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Abstract 

Intelligence — the ability to learn, reason and solve problems — is at the forefront of 

behavioural genetic research. Intelligence is highly heritable and predicts important 

educational, occupational and health outcomes better than any other trait. Recent 

genome-wide association studies have successfully identified inherited genome 

sequence differences that account for 20% of the 50% heritability of intelligence. 

These findings open new avenues for research into the causes and consequences of 

intelligence using genome-wide polygenic scores that aggregate the effects of 

thousands of genetic variants. In this Review, we highlight the latest innovations and 

insights from the genetics of intelligence and their applications and implications for 

science and society. 

 

[H1] Introduction 

Life is an intelligence test. During the school years, differences in intelligence are 

largely the reason why some children master the curriculum more readily than other 

children. Differences in school performance predominantly inform prospects for 

further education, which in turn lead to social and economic opportunities such as 

occupation and income. In the world of work, intelligence matters beyond 

educational attainment because it involves the ability to adapt to novel challenges 

and tasks that describe the different levels of complexity of occupations. Intelligence 

also spills over into many aspects of everyday life such as the selection of romantic 

partners and choices about health care1. This is why intelligence — often called 

general cognitive ability2 — predicts educational outcomes3, occupational 

outcomes4,5 and health outcomes6 better than any other trait. It is also the most 
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stable psychological trait, with a Pearson correlation coefficient of 0.54 from age 11 

years to age 90 years7. Box 1 describes what intelligence is and how it is assessed.  

During the past century, genetic research on intelligence was in the eye of the storm 

of the nature–nurture debate in the social sciences8,9. In the 1970s and 1980s, 

intelligence research and its advocates were vilified10-12. The controversy was helpful 

in that it raised the quality and quantity threshold for the acceptance of genetic 

research on intelligence. As a result, bigger and better family studies, twin studies, 

and adoption studies amassed a mountain of evidence that consistently showed 

substantial genetic influence on individual differences in intelligence13. Meta-

analyses of this evidence indicate that inherited differences in DNA sequence 

account for about half of the variance on measures of intelligence14. 

These studies and applications in neuroscience15 were already pushing intelligence 

research towards rehabilitation when it was thrust to the forefront of the DNA 

revolution 4 years ago by genome-wide association studies (GWAS) focused on a 

very different variable; years of education. In this Review, we discuss early attempts 

to find the inherited DNA differences that account for the substantial heritability of 

intelligence, and a twist of fate involving GWAS on years of education, before 

discussing the results of recent large GWAS of intelligence. The second half of this 

Review focuses on genome-wide polygenic scores (GPS) for intelligence that 

aggregate the effects of thousands of DNA variants associated with intelligence 

across the genome (see Box 2 for how GPS are constructed). We illustrate how GPS 

for intelligence will transform research on the causes and consequences of individual 

differences in intelligence, before ending with a discussion of societal and ethical 

implications. We do not discuss other important research related to intelligence such 

as evolutionary research16,17 and neuroscience research15 in order to focus on the 

role of GPS in the new genetics of intelligence. 

 

[H1] Finding the heritability of intelligence 

Similar to many other complex traits, early results for intelligence were disappointing 

for more than 100 candidate gene studies18 and for seven GWAS19-25. From the 

1990s until 2017 no replicable associations were found. GPS from these early 

GWAS, which we refer to as ‘IQ1’, predicted only 1% of the variance of intelligence 

in independent samples. It became clear that the problem was power: the largest 

effect sizes of associations between individual single nucleotide polymorphisms 
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(SNPs) and intelligence were extremely small, accounting for less than 0.05% of the 

variance of intelligence. The average effect size of the tens of thousands of SNPs 

needed to explain the 50% heritability of intelligence is of course much lower. If the 

average effect size is 0.005%, 10,000 such SNP associations would be needed to 

explain the 50% heritability of intelligence. To achieve sufficient power for detecting 

such tiny effect sizes (that is, power of 80%, P = 0.05 one-tailed), sample sizes 

greater than 250,000 are required. IQ1 GWAS had sample sizes from 18,000 to 

54,000, which seemed large at the time but were not sufficiently powered to detect 

such small effects. 

 

[H3] Breakthrough for years of education 

A breakthrough for intelligence research came from the unlikely variable of the 

number of years spent in full-time education, often referred to as educational 

attainment. Because ‘years of education’ is obtained as a demographic marker in 

nearly every GWAS, it was possible to accumulate sample sizes with the necessary 

power to detect very small effect sizes26. Its relevance to intelligence is that years of 

education is highly correlated phenotypically (0.50) and genetically (0.65) with 

intelligence27. 

In 2013, a meta-analytic GWAS analysis of years of education yielded three 

genome-wide significant SNP associations in a sample of 125,000 individuals from 

54 cohorts28. These associations could be replicated in independent samples29. The 

largest effect size associated with an individual SNP accounted for a meagre 0.02% 

of the variation, equivalent to about 2 months of education. Although individual SNPs 

of such miniscule effect size are fairly useless for prediction, a GPS based on all 

SNPs regardless of the strength of their association with years of education 

predicted 2% of the variance in years of education in independent samples28,29. We 

refer to this GPS as EA1. 

Spurred on by this success, in 2016, a second meta-analytic GWAS analysis with a 

sample size of 294,000 identified 74 significant loci30. This analysis produced a GPS, 

EA2, that predicted 3% of the variance in years of education on average in 

independent samples30. Surprisingly, GPS for years of education predicted more 

variance in intelligence than they predicted for the GWAS target trait of years of 

education27. For example, EA2 GPS predicts 3% of the variance in years of 

education but it predicts 4% of the variance in intelligence30. A third GWAS currently 
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in progress includes more than one million participants, making it the largest GWAS 

for any trait to date. Preliminary results from this GWAS have identified more than 

1,000 significant associations and a GPS, EA3, that predicts more than 10% of the 

variance in years of education in independent samples (Philipp D. Koellinger, 

personal communication)31. Hence, EA3 GPS is expected to predict more than 10% 

of the variance in intelligence. The effect size of EA3 GPS for predicting intelligence 

is likely to rival that of family socioeconomic status, which is indexed by parents' 

years of education. Across studies, parents' education correlates 0.30 with children’s 

intelligence, implying that it accounts for 9% of the variance in children’s 

intelligence38. This association is, however, confounded by genetics, because 

children inherit the DNA differences that predict their intelligence from their parents. 

Furthermore, parental phenotypes, such as education, only estimate an average 

association for offspring, whereas GPS predict intelligence for each individual. 

 

[H3] Large-scale GWAS of intelligence  

In 2017, the largest GWAS meta-analysis of intelligence, which included ‘only’ 

78,000 individuals, yielded 18 genome-wide significant regions32. A GPS (IQ2) 

derived from these GWAS results finally broke the 1% barrier of previous GWAS of 

intelligence by predicting 3% of the variance of intelligence in independent samples. 

However, IQ2 still has less predictive power than the 4% of the variance explained 

by the EA2 GPS. 

A follow-up GWAS meta-analysis reached a sample size of 280,000 with the 

inclusion of cognitive data from the UK Biobank (www.ukbiobank.ac.uk). This GWAS 

analysis increased the number of identified genome-wide significant regions from 18 

to 20633. A GPS derived from these GWAS analyses, IQ3, predicts about 4% of the 

variance of intelligence in independent samples33. Other meta-analytic GWAS using 

the UK Biobank data, which were released in June 2017 and are publicly available, 

yield similar results34. 

These IQ and EA GPS results are summarized in Figure 1. It might seem 

disappointing that the increase of the intelligence GWAS sample sizes from 78,000 

to 280,000 only boosted the predictive power of the IQ GPS from 3% to 4%. 

However, this result is parallel to GWAS results for years of education: after 

increasing sample sizes from 125,000 to 294,000, the variance in years of education 

predicted by the EA GPS only grew from 2% to 3%. Note that the predictive power of 

http://www.ukbiobank.ac.uk/
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EA GPS jumped to more than 10% of the variance in preliminary analyses of the 

latest meta-analytic GWAS (EA3) with a sample size of over one million (Philipp D. 

Koellinger, personal communication). We can expect a similar jump in predictive 

power of the IQ GPS when the sample size for GWAS meta-analyses of intelligence 

exceeds one million. However, it is more difficult to obtain huge sample sizes for 

intelligence, which has to be tested, than for years of education, which can be 

assessed with a single self-reported item. 

 

Figure 1. Variance explained by IQ GPS and by EA GPS in their target traits as 

a function of GWAS sample size. GPS prediction of intelligence and educational 

attainment has increased linearly with sample size. The predictive power of GPS 

derived from GWAS of intelligence has risen in the last 2 years from 1% to 4%. The 

latest EA3 GPS predicts more than 10% of the variance in intelligence (P. D. 

Koellinger, personal communication), more than twice as much as the latest IQ3 

GPS. Extrapolating from the results of EA3 with a sample size of over one million, 

we predict that more than 10% of the variance in intelligence will be predicted from 

an IQ GPS derived from a GWAS of intelligence with a sample size of one million. 

IQ122: n = 54,000, r2 = 0.01. IQ232: n = 78,000, r2 = 0.03. IQ333: n = 280,000, r2 = 

0.04. EA128: n = 125,000, r2 = 0.02. EA230: n = 294,000, r2 = 0.03. EA3: n = 

1,100,000, r2 > 0.10. 
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[H3] Missing heritability  

It is possible to use multiple GPS to boost the power to predict intelligence by 

aggregating GPS in a way analogous to aggregating SNPs to produce GPS (Box 3). 

Including EA2 GPS, IQ2 GPS and other GPS in this multivariate way can already 

predict up to 7% of the variance in intelligence35,36. Multivariate GPS analyses that 

incorporate multiple GPS in addition to EA2 GPS and IQ2 GPS will explain 

substantially more than 10% of the variance in intelligence, which is more than 20% 

of the 50% heritability of intelligence. 

Nonetheless, 10% is a long way from the heritability estimate of 50% obtained from 

twin studies of intelligence14. This lacuna is known as the ‘missing heritability’, which 

is a key genetic issue for all complex traits in the life sciences39 (Box 4). The current 

limit for the variance that can be predicted by GPS is SNP heritability, which 

estimates the extent to which phenotypic variance for a trait can be explained by 

SNPs across the genome without identifying specific SNP associations. For 

intelligence, SNP heritability is about 25%33,40. It is safe to assume that GPS for 

intelligence using current SNP chips can approach the SNP heritability limit of 25% 
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by amassing ever-larger GWAS samples and by using multi-trait GWAS that include 

traits related to intelligence such as years of education. However, breaking through 

this ceiling of 25% SNP heritability to the 50% heritability estimated from twin studies 

— assuming that twin studies yield accurate estimates of the total variance explained 

by inherited DNA differences — will require different technologies, such as whole-

genome sequencing data that include rare variants, not just the common SNPs used 

on current SNP chips. 

 

[H1] GPS in intelligence research 

The extremely polygenic nature of intelligence means that it will be a long slog from 

genome-wide significant ‘hits’ found across GWAS of intelligence. A bottom-up 

approach focused on specific genes will be difficult for two reasons. First, many hits 

are in intergenic regions, which means that there are no ‘genes’ to trace through the 

brain to behaviour. Second, the biggest hits have miniscule effects — less than 

0.05% of the variance — which means that hundreds of thousands of SNP 

associations are needed to account for the 50% heritability estimated by twin 

studies. A systems biology approach to molecular studies of the brain is needed that 

is compatible with this extreme polygenicity41.  

By contrast, the top-down approach of GPS that aggregate thousands of these tiny 

effects is already transforming research on intelligence42. Unlike quantitative genetic 

studies that require special samples such as twins, or GWAS that require huge 

samples in the hundreds of thousands, GPS can be used to add a genetic dimension 

to any research with modest sample size. For example, a GPS for intelligence that 

predicts 10% of the variance only needs a sample size of 60 to detect its effect with 

80% power (P =.05, one-tailed).  

GPS are unique predictors in the behavioural sciences. They are an exception to the 

rule that correlations do not imply causation in the sense that there can be no 

backward causation when GPS are correlated with traits. That is, nothing in our 

brains, behaviour or environment changes inherited differences in DNA sequence. A 

related advantage of GPS as predictors is that they are exceptionally stable 

throughout the life span because they index inherited differences in DNA sequence. 

Although mutations can accrue in the cells used to obtain DNA, like any cells in the 

body these mutations would not be expected to change systematically the thousands 

of inherited SNPs that contribute to a GPS.  
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In other words, a GPS derived from a GWAS of any trait at any age would be 

expected to correlate near 1.0 when the GPS is constructed from DNA obtained at 

birth and in adulthood for the same individual, although we are not aware of any 

empirical evidence relevant to this prediction. If GPS for individuals do not change 

during the life span, a GPS derived from GWAS of intelligence in adulthood will 

predict adult intelligence just as well from DNA obtained at conception or birth as 

from DNA obtained in adulthood. By contrast, intelligence tests at birth cannot 

predict intelligence at age 18 years. At 2 years of age, infant intelligence tests predict 

less than 5% of the variance of intelligence in late adolescence37,38.  

 

GPS are unbiased in the sense that they are not subject to training, faking or anxiety. 

They are also inexpensive, costing less than US$100 per person. This expense 

would not be incurred specifically to predict intelligence; the same SNP chip 

genotype information used in GWAS can be used to create GPS for hundreds of 

disorders and traits, one of which is intelligence. 

GPS for intelligence will open new avenues for research into the causes and 

consequences of intelligence. Three examples are developmental change and 

continuity, multivariate links between traits, and gene–environment interplay. A 

critical requirement for capitalizing on these opportunities is to make the ingredients 

for GPS publicly available — that is, GWAS summary-level statistics (Box 5). 

 

[H3] Developmental research 

One of the most interesting developmental findings about intelligence is that its 

heritability as estimated in twin studies increases dramatically from infancy (20%) to 

childhood (40%) to adulthood (60%), while age-to-age genetic correlations are 

consistently high43,44. What could account for this increasing heritability despite 

unchanging age-to-age genetic correlations? Twin studies suggest that genetic 

effects are amplified through gene–environment correlation as time goes by45. That 

is, the same large set of DNA variants affects intelligence from childhood to 

adulthood, resulting in high age-to-age genetic correlations, but these DNA variants 

increasingly have an impact on intelligence as individuals select environments 

correlated with their genetic propensities, leading to greater heritability of 

intelligence.  
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Developmental hypotheses about high age-to-age genetic correlations and 

increasing heritability can be tested more rigorously and can be extended using 

GPS. Does the variance explained by GPS for intelligence increase from childhood 

to adolescence to adulthood? Are the correlations between GPS at these ages 

consistently high? 

High age-to-age genetic correlations for intelligence imply that GWAS of adults 

should predict intelligence in childhood. The EA2 GPS30, currently the best genetic 

predictor of intelligence until EA3 GPS becomes available, was derived from a 

GWAS meta-analysis of years of education in adults who had completed their 

education. Nonetheless, the EA2 GPS predicts 2% of the variance in intelligence at 

age 7 years, 3% at age 12 years, and 4% at age 16 years in our longitudinal study46.  

 

[H3] Multivariate genetic research 

Multivariate genetic research focuses on the genetic covariance between traits rather 

than the variance of each trait. A specific multivariate question for intelligence 

research is why EA GPS predict twice as much variance in intelligence as do GPS 

for intelligence itself. This question raises interesting methodological and conceptual 

issues (Box 6). 

Multivariate genetic research is especially important for intelligence because genetic 

effects in the cognitive domain have been shown in twin studies to be general. That 

is, genetic effects correlate highly across most cognitive abilities such as verbal and 

spatial abilities as well as most educational skills such as reading and 

mathematics47. A recent multivariate finding is that the EA2 GPS predicts 5% of the 

variance in comprehension and efficiency of reading48. This is by far the most 

powerful GPS predictor of reading ability because there have as yet been no large 

GWAS of reading with replicable results49. EA GPS are also likely to predict other 

educational skills such as mathematics and other cognitive abilities such as spatial 

ability. 

EA GPS do not only predict reading. They are correlated genetically with a wider 

range of variables than any other trait50. This pervasive genetic influence of EA GPS 

extends to a negative genetic correlation with schizophrenia and positive genetic 

correlations with height51, myopia52, and surprisingly with autism53. Linkage 

disequilibrium (LD) score regression analysis54, which uses summary GWAS 

statistics rather than GPS for individuals, finds a similar pattern of results for 
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intelligence using the IQ2 GWAS: the negative genetic correlation with schizophrenia 

(–0.20) and the positive genetic correlations with height (0.10) and autism (0.21)32. 

The same LD score regression analysis32 found that intelligence significantly 

correlated genetically with many other traits, including Alzheimer disease (–0.36), 

smoking cessation (–0.32), intracranial volume (0.29), head circumference in infancy 

(0.28), depressive symptoms (–0.27), attention-deficit–hyperactivity disorder (–0.27), 

ever smoked (–0.23), longevity (0.22) and, of course, years of education (0.70). 

Despite this evidence for ability-general genetic effects, genetic correlations across 

cognitive abilities and educational skills are not 1.0, which implies that there are 

ability-specific SNP associations. An important direction for research is to identify 

ability-specific GPS derived from large GWAS analyses focused on specific cognitive 

abilities independent of general intelligence. Preliminary analyses of this sort would 

be possible using existing GWAS of intelligence because most of these studies 

assessed multiple measures of specific cognitive abilities, which were combined to 

index intelligence. These data could be re-analysed in meta-analytic GWAS that 

focus on specific abilities included in multiple studies. However, what is needed are 

large GWAS focused on well measured specific cognitive abilities such as verbal, 

spatial and memory abilities and specific cognitive skills taught in schools such as 

reading, mathematics and language. The pay-off from these studies will be GPS that 

predict specific abilities independent of general intelligence. These ability-specific 

GPS could be used to create profiles of genetic strengths and weaknesses for 

individuals that could be the target for personalized prediction, prevention and 

intervention. 

In addition to investigating links between different traits, multivariate genetic research 

can examine genetic links between dimensional and diagnostic measures of the 

‘same’ domain. For example, EA2 GPS predicts reading disability just as much as 

reading ability, from slow readers to speed-readers48. Because GPS are always 

normally distributed, they will show that there are no etiologically distinct common 

disorders, only continuous dimensions55. This is also true for very low and for very 

high intelligence46. Even extremely high intelligence is only quantitatively, not 

qualitatively, different genetically from the normal distribution56,57. The exception is 

severe intellectual disability, which is genetically distinct from the rest of the 

distribution of intelligence58 and affected by rare, often de novo, mutations of 

relatively large effect59. 
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[H3] Research on gene–environment interplay 

The high heritability of intelligence should not obscure the fact that heritability is 

significantly less than 100%. Research using genetically sensitive designs has led to 

one of the most important findings about environmental influence on intelligence. 

Intelligence has always been known to run in families but it was assumed that this 

family resemblance was due to nurture, called shared family environmental 

influence. That is, siblings were thought to be similar in intelligence because they 

grew up in the same family and attended the same schools. Twin and adoption 

studies consistently support this assumption but only up until adolescence. After 

adolescence, the effect of shared family environmental influence on intelligence is 

negligible, which means that family environments have little effect on individual 

differences in the long run45,60. Family resemblance for intelligence is due to nature 

rather than nurture, although it should be emphasized that we are referring to the 

normal range of environmental influence, not the extremes such as neglect or abuse. 

However, little is known about the specific environmental factors that make children 

growing up in the same family different14.  

The importance of both genetics and environment for cognitive development 

recommends investigating the interplay between them. GPS for intelligence will 

greatly facilitate this research because they offer, for the first time, the possibility of 

directly assessing genetic propensities of individuals to investigate their interplay 

with aspects of the environment. Gene–environment (GE) interplay refers to two 

different concepts, GE interaction and GE correlation.  

GE interaction denotes a conditional relationship in which the effects of genes on 

intelligence depend on the environment. For example, some twin research suggests 

that heritability of intelligence is lower in low socioeconomic status family 

environments and higher in high socioeconomic status family environments61. This 

hypothesis predicts that GPS for intelligence will correlate less with intelligence in 

environments of low socioeconomic status compared to those with high 

socioeconomic status. The first test of this hypothesis using the EA2 GPS found no 

evidence for such an interaction46. That is, EA2 GPS were just as much correlated 

with intelligence in low socioeconomic status as in high socioeconomic status family 

environments. GPS provide a particularly powerful approach to test for GE 

interaction as compared to twin studies62. 
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In contrast to GE interaction, GE correlation refers to the correlation between genetic 

propensities and experiences. GE correlation is the reason why most environmental 

measures used in the behavioural sciences show genetic influence in twin studies63. 

Associations between environmental measures and behavioural traits such as 

intelligence are also mediated in part by genetic differences. Research using GPS is 

beginning to confirm these twin study findings about the ‘nature of nurture’ by 

showing, for example, that EA GPS correlate with social mobility64 and capture 

covariation between environmental exposures and children’s behaviour problems 

and educational achievement65. GE correlation provides a general model for how 

genotypes become phenotypes — how children select, modify and create 

environments correlated with their genetic propensities. GPS will greatly advance 

research on GE correlation by providing an individual-specific index of the ‘G’ of GE 

interplay. GPS will also make it possible to assess environmental influences on 

intelligence while controlling for genetic influences.  

 

[H1] Implications for society 

The most exciting aspect of GPS is their potential for addressing novel, socially 

important questions, which we will illustrate with three recent examples from our own 

research. First, children in public and private schools differ in their EA2 GPS scores 

because private schools select pupils based on genetic differences in intelligence66. 

Second, intergenerational educational mobility reflects EA2 GPS differences67. 

Finally, the EA2 GPS predicts twice as much variance in educational attainment and 

occupational status in the post-Soviet era as compared to the Soviet era in Estonia, 

a finding compatible with the hypothesis that heritability is an index of equality of 

opportunity and meritocracy68. 

 

[H3] Understanding ourselves 

IQ GPS will be used to predict individuals’ genetic propensity to learn, reason and 

solve problems, not only in research, but also in society, as direct-to-consumer 

genomic services provide GPS information that goes beyond single-gene and 

ancestry information. We predict that IQ GPS will become routinely available from 

direct-to-consumer companies along with hundreds of other medical and 

psychological GPS that can be extracted from genome-wide genotyping on SNP 

chips. Using GPS to predict individuals’ genetic propensities requires clear warnings 
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about the probabilistic nature of these predictions and the limitations of their effect 

sizes (Box 7).  

Although simple curiosity will drive consumers’ interests, GPS for intelligence are 

more than idle fortune-telling. Because intelligence is one of the best predictors of 

educational and occupational outcomes, IQ GPS will be used for prediction from 

early in life before intelligence or educational achievement can be assessed. In the 

school years, IQ GPS could be used to assess discrepancies between GPS and 

educational achievement, that is, GPS-based over-achievement and under-

achievement. The reliability, stability and lack of bias of GPS make them ideal for 

prediction, which is essential for the prevention of problems before they occur. A 

‘precision education’ based on GPS could be used to customize education, 

analogous to ‘precision medicine’.  

A novel, socially important direction for research using IQ GPS is to understand 

differences within families. First-degree relatives are on average only 50% similar 

genetically, which means they are on average 50% different genetically. A major 

impact of GPS will be to recognize and respect these large genetic differences within 

families.  

For scores on an intelligence test standardized to have a mean of 100 and a 

standard deviation of 15, the average difference between pairs of individuals who are 

selected randomly from the population is 17 IQ points. The average difference 

between parents and offspring and between siblings is 13 IQ points69. IQ GPS might 

help parents understand why their children differ in school achievement. Because 

GPS are probabilistic, a low IQ GPS does not mean that a child is destined to go no 

further in education than secondary school. But it does mean that the child is more 

likely to find academic learning more difficult and less rewarding than a sibling with a 

high IQ GPS.  

 

[H3] Ethical implications 

Genomic research and studies of intelligence face four principal ethical concerns: the 

notion of biological determinism, the potential for discrimination and stigmatization, 

the question of ownership of information, and the emotional impact of knowledge 

about one's personal genomics and intelligence. These and other ethical issues are 

explored in detail by the programme of ethical, legal and social implications (ELSI), 

which is an integral part of the Human Genome Project70. Also, recent books discuss 
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ethical as well as scientific issues about personal genomics specifically in relation to 

education71 and occupation72. Much of these ethical discussions focus on single-

gene disorders, for example Huntington disease, which has 100% penetrance. By 

contrast, GPS are 'less dangerous’ because they are intrinsically probabilistic, not 

hard-wired and deterministic like single-gene disorders. It is important to recall here 

that although all complex traits are heritable, none is 100% heritable. A similar logic 

can be applied to IQ scores: although they have great predictive validity for key life 

outcomes1-6, IQ is not deterministic but probabilistic. In short, an individual is always 

more than the sum of their genes or their IQ scores.  

Issues of discrimination and stigmatization have accompanied research into genetics 

and intelligence from the beginning, typically because findings from both fields of 

study were applied to justify policies that served socio-political ideologies. For 

example, IQ testing was infamously used to differentiate European immigrants to the 

United States of America who arrived at Ellis Island in the early 1900s, and to guide 

eugenic ideas about sterilization in Britain and the United States of America 

throughout the 20th century11. It is important to acknowledge the risk of discrimination 

that occurs on the back of scientific findings about individual differences. It is, 

however, equally important to realize that research does not lead directly to any 

policy recommendations. We must be careful not to blame the scientists or entire 

disciplines when their findings are used wrongly9. 

Who 'owns' our genetic information? And who should decide who can access it? The 

question of ownership of personal data has become pivotal but also increasingly 

complex in our current age of information. At the same time, understanding and 

managing the emotional impact that stems from knowledge about our genomics and 

intelligence has emerged as a new societal responsibility. It is beyond the scope of 

this paper to elucidate these issues in the depth that they deserve but we expect that 

the discussions of ethical issues that surround personal genomics will consolidate 

the DNA revolution.  

 

[H1] Conclusions 

Genetic association studies have confirmed a century of quantitative genetic 

research showing that inherited DNA differences are responsible for substantial 

individual differences in intelligence test scores. A reachable objective shared with all 

complex traits in the life sciences is to close the gap between the 10% variance in 
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intelligence scores explained by GPS and its SNP heritability of about 25%. A more 

daunting challenge is to break through the ceiling of 25% SNP heritability to reach 

the 50% heritability estimated by twin studies.  

Until 2016, GPS could only predict 1% of the variance in intelligence. Progress has 

been rapid since then, reaching our current ability to predict 10% of the variance in 

intelligence from DNA alone. GPS will soon be available that can predict more than 

10% of the variance in intelligence, that is, more than 20% of the 50% heritability of 

intelligence estimated from twin studies, and more than 40% of the 25% SNP 

heritability of intelligence. This is an important milestone for the new genetics of 

intelligence because effect sizes of this magnitude are large enough to be 

“perceptible to the naked eye of a reasonably sensitive observer”73. With these 

advances in the past few years, intelligence steps out of the shadows and takes the 

lead in genomic research. 

In addition to investigating traditional issues about development, multivariate links 

between traits and gene-environment interplay, IQ GPS will open new avenues for 

research into the causes and consequences of intelligence. The new genetics of IQ 

GPS will bring the omnipotent variable of intelligence to all areas of the life sciences, 

without having to assess intelligence.  
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[b1] Box 1. What is intelligence? 

Intelligence can be broadly defined as the ability to learn, reason and solve 

problems74. It is a latent trait that cannot be directly observed but is inferred from a 

battery of diverse cognitive test scores, as in widely used ‘intelligence tests’ that yield 

a so-called ‘IQ score’, which is an acronym for an outdated concept of an 

‘intelligence quotient’. Psychometric tests of cognitive abilities differ widely in form 

and content. For example, some assess verbal ability and others non-verbal ability, 

some give strict time limits and some are untimed (see figure for examples). 

Notwithstanding these differences, cognitive test scores are positively inter-

correlated75, suggesting that any differences in test scores that occur within an 

individual are smaller than test score differences that exist between individuals. In 

other words, a person who scores high on one type of cognitive test relative to other 

people will also do comparatively well on other cognitive tests. This phenomenon is 

known as the positive manifold, or simply g, the general factor of intelligence, which 

emerges from the test scores' covariance, discovered by Spearman in 190476, about 

the same time that Mendel’s laws of inheritance were rediscovered. The g-factor 

exemplifies the generalist nature of intelligence as a complex trait that penetrates 

many behavioural and psychological outcomes, including educational attainment, 

occupational status, health and longevity77,78.  

Individual differences in intelligence are fairly stable across the lifespan, especially 

from teenage years onwards, with correlations of 0.6 and above38,79. However, 

intelligence is also subject to change, both within and between individuals. For 

example, scores from timed cognitive tests tend to peak in young adulthood and 

decline thereafter80. But more importantly, intelligence has been shown to be 

malleable, especially in children, through major systematic interventions, such as 

education81, dietary supplementation82 or adopting children away from impoverished 

home environments83. That said, identifying ways to effectively improve intelligence 

remains a key challenge for intelligence research, with many interventions failing to 

produce reliable and long-term positive effects82,84,85. 
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[b2] Box 2. Creating GPS 

Thousands of SNPs are needed to account for the heritability of intelligence and 

other complex traits because the effect sizes of SNP associations are so small. 

Aggregating thousands of these miniscule effects in a GPS is the crux of the new 

genetics of intelligence. There are at least a dozen labels to denote GPS. Most 

involve the word ‘risk’, such as polygenic risk scores. We prefer the term genome-

wide polygenic score (GPS) because ‘risk’ does not apply to quantitative traits, such 

as intelligence, that have positive as well as negative poles86. The ‘genome-wide’ 

addition to ‘polygenic score’ distinguishes GPS from polygenic scores that aggregate 

candidate genes or just the top hits from GWAS. Finally, another reason for using 

the acronym GPS is that we cannot resist the metaphor of the other ‘GPS’, global 

positioning system. We see IQ GPS as a system to triangulate on the genetics of 

intelligence from all domains of the life sciences. 

An intelligence test score is a composite of several tests, often with each test 

weighted by its contribution to general intelligence. In the same way, a GPS is a 

composite of SNP associations, weighted by their correlation with the trait. The table 

shows how a GPS could be constructed for one individual for 10 SNPs. GWAS 

results are used to determine which of the two alleles for a SNP is positively 

associated with the trait, called the increasing allele. For each SNP, a genotypic 

score is created by adding the number of increasing alleles. A GPS sums the 

number of increasing alleles across SNPs — hence, why this is called an additive 

model. In this example, the individual’s GPS is 9. Because there are 10 SNPs, the 

possible range of the GPS is from 0 to 20.  

A more predictive GPS can be constructed by weighting each genotypic score by the  

effect size of the SNP (beta for quantitative traits, odds ratio for qualitative traits) as 

gleaned from GWAS results (see table). For instance, for SNP 1, the correlation with 

the trait is five times greater than for SNP 10. Multiplying the genotypic score by the 

correlation gives a weighted genotypic score (see table, last column). Summing 

these weighted genotypic scores gives this individual a GPS of 0.023 for intelligence. 

Other ways to improve the predictive power of GPS include taking into account 

expected SNP effect sizes, the genetic architecture of the trait and specifically 

modelling linkage disequilibrium87. Programmes including LDpred88 and PRSice89 

provide pipelines for the construction of GPS.  
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How many SNPs should be included in a GPS? The goal is to maximize predictive 

power in samples independent from the GWAS samples. Using only genome-wide 

significant hits does not predict nearly as well as using tens of thousands of SNPs. 

LDpred uses all SNPs, imputed as well as measured, although most SNPs are given 

near-zero weights.  

Once a GPS for intelligence is created for each individual in a sample, it can be used 

like any other variable in analyses. For example, it can be used to investigate the 

extent to which this genetic index of intelligence mediates or moderates effects on 

variables of primary interest to the researcher.  

  

SNP Increasing 

allele 

Allele 1 Allele 2 Genotypic 

score 

Correlation 

with trait 

Weighted 

genotypic 

score 

SNP 1 T A T 1 0.005 0.005 

SNP 2 C G G 0 0.004 0.000 

SNP 3 A A A 2 0.003 0.006 

SNP 4 G C G 1 0.003 0.003 

SNP 5 G C C 0 0.003 0.000 

SNP 6 T A T 1 0.002 0.002 

SNP 7 C C G 1 0.002 0.002 

SNP 8 A A A 2 0.002 0.004 

SNP 9 A T T 0 0.001 0.000 

SNP 10 C C G 1 0.001 0.001 

Polygenic 

score 

   9  0.023 
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[b3] Box 3. Using multiple GPS to predict a trait 

Aggregating thousands of SNP associations in GPS has been key to predicting 

individual differences in complex traits such as intelligence. In an analogous manner, 

it is possible to aggregate many GPS to exploit their joint predictive power. For 

example, multiple GPS were used to predict intelligence in a sample of 6,710 

unrelated 12-year-olds35. This approach is a multiple regression prediction model 

that accommodates multiple correlated predictors while preventing overfitting based 

on training in one sample and testing in another sample in a repeated cross-

validation design. This approach predicted 4.8% of the variance in intelligence. 

Although EA2 GPS alone accounted for most of the variance, other GPS added 

significantly to the prediction of intelligence, especially GPS derived from GWAS of 

high-IQ individuals 57, childhood IQ19 and household income90. More than 7% of the 

variance in intelligence was predicted36 using another approach called Multi-Trait 

Analysis of GWAS (MTAG)91, which performs a meta-analysis from summary 

statistics for a few correlated GPS and produces new summary statistics that can be 

used to create a multivariate GPS. 

The success of GWAS came from its atheoretical approach that analyses all SNPs in 

the genome rather than selecting candidate genes. In the same way, an atheoretical 

approach can be used in analyses of multiple GPS by incorporating as many GPS as 

possible rather than selecting a few candidate GPS. For example, the first study of 

this sort, mentioned above35, included a total of 81 GPS from well-powered GWAS of 

cognitive, medical and anthropometric traits available in LD Hub92 that together 

predicted 4.8% of the variance in intelligence. Although EA2, IQ and income GPS 

drove most of the predictive power of this multiple-GPS analysis, significant 

independent contributions to the prediction of intelligence were also found for major 

depressive disorder GPS and autism spectrum disorder GPS. These latter 

associations were in the direction expected based on the negative genetic 

correlation between intelligence and depression and the surprising positive genetic 

correlation between intelligence and autism (see Multivariate genetic research). 
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[b4] Box 4. Twin, SNP and GPS heritabilities 

Heritability is the proportion of observed (phenotypic) differences among individuals 

that can be attributed to genetic differences in a particular population. Broad 

heritability involves all additive and nonadditive sources of genetic variance, whereas 

narrow heritability is limited to additive genetic variance. Additive genetic variance 

refers to the independent effects of alleles or loci that ‘add up’. Nonadditive genetic 

variance involves effects of alleles or loci that interact. 

Twin heritability compares the resemblance of identical and fraternal twins to 

estimate genetic and environmental components of variance. For intelligence, twin 

estimates of broad heritability are 50% on average14. Adoption studies of first-degree 

relatives yield similar estimates of narrow heritability of intelligence, suggesting that 

most genetic influence on intelligence is additive. 

SNP heritability is estimated directly from SNP differences between individuals. It 

does not specify which SNPs are associated with a trait. Instead, it uses chance 

genomic similarities across hundreds of thousands of SNPs genotyped on a SNP 

chip for thousands of unrelated individuals to estimate the extent to which genomic 

covariance accounts for phenotypic covariance in these individuals. For intelligence, 

SNP heritability is about 25%22,33,40.  

GPS heritability is the proportion of variance that can be predicted by the GPS. For 

intelligence, GPS heritability is currently about 10% (P. D. Koellinger, personal 

communication).  

These three types of heritability denote two types of ‘missing heritability,’ as shown in 

the figure. SNP heritability is the ceiling for GWAS and for GPS heritability because 

all three rely on the additive effects of SNPs genotyped on SNP chips93. The missing 

heritability gap between GPS heritability (10%) and SNP heritability (25%) can be 

narrowed by increasing GWAS sample size. Narrowing the missing heritability gap 

between SNP heritability (25%) and twin heritability (50%) will require different 

technologies that consider, for example, rare variants, gene-gene interaction, and 

gene-environment interaction. 
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[b5] Box 5. Make GWAS summary-level statistics publicly available 

It is essential for continued rapid scientific advances using GPS that summary-level 

statistics from GWAS are made publicly available for all SNPs following publication. 

The reason why public access to summary statistics is important is that the 

construction of GPS requires an effect size indicator and P value for each SNP in the 

GWAS. GWAS summary-level statistics are also necessary for other analyses, most 

notably LD score regression, which is used to estimate genetic correlations among 

traits54.  

Until 2017, GWAS summary-level data were stored in different databases using 

different formats, which made it difficult to use the data to investigate traits across 

studies. This problem has been solved with LD Hub, a centralized database and web 

interface that provides an automated pipeline for entering and using GWAS 

summary-level data92.  

However, only about 10% of published GWAS results are publicly available on LD 

Hub. Some GWAS consortia are exemplars for making GWAS summary-level data 

immediately upon publication, or even before publication, such as the Psychiatric 

Genomics Consortium94. In intelligence research, a paragon is the Social Science 

Genetic Association Consortium27, which is responsible for five of the six GWAS for 

which summary statistics are publicly available in the intelligence section of LD Hub, 

although three of the five GWAS were for years of education rather than for 

intelligence itself. 

In contrast, some authors apply conditions for the use of the summary statistics from 

their published GWAS paper. Others refuse to share these statistics altogether. A 

worrying trend is that several commercial organizations do not allow summary 

GWAS statistics from their samples to be used in open-access summary-level 

statistics for all SNPs when their samples are included in meta-analytic GWAS. 

Concerns about privacy have been put forth as an explanation, but these fears 

should be allayed as it is not possible to re-construct individual-level data from 

summary-level GWAS statistics in large heterogenous samples95.  

Such asymmetrical data-sharing policies between industry and academia will hold 

back research in the field. If a group does not want their summary-level GWAS 

statistics to be freely available for a published meta-analytic GWAS, their data 
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should not be used in ‘publication’, true to its Latin origin publicare, which means ‘to 

make public’. 
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[b6] Box 6. EA GPS and intelligence  

EA GPS predict intelligence because the genetic correlation between years of 

education and intelligence is greater than 0.50 in twin studies97 and LD score 

regression studies98. The genetic correlation of 0.50 also sets a limit on the extent to 

which EA GPS can predict intelligence.  

But why do EA GPS predict intelligence to a greater extent than they predict EA 

itself? That is, EA2 GPS predicts 3% of the variance in years of education 30 but it 

predicts 4% of the variance in intelligence46. Moreover, EA GPS predict intelligence 

much better than IQ GPS predict intelligence themselves. The IQ3 GPS from the 

most recent GWAS of intelligence predicts 4% of the variance of intelligence33 but 

the EA3 GPS predicts more than 10% of the variance in intelligence (P. D. 

Koellinger, personal communication). 

There are two likely reasons why EA GPS currently predict intelligence to a greater 

extent than EA GPS predict years of education itself. First, intelligence may be more 

heritable (60% in adults) than years of education (40%) in twin studies99. Second, 

years of education is a coarse measure, primarily indicating whether an individual 

completed university. Years of education is largely bimodal, with a spike at the end 

of secondary school and another peak for individuals who attended university. By 

contrast, intelligence is a more refined measure than years of education that 

captures the commonalities among diverse tests of cognitive abilities and is normally 

distributed. That is, educational achievement is not just a proxy for intelligence. It is 

also predicted by personality traits such as conscientiousness and well-being and 

having fewer mental health problems such as depression. Together, these non-

cognitive traits account for as much of the heritability of educational achievement as 

intelligence96. The EA GWAS incorporates SNPs associated with any of these traits, 

not just with intelligence14. 

Of note, the current GWAS sample sizes for EA are three times larger than for 

intelligence. The GPS effect sizes for intelligence are similar to those for EA GPS for 

comparable effect sizes (that is, IQ2 as compared to EA1, and IQ3 as compared to 

EA2; see Fig. 1). For this reason, we predict that an IQ GPS derived from a GWAS 

of intelligence with a sample size of one million, such as EA3, will predict at least as 

much variance in intelligence as does the current EA3 GPS. In other words, 

intelligence is not actually predicted to a greater extent by EA GPS than by 

intelligence GPS when the powers of the discovery GWAS are similar. 
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Box 7. Using GPS to predict outcomes in individuals 

GPS must be used with caution when predicting outcomes in individuals. We 

illustrate the probabilistic nature of GPS predictions using data on EA2 GPS and 

school achievement from the Twins Early Development Study100. School 

achievement was assessed by scores from a UK-wide examination, the General 

Certificate of Secondary Education (GCSE), administered at the end of compulsory 

education at age 16 years. GCSE scores were age- and gender-regressed, and EA2 

GPS were constructed as described elsewhere46. We used the EA2 GPS prediction 

of GCSE scores as an example because the effect size of this association is 

currently the strongest in the behavioural sciences, accounting for 9% of the 

variance46. It will soon be possible to explain a similar amount of variance in 

intelligence, and with that GPS will become available to predict intelligence for 

individuals.  

The starting point for prediction is the distribution of individual differences (see the 

figure, part a). The EA2 GPS is normally distributed, as GPS always are. The 

measure of school achievement is also normally distributed. GPS prediction of 

individual differences is based on its covariance with the target trait, school 

achievement in this example. The scatterplot between EA2 GPS and GCSE scores 

(see the figure, part b) indicates the difficulty of predicting individual outcomes when 

the correlation is modest, 0.30 in this example. Squaring this correlation indicates 

that EA2 GPS predicts 9% of the variance in GCSE scores. Although higher EA2 

GPS can be seen to predict higher GCSE scores on average, there is great 

variability between individuals. For example, the individual with the second highest 

EA2 GPS has a GCSE score only slightly above the average. Conversely, an 

individual with the eighth lowest EA2 GPS has a GCSE score above the 75th 

percentile. 

Despite this variability, powerful predictions can be made at the extremes. For 

example, when the sample was divided into ten equal-sized groups (deciles) on the 

basis of their EA2 GPS, a strong relationship between average EA2 GPS and 

average GCSE scores emerged that was most evident at the extremes (see the 

figure, part c). Specifically, the average school achievement of individuals in the 

lowest EA2 GPS decile is at the 28th percentile. For the highest EA2 GPS decile, the 

average school achievement is at the 68th percentile.  
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Nonetheless, individuals within the lowest and highest EA2 GPS deciles vary widely 

in school achievement (see the figure, part d). The overlap in the two distributions is 

61%. These issues of variability in prediction are the same for any predictor that 

accounts for 9% of the variance in the target trait. As bigger and better GPS emerge, 

the predictive power will increase.  

In summary, GPS are useful for individual prediction as long as the probabilistic 

nature of the prediction is kept in mind. 
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Glossary 

 

Twin studies 

Comparing the resemblance of identical and fraternal twins to estimate genetic and 

environmental components of variance. 

 

Variance 

An index of how spread out scores are in a population, which is calculated as the 

average of the squared deviations from the mean. 

 

Genome-wide association studies 

(GWAS). Studies that aim to identify loci throughout the genome associated with an 

observed trait or disorder.  

 

Heritability 

The proportion of observed differences among individuals that can be attributed to 

inherited differences in genome sequence (Box 4). 

 

Candidate gene studies 

Studies that focus on genes whose function suggests that they might be associated 

with a trait, in contrast to genome-wide association studies. 

 

Genome-wide polygenic scores 

(GPS). A genetic index of a trait for each individual that is the sum across the 

genome of thousands of SNPs of the individual’s increasing alleles associated with 

the trait, usually weighted by the effect size of each SNP’s association with the trait 

in GWAS. 

 

Linkage disequilibrium (LD) score regression analysis 

For each SNP in a GWAS, regresses chi-square statistic from GWAS summary 

statistics against linkage disequilibrium scores. 

 

Effect size 
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The proportion of variance of a trait in the population accounted for by a particular 

factor such as a GPS. 

 

Single-nucleotide polymorphisms 

(SNPs). Single base-pair differences in inherited DNA sequence between 

individuals. 
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Key points 

 

 Until 2017, genome-wide polygenic scores derived from GWAS of intelligence 

were only able to predict 1% of the variance in intelligence in independent 

samples.  

 Polygenic scores derived from GWAS of intelligence can now predict 4% of 

the variance in intelligence.  

 More than 10% of the variance in intelligence can be predicted by multi-

polygenic scores derived from GWAS of both intelligence and years of 

education. This accounts for more than 20% of the 50% heritability of 

intelligence. 

 Polygenic scores are unique predictors in two ways: First, they predict 

psychological and behavioural outcomes just as well from birth as later in life. 

Second, polygenic scores are causal predictors in the sense that nothing in 

our brains, behaviour or environment can change the differences in DNA 

sequence that we inherited from our parents. 
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 Polygenic scores for intelligence can bring the powerful construct of 

intelligence to any research in the life sciences without having to assess 

intelligence using tests.  

 

Subject categories 

Biological sciences / Neuroscience / Cognitive neuroscience / Intelligence [URI 

/631/378/2649/1579] 

Biological sciences / Genetics / Genetic association study / Genome-wide 

association studies [URI /631/208/205/2138] 

Biological sciences / Genetics / Genome / Genetic variation [URI /631/208/726/649] 

Biological sciences / Genetics / Behavioural genetics [URI /631/208/1515] 

Scientific community and society / Social sciences / Education [URI /706/689/160] 

 

ToC blurb 

Recent genome-wide association studies have catapulted the search for genes 

underlying human intelligence into a new era. Genome-wide polygenic scores 

promise to transform research on individual differences in intelligence, but not 

without societal and ethical implications, as the authors discuss in this Review. 
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