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Abstract  24 

Nitrogen (N) is the major limiting nutrient for phytoplankton growth and productivity in large 25 

parts of the world’s oceans. Differential preferences for specific N substrates may be important 26 

in controlling phytoplankton community composition. To date, there is limited information on 27 

how specific N substrates influence the composition of naturally occurring microbial 28 

communities. We investigated the effect of nitrate (NO3
-), ammonium (NH4

+) and urea on 29 

microbial and phytoplankton community composition (cell abundances and 16S rRNA gene 30 

profiling) and functioning (photosynthetic activity, carbon fixation rates) in the oligotrophic 31 

waters of the North Pacific Ocean. All N substrates tested significantly stimulated phytoplankton 32 

growth and productivity. Urea resulted in the greatest (>300%) increases in chlorophyll a (<0.06 33 

and ~0.19 µg L-1 in the control and urea addition, respectively) and productivity (<0.4 and ~1.4 34 

µmol C L-1 d-1 in the control and urea addition, respectively) at two experimental stations, largely 35 

due to increased abundances of Prochlorococcus (Cyanobacteria). Two abundant clades of 36 

Prochlorococcus, High Light I and II, demonstrated similar responses to urea, suggesting this 37 

substrate is likely an important N source for natural Prochlorococcus populations. In contrast, 38 

the heterotrophic community composition changed most in response to NH4
+. Finally, the time 39 

and magnitude of response to N amendments varied with geographic location, likely due to 40 

differences in microbial community composition and their nutrient status. Our results provide 41 

support for the hypothesis that changes in N supply would likely favor specific populations of 42 

phytoplankton in different oceanic regions and thus, affect both biogeochemical cycles and 43 

ecological processes.     44 

 45 

 46 
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Introduction 47 

Nitrogen (N) is a major component of cell constituents, including proteins and nucleic 48 

acids, and is considered the primary limiting element for phytoplankton growth and 49 

photosynthetic carbon fixation in oligotrophic oceans (Eppley et al. 1977; Graziano et al. 1996; 50 

Mills et al. 2004; Moore et al. 2013). While there is an intricate balance among iron (Fe), 51 

phosphorus (P) and N in shaping microbial communities in the marine environment, nutrient 52 

enrichment experiments have demonstrated that the availability of N alone can stimulate growth 53 

of phytoplankton and affect heterotrophic communities in the oligotrophic ocean (Mills et al. 54 

2004, 2008; Bonnet et al. 2008; Davey et al. 2008; Moore et al. 2008; Ortega-Retuerta et al. 55 

2012). 56 

N actively cycles in the upper ocean where sunlight provides energy that rapidly fuels 57 

production and consumption of N compounds. The major forms of N in the surface ocean 58 

include dinitrogen gas (N2), ammonium (NH4
+), nitrate (NO3

–), nitrite (NO2
–) and dissolved 59 

organic N (DON). N2 fixation can account for 40-50% of net community production in the North 60 

Pacific Subtropical Gyre (NPSG) (Böttjer et al. 2016), however, net community production in 61 

this ecosystem is less than 10% of gross primary production (Quay et al. 2010). Although 62 

abundant, the bulk of the DON pool, except urea, amino acids and nucleotides, generally do not 63 

appear readily bioavailable and are believed to be minor sources of N for most phytoplankton 64 

(Aluwihare and Meador 2008; Mulholland and Lomas 2008). The major fixed N sources (NH4
+, 65 

NO3
–, and urea) have different sources and rates of production and turnover. Regeneration by 66 

heterotrophic bacteria, and excretion and release by zooplankton, are the major natural sources of 67 

NH4
+ and urea in the upper ocean (Corner and Newell 1967; Mayzaud et al. 1973; Mitamura and 68 

Saijo 1981; Bidigare 1983; Hansell and Goering 1989; Bronk et al. 1998). Regenerated 69 
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production supported by this rapidly recycled N accounts for over 90% of gross primary 70 

production in the oligotrophic oceans (Eppley and Peterson 1979). NO3
- is supplied to the 71 

euphotic zone predominately via mixing or upwelling of sub-euphotic zone waters with 72 

additional contributions derived from nitrification within the euphotic zone (Dore and Karl 1996; 73 

Yool et al. 2007) and atmospheric deposition (Duce et al. 2008). N from sources external to the 74 

surface ocean supports “new” production, which balances N export losses due to sinking to the 75 

deep ocean (Dugdale and Goering 1967). New N is also introduced through N2 fixation carried 76 

out by diazotrophs, a small subset of the marine microbial community (Dugdale and Goering 77 

1967; Zehr and Kudela 2011). Recycling of diazotroph organic matter transfers this new N to the 78 

dissolved pool as DON (e.g. amino acids and urea) and/or NH4
+ where it can be used to fuel 79 

primary production (Montoya et al. 2002; Zehr and Kudela 2011). Thus, the chemical form of N 80 

is an important factor in the functioning of ocean ecosystems.  81 

Microbial communities that utilize dissolved N in oligotrophic oceans are diverse, but are 82 

comprised largely of cyanobacteria (Prochlorococcus and Synechococcus), diatoms, eukaryotic 83 

picoplankton (for example, prymnesiophytes and pelagophytes) and a variety of heterotrophic 84 

bacteria (including Pelagibacter ubique) and Archaea (Waterbury et al. 1979; Chisholm et al. 85 

1988; DuRand et al. 2001; Karner et al. 2001; Morris et al. 2002; Worden et al. 2004). These 86 

microorganisms have a variety of N assimilation strategies that differ in the rates of N uptake and 87 

assimilation, regulation of N metabolism, and their abilities to use different N forms. For 88 

example, N-limited Low Light (LL) Prochlorococcus strains appear unable to grow on NO3
– 89 

(Moore et al. 2002), while some strains of the High Light (HL) ecotypes are able to assimilate 90 

NO3
–, although at reduced rates of growth relative to other substrates (e.g. NH4

+, Martiny et al. 91 

2009; Berube et al. 2015). Many marine microorganisms use NO3
- as a source of N, including 92 
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diatoms and Synechococcus, as well as some heterotrophic bacteria (Allen et al. 2001, 2006; 93 

Casey et al. 2007; Collier et al. 2012). Isotopic analyses suggest that eukaryotic phytoplankton 94 

smaller than 30 µm in the Sargasso Sea acquire a major fraction of their N demand from NO3
- 95 

(Fawcett et al. 2011). The assimilation of urea by phototrophic and heterotrophic marine 96 

microorganisms is common across numerous phylogenetic groups and ecological niches 97 

(McCarthy et al. 1972a, b; Hallam et al. 2006; Baker et al. 2009; Collier et al. 2009; review by 98 

Solomon et al. 2010). Many Prochlorococcus strains and all tested Synechococcus strains can 99 

utilize urea, yet this N substrate supports different growth rates within each genus (Moore et al. 100 

2002). Moreover, rates of urea uptake and assimilation in natural microbial populations appear 101 

comparable to those of NH4
+ (Sahlsten 1987; Price and Harrison 1988), although rates differ 102 

among phytoplankton taxa (Lomas and Glibert, 2000; Moore et al. 2002; Fan et al. 2003). 103 

Despite the accumulated knowledge about N utilization by marine microorganisms, taxon-104 

specific preferences and utilization efficiencies for different N species is still ambiguous, 105 

especially in the oligotrophic open ocean.  106 

The form and supply of different N substrates are important controls on microbial 107 

community composition. Understanding the effect of different N forms is critical because N 108 

supply to the surface oceans will likely change due to greater stratification caused by climate 109 

change (Gruber and Galloway 2008; Capotondi et al. 2012; Kim et al. 2014), and the projected 110 

increase in atmospheric anthropogenic N deposition (Duce et al. 2008). We performed nutrient 111 

enrichment experiments to determine the functional and taxonomic responses in microbial 112 

communities to different N forms and whether the response varies depending on the nutrient 113 

status (mesotrophic versus oligotrophic) in the North Pacific Ocean. The measured functional 114 

responses included CO2 fixation rates and changes in chlorophyll a (Chl a) and photosynthetic 115 
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parameters, while the taxonomic responses were assessed by quantifying the abundance of major 116 

phytoplankton groups and heterotrophic bacteria as well as assessing relative shifts in 117 

cyanobacterial and heterotrophic community composition based on 16S rRNA gene sequencing.  118 

 119 

Materials and Methods 120 

Nutrient amendments experiments  121 

Experiments were conducted in August of 2014 during the Nitrogen Effects on Marine 122 

microOrganisms cruise (NEMO, R/V New Horizon) at two sites in the North Pacific Ocean: one 123 

within the western part of transitional zone of California Current System (CCS; Station 38, 124 

hereafter referred to as TZ), and one in the oligotrophic NPSG (Station 52, hereafter referred to 125 

as GY: Fig. 1). The TZ site was in an anticyclonic eddy, based on the sea surface height anomaly 126 

(Fig. 1b). The two sites were chosen based on a priori assumptions of nutrient limitation of 127 

primary productivity at each site. The availability of Fe can play an important role in controlling 128 

phytoplankton growth in the CCS (Biller and Bruland 2014). In contrast, N was assumed to be 129 

limiting primary productivity in the NPSG. All experiments were undertaken using strict trace-130 

metal clean techniques (Mills et al. 2004) during the preparation and sampling of the 131 

experiments. Water at each station was collected from 25 m depth using a towed fish with Teflon 132 

diaphragm pump. The water was pumped gently into a 40 L carboy in a trace-metal clean 133 

laboratory van.  This allowed mixing of the seawater before it was distributed into incubation 134 

bottles. Seawater was subsampled into 4 L polycarbonate bottles (Thermo Scientific™ 135 

Nalgene™) that had been acid-washed and, prior to the experiment, rinsed thoroughly with 136 

seawater at the site of each experiment. The bottles used in the first experiment were acid-rinsed 137 

and reused for the same treatments in the second experiment. In the TZ site experiment, triplicate 138 
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incubation bottles were amended with either NO3
- (final concentration 5.0 µmol L-1), NH4

+ (final 139 

concentration 5.0 µmol L-1), urea (final concentration 5.0 µmol N L-1), 0.2 µm pre-filtered deep 140 

(600 m) seawater (FDW) (12.5% of total volume, equivalent to ~5 µmol L-1 NO3
- addition), 141 

Fe3+(final concentration 2 nmol L-1) or a combined treatment containing NO3
- and Fe3+ (final 142 

concentrations of 5 µmol L-1 and 2 nmol L-1, respectively). The Fe and Fe+NO3
- treatments were 143 

used to test for Fe and Fe+NO3
- co-limitation. The GY experiment was similar in design with the 144 

exception that all N compounds were added to achieve a final concentration of 2.5 µmol N L-1, 145 

and 6% of total volume of FDW was added (an approximately 2.5 µmol L-1 NO3
- addition).	
  The 146 

N additions in the TZ experiment were higher than in the GY experiment based on previous 147 

work in the CCS by Biller and Bruland (2014) who measured residual NO3
- concentrations in the 148 

transitional zone of CCS ranging from 5-15 µmol L-1, while residual NO3
- at the GY was 149 

negligible (<10 nmol L-1). In both experiments, the Controls consisted of triplicate bottles filled 150 

with unamended seawater from the respective station and depth. The Controls were incubated 151 

and processed in the same manner as the experimental treatments. All nutrient additions were 152 

undertaken in a laminar flow hood. The nutrient solutions, except the Fe solution, were passed 153 

through Chelex100 to minimize trace metal contamination. Purity controls were measured for all 154 

stocks to ensure the absence of contamination (i.e., Fe stocks did not contain dissolved N, N 155 

stocks did not contain Fe, and individual N stocks were not contaminated with other N species). 156 

Incubation bottles were placed in a flow-through surface seawater incubator, to achieve surface 157 

ocean temperatures during the experiment, with neutral screening to attenuate incident light to 158 

approximately 35% of the surface solar irradiance. The setup and samplings of the setup (T0), 159 

and at 24 (T24) and 48 (T48) hrs after the start of the incubation were undertaken before dawn. 160 

Rates of primary productivity and concentrations of Chl a and nutrients were measured in 161 
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samples immediately after the nutrient amendments (T0) and at T48. Samples for 162 

photophysiological parameters, cell abundance, and microbial community composition were 163 

collected prior to the nutrient amendments (T0), at T24, and T48. 164 

 165 

Nutrient analysis  166 

Samples for subsequent analyses of nutrient concentrations were collected in acid-167 

washed, sample rinsed polyethylene bottles and stored frozen at -20°C until analyzed (Dore et al. 168 

1996). NO3
-+NO2

- , soluble reactive phosphorus (SRP) and Si(OH)4 concentrations (µmol L-1) 169 

were determined using a segmented flow continuous flow automated nutrient analyzer (SEAL 170 

Analytical - AA3) using standard colorimetric techniques (Strickland and Parson, 1972). 171 

Accuracy of each analysis was checked using WAKO the International Cooperative Study of the 172 

Kuroshio and Adjacent Regions (CSK) and Ocean Scientific International Ltd. (OSIL) reference 173 

materials. NO3
-+NO2

- concentrations <500 nmol L-1 were determined using the high-sensitivity 174 

chemiluminescence technique (Garside 1982; Dore and Karl 1996) with a detection limit of 1 175 

nmol L-1. NH4
+ samples were measured using the SEAL AA3 coupled with a 2 m liquid 176 

waveguide capillary cell, employing indophenol blue chemistry (Li et al. 2005; Zhu et al. 2014). 177 

The limit of detection for this method is 4 nmol L-1. 178 

Samples for subsequent analyses of trace metal concentrations were collected using an 179 

acid-cleaned hose (polyvinyl chloride, PVC) attached to a plastic-coated steel cable and lowered 180 

to the desired collection depth (25 m). Water was pumped to the surface using a Teflon bellows 181 

pump (Almatec A15) and transferred, entirely enclosed, into a trace-metal clean sampling 182 

container located in an on-deck trace-metal clean lab. Samples for the determination of dissolved 183 

Fe concentrations were filtered through a 0.2 µm Sartobran 300 capsule filter (Sartobran 300, 184 
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Sartorius), collected in acid-cleaned 125 mL low density polyethylene (LDPE, Nalgene) bottles, 185 

and immediately acidified with 150 µL hydrochloric acid (~11 mol L-1 HCl, OPTIMA grade, 186 

Fisher Scientific) to a final pH of 1.9. Dissolved Fe samples from the incubation experiments 187 

were collected at T0 and T48. The samples were filtered using 0.45 µm polycarbonate membrane 188 

filters (Millipore) mounted in an acid cleaned filter holder (Swinnex, Millipore), acidified to pH 189 

1.9. and analyzed on-board ship using flow injection analysis (FIA). Dissolved Fe was 190 

determined on-board the ship using luminol chemiluminescence by flow injection analysis (FIA) 191 

following Obata et al. (1993). The FIA system was equipped with a Toyopearl AF Chelate 650M 192 

resin. Sample concentrations were determined by standard addition and were verified by 193 

analyzing ‘Sampling and Analysis of Fe (SAFe)’ reference seawater with each analytical run. 194 

Our results for the reference seawater were in good agreement with the consensus values for 195 

SAFe S: 0.090 ± 0.008 nmol L-1 (n=2) and SAFe D2: 1.043 ± 0.004 nmol L-1 (n=2). The 196 

precision of the method varied between 4 - 8% (1 SD) and was determined by analyzing internal 197 

reference seawater after every 10 samples. The blank of the FIA method was 0.028 ± 0.010 nmol 198 

L-1 (n=12) and the limit of detection (LOD) determined by the product of the blank and three 199 

times standard deviation of the blank was 0.058 nmol L-1. 200 

 201 

Chlorophyll a 202 

Subsamples (300 or 400 mL) were collected from each of the triplicate bottles and 203 

filtered through 25 mm diameter glass fiber filters (GF/F, Whatman). Filters were placed in 5 mL 204 

of 90% acetone and extracted in the dark at 2°C for 24 hrs. Samples were equilibrated to room 205 

temperature before measurement. Fluorescence at 685 nm was measured using a Turner Designs 206 
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TD-700 Field Fluorometer, calibrated with a Chl a standard (Sigma-Aldrich, C6144) dissolved in 207 

90% acetone using the Welschmeyer (1994) filter setup.  208 

 209 

14C-based primary productivity 210 

Primary productivity (PP) was determined using 14C-labelled bicarbonate as a tracer for 211 

net inorganic carbon fixation (Steeman-Nielsen 1952). A subsample from each treatment bottle 212 

was collected into acid-cleaned, sample-rinsed 75 mL polycarbonate bottles and spiked with 14C-213 

bicarbonate to achieve a final activity of approximately 250 µCi L-1 (or 9.3 MBq L-1, MP 214 

Biomedical #017441H). The bottles were incubated from dawn to dusk in the same on-deck 215 

incubator previously described. At the end of the daylight period, the entire sample volume was 216 

filtered through a 25 mm GF/F. The filters were placed into 20 mL borosilicate scintillation 217 

vials, acidified (1 mL, 2 mol L-1 hydrochloric acid) and vented for 24 hrs prior to the addition of 218 

scintillation cocktail (Ultima Gold LLT, Perkin-Elmer). Radioactivity was determined by liquid 219 

scintillation counting. Subsamples (250 µL) for total 14C-radioactivity were collected from each 220 

incubation bottle and fixed in phenethylamine (Sigma-Aldrich #407267). Rates of carbon 221 

fixation are expressed as µmol C L-1 d-1. 222 

 223 

Active fluorescence 224 

Fast Repetition Rate Fluorometry (FRRF) was utilized to evaluate possible changes in 225 

photophysiology in response to the availability of different N and Fe substrates, as described in 226 

Kolber et al. (1998).  The FRRF instrument was operated with multiple excitation wavelengths 227 

(450 nm, 470 nm, 505 nm, and 530 nm) that allowed for the rapid assessment of photosystem II 228 

physiology in different groups of phytoplankton. Samples (500 mL) were first dark adapted (20 229 
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min) before conducting fluorescence measurements. Fluorescence transients were acquired in 230 

samples that were continuously recirculated through the instrument sample chamber. The sample 231 

chamber was exposed to FRRF excitation protocol composed of a series of microsecond-long 232 

flashlets of controlled excitation power. The saturation phase of the excitation was comprised of 233 

100 flashlets at 2.5 microsecond intervals. With the pulse excitation power of 30,000 to 50,000 234 

µmol quanta m-2 s-1, the rate of excitation delivery to PSII centers far exceeded the capacity of 235 

photosynthetic electron transport between PSII and PSI. This resulted in a progressive saturation 236 

of the observed fluorescence transients within the first 40-60 flashlets, with a rate proportional to 237 

the functional absorption cross section at particular wavelength. The saturation phase was 238 

followed by 90 flashlets applied at exponentially-increasing time interval starting at 20 µs, over a 239 

period of 250 ms. As the average excitation power decreased, the fluorescence signal relaxed 240 

with a kinetics mostly defined by the rates of electron transport between PSII and PSI. Each 241 

sample measurement consisted of an average of 32 transients, and each sample was measured 242 

three times at each wavelength. Blanks were obtained by gently filtering sample water through a 243 

0.2 µm syringe filter and processing it in the same manner as the samples. Recorded fluorescence 244 

transients were processed with FRRF software (http://soliense.com/) to estimate photosystem II 245 

maximum in vivo fluorescence (Fm), maximum photochemical efficiency (Fv/Fm), the 246 

functional absorption cross section (sPSII) for all Chl a-containing cells (excitation wavelength of 247 

470 nm) and phycoerythrin-containing plankton (e.g. Synechococcus, excitation wavelength of 248 

505 nm), and the kinetics of the PSII-PSI electron transport.  249 

 250 

Flow cytometry 251 
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Samples (2 mL of seawater) for subsequent flow cytometric enumeration of picoplankton 252 

were immediately fixed with glutaraldehyde (0.25% v/v final concentration) upon collection, 253 

kept at room temperature in the dark for 15 min, then flash frozen and kept at -80°C until 254 

processing. Abundances of Prochlorococcus, Synechococcus, photosynthetic picoeukaryotes 255 

(PPEs), and heterotrophs were enumerated using a BD Biosciences Influx Cell Sorter (BD 256 

Biosciences, San Jose, CA, USA) equipped with a 488 nm Sapphire laser (Coherent, Santa Clara, 257 

CA, USA) using a 70 µm nozzle. All fixed seawater samples were pre-filtered using 258 

a CellTrics® filter with 30 µm mesh (Partec, Swedesboro, NJ, USA). Synechococcus 259 

populations were identified based on the presence of phycoerythrin (orange fluorescence; 572–260 

27 photomultiplier tube, PMT) and all other non-phycoerythrin populations were identified using 261 

forward scatter (FSC) as a proxy for cell size and Chl a content (red fluorescence; 692–20 PMT). 262 

To enumerate non-pigmented cells (heterotrophs), samples were stained with SYBR® Green I 263 

nucleic acid stain (Lonza Inc., Allendale, NJ, USA) according to the protocol described in Marie 264 

et al. 1999. To determine the abundances of non-pigmented heterotrophs with High Nucleic Acid 265 

content (HNA cells), the abundance of Prochlorococcus and Synechococcus cells were 266 

subtracted from all HNA cells. Data collection was triggered in the forward scatter (FSC) 267 

channel for photosynthetic cells and in the green channel (531-40 PMT) for SYBR-stained cells. 268 

Photosynthetic cells were counted for 10 min; SYBR-positive cells were counted for 1.5 min. 269 

Cell counts were processed in FlowJo v10.0.7 (Tree Star, Inc., Ashland, OR, USA).  270 

 271 

DNA extraction 272 

1-2 L of seawater from each incubation bottle was filtered onto 0.2 µm Supor membrane 273 

filters (Pall Corp., Ann Arbor, MI, USA) using peristaltic pumps. The filters were placed in 274 
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sterile 2.0 mL microcentrifuge tubes containing 0.5 and 1 mm diameter glass beads (Biospec, 275 

Bartlesville, OK, USA), flash frozen in liquid N2, and stored at -80°C until DNA extraction. 276 

DNA was extracted using the Qiagen DNeasy Plant kit (Valencia, CA, USA), with modifications 277 

outlined in Moisander et al. (2008) to improve recovery of high quality DNA. The final wash 278 

steps and DNA elution were automated using a QIAcube robotic workstation (Qiagen). DNA 279 

quantity and quality was measured using a NanoDrop (Thermo Scientific, Waltham, MA, USA) 280 

with an average DNA yield 1100±900 ng L-1 seawater.  281 

 282 

16S rRNA gene sequencing and sequence read processing 283 

Community composition was analyzed based on sequences of the V3-V4 hypervariable 284 

region of the 16S rRNA gene using universal primers targeting Bacteria, Bakt_341F and 285 

Bakt_805R (Herlemann et al. 2011). Primers were modified with common sequence linkers 286 

(Moonsamy et al. 2013) to facilitate library preparation. PCR amplifications were carried out in 287 

triplicate 25 µL reactions for each sample, with the following reaction conditions: 1X Platinum 288 

Taq PCR buffer –Mg (Invitrogen, Carlsbad, CA), 2.5 mM MgCl2, 200 µM dNTP mix, 0.25 µM 289 

of both forward and reverse primers, 3 U Platinum Taq DNA Polymerase (Invitrogen), and 1 uL 290 

of the DNA template. DNA was amplified using the following thermocycling conditions: initial 291 

denaturation at 95°C for 5 min, 25 cycles of denaturation at 95°C  for 40 s, annealing at 53°C  for 292 

40 s, elongation at 72°C  for 60 s, and a final elongation at 72°C  for 7 min. Pooled amplicons 293 

underwent 10 more amplification cycles to add sequencing adaptors and sample-specific 294 

barcodes at the DNA Services Facility at the University of Illinois, Chicago, using the targeted 295 

amplicons sequencing approach described in Green et al. (2015). After the second round of PCR 296 

amplification performed by DNA Services at UIC, library concentrations were equalized using 297 
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SequalPrep purification plates (ThermoFisher Scientific). Paired-end reads were sequenced at the 298 

W.M. Keck Center for Comparative and Functional Genomics at the University of Illinois at 299 

Urbana-Champaign using Illumina MiSeq technology. Sequences of the 16S rRNA gene 300 

amplicons were obtained from a total of 91 samples that included samples in three replicates 301 

from T0, T24 and T48 for both experiments. There were on average 9986 reads per sample 302 

(median=9990, minimum=9664, and maximum=10340 reads per sample).  De-multiplexed raw 303 

paired-end reads were merged using PEAR (Zhang et al. 2014). Assembled sequences were then 304 

quality filtered (split_libraries_fasta.py; phred score of 20) and chimeras were removed using a 305 

de novo approach (identify_chimeric_seqs.py) in QIIME (Caporaso et al. 2010). Operational 306 

taxonomic units (OTU) were defined at 99% nucleotide similarity using the usearch6.1 307 

clustering method (Edgar 2010; pick_otus.py) and representative sequences were retrieved 308 

(pick_rep_set.py) in QIIME. The taxonomy of representative sequences was assigned using a 309 

Greengenes reference database (http://greengenes.secondgenome.com/downloads/database/13_5; 310 

DeSantis et al. 2006), and the assign_taxonomy.py QIIME script. We used the default 311 

parameters for the uclust consensus taxonomy assigner through QIIME (the minimum percent 312 

similarity for a taxonomic assignment was 0.9). The 16S rRNA gene sequences were deposited 313 

in Sequence Read Archive at National Center for Biotechnology Information (NCBI, 314 

http://www.ncbi.nlm.nih.gov/sra) under BioProject accession number PRJNA358607.  315 

 316 

Oligotyping  317 

The oligotyping approach separates individual taxa, ‘oligotypes’, within closely related 318 

organisms based on high entropy nucleotide positions in the 16S rRNA gene sequence (Eren et 319 

al. 2013). In order to define oligotypes for Prochlorococcus and Synechococcus, we used the 320 
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oligotyping pipeline version 2.0 (May 27, 2015) and followed the instructions available at 321 

http://oligotyping.org (Eren et al. 2013). The oligotyping analysis was performed separately for 322 

both Prochlorococcus and Synechococcus. A total of 395,666 and 10,271 reads were obtained 323 

for Prochlorococcus and Synechococcus, respectively, from samples taken at T0 and T48 in the 324 

two experiments. Before the oligotyping analysis, the sequences were aligned using PyNAST 325 

(Caporaso et al. 2010) and Greengenes 16S rRNA gene reference database (gg_13_5 version 326 

available at http://greengenes.secondgenome.com/). Shannon entropy calculations were followed 327 

by the oligotyping analysis, which was run until each oligotype had converged (as described in 328 

Eren et al. 2013). The following parameters were chosen for both Prochlorococcus and 329 

Synechococcus oligotyping analyses: a=0.1 and s=2, where ‘a’ is the minimum percent 330 

abundance of an oligotype in at least one sample and ‘s’ is the minimum number of samples 331 

where an oligotype is expected to be present (Eren et al. 2013). The minimum substantial 332 

abundance criterion, M, determines the minimum abundance of the most abundant unique 333 

sequence in an oligotype and helps to reduce noise (Eren et al. 2013). For Prochlorococcus and 334 

Synechococcus oligotyping analyses, M was 100 and 20, respectively. To assign taxonomy, the 335 

representative sequences of the oligotypes were searched against the reference genome database 336 

at NCBI using blastn version 2.3.0+ (Altschul et al. 1990). The BLAST search was done with the 337 

default parameters, and all best hits were saved. Because some strains within the genera 338 

Prochlorococcus and Synechococcus have identical 16S rRNA V3-V4 region sequences, a 339 

representative sequence of an oligotype often was equally identical to several strains. We called 340 

a group of such identical strains an eStrain, and the strains within each eStrain are reported in 341 

Table S1. Note that the sequences belonging to one oligotype are identical at the selected 342 

nucleotide positions within the amplified ~441 nt region, but may vary at other positions within 343 
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the 16S rRNA gene. Next, the relative abundance of oligotypes was used to calculate the 344 

absolute abundance using the cell counts for Prochlorococcus and Synechococcus, and the 345 

absolute numbers were used in further analyses.  346 

 347 

Shifts in community composition  348 

The changes in composition of the heterotrophic microbial communities and 349 

Prochlorococcus and Synechococcus communities, were analyzed using the Phyloseq package 350 

(McMurdie and Holmes 2013) within R (The R Core Team 2013, http://www.r-project.org). For 351 

heterotrophic community analysis, phylum “Cyanobacteria” (that includes sequences from 352 

chloroplasts) were excluded, and the selected taxa were required to have a minimum of 50 reads 353 

total, resulting in 676090 sequences total in all samples (minimum of 6195, median of 7040, and 354 

maximum of 9493 sequences per sample). Ecological distances among the samples were 355 

estimated with the Bray-Curtis and Jaccard indices. To compare the community shifts, resulting 356 

from different treatments, Principal Coordinate Analysis (PCoA) was applied on the distance 357 

matrices. In addition, the relative read abundances for heterotrophic microbial communities were 358 

standardized to the median sequence depths (rarefied). There was little difference in the depth of 359 

sequencing among the samples (maximum difference <600 reads with a mean of ~10K reads per 360 

sample) and the PCoA results for standardized data were similar to the results from the non-361 

standardized data.  362 

 363 

Software 364 

All statistical analyses were done in R (The R Core Team 2013, http://www.r-365 

project.org): two-sample t-test for comparisons of means for Chl a, PP, abundances, and FRRF 366 
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measurements between treatments and controls and between treatments. To test for the observed 367 

differences in community composition among treatments, analysis of similarities was done on 368 

the Bray-Curtis dissimilarity distance matrix (anosim function within the “vegan” package in R, 369 

Oksanen et al. 2016). The statistic R in analysis of similarities is based on the difference of mean 370 

ranks between the groups and within groups, ranges from -1 to 1, and R value of 0 indicates 371 

random groupings.  In addition to analysis of similarities, analysis of variance (adonis function in 372 

“vegan”) was done on the Bray-Curtis dissimilarity matrix. Data were visualized using the 373 

ggplot2 package (Wickham 2009) in R, and all final figures were prepared for publication using 374 

Adobe Illustrator.   375 

 376 

Results 377 

Initial conditions  378 

The physical and chemical conditions at the two experimental sites differed substantially.  TZ 379 

(Station 38) was located in the transition zone between the California Current and the NPSG 380 

along the eastern margin of an anticyclonic eddy (Figs. 1a&b). GY (Station 52) was located in 381 

the oligotrophic waters of the central gyre and further west in the NPSG in an area of relatively 382 

low eddy activity (Fig. 1b). Both salinity and seawater temperature were higher at GY than at TZ 383 

(Table 1). The mixed layer depth was twice as deep at GY (48 m) in comparison to TZ (24 m) 384 

(Fig. 1c). 385 

 Concentrations of NO3
-+NO2

- in near-surface waters were low (<3 nmol L-1) at both 386 

experimental sites (Table 1) while concentrations of NH4
+ were higher at TZ (58±3 nmol L-1 vs. 387 

36±10 nmol L-1 at GY). Soluble reactive phosphorus (SRP) concentrations were approximately 388 

three-fold higher and concentrations of Si(OH)4 were 1.5-fold higher at TZ compared to GY. 389 
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Finally, surface concentrations of dissolved Fe were below detection (LOD=0.058 nmol L-1) at 390 

both sites. 391 

The abundance of total picoplankton cells was approximately equal at the two 392 

experimental stations (Table 1, 4.7±0.8 x 105 and 5.0±0.6 x 105 cells mL-1 at GY and TZ, 393 

respectively) but the composition of the communities was somewhat different. Phytoplankton 394 

cells were 1.5-fold more abundant at GY relative to TZ (Table 1) mainly due to 395 

Prochlorococcus; however, the difference was not significant (1.6±0.5 x 105 cells mL-1 and 396 

1.0±0.5 x 105 cells mL-1 at GY and TZ, respectively). Synechococcus was approximately 100-397 

times less abundant than Prochlorococcus at both sites (1.2±0.8 x 103 and 3.9±0.7 x 103 cells 398 

mL-1 at GY and TZ, respectively). Synechococcus abundance was 3-times higher at TZ 399 

compared to GY, accounting for 0.8% and 0.2% of total cells at each site, respectively.  400 

Likewise, the abundance of photosynthetic picoeukaryotes (PPE) was low at both sites 401 

(1.14±0.03 x 103 and 2.5±0.2 x 103 cells mL-1 at GY and TZ, respectively), with TZ having ~2.3-402 

times more PPE cells than GY. PPE accounted for ≤0.5% of the total cell population at either 403 

site.  Finally, heterotrophic bacteria were enumerated as either high nucleic acid (HNA)- or low 404 

nucleic acid (LNA)-containing populations, the latter of which was more abundant (Table 1). 405 

The abundances of each HNA and LNA cells were similar between the two sites (1.2±0.2 x 105 406 

and 2.5±0.3 x 105 for HNA and LNA cells, respectively).  407 

Despite the differences in physicochemical conditions and the composition of the microbial 408 

communities, the initial concentrations of Chl a and rates of PP were similar at the two stations 409 

(Table 1).  In contrast, maximum photochemical efficiency of PSII measured at excitation 410 

wavelength of 470 nm (Fv/Fm470) was higher at TZ (0.51±0.01) than at GY (0.34±0.02), while 411 
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no significant difference was detected between stations with respect to functional absorption 412 

cross-section of PSII (sPSII-470). 413 

 414 

Phytoplankton Chl a concentrations and PP rates  415 

All tested N forms and Fe alone resulted in significant increases in Chl a concentrations 416 

and rates of PP after 48 hrs of incubation at both locations, and the response at GY was in 417 

general larger than at TZ (Fig. 2). Additional nutrients (for example through the addition of Fe or 418 

filtered deep water, FDW) did not enhance the response observed for the N forms further.   419 

The largest increases in concentrations of Chl a at TZ after 48 hrs of incubation were 420 

observed in response to urea and NH4
+ additions (0.19±0.01 µg L-1), >3.5-times higher in 421 

comparison to the Control (no nutrient addition, Chlcnt, 0.052±0.002 µg L-1) (Fig. 2a). Addition 422 

of NO3
- produced a 1.4-times increase in Chl a over Chlcnt at TZ. At GY, the urea addition 423 

resulted in the largest responses in Chl a concentration (0.18±0.01 µg L-1) compared to the Chlcnt 424 

(0.034±0.003 µg L-1), followed by the NH4
+ and NO3

- additions (3-times higher relative to 425 

Chlcnt)).  426 

Changes in PP were similar to the Chl a responses in both experiments, with 4-times 427 

higher carbon fixation rates observed in response to additions of urea and NH4
+ at TZ (1.40±0.07 428 

µmol C L-1 d-1) and 8-times higher rates in response to urea at GY(1.3±0.1 µmol C L-1 d-1 ) in 429 

comparison to the Controls at 48 hours (PPcnt; Fig. 2b).  The NO3
- addition at TZ resulted in 2.5-430 

times higher PP rates relative to the PPcnt. Both NH4
+ and NO3

- yielded  >5-times higher PP 431 

relative to the PPcnt after 48 hrs of incubation at GY.  432 

In addition to stimulation by N substrates, the Fe addition alone produced a significant 433 

increase in Chl a concentrations (40% increase over Chlcnt) and rates of PP (>20% increase over 434 
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PPcnt) at both locations after 48 hours of incubation (Fig. 2 and Table S2). However, the 435 

additions of NO3
- + Fe (N+Fe) and FDW stimulated Chl a concentrations and PP rates to the 436 

same degree as the NO3
- addition alone at both station (Fig. 2, Table S2).  437 

 438 

Photophysiology  439 

Use of FRRF to interrogate phytoplankton photophysiological responses (Fm, Fv/Fm and 440 

sPSII) to nutrient amendments demonstrated that the phytoplankton community at both sites was 441 

affected by the addition of the individual N compounds, and the response was stronger and more 442 

variable at GY than at TZ (Fig. 3). Addition of Fe alone also had a stimulating effect on the 443 

photosystem activity; however, N+Fe did not have an additional stimulating effect compared to 444 

NO3
- alone.  445 

Fm at 470 nm (Fm470; inclusive of all Chl-containing plankton) increased significantly 446 

after 24 hrs of incubation in response to all N substrates in both experiments (Fig. 3). At TZ, all 447 

N sources resulted in a similar increase in Fm470 relative to the Control by 48 hrs. At GY, urea, 448 

NH4
+ and N+Fe all resulted in large increases in Fm470 (300%) compared with the Control by 48 449 

hrs, while the increase in the NO3
- and FDW treatments was slightly less (200%). Finally, Fe 450 

addition yielded a lower but significant (Table S3) increase in Fm470 (50% relative to the 451 

Control) by 48 hrs at both locations.   452 

The addition of the various N substrates also stimulated phycoerythrin-containing 453 

phytoplankton (Fm505), but the response to different N forms at the two locations varied (Fig 3). 454 

Fm505 was significantly stimulated in the NO3
- and NH4

+ treatments by 24 hrs at both stations 455 

while Fm505 increased in response to urea only at TZ. By 48 hrs at TZ, NH4
+, NO3

-, N+Fe and 456 

FDW additions all increased the Fm505 response (>130%) relative to the Control (Fig. 3b). At 457 
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GY, additions of NH4
+ and N+Fe resulted in a larger Fm505 response (>300% increase relative to 458 

the Control; Fig. 3b), while the responses to urea, NO3
- and FDW were slightly less (>200% 459 

increase relative to the Control). Fe had a significant but weak effect on Fm505 by 48 hrs at both 460 

stations (Fig. 3b, Table S3).   461 

Fv/Fm was significantly influenced by all N forms and by Fe largely at GY. The initial 462 

Fv/Fm470 was higher at the TZ station (0.51±0.01 and 0.34±0.02 at TZ and GY, respectively).  At 463 

GY, all N additions resulted in a significant increase in Fv/Fm470 in comparison to the Control by 464 

24 hrs, with the highest (145%) increase in response to NO3
- and NH4

+ (Fig. 3c). At TZ, only the 465 

NO3
- addition resulted in a significant increase in Fv/Fm470 and only after 48 hrs (Fig. 3c and 466 

Table S3).  Similar to Fv/Fm470, the initial Fv/Fm505 at GY (0.41±0.03) was lower than at TZ 467 

(0.50±0.02). At GY, all N and Fe additions resulted in an increase in Fv/Fm505 similar to that of 468 

Fv/Fm470 (Fig. 3d). However, in contrast to responses in Fv/Fm470, Fv/Fm505 was weakly affected 469 

by the three N forms by 24 hrs at TZ.  470 

The response observed for sPSII to the additions of urea and NH4
+ was anti-correlated 471 

with the responses observed for Chl a concentrations and PP. sPSII observed at 470 nm 472 

significantly decreased at TZ in response to the addition of both urea and NH4
+ relative to the 473 

Control (Fig. 3e); in contrast, sPSII decreased only in response to urea at the GY station. 474 

Likewise, a significant decrease in response to urea was also observed for sPSII at 505 nm but 475 

only at GY (Fig. 3f, Table S3).  A weak stimulating effect (<30% of the Control) on sPSII was 476 

observed for phytoplankton with 505 nm excitation wavelength in response to N+Fe and FDW 477 

additions at GY and in response to N+Fe and NH4
+ at TZ (Fig. 3e&f, Table S3).  478 

 479 

Response of the phytoplankton and bacterial groups  480 
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Phytoplankton and non-photosynthetic bacteria had different qualitative and quantitative 481 

responses to N and Fe substrates, with variations depending on location.  482 

All N forms resulted in increases in Prochlorococcus abundance at TZ and GY (Fig. 4a). 483 

The largest response at TZ was observed in the NH4
+ and urea treatments (2.2±0.3 105 cells mL-484 

1), where Prochlorococcus abundance was 4-times higher than in the Control after 48 hrs. In the 485 

NO3
-, N+Fe, and FDW treatments, Prochlorococcus abundance was 2-times higher than in the 486 

Control. At GY, urea produced the largest increase in Prochlorococcus abundance by 48 hrs 487 

(2.8±0.1 105 cells mL-1, 3-times higher than the Control) followed by NO3
- with 2-times higher 488 

Prochlorococcus abundance compared to the Control. The effects of NH4
+, N+Fe, and FDW on 489 

Prochlorococcus abundances were less (~50% increase over the Control) at GY. Fe stimulated 490 

Prochlorococcus abundance at TZ (~40% increase over the Control) but not at GY.  491 

Synechococcus abundance also increased significantly in response to the addition of urea, 492 

NO3
-, N+Fe, and Fe at both stations, and the response to N was greatest at GY (Fig. 4b). 493 

Synechococcus abundances following the urea or NO3
- additions were 3.5±0.5 and 3.2±0.3 103 494 

cells mL-1 (>1.3-times higher than in the Controls) at TZ and GY, respectively. Addition of 495 

NH4
+ resulted in a decrease in Synechococcus abundance at TZ and only a small increase at GY; 496 

however, the effect was not significantly different from the Control by 48 hrs at either station 497 

(Table S4). Synechococcus abundance at both locations responded to Fe additions. While not 498 

significantly different from the effect of N at TZ, the Fe effect was significantly lower than the 499 

effects of urea and NO3
- at GY (Table S4). Notably, addition of N+Fe resulted in a significantly 500 

higher Synechococcus response in comparison to Fe alone at both stations (Fig. 4b, Table S4). 501 

PPE abundance increased significantly in response to all N forms and to Fe at both 502 

stations. Overall larger increases in PPE abundance were observed at GY (Fig. 4c) than at TZ. 503 
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NO3
- resulted in a high degree of variability between the replicates at TZ, which contributed to a 504 

lower statistical significance (t(2)=2.4, p=0.06). PPE abundances in response to all N at TZ were 505 

~1.5-times higher than in the Control and were similar for all nutrients including Fe (average 506 

PPE abundance in all N and Fe additions was ~2.1±0.4 103 cells mL-1). At GY by 48 hours, 507 

additions of NH4
+, urea, NO3

-, N+Fe, and FDW resulted in >100% increases in PPE abundance 508 

relative to the Control and Fe-alone treatment (average ~1.1±0.2 103 cells mL-1 in the N 509 

additions; Fig. 4c).  510 

 HNA abundance responded to additions of NH4
+, NO3

-, and N+Fe at both stations (up to 511 

125% increase over the Control by 48 hrs, Fig. 4d). At GY, the HNA cells also increased 1.5-512 

times the Control in response to the FDW addition. The increase in HNA abundance at GY, but 513 

not at TZ, was significant by 24 hrs (Table S4). In contrast to the HNA cells, only the N+Fe 514 

addition at TZ station resulted in a significant increase (38% relative to the Control) in the 515 

abundance of LNA cells by 48 hrs (Fig. 4e). No significant increase in the LNA cell abundance 516 

was observed at GY (Fig. 4e, Table S4).  517 

 518 

Shift in microbial community composition  519 

To further evaluate the effect of N on the microbial communities at these two sites, and to 520 

assess whether differences in microbial community composition accompanied the observed 521 

changes in PP, Chl a, FRRF, and cell abundance, we amplified and sequenced the V3-V4 522 

hypervariable region of the 16S rRNA gene. Based on the 16S rRNA gene relative abundances, 523 

the initial microbial community composition (Control T0) at the genus level was similar at both 524 

locations and was dominated by Cyanobacteria (genus Prochlorococcus, 31-34% of total 16S 525 

rRNA gene sequences) and Alphaproteobacteria (family Pelagibacteraceae, 30-33% of total 526 
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16S rRNA gene sequences), followed by other Alphaproteobacteria (no taxonomic assignment, 527 

7-8% of total 16S rRNA gene sequences), Gammaproteobacteria (Halomonadaceae: C. Portiera, 528 

5-7% of total 16S rRNA gene sequences), and Actinobacteria (Acidimicrobiales: OCS155, 2-3% 529 

of total 16S rRNA gene sequences) (Fig. 5a). Synechococcus was a minor component of the 530 

microbial community at both locations (0.7% of total 16S rRNA sequences). Relative 531 

abundances of chloroplast 16S rRNA sequences varied between the two locations. At TZ, 532 

abundances of Haptophyceae and Stramenopiles each were 1.9% of total 16S rRNA gene  533 

sequences. At GY, relative abundances of Haptophyceae and Stramenopiles in the initial 534 

community were 1.1% and 0.8%, respectively.  535 

A shift in microbial community composition at the genus level in response to all N 536 

additions was detected within 48 hrs in both experiments with the strongest response to NH4
+ 537 

(Fig. 5). Both Jaccard and Bray-Curtis ecological indices produced similar results (Fig. 5b and 538 

S1a). Differences in the Bray-Curtis dissimilarities between treatments were significant 539 

(difference of mean ranks between the groups R>0.77, p<0.001 in both experiments). At both 540 

locations, the response to all N forms was characterized by the increase in relative abundance of 541 

representatives from the Gammaproteobacteria families Alteromonadaceae and 542 

Oceanospirillaceae (Fig. 5a). At TZ, the relative abundance of Alteromonadaceae (unassigned 543 

genus) increased from 0.2% in the Control to 41%, 55% and 57% of all reads in the urea, NH4
+, 544 

and NO3
- additions at T48, respectively. At GY, the relative abundance of Alteromonadaceae 545 

(unassigned genus) increased from 0.3% in the Control to 15%, 34% and 36% of all reads in the 546 

urea, NO3
-, and NH4

+ additions at T48, respectively. Relative abundance of Oleispira (family 547 

Oceanospirillaceae) increased significantly in the N additions, but only at GY: from 0.1% in the 548 

Control to 9%, 10% and 20% of all reads in NH4
+, urea, and NO3

- additions at T48, respectively. 549 



	
   25 

The relative abundance of another Oceanospirillaceae genus (Oleibacter) increased from 550 

undetectable in the Control to as much as 5% of all reads in the N additions at TZ. Addition of 551 

NH4
+ resulted in the most distinct microbial community, with the shift observed within 24 hrs at 552 

both stations (Fig. 5a&b). Relative abundance of 16S rRNA gene sequences from representatives 553 

of the genus Phaeobacter (Alphaproteobacteria: Rhodobacteraceae) were associated with the 554 

NH4
+ additions and increased from undetectable in the Control to 5% and 19% of all reads in the 555 

NH4
+ addition in both GY and TZ at T48, respectively (Fig. S1c). Addition of urea resulted in a 556 

less pronounced change in microbial community composition, especially at TZ. Finally, Fe 557 

addition did not significantly influence community composition at both locations.  558 

The shift in microbial community composition in response to all N forms at GY was 559 

faster than at TZ and detected by 24 hrs after the addition of nutrients (Figs. 5a&b).  Samples 560 

taken 24 hrs after the start of the incubation experiment at TZ were most similar to the Controls 561 

and T0 samples. In contrast, T48 samples from treatments with any N addition at TZ clustered 562 

separately from the T0 and T24 samples, Controls, and Fe addition treatment.  At GY, all of the 563 

N addition treatments clustered separately from the Controls, T0, and Fe addition within 24 hrs.  564 

 565 

Response of picocyanobacteria to N  566 

Given the great genetic diversity within marine microbial genera (e.g. Kashtan et al. 567 

2014), we examined changes in abundance of individual taxa within Prochlorococcus and 568 

Synechococcus populations at high resolution by using an oligotyping approach (Eren et al. 569 

2013). The responses to different N forms and Fe varied between and within Prochlorococcus 570 

and Synechococcus genera. 571 
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Prochlorococcus populations differed between the two locations (Fig. 6a). A total of 31 572 

oligotypes were identified in Prochlorococcus communities across both experiments based on 7 573 

nucleotide positions with high entropy (as described in the Methods). The Prochlorococcus 574 

communities at TZ and GY were dominated by strains from the High Light I (HLI) and High 575 

Light II (HLII) clades, respectively. The oligotypes MED4-oligo1 (100% identical to 576 

Prochlorococcus MED4, HLI) and MIT9515-oligo1 (100% identical to Prochlorococcus 577 

MIT9515, HLI) were on average 74% and 10%, respectively, of all of the Prochlorococcus 578 

sequences in the Control T0 sample at TZ (Table 2). At GY, these oligotypes comprised 1% of 579 

total Prochlorococcus sequences in the Control T0 (Table 2). The most abundant oligotype at 580 

GY, MIT9301-oligo1 (100% identical to Prochlorococcus MIT9301, HLII, and strains with 581 

similar sequence of the 16S rRNA gene region, Table S1), comprised on average 66% of the 582 

Prochlorococcus sequences. The next most abundant, the MIT9312-oligo1 oligotype (100% 583 

identical to Prochlorococcus MIT9312, HLII, and related strains, Table S1), was on average 584 

22% of the Prochlorococcus sequences at GY station. Both of the most abundant oligotypes at 585 

GY were <1% of the sequences in the Control T0 from TZ (Table 2). Representatives of the Low 586 

Light I (LLI) clade were present at both locations, although only as minor portions of the 587 

community (Table 2).  588 

The addition of different N forms had differential effects on the Prochlorococcus 589 

populations in both experiments by 48 hrs (Figs. 6b-d). While urea addition resulted in a 590 

consistent increase in abundance of all Prochlorococcus oligotypes and clades, NH4
+ and NO3

- 591 

resulted in variable responses within the Prochlorococcus communities and between the two 592 

locations. Differences in the Bray-Curtis dissimilarities for Prochlorococcus communities 593 

between treatments were higher than within treatments (analysis of similarities for TZ: R=0.36, 594 
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p=0.007, and GY: R=0.51, p=0.002, see Methods). The Bray-Curtis dissimilarity index showed 595 

that urea and NH4
+ additions resulted in a shift in the Prochlorococcus community composition 596 

that was most distinct from the effects of the rest of the treatments and Controls at TZ, while the 597 

urea and NO3
- additions resulted in the strongest shift in comparison to the effects of the rest of 598 

the treatments (and Controls) at GY (Fig. 6b). These patterns paralleled the general response of 599 

total Prochlorococcus abundance (measured by flow cytometry) and were observed for the most 600 

abundant Prochlorococcus oligotypes in each experiment (Fig. 6c&d). However, the minor 601 

oligotype NATL1A-oligo1 (LLI) had a larger response to urea and NO3
- than to NH4

+ at TZ (Fig. 602 

6d). At GY, some members of HLII, HLI and LLI clades had no significant responses to NH4
+ 603 

(Fig. 6c and S2).  604 

Some Prochlorococcus oligotypes had different responses to nutrient amendments 605 

between the two sites. For example, the two dominant oligotypes at TZ, MED4-oligo1 and 606 

MIT9515-oligo1, had the greatest response to urea and NH4
+ (Fig. 6d). However, although they 607 

were minor (<1%) components of the Prochlorococcus community at GY, these oligotypes had 608 

the greatest responses to urea and NO3
- (Fig. 6c and S2).  The responses by Prochlorococcus 609 

PAC1-oligo1 (LLI) also varied between the two sites (Fig. 6d and S2).   610 

 Similar to Prochlorococcus, Synechococcus communities at the two locations were 611 

distinct; however, the most dominant Synechococcus oligotypes were the same at the two 612 

locations (Fig. 7a). A total of 11 oligotypes were distinguished for Synechococcus based on 11 613 

nucleotide positions with high entropy. Synechococcus oligotypes derived from both clades II 614 

and IV were most abundant at TZ, whereas Synechococcus oligotypes from clade II were most 615 

abundant at GY. Synechococcus oligotype CC9605-oligo1, with 100% identity to Synechococcus 616 

CC9605 (clade II), was the most abundant at both locations, constituting on average of 35% and 617 
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61% of Synechococcus 16S rRNA gene sequences at TZ and GY, respectively (Table 2). 618 

Another oligotype from clade II, CC9605-oligo2, was also present at both stations (Table 2). 619 

Two oligotypes derived from clade IV (CC9902-oligo1 and CC9902-oligo2 with 100% and 620 

99.7% identity, respectively, to Synechococcus CC9902) contributed 39% to the Synechococcus 621 

community at TZ. The least abundant oligotypes present at both stations included representatives 622 

from clade V (Table 2).  623 

N additions had a larger effect on Synechococcus community composition at GY than at 624 

TZ (Fig. 7b). Differences in the Bray-Curtis dissimilarities for Synechococcus communities 625 

between treatments were significantly higher than within treatments at GY (analysis of 626 

similarities for GY: R=0.54, p=0.001 compared to TZ: R=0.19, p=0.07). The Bray-Curtis 627 

dissimilarity index showed a weak separation of samples with NO3
-, urea, N+Fe, and FDW 628 

additions from the Controls and samples with NH4
+ and Fe additions at TZ. At GY, all nutrients, 629 

including Fe, resulted in a strong shift in the Synechococcus community, with the urea addition 630 

resulting in the most distinct responses compared to other nutrient additions.   631 

Similar to Prochlorococcus, N forms had a differential effect on Synechococcus 632 

oligotypes, resulting in distinct Synechococcus populations by 48 hr (Figs. 7c&d). The response 633 

of oligotypes also varied between the sites. Consistent with the response in total Synechococcus 634 

abundance, the dominant oligotype CC9902-oligo1 (clade IV) responded to NO3
-, urea, Fe, and 635 

FDW at TZ. In contrast, the oligotype CC9605-oligo5 (clade II) had a weak increase in 636 

abundance in response to urea availability relative to the Control at TZ (Fig. 7d). However, all N 637 

forms and Fe affected this oligotype abundance at GY (Fig. 7c), with the largest effect seen in 638 

the NO3
- and N+Fe additions. Urea had the largest effect on the less abundant oligotype CC9605-639 

oligo2 (clade II) at GY. Moreover, less abundant oligotypes had distinct responses compared to 640 
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the responses of the dominant oligotypes. For example, oligotype KORDI100-oligo1 (Clade V) 641 

had a significant increase in cell abundance only in response to N+Fe at TZ (Fig. 7d).  642 

 643 

Discussion 644 

The effect of N availability on biological processes in the ocean is one of the most 645 

studied topics in marine microbiology; however, we still know little about the complex 646 

interactions between the diverse microbial communities and different N compounds used by 647 

specific microorganisms. We investigated the effects of NO3
-, NH4

+, and urea as sources of N on 648 

microbial community activity (PP and photosynthetic efficiency), and community composition 649 

(based on major microbial group cell counts and 16S rRNA gene sequence) in the open ocean 650 

waters of the North Pacific Ocean. All N forms tested had significant effects on microbial 651 

communities at the investigated sites in the NPSG within 48 hrs (Table 3). Limitation of PP and 652 

maximum photochemical efficiency of PSII by N has been reported in other low-latitude 653 

oligotrophic waters, such as in the North Atlantic Ocean (Graziano et al. 1996; Moore et al. 654 

2006, 2008; Davey et al. 2008). Moreover, N was the major limiting nutrient constraining total 655 

phytoplankton biomass in the Western South Pacific Ocean (Moisander et al. 2012) and in the 656 

South Pacific Gyre (Van Wambeke et al. 2008). In addition to N, either P or Fe can co-limit 657 

picoplankton cell growth in the North Atlantic (Davey et al. 2008). While the effect of SRP was 658 

not specifically tested in our study, the addition of FDW (which had elevated SRP and NO3
- 659 

concentrations, Table 1) resulted in similar responses as the addition of N alone, suggesting that 660 

P did not co-limit plankton biomass or productivity during our experiments.   661 

 662 

Stimulating effect of urea on phytoplankton  663 
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The importance of urea as an N source for phytoplankton was demonstrated decades ago 664 

(McCarthy et al. 1972b; Price and Harrison 1988; Antia et al. 1991; Fan et al. 2003). The urease 665 

gene has been found in a variety of marine microorganisms, including the cyanobacteria 666 

Synechococcus and Prochlorococcus, eukaryotic phytoplankton (haptophytes, diatoms, 667 

prasinophytes), and heterotrophic bacteria (Roseobacteraceae, Pelagibacter, 668 

Gammaproteobacteria HTCC2207) (Baker et al. 2009; Collier et al. 2009; Solomon et al. 2010). 669 

Urea concentrations in the surface open oceans appear highly variable in space and time, ranging 670 

from 0.3 to 0.7 µmol N L-1 (Bronk et al. 2002; Painter et al. 2008). In the current study, urea was 671 

added at much higher concentrations (2.5 and 5.0 µmol of N L-1) than previously reported in situ 672 

concentrations; however, our results demonstrated that all major groups of phytoplankton 673 

responded to the urea additions, with responses differing between the two locations examined 674 

(Table 3). Previous studies have also described variable responses in rates of uptake and growth 675 

in phytoplankton when urea was supplied as the sole N source (Cochlan and Harrison 1991; 676 

Lomas and Glibert 2000; Moore et al. 2002; Fan et al. 2003; Solomon et al. 2010).  677 

Our results suggest that urea may be an important N source for Prochlorococcus (Figs. 678 

6&7), which is responsible for a large fraction of PP in the open oceans (Vaulot et al. 1995; 679 

Campbell et al. 1997; DuRand et al. 2001). Prochlorococcus clades HLI and HLII dominated at 680 

the TZ and GY stations, respectively, consistent with the observations that these clades occupy 681 

different niches, with the shift from the HLI to the HLII clade reported at the threshold of ~23°C 682 

in summer (Farrant et al. 2016; Larkin et al. 2016). Prochlorococcus HLI and HLII are the most 683 

abundant Prochlorococcus clades (Johnson et al. 2006) and the majority of sequenced 684 

Prochlorococcus genomes have urea utilization and transporter genes (Kettler et al. 2007; 685 

Scanlan et al. 2009). The results of our study showed that both clades responded significantly to 686 
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urea additions, demonstrating large increases in abundances, >300%  relative to the Controls. 687 

The oligotyping analysis of Prochlorococcus 16S rRNA gene sequences further showed that 688 

Prochlorococcus community composition was strongly influenced by urea additions at both 689 

sites. The high transcription of the urea transporter gene in natural populations of 690 

Prochlorococcus found in metatranscriptomic studies (Frias-Lopez et al. 2008; Gifford et al. 691 

2011; Shi et al. 2011) suggests that Prochlorococcus actively acquire urea. Indeed, rates of urea 692 

uptake by Prochlorococcus in the Sargasso Sea were found to be similar or faster than NH4
+ 693 

uptake rates (Casey et al. 2007), and a significant relationship was observed between 694 

Prochloroccocus abundances and bulk urea uptake rates in the Northern Atlantic Ocean (Painter 695 

et al. 2008). While utilization of urea by picocyanobacteria has been shown before (Rippka et al. 696 

2000; Moore et al. 2002), our study suggests that urea may be an important source of N 697 

supporting the growth of natural populations of Prochlorococcus.  698 

 699 

Variable responses of phytoplankton to NH4
+ and NO3

- 700 

In contrast to urea, the effects of NO3
- and NH4

+ on phytoplankton communities varied 701 

between the sites. The addition of NH4
+ significantly stimulated rates of PP both at the TZ and 702 

GY stations. At GY, both NO3
- and NH4

+ additions resulted in the similar degree of enhancement 703 

in PP, but responses to these additions had a less stimulating effect than that of urea. The PP 704 

response pattern at TZ was paralleled by changes in Prochlorococcus cell abundance and 705 

community composition. The different responses to the two N forms were likely the result of 706 

uptake preferences by different phytoplankton groups for NO3
- and NH4

+, as well as different 707 

degrees of Fe limitation experienced among the phytoplankton groups at TZ (discussed below).  708 
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Genetic and physiological differences may help explain the differential responses of 709 

Prochlorococcus populations to NH4
+ and NO3

- between the two experimental sites. Genes 710 

encoding pathways for NO3
-/NO2

- assimilation have been found in some Prochlorococcus HL 711 

and LL strains, and these strains are able to grow solely on NO3
- as an N source (Martiny et al. 712 

2009; Berube et al. 2015). Thus, not surprisingly, naturally-occurring Prochlorococcus 713 

populations from HLI, HLII, and LLI clades responded to NO3
- additions at low NH4

+ 714 

concentrations at both stations in our study. Laboratory studies indicate that Prochlorococcus 715 

growth on NO3
- is slower than growth on NH4

+ (Berube et al. 2015) and such results could 716 

explain the differences in cell abundances in response to NO3
- and NH4

+ additions at TZ. 717 

Additionally, the genome of Prochlorococcus MIT9515 (HLI), a strain that was abundant at TZ, 718 

has two copies of the amt gene which encodes an NH4
+ transporter (Scanlan et al. 2009) and this 719 

strain may be more competitive for NH4
+ than the strains that were present at GY station. In 720 

contrast, the genome of Prochlorococcus MIT0604 (HLII, with the V3-V4 region of the 16S 721 

rRNA gene sequence 100% identical to Prochlorococcus MIT9301, the eStrain that was 722 

dominant at GY) has two clusters of NO3
- assimilation genes (Berube et al. 2015). Finally, 723 

another HLII strain (SB strain) present at GY has the most extensive gene suite for N utilization, 724 

including NO3
-, urea, and cyanate assimilation genes (Berube et al. 2015). In addition to the 725 

genetic and physiological differences, microbial interactions likely influenced the observed 726 

changes in abundance. For example, it is possible that NO3
- additions may have stimulated 727 

growth of mixotrophic eukaryotes that consumed Prochlorococcus cells (Hartmann et al. 2013).  728 

In general, the N-limitation of Prochlorococcus cell abundance observed in the present study 729 

contrasted with results observed in the Western South Pacific Ocean where Prochlorococcus 730 
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HLII responded to Fe and P (Moisander et al. 2012), a finding that may reflect lower N:Fe or 731 

N:P supply ratios in the northern hemisphere (Ward et al. 2013).  732 

It was surprising that Synechococcus abundance showed little response to the NH4
+ 733 

addition. NH4
+ is thought to be the preferred N substrate by cyanobacteria over NO3

- because of 734 

the higher energetic cost for reduction and assimilation of NO3
-. However, culture studies 735 

showed that under sub-saturating irradiance, growth rates of marine Synechococcus on NO3
- 736 

were similar to growth rates on NH4
+ (Collier et al. 2012). Considering that Prochlorococcus and 737 

heterotrophic bacteria were orders of magnitude more abundant than Synechococcus at both 738 

stations, and that Synechococcus cells have a lower surface area to volume ratio than 739 

Prochlorococcus (Morel et al. 1993), Synechococcus may have been at a competitive 740 

disadvantage for NH4
+ uptake. However, the fact that ~50% of the added NH4

+ remained after 48 741 

hrs of incubation (Table S5) suggests that Synechococcus preferred NO3
- as an N source, 742 

although the mechanism for N substrate preference remains unclear (Collier et al. 2012).  743 

In contrast to Synechococcus, the photosynthetic picoeukaryotes showed the greatest 744 

increase in abundance in the NH4
+ addition, but only at GY. The lack of a PPE response to NH4

+ 745 

at TZ may be related to Fe availability (see below). A preference for NH4
+ over NO3

- and urea 746 

has been previously shown for PPEs in culture, such as the prasinophyte Micromonas (Cochlan 747 

and Harrison 1991). Interestingly, the prasinophytes Micromonas and Ostreococcus have genes 748 

for two types of the NH4
+ transporters (AMT), one of which is similar to bacterial amt (Derelle et 749 

al. 2006; McDonald et al. 2010). Transcription of this AMT gene is up-regulated in response to 750 

N-depletion (McDonald et al. 2010). Likewise, transcription of the NH4
+ transporter genes in 751 

response to N-depletion has also been shown for diatoms (Allen et al. 2005; Bowler et al. 2008). 752 

The data presented here supports the observations of previous studies that eukaryotic 753 
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phytoplankton can successfully compete for NH4
+ with smaller bacterial cells (Bradley et al. 754 

2010).   755 

 756 

Fe limitation of phytoplankton growth and activity in the CCS 757 

Fe availability affected the abundance of all groups of phytoplankton and rates of PP at 758 

TZ. Fe limitation of phytoplankton growth in the CCS is believed to be due to the rapid depletion 759 

of Fe relative to NO3
- in the upwelled waters that travel offshore as filaments (Bruland et al. 760 

2001; Biller and Bruland 2013). In addition, the TZ site was in an anticyclonic eddy containing 761 

open ocean water with relatively high SRP, but otherwise low nutrient and Chl a concentrations. 762 

The mixing of open ocean water at the sampling site is further supported by the mixture of 763 

coastal and open ocean phytoplankton communities found at this site.  For example, the coastal 764 

Synechococcus clade IV, usually prevalent in colder nutrient-rich waters, was present at the same 765 

abundance as Synechococcus clade II, which is the dominant open ocean clade (Sohm et al. 766 

2016). The high abundance of Prochlorococcus at this site also indicated an input of oligotrophic 767 

gyre waters. Thus, the mixing of the oligotrophic gyre waters at TZ may have contributed to the 768 

low Fe availability.  769 

The genetic differences between the communities at the two stations is likely an 770 

additional factor contributing to the stronger response to Fe at TZ. For example, coastal strains of 771 

phytoplankton are adapted to have higher cellular Fe quotas than open ocean strains (Brand 772 

1991; Sunda et al. 1991; Strzepek and Harrison 2004). Moreover, Prochlorococcus MED4 773 

(HLI), which was abundant at TZ, has been shown to be especially sensitive to Fe availability 774 

(Thompson et al. 2011). Finally, Prochlorococcus has a larger number of genes for coping with 775 

low Fe environments than Synechococcus (Rocap et al. 2003; Scanlan et al. 2009), which may 776 
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explain why Prochlorococcus had a greater response to N than to Fe additions, in contrast to 777 

Synechococcus at TZ. Thus, a combination of factors, genetic and environmental, may have 778 

resulted in the strong community response to Fe at TZ. These results provide further support for 779 

Fe limitation of phytoplankton growth in the CCS transition zone.  780 

Furthermore, some microbial populations were most likely N and Fe co-limited at TZ. An 781 

independent type of co-limitation of biomass (Arrigo 2005; Saito et al. 2008) may explain why 782 

the addition of N and Fe together did not enhance the response in Chl a and primary productivity 783 

relative to N or Fe additions alone. If only a small fraction of the community are N and Fe co-784 

limited in comparison to the N-limited fraction, then the effect of N+Fe may not be significant in 785 

bulk measurements. The responses by the Synechococcus oligotypes support this hypothesis: The 786 

oligotype identical to Synechococcus KORDI-100 (clade V) had greater relative abundances in 787 

N+Fe in comparison to the Fe or N additions alone. However, this oligotype comprised only 5% 788 

of the total Synechococcus population, and thus did not contribute significantly to the responses 789 

in total Synechococcus biomass. The two other Synechococcus oligotypes at TZ (originating 790 

from clades II and IV) showed similar responses to N+Fe, Fe, or NO3
-. These were the most 791 

abundant Synechococcus oligotypes at TZ and likely comprised many sub-populations that could 792 

not be distinguished at the 16S rRNA gene resolution. Thus, using the high resolution 793 

oligotyping approach allowed us to distinguish the diversity of responses within microbial 794 

populations, such as to nutrient co-limitation, which were not reflected in the bulk 795 

measurements.  796 

 797 

Responses of heterotrophic microbial communities to N substrates  798 
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The heterotrophic community responded to N forms differently than the phototrophic 799 

community. The NH4
+ followed by the NO3

- additions at both locations resulted in the strongest 800 

shifts in heterotrophic community composition, as estimated from 16S rRNA gene relative 801 

abundances (Table 3). Additionally, HNA cell abundances increased in the NO3
- and NH4

+ 802 

additions at both sites regardless of the phytoplankton response (Table 3).  The shift was largely 803 

due to the increase in the relative abundance of Gammaproteobacteria (Oceanospirillaceae, 804 

Alteromonadaceae, and Vibrionaceae) and Alphaproteobacteria (Phaeobacter), the copiotrophic 805 

microbial taxa known to respond rapidly to enrichments of surface seawater with nutrients or 806 

associated with phytoplankton blooms (González et al. 2000; Shi et al. 2012; Beier et al. 2014; 807 

El-Swais et al. 2015; Sosa et al. 2015). Smaller in size than some phytoplankton cells in general, 808 

heterotrophic bacteria may have a competitive advantage by taking up available NH4
+ and NO3

- 809 

rapidly, thereby actively competing for macronutrients, as has been reported in many other 810 

studies (Eppley et al. 1977; Wheeler and Kirchman 1986; Kirchman 1994; Mills et al. 2008; 811 

Bradley et al. 2010).  812 

 813 

Differences between the TZ and GY stations 814 

The greatest differences in microbial community responses to N additions between the 815 

two locations were in the timing and degree of the responses. The shift in heterotrophic microbial 816 

community composition at GY was observed earlier than at TZ. This may be due to the distinct 817 

phototrophic communities at each location. For example, Prochlorococcus HLI and 818 

Synechococcus Clades II and IV were dominant at TZ, and Prochlorococcus HLII and 819 

Synechococcus Clade II were dominant at GY. However, our study suggests that the microbial 820 

community was under more severe nutrient limitation at GY than at TZ. The nutricline at GY 821 
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was deeper than at TZ, and the microbes at GY had likely been nutrient limited longer than those 822 

at the TZ station. The low initial Fv/Fm of the phototrophic community at GY and the significant 823 

and rapid (in 24 hrs) increase in Fv/Fm upon N additions suggest that new N contributed to the 824 

building of new photosynthetic proteins and that photosynthetic activity at GY was strongly N-825 

limited (Suggett et al. 2009). The increase in PP following N additions was also significantly 826 

greater at GY than at TZ. As previously shown in cultures, N pre-conditioning affects how fast 827 

phytoplankton respond to N (Conway et al. 1976; Price and Harrison 1988). Additionally, 828 

phytoplankton species have the ability to change substrate affinities and uptake potentials 829 

depending on the degree of nutrient limitation (Conway and Harrison 1977). Thus, microbial 830 

community composition and N pre-conditioning may determine the timing and degree of the 831 

responses to N substrates in the North Pacific.   832 

 833 

Conclusions  834 

N substrates have differential effects on different phytoplankton groups, and the degree 835 

and rapidity of the responses depend on the pre-existing physicochemical conditions (e.g. Price 836 

and Harrison 1988). Our study extends previous findings by using a combination of techniques 837 

to measure total microbial community physiological and functional responses as well as shifts in 838 

microbial community composition and changes in abundance of phytoplankton populations at 839 

high taxonomic resolution. The results of our study indicate that N availability limited PP and 840 

accumulation of microbial biomass during our sampling in the open ocean waters of the North 841 

Pacific.  Moreover, we observed distinct differences in rates of PP, accumulation of biomass, and 842 

community composition in response to additions of urea, NH4
+, and NO3

-. The growth of some 843 

populations of phytoplankton, especially Synechococcus and PPE, was also limited by Fe in the 844 
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CCS region. Our results also suggest the heterotrophic microbial community successfully 845 

competed for inorganic N sources at both experimental sites. Finally, besides the differences in 846 

community composition, the pre-existing conditions at each site likely influenced the timing and 847 

degree of the responses to N perturbations by both phytoplankton and heterotrophic community.  848 

There is strong evidence that future oceans will experience changes in temperature and N 849 

supply (Kim et al. 2014). The genetics of populations determines how environmental factors 850 

affect their ecologies and evolution (e.g. Larkin et al. 2016), and the results of our study imply 851 

that changes in N substrate availability favors different components of the phytoplankton 852 

community in different oceanic regions. More importantly, because phytoplankton taxa vary in 853 

elemental stoichiometry (Sterner and Elser 2002; Bertilsson et al 2003; Heldal et al. 2003), 854 

physiology (e.g. Moore et al. 2002), viral resistance (Stoddart et al. 2007) and DOM production 855 

(Becker et al. 2014), changes in phytoplankton community composition would impact 856 

biogeochemical cycles, as well as ecological processes. The results of our study underline the 857 

importance to better understand the complex interactions between diverse microbial populations 858 

and nutrient availability in the oceans.  859 
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Figure legends 1194 

Figure 1. Geographic locations in the North Pacific (a), sea surface height anomaly (b) and 1195 

potential density profiles (c) of the two stations where nutrient addition experiments were 1196 

conducted in August of 2014. Station 38 was in the western part of transition zone of California 1197 

Current System (station TZ), and Station 52 was in the oligotrophic North Pacific Subtropical 1198 

Gyre (station GY).   1199 

 1200 

Figure 2. Phytoplankton community responses to N compounds and Fe at two stations in the 1201 

NPSG. (a) Chlorophyll a, (b) rates of 14C-PP measured after 48 hrs of incubation at the GY and 1202 

TZ stations. The significantly different means (t-test, n=3, p<0.05) are indicated with unique 1203 

small letters where letter ‘a’ indicates values not-significantly different from the control. FDW: 1204 

0.2 µm filtered 600 m water. The dashed lines show measurements at T0 in the control (no 1205 

amendments). The dotted and dotdash lines in (b) show measurements at T0 in the N + Fe and 1206 

FDW additions, respectively.  1207 

 1208 

Figure 3.  Phytoplankton photosystem II physiology responses to N compounds and Fe in the 1209 

NPSG. (a and b) Maximum in vivo fluorescence yield (Fm); (c and d) maximum photochemical 1210 

efficiency of PSII (Fv/Fm); (e and f) functional absorption cross-section of PSII (sPII) measured 1211 

at 470 nm (a, c, e) and 505 nm (b, d, f) excitation wavelength in response to nutrient additions at 1212 

the GY and TZ stations. The dashed lines show measurements at T0 in the control (no 1213 

amendments). The significantly different means (t-test, n=3, p<0.05) are indicated with unique 1214 

small letters where letter ‘a’ indicates values not-significantly different from the control. FDW: 1215 

0.2 µm filtered 600 m water.  1216 
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Figure 4. Intergroup and spatial variability among phytoplankton and bacteria in responses to N 1217 

compounds and Fe additions. Cell counts for (a) Synechococcus, (b) Prochlorococcus, (c) 1218 

photosynthetic picoeukaryotes (PPE), (d) high nucleic acid containing bacteria (HNA) and (e) 1219 

low nucleic acid containing bacteria (LNA) for all treatments measured 48 h after nutrient 1220 

additions at the GY and TZ stations. The significantly different means (t-test, n=3, p<0.05) are 1221 

indicated with unique small letters where letter ‘a’ indicates values not-significantly different 1222 

from the control. FDW: 0.2 µm filtered 600 m water.  1223 

 1224 

Figure 5. Nitrogen additions resulted in a shift in microbial composition by 48 hrs in the NPSG. 1225 

(a) Microbial community composition based on the relative abundance of the 16S rRNA gene 1226 

copy at the genus level in the experiments at the GY and TZ stations.  Only top 30 abundant 1227 

genera are listed. Each sample represents a mean of 16S rRNA gene copy relative abundance 1228 

from three replicates. ua indicates unassigned taxa. (b) PCoA on Bray-Curtis distance measures 1229 

among the samples for heterotrophic microbial community composition at the GY and TZ 1230 

stations.  1231 

 1232 

Figure 6. Differential responses of Prochlorococcus oligotypes to N compounds. (a) Distinct 1233 

Prochlorococcus communities were present at the GY (left panel) and TZ stations (right panel). 1234 

Abundances of Prochlorococcus oligotypes, cells mL-1 (Y axis), were estimated based on 16S 1235 

rRNA gene amplicon sequencing, oligotyping analysis and cell counts. Oligotypes were assigned 1236 

to Clade (X axis) and eStrain (legend) based on the highest nucleotide identity, where each 1237 

eStrain represents a group of Prochlorococcus strains with 100% nucleotide identity in the V3-1238 

V4 region of the 16S rRNA gene sequence. (b) PCoA analysis on Bray-Curtis distance indices 1239 
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for Prochlorococcus community composition at T48 as a function of nutrient addition at the GY 1240 

and TZ stations. (c and d) Responses in abundance of the selected Prochlorococcus oligotypes to 1241 

nutrients at T48 at GY (c) and TZ (d). The dashed line shows abundances of each oligotype at 1242 

T0.     1243 

 1244 

Figure 7. Differential responses of Synechococcus oligotypes to N compounds. (a) Distinct 1245 

Synechococcus communities were present at the GY (left panel) and TZ stations (right panel). 1246 

Abundances of Synechococcus oligotypes, cells mL-1 (Y axis), were estimated based on 16S 1247 

rRNA gene amplicon sequencing, oligotyping analysis and cell counts. Oligotypes were assigned 1248 

to Clade (X axis) and eStrain (legend) based on the highest nucleotide identity, where each 1249 

eStrain represents a group of Synechococcus strains with 100% nucleotide identity in the V3-V4 1250 

region of the 16S rRNA gene sequence. (b) PCoA analysis on Bray-Curtis distance indices for 1251 

Synechococcus community composition at T48 as a function of nutrient addition at the GY and 1252 

TZ stations. (c and d) Responses in abundance of the selected Synechococcus oligotypes to 1253 

nutrients at T48 at the GY (c) and TZ stations (d). The dashed line shows abundances of each 1254 

oligotype at T0.     1255 



	
   50 

Tables 

Table 1. Initial conditions at the two hydrographic stations where N amendment experiments 

were conducted.  

  GY station TZ station 

Date 8/29/14 8/24/14 

Location 
Latitude (ddm) 27.281 33.502 
Longitude (ddm) -140.382 -129.37 

Physics 
Temperature, °C 23.84±0.01 19.50±0.04 
Salinity 35.41±0.01 33.47±0.01 

Nutrients 

NO3
-+NO2

-, nmol L-1 2.4±0.7 2.5±0.4 
NH4

+, nmol L-1 * 36±10 58±3 

SRP, µmol L-1 *** 0.094±0.005 0.272±0.005 

Si(OH)4, µmol L-1 *** 1.35±0.02 2.14±0.01 
Fe, nmol L-1 below LODb below LODb 

Phytoplankton activity 

Chl a, µg L-1 0.058±0.001 0.057±0.003 
14C-PP, µmol C L-1 d-1 0.33±0.02 0.34±0.01 
Fm470 3.4±0.2 3.6±0.3 
Fv/Fm470 ** 0.34±0.02 0.51±0.01 

sPSII-470 x10-20
 m-2

 quanta-1 
850±40 900±40 

Cell abundances 

Phytoplankton total, mL-1 1.6±0.5 x 105 1.1±0.5 x 105 
Prochlorococcus, mL-1 1.6±0.5 x 105 (30.8%) 1.0±0.5 x 105 (20.3%) 
Synechococcus, mL-1 * 1.2±0.8 x 103 (0.2%) 3.9±0.7 x 103 (0.8%) 
Photosynthetic 
picoeukaryotes, mL-1 * 1.14±0.03 x 103 (0.2%) 2.5±0.2 x 103 (0.5%) 
HNA cells, mL-1 1.2±0.1 x 105 (23.1%) 1.3±0.2 x 105 (25.3%) 

LNA cells, mL-1 2.4±0.2 x 105 (46.2%) 2.6±0.3 x 105 (53.1%) 
Total cellsa, mL-1 5.2±0.5 x 105    5.0±0.6 x 105    

 

Concentrations of nutrients are shown as an average (±standard deviation) of three replicates. 

Chl a – chlorophyll a concentration; 14C-PP – primary productivity rates; HNA – high nucleic 

acid cells; LNA – low nucleic acid cells, Fm470 – maximum fluorescence at 470 nm, Fv/Fm470 – 

maximum photochemical efficiency of PSII measured at 470 nm, sPSII-470 – functional absorption 
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cross-section of PSII measured at 470 nm. Significant difference in means is shown with *** for 

p<0.001, ** for p<0.01 and * for p<0.1 (two-sample t-test).  

aTotal cells: Prochlorococcus+Synechococcus+Photosynthetic picoeukaryotes+HNA+LNA cells 

bFe limit of detection (LOD) was 0.058 nmol L-1. 
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Table 2. Relative abundance and characteristics of Prochlorococcus and Synechococcus 

oligotypes at two experimental sites at the start of the incubation. The abundance is based on 16S 

rRNA gene copies and shown as percent of total 16S rRNA gene copies for each genus. Only 

oligotypes that contributed at least 1% to Prochlorococcus and Synechococcus populations at 

both sites are shown.  Identity (%) shows percent nucleotide identity to the 16S rRNA gene of 

the closest strain(s).  Score (bits) shows BLASTN score results. eStrain is a representative of a 

group of strains with 100% identical 16S rRNA gene V3-V4 region.  

Oligotype ID 
Nucleotides at 
high entropy 

positions 

Nucleotide 
identity, 

% 
eStrain Clade 

Relative 
abundance 
at GY, % 

Relative 
abundance 
at TZ, % 

Prochlorococcus 
MED4-oligo1 CGTTTCT 100 MED4 HLI 0.96 73.75 
MIT9301-oligo1 TGCTAAT 100 MIT9301 HLII 66.19 0.29 
MIT9312-oligo1 TACTAAT 100 MIT9312 HLII 21.64 0.45 
MIT9515-oligo1 CGCTTCT 100 MIT9515 HLI 0.54 10.72 
MED4-oligo2 CGTTTTT 99.75 MED4 HLI 0.55 3.75 
MED4-oligo3 CGTTTAT 99.75 MED4 HLI 0.37 2.92 
MIT9515-oligo2 CGCTTAT 99.75 MIT9515 HLI 0.64 1.42 
SB-oligo1 TGTTAAT 100 SB HLII 1.93 0.03 
MIT9301-oligo2 TGCTTAT 99.51 MIT9301 HLII 1.91 0.04 
NATL1A-oligo1 CGCTTTT 99.75 NATL1A LLI 0.28 1.61 
PAC1-oligo1 TGCTTTT 99.75 PAC1 LLI 0.85 0.76 
MIT9312-oligo2 TACTTAT 99.51 MIT9312 HLII 1.26 0.01 

Synechococcus 
CC9605-oligo1 ATACTCTATGC 100.00 CC9605 Clade II 61.12 34.93 
CC9605-oligo2 ATACTCTATGT 99.75 CC9605 Clade II 25.46 14.09 
CC9902-oligo1 ATACTCTAAGC 100.00 CC9902 Clade IV 0.00 26.30 
CC9902-oligo2 ATACTCTAAGT 99.75 CC9902 Clade IV 0.00 13.64 
KORDI100-oligo1 ATCCGCTCTGC 99.75 KORDI-100 Clade V 0.97 5.11 
CC9605-oligo3 ATGCTCTATGC 99.75 CC9605 Clade II 5.77 0.00 
CC9605-oligo4 ACACTCTATGC 99.75 CC9605 Clade II 4.34 0.34 
CC9605-oligo5 ATACTCTCTGC 99.75 CC9605 Clade II 0.48 0.84 
KORDI100-oligo2 ATCCGTTCTGT 99.26 KORDI-100 Clade V 0.00 1.10 
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Table 3. Responses of microbial communities to urea, NO3
-, NH4

+ and Fe additions in the North 

Pacific Ocean. The responses after 48 hrs are summarized for all N forms and specifically for 

each N substrate. Responses shared between the two stations are shown in grey, and responses 

specific for TZ and GY stations are shown in orange and blue, respectively. The arrow up (Ý) 

shows an increase, and the arrow down (ß) shows a decrease in value. Triangle (∆)	
  shows a shift 

in community composition. Reverse triangle (Ñ) shows consumption of a nutrient (Table S5). 

The width of arrows and size of triangles reflect the magnitude of change.	
  The empty boxes for 

individual substrates/elements indicate that the response was similar to that shown in column 

“All N substrates”. The empty boxes in the “All N substrates” indicate that the response differed 

among all N substrates. 	
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Figure 4 
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Figure 5 
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Figure 6 
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Table S1. Oligotypes annotation: strains with identical nucleotide sequence in the V3-V4 region 

of the 16S-rRNA gene were grouped into eStrains.  

Organism eStrain Strains 

Prochlorococcus 

MED4 Prochlorococcus marinus str. EQPAC1 
Prochlorococcus marinus MED4 

MIT9301 

Prochlorococcus marinus str. GP2 
Prochlorococcus marinus str. MIT 9401 
Prochlorococcus marinus str. MIT 9322 
Prochlorococcus marinus str. MIT 9321 
Prochlorococcus marinus str. MIT 9314 
Prochlorococcus sp. MIT 0604 
Prochlorococcus marinus str. MIT 9202 
Prochlorococcus marinus str. MIT 9215 
Prochlorococcus marinus str. MIT 9301 
Prochlorococcus marinus str. AS9601 

MIT9312 

Prochlorococcus marinus str. MIT 9311 
Prochlorococcus marinus str. PAC1 
Prochlorococcus marinus str. MIT 9302 
Prochlorococcus marinus str. MIT 9107 
Prochlorococcus marinus str. MIT 9123 
Prochlorococcus marinus str. MIT 9201 
Prochlorococcus marinus str. MIT 9116 
Prochlorococcus marinus str. MIT 9312 

MIT9515 Prochlorococcus marinus str. MIT 9515 

NATL1A 
Prochlorococcus sp. MIT 0801 
Prochlorococcus marinus str. NATL1A 
Prochlorococcus marinus str. MIT 9515 

PAC1 Prochlorococcus marinus str. PAC1 
SB Prochlorococcus marinus str. SB 

Synechococcus 

CC9311 Synechococcus sp. WH 8020 
Synechococcus sp. CC9311 

CC9605 

Synechococcus sp. WH 8016 
Synechococcus sp. WH 8109 
Synechococcus sp. KORDI-52 
Synechococcus sp. WH 8103 
Synechococcus sp. CC9605 

CC9902 Synechococcus sp. BL107 
Synechococcus sp. CC9902 

KORDI-100 Synechococcus sp. KORDI-100 
Synechococcus sp. CC9616 

 

 

 



 3 

Table S2. T-test statistics summary for evaluating means for chlorophyll a concentrations and 

rates of primary productivity.   

 

Table S3. T-test statistics summary for evaluating means for FRRF parameters: Fm, Fv/Fm and 

sPSII. 

 

Table S4. T-test statistics summary for evaluating means for phytoplankton and bacterial group 

cell counts.   

 

Table S5. Nutrient consumption at the end of the experiments (concentrations at T0 – 

concentrations at T48). Percentage of nutrient utilized is shown in parenthesis. Urea 

concentrations were not measured. 
Experiment	
   Treatment	
   N+N	
  nmol	
  L-­‐1	
   NH4

+	
  nmol	
  L-­‐1	
   SRP	
  nmol	
  L-­‐1	
  

TZ	
   NH4	
   	
   2400±180	
  (48) 62±8	
  (23) 

 NO3	
   1480±64	
  (30)	
   	
   33±8	
  (12)	
  

	
   Urea*	
   	
   	
   34±9	
  (13)	
  

 NFe	
   470±100	
  (17)	
   5300±140	
  (99)  

GY  NH4	
   	
   1360±92	
  (54)	
   27±7	
  (29)	
  

	
   NO3	
   1040±240	
  (41)	
    36±8	
  (38) 

 Urea*	
   	
   	
   36±15	
  (38)	
  

	
   NFe	
   620±160	
  (28)	
   2040±60	
  (97) 33±7	
  (37) 
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Figure S1. PCoA of heterotrophic community composition shifts in response to nutrient addition 

measured with the Bray-Curtis index produced similar results to the PCoA based on the Jaccard 

index (as shown in Fig. 5). (a) GY station, and (b) TZ station. The samples are color-coded by 

treatment and the shape corresponds to the time of sampling. (c) Relative abundances of 16S-

rRNA sequences for most variable microbial families shown for the TZ (top panel) and GY 

stations (bottom panel).   
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Figure S2. Differential responses of Prochlorococcus oligotypes to N compounds. Cell 

abundances of the selected Prochlorococcus oligotypes in response to nutrient additions after 48 

of incubation at the GY station. The dashed line shows cell abundances of each oligotype at T0.  

 

 

 
 




