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Key Points: 18 

 From measurements at 10 peat fires in SE Pahang and N Selangor, we present the first 19 

fire emission factors for Malaysian peatlands. 20 

 We find substantial inter-plume fire emission factor variability for key greenhouse 21 

gases (e.g. methane) and reactive gases (e.g. ammonia). 22 

 We present the first discussion of relationships between peat bulk density and 23 

methane fire emission factors. 24 
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Abstract 26 

Fires in tropical peatlands account for >25% of estimated total greenhouse gas emissions 27 

from deforestation and degradation. Despite significant global and regional impacts, our 28 

understanding of specific gaseous fire emission factors (EFs) from tropical peat burning is 29 

limited to a handful of studies. Furthermore, there is substantial variability in EFs between 30 

sampled fires and/or studies. For example, methane EFs vary by 91% between studies.  31 

Here we present new fire EFs for the tropical peatland ecosystem; the first EFs measured for 32 

Malaysian peatlands, and only the second comprehensive study of EFs in this crucial 33 

environment. During August 2015 (under El Niño conditions) and July 2016, we embarked 34 

on field campaigns to measure gaseous emissions at multiple peatland fires burning on 35 

deforested land in Southeast Pahang (2015) and oil palm plantations in North Selangor 36 

(2016), Peninsula Malaysia. Gaseous emissions were measured using open-path Fourier 37 

transform infrared spectroscopy. The IR spectra were used to retrieve mole fractions of 38 

twelve different gases present within the smoke (including carbon dioxide and methane), and 39 

these measurements used to calculate EFs. Peat samples were taken at each burn site for 40 

physicochemical analysis and to explore possible relationships between specific 41 

physicochemical properties and fire EFs. Here we present the first evidence to indicate that 42 

substrate bulk density affects methane fire EFs reported here. This novel explanation of inter-43 

plume, within-biome variability should be considered by those undertaking greenhouse gas 44 

accounting and haze forecasting in this region, and is of importance to peatland management, 45 

particularly with respect to artificial compaction. 46 

1 Introduction 47 

Fires in tropical peatlands account for 25% or more of the estimated total greenhouse gas 48 

(GHG) emissions from global deforestation and forest degradation, amounting to 49 

approximately 3% of total global anthropogenic GHG emissions [Ballhorn et al., 2009; 50 

IPCC, 2013; van der Werf et al., 2009; van der Werf et al., 2017]. In 1997 alone, El Niño-51 

related fires in Indonesia were calculated to have released 13–40% of that year’s total carbon 52 

emissions from fossil fuel burning [Page et al., 2002]. Beyond the global climate forcing of 53 

GHGs such as CO2, methane (CH4), and nitrous oxide (N2O), peatland fire emissions of 54 

carbon monoxide (CO), nitrogen oxides (NOx) and volatile organic compounds (VOCs) react 55 

to form ozone (O3). This, combined with particulate matter (PM) emissions, leads to smog 56 

(referred to as ‘haze’ in SE Asia). In the southern region of SE Asia, peatland fires are 57 

responsible for 90% of trans-boundary haze events [Varkkey, 2013]. Air Pollution Index 58 

readings in Palangkaraya in Borneo in October 2015 reached >2000, the highest values ever 59 

recorded and far above the Emergency level of >500. Exposure to haze events has been 60 

shown to cause both immediate and delayed effects, increasing respiratory related mortality 61 

by 19–66% [Sahani et al., 2014] and resulting in over 100,000 excess deaths in Malaysia, 62 

Indonesia and Singapore [Koplitz et al., 2016]. In the 2015 fires, an estimated >500,000 63 

Indonesians were affected by haze-related respiratory infections [Jakarta Post, 2015]. 64 

Economic losses related to haze are also significant, with estimates for the 2015 fires at $16.1 65 

billion for Indonesia [CIFOR, 2015]. Despite these significant global and regional impacts, 66 

very little is known of the proportional contribution of the major chemical compounds being 67 

emitted in situ from tropical peat fires. As a result, there are no published accounts addressing 68 

how GHG and reactive (haze-forming) gaseous fire emissions vary among different types of 69 

tropical peatlands, precluding both accurate greenhouse gas accounting and air quality (haze) 70 

forecasting in this region. 71 
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The Indo-Malaysian region is the global centre of tropical peatswamp forests. Over the past 72 

30 years regional peatswamp forests have been increasingly subject to degradation from 73 

drainage, logging and agricultural conversion – particularly to oil palms (Elaeis guineensis). 74 

Drainage reverses the environmental conditions that lead to peat accretion, resulting in 75 

oxidation, compaction and drying of peat making it highly flammable [Langner and Siegert, 76 

2009; Wösten et al., 2006]. Fire is often used to clear peatlands [Varkkey, 2013] and these 77 

fires can continue smouldering for months both at the surface and reaching deeper 78 

underground. Peatlands subjected to fire incidents have a high probability of recurrence of 79 

fire [Posa et al., 2011] because of the un-burnt biomass, removal of canopy shading and fire 80 

prone secondary vegetation that will act to provide further fuel and ignitions [Siegert et al., 81 

2001]. Due to the extensive degree of land degradation in the region, peatland fires now 82 

occur twice a year in the Peninsula Malaysia and Sumatra regions, during each dry season 83 

[Wooster et al., 2012], occurring in February–May and August–September, but may occur 84 

outside of these periods (e.g. the fires in Riau, Sumatra, in June 2013; [Gaveau et al., 2014]), 85 

depending on human and climate factors. 86 

Understanding within-biome emissions variability is an important challenge for assessing the 87 

atmospheric impacts of tropical peatland fires; in a broader context, van Leeuwen and van der 88 

Werf [2011] suggest that explaining emission factor (EF, grams of a compound emitted per 89 

kg of dry biomass burned) variability remains one of the biggest challenges for biomass 90 

burning emissions science. Despite this, our understanding of specific gaseous emissions 91 

from peat burning is limited to a handful of studies where small peat samples were burned in 92 

laboratories [Christian et al., 2003; Stockwell et al., 2014] and two field studies [Huijnen et 93 

al., 2016; Stockwell et al., 2016]. With the exception of Stockwell et al. [2014], these studies 94 

do not characterise the physicochemical properties of samples, and with the exception of 95 

Stockwell et al. [2016], nor were specific location, fire history or sample depth stated, 96 

prohibiting any explanation of the substantial variability between samples and/or studies. For 97 

example Huijnen et al. [2016] report that 7.8 g of methane is emitted per kilogram of dry peat 98 

that burns, whereas Christian et al. [2003] report 20.8 g, a difference of 91%, leading to 99 

major implications when scaled-up to regional GHG accounting. Similar large differences in 100 

the literature exist for other important emission factors (e.g. ammonia, a reactive nitrogen 101 

species).  102 

 103 

2 Tropical peatland fire emission factors 104 

Unlike logging, the open burning of biomass directly consumes carbon stocks and rapidly 105 

releases emissions (e.g. GHGs, haze-forming species, PM) to the atmosphere ‘on site’. How 106 

well peat fire emissions are accounted for depends upon uncertainties in the calculation of (i) 107 

The amount of peat consumed in the fire; and (ii) the emission factors used to convert the 108 

estimate of fuel consumption into an estimate of the mass of gas released per unit of dry fuel 109 

burned (g kg
-1

) [Penman et al., 2003]. Emission factors for CH4 and important haze-forming 110 

compounds vary massively between the few studies of gaseous emission factors [Christian et 111 

al., 2003; Stockwell et al., 2014; Stockwell et al., 2016]. The small number of samples in 112 

these studies, combined with limited information on physicochemical peat properties beyond 113 

elemental analysis, prohibits an explanation of the large differences in emissions factors 114 

between studies.  115 

Previous studies of peat fire gaseous emissions factors have predominantly undertaken 116 

Fourier transform infrared (FTIR) spectroscopic measurements of emissions from peat 117 
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samples burning in a laboratory. These studies have investigated fire emissions from samples 118 

of temperate peat [Stockwell et al., 2014; Wilson et al., 2015; Yokelson et al., 1997]; boreal 119 

peat [Stockwell et al., 2014; Yokelson et al., 1997]; and include studies of samples of tropical 120 

peat from Sumatra [Christian et al., 2003] and Kalimantan [Stockwell et al., 2015; Stockwell 121 

et al., 2014].  122 

Christian et al. [2003] report emission factors from just a single small sample of Sumatran 123 

peat, while Stockwell et al. [2014] report emission factors from two further samples from 124 

Kalimantan. Neither study reports any biological or chemical properties of the peat that might 125 

help to explain the large differences in emissions factors between the two studies. Both the 126 

2013 IPCC ‘Supplement to the 2006 Guidelines for National Greenhouse Gas Inventories: 127 

Wetlands’ [Hiraishi et al., 2014] and the emission factors database of Akagi et al. [2011] 128 

summarise emission factors from tropical peatland fires using only the laboratory findings of 129 

Christian et al. [2003], with the IPCC stating that these were “derived from a very limited 130 

number of studies”. Stockwell et al. [2014] and Stockwell et al. [2016] offer an update to the 131 

emission factors summarised by the IPCC and Akagi et al. [2011] by taking an average of 132 

their findings and those of Christian et al. [2003]. 133 

Despite these advances, it is difficult to assess the representativeness of emissions from 134 

laboratory-scale burns [Stockwell et al., 2016], particularly for peat fuels, that under 135 

landscape-scale burning conditions would smoulder at the surface or underground, with less 136 

access to oxygen than might be available under laboratory conditions [Rein et al., 2009]. As 137 

far as we are aware, the first in situ field measurements of gaseous fire emissions from 138 

tropical peatland fires are those by Hamada et al. [2013], whose study of landscape-scale 139 

peat fires near Palangka Raya (Kalimantan, Indonesia) in August 2009 reports emission ratios 140 

of CH4, N2O, and CO, to CO2. Huijnen et al. [2016] report emission factors for CO2, CO, and 141 

CH4 from peatland fires measured in situ using a portable cavity enhanced laser absorption 142 

spectrometer, also near Palangka Raya, in October 2015.  The most comprehensive field 143 

study to date is that of Stockwell et al. [2016] who reported gaseous and particulate emission 144 

factors for ~90 species from measurements at 35 smoke plumes during the 2015 El Niño in 145 

Central Kalimantan, Indonesia. There have been no published laboratory or in situ derived 146 

emission factors for Malaysian peat fires. 147 

van Leeuwen and van der Werf [2011] argue that future fire emissions measurement 148 

campaigns would be far more beneficial to the global modelling community if measurements 149 

were distributed spatially across biomes and paid more attention to fuel properties. The 150 

physical properties of peat fuels (e.g. bulk density, fuel moisture) are important because they 151 

will determine the combustion dynamics [Rein et al., 2009]. Therefore, degradation impacts 152 

(such as the lowering of the water table or artificial peat compaction) on the physical 153 

properties of tropical peats (e.g. moisture content, bulk density) may influence the relative 154 

abundances of CO2 and haze-forming compounds during fires [Moreno et al., 2011; Rein et 155 

al., 2009]. 156 

The chemical properties of fuels are important because they will determine the chemical 157 

composition of fire emissions. Whilst the carbon content of vegetation and tropical peat does 158 

not vary much beyond 50–56% [Christian et al., 2003; Stockwell et al., 2014], nitrogen 159 

content of tropical peats is known to vary from 1.0–4.4% and may be heavily influenced by 160 

land conversion [Andriesse, 1988] and management. This will influence nitrogenous fire EFs 161 

(e.g. NOX, N2O, NH3, HCN) which are important for O3 and haze formation. Direct impacts 162 

of degradation include the use of fertilizers on converted peatlands (increasing peat nitrogen), 163 

leading to the potential for increasing fire EFs for these nitrogen compounds. 164 
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Here we report new emission factors for twelve gas species measured using open-path 165 

Fourier transform infrared (OP-FTIR) spectroscopy in situ at ten plumes from actively 166 

burning tropical peatland fires in Southeast Pahang and North Selangor, Malaysia. These 167 

represent the first emission factors reported for Malaysian peatlands.  168 

 169 

3 Methodology 170 

3.1 Site and fire descriptions 171 

Tropical peatland fire emissions were measured at wildfires on peatlands along a stretch of 172 

road (Federal Route 3) connecting Pekan and Lanjut in the Pekan District of the State of 173 

Pahang, Malaysia in August 2015, and at oil palm plantations located about 20 km north of 174 

Sekinchan, off Federal Route 5, in the Sabak Bernam District of the State of Selangor, 175 

Malaysia in July 2016. Measurements at the Pahang sites were made on eight separate 176 

occasions in August 2016 at three different sites between Pekan and Lanjut, within a region 177 

80 km south of Kuantan. This area has a tropical wet climate (Koppen-Geiger classification: 178 

Af), with no well-defined dry or wet seasons, being hot and humid throughout the year. 179 

According to weather observations at Kuantan, mean annual rainfall is 2,900 mm. Peaks in 180 

rainfall occur in December (564 mm) and May (202 mm). August sees a mean maximum 181 

temperature of 32.3°C and mean rainfall of 174 mm. The peat soils at the Pahang sites, which 182 

were located on the coastal edge of the main southeast Pahang peat dome (Figure 1), were 183 

very shallow (0.2–0.8 m), typical of degraded peatlands subject to drainage, land clearance, 184 

and hence oxidative loss of the peat layer over some decades. Two further sets of 185 

measurements were made in July 2016 at one site in north Selangor. This area has a similar 186 

climate to that of southeast Pahang. Weather observations at the nearest weather station in 187 

Kuala Lumpur show a mean annual rainfall of 2,600 mm. July sees a mean maximum 188 

temperature of 32°C and mean rainfall of 150 mm. The peat soils at the Selangor sites, also 189 

located towards the edge of the main north Selangor dome, were deeper than those in Pahang, 190 

extending to 1.5 to 2 m depth. 191 

The flora of these areas is typical of deforested and degraded tropical peatlands across the 192 

Malay Peninsula with many introduced, weedy species. There is a ground cover of grasses 193 

and ferns as well as shrubs (particularly Melastoma sp. and Mimosa sp.) and trees such as 194 

Acacia mangium and Macaranga pruinosa. A.mangium is a widespread introduced species 195 

which can promote fire intensity and frequency due to flammable leaf litter and which 196 

produces enormous numbers of seeds that remain viable for years and whose germination is 197 

enhanced by fire. M.pruinosa is a native, secondary gap colonizer commonly found on the 198 

fringes of regional peatswamp forests. Oil palm plantations are usually cleared manually and 199 

treated with herbicides to remove other vegetation, leaving only a sparse ground cover of 200 

grasses and ferns. We found evidence of ongoing chemical fertiliser use at the Selangor oil 201 

palm plantation site (Site 4 in Figure 1), with open sacks of NPK fertiliser and pellets around 202 

the base of oil palms. 203 

Locations of actively burning peatland fires were identified by regular monitoring of the 204 

World Resources Institute Global Forest Watch Fires website 205 

(http://fires.globalforestwatch.org/) and NASA’s Worldview website 206 

(https://worldview.earthdata.nasa.gov/). These websites provide the near-real-time location of 207 

satellite-detected fires (thermal hotspots); true-colour and false-colour imagery that can be 208 

used to identify the presence of smoke plumes; as well as information on the location of 209 

http://fires.globalforestwatch.org/
https://worldview.earthdata.nasa.gov/
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peatlands. Many active fires were observed in SE Pahang (Sites 1–3 in Figure 1) in July 2015 210 

shortly before the ground measurement campaign; this led the research team to be based at 211 

Pekan, just north of these July fire clusters. Once a possible peatland fire had been identified, 212 

the research team drove in the direction of the fires until a visible confirmation of the location 213 

of the fire was established. Fewer fires were observed across Peninsula Malaysia in July 214 

2016, however a cluster of hotspots were detected just north of Sekinchan in N Selangor (Site 215 

4 in Figure 1) in early July which led the research team to this area where a number of small 216 

peatland fires were found on oil palm plantations. 217 

The opportunistic nature of this campaign allowed for emissions to be measured at a number 218 

of sites (Figure 1) that had different degradation characteristics, and at sites that had been 219 

burning for different lengths of time. Table 1 summarises the main characteristics of the fire 220 

sites and conditions studied for this paper. 221 

Site 1 (SE Pahang) was visited twice, on 6 August 2015, following rain, when small areas 222 

(patches of a few square metres) of the landscape were still smouldering following the large 223 

fires in mid-July; and on 12 August 2015, when relatively larger areas were burning (patches 224 

of >10 m
2
). Site 1 was largely devoid of any tree vegetation and surface vegetation was 225 

dominated by shrubs and leaf litter.  226 

Site 2 (SE Pahang) was visited four times. On 17, 18, and 20 August 2015, when a large 227 

landscape-scale peat fire was burning across many hectares, and on 24 August, following 228 

rain, when smaller patches of the landscape fire were persisting. Site 2 had also been burning 229 

since the large fires in the region in mid-July and is dominated by shrub vegetation with some 230 

secondary tree growth.  231 

Site 3 (SE Pahang) was visited twice, on 20 August 2015, when a large landscape-scale fire 232 

was burning through the area, and on 24 August, following rain, when smaller areas of the 233 

landscape (~10 m
2
) were burning. Site 3 had more secondary growth tree cover than the other 234 

sites.  235 

Measurements were made at Site 4 (N Selangor) on two occasions at a palm slash fire that 236 

was burning into the peat on 20 July 2016, and at the same fire seven days later on 27 July 237 

2016.  238 

  239 
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 240 

 241 

Figure 1. Map of southern Peninsula Malaysia and Sumatra, showing the location of sites 242 

measured in our two field campaigns; Sites 1–3 (Plumes P1–8) in August 2015, and Site 4 243 

(Plumes S1–2) in July 2016. The map also shows the location of Malaysian peatlands 244 

(Wetlands International, 2017) and Indonesian peatlands (Ministry of Agriculture, 2017). 245 

 246 

Table 1. List of the ten plumes studied using OP-FTIR during the two Malaysian 247 

measurement campaigns in SE Pahang (P1–8) and N Selangor (S1–2), with information 248 

about the site number (Figure 1), plot location, OP-FTIR pathlength, meteorological 249 

variables, as well as peat physicochemical characteristics, including bulk density, soil 250 

moisture, nitrogen-content, and carbon-content. MCE calculated using Eqn. 5 is also 251 

presented. Standard deviations are presented in parentheses. 252 

Plume 

 

Site Lat (°) Long (°) Path (m) 

Temp 

(°C) 

Pressure 

(hPa) 

Bulk density  

(g cm-3) 

Soil moist  

(%) N (%) C (%) MCE 

P1 1 3.361 103.420 17 34 1008 0.63 (0.03) 24 ± 0.0 - - 0.82 

P2 1 3.361 103.420 12 36 1011 0.46 (0.20) 20 ± 1.3 0.39 (0.46) 15.2 (7.0) 0.77 

P3 2 3.221 103.440 35; 29 40 1008 0.28 (0.09) 33 ± 0.1 0.69 (0.57) 20.9 (11.9) 0.83 

P4 2 3.221 103.440 23; 13 38 1009 0.31 (0.10) 31 ± 0.1 0.58 (0.51) 18.3 (13.4) 0.79 

P5 3 3.231 103.437 20; 12 40 1010 0.25 (0.05) 41 ± 0.6 1.75 (0.27) 43.3 (7.8) 0.79 

P6 2 3.221 103.440 17 40 1010 0.38 (0.04) 29 ± 1.2 0.51 (0.21) 23.2 (15.7) 0.75 

P7 3 3.231 103.437 12; 11; 10 34 1011 0.41 (0.11) 16 ± 0.3 1.76 (0.27) 41.1 (2.2) 0.78 

P8 2 3.221 103.440 11; 11 34 1011 0.37 (0.10) 28 ± 0.9 1.02 (0.58) 24.3 (13.5) 0.79 

S1 4 3.686 101.054 28 32 1008 0.62 (0.04) 53 ± 1.1 1.34 (0.22) 55.6 (2.6) 0.84 

S2 4 3.686 101.054 18 33 1006 0.61 (0.04) 52 ± 1.2 1.34 (0.22) 55.6 (2.6) 0.84 

 253 

  254 
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3.2 Fire emissions measurements 255 

Here we use an Open-Path Fourier Transform Infrared (OP-FTIR) approach to estimate path-256 

averaged mole fractions of twelve trace gases. The OP-FTIR system consists of a MIDAC 257 

Corporation M2000 Series FTIR spectrometer equipped with a Stirling-cooled mercury-258 

cadmium-telluride (MCT) detector, and fitted with a MIDAC custom-built 76 mm Newtonian 259 

telescope. The spectrometer is used to view a remotely located infrared source, consisting of 260 

a 12 V silicon carbide glowbar operating at 1500 K fitted in front of a 20 cm diameter gold-261 

plated collimator. The MIDAC system and its use to characterise biomass burning emissions 262 

via long OP-FTIR spectroscopy is detailed in Smith et al. [2014] and Wooster et al. [2011].  263 

At all sites, the OP-FTIR path was positioned directly above the actively burning peat (see 264 

Figure 2). There was no evidence of flaming combustion at any of the burns, with all smoke 265 

being produced by pyrolysis and smouldering combustion. Given that there were no quick 266 

changes to burning conditions during any one deployment, spectra were collected using 267 

sixteen co-added scans to increase signal-to-noise (generating approximately one measured 268 

spectrum every 10 s). Observations of atmospheric temperature and pressure (Table 1) were 269 

made using a co-located Kestrel 5500 Weather Meter (Nielsen-Kellerman Co.).  270 

Path-averaged trace gas mole fractions were retrieved from the OP-FTIR spectra using the 271 

Multiple Atmospheric Layer Transmission (MALT) program [Griffith, 1996], where selected 272 

spectral regions of the measured OP-FTIR spectra are fitted with synthetic spectra. A more 273 

comprehensive description of MALT can be found in Griffith [1996] and more details of the 274 

specific spectral regions used for the retrieval can be found in Paton-Walsh et al. [2014] and 275 

Smith et al. [2014]. An accuracy assessment of greenhouse gas mole fraction retrievals using 276 

this approach can be found in Smith et al. [2011], whose findings suggest that retrievals of 277 

CO2, CH4, and CO are accurate to within 5% of true mole fractions. Stockwell et al. [2016] 278 

also found retrieved mole fractions of CO2, CH4, and CO2 to have an uncertainty of 3–5%. 279 

 280 

Figure 2. (left) Photograph of a typical OP-FTIR setup measuring Plume P3 using a 35 m 281 

path between the FTIR spectrometer and infrared lamp (see Table 1); (right) Photographs 282 

from the sites of Plume P5 and Plume S1. 283 
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3.3 Calculation of emission ratios and emission factors 284 

The emission ratio of species i to a reference species y is given by: 285 

ER𝑖/𝑦 =
∆[𝑖]

∆[𝑦]
=

[𝑖]− [𝑖]𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

[𝑦]−[𝑦]𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
        (1) 286 

where Δ[i] is the excess mole fraction of species i. Following the same method as Paton-287 

Walsh et al. [2014], here we derive emission ratios via the gradient of the linear best fit of all 288 

measurements of the abundance of species i against the abundance of reference species y for 289 

each fire.  290 

The emission factor (EFi) refers to the mass of species i emitted per unit of dry fuel 291 

consumed, expressed in units of g kg
-1

. Here, the emission factors for all species (except CO2 292 

and CO) i are calculated via: 293 

EF𝑖 = ER𝑖/CO ×
MM𝑖

MMCO
× EFCO        (2) 294 

where ERi/CO is the emission ratio of species i to CO; MMi is the molecular mass of species i; 295 

MMCO is the molecular mass of CO (28.01 g mol
-1

); and EFCO is the emission factor for CO. 296 

The emission factor for CO2 and CO is determined using the “summation method” [Paton-297 

Walsh et al., 2014] where it is necessary to calculate the total excess amounts of each gas 298 

species by summing the excess amounts retrieved for each spectrum (i.e. [i] – [i]background in 299 

Eqn. 1); emission factors may then be calculated using the carbon mass balance method 300 

[Ward and Radke, 1993]: 301 

EFCO = (𝐹C − 𝐹PMC) × 1000 ×
MMCO

AMC
×

∆CO

∑ (NC𝑖×∆𝑖)𝑛
𝑖=1

    (3) 302 

EFCO2 = (𝐹C − 𝐹PMC) × 1000 ×
MMCO2

AMC
×

∆CO2

∑ (NC𝑖×∆𝑖)𝑛
𝑖=1

    (4) 303 

where FC is the measured carbon mass fraction of the fuel (see Sect. 2.4); FPMC is the carbon 304 

mass fraction of the fuel that is emitted as particulate matter (see below); AMC is the atomic 305 

mass of carbon (12 g mol
-1

); NCi is the number of carbon atoms in species i; ΔCO and Δi are 306 

the summed excess mole fractions of CO and species i respectively. The emission factor for 307 

CO2 is calculated using the molecular mass of CO2 (MMCO2 = 44.01 g mol
-1

) and ΔCO2 excess 308 

mole fractions of CO2.  309 

The fraction of carbon emitted as particulate matter (FPMC) is usually considered to be 310 

negligible and ignored in the application of carbon mass balance approaches for the 311 

calculation of gaseous fire emission factors (e.g. Wooster et al. [2011]). However, a recent in 312 

situ study of PM EFs for tropical (Indonesian) peatlands [Jayarathene et al., 2017] suggests 313 

that PM emissions are not negligible for tropical peatland fuels and should therefore be 314 

accounted for in calculations of gaseous emission factors. Jayarathene et al. [2017] report an 315 

EF of 17.3 g kg
-1

 for PM2.5 with the PM2.5 consisting of 73% carbon. We therefore assume 316 

FPMC of 0.0127 for Eqns. 3 and 4. EFs are directly proportional to the combined carbon mass 317 

fraction in Eqns. 3 and 4, enabling easy correction of determined average EFs should this be 318 

warranted by additional future PM measurements. 319 

 320 



Confidential manuscript submitted to Global Biogeochemical Cycles 

 

To enable comparison with other studies and understanding of variability between sites, we 321 

also report the modified combustion efficiency (MCE). MCE is an approximation of the 322 

combustion efficiency (the proportion of total carbon emitted as CO2) and is given by Hao 323 

and Ward [1993] as: 324 

MCE =  
∆[CO2]

∆[CO2]+ ∆[CO]
         (5) 325 

The calculation of emission factors and MCE require knowledge of the background mole 326 

fractions of all species. Background OP-FTIR spectra were collected upwind of each of our 327 

fire sites prior to measuring the fire emissions. 328 

3.4 Peat composition 329 

Four substrate samples were taken from the uppermost section of the underlying unburnt 330 

substrate/peat layer, or from areas immediately adjacent to burning areas at each burn site. 331 

Samples were taken along a transect between the spectrometer and infrared lamp using a 10 332 

cm diameter and 10 cm deep brass corer. Wet and dry mass were measured to calculate bulk 333 

density and moisture content on dry basis (Table 1). Total carbon (C) and nitrogen (N) 334 

content were also determined (Table 1). For this, peat sub-samples were first oven dried at 335 

105°C for 48 hours and then ball milled for homogenisation using a Planetary Ball Mill 336 

(Retsch-PM400, Castleford, UK). Analysis of C and N used 20 mg of material enclosed in a 337 

tin capsule with measurements undertaken using a total element analyzer (Thermo Flash EA 338 

1112, CE Instruments, Wigan, UK). 339 

 340 

4 Results and Discussion 341 

4.1 Peat substrate composition 342 

Given that the Pahang sites had been heavily degraded, with only a thin layer of peat 343 

remaining, the majority of the Pahang substrate samples were not pure ‘pristine’ peat, with 344 

our samples visibly containing sand or clay indicating that the peat fires had burned down to 345 

the interface with the mineral soil substrate at the Pahang sites (carbon contents ranging from 346 

15.2–43.3%), typical of degraded peats on the fringes of peat domes [Miettinen et al., 2017]. 347 

The samples taken at the Selangor site were clearly peat, the mean carbon content of these 348 

samples (55.6%) is close to that found for Sumatran peat (57.9%), as reported by Stockwell et 349 

al. [2014]. The nitrogen content of our samples varied significantly between 0.39% and 350 

1.76%. Nitrogen content of pristine peats is known to vary from 1.0% to 4.4% [Andriesse, 351 

1988]. The lower nitrogen content measured here (<1%) is probably a further indicator of 352 

degradation as the main source of nutrients to the soil (peatswamp forest leaf litter) had been 353 

removed. The mean nitrogen content at the Selangor palm oil sites (1.34%) is higher than that 354 

for the abandoned Pahang sites (0.96%) and we speculate that this is due to the use of 355 

artificial fertiliser on the palm oil plantations. 356 

We use a carbon fraction of 0.556 for the calculation of our peat fire emission factors (in Eqn. 357 

3), in line with samples that we determine to have been closer in composition to the overlying 358 

peat that was consumed by the fire, and also similar to the carbon fraction of 0.5793 ± 0.0252 359 

used by Stockwell et al. [2016], as found in the samples analysed Stockwell et al. [2014]. As 360 

is the case for the fraction of carbon emitted as PM,, EFs are directly proportional to the 361 
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carbon mass fraction, enabling easy correction of EFs should this be warranted by additional 362 

future carbon mass fraction measurements. 363 

All of our sites exhibited high bulk density for tropical peat, with bulk densities ranging from 364 

0.28 to 0.63 g cm
-3

; this compares with 0.09–0.11 g cm
-3

 that might be expected for pristine 365 

tropical peat [Page et al., 2011; Warren et al., 2012]. Drainage causes loss of water from peat 366 

pores and shrinkage through drying, resulting in an increase in bulk density which is 367 

exacerbated by the resulting aerobic conditions causing peat degradation due to oxidation, 368 

increased microbial decomposition and compaction [Könönen et al., 2015]. Oil palm 369 

plantation management with addition of lime and fertilizers further enhances microbial peat 370 

breakdown, while artificial mechanical compaction (designed to increase root stability and 371 

per volume nutrient status [Melling et al., 2009], also results in further increases to bulk 372 

[Evers et al., 2016]. The mean bulk density at our two Selangor sites located on palm oil 373 

plantations (0.62 g cm
-3

) was significantly higher than the mean bulk density at our 374 

deforested but abandoned Pahang sites (0.39 g cm
-3

), probably due to extensive use of heavy 375 

machinery and purposeful artificial compaction of the peat soil at the Selangor sites. 376 

4.2 Trace gas emission factors and modified combustion efficiency 377 

Figures 3 and 4 show example time series for each of the investigated species and their 378 

corresponding emission ratio plots, respectively, for Plume P5. Our emission ratio plots show 379 

a good correlation between species and mole fractions elevated far above background, 380 

indicating that the plumes sampled at fires in this study were well-mixed [Stockwell et al., 381 

2016], and giving confidence to the individual EFs calculated for each fire (Table 2). 382 

Table 2 presents the individual trace gas EFs and their associated uncertainties (in accordance 383 

with Paton-Walsh et al. [2014]) for each of the ten plumes sampled. An EF is calculated only 384 

when a trace gas species has a strong emission ratio correlation (>0.4). Table 3 presents a 385 

summary of our study-averaged EFs and one standard deviation of the means for all species. 386 

From measurements of ten tropical peat fire plumes, we find the major trace gas emissions by 387 

mass (EF > 0.5 g kg
-1

, as defined by Stockwell et al. [2016] to be: carbon dioxide (1579 ± 388 

58); carbon monoxide (251 ± 39); methane (11.00 ± 6.11); ammonia (7.82 ± 4.37); acetic 389 

acid (5.02 ± 1.64); hydrogen cyanide (3.79 ± 1.97); methanol (2.83 ± 0.84); ethylene (2.30 ± 390 

2.79); ethane (2.17 ± 0.81); and formaldehyde (0.77 ± 0.64). We report EFs for two further 391 

species that may be categorised as minor trace gas emissions by mass: formic acid (0.25 ± 392 

0.04); and acetylene (0.06 ± 0.01). The modified combustion efficiency (MCE) of the fire 393 

burning to produce the plumes sampled here ranged from 0.774 to 0.839 (Table 2), with an 394 

average of 0.800 ± 0.031 indicating pure smouldering combustion. 395 

 396 

 397 

 398 

 399 

 400 

 401 
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Table 2. Emission factors (g kg
–1

 of dry fuel burned) for each individual plume, calculated 402 

using the standardised method outlined in Paton-Walsh et al. [2014]. Uncertainties were 403 

calculated in quadrature from those associated with the trace gas emission ratios and a ±10% 404 

uncertainty in the assumed fuel carbon. 405 

PLUME P1 P2 P3 P4 P5 P6 P7 P8 S1 S2 

SITE 1 1 2 2 3 2 3 2 4 4 

MCE 0.82 0.77 0.83 0.79 0.79 0.75 0.78 0.79 0.84 0.84 

CO2 1545±154 1541±154 1662±166 1579±158 1575±157 1488±149 1535±153 1563±156 1653±165 1648±165 

CO 216±34 286±46 218±35 261±42 261±42 314±50 283±45 266±43 201±32 200±32 

CH4 26.19±4.20 6.67±1.08 5.35±0.88 7.68±1.27 8.38±1.37 9.32±1.47 8.83±1.37 8.83±1.37 14.76±2.35 14.07±2.25 

C2H2 0.06±0.01 nr 0.05±0.01 nr nr nr nr nr nr nr 

C2H4 10.16±1.02 1.57±0.16 1.23±0.13 1.40±0.14 1.71±0.17 1.25±0.13 1.65±0.17 1.46±0.15 0.80±0.08 1.68±0.17 

C2H6 3.88±0.62 0.90±0.15 1.66±0.26 2.24±0.36 2.02±0.32 2.83±0.46 2.07±0.32 2.05±0.32 2.56±0.41 1.44±0.22 

H2CO nr 1.83±0.19 0.66±0.07 0.46±0.05 0.76±0.08 0.16±0.02 nr nr nr nr 

HCOOH nr nr 0.28±0.05 nr 0.23±0.04 nr nr nr nr nr 

CH3OH 2.79±0.45 3.82±0.62 1.62±0.26 1.94±0.31 2.50±0.40 2.37±0.38 2.91±0.47 3.28±0.53 2.68±0.43 4.46±0.71 

CH3COOH 8.91±1.43 3.66±0.59 3.65±0.59 4.14±0.66 3.78±0.61 4.46±0.71 4.14±0.66 5.65±0.90 6.20±1.00 5.61±0.90 

HCN 3.43±0.55 3.26±0.52 0.34±0.06 1.96±0.31 5.99±0.96 3.26±0.52 6.24±1.00 5.92±0.95 3.71±0.22 nr 

NH3 14.46±2.34 3.08±0.49 3.74±0.60 5.24±0.84 8.32±1.33 5.75±0.92 9.06±1.46 5.34±0.85 7.07±1.13 16.13±2.60 

 406 

 407 

 408 

 409 

 410 

Table 3. Emission factors (g kg
–1

 of dry fuel burned) reported by this study of Malaysian 411 

peatlands and those for the same trace gases reported by previous in situ Indonesian peatland 412 

studies [Huijnen et al., 2016; Stockwell et al., 2016] and laboratory studies [Christian et al., 413 

2003; Stockwell et al., 2014]. The mean and standard deviation (in parentheses) are calculated 414 

from individual plumes (for in situ studies) or samples (for laboratory studies). 415 

 Emission Factor (g kg-1 dry fuel burned) 

Trace Gas Malaysian peat  

(in situ)  

(this study) 

Kalimantan peat  

(in situ) 

(Stockwell et al. 2016) 

Kalimantan peat  

(in situ) 

(Huijnen et al. 2016) 

Sumatran peat (lab) 

(Christian et al. 2003) 

Kalimantan peat (lab) 

(Stockwell et al. 2014) 

MCE 0.800 (0.030) 0.772 (0.053) - 0.838 0.816 (0.065) 

CO2 1579 (58) 1564 (77) 1625 (170) 1703 1637 (204) 

CO 251 (39) 291 (49) 234 (47) 210.3 233 (72) 

CH4 11.00 (6.11) 9.51 (4.74) 7.8 (2.5) 20.8 12.8 (6.6) 

C2H2 0.06 (0.01) 0.121 (0.066) - 0.06 0.18 (0.05) 

C2H4 2.30 (2.79) 0.961 (0.528) - 2.57 1.39 (0.62) 

C2H6 2.17 (0.81) 1.52 (0.66) - - - 

H2CO 0.77 (0.64) 0.867 (0.479) - - 1.25 (0.79) 

HCOOH 0.25 (0.04) 0.180 (0.085) - 0.79 0.55 (0.05) 

CH3OH 2.83 (0.84) 2.14 (1.22) - 8.69 3.24 (1.39) 

CH3COOH 5.02 (1.64) 3.89 (1.65) - 8.97 7.65 (3.65) 

HCN 3.79 (1.97) 5.75 (1.60) - 8.11 - 

NH3 7.82 (4.37) 2.86 (1.00) - 19.92 1.39 (0.97) 
a Extratropical peat emission factors are taken from Stockwell et al. [2014], which are a combination of their findings with those from 416 
Yokelson et al. [1997] 417 

 418 
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 419 

Figure 3. Time series of path-averaged trace gas mole fractions (in ppm) for Plume P5 as 420 

measured using a 12 m path (20 August 2015) during the strong El Niño dry period of 2015. 421 

Any gaps in the time series of specific trace gases are due to periods of low signal-to-noise 422 

within the spectral window used for the retrieval of that particular species. A photograph 423 

taken during the measurements of P5 is presented in Fig. 2. Emission ratio plots for this 424 

plume are presented in Figure 4. 425 



Confidential manuscript submitted to Global Biogeochemical Cycles 

 

 426 

Figure 4. Example scatter plots of the measured trace gas pathlength-averaged mole fractions 427 

used to calculate emission ratios (ERi/CO), which are in turn used to calculate emission factors 428 

through Eqn. 2. The data presented here are from Plume P5 (Figs. 2 and 3). For each of the 429 

eight trace gases shown above, the emission ratio and the R
2
 is given towards the top of each 430 

plot. 431 

 432 

4.3 Emission factor inter-plume variability and comparison with bulk density 433 

We found substantial inter-plume variability for EFs of a number of trace gas species (Table 434 

2). In particular, we find significant variability (percentage difference between minimum and 435 

maximum EF > 130%) for the EFs of methane (5.35–26.19 g kg
-1

); ammonia (3.08–16.13 g 436 

kg
-1

); and hydrogen cyanide (0.34–6.24 g kg
-1

). The majority of the other trace gas species 437 

exhibit substantial variability with the percentage difference between minimum and 438 

maximum EFs close to 100%. Only CO2 shows less variability (1535–1662 g kg
-1

, a 439 

percentage difference of 7.9%), while CO shows moderate variability (200–314 g kg
-1

, a 440 

percentage difference of 44.3%). Plume P1 is particularly anomalous, with significantly 441 
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elevated EFs for methane (26.19 g kg
-1

); ammonia (14.46 g kg
-1

); ethylene (10.16 g kg
-1

); and 442 

acetic acid (8.91 g kg
-1

).  443 

Many biomass burning studies use MCE to explain variability of non-CO2 trace gas species 444 

EFs (e.g. Meyer et al. [2012]) [Stockwell et al., 2016]. In most biomass fires (e.g. savanna, 445 

boreal forest) there is a mix of flaming and smouldering combustion, with the EFs of 446 

products of flaming combustion (e.g. CO2) tending to correlate with MCE, and the products 447 

of smouldering combustion (e.g. CO) tending to anticorrelate with MCE [Burling et al., 448 

2011]. The plumes measured here, however, originate from smouldering combustion only, 449 

and we find no dependence of our EFs on MCE. This echoes the findings of Stockwell et al. 450 

[2016] who also find no dependence of their Indonesian peat fire EFs on MCE. 451 

The three plumes with the highest EFs for methane (P1, S1, S2) all originated from sites with 452 

significantly higher bulk density of the burn substrate (a mean bulk density of 0.62 g cm
-3

, 453 

compared with a mean of 0.35 g cm
-3

 for our other sites). A comparison of substrate bulk 454 

densities with methane emission factors (Figure 5) shows a strong positive correlation 455 

between these variables (R
2
 = 0.61, p<0.01). Plume P1 is somewhat of an outlier with a 456 

particularly high EF for CH4. We decided to re-run the regression analysis without this 457 

outlier; this results in a stronger relationship (R
2
 = 0.71, p<0.01). This is a novel finding that 458 

suggests an important influence of the physical properties of the burn site on the resultant 459 

emissions. We suggest that our results provide evidence to support the influence of bulk 460 

density on burn dynamics [Rein, 2013; Wijedasa et al., 2016], whereby a higher bulk density 461 

maintains both a higher fire temperature and slower spread rate which when combined with a 462 

lack of oxygen (also as a result of high bulk density), will produce more emissions through 463 

non-flaming pyrolysis and glowing combustion (gasification) [Rein, 2013]. Methane is 464 

primarily a product of glowing combustion [Yokelson et al., 1997] and also a product of 465 

pyrolysis [Lobert and Warnatz, 1993], and so we therefore propose a close link between peat 466 

fire methane emission factors and site bulk density (a function of both drainage-related 467 

degradation and artificial compaction). It is important to note that the bulk density at our 468 

measurement sites was two-to-six times higher than that typical for pristine peats [Page et al., 469 

2011] and we do not recommend extending the relationship we find here to emissions from 470 

fires in pristine peatlands. Further controlled experimentation is required to investigate the 471 

influence of lower bulk densities on fire emissions from peat fuels. 472 

Both ammonia, an important reactive nitrogen species [Benedict et al., 2017]; and hydrogen 473 

cyanide, a biomass burning tracer species [Duflot et al., 2012] exhibit substantial inter-plume 474 

variability. It is known that smoke from wildfires contains enhanced concentrations of 475 

reactive nitrogen species such as ammonia [Benedict et al., 2017], and the nitrogen content of 476 

fuels is known to influence nitrogen species emissions during a fire [Burling et al., 2010; 477 

Coggon et al., 2016; Yokelson et al., 1996]. Further controlled experimentation is required to 478 

investigate whether fertilizer addition (i.e. as was evident at our Selangor site) alters peat 479 

chemical composition, and whether this in turn affects nitrogeneous compound emissions 480 

during fires. 481 
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 482 

Figure 5. Scatter plot showing the relationship between peat substrate bulk density and the 483 

methane emission factor for each of our plumes. A linear regression line of best-fit is 484 

presented using all of the data points (solid black line) as well as a best-fit line that excludes 485 

the outlier with the highest CH4 EF (Plume P1). Both lines of best-fit have a statistically 486 

significant non-zero slope (p<0.01). 487 

4.4 Representativeness and comparison of emission factors to previous studies 488 

Here we present the first tropical peat fire emission factors for Peninsula Malaysia. All 489 

previous studies of tropical peat emission factors have been laboratory studies of Sumatran 490 

[Christian et al., 2003] or Kalimantan [Stockwell et al., 2014] peat, and only one other 491 

comprehensive in situ study of peat fires in Kalimantan [Stockwell et al., 2016]. Hamada et 492 

al. [2013] and Huijnen et al. [2016] both provide information for a limited range of species 493 

(CO2, CO, CH4) as measured in situ at peat fires in Kalimantan. These emission factors are 494 

summarised in Table 3 for comparison. 495 

As noted by two other in situ studies [Huijnen et al., 2016; Stockwell et al., 2016], we also 496 

found little evidence of surface fuel combustion at our Pahang sites; the surface grasses and 497 

shrubs remained unburned although heavily dried by the heat from the fire (see Figure 2). 498 

The peat fires at our Selangor sites had clearly been ignited by a surface palm slash fire, 499 

although the fire in the palm slash had long been extinguished upon our arrival on site, with 500 

just the smouldering peat remaining. We therefore consider the EFs presented here to be of 501 

“pure” peat smoke, in line with the other studies presented in Table 3. The relative 502 

contribution of emissions from combustion of the surface layer is small compared to the 503 

emissions from burning peat [Page et al., 2002], and the complexities involved in the 504 

calculation of combined surface-peat EFs is discussed at length in Stockwell et al. [2016]. 505 

An important finding from the comparison of our EFs with those from previous studies 506 

(Table 3) is the difference between our EFs and those measured in the laboratory study of 507 

Christian et al. [2003]. The EFs for CO2, CH4, and CO from Christian et al. [2003] were 508 

subsequently adopted by IPCC greenhouse gas guidelines [Hiraishi et al., 2014]. Stockwell et 509 
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al. [2016] suggest some significant adjustments to the values used by the IPCC, with a 510 

notable decrease in CO2 (–8%) and CH4 (–55%) EFs, and an increase to the CO (+39%) EF. 511 

Our findings also suggest that an adjustment is needed to the IPCC values. We also find a 512 

decrease is needed for CO2 (–5%) and CH4 (–46%), and an increase needed for CO (+22%). 513 

Both this study and Stockwell et al. [2016] find significantly smaller NH3 EFs than Christian 514 

et al. [2003], finding a decrease of 60% and 86%, respectively. The magnitude of these 515 

adjustments are similar to those suggested by the only other comprehensive in situ study of 516 

tropical peatland emissions [Stockwell et al., 2016], lending confidence to our assertion that 517 

field-measured values are more appropriate. We suggest that any future updates to the IPCC 518 

guidelines and/or EF databases (e.g. Akagi et al. [2011]) use a combination of the improved 519 

field-measured EFs presented here in Table 3 and those reported in other field studies, as well 520 

as any future results from field campaigns. We find similar EFs to Stockwell et al. [2016] for 521 

the majority of the other gas species in Table 3 (and thus similar differences from those used 522 

by the IPCC), with the exception of ethylene (C2H4), which we find to have an EF closer to 523 

that found by the previous laboratory studies. We present recommended inter-study averaged 524 

EFs for tropical peatland fires in Table 4. 525 

 526 

Table 4. Recommended tropical peatland EFs for any future updates to Akagi et al. [2011] 527 

and/or the IPCC Greenhouse Gas Guidelines [Hiraishi et al., 2014] (an asterisk indicates 528 

those species that are provided by the IPCC). The recommended EF is calculated from the 529 

mean of EFs from this study and the two other in situ studies [Huijnen et al., 2016; Stockwell 530 

et al., 2016]. A standard deviation is presented in parentheses where three studies are 531 

available (for CO2, CO, CH4), otherwise we report the range of values from the two available 532 

studies. 533 

Trace Gas EF (g kg
-1

) 

CO2* 1589 (32) 

CO* 259 (29) 

CH4* 9.44 (1.6) 

C2H2 0.09 (0.06–0.12) 

C2H4 1.63 (0.96–2.30) 

C2H6 1.84 (1.52–2.17) 

H2CO 0.82 (0.77–0.87) 

HCOOH 0.22 (0.18–0.25) 

CH3OH 2.49 (2.14–2.83) 

CH3COOH 4.46 (3.89–5.02) 

HCN 4.77 (3.79–5.75) 

NH3 5.34 (2.86–7.82) 

 534 

5 Summary and conclusions 535 

We present results from open-path FTIR spectroscopy measurements of emission factors for 536 

tropical peatland fires from ten fire plumes in Peninsular Malaysia. These represent the first 537 

published emission factors for fires burning in Malaysian peatlands, and only the second 538 

comprehensive set of field measurements for the tropical peatland ecosystem. We find EFs of 539 

similar magnitude to those of Stockwell et al. [2016] (the only other comprehensive field 540 

study of tropical peatland fire EFs) and we thus echo their suggestion that future total peat 541 

fire emissions modelling uses field-measured EFs as a more reliable alternative to the earlier 542 

laboratory studies. Mean EFs calculated from our findings, along with those of Stockwell et 543 

al. [2016] and Huijnen et al. [2016] (CO2, CO, and CH4 only) are presented in Table 4. We 544 

recommend these as the best available ecosystem-specific emission factors for tropical peat 545 
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fires, as determined by field measurements.  Field-derived emission factors for a further ~80 546 

gas species and aerosol optical properties from Indonesian peatland fires can be found in 547 

Stockwell et al. [2016] 548 

Further to previous studies of tropical peatland fires, we present the first evidence that may be 549 

used to explain the large inter-plume variability found by our study and others. We find 550 

substantial inter-plume variability in emission factors for methane, a potent greenhouse gas 551 

[Hiraishi et al., 2014]. We find evidence, supported by a theoretical framework, which 552 

suggests much of this variability may be determined by the bulk density of the burn substrate 553 

(Figure 5). This relationship between burn substrate properties and fire emissions will need 554 

further testing through both controlled laboratory experiments and through better 555 

characterisation of fuels by in situ fire emissions field measurements. 556 
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