7 
16 . 829 205 . 2  

16 . 650 185 . 1  

16 . 615 184 . 5 
16 . 655 180. 3  
16 . 654 175 · 9  
16 . 645 175 . 5  
16 . 64 0  175 ·4 
16 .633 175 . 0  

16 . 880 244 · 3  

17 . 163 226 .4 

17 . 1 00 226 . 2  
16 . 993 226 . 0 
16 . 990 225 . 8 
16 . 986 225 . 6 
16 . 981 225 . 2  
17 . 02 5  220.6 

17 . 195 269 . 1  

17 . 354 249 . 1  

1 3 1  

a T 

1941 - 7  917 . 8 1 . 3 04-6 
1944 . 0  919 . 9 1. 3046 
1756 . 1  750 . 6  1 . 3211 
1756 . 0  750. 5 1 . 32 11 
1756 . 0  750. 5 1 . 32 11 
1756 . 0 750 . 5 1 . 32 11 
1755 . 9  750.4 1 . 3211 
17 55 . 8  750.4 1 . 3211 
1755 . 8  750. 3 1 . 3211 
1755 - 7 75 0. 2 1 . 32 11 
1756 . 2 75 0.7  1 . 3211 

1944 . 9 92 0 . 8 1 . 3 046 
1947 · 3 92 3 . 0 1 . 304-6 
1759 . 1  753 . 1  1 . 3211 
1759 . 0 753 . 1 1 . 3211 
1759 . 0 753 . 1 1 . 3211 
1758 . 9  753 . 0  1 . 3211 
1758 . 8 752 . 9 1 . 32 11 
17 58 . 8 752 . 8 1 . 3211 
1758 . 7 752 . 8 1 . 3211 
1759 . 2 753 . 2 1 . 3211 
1756 .6 751 . 2  1 . 3211 
1668 . 3  664 . 1 1 . 3309 
1668 . 2  664 . 0 1 . 3309 
1668 . 7  664 .4 1 . 3309 
1580 . 5  592 . 1  1 . 3309 
1580.4 592 . 0  1 . 3309 
1580. 3  592 . 0 1 . 3309 
158 0 . 2  591 . 9 1 . 33 09 

1947 · 6  923 . 3 1 .  3 046 
1949 . 9  925 . 5 1 . 3 04-6 
1761 . 5  755 . 2 1 . 3211 
1761 . 4  755 . 1  1 . 3211 
1761 .4 755 . 1  1 . 3211 
1761 . 3  755 . 0  1 . 3211 
1761 . 1  754 - 9 1 . 3211 
1761 . 0  754 . 8 1 . 3211 
1761 . 5  755 . 2 1 . 3211  

1 951 . 4  926 . 9 1 .  3 04-6 
1953 . 8  929 . 2  1 .  3 0'+6 

1765 . 1  758 . 3  1 . 3211 



STATE 
I - :n: 

-8 
-9 
-10 
-11 
-12 
-13 
-14 
-15 
-16 
-17 
-18 
-19 
-20 
-21 

7 -2 2  

8-7 
-8 
-8 t 
-9 
-10 
-11 
-12 

9-8 
-9 
- 9 ' 
-10 
-11 
-12 
-13 
-14 
-15 
-16 
-17 
-18 
-19 
-20 
-21 
-22 
-23 
-24 
-2 5 

9-26 

p u 

17.286 248.9 
17.280 248.5 
17.276 248. 3 
17.272 247 · 9  
17.315 243 · 4  
17.209 226.7 
17. 151 224.3 
17.190 220.1 
17.199 213.9 
17.187 213.4 
17.181 213.2 
17.172 212.6 
17.163 211.8 
17 . • 215 2 07.6 
17.219 201.7 

17 -453 290.9 

17.625 269.3 

17.549 269.1 
17.543 269.0 
17.536 268.4 
17.581 263.8 

17 . ?96 319.4 

17. 985 295 ; 9  

17. 894 295.3 
17.887 294 - 9  
17. 930 290. 2  
17 - 797 271.6 
17 - 746 267. 2 
17.785 262.8 
17.805 255. 0  
17.792 2 54 · 4 
17.784 2 54. 1 
17.775 2 53 · 5 
17.764 2 52.5 
17. 817 247 · 9  
18. 000 24 0.5 
17. 824 23 9 · 7  
17.812 239. 0 
17.801 238.2 
17. 789 237.6 

1 3 2  

a T y 

1765.0 758. 2 1. 3211 
1764.9 758. 1 1.3211 
1764.7 758.0 1. 3211 
1764.6 757.9 1.3211 
1765.1 758.3 1.3211 
1763.7 757 - 1  1. 3211 
1674 · 6  669.1 1. 3 309 
1675.0 669.4 1. 3309 
1587.0 597.0 1.3397 
1586.8 596.9 1.3397 
1586.7 568. 0 1.3397 
1586.6 596.7 1. 3397 
1586.4 596. 6 1.3 397 
1587.1 597.1 1.3397 
1492.8 525.5 1.3487 

1954 · 8  930. 2  1.304-6 
1957.2 932.4 1. 3 04-6 
1768. 3 761.0 1.3211 
1768.1 760.9 1. 3211 
1768.0 760. 8  1. 3211 
1767.8 760. 6  1. 3211 
1768.3 761.0 1. 3211 

1959 - 3  934 ·4 1. 304-6 
1961. 6 936.6 1. 304-6 
1772 ·4 764 - 6  1. 3211 
1772. 2 764 -4 1. 3211 
1772.0 764. 2 1. 3211 
177 2 - 4  764. 6 1. 3211 
177 0. 6  763. 1 1. 3211 
1681. 5 674. 6 1 . 3309 
1681. 8 674 · 9 1 . 3309 
1598. 7 602 . 2 1. 3397 
1593 · 7  602.1 1. 3397 
1593.5 601.9 1.3397 
1593.4 601. 8 1 . 3397 
1593. 2 601 . 7  1. 3397 
1593 · 7  602. 1 1. 3 397 
1499 ·4 530.1 1. 3487 
1499.2 529. 9 1. 3487 
1499.1 529.8 1. 3487 
1498.9 529.7 1. 3487 
1498.8 529.6 1. 3487 



STATE 
I - :n: 

10-9 
-10 
-10 1 
-11 
-12 
-13 
-14 
-15 
-16 
- 16 ' 
-17 
-18 
-19 
-20 
-2 1 
-22 
-23 
-24 
-2 5  
-26 

10-27 

11-10 
-11 
-11 1 
- 12 
-13 
- 14 
-15 
-16 
-17 
-18 
-19 
-20 
-21 
-22 
-22 ' 
-23 
-24 
-25 
-26 
-27 

11-28 

p u 

18 . 203 351 . 5  

18 .404- 326 . 3  

18 . 304- 325 . 7 
18 . 346 320 . 9 
18 . 387 315.4  
18 . 346 3 09 . 1  
1 8 . 383 304 . 5  

18 .452 2 94 ·4 

18 . 389 293 . 6  
18 . 380 293 o 2  
18 . 368 2 92 . 5  
18 . 3 56 291 . 5 
18 .411 286 . 9  
18 .442 277 · 7  
18 .428 276 . 8 
18 . 414 276 . 0 
18 .402 275 . 3  
18 . 389 274 - 5 
18 . 377 273 - 7  

18 . 711 392 . 9  

18 . 943 364 . 1  

18 . 879 3 59 - 3  
18. 919 353 . 6  
18 . 885 345 . 6  
18 . 922 341 . 0  
19. 038 330 . 7  
18 . 937 328 . 7  
18. 927 328 . 2  
18 . 914 327 . 2  
18 . 898 326 . 1 
18 . 952 321 . 5  

19 ; 050 3 10 . 6  

18 . 978 3 09 . 6  
18 . 958 3 08 - 7  
18 . 944 307 - 7 
18 . 931 3 06 . 8  
18 . 916 306 . 0  
18 . 901 305 . 2  

1 3 3  

a T y 

1964 . 4 939 · 3 1 .  3 04-6 
1 966 .6 941 ·4 1 . 3046 
1777 . 1  768 . 6  1. 3211 
1776 . 8  768 .4 1. 3211 
1777 . 2  768 . 7 1 . 3211 
1777 · 5  769. 0 1 . 3211 
1688. 3 68 0.1  1 . 3309 
1688 . 7  680.4 1 . 33 09 
1690. 0 681 .4 1. 3309 
1600. 6  6r:J7 . 3 1 . 3397 
1600 .4 607 . 1  1 . 3397 
16 00 . 3  607 . 0  1 . 3397 
1600 . 1  606 . 9 1 . 3397 
1599 . 9  606 . 7  1 . 3397 
1600 . 5  607 . 2 1 . 3397 
1506 . 0  534 · 7  1 . 3487 
1505 . 8  534 . 6 1 . 3487 
1505 . 6  534 · 5  1 . 3487 
1505 . 5 534 ·4 1 . 3487 
1505 .4 534 ·4 1 . 3487 
1505 . 2  534 . 2  1 . 3487 

197 0 . 8  945 ·4 1 . 3046 
1972 . 8  947 - 3 1 . 3 04.6 
1783 . 0  773 · 7  1 . 32 11 
1783. 3 774 - 0  1. 3211 
1783 . 5  774 · 2  1 . 3211 
1694 - 3  684 . 9  1 . 3309 
1694 .6 685 . 1 1. 3309 
1695 . 7  686 . 1 1. 3309 
1606 . 3  611 . 6 1 . 3397 
1606 . 1  611 . 5  1 . 3397 
1605 . 9  611 . 3  1 . 3397 
1605 . 7  611 . 2  1 . 3397 
1606 . 2  611 . 6  1. 3397 
1607 . 9  612 . 8 1 . 3397 
1511 . 7  538 . 8 1. 3487 
1511 . 5  538 . 7 1 . 3487 
1511 . 3  538 . 5 1 . 3487 
1511. 1 538 .4 1 . 3487 
1511 . 0  538. 2 1 . 3487 
1510 . 8  538 . 1 1 . 3487 
1510.6  538 . 0 1 . 3487 



STATE 
I - :n: 

12-11 
-12 
-12 1 
-13 
-14 
-14 1 
-15 
-16 
-17 
-17 ' 
-18 
-19 
-20 
-21 
-22 
-23 
-24 
-25 
-26 
-27 
-28 
-2 9 
-30 
-31 

13-12 
-13 
-13 ' 
-14 
-15 
-15 ' 
-16 
-17 
-18 
-18 ' 
-19 
-20 
-21 
-22 
-23 
-23 ' 
-24 
-25 
-26 
-27 

p 

19 . 289 

19 . 621 

19 . 534 

19 . 570 

1 9 . 538 
1 9 . 656 

1 9 . 616 

19 . 544 
19 . 528 
19 . 507 
1 9 . 565 
1 9 . 706 
1 9 . 597 
19 . 574 
19 . 557 
1 9 . 538 
1 9 . 522 
1 9 . 505 
19 .485 
19 . 459 
19 . 448 

1 9 . 793 

2 0 . 237 

2 0 . 200 

2 0 . 179 

2 0 . 218 
2 0 . 236 

20. 178 

20 . 055 
2 0 . 069 
2 0. 122 
2 0 . 251 

2 0 . 23 1  

2 0 . 137 
2 0 . 118 
20 . 095 
2 0 . 065 

u 

440. 5 

402 . 1  

396 . 6  

386 . 1 

381 . 3  
370 . 8  

368 . 8  

366 . 0  
365 . 0  
363 . 9  
359 . 1 
348 . 6  
345 ·4 
344 · 4  
343 - 1  
341 . 9  
341 ·4 
340 . 2  
339 . 3 
338 . 1 
337 - 2  

482 . 7 

433 . 8  

423 . 3  

416 .4 

4 05 . 7  
4 01 . 5  

3 99 . 2  

3 98 . 3  
3 96 . 9 
392 . 2  
382 .4 

376 . 7  

37 5 · 5 
373 . 8  
372 o 5  
371 . 5  

1 3 4  

a T y 

1977 . 8 952 . 1 1 .  304-6 
198 0 . 3  954 · 5  1 .  3 04-6 
1790 . 1  780 . 3  1 . 3211 
1790 . 2  780 . 3  1 . 3211 
1791 . 3  781 . 0  1 . 32 11 
1701 . 0  690.4 1 . 3309 
1701 . 2  690- 5  1 . 3309 
1702 . 3  691 . 6 1 . 3309 
1702 . 5  691 . 6  1 . 3309 
1612 . 7 616 . 6  1 - 3397 
1612 . 5  616 . 5 1 . 3397 
1612 . 2  616 . 3  1 . 3397 
1611 . 9  616 . 0  1 . 3397 
1612 . 5  616 . 5  1 . 3397 
1613 . 9  617 . 5  1 . 3397 
1 517 . 8 543 . 1  1 . 3487 
1517 . 5  542 - 9  1 . 3487 
1517 - 3  542 . 8  1 . 3487 
1517 . 1  54-2 . 6 1 . 3487 
1516 . 9  54-2 . 5  1 . 3487 
1516 . 7  54-2 - 3 1 . 3487 
1516 .4 542 . 2 1 . 3487 
1516 . 2  54-2 . 0 1 . 3487 
1516 . 0  541 . 9  1 . 3487 

1 983 - 7 957 . 9 1 .  304-6 
1986 . 3  960. 4  1 .  3046 
1796 . 3  785 . 6  1 . 3211 
1797 . 0  786 . 2 1 . 3211 
1797 · 7  786 . 5 1 . 3211 
1707 - 2  695 -4 1 . 3309 
1708 . 2  696 . 2  1 . 3309 
1708 . 2  696 . 2 1 . 3309 
1708 . 5  696 . 4 1 . 3309 
1618 . 4  62 1 . 0  1 . 3397 
1618 . 1  62 0 . 7 1 . 3397 
1617 . 7  62 0 . 5 1 . 3397 
1618 . 3  62 0. 9 1 . 3397 
16 19 .4 62 1 . 8  1 . 3397 
1619 . 8 622 . 1 1 . 3397 
1523 . 3  547 - 1 1 . 3487 
1523 . 0  546 o 9  1 . 3487 
1522 . 7 546 .7 1 . 3487 
1 522 . 5 546 . 5 1 . 3487 
1 522 . 2 546 . 3 1 . 3487 



STATE 
I - :n: 

-28 
-29 
-30 
-31 
-32 
-33 
-34 
-35 

14-13 
-14 
-14 t 

-15 
-16 
-16 ' 
-17 
-18 
-19 
-19 ' 
-20 
-21 
-22 
-23 
-24 
-24 ' 
-25 
-26 
-27 
-28 
-29 
-30 
-31 
-32 
-33 
-34 
-35 
-36 

15-13 
-14 
-15 
-15 ' 
-16 
-17 
-17 ' 

p u 

20. 04-9 370 . 2  
20. 026 369 . 1  
20. 002 367 . 9  
19.985 367 . 1  
18.071 479 .8 
16 . 327 592 . 2  
14.727 704 . 5  
14 - 322 734 - 7 

20. 021 499.1 

20. 60'.1- 438 . 8  

20. 510 432.1 

20. 552 42 0.1 

20.486 415 . 9  
20 . 492 413.6 

20. 411 411 . 6  

20. 317 410 . 3  
20.370 405 - 5  
20.498 395 . 8 
20. 548 390.1 

20 .460 388 . 2 

20.372 386.4 
20. 346 385.1 
2 0.324 384 - 3  
2 0 . 3 07 383 . 0  
20. 281 382 . 0  
20. 2 58 38 0 . 9  
20. 236 380 . 1  
18.293 493 .4 
16 . 529 605.7 
14 . 912 718 . 0  
14.505 748 . 2  
14 - 322 761.8 

19.663 471.4 
20.390 411.3 

20. 275 405 . 7  

20.259 393 - 7  

2 0.181 390.4 

1 3 5  

a T y 

1521 . 9  546 . 1  1 . 3487 
1521 . 6  545 . 9  1 . 3487 
1521 . 3  545 - 7  1 . 3487 
1521.1 545.6 1 . 3487 
1501 . 5  531 . 5 1 . 3487 
1481 . 9  517 .8 1 . 3487 
1462 . 3  5 0'.1- .  2 1 . 3487 
14 57.0 500 . 5  1 - 3487 

1986.4 960. 5  1. 3046 
1989.6 963 . 6 1 . 3046 
1799.7 788 . 6 1 . 3211 
1800. 0 788 . 8 1 . 3211 
1801 . 3  789 . 7 1 . 3211 
1710 . 8  698.4 1 . 3309 
1710 . 8  698 .4 1.3309 
171 0 . 8  698 . 3  1 . 3309 
1710.7 698 . 3 1 - 3309 
1620.6  617 . 2  1 . 3397 
162 0 . 3  622 . 5  1.3397 
162 0 . 8  622.8 1 . 3397 
1622 . 0  623.8 1 . 3397 
1622.4 624.0 1 . 3397 
1622 . 2  623 . 9 1 . 3397 
1525.4 548 .6 1 . 3487 
1525 . 2  548 . 5 1 . 3487 
1525 . 0  548 . 3  1 - 3487 
1524 . 7  548 . 1  1 . 3487 
1524 . 5  548 . 0  1 . 3487 
1524 . 2  547 . 8  1 . 3487 
1524.0 547 . 6  1 . 3487 
1523.7 547 · 4  1 . 3487 
1503 . 9  533 · 3 1 . 3487 
1484 · 3  519 . 5  1 . 3487 
1464 - 7  505 . 9 1 . 3487 
1459 - 5  502 . 2  1 . 3487 
1457 . 1  500. 6 1 . 3487 

1982 . 2  956 .4 1 .  3 046 
1989.7 963 .6  1 . 3046 
1984 . 8  959 . 9  1 . 3 046 
1795.9 785.6 1 . 3211 
1796 . 9  786.5 1 . 3211 
1796 . 9  785.9 1.3211 
1706 . 8  695 . 1  1 . 33 09 



STATE 
I - II: 

15-18 
-19 
-20 
-20 ' 
-21 
-22 
-23 
-24 
-25 
-25 ' 
-26 
-27 
-28 
-29 
-30 
- 3 1  
-32 
-33 
-34 
-35 
-36 
-37 

16-14 
-15 
-16 
- 16 ' 
-17 
-18 
-18 ' 
-19 
-20 
-2 1 
-21 ' 
-22 
-23 
-24 
-25 
-26 
-26 ' 
-27 
-28 
-29 
-30 
-31 

p u 

2 0 . 110 388 . 2 
2 0 . 103 386 . 4  

2 0 . 000 385 .6 

19 . 989 381 . 1  
2 0 . 114 3 7 1 . 5  
2 0 . 163 
2 0 . 148 

365 . 8 
363 . 7 

2 0 . 049 362 . 9  

19 . 958 361 . 4  
19 . 93 0  360 . 5 
1 9 . 912 3 59 . 1  
19 . 886 358 . 0 
19 . 862 3 56 . 8  
19 . 839 356 . 3  
17 . 927 468 . 4  
16 . 205 579 . 9 
14 . 633 691 . 1  
14 . 223 721 . 9  
14 . 038 734 · 1  
14 . 322 7 1 0 . 0 

18 . 572 385 . 7 
19 . 319 322 . 1  

19 . 242 315 . 0  

19 . 1 32 312 . 1  

19 . 037 312 . 9 

18 . 972 3 11 .4 
18 . 941 311 . 0  

18 . 903 3 08 . 9  

18 . 972 2 99 . 3  
19 . 025 294 . 0  
19 . 020 292 . 1 
18 . 990 291 . 7 

18 . 873 293 . 6 

18 . 8 (X)  292 . 8 
18 . 7 90 291 . 7  
18 . 765 2 90 . 9  
18 . 7 53 289 . 8 
18 . 729 289 . 6 

1 3 6  

a T 

17 06 . 8 695 . 1 1 . 3309 
1706 . 5  694 . 8 1 . 3309 
17 06 . 2  694 . 6  1 . 3309 
1616 .4 619 . 4  1 . 3397 
1616 . 9  619 . 8  1 . 3397 
1618 . 1  62 0 . 7  1 . 3397 
1618 .4 62 1 . 0  1 . 3397 
1618 . 1  620 . 8 1 . 3397 
1617 . 7  620 . 5 1 . 3397 
152 1 . 4  545 · 7  1 . 3487 
152 1 . 0  545 · 5  1 . 3487 
152 0 . 7  545 · 3  1 . 3487 
1520 . 5  545 . 1  1 . 3487 
1520 . 0  544 - 8  1 . 3487 
1519 . 9  544 · 7  1 . 3487 
1519 . 6  544 ·4 1 . 3487 
1499 . 8  530.4 1 . 3487 
1480.4 516 . 7  1 . 3487 
146 0 . 8  503 . 1  1 . 3487 
14 55 . 6  499 . 5  1 . 3487 
1453 . 1  497 . 8 1 . 3487 
1457 . 0  500 . 5  1 . 3487 

1969 . 0  943 . 8  1 .  3046 
1977 . 1  951 . 5  1 .  3(46 
197 1 . 1  946 . 7  1 .  3(46 
1784 . 2  775 · 4  1 . 3211 
1783 . 8  775 . 1  1 . 3211 
1783 . 9  774 ·6 1 . 3211 

1694 · 5  685 . 1  1 . 3309 
1694 . 1  684 . 7  1 . 3309 

1693 - 5  660 . 9  1 . 3309 

1694 . 0  684 . 7  1 . 3309 

1604 . 9  610 . 7  1 . 3397 

1606 . 0  611 . 5  1 . 3397 

1606 .4 611 . 8  1 . 3397 
1606 . 1  611 . 6  1 . 3397 

1605 . 6 611 . 2 1 . 33 97 

1604 . 8  610. 6 1 . 3397 

1509 . 5  537 - 2 1 . 3487 

1509 . 2  537 . 0  1 . 3487 

1509 . 0  536 . 9 1 . 3487 

1508 . 5  536 . 6  1 . 3487 

1508 -4 536 .4 1 . 3487 

1508 . 1  536 . 2  1 . 3487 



STATE 
I - li 

16-32 
-33 
-34 
-35 
-36 
-37 
-38 

17-15 
-16 
-17 
-17 . 
-18 
- 1 9  
-19 ' 
-2 0 
-21 
-22 
-22 ' 
-23 
-24 
-25 
-26 
-27 
-27 ' 
-28 
-29 
-30 
-31 
-32 
-33 
-34 
-35 
-36 
-37 
-38 
-39 

18-15 
-16 
-17 
-18 
-18 ' 
-19 

p 

16 . 924 
1 5 . 3 03 
13 . 823 
13 . 435 
13 . 2 59 
13 . 546 
14 . 322 

17 . 136 
17 . 853 

17 . 67 5  

17 . 573 

17 .422 

17 - 412 
17 . 397 

17 . 266 

17 .476 
17 . 477 
17 .457 
17 . 4 03 

17 . 2 95 

17 . 2 58 
17 . 244 
17 . 242 
17 . 22 5  
1 5 . 557 
14 . 060 
12 . 7 05 
12 . 342 
12 . 181 
12 .449 
1 3 . 169 
14 . 322 

16 . 368 
17 . 061 
16 . 963 

16 . 822 

16 . 7 1 3  

u 

401 . 1 
511 . 6  
621 . 6  
652 . 1  
664 . 6  
63 9 . 9 
577 . 3 

259 . 2 
194 . 5 

2 00 . 0  

201 . 0  

2 04 . 0  

2 04 . 0  
2 01 . 9  

196 . 4 

191 .4 
189 . 9  
189 . 9 
192 .4 

196 . 4  

195 . 6  
195 · 4  
194 · 5  
194 . 6  
.306 . 0 
41 5 . 9  
524 . 3  
554 . 0  
566 . 6  
542 . 3  
480.4 
388 . 0  

191 . 8  
127 .4 
133 · 3  

138 . 9  

142 . 3  

1 3 7  

a T y 

1488 . 4 522 .4 1 . 3487 
1469 . 2  508 . 9 1 . 3487 
145 0 . 0 495 - 7  1 . 3487 
1444 . 8  492 . 1 1 . 3487 
1442 .4 490 . 5  1 - 3487 
1446 . 5  493 - 3  1 . 3487 
1457 . 0  500 . 52 1 . 3487 

195 0 . 6  926 . 2  1 .  3046 
1959 . 0  934 . 1  1 . 3046 
1950 . 3 926 . 8 1 .  3046 
1765 . 8  7 59 . 5 1 . 3211 
1765 . 3  759 . 0 1 . 3211 
1764 · 7  7 58 . 0 1 . 3211 
1676 . 5  670 . 6  1 . 3309 
167 5 . 9  67 0 . 2  1 . 3309 
1676 . 1  670 . 3  1 . 3309 
1676 . 6  670 . 7  1 . 3309 
1588 . 6 598 . 3  1 . 3397 
1589 . 0 598 . 6 1 . 3397 
1 588 . 8 598 . 5 1 . 3 3 97 
1588 . 3 598 . 1 1 . 3397 
1587 .4 597 · 7  1 . 3397 
1586 .4 596 . 9 1 . 3397 
1492 . 5  52 5 . 2 1 . 3487 
1492 . 4  525 . 1  1 . 3487 
1492 . 1  524 . 9 1 . 3487 
1491 . 9  524 . 8  1 . 3487 
1491 . 6  524 . 6  1 . 3487 
1472 . 1  510 . 9  1 . 3487 
1452 . 9  497 · 7  1 . 3487 

1434 . 0 484 · 9 1 . 3487 

1428 . 7  481 . 3  1 . 3487 

1426 . 3  479 · 7  1 . 3487 

143 0 . 4  482 . 4  1 . 3487 

144 0 . 9 489 . 5  1 . 3487 

1456 . 7  500 . 3  1 . 3487 

1940. 0  916 . 2  1 . 3046 

1948 . 5  924 . 5 1 .  304-6 

1 947 . 1  922 . 9 1 . 304-6 

1938 . 5  915 . 6  1 . 304-6 

175 5 · 3 7 50 . 6  1 . 3211 

1754 · 3  749 · 7  1 . 32 1 1  



STATE 
I - :n 

18-20 
-20 '  
-21 
-22 
-23 
-23 ' 
-24 
-2 5 
-26 
-27 
-28 
-28 f 
-29 
-30 
-31 
-32 
-33 
-34 
-35 
-36 
-37 
-38 
-39 
-40 

19-16 
-17 
-18 
-19 
-19 ' 
-20 
-21 
-21 1 
-22 
-23 
-24 
-24 f 
-25 
-26 
-27 
-28 
-29 
-29 '  
-30 
-31 

p u 

16.633 ]44.6 

16.625 142 - 5  
16.682 137 - 2 

16 . 674 134.1 

16.648 132.6 
16.631 132.6 
16.579 135.1 
16 . 509 138.9 

16.445 140 . 6  

16.406 140-4 
16.405 139 ·4 
16.390 139.6 
14 - 79? 250.6 
13.374 359 - 5 
12.081 467.6 
11.?35 497 . 2  
11.581 509.8 
11.838 485.8 
12.527 424.1 
13.631 331.8 
14 . 322 277 -4 

15.419 100.9 
15.970 45.8 
15 . 891 51 .6 

15.736 60.9 

15.660 63.4 

15.644 64.4 

15.678 60 . 0  
15.7 01 57.1 

15.654 58.8 

15.621 58.8 
15.576 61.5 
15.514 65.7 
15.476 67.6 

15 .412 71.1 

15.406 7 0.3 
15.386 7 0 - 7  

1 3 8  

a T y 

1753.9 748.7 1.3211 
1666.2 662.4 1.3309 
1666.3 662.5 1.3309 
1666 . 9  663.0 1 . 3309 
166?.0 663.1 1.3309 
15?9.2 591 . 2  1 . 3397 
1579.1 591.2 1 . 3397 
1578 . ?  590.9 1.3 39? 
1578.0 590 . 5  1 . 3397 
1577.1 589.8 1.3397 
1576.6 589.4 1 . 3397 
1482.7 518.3 1.348? 
1482.5 518 . 2  1 . 3487 
1482.4 518.1 1 . 3487 
1482.1 517.9 1 . 3487 
1462.6 504- ·4 1 . 3487 
1443 ·6 491.4 1 . 3487 
1424.8 478.6 1 . 3487 
1419.5 475.1 1 . 3487 
1417.1 473 - 5  1 . 3487 
1421 . 2  476.2 1 . 3487 
1431 - 7  483.2 1.3487 
1447 · 5 494.0 1 . 348? 
1456.8 500 . 3 1 . 3487 

1925 . 9  902 . 9 1 . 3�6 
1932 - 7  909 . 3  1 .  304-6 
1931.1 907 . 8 1 .  30+6 
1921 .4 899 - 5 1.3�6 
1740o6 738.0 1.3211 
1739 - 5  737.0 1 . 3211 
1740.5 737 · 3  1 . 3211 
1653 . 5  652 o4 1.3309 
1653 - 7 652.5 1 . 3309 
1653.6 652.7 1.3309 
1634 · 5  652.2 1.33 09 
1566.3 581.7 1.3397 
1565 o 8  581.3 1.3397 
1565.0 580.9 1.3397 
1564.0 580.1 1.3397 
1563.2 579.6 1.3397 
1562.4 579.0 1.3397 
1470.2 509.7 1.3487 
1470.1 509.6 1 . 3487 
1469.9 509.4 1.3487 



STATE 
I - :n: 

19-32 
-33 
-34 
-35 
-36 
-37 
-38 
-39 
-4 0 
-41 

20-17 
-18 
- 1 9  
- 2 0  
-20 ' 
-21 
-22 
-22 ' 
-23 
-24 
-25 
-25 ' 
-26 
-27 
-28 
-29 
-30 
-30 ' 
-31 
-32 
-33 
-34 
-35 
-�6 
- 7 

-38 
-39 
-40 
-41 
-42 

21-18 
-19 
-20 

p 

13 . 890 
12 . 552 
11 . 333 
1 1 . 009 
10. 867 
11 . 110 
1 1 . 761 
12 . 805 
13 .454 
14 . 322 

14 .466 
14 . 910 
14 . 7 90 

14 . 670 

14 .656 

14 . 667 

14 . 673 
14 . 683 

14 . 594 

14 . 53 5  
14 .484 
14 .458 
14 .401 

14 . 364 

14 . 3 52 
12 . 944 
1 1 . 692 
10. 546 
1 0 . 2 50 
1 0 . 120 
10. 346 
1 0 . 955 
1 1 . 936 
12 . 536 
13 . 887 
14 . 322 

14 . 353 
14 . 133 
14 . 1 17 

u 

181 . 7 
289 . 8 
396 . 9  
426 .4 
439 . 2  
415 . 1  
3 54 . 0  
262 . 5 
2 09 . 0  
140 . 8  

6 . 5  
-39 - 5  
-30 . 0  

-2 1 . 6  

-21 .4 

-22 . 9  

-25 . 8 
-24 . 5  

-21 . 0  

-17 -4 
-13 .6 
-12 . 0  
- 8  . o  

- 5 . 5 

- 5 . 0 
1 05 . 6  
2 13 . 0  
320. 1 
349 . 0  
361 .4 
337 · 9  
277 ·4 
186 . 6  
1 3 3 · 3 

65 . 1  
-10. 7  

-95 . 5  
-75 - 3  
-76 . 6  

1 3 9  

a T y 

14 50.4 496 . 0 1 . 3487 
143 1 . 6  483 . 2 1 . 3487 
142 1 . 8 470 . 6 1 . 3487 
1407 . 5  467 . 1 1 . 3487 
1405 . 1  465 . 5 1 . 3487 
1409 . 3  468 . 2 1 . 3487 
14 19 .7 47 5 . 2  1 . 3487 
143 5 - 4 485 . 8 1 - 3487 
1444 . 6  492 . 0 1 . 3487 
1456 .4 500 . 1  1 . 3487 

191 1 . 9  889 . 8 1 . 304-6 
1918 . 1  895 . 6 1 .  304-6 
1915 . 2 892 . 8 1 . 30+6 
1904 . 3  883 . 6 1 . 30+6 
172 5 . 6  725 . 3 1 . 3211 
172 5 . 3  725 . 0 1 . 3211 
1724 . 8  724 . 8  1 . 321 1  
1639 . 5  64 1 - 4 1 . 3309 
1639 ·4 641 . 3  1 . 3309 
1634 . 1  640 . 7  1 . 3309 
1637 -7 639 . 9 1 . 3309 
1552 . 5  57 1 . 2  1 . 3397 
155 1 . 5  57 0 ·4 1 . 3397 
1550 . 2  569 . 9 1 - 3397 
154 9 ·4 569 . 5 1 - 3397 
1548 . 6 568 . 8 1 . 3397 
1548 . 0  568 . 3  1 . 33 97 
1456 . 7  500 . 3  1 . 3487 
1456 . 5  5 00 . 2  1 . 3487 

1437 . 1  486 . 9 1 . 3487 

1418 . 3  474 · 3 1 . 3487 

1399 . 5  461 . 8 1 . 3487 

1394 . 3  4 58 .4 1 . 3487 

1392 o 0  456 . 9 1 . 3487 

1396 o 0  459 . 5  1 . 3487 

1406 . 3  466 . 3  1 . 3487 

1421 . 9  476 . 7 1 . 3487 

143 0 . 9  482 . 8 1 . 3487 

1442 . 6  490 . 7  1 . 34$7 

14 55 . 6  499 . 6  1 . 348? 

1909 .4 887 . 4  1 .  3 04-6 

1904 .6 883 .4 1 .  304-6 

1895 . 2  875 . 1  1 . 304-6 



STATE 
I - :rr 

2 1-21 
-21 ' 
-22 
-23 
-23 ' 
-24 
-25 
-26 
-26 ' 
-27 
-28 
-29 
-30 
-31 
-31 ' 
-32 
-33 
-34 
-35 
-36 
-37 
-38 
-39 
-40 
-41 
-42 

22-19 
-20 
-21 
-22 
-22 ' 
-23 
-24 
-24 ' 
-25 
-26 
-27 
-27 ' 
-28 
-29 
-30 
-31 
-32 
-32 ' 

p u 

14 . 072 -73 . 2  

14 . 084 -74 · 5  

14 . 082 -75 . 6  

14 . 093 -77 . 6  
14 . 010 -70 . 9  

13 . 941 -64 . 9 

13 . 894 -61 . 1  
13 . 871 -59 . 6 
13 . 816 -55 ·4 
13 . 781 -52 . 9 

13 . 752 -50.4 

12 .401 60 . 2 
1 1 . 199 167 . 1 
1 0 . 098 274 . 1  

9 . 815 3 02 . 8 
9 . 833 315 . 2 
9 . 908 291 . 9 

10.494 2 31 . 7 
11 .435 141 . 2  
12 . 018 88 . 4 
12 . 807 20.4 
13 . 741 -55 . 0  

14 . 340 -48 . 9 
14 . 338 -51 . 8 
14 . 271 -48 . 1 

14 . 3 02 -53 . 5  

14 . 2 97 -54 . 6  

14 . 317 -54 . 6  

14 . 2 29 -51 . 0  
14 . 156 -45 . 1  

14 . 117 -42 . 2  

14 . 100 -40 . 7  
14 . 032 -36 . 5  
14 . 002 -34 . 0  
1 3 . 969 -31 . 5  

12 . 652 82 . 9 

1 4 0  

a T y 

1894 ·4 874 ·4 1 .  3 04-6 
1716 . 8  718 . 0 1 .  3 04-6 
1716 . 7  717 . 8 1 . 3211 
1716 . 5  7 17 . 7 1 . 3211 
163 0 . 9  634 · 7 1 . 3309 
163 0 . 4  634 · 3  1 . 3 309 
1629 . 2  6 3 3 · 3  1 . 3309 
1628 . 05 632 . 5 1 . 3309 
1543 · 3  564 · 4  1 . 3397 
1542 . 0  563 . 9 1 . 3397 
1 541 . 3  563 . 5  1 . 3397 
1 540.4 562 . 8  1 . 3 3 97 
1 53 9 . 8  562 . 3 1 . 3397 
1539 . 2 56 1 . 9 1 . 3397 
1448 . 5 494 . 7  1 . 3487 
1429 . 1  481 . 5 1 . 3487 
14 1 0 . 3 469 . 0 1 . 3487 
1391 . 7 4 56 . 6  1 . 3487 
1386 .4 453 . 2 1 . 3487 
1384 . 1  451 . 7  1 . 3487 
1388 . 1 454 · 3  1 . 3487 
1 3 98 . 4 461 . 1 1 . 3487 
1414 . 0 47 1 .4 1 . 3487 
1423 . 1 477 · 5  1 . 3487 
1434 . 8 485 . 4 1 . 3487 
1447 · 9 494 . 2 1 . 3487 

1906 . 9 885 . 6 1 . 3 04-6 

1897 . 5 877 . 2  1 . 3 04-6 
1897 . 1 876 . 9  1 .  304-6 
1896 . 3 876 . 2  1 . 3 04-6 
17 19 . 3 72 0 . 1  1 . 3211 
1718 . 5 7 19 .4 1 . 3211 
1718 . 4 7 15 . 9 1 . 32 1 1  
1633 . 1 636 .4 1 . 3309 
1631 . 9 635 · 5  1 . 3309 
163 0 . 8  634 . 6 1 . 3309 
163 0 . 0 633 . 9 1 . 3309 

1544 · 9  567 . 0  1 . 3397 
1544 . 2 565 . 5 1 . 3 3 97 
1 543 · 3  564 - 9 1 . 3 3 97 
1 542 . 6  564 ·4 1 . 3 3 97 
1 542 . 1  564 . 0 1 . 3 3 97 

1522 . 6 549 · 9 1 . 33 97 

1433 . 0  484 . 1 1 o 3487 



STATE 
I - :n: 

22-33 
-34 
-35 
-36 
-37 
-38 
-39 
-40 
-41 
-42 

23-20 
-21 
-22 
-23 
-23 ' 
-24 
-25 
-25 ' 
-26 
-27 
-28 
-28 ' 
-29 
-30 
-31 
-32 
-33 
-33 ' 
-34 
-35 
-36 
-37 
-38 
-39 
-40 
-41 
-42 

24-22 
-23 
-24 
-24 f 

-25 

p u 

11 . 446 189. 5 
1 0 . 328 296 . 1  
10. 038 324 . 7 

9 . 911 337 . 2  
10. 314 3 1 3 . 8  
10. 727 253 · 9  
1 1 . 685 163 . 5  
12 . 277 1 10.8 
13 . 078 43 · 0  
14 . 027 -32 . 7 

14 - 333 -52 .8 
14 . 332 -51 . 2  
14 . 300 -50 . 2  

14 . 2 94 -53 . 1  

14 . 317 -53 . 1  

14 . 282 -49· 7 

14 . 157 -43 o 9  
14 . 116 -41 . 1  

14 . 095 -39· 7 

14 . 04-0 35 · 5 
14 . 004 -33 . 0  
13 . 97 1  -3 o. a 
12 . 638 83 . 5 

11 . 480 191 . 4  

1 0 . 386 300. 3 
1 0 . 096 328 o 7  

9. 972 341 . 0  
1 0 . 372 317 . 9  
1 0 . 784 2 58 . 3  
11 . 744 168. 3 
12 . 337 115 .8 
1 3 . 1 39 47 .8 
14 . 089 -27 . 7  

14 . 3 35 -44 · 5  
14 . 323 -46 . 6  

14 . 347 -48. 7  

14 . 223 -48 . 9  

1 4 1  

a T y 

1414 . 2  47 1 . 5 1 . 3487 
1395 . 5 459. 1 1 . 3487 
1390 . 3  455 . 7 1 . 3487 
1388. 0 454 . 2  1 . 3487 
1392 . 0 456 . 8 1 . 3487 
1402 . 3  463 . 6 1 . 3487 
1417 .8 473 . 9 1 . 3487 
1426 . 9 480 . 0 1 . 3487 
1438 . 5 487 . 9 1 . 3487 
1450 . 5  496 . 7 1 . 3487 

1897 . 5 , 877 - 2 1 .  304-6 
1897 . 7 877 ·4 1 .  304-6 
1894 .8 874 · 8  1 . 30'+6 
1894 · 7  874 · 7 1 . 3 046 
1718. 5 719.4 1 . 3211 
1717 . 2  718. 3 1 . 3211 
1716 . 7  7 17 . 9 1 . 32 1 1  
163 1 . 6  635 . 2 1 . 3309 
1630 .4 634 · 3 1 . 3309 
1629. 2 633 - 7 1 . 3309 
162 0 . 0  633 . 2 1 . 3 309 
1 543 . 9 565 . 4 1 . 3397 
1543 · 0  564 . 7 1 . 3397 
1542 . 3  564 . 2  1 . 3397 
1 541 . 7  563 . 7  1 . 3397 
1 522 . 2  549. 5 1 . 3397 
1503 . 7  536 . 3 1 . 3397 
1415 . 2  472 . 2 1 . 3487 
1396 . 5  459. 8 1 . 3487 
1391 .4 456 . 5 1 . 3487 
1 389. 1 454 · 9 1 . 3487 
1393 . 0 4 57 · 5  1 . 3487 
1403 . 2  464 · 3  1 . 3487 
1418 . 7  474 · 6  1 . 3487 
1427 .8 480 . 7 1 . 3487 
1439.4 488. 5 1 . 3487 
1452 .4 497 · 3  1 . 3487 

1894 . 6  874 · 6  1 . 3 046 
1894 . 0  873 · 7  1 . 3046 
1893 .4 873 · 5 1 . 304-6 
1718. 1 719. 0 1 . 32 1 1  
1715 . 9  7 17 . 2 1 . 32 1 1  



STATE 
I - :n: 

24-26 
-26 ' 
-27 
-28 
-29 
-29 ' 
-30 
-31 
-32 
-33 
-34 
-35 
-36 . 
-37 
-37 ' 
-38 
-39 
-40 
-41 
-42 

2 5-23 
-24 
-25 
-25 ' 
-26 
-27 
-27 ' 
-28 
-29 
-30 
-30 ' 
-31 
-32 
-33 
-34 
-35 
-36 
-37 
-38 
-39 -40 
-40 ' 

-41 
-42 

p u 

14 . 1 51 -43 ·4 

14 . 112 -40. 5 
14 . 088 -39 . 2  

14 . 035 -34 . 8 

]4 . 003 -32 . 5 
13 . 970 -30 . 2  
12 .638 83 . 9 
11 .458 194 . 1 
10 . 375 304 . 1 
10 . 094 333 - 5  

9 . 972 346 . 3 

10 . 219 322 , 6 

10 . 847 263 . 2 
11 . 808 173 . 6 
12 .403 12 1 . 3 
13 . 209 53 o 7  
14 . 163 -21 . 6 

14 . 335 -44 · 7  
14 . 3 15 -45 · 7 

14 . 264 -43 . 6 

14 . 191 -38 . 0  

14 . 154 -35 . 7 

14 . 132 -34 o4 
14 . CY74 -30. 2 

14 . 045 -28 . 3 

14 . 015 -26 . 0  
12 . 680 88 . 1 
11 . 500 197 . 9 
10.418 307 .4 
10 . 136 336 .6 
10. 013 349 . 2 
1 0 . 225 325 . 5 
1 0 . 804 263 . 6  
1 1 . 7 54  170 · 4  

12 . 326 115 . 9 

1 3 . 145 48 . 5 
14 . 093 -26 . 7 

1 4 2  

a T y 

1714 - 3  715 . 9  1 . 32 1 1  
1629 . 9 633 . 9 1 . 3309 
1629 . 2 633 · 3 1 . 3309 
1628 . 5  632 . 8  1 . 3309 
1627 .4 63 1 . 9 1 . 3309 
1542 . 8 564 . 5 1 . 3397 
1 542 . 1 564 . 0  1 . 3397 
1541 .4 563 . 5 1 . 3397 
1521 . 8  549 · 3 1 . 3397 
1502 . 9 535 . 8 1 . 3397 
1484 . 0  522 .4 1 . 3397 
1478 . 7  518 . 8 1 . 3397 
1476 .4 517 . 1 1 . 3397 
1480 . 3 51 9 . 9 1 . 3397 
1394 . 1 458 . 2 1 . 3487 
14 04 · 3  464 . 9 1 . 3487 
14 1 9 . 7  475 - 3 1 . 3487 
1428 . 8 481 . 3 1 . 3487 
144 0 . 3  489 . 1 1 . 3487 
1453 . 1 497 o 9  1 . 3487 

1893 . 6 873 . 2 1 . 3 �6 
1892 . 0  872 . 2 1 . 3 �6 
1891 . 2  871 . 5 1 . 3�6 
1716 . 7 717 . 9 1 . 32 11 
1714 . 3  715 . 9 1 . 3211 
1713 . 3 71 5 . 1 1 . 32 11 
162 9 .4 633 · 5 1 . 33 09 
1628 . 7 633 . 0 1 . 33 09 
1627 . 6  632 . 1 1 . 3309 
1626 . 9 635 . 1 1 . 33 09 
1542 .4 564 . 2 1 . 3397 
1 541 . 8 563 . 8 1 . 3397 
1522 . 3 549 o 6  1 . 3397 
1503 .4 536 . 0 1 . 3397 
1484 o 6  522 . 7 1 . 3397 
1479 · 3 519 . 0 1 . 3397 
1477 . 0 517 .4 1 . 3397 
1480. 9  520 . 1 1 . 3397 
1491 . 2 527 .4 1 . 3397 
1506 - 7 538 -4 1 . 33 97 
1515 . 9 544 · 9 1 . 3397 
1427 . 9  480. 7 1 . 3487 
143 9 . 2 488 .4 1 . 3487 
1452 . 1 497 . 1 1 . 3487 



STATE 
I - li 

26-24 
-25 
-26 
-26 ' 
-27 
-28 
-28 ' 
-29 
-30 
-31 
-31 ' 
-32 
- 3 3  
-34 
-35 
-36 
-37 
-38 
-39 
-40 
-41 
-41 t 

-42 

27-25 
-26 
-2? 
-27 . 
-28 
-29 
-29 ' 
-30 
-31 
-32 
-32 ' 
-33 
-34 
-35 
-36 
-37 
-38 
-39 
-4 0 
-41 
-42 
-42 ' 

p u 

14 . 335 -43 . 6 
14 . 2 59 -43 . 6  

14 . 1 57 -3 9 ·4 

14 . 128 -37 . 1  

14 . 104- -3 5 . 7 

14 . 048 -31 . 5  
14 . 020 -29 . 6 

1 3 . 987 -27 . 3 

12 . 658 86 . 5 
11 . 484 1 96 . 0  
10.408 305 . 1 
1 0 . 129 334 . 1  
1 0 . 006 346 . 7 
1 0 . 2 17 323 . 2 
1 0 . 7 92 261 . 7 
1 1 . 698 168 . 9 
12 . 2 92 114 . 6  

13 . 080 ·44 · 3  

14 . 033 -3 0 . 8  

14 - 333 -33 ·4 
14 . 241 -27 . 3  

14 . 2 16 -27 . 3  

14 . 191 -26 . 0  

14 . 140 -22 . 3 

14 . 112 -20.4 
. 14 . 0?7 -18 . 1  

12 . 785 99 . 5 

11 . 617 208 . 6 
10. 533 317 . 1  
1 0 . 2 52 345 . 9 
10. 129 358 .4 
10. 339 335 . 0 
10. 917 273 · 7  
11 . 849 181 . 3 
12 .427 127 . o  
13 . 208 56 . 9  

14 . 144 -22 . 2  

1 4 3  

a T 

1891 . 7 871 . 9 1 . 3 (46 
1890 . 5 870 . 8 1 . 3046 
1888 . 0 868 . 5 1 . 3046 
1714 · 4  7 16 . 0 1 . 3211 
1712 .4 7 14 . 3 1 . 3211 
171 1 . 5  71 3 . 6 1 . 3211 
1627 . 9 632 . 3  1 . 3309 
1626 . 8 63 1 . 5 1 . 3309 
1626 . 1 630 . 9 1 . 3309 
1625 . 3 630. 3 1 . 3309 
154 1 .4 563 .4 1 . 3397 
1521 . 9  549 . 2 1 . 3397 
1503 . 0  535 . 7 1 . 3 397 
1484 . 2 522 . 4 1 . 3397 
1479 . 1 518 . 8 1 . 3397 
1476 . 8 517 . 2 1 . 3397 
1480 . 6  519 . 9  1 . 3397 
1490 . 9  527 . 1  1 . 3397 
1506 . 5 538 . 2 1 . 3397 
1515 . 6  544 . 8 1 . 3397 
1527 . 1 553 o 1  1 . 3397 
1438 . 1  487 . 8 1 - 3487 
1451 . 2  496 . 5 1 . 3487 

1892 . 2 872 . 3 1 .  304-6 
1888 . 6  869 . 2 1 . 3(46 
1887 . 6 868 . 2 1 . 3046 
17 14 . 7  716 . 2  1 . 3211 
1712 . 2 714 . 2  1 . 3211 
1711 . 1  713 . 2 1 . 3211 
1627 . 8  632 . 2 1 . 3 3 09 
1627 . 1  631 - 7  1 . 3 3 09 
1626 . 3  631 . 1  1 . 3309 
16(X) . 4  615 . 8 1 . 3309 
1523 . 9  55 0. 7 1 . 3 3 97 
1505 . 1  537 . 2 1 . 3397 
1486 . 4  523 . 9  1 . 3397 
1481 . 2 520 . 3 1 . 3397 
1478 . 9 518 . 7  1 . 3 397 

1482 . 8  52 1 .4 1 - 3397 

1493 . 0  528 . 6 1 . 3 397 

1508 . 5  539 · 7 1 . 3397 

1517 . 6  546 . 2 1 . 3 3 97 

152 9 . 1 554 · 5 1 . 3 3 97 

1542 . 2  567 . 0 1 . 3397 

1452 . 5 497 · 4  1 . 3487 



STATE 
I - li 

28-26 
-27 
-28 
-28 ' 
-29 
-30 
-30 '  
-31 
-32 
-3 3  
-33 ' 
-34 
-35 
-36 
-37 
-38 
-39 
-40 
-4 1  
-42 

29-27 
-28 
-2 9  
-29 ' 
-30 
-31 
-31 I 

-32 
-33 
-34 
-34 ' 
-35 
-36 
-37 
-38 
-39 
-40 
-41 
-42 

3 0-28 
-29 

p 

14 . 323 
14 . 283 

14 . 261 

14 . 208 

14 . 182 

14 . 149 
12 . 838 

11 . 704-

1 0 . 61 9  
10. 3 56 
10. 229 
10 .440 
11 . 020 
11 . 956 
12 . 538 
13 . 323 
14 . 265 

14 . 323 
14 . 2 93 

14 . 244 

14 . 2 18 

14 . 188 

12 . 876 
1 1 . 7 18 

1 0 . 687 

1 0 . 436 
1 0 . 3 1 1  
1 0 . 522 
1 1 . 1 03 
12 . 04-1 
12 . 627 
13 -413 
14 . 3 58 

14 . 323 
14 . 26 1  

u 

-18 . 5  
-17 .4 

-18 . 1 

-14 o 5  

-13 . 4  

-11 . 1  
1 06 .4 

2 18 . 9 

326 . 8 
355 . 5 
367 . 5  
344 . 2 
283 . 3 
191 . 2 
137 . 0 

67 . 2 
- 1 1 . 8 

-12 . 3 
-11 . 8  

-9 . 7 

-8 . 6 

-6 . 9  

1 1 0 . 4  
222 . 5 

333 - 9  

362 . 2 
374 . 6  
351 . 3 
290. 7 
1 99 . 0 
144 . 8 

7 5 - 3  
-3 . 8 

-8 . 0  
-4 . 8 

1 4 4  

a T y 

1889 . 6 870 . 0  1 . 3046 
1887 . 4 868 . 0 1 . 304-6 
1886 . 9 867 . 5 1 .  301+6 
1?14 . 6  7 16 . 2 1 . 3 2 1 1 
171 1 . 5  7 1 3 . 6 1 . 32 11 
1710. 6 712 . 8 1 . 32 1 1  
1627 . 7 632 . 2 1 . 3309 
1626 . 9 631 . 6 1 . 3 309 
160'7 . 0 616 . 3 1 . 33 09 
1588 . 0 601 . ? 1 .  3 3 09 
1506 . 7 538 . 3 1 . 3 3 97 
1488 . 1 525 . 1 1 . 3 3 97 

1482 . 9 52 1 . 5 1 . 3 3 9? 
1480 . 5  519 . 8 1 . 3 3 97 
1484 . 3 522 . 5 1 . 3 3 97 
1494 · 4 529 . 6 1 . 3 3 97 
1509 . 9 540 . 6 1 . 3 3 97 
1 518 . 9 547 · 1  1 . 3 3 97 
1530.4 555 o4 1 . 3 3 97 
1543 ·4 564 . 9 1 . 3 3 97 

1887 . 3 867 . 9 1 .  304-6 
1886 . 1 866 . 8 1 . 3 04-6 
1885 . 4 866 . 1 1 . 3046 
1713 . 8 7 1 5 . 5 1 . 32 11 
1710. 6 7 12 . 8 1 . 32 1 1  

170'7 ·4 7 10 . 1 1 . 32 1 1  

1627 . 2 631 . 8 1 . 3309 

1607 .4 616 . 5 1 . 3 3 09 

1588 . 3 602 . 2 1 . 3 3 09 

1569 . 5 588 . 0  1 . 3 3 09 

1489 . 2 525 . 9 1 .  3 3 97 

1484 o 1  522 . 3 1 . 3 3 97 

1481 . 8 520 . 7  1 . 3397 

1485 , 6 52 3 -4 1 . 3 3 97 

1495 - 7 530. 5 1 . 3 3 97 

1511 . 1  541 . 5 1 . 3 3 97 

1 520 . 2 548 . 0  1 .  3 3 97 

1531 - 7 556 . 3  1 . 33 97 

1 544 . 6 565 - 7  1 . 3 3 97 

1886 . 0  866 . 7 1 . 3 046 

1884 .4 865 . 2 1 .  3 046 



STATE 
r - :n:  

30-30 
-30 ' 
-31 
-32 
-32 ' 
-33 
-34 
-35 
-36 
-37 
-38 
-38 ' 
-39 
-40 
-41 
-42 

31-29 
-30 
-31 
-31 ' 
-32 
-33 
-33 ' 
-34 
-35 
-36 
-37 
-38 
-39 
-40 
-41 
-41 ' 
-42 

32-30 
-31 
-32 
-32 ' 
-33 
-34 
-34 r 

-35 
-36 

p u 

14 . 238 -5 - 3  

14 . 2 08  -3 .4 

12 . 932 117 . 7  

11 . 788 229 .4 
1 0 . 723 340·4 
1 0 .452 369 o 1  
1 0 . 330 381 . 8  
1 0 . 539 358 . 2 

11 . 133 295 . 5 

12 . 099 2 04 . 2 
12 . 687 150. 1 
13 .473 80.4 
14 .419 1 . 5  

14 . 322 o . o 
14 . 276 +1 . 7  

14 . 252 +1 . 9  

12 . 960 123 . 0 

1 1 . 851 238 . 0  

1 0 . 8CY7 348 . 2  
1 0 . 597 377 - 5  
10.410 390. 1 
1 0 . 620 365 . 8  
11 . 188 303 . 7 
12 . 110 2 08 . 6  
12 . 686 152 .4 

13 .462 80.4 

14 .416 1 . 7  

14 . 320 4 . 6  
14 . 27 0  6 . 7  

13 . 04.9 135 . 1  

11 . 933 249 - 5 

10 . 922 362 . 6 

1 0 . 666 390 . 8  
1 0 . 544 403 .4 

1 4 5  

a T y 

1883 . 9 864 . 7  1 . 304.6 
1713 . 1  7 14 . 9 1 . 32 1 1  
171 0 . 3 7 12 . 5  1 . 32 1 1  
1687 . 8 694 . 0 1 . 32 1 1  
1608 .4 617 . 3  1 . 3309 
1589 .4 602 . 8 1 . 3309 
157 0 . 7  588 . 7 1 . 3309 
1 565 . 5  584 . 9 1 . 3309 
1563 . 2 583 . 1  1 . 3309 
1 567 . 0  586 . 0  1 . 3309 
1577 .• 2 593 . 6  1 . 3309 
1496 . 6  531 . 1  1 . 3397 
1511 . 9  542 . 1 1 . 3397 
1521 . 0  548 . 6 1 . 3397 
1532 .4 556 . 8 1 . 3397 
1545 ·4 566 . 3 1 . 3397 

1884 . 7  865 . 5  1 . 3 046 
1883 . 2  864 . 1 1 . 3046 
1883 . 0  863 . 9  1 . 304-6 
1712 . 7  7 14 . 6  1 . 32 1 1  
1692 . 1 697 · 5  1 . 32 1 1  
1672 . 7  682 . 1 1 . 32 1 1  
1590.6 603 - 7 1 . 3309 
1571 . 9  589 . 6 1 . 3309 
1566 . 8  585 . 8 1 . 3309 
1564 ·4 584 . 0  1 . 3309 
1568 . 3 586 . 9 1 . 3309 
1 578 .4 594 . 0  1 . 3309 
1 593 . 9 606 . 3  1 - 3309 
1603 . 1 61 3 . 3 1 . 3309 
1614 . 6 622 . 1 1 . 3309 
1532 . 1  556 . 7 1 . 3397 

154 5 - 2  566 . 2  1 . 3 3 97 

1883 . 2  864 . 1 1 .  304-6 
1882 . 2 863 . 2  1 . 304-6 

1862 . 1  844 . 9  1 .  3 04-6 

1693 . 2 698 . 5  1 . 32 1 1  

1674 · 0  682 . 6  1 . 32 1 1  

1655 . 0 667 . 3 1 . 32 1 1  

1574 · 4 591 . 5  1 . 3309 

1569 . 1  587 . 5 1 . 3309 

1566 o 7  585 . 8  1 . 3309 



STATE 
I - li 

32-37 
-38 
-39 
-40 
-41 
-42 
-42' 

33-31 
-32 
-33 
-33' 
-34 
-35 
-36 
-37 
-38 
-39 
-40 
-40' 
-41 
-42 

34-32 
-33 
-34 
-34' 
-35 
-36 
-37 
-38 
-39 
-40 
-41 
-42 
-42' 

35-33 
-34 
-35 
-36 
-37 
-38 
-39 
-40 

p u 

10.755 379.2 
11.325 317.5 
12.254 222.7 
12.836 166.8 
13.609 94.9 

14.546 12.4 

14.322 11.5 
13.054 141.4 

12.006 261.7 

10.998 374.2 
10.728 403.1 
10.60? 415.9 
10.813 391.2 
11.369 327.4 
12.280 229.0 

12.866 171.2 

13.652 99.8 

14.596 17·4 

13.856 201.5 

12.595 336.2 

11.650 450.0 

11.414 478.3 
11.281 490.0 
11.491 465.5 

12.073 402.1 
13.031 304-.5 
13.631 246.0 
14.456 168.9 

15.412 82.7 

12.794 358.0 
11.788 472.6 

11.499 499.5 

11.379 512.5 
11.578 486.7 
12.135 419.5 
13.035 314.4 

14.036 251.6 

146 

a T y 

1570.6 588.6 1.3309 
1580.7 596.2 1.3309 
1596.2 6Cf7. 9 1.3309 
1605.4 615.0 1.3309 
1616.4 623.5 1.3309 
1629.2 633·4 1.3309 
1546.7 567.3 1.3397 

1882.5 863.4 1. 30l.t6 
1861.7 844.4 1.3046 
1841.6 826.3 1.30l.t6 
1675.3 683.8 1.3211 
1656.5 668.5 1.3211 
1651.3 664.3 1.3211 
1649.0 662.4 1.3211 
1652.8 665.5 1.3211 
1662.8 673.6 1.3211 
1678.3 686.2 1.3211 
1687.5 693.8 1.3211 

1606.0 615.5 1.3309 

1617.3 624.2 1.3309 

1630.5 634·4 1.3309 

1901.4 880.0 1.3046 

1878.8 859.1 1. 304-6 

1859·4 841.2 1. 304-6 

1668.7 677-9 1.3211 

1663.5 674-1 1.3211 

1661.1 672.1 1.3211 

1664.8 675o1 1.3211 

1674·7 683.1 1.3211 

1690.2 696.0 1.3211 

1699.5 703·4 1.3211 

1710.0 713.0 1.3211 

1724.0 723.1 1.3211 

1641.0 642.4 1.3309 

1883.8 863.7 1. 304-6 

1864.6 845o9 1.3046 

1858.7 841o0 1.3046 

1855.8 838.4 1.3046 

1859.4 841.5 1.3046 

1869.0 850.3 1. 304-6 

1884.2 864.0 1.3046 

1893·4 872.6 1.3046 



STATE 
I - :n: 

35-41 
-41' 
-42 

36-34 
-35 
-36 
-37 
-38 
-39 
-40 
-41 
-42 
-42' 

37-35 
-36 
-37 
-38 
-39 
-40 
-41 
-42 

38-36 
-37 
-38 
-39 
-40 
-41 
-42 

39-39 
-40 
-41 
-42 

40-40 
-41 
-42 

p 

14.382 

15.336 

11.788 
11.541 
11.421 
11.622 
12.174 
13.080 
13.653 
14.430 

15.340 

11.405 
11.284 
11.481 
12.025 
12.925 
13.500 
14.266 
15.168 

11.300 
11.473 
12.014 
12.907 
13.474 
14.242 
15.143 

11.492 
12.880 
13.909 
14.802 

11.932 
12.867 
13.703 

14 7 

u a T y 

168.5 
1904.4 882.8 1. 304-6 
1710.3 712.3 1.3211 

82.9 1722.9 722.3 1.3211 

472.4 1865.9 847.4 1.304-6 

498.8 1860.7 842.8 1.3046 

511.6 1858.3 840.5 1.3046 
486.1 1862.0 843.9 1.3046 

420.2 1871.7 852.7 1. 304-6 
315.8 1887.0 866.7 1.3046 
253.1 1896.2 875.2 1. 304-6 
170.6 1907.1 885.3 1. 304-6 

75.8 
1919.4 896.8 1. 304-6 
1721.0 721.4 1.3211 

478.9 1859.1 841.3 1.304.6 

492.3 1856.6 839.6 1.3046 

466.9 1860.3 843.0 1.304.6 

401.1 1870.2 852.0 1.3046 

298.0 1886.0 866.3 1.304.6 

235·5 1895.2 875.0 1.304.6 

153.2 1906.5 885.4 1.304.6 

59.2 1920.0 897.6 1.3046 

487.1 1858.1 840.4 1.3046 

465.3 1861.7 843.6 1.30+6 

401.1 1871.7 852.8 1. 304-6 

296.7 1887.4 867.1 1. 304.6 

234.6 1897.0 875.8 1. 304.6 

152.8 1909.0 887.0 1.304.6 

57.9 1910.6 888.6 1.304.6 

396.9 1861.7 843.1 1.304-6 

232.5 1887.7 866.5 1. 304-6 

119.6 1903.5 882.0 1. 304.6 

25.6 1917.3 893.9 1.3046 

116.7 1869.9 851.1 1. 304-6 

6.9 1886.4 866.2 1.3046 

-86.9 1900.2 878.9 1.3046 



STATE 
I - :n: 

41-41 
-42 

42-42 

p 

12.790 
13.613 

u 

-2.3 
-95.1 

-46.2 
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a 

1883.7 
1896.2 

T 

863.7 
875.3 

881.7 

y 
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6. Specimen Calculations 

6. 1. Calculation of the cylinder gas release temperature 

Cylinder release pressure Pr = 40. 322 ps2a. 

Cylinder release volume = 0.02121 cu.ft. 

Cylinder trapped volume = 0.02109 cu.ft. 

From the indicator record, the cylinder pressure at 

air port closure = l4o37 psia. 

The measured air mass flow = 0.93804 lb/min. 

Hence, assuming that no air is short circuited, then: 

eight of air in cylinder = 

= 

0.93804 
1110.5 

From the characteristic gas equation:-

Volume of air in cylinder at air port closure 

= 
8.447 X 10-4 

X 96 X 292.7 
144 X 14.37 

= 0,0114? cu.ft. 

Thus the volume occupied by the residual exhaust Bas 

= trapped volume - volume of air 

= 0.02109 - 0.01147 

= 0.00962 cu,ft. 

The release temperature is obtained by an iteration 

process to obtain a mass balance, and the last step of 

this process is given below. 

Assume the temperature of the residual exhaust gas 

at air port closure to be 888 °K. 
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From Section 4.1, R for the exhaust gas = 97.80 ft.lb/lb.°C. 

Hence, from the characteristic �as equation, 

weight of residual gas in the 

= 

= 

144 X 14.37 X 0.00962 
97.80 X 888 

2o2921 X 10-4 lb. 

cylinder 

The measured fuel consumption = 0. 05068 lb/min., 

thus the weight of fuel injected per cycle = 0.05068 
1110.5 

= 0.4564 X 10-4 lb. 

Hence, the total weight of the cylinder contents at exhaust 

port opening 

= (8.4470 + 2.2921 + 0. 4564) X 10-4 lb. 

Y-1 
Now T release = T residuals (p release )-y­p residuals 

= 11.196 X 10-4 lb. 

Based on the previous step, the mean y = 1. 2954, 

thus T release 

.2954 
= 888 (40.322)1.2954 

14.37 

= 1125 °K. 

Using this temperature, and the characteristic gas 

equation gives: 

weight of cylinder contents at release 

= 
144 X 40. 322 X 0.2121 

9'/ • 80 X 1125 

= 11. 193 X 10-4 lb. 

This value compares with that obtained above and 

therefore the release temperature is 1125 °K. 
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6.2. Temperature in the exhaust pipe adjacent to the 

ports at the beginning of blowdown. 

The temperature existing in the exhaust pipe at the 

commencement of blowdown is the downstream temperature 

at the major temperature discontinuity. This temperature 

is determined by considering the heat loss from the gases 

during the period in which the exhaust ports are closed. 

Assuming that the gases existing adjacent to the 

ports at the instant of port closure have just been 

ejected from the cylinder, and that the pressure there 

is P0 = 14.322 psia., then their temperature, and the 

datum value a0, are obtained by considering an isentropic 

expansion of the cylinder contents from the release 

conditions to the datum pressure P0• The initial 

evaluation of these values requires the use of an iteration 

process using a mean value of y for the expansion. If, 

however, an isentropic step by step analysis of the 

cylinder expansion is performed, then the accui'ate values 

for the temperature and a0 are obtained. 

From the isentropic step by step analysis, the 

temperature of the cylinder gases at the end of blowdown 

is 888.2 °K. (and a = l910o2 ft/sec). 
0 

The exhaust ports are closed for 262° of crank angle. 

Hence the time for which the ports are closed 

= 

= 

262 X 15.008 X 10-5 

3.932 x 10-2 
secs. 
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Assuming the mean temperature of the gas in the 

pipe during this time is 805 °K, then from Fig. 31, the 
3 rate of heat transfer is 46,014 ft.lb/ft .sec. 

Thus the loss of energy by the gases in this period 

= 46,014 X 3.932 X 10-2 

= 1809 ft.lb./ft. 

and this can be equated to p Cp � T. 

p The density of the exhaust gas p = RT 

3 

= 144 X 14.322 
<)7:80 X 805 

= 0.02620 lb/ft.3 

The value for Cp' at the temperature of 805 °K, 

is evaluated from gas tables and the exhaust gas 

analysis, and its value is 0.3015. 
1809 0.0262 Hence' � T = 1400 x o. 3015 

This gives a mean temperature of 806 °K. which 

compares with the assumed value of 805 °K. 

�hus the temperature in the pipe at the instant 

of exhaust port opening = 888.2 - 163.6 

= 724.6 °K. 
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6. 3. Cylinder step calculation. 

Consider the boundary region r15rr13, which occurs 

within the blowdown period. 

The initial cylinder parameters for this step are:-

Pressure (Pl) = 24.778 psia. 

Volume (V e) = 38o883 cu.in. 

Temperature (Te) = 1008.1 OK 

Density (pe) = 0.036194 lb/ft3 

Local acoustic velocity (a ) = 2018.4 ft/sec. e 
Mass (me) = 8ol4409 X 10-4 lb. 

Ratio of specific heats (ye) = 1.2948 

From experience, it is possible to reduce the number 

of iteration steps by 'guessing' the slope of the reflected 

wave which completes the field boundary of region r15rr13, 

and the first approximation to A pl. 

Using a 'guessed' slope in the position diagram gives 

the following: 

initial crank angle for step = 38.70° before B.D.CE.P 

final " 11 " " = 37.09° " " 

mean " " " " (a. ) 37.895° " " = m 
chan§:e of 11 " 11 11 (6a.) = 1.61° " " 

Using the above values of crank angle for the step: -

from Fig.25: 

final cylinder volume = 39.244 cu.in. 

mean " " " (V em) = 39.C63 cu.in. 

change of " " (A V e) = 0.361 cu.in. 
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from Figs. 26 and 27: 

port area for the exhaust ports mean pipe area = 

mean hydraulic radius (r) for exhaust ports = Ool06l in. 

Taking 11P1 for the step as -2.910 psi. gives the 

mean P1 = 23.323 psia, and from equations (3o8-l1), 

(3 .8-12) and (3. 8-13), the values of 11 Te, b. Pe, 11 ae are 

found, thus giving: 

mean Te for the step = 993o8 °K 

mean Pe for the step = 0.034450 lb/ft3 

mean ae for the step = 2004.1 ft/sec. 

At the mean temperature of the exhaust gases 

(993.8°K), from Figs.29 and 30:-
= lo2958 

= 0.0413 centipoises 

Modified Reynolds number (R ) = a r P which on m J.L 
substitution of the above mean values gives: 

� for step = 

An approximate value for the pressure ratio across the 
p 

ports pl is obtained by using the pipe pressure for 
2 

the previous cylinder step, 

= 23.323 
20.021 

= 1.165 
p

l Using the above value for �' and this value of p 
2 

p for the ratio p in Fig.28, determines the coefficient 
0 



of discharge:as:-

Henc e , k for the step 
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= port area 
x 0 pipe area d 

= 0. 374 X .999 

0. 374 

Transfer of state point from state diagram to boundary 

diagram. 

The previous state point lying on the n13 

characteristic is I14rr13 (or 14 . 13 ) . 

Now in this pipe region , y = 1 .3�6 and for region 

14ol3 ,  X = 1.03988 . 

Henc e using the index marks ' and 11 for y = 1.3 
and y = 1.4 respectively ,  then the values of X for th e 

inferred states 14 . 131 and 14 .13" in the state diagram are:­

X' = 1.03941 

X" = 1 . 04902 

The values of (a0s2 )1," for the pipe region 14.13'," 

are calculated using equation (3.4 -7) and the appropriate 

initial values of (a052 )',"• The initial values of (a052 )'
,

" 

are identical with the (a 1 )' , " values obtained by os 
expanding the cylinder gases to the datum pr essur e P 0 
according to the appropri�te indic es for y = 1 . 3  and 



a'
osl 

= initial 

" a osl = initial 

a' 
os2 

a
" 

os2 
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= 

= 
1894.6 ft/sec. 

1841.7 ft/sec. 

Hence using equation (3.4-7), for region 14.13 

I a os2 
" a os2 

= 

= 

1893.8 ft/sec. 

1840.7 ft/sec. 

The slopes of the characteristics in the state 

diagram through the state points 14ol3'," are given by 

equation (3.8-17), viz: 

b.X I " 

(� '
= (Y-l 

2 

a 
__ o_)' " 

aos2 ' 

Substitution of the appropriate values for y and 

a0s2' and the value of a
0 

= 1910.2 ft/sec., sives: 

(�)' 
b.U 

= 0.1513 

and 
(� �) 11 

= 0.2076 

The intercepts on the ordinate axis of these 

characteristics drawn in the state diagram are:-

= 1.00077 

11 
= 0.98800 

The intercept of these characteristics with the 

ordinate axis in the appropriate boundary diagrams are 

given by equation (3.8-20). 



Now 

and 

[ Y=l] t (�) 2y 

[ Y=l] " P0 2y 
(-) 

pl . 

= 

= 
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..!.2.. 
(14. 322) 2.6 0.94529 = 23.323 

1 
7 

(14. 322) = 0.93271 23.323 

Hence, in the boundary diagrams, the intercepts are:-

= 1.00077 X 0.94529 = 0.94602 

= 0.98800 X 0.93271 = 0.92152 

The slopes of these characteristics in the boundary 

diagrams are given by equation (3o8-19)' i.e. 

x-1 

p 2y 
6(_g) 

pl Q:..2 X 1894 o 6 0.1501 = = 

u 2 1893 o 8 
6(_g) 

al 
x-1 " 

p 2y 
6(_g) 

pl �X 1841.7 o. 2001 = = 

u 2 1840.7 
�(_g) a

l 

The interception of these characteristics, plotted 

in the appropriate boundary diaBrams, with the k = 0.374 

line sives:-
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M I = 0.2020; [ (��) 12�1 J I = 0. 98110; 

[ p Y.::lJ tt 

M" = 0.2027; Cp�) 2Y = 0. 97062; 
u2 " (- ) i = 0.2463 al 

Hence the extrapolated value of M for Y=l.2958 is 0.2027 

Mass flow out of cylinder (� me) = M a1 p1 A2 � t 

= 

-6 
l �a. X 10 

= 3.0953 X 2004.1 X 0.03445 

X 0.2027 X 1.61 X 10-6 

0.69501 X 10-4 lb. 

Thus the mean mass in the cylinder =(8.14409 - •6950l�lo-4 lb. 2 

Hence, from equation (3.8-10): 

\:1 = -1.2958 (309?�\ 

= -1.2958 X 0.09838 

+ 

= 7o79659 X 10-4 lb. 

0.69501) 7·79659 

therefore, � P1 = -23.323 x 1.2958 x 0.09838 

= -2.973 psi. 

Hence the new approximate mean values for the step are: 



= 

= 

= 

23o291 psiao 

993.6 °K 

0.034497 lb/ft3 

2003.8 ft/sec. 

1·5'9 

Approximate state of region 15.13. 

[< P2 
x
2:}] 

t , 11 [ y-l Y-1 

J (-) 1 P2 2y pl 2"( 
= (- ) ( ) PO pl PO 

and 

= 

I If 
' 

Substituting in the above expressi ons gives: 

X' = 

X"" = 

-
U' = 

-
U" = 

Oo98ll0 X 1.05788 = 1.03789 

0�97062 X 1.07215 = 1.()4.065 

1894.6 0.2360 X 1910•2 X 1.05788 = 

184lo7 0.2463 X 1910 •2 X 1.07215 = 

0.2476 

0.2546 

InterpolatinB for the value of y = 1.3�6 for 

the p ipe, gives the state of the resion 15.13 as:-

X 

u 

= 

= 

l. 03802 

0.2479 

Using these state parameters, trefield boundaries 

to region 15.13 can be redrawn, us ing equation (3.5-5), 

if the 'guessed' boundary lines are found to be incorrect. 



The approximate state point (15.13) is also 

plotted on the state diagram and the states (15.13)'," 

inferred, from which new ordinate intercepts are found. 

The new mean crank angle for the step (if different 

from that already selected ), is used with the new mean 

state parameters for the cylinder, and the calculation 

repeated until satisfactory convergence for the value 

� P1 is obtained. 

The correction of region 15ol3 for the irreversibility 

occurring in the pipe flow is next applied. To apply this 

cor-rection, the regions (14.13)'," are transferred to the 

boundary diagrams in a similar manner to that already 

described, and lines are drawn of slopes Biven by equation 

(3.8-23) to intersect the appropriate k line. These 

intersections give the new values for all the parameters. 

The new values obtained from the boundary diasrams 

are now used to repeat the whole iteration procedure. 
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6.4. Solution of a region containing a temperature 

discontinuity. 

Consider region r13 n13 (or 13.13), through which 

the major temperature discontinuity passes. 

The adjacent regions on the tempe rature discontinuity 

and the rightward and leftward moving waves are 12.12',w, 

13. 12 and 12.13 respectively and the state parameters 

for these regions are known from previous calculations. 

The state of region 13.13 is first determined 

assuming isentropic conditions to apply. 

For the rightward moving wave r13, 

a08 (for region 13.12) = 1909.90 ft./sec. 

2 aos and the slope of the r13 characteristic = 
y-l ao 

2 = 
1.3046-1 

= 6 . 5659 

For the leftward moving wave li1� 

a08 (for region 12.13) = 1723.98 ft./sec. 

2 
and the slope of the n13 characteristic = 

1•3211_1 

= 5.6214 

1909.9 
1910.2 

Substituting these slopes, together with the appropriate 

state parameters for regions 13.12 and 12.13 in equation 

(3.5-16) gives: 
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u - 0. 2527 = -6. 5659 (X - 1.03849) 
-

U - 0. 2076 = +5.6214 (X - 1. 03844) 

Solving these equations for region 13,13 gives: 

IT 

X 

Hence, u 

p 

= 

= 

= 

= 

0.2286 

1. 04-217 

436.7 ft./sec. 

20.260 psi a. 

a' = 1990.8 ft./sec.; a" = 1796.7 ft./sec. 

T I = 964 0 7 ° K • ; T 11 = 7 86 0 0 ° K 

These results are used to draw in the approxim�te 

particle path, and the approximo.te field boundaries which 

complete the re�ion 13.13, usin� equations (3.5-6) 

and (3.5-5) respectively. 

The v alue of a
0s 

and the state parameters U and. X 

for region 13. 13 are also determined using the above 

result.s to obtain the appropriate mean values for 

substitution in equations (3.4-7) and (3.5-15). 

Determination of a�!" for region 13.13', " 

The particle on either side of the temperature 

discontinuity and arriving in region 13.13',", have come 

from region 12.12', "· Hence, the initial values for a
0s 

and T for the path line are those of region 12.12',". 
os 

For the particle path from l2ol2' to 13.13', the 

initial a
05 = 1907.40 ft./sec., the initial T

05 = 885. 59 °K, 
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and the mean state parameters are: 

u = 419.4 ft. /sec. 

T = 959.6 °K 

P = 19 . 940 psia. 

p Y-1 

Also (_g) Y 
PO 

= 1. 08199. 

124 a r P 
J.L 

= 
u p 

251 . 06  T J.L and from Fig . 30, 

J.L = 0.0402 c entipoises which on substitution gives 

Henc e, from Figs. 31 and 32 respectively, 

q = 

f = 

3 
87510 ft.lb./ft. sec. 

0.02128 

The 6. t path, measured in the position diagram, is 

1 . 89101 x 10
-4 

secs. , and its substitution, together 

with the other variabl es in equation (3 .4-7) gives: 

2aos 
= 

1aos 

= 

2Tos Also, 
lTos 

1 
1.2046 

+ 2 

0. 999377 

a 
2 2 os 

= 

laos 

(1 . 7402 - 23. 6309) 1. 89101 X 10-4 

1 = 0. 998755 

Therefore, 2aos = 1906. 22 ft./sec . 

= 
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Proceeding in a similar mann er for the particle 

path from 12 . 12" to 13 . 13" gives: 

= 1723 . 81 ft . / s e c . 

= 

Det erminat i on of U and X for region 13 . 13.  

For the r13 wave , the mean a0s b etween regions 

13 . 12 and 13 . 13' is  1908.21 ft ./sec . 

Thus the s l ope of the charac teristic 

The mean state parameters are:-

u = 459 . 7 ft . / s e c .  

p = 20 . 027 psia . 

a. = 1987 . 3 ft ./se c . 

T = 961 . 3  °K. 

Henc e ,  J..l. = 0 . 0402 

Rm 
= 59,810 

1 og 10 � = 4·7768 

giving f = o. 0209 

q = 88,660 ft . 1bo/ft . 

2 
= 

Y-1 

= 6 . 5590 

3 sec . 

The wave time D. t ,  measured in the position diagram 

is 1 . 54282 x 1 0-4 secs . 

Substitut ing the ab ove values in equation (3 . 5-15) 

(6 '01: = -6 . 5590 (Ll X\ - (15 . 282 + 14 . 12 5 )  1 · 5428 X 

1910 . 2  

= -6 . 5590 (LlX>r - 23 . 75 X 10 -4 

g ives:-

1 0-4 
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Similarly, for the !13 wave, 

2 aos mean 
Y-1 a0 

= 5.62 1 1  

and (� u� = + 5 . 6211 (� x�- 6.16 x 10-4 

Substitution of the appropriate values for U and X 

for regions 13 . 12 and 12. 13 in the above gives 

U - 0.2 527 = -6.5590 (X - 1.03849) - 23 . 75 X 10-4 

U - 0.2076 = +5 . 6211 (X - 1.03844) - 6.16 X 10-4 

-
Hence, solving for X and U gives:-

X = 1 .  04-203 

u = 0.2271 

from which the following state parameters are obtained:-

P' = 20.378 psia.; pn = 20.097 psia. 

p = 20 . 237 psia. 

u = 433 . 8 ft./sec. 

a' = 1986 . 3  ft./sec.; an = 1796 . 3 ft./sec. 

T' = 960 .4 OK . . ' T" = 785 . 6  oK. 

These results completely define the state of 

region 13 . 1 3' , " . 
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166 

When inflow occurs at the open end of the exhaust 

pipe, the equations to be satisfied are:-

(!J. U)I 

and 

= 

2 = -
Y-1 

1 + y 
(y-1) 

2 

Consider region 20.42 at the pipe open end. 

(3o5-15) 

(3.8-16) 

From previous calculation, the state of 20o41, which 

is the preceeding region on the rightward moving wave r20, 

is known. The change in a0s2, together with the correction 

term (!J. Uf+q)I' between regions 20o41 and 20.42 can be 

obtained in a similar manner to that outlined in Section 6.4. 

Vfuence, the change of state between regions 20.41 and 

20.42 is defined by:-

( -) 2 1455.63 ( -) ll U I = - 1.3487-1 • 1910.2 !J. X 
I 

- 0.00034 

For a first approximation to the solution of this 

equation, the unknown pressure in the region of the open 

end (20.42) is assumed to be atmospheric. Hence, 

substituting x20•42 = 1, and inserting the appropriate 

values for region 20.41, this equation becomes:-
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u - 0.0341 = - 4·3707 (1.000 - 0. 9910) - 0.00034 

i.e. U = - 0. 00558 

-
u

2 Inserting this value of U(= --) in equation ao 
(3. 8-16) gives: 

1 + 

= 1.0000 

( 1 )2 - 1. 3487-1 
0.00558 2 

In this case, no further calculation is necessary, 

and the final valu e of pressure and particle velocity 

for region 20. 42 at the open end of the pipe is: 

= 14.322 psia. 

u2 
= -10. 66 ft/sec. 

p Y-1 

When the value of (_Q) 2Y differs from the initial p
2 

value assumed (i.e. atmospheric), then the final solution 

is obtained by an iteration process. 
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79 Discussion of Results 

7.1. Air consumption trials. 

The results of the air consumption trials carr i ed 

out with varying lengths of exhaust pipe, are shown 

plotted in dimensionless form in Figs� 33 and 34. 

The scaveng ing in a naturally aspirated engine 

is effected by utilization of the wave effe cts in the 

exhaust pipe, and thus the criterion for dynamical 

similarity, termed 'the natural pipe length', is n L, 
a 

where n, L and a denote th e engine speed, exhaust pipe 

length, and mean local acousti c  veloc ity in the exhaust 

pipe, respectively . The scale for the abscissae in 

Figs.33 and 34 is actually 60(n L) since rpm. was a 

substitut ed for n when evaluating this group. 

The ordinat e axis represents the dimensionless 

V air group of V cyl! where V air is the volume of air 

aspirated per cyc le at ambient conditions, and V cyl. 

is the effective cylinder volume at air port c losure, 

i.eo 'trapped' volume. 

Operating the engine at a constant air-fue l ratio 

implies that the temperature of the exhaust gases l e aving 

the cylinder will be sensibly constant. Thus, for any 

given running condition, the volumetric effic iency will 

primarily be a funct ion of engine spe ed. Henc e, for 

stable bre athing, i.e. speed stability, the curve 

n L 
re lating dimensionless air flow and requires to be a 
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of negative sl ope. Ideally, therefore, the charact eristic 

curve r equired t o  successfully operate a naturally 

aspirated two-stroke cycle engine, is one which has a 

const ant negative slope for it s operating speed range. 

The plot ted results of the air trials do, in general, 

lie on negative slope curves, although for s ome pipe 

lengths, running was achieved on the unstable portion of 

the curves. This can only be ascribed t o  small inflexions 

in the curve s  at these isolated running conditions . 

The n L 
group does not fully account f or the eff ect a 

of gas particle velocity on the time taken for a wave t o  

travel from the engine ports t o  the pipe open end, and back 

again. The engine spe ed, n, is directly proportional t o  

the mean propagation time for a wave, but the mean exhaust 

gas acoustic velocity is not. 

The lower particle velocities ass ociat ed with a 

smaller air mass flow causes an earlier return of th e 

scavenging pulse, and t o  maintain a constant scavenging 

efficiency, i.e. the present ation of the same port 

configuration to the rarefaction pulse, requires a 

reduction in engine spe ed. Hence, for example, the peaks 

for the diff ering values of dimensionless air flow 

obtained with different pipe lengths should lie on a 

line of positive slope, and not in a vertical line . This 

slope of the peak values can be s een in Figs.33 and 34, 

the maxima around n
a

L 
= 5 exhibiting this behaviour 

clearly. 
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The chain dott ed line superimposed on Figs . 33 

and 34 is the curye obtained from the pr evious simulat ed 

work . n L Above a value of -a- = 3 .5, which is the region of 

operation in which the scavenging is performed by the 

primary rarefac tion pulse , the trend compares with the 

firing engine results , although the amp litudes of the 

lat t er vary cons iderably . The unique simulat ed result 

curve was , however , obtained by us ing a cons tant cylinder 

release pr essure , a condition which is not constant in 

the operat ion of the firing engine . 

The amplitude of the s cavenge pul s e  is affected by 

the irrevers ibi l ities and the t emperature disc ontinuitie s , 

and their c ombined effect wil l  vary with diff er ent pipe 

lengths. For the same valu es of 
n L, therefore , the air a 

mass flow ,  and thus the cylinder rel ease pr es sur e wi ll 

vary and a un ique line wil l  not be obtainab l e . 

n L For the curves in the region below a value of --- = 3 . 5 , a 

no marked general trend can be s een. This region of 

operation is that in which , during the time the exhaus t  

ports are open , the pr es sure waves travers e the exhaust 

pipe s everal t ime s , the scavenging be ing the result of 

the cumulative effect of the various wave trains . Thus 

no marked general trend can be expected with a firing 

engine when such a complex wave action is  involved . 

Induction pipes of the corr ect length to provid e 

a ramming pul s e  just be fore the air por t s  close  would 
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improve the air mass flow , and preliminary experimentation 

was carried out using a limited range of induction pipe 

lengths. Although dimensionless air flows greater than 

lOO were obtained, the air flow curves exhibited pronounced 

peaks similar to those for the engine without induction 

pipes. Hence, investigation of induction pipe ramminB 

was suspended until work with the more stab� exhaust 

pipe-diffuser configuration had been carried out. 
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7.2. Indicated trial. 

The measured exhaust gas temperature in the exhaust 

pipe is shown plotted in Fig.37. A calculation based on 

the mass discharge per cycle and the mean temperatures 

for the appropriate sections of the exhaust pipe, indicates 

that two successive temperature discontinuities should 

exist at approximately 20 inches and 37 inches from the 

engine ports. The inflexion of the plotted curve at 

approximately 20 inches from the ports indicates that this 

discontinuity still exists, although very much attenuated 

by mixing and diffusion. The next, and succtssive 

discontinuities, however, are not at all apparent. This 

indicates that a temperature discontinuity has decayed 

considerably by the time one engine cycle is completed, 

and that after this time, no measUI·able temperature 

interface exists. 

In the theoretical analysis,therefore, all reflections 

at the temperature discontinuity formed at the commencement 

of blowdown are fully considered for the first 55° of 

crank angle from exhaust port opening. After this time, 

the approximate procedure, as outlined later, is used. 

Solution of the exhaust gas flow equations allowing 

for the measured temperature gradient, would involve 

assuming a small temperature interface to exist in each 

region used in the construction of the characteristic net 

along the first wave r2, Fig.38. The resulting increase 
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in computation time would be prohibitive, see comments 

later regarding time for calculation. Hence to 

facilitate the pipe flow analysis, a coarse stepped tempe­

rature profile is assumed, the second and third steps 

approximately coinciding with the position of the 

decayed temperature discontinuities created by the two 

previous engine cycles. The first step, however, is 

inserted to divide the large temperature drop in this 

region into two smaller ones. Consideration of these 

temperature steps in the theoretical analysis can be 

regarded as summations of the changes occurring in the 

regions between them, and the result of this is to alter 

the timing of the effect of the temperature gradient on 

the diffusion waves promoted by friction and heat transfer 

effects back towards the ports. 

The predominant effect of the main temperature 

discontinuity results in an increase of 0.538 psi. in the 

calculated value of the initial pressure pulse amplitude 

as compared with the isentropic analysis, whereas the 

subsequent temperature steps along the pipe only produce 

a pressure rise of approximately 0.09 psi. in the peak 

value. Thus the effects of mistiming are very small. 

The temperature in the exhaust pipe in the region 

of the cylinder ports would be very severely effected, and 

the theoretical evaluation of the flow process very much 

complicated, if air was short circuited. This would 
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es tablish a 'plug' of cold air in the pipe jus t out side 

the ports and the effect of the large temperature 

discontinuity s o  formed would be considerable . It is 

considered unlikely that a uniflow engine running with 

a volumetric efficiency as low as 54% w ould experience 

any short circuiting of air. To c onfirm this, however, a 

plot of volumetric e fficiency against t orque was made 

for all the air consumption trials. Over 95% o f  the 

result s, including that of the indicat ed trial, lay 

within a straight narrow band, and since a very wide 

range of operating conditions were covered, it was 

assumed that, in general, no short circuiting occurred. 

The few result s which did not come within this linear 

band were displaced t owards the volumetric efficiency 

axis, indicating that for the s e  is olated cases short 

circuiting did occur . 

The evaluation of the regions containing the 

temperature discontinuity was not perf ormed using the 

theory as developed in Secti on 3.7 (c ), instead a modified 

calculation as shown in Section 6.3 was used . Tnis 

simplified analysis result s in a difference in pres sure 

on either side of the discontinuity, and the mean of 

these two value s is taken. 

The simplified treatment, however, considerably 

reduce s  the time of calculation, and since it introduced 

a maximum artificial press ure difference of only 1� ;o 
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across the interface, which is within the measuring 

accuracy of the pressure transducers used, then its 

use was considered to be justified. 

Calculation of the cylinder boundary regions 

were performed in the manner described in Section 3.8(d). 

Vfuen using the slope equation for the transferred 

characteristic allowing for irreversibility in the pipe, 

-

equation (3.8-23), however, the term involving� u
f +q 

was found to be only of the order of 1% of the value of 

the other term, and hence it was neglected. Further, the 

'shift' of the boundary state point obtained by applying 

this equation was very small, and ap plication of the 

correction was discarded after blowdown was completed. 

These simplifications make for a considerable reduction 

in the calculation time at the cylinder boundary. 

The interpolation of the cylinder boundary conditions 

from the Y=l.3 and Y=l.4 diagrams, and t he adoption of the 

simplified analysis for the temperature discontinuities, 

gives results which compare extremely well with the 

indicated records for both the cylinder and exhaust pipe, 

see Figs. 39 and 40. These show that the amplitude and 

timing of the pressure and rarefaction waves given by 

the irreversible flow analysis are in good agreement with 

the recorded traces, whereas, the isentropic analysis is 

in error. 

The major temperature discontinuity increases the 
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peak o£ the blowdown pressure pulse by 0.583 psi. as 

compared with the isentropic value. The overall decay 

of this pulse for the 50 inches of pipe from the major 

temperature discontinuity to the point at which it 

meets the returning rarefaction wave is 0.368 psi. 

The larger amplitude pressur·e pulse arising in the 

non-isentropic flow analysis, on arriving at the open 

end, will give a reflected rarefaction trough which is 

more intense. This is, however, attenuated by the 

irreversibilities and the main temperature discontinuity. 

The net effect is that the irreversible flow theoretical 

rarefaction wave amplitude is comparable with the 

isentropic flow value.at·the 41 inch indicating point in 

the exhaust pipe, but the a�tenuation at the main 

temperature discontinuity produces an amplitude comparable 

with that recorded at the ll inch indicating point. 

The steep rise in pressure following the rarefaction 

wave at the indicating point ll inches from the ports, 

as given by the irreversible flow theoretical analysis, 

is exaggerated through not using the full reflection 

treatment for the temperature discontinuity in this region. 

From the position diagram, Fig.38, it can be seen that if 

all the reflections from the temperature discontinuity 

had been considered, then the time taken for the pressure 

to rise from the lowest value to the atmospheric value 

would be increased, with a consequent lessening of the rate 
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of pressure rise. 

Poor correlation is obtained for the pressures 

occurring in the region of the pipe open end after the 

passage of the pressure pulse, see Fig.38. The pressure 

changes are very rapid and oscillatory in nature and 

hence reduction of the lozenge size in this region of 

the position diagram would improve the accuracy of the 

analysis. Also, the oscillatory nature of the pressure 

fluctuations combined with the effect of the passage 

length _between the transducer diaphragm and the pipe will 

be to produce distortion of the recorded pressure trace, 

this combined with the lozenge size resulting in the poor 

correlation shown. 

The volumetric efficiency, based on ambient conditions, 

gives a value of 60.8% for the isentropic analysis as 

compared with the measured value of 53.4%. The irreversible 

flow analysis was not completed, but at the end of the 

last cylinder step calculated, i.e. 30% after B.D. C. 

exhaust piston, the mass of air then present represents a 

volumetric efficiency of 57.5%. It is not possible to 

estimate the air content of the cylinder at the time of 

exhaust port closure, without completing the analysis, but 

in the period between this latter event and air port 

closure, some air is pushed out of the cylinder by the 

movement of the pistons. Hence the final theoretical 

result would almost certainly be less than 57.5% and 
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probably less than the measured value due to the early 

arrival of the positive pressure pulse following the 

rarefaction wave, see the theoretical and recorded 

pressure traces at 11 inches from the ports, Fig.38. 

The maximum particle velocity in both the isentropic 

and irreversible flow analyses occurs at the pipe open end, 

the velocities being 1 000 ft/sec. and 76 2  ft/sec. in the 

regions 16 :n:6 and 114 :n:36, respectively, see Fig.36 and 

the table of results. For both analyses, the pressure 

associated with these regions is atmospheric, substantiating 

the communicationson the published simulated work that a 

velocity squared diagram could be of great assistance in 

interpreting pressure diagrams as pressure and particle 

velocity could not be correlated directly. 

The computation time involved in performing the 

irreversible flow analysis is considerable, the time taken 

to produce Fig.38 and the associated table of results being 

approximately 16 00 hours. The approximate average times 

to perform the different types of calculation involved 

were:- 1 hour for a region in the pipe; l� to 2 hours 

for a region containing a temperature discontinuity; 

4 hours for a cylinder boundary region. In comparison, 

the isentropic analysis for a comparable period of crank 

angle took approximatel;y 200 hours. 

The allowance for the variation of specific heats 

with temperature in the cylinder calculations increases 
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the step calculation time by approximately 20%. 
Allowance for the y variation, however, is considered 

justified since the accuracy of the result will be 

improved, and its inclusion only increases the 

computation time by approximately 40 hours. 
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8. Conclusions 

1. The good agreement obtained between the irreversible 

�.luid flow analysis and the indicated records for both the 

cylinder and the exhaust pipe shows the physical premises 

of the theory to be correct and sufficient. The use of 

the quasi-steady flow approach, i.e. the use of steady 

flow data for pipe friction, heat transfer, inflow at the 

pipe open end and flow through the c�linder ports, is 

shown to be justified and permissi ble for application, 

instantaneously and locally to the kind of wave motion 
) 

under considerati on. 

2o Accurate results are obtainable by the Method of 

Characteristics using finite increments of from 1 to 4 

degrees of crank angle depending upon the rate of change 

of pressure and/or velocity at the point under consideration. 

During the calculation procedure the choice of the most conve­

nient approach rests with the calculator, and typical 

examples are g iven in the thesis for guidance. 

3. In addition to giving good correlation of the form of 

the pressure changes occurring throughout the cylinder and 

exhaust pipe system, the full theory g ives an assessment 

of the mass flow which is significantly more accurate than 

that given by the earlier and simpler isentropic flow 

theory. This confirms that an accurate result for the 

mass flow, in addition to particle velocity and pressure, 
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is obtained by use of the boundary chart interpolation 

technique developed in this thesis. The technique allows 

for the s pecific heat variation and the flow irreversibilities 

at the cylinder boundary. 

4o Effecting the solution by using a position diagram 

instead of calculated and tabulated ordinates possesses 

the advantage that a clear picture is presented of the 

development of the main wave pattern, the origins of 

secondary waves and reflections, and the history of tm 

motion of gas particles. 

5o In a firing engine, the temperature discontinuities 

produced within the exhaust pipe are very pronounced and 

have a marked influence on the wave motion, and the variation 

of specific heats is significant. These effects are absent 

in a motored engine using simulated release conditions. 

6 

Earlier workers have shown that, in a motored engine, 

the a�r consumption resulting from the wave action was 

uniquely related to the dimensionless group 
nL which they 
a 

termed "the natural pipe length". The present work, however, 

shows clearly that no such relationship exists when the 

engine is firing, and that the results of simulated work 

are of no real practical value. 

?. Since the present work demonstrates that the exhaust 

pipe wave motion and mass flow can be predicted theoretically 

with considerable accuracy for a single cylinder firing 
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engine, future developments will probably be as follows:­

(a) Use of digital computers to remove the tedium and 

slowness of manual computation. 

(b) Steady fl ow or single-pulse exper-iments on pipe 

enlargements, contractions, junctions, and other elements 

of practical exhaust systems. These would provide the 

data necessary for the construction of boundary charts for 

such elements and permit the extension of the present 

treatment to the case of the firing engine with more than 

one cylinder exhausting into a common manifold. 
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9. Appendices 

9.1. Solution of three partial differential equations. 

The fundamental equations defining the flow of a 

fluid in a pipe are those of mass continuity, momentum 

and energy. In order to obtain a general solution of 

these equations, it is convenient to consider three 

partial differential equations in purely mathematical 

terms which will be appropriate to any condition of flow. 

Consider the following three general partial 

differential equations: 

= 0 

= 0 

= 0 (9. 1-1) 

where the coefficients A1, A2, A3, B1, B2, B3, c1, c2, c3, 

D1, n2, n3, E1, E2, E3, F1, F2, F3, G1, G2, G3, are functions 

of v, w, z, x and y, and v, w, and z are functions of the 
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vari ab l e s  x and Y •  

i . e .  V = V ( x , y) 

w = w (x , y) 

z = z (x , y) 

The main ob stacle t o  int egrat ion is that part ial 

derivitives with respect t o  both x and y ar e pre sent . 

To obviate thi s , c onsider any linear combinati on : 

L = 

where 

i . e .  

A l , A 2 and f.. 3 are funct i ons of v ,  w ,  z ,  x and y .  

L = M av + N a v  + p aw 
Q 

aw + R a z  + S a z  + T 
ax a y  a x  

+ 
ay a x  ay 

= 0 (9 . 1-2) 

where : M = A
l ' A

l 
+ A 2 

A
2 

+ A 3 
A

3 

N = A l ' B
l 

+ A 2 B
2 

+ A 3 B
3 

p = A
l ' c

l 
+ A 2 

0
2 

+ A 3 
0

3 

Q = A
l ' D

l 
+ A

2 
D

2 
+ A 3 

D3 

R = A
l ' E

l 
+ A  

2 
E2 + A 3 

E 
3 

s = :\ 
1 ' F

l 
+ A 2 

F
2 

+ A  
3 

F
3 

T = A 
1 ' G

l 
+ A  

2 
G

2 + A  3 
G

3 

The aim now is to adjus t the funct i ons A 
1

, A. 2 , and 

)., 
3 ' so that along s ome part icular line in the x-y plane 

equation ( 9 . 1-2) becomes one relat ing only t otal 

differ ential c oefficients dv , dw , dz , and dx . 
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In moving a short distance from (x, y ) to 

(x + dx, y + dy ) along this line , let v become 

v + dv, w b ecome w + dw, and z become z + dz. 

Then : dv dx ( a w  a v  
�

) = + -
a x  a y  dx 

dw = dx (a w  
a x  

a w  + -
a y  

�
) dx 

dz dx (� a z  
.Qx )  

= + -
a x  a y  dx 

If A l , A 2 , and A 3 can be so chosen that 

can be found along which : 

� 
N = � 

s 
dx 

= 
i p 

= 
R 

i. e. � 
N A 1 Bl + A2 B2 = 
M 

= 
dx 

�- 1 Al + A2 A2 

� � 

A
l Dl + A2 D2 

dx 
= p = 

A
l 

c
l 

+ A 2 c2 

9z 
s '-1 Fl + A2 F2 = 
'R dx Al 

E
l 

+ A 2 E2 

then from equations ( 9 . 1-3 ) and ( 9 . 1-4 )  

M a v  + N av 
ax ay 

P a w  + 
Q 

aw 
a x  ay 

= 

= 

= 

M dv 
dx 

p dw 
dx 

R dz 
dx 

a line 

+ A 3 B3 
+ A 3 A3 

+ A 3 D3 
+ A. 3 D3 

+ A 3 F3 
+ A 3 E3 

Therefore , along such a line, if obtainable, equation 

(9 . 1-2 ) with equation (9 . 1- 5 )  substituted gives : 

(9 . 1-3 ) 

( 9 . 1-4 )  

( 9 o 1-5 ) 
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( 9 . 1-6 ) 

The functions M, P, R and T are algebraic functions 

comprising combinations of the given functions A1 , A2 , A3 , 

C1 , c2 , c3 , E1 , E2 , E3 , and G1 , G2 , G3 , respectively, with 

the unknown functions � 1 , � 2 , and � 3 • 

Construction of the lines . 

Writing � = � for convenience, then from equation 

( 9 . 1-4 ) 

Therefore : 

( 9 . 1-7 ) 
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or: 

Al 

� -
Bl A2 

� -
B2 A3 

�
- B3 

cl 

� -
Dl 02 

� -
D2 c3 11 - n3 = 0 (9.1-8 ) 

El 

�
- Fl E2 11 - F2 E3 fJ - F

3 

The solution of the det erminant (9 . 1-8 )  is of the 

form:-

( 
� 

+ e ) (a �2 - 2 b fJ + c ) = 0 ( 9 . 1-9 ) 

Thus the r equired line along which equat ion ( � . 1-6 ) 
holds has a slope � = fJ which sat i sfies equation (9.1-9)  dx 

b ± )Cb2 - a c )  
i.e. 9x f1l dx = ,�.�I , IT = a (9.1-10) 

If equation (9.1-10) has two real root s ,  then the 

bas ic equations (9.1-1 ) are t ermed hyperbolic and 

charact eristics can exist (see  Class ificat ion of 

Differential Equations at the end of this section ) 

To eliminate the unknown functions �1 , �2 , and A3 , 

from equation (9.1-6 ) ,  
�
1 write -r,- = m1 

and � , = 



1 8 7 

Then from equat i ons (9 . 1-7 ) 

:: ::: : � :: : : :: :: : � :: : : ::: : � :: : � : J 
So lving e quati ons ( 9 . 1-11 ) for m1 and m2 gives : 

(A2 fJ - B2 ) (03 fJ - D3 ) - (A3 fJ - B3
) ( C2 fJ - D2 ) 

ml = (A1 Of'- B1)(c2 :0- D2)-(A2 >0 - B2)(01 >0 - D1 ) 

(A3 
fJ - B3) ( 01 � - Dl ) - (Al fJ - Bl ) (03 � - D3 ) 

m2 = (Al fJ - Bl ) ( C2 fJ - D2 ) - (A2 f> - B2 ) ( 01 f> - Dl ) 

(9 . 1-11 ) 

( 9 . 1 -12 ) 

( 9 . 1-13 ) 

and substitut ing for A l and A 2 in t erms o f  m1 , m2 , and 

A 3 gives : 

Simi larly :  

p = (ml cl + m2 02 + 03 ) A3 

R = (ml El + m2 E2 + E3 ) A3 

T = (ml Gl + m2 G2 + G3 ) A3 

Henc e , e quat ion ( 9 . 1-6 ) becomes : 
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Thus the s l ope of the required line in the x-y plane 

is c ompletely defined by equation ( 9 . 1-8 ) and along this 

l ine dv , dw , dz , and dx are related by equati on ( 9 . 1-14 ) 

with the appropriate substitutions for m1 , m2 , and � 

[ equati ons ( 9 . 1-12 ) ,  ( 9 . 1-13 ) and ( 9 . 1-10) respective ly] 
Claasification o f  differential equati ons . 

If b2 ) a c ,  equati on ( 9 . 1-10) has two real roots and 

the basic e quati ons (9 . 1-1 ) are of the hyperbolic type , 

i . e .  two characteristic curves pass through every point 

of  the physical plan e . 

If b2 = a c , equat i on ( 9 . 1-10) has one real root and 

the equations (9 . 1-1 ) ar e termed parabolic and have no 

great practical si gnificanc e . 

If b2 ( a c ,  e quat ion ( 9 . 1-10) has no real roots and 

the characteristic curves are imaginary . The bas ic 

e quati ons (9 . 1 . -1 ) are then known as ellipt i c .  

Use of the Method of Characteristics requires the 

bas ic equat ions t o  be of the hyperbolic wpe ,  i . e .  with 

two real r o ot s . Then the general form of the resultant 

diagram is as shown in Fig . 41 .  

The I characteristics are based on : 
b + / (b2 - ac) 

�I = a 
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each member of the fam i ly c orresponding t o  a given 

value of the int e grat i on c on s t ant . 

The rr charact er i s t i c s  are bas ed on : 

= b - /cb2 - a c) 
a 

each member of the fam i ly c orresponding t o  a given 

value of t he inte gr at i on const ant . 

n chara c t e ri s t i c s  

I charac t er i s t i c s  

y 

X 
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9 . 2 Solut i on of two part ial di fferent ial equations . 

When the f l ow of a f luid along a pipe is c ons idered 

t o  be i sentropi c ,  the state parameters are compl etely 

de fined by two part ial different ial equat ions (see  

Section 3 . 3 )  

The soluti on of two partial di fferential e quat ions 

of the form : 

_ ( av ) ( av ) ( aw ) Ll = Al ax + Bl ay + 
Cl ax + 

_ (av ) ( av ) (aw ) L2 = A2 ax + B2 ay + 02 ax + 

Dl (�; ) + Gl = 0 

(9. 2-1 ) 

D ( aw ) 2 dy + G2 = 0 

i s  c omple t e ly analogous t o  the method given in Se ction 9 . 1 .  

The fu ll s o lut i on , there fore , will not be repeat ed , and 

only the result will be stated . 

The partial differential equat ions (9 . 2-1 ) can be 

transformed int o t otal differentials al ong two paths in 

the x-y plane , the slope s of which are given by : 

where � = �  dx 

= 0 (9 . 2 . 2 ) 



1 9 1 

The relationship between dv , dw , and dx along 

the se lines in the x-y field i s  given by : 
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9.3. Applicat ion of the Method of Characterist ics 

to isentropic flow . 

The basic equat ions which define t he flow parameters 

for isentropic flow in a pipe of constant cross-sectional 

area are t hose of mass cont inuity ( 3 . 3-l ) and momentum 

( 3.3-7 )  repeated below. 

P a u  
+ 

u £.£ ££ 
a x  a x  + a t  

P U a u  
+ P a u  

+ a2 ££ 
ax a t  ax 

= 0 

= 0 

The general so lut ion of two part ial different ial 

equat i ons of this form is given in Sect ion 9. 2, the 

equat ions t herein being of t he form: 

(3 . 3-l ) 

(3.3-7) 

( 9 . 3-l) 

It is also established in Sect ion 9.2 that the 

par t ial d ifferen tial equations (9.3-l ) can be transformed 

into t otal differentials along two paths, t he slopes of 

which are given by : 

Al f; - Bl A2 f; - B2 
= 0 (9. 3-2 ) 

cl t; - Dl c2 t; 
- D2 

where f; = � dx 
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Compar ison of equat i ons ( 3 . 3 -1 )  and ( 3 . 3-7 ) 

with e quat ions ( 9 . 3-1 )  yi elds the f o l l owing identit ies : 

Al Bl cl Dl Gl 

p 0 u 1 0 

A2 B2 c2 D2 G
2 

pu p a2 0 0 

where v = u ;  w = p ; x = x ;  y = t .  

(9. 3-3 ) 

Subst itut ion of the s e  ident i t i e s  in (9 . 3-2 ) gives 

the r e su l t : 

p fJ p (u fJ - 1 )  

u fJ - 1 

where 91 = 
dt 
dx 

= 0 

Expan s i on of this det erminant g ives : 

which has the fo l l owing root s : 

= u � a (Mach line s )  (9 - 3-4 )  

Equati on (9. 3-4 ) signifies that disturbanc es are 

propagat ed either rightward or leftward with the local 

acou s t ic velocity relative t o  the f luid . Thus the abs olute 
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propagation velocity of a disturbance is the algebraic 

sum of the local acoustic velocity and the particle 

velocity at the point under consideration. 

The general solution obtained in Section 9 . 2  gives 

the differential equations of the Mach lines in terms 

of the state parameters on substitution of the 

identities given by (9 . 3-3) 

From Section 9 . 2 :  
(m1 A1 + A2) dv + (m1 c1 + c2) dw + (m1 G1 + G2 ) dx = 0 (9.3-5 ) 

where m1 = 
B2 - A2 tJ 
Al � - Bl 

(9 . 3-6) 

Substitution of t he values for t he coe fficients given 

by (9 . 3-3) in equation (9 . 3- 6 )  yields the result : 

l - u � 

and equation (9 . 3-5) becomes : 

[ ( 1 - u fl) p + p u � ] du + [ (l - u �) u + a2 ;> ]dp = 0 

Substitution of � dt 
= dx 

l from equation (9. 3-4) = 
+ u - a 

t hen gives: 

(u ! a) du + (a 2: u) a dp = 0 

whicn reduces to : 

du = - a 
+ p d p  ( 9 . 3-7 )  
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Since isentropic conditions are assumed,then : 

2 

and dp 

a -p 
= Po (-- ) Y

-1 ao 

and substituting for p and dp in equation ( 9 . 3-7 ) 

gives the result : 

= 

Y-1 

Hence writing U for (� ) and X for ( p  )
2Y = ao 

P
o 

equation ( 9. 3-8 ) becomes : 

-
(d U ) I , JI 

(9.3-8) 

( 9. 3-9 ) 

This equation completely defines the chanBe in state 

along any characteristic in the x-t or physical plane . 



.... 
, 



having s lope s given by : 

(d�) = 

dU I ,  IT 

- y-1 
+ 2 
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( 9 .4-2 ) 

Each charact eri s t i c  l ine in the s t at e  diagram 

repr e s ents the change of state when following a part i c u l ar 

wave point in the posit i on diagram . 

Thus the pos i t i on diagram consists of l ines which 

are the b oundar ies of r e g i ons wi thin which the state of 

the fluid is repr e s ented by a point in the state diagr am . 

Posit ion Diasram 

t X 

X 

Fig. 42 

Stat e Diagram 

2 

1I 

3 

1 
I 

u 

Consider the posi t i on and state diagrams , Fig . 42 , 

in which the regions 1 and 2 are kn own . The state in 

regi on 3 r e sults from the superimposit ion of the 

rightward moving wave thr ough 1 and the l e ftward 

moving wave through 2 .  The r i ghtward moving wave from 

r e g i on 1 can only change its s t a t e  a l ong a l ine of 
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slope -
(y2l )through point 1 in the stat e diagram . 

Similarly , the leftward moving wave fr om region 2 

can only change its state al ong a line of  slope + 
(y-l ) 

2 
through point 2 in the state diagram . Construction of 

thes e  two characteristics in the state diagram results 

in their inters ection at point 3 ,  which c ompletely 

defines the state in region 3 of the position diagram . 

The wave path boundaries in the position diagram 

between r egions 1 and 3 ,  and regions 2 and 3 can n ow 

b e  constructed , their slopes being given by equation 

(9 .4-1 ) in which the values used for u and a are the 

means between the respective states . 

The position and state diagrams defin ing the 

initiation of the fundamental pul se in an engine 

exhaust pipe ar e shown in Fig . 4 3 • The state 1 . 1  

repres ents the stagnat ion conditions in the pipe 

pri or to discharge from the cy linder commencing and 

is  taken as the origin of the state diagram . This 

implies the use of a
0

, the datum condition , as that 

defin ed by the state of the gas in the exhaust pipe . 

At the instant of port opening , an acoustic wave , 

o b , in the position diagram , is  g enerated in the 

exhaust pipe , the slope of whi ch is given by �� = a
1 

• 

0 

The state of region 2 . 1  is obtain ed from a 

cons iderat ion of the boundary c ondition s  at the engine 

port s . In the state diagram , 2 . 1  lies on a ll 
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t 

1 . 1 

0 �------------------------------------------� 
Plane of 
Bngine por t s  

• 
-

• 
0 

1 . 0 

Po s i t ion D i agr am 

S t a t e  Diagr am 

X 

tr • 

Pl a n e  o f  
Open end 

• 
-

• 
0 
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characteristic of s l ope + (y2l) which pas s e s  through 

the origin lL = 1 .  Similarly , state 3 . 1  can be ao 

obtained which again lie s on the rr1 charact eristic 

of s l ope + 
(y2l )  through the origin 1 . 1 .  

The s l op e  of the pr opagat i on path c d in the 

position di agram can now b e  obtained from equat ion 

( 9 .4-1 )  us ing the mean valu e s  for u and a b e tween the 

stat e s  2 . 1  and 3 . 1 ,  as given by the point Y in the 

state diagram . 

On r eaching the open end of the pipe , the flow 

must sat isfy the local b oundary c ondit i ons , i . e .  the 

pressure in region 2 . 2 is atmospheric ,  and therefore 

lL = 1 .  The change of stat e  between 2 . 1  and 2 . 2 is ao 

along a rightward path and can only take place along 

(y-1 ) the r2 charact eristic of s l ope - 2 through 2 . 1 .  

Therefore state 2 . 2  is locat ed on the abscissa of the 

s t at e  diagram . The s l op e  of the propagat ion path b d  

in the position diagram can now be obtained from 

equation (9 .4-1 ) ,  using the appropriat e mean values 

between the states 2 . 1  and 2 . 2 . 

Proce eding in this manner , the complet e network 

can be c omplet ed ,  and the next few steps in the 

analysis are shown in Fig . 43· 

The value of a0 
in the p ipe is a c onstant for the 

isentropic analysis , hence axe s  of a as ordinate and u 



2 0 1  

as abscissa can be u s ed for the s t at e  diagram . This 

is more c onvenient , s ince the mean v alues of a and u 

b etween two regions can be obtained directly from 

the s t at e  d i agram . 
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9 . 4 .  Graphical Solut ion for Isentropic Fl ow Using 

the Method of Characterist ic s .  

The nature of the charact eristic equat ion s  ( 9 . 3-4 )  

and ( 9 . 3-9 ) necessitates the use of a st ep-by-step 

int e gration in which the pr essure pr ofile is considered 

to be of a st epped form , the accuracy of the result 

depending upon the s t ep durat i on .  From a c onsideration 

of these equations , the solution for a pre s sure wave 

propagated in a pipe can be obt ain ed by the simultaneous 

c onstruction of two di agrams , a position diagram and a 

state diagram . 

The posi t i on di agram has lines or charact eristics 

of position which r epresen t  changes in positi on with 

time of the particular wave point considered . Using 

axes of time as  ordinate an d distance as ab scissa , from 

equat ion ( 9 . 3-4 ) , the slopes of the position lines are 

given by: 

l (dt ) = 

d.x I ,  JI u :t a 

Along any line of position ,  the chan ge of state 

of the fluid is given by equat ion (9 . 3-9 ) , i . e .: 

(d U ) I ,  JI = + 2 -

Y-1 (d X) 
I ,  JI 

( 9 .4-1 )  

Hence , the s t at e  diagram with axe s of X as ordinate 

and U as abscissa gives a network of charact eris t ic lin e s  
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