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The recovery of Sphagnum capillifolium following exposure to 1 

temperatures of simulated moorland fires: a glasshouse experiment  2 
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Abstract 9 

Background. In the UK, government legislation allows the use of prescribed fire in peatlands for 10 

land management purposes. The use of fire, however, remains controversial, partly because of a 11 

distinct lack of data on the response of key peatland species to fire. Sphagnum species are key 12 

components of peatland ecosystems, yet a fundamental knowledge gap in the debate is the 13 

response of Sphagnum species to fire. Aims. To determine if a widespread species (Sphagnum 14 

capillifolium) has the ability to recover from exposure to high temperatures, analogous to those 15 

recorded in managed peatland fires. Methods. Samples of S. capillifolium were exposed to a range 16 

of temperature treatments. Recovery was monitored using chlorophyll fluorescence, CO2 exchange 17 

and physical damage and new growth assessed. Results. We found that the degree of recovery of S. 18 

capillifolium was related to the temperature treatment, post-treatment environmental conditions 19 

and pre-treatment stem moisture content. The slowest recovery was found when samples were 20 

heated to 400 oC for 30 seconds. Conclusions. Our results demonstrate that S. capillifolium has the 21 

ability to recover following exposure to the temperatures experienced in prescribed fire, provided 22 

that at least some living material remains. Our results suggest that prescribed burning in the spring 23 

may allow for a quicker recovery than autumnal fires. 24 

 25 

Introduction  26 

Prescribed fire is a key management tool used on peatlands in Britain, to promote the 27 

regrowth of Calluna vulgaris (L.) Hull (Calluna hereafter) and grasses for grazing by game 28 

birds and livestock.  There is considerable debate over the impact of fire on peatlands, and in 29 

particular, on the impacts on species of ecological and conservation importance, such as 30 

Sphagnum species. The debate surrounding prescribed fire remains contentious, partly due to 31 

the polarised views of the protagonists, but also because of the lack of evidence for the 32 

effects of fire on taxa including Sphagnum (Davies et al. 2016).  Much of the data comes 33 
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from studies on wildfires, which may be much more severe (sensu Keeley 2009) than 34 

prescribed fires, and result in greater depth of burn and exposure of bare peat (Benscoter 35 

2006; Maltby et al. 1990).  The effects of prescribed fires may be qualitatively quite 36 

different, and it was this that we aimed to investigate here.  Sphagnum mosses are key peat-37 

forming species and store large quantities of carbon (Rydin and Jeglum 2006).  Their 38 

capacity for holding water and locking up nutrients, together with their recalcitrant litter, 39 

allows them to survive in, and maintain, the nutrient-poor and acidic peatland environment 40 

(Clymo and Hayward 1982; Jones et al. 1994; Kuhry et al. 1993; Rydin and Jeglum 2006).  41 

As key components of peatlands, understanding the response of the Sphagnum species to 42 

land management and the environment is of fundamental importance to peatland 43 

conservation.   44 

In England, burning on blanket bog is only allowed as part of a pre-approved plan for 45 

conservation and restoration in a defined season (Anon 2007), and Wales has a similar set of 46 

regulations (Anon 2008).  In Scotland, burning can only be legally carried out during a 47 

defined season, and only where Calluna constitutes more than 75% of the vegetation cover 48 

(Anon 2011); these guidelines are currently under review.  Understanding the response of 49 

Sphagnum is a crucial aspect of these guidelines and needs to be based on evidence if the 50 

debate on the use of fire is to progress (see Davies et al. 2016).  To date, little research has 51 

looked at the direct effect of fire on the Sphagnum. Observations suggest that the impact on 52 

the Sphagnum may depend on vegetation and environmental characteristics that influence 53 

temperature at the moss surface and the penetration depth and duration of high temperatures.  54 

The typical adiabatic flame temperature of wood burning in air is 1980 °C (Griffiths and 55 

Barnard 1995), so very high temperatures can be reached in the vegetation canopy during the 56 

passage of a fire.  At the moss surface, temperatures can reach up to 600 °C for relatively 57 

short periods (<30 seconds) (Davies 2005; Hamilton 2000), but typically, the moss layer is 58 
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not exposed to such high temperatures (see Hobbs and Gimingham 1984).  The limited 59 

available data suggest that the temperature at 2 cm below the moss surface rarely exceeds 50 60 

°C (Davies 2005), although, Harris et al. (2011) recorded maximum temperatures of 61 

approximately 600 οC 1 cm above the ground level in Calluna moorland.  High surface 62 

temperatures can potentially affect Sphagnum growth through cell damage in the uppermost 63 

capitulum, the site of the majority of photosynthetic activity (Rydin and Jeglum 2006).  64 

However, fire may damage only the upper sections of stems, allowing re-growth from side 65 

shoots (Rydin and Jeglum 2006). This has been observed in the field in at least some 66 

circumstances (c.f. Clymo and Duckett 1986; Hamilton 2000).  67 

The depth and duration of high temperatures will depend on the amount, composition and 68 

distribution of fuel above the moss layer, the moisture content and bulk density of vegetation 69 

and moss layer, and meteorological conditions (e.g. see Harris et al. 2011; Santana and Marrs 70 

2014, 2016).   A high density of above-ground fuel will prolong the residence time of the 71 

fire, causing greater heating and evaporation, and may allow the fire to penetrate the peat 72 

(Ashton et al. 2007; Davies et al. 2013). ‘Hot spots’ have been observed in Calluna fires in 73 

the moss layer immediately around the woody stems of Calluna (Davies 2005; Hamilton 74 

2000).  Conversely, high Sphagnum moisture contents could result in reduced temperatures 75 

and depth of penetration, as thermal energy would be dissipated by evaporation.  A wetter 76 

Sphagnum layer may also have quicker recovery following the drying effect of the fire.  77 

However, given that fuel loads and moisture contents differ considerably among (and within) 78 

fires (Legg et al. 2010), the thermal impact of fire on Sphagnum will also vary.  Here, we 79 

used a representative range of maximum temperatures, fire residence times and moisture 80 

contents to assess the effects of high temperature on photosynthesis and recovery in 81 

Sphagnum capillifolium (Ehrh.) Hedw sensu lato.   82 
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S. capillifolium is one of the most common species in Calluna-dominated heaths managed by 83 

fire (Rodwell 1991). From previous research (Glime 2007) and the well-known effects of 84 

temperature on enzymes, we expected that the photosynthetic capacity of S. capillifolium 85 

would be reduced following exposure to high temperature, with greater reduction at higher 86 

temperatures and longer residency times; and that a critical temperature and residency time 87 

would exist beyond which S. capillifolium could no longer recover.    88 
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Materials and methods   89 

Experimental design  90 

Sphagnum capillifolium was exposed experimentally to a high temperature over a short 91 

duration, reproducing the temperature dynamics in the range recorded in Calluna fires 92 

(Davies 2005).  S. capillifolium was collected from Whim Moss, Penicuik, south-east 93 

Scotland (NT203532), an ombrotrophic blanket bog classified as M19 Calluna vulgaris-94 

Eriophorum vaginatum National Vegetation Classification (NVC, Rodwell 1991) blanket 95 

mire.  The site lies at 280 m a.s.l., with mean temperature of 8.6 oC (Sheppard et al. 2013). 96 

Clumps of S. capillifolium (6 cm deep, 5 cm diameter) were collected a maximum of two 97 

days prior to the start of each run of the experiment from four separate hummocks (so enough 98 

material could be gathered), and placed into 5-cm diameter fibre pots (Grow It, Spalding, 99 

UK). Clumps were kept as intact as possible, ensuring the number of stems in each pot was 100 

representative of natural stem densities; the number of stems per pot varied between 42 and 101 

83.  For each run, 96 pots of S. capillifolium were placed within a tray containing a bed of S. 102 

capillifolium cuttings, to help maintain near natural moisture conditions with regularly 103 

watering in a glasshouse that was programmed to track external air temperatures (+/- 2 oC). 104 

The tray was divided into four blocks so any variation in conditions across the tray could be 105 

reflected in the statistical models. Each pot was individually watered with distilled water, 106 

using a syringe, to maintain S. capillifolium moisture content to around 90% (moisture 107 

content is expressed throughout as mass of water / initial fresh mass of moss x 100, as this 108 

could be measured gravimetrically non-destructively over the whole course of the 109 

experiment; initially, the moss was near to saturation). A pilot study ensured that S. 110 

capillifolium samples could remain healthy under these conditions as indicated by 111 

chlorophyll florescence (see Taylor 2015).  112 
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The experiment was run three times in spring, autumn and winter, with one of three different 113 

temperature treatments (see below) randomly assigned to each of the 96 pots per run (Table 114 

1).  Pots were randomly assigned to one of four measurement procedures: chlorophyll 115 

fluorescence, CO2 exchange, growth measurements or moisture content analysis, as both the 116 

chlorophyll fluorescence and moisture content analysis were destructive. Although the winter 117 

experiment in February 2013 was initiated only a month earlier in the seasonal cycle 118 

compared to the spring experiment (in March 2012), the prevailing weather conditions were 119 

quite different.  In the two weeks prior to the winter experiment, the locally-measured air 120 

temperature averaged 1.4 oC, and was below freezing for much of the time.  In the two weeks 121 

prior to the spring experiment, the air temperature averaged 7.4 oC, and the plants were 122 

physiologically active.  Hence, we think these experiments approximate the typically 123 

contrasting conditions in these seasons, even though the timing in terms of the seasonal cycle 124 

was not large. 125 

The temperature treatments were carried out by placing each pot in a perforated steel 126 

chamber, heated from above by a butane-propane gas burner (Parasene Weed Wand 550, 127 

Parasene, UK). The flame was held in place for the desired length of time once the surface of 128 

the pot reached the desired maximum temperature. The perforated steel chamber diffused the 129 

direct heat from the flame, so that temperatures could be better controlled at the moss 130 

surface. Temperature was logged (CR21X, Campbell Scientific, Utah, USA) every 2 s using 131 

k-type twisted thermocouples at, 2-cm and 5-cm depth.  The temperature treatments were: 132 

100 (100 οC for 3 s); 400 (400 οC for 3 s); 400+ (400 οC for 30 s); and 400+D (400 οC for 30s 133 

and air drying the Sphagnum for three days prior to treatment). Control pots were treated the 134 

same except that no heating was applied.  For post-treatment recovery, the pots were 135 

maintained at stem moisture content of around 90%. The mean, minimum and maximum 136 

values of air temperature and photosynthetic photon flux density (PPFD) were also measured.  137 
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Chlorophyll fluorescence  138 

Chlorophyll fluorescence was used to measure plant stress (Krause and Weis 1991; Maxwell 139 

and Johnson 2000), based on previous evaluations on Sphagnum (e.g. Hájek and Beckett 140 

2008; Manninen et al. 2011; van Gaalen et al. 2007). The technique works on the principle 141 

that the ratio between variable florescence (Fv) and maximal florescence (Fm) approximates 142 

the maximum quantum yield of PSII, ranging between 0.75 and 0.84 in healthy mosses (e.g. 143 

Bates et al. 2013; Green et al. 1998; Hájek and Beckett 2008; Manninen et al. 2011; Proctor 144 

2003; van Gaalen et al. 2007), with lower values indicating stress (Maxwell and Johnson 145 

2000).  146 

Chlorophyll fluorescence measurements were made using a Continuous Excitation 147 

Chlorophyll Fluorimeter (HandyPEA, Hansatech Instruments Ltd, UK) on the capitulum of 148 

one stem from each pot on 8 days beginning on the first day of temperature exposure and up 149 

to 100 days after exposure. Each capitulum was dark-adapted for 20 min, prior to 150 

measurements at a PPFD of 1500 µmol m-2 s-1. During the autumn run chlorophyll 151 

fluorescence was assessed 100 days after treatment at 5-mm intervals down the stem.   152 

CO2 exchange  153 

Gas exchange measurements were made five times on eight pots per treatment from day 3 to 154 

99, using an infra-red gas analyser (LI-6400XT, Li-Cor, Lincoln, NE, USA) in an open gas 155 

exchange system, with a sample chamber designed to measure whole pots of Sphagnum. 156 

Each pot of Sphagnum was carefully transferred into an inert plastic pot of the same size as 157 

the gas exchange measurements. Air from the sample chamber was circulated through a 158 

column of silica gel to remove excess water vapour, such that the humidity of incoming and 159 

outgoing air from the sample chamber was similar. The Licor LI-6400XT was set to control 160 

the system flow rate (500 μmol air s-1), chamber air temperature (20 oC), incoming CO2 161 



 

9 

 

concentration (400 μmol mol-1), and PPFD (0 or 2000 μmol photons m2 s-1 using a 6400-18 162 

RGB light source, Licor, Lincoln, NE, USA).  CO2 concentrations were logged at 10 163 

sintervals and averaged once stable, typically over 5 to 10 min. Because of the difficulties in 164 

quantifying leaf area, photosynthesis and respiration were expressed as µmol CO2 (g dry 165 

mass)-1 s-1, correcting all CO2 mixing ratios to a dry air basis.  The dry mass of Sphagnum 166 

was calculated by oven-drying samples at the end of each run of the experiment (day 100) at 167 

70 oC for 5 days before weighing. No respiration measurements were made during the spring 168 

run and measurements were made on only three occasions during the first half of the autumn 169 

run, as pots were infected with mould which covered some or all of the surface of the 170 

Sphagnum. No other runs of the experiment were affected by mould.  171 

 172 

Physical damage and new growth 173 

The depth of physical damage and bleaching (loss of pigment) was measured down the stem 174 

from the capitulum. Reduced structural integrity was estimated by gently running a finger 175 

across the surface of the pot showing breakage in brittle stems from pots assigned to the 176 

whole pot gas exchange and new growth.  177 

The number and dry mass of new auxiliary stems was measured at the end of each run of the 178 

experiment and the length of the new stems was measured in a subset of samples. New stems 179 

oven-dried at 70 oC for 5 days, weighed and new growth calculated as the ratio of dry 180 

biomass (new growth plus original sample) to the original dry biomass to take into account 181 

the difference in the number of stems between pots.  182 

Statistical analyses  183 

Linear mixed-effects models were used for analysing chlorophyll fluorescence, 184 

photosynthesis and respiration data, accounting for the repeated measurement design. Initial 185 



 

10 

 

models were composed of all fixed and random effect terms (Table 2). In subsequent models, 186 

non-significant fixed effect terms were dropped one by one (using AIC) to derive a model 187 

with the smallest AIC that consisted only significant fixed effect terms, as indicated by Wald 188 

tests. Statistics were carried out using  R (v R i386 3.0.1) (R Core Team 2013) with mixed 189 

effects modelling computed using the package lme4 (Bates et al. 2009).  190 
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-- 191 

Results  192 

Chlorophyll florescence 193 

Control plants had an Fv/Fm ratio closest to 0.7 but had distinct low periods during spring 194 

and winter (Figure 1a). In spring and autumn, the control plants had higher Fv/Fm ratios than 195 

plants from temperature treatments. The linear mixed effects model showed that both the 196 

fixed terms of Day and Treatment were significant as well as the interaction between Day 197 

and Treatment.  Between-pot variability was found to be the largest random effect (Table S1, 198 

Figure S2). Physiological damage was confined to the upper portion of stems, where the 199 

Fv/Fm ratio was reduced in the top 20 mm of stems in the 400 and 400+ treatments compared 200 

to the control (Figure 2). 201 

CO2 exchange 202 

Net CO2 exchange under full light (2000 µmol m2 s-1), Amax, varied considerably between 203 

runs and treatments, ranging from 84±13 to 252±26 µmol g-1 (dry weight) day-1 with highest 204 

values in control pots during autumn (Figure 1b). Amax in temperature-treated pots was only 205 

noticeably lower during the first half of the spring and autumn runs. In general, the 206 

respiration rate was less variable between treatments than Amax (Figure 1c) during both 207 

autumn and winter. Respiration rate also varied less between runs, ranging from -105±33 to -208 

13±22 µmol g-1 (dry weight) day-1 in autumn and -103±11 to 17±12 µmol g-1 (dry weight) 209 

day-1 in winter.   210 

The linear mixed effects models for Amax, respiration and fluorescence showed that the Day 211 

and Treatment fixed-effect terms were significant (Table S2). In contrast, Day was not found 212 

to be significant in models of respiration rate (Table S3) with Hummock and Block the best 213 

random effects terms to explain the variance beyond the Treatment effect (Figure S3). 214 
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Common to both the models of Amax and respiration was that the random effects explained 215 

little of the within-treatment variance.  216 

Physical damage and new growth  217 

In control pots, bleaching was largely absent, only occurring for short periods on one or two 218 

stems per pot after particularly warm and dry conditions.  Most stems in high-temperature 219 

treatments showed some bleaching (Figure 3) of the upper parts and capitulum, with the 100 220 

oC treatment showing the least amount of bleaching (Figure 4), and bleaching being more 221 

pronounced a few days after heat treatment.  222 

Depth of physiological damage was confined to the upper portion of stems; the Fv/Fm ratio 223 

was reduced in the 400 and 400+ treatments in the top 20 mm of stems (Figure 2). In the 400 224 

oC treatment, the extent of damage increased with residence time.  The greatest depth of 225 

damage occurred in the 400+D treatment (Figure 4).  No damage was found down stems in 226 

control pots (Figures 2 and 4). A loss of structural integrity of the capitula was found in all 227 

400+ treatments in autumn and winter, but was not seen at all in the control treatment (Figure 228 

5). 229 

New growth during the duration of the experiment arose in new, smaller and more elongated 230 

auxiliary stems in all treatments after 100 days in spring and winter (Figure 6). No new 231 

growth was found in any of the pots in autumn. Two distinct zones of growth were apparent 232 

in both spring and winter runs with new stems growing from upper side innovations and base 233 

innovations which grew from the lowest portion of the original stem. In both spring and 234 

winter, most new growth occurred in pots which had been subjected to the higher 235 

temperature treatments as opposed to control pots. Significantly more new growth was seen 236 

in spring in both control and temperature treatment pots than in winter.   237 
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The distance down the stem where new side innovations grew was correlated to the depth of 238 

bleaching, as the new side innovations grew from unbleached areas below the bleached stem 239 

(Figure 7).  240 

 241 

Discussion  242 

Our results show that the photosynthetic capacity of S. capillifolium was reduced following 243 

exposure to high temperatures, and that higher temperatures and longer residency times 244 

caused more physical damage. However, we found that S. capillifolium has the capacity to 245 

recover its photosynthetic capacity by producing new auxiliary growth.     246 

Photosynthetic capacity and CO2 exchange  247 

The photosynthetic capacity, (chlorophyll fluorescence and CO2 assimilation) of the upper 248 

sections of S. capillifolium was found to vary considerably between temperature treatments, 249 

and between each run of the experiment carried out in the different seasons. The highest 250 

Fv/Fm ratio closest to healthy plants ratio (around 0.75 Demmig and Bjorkman 1987), was 251 

found in control pots. Treated plants showed a general increase in Fv/Fm after an initial drop 252 

following high temperature treatment, but with quicker recovery to healthy Fv/Fm ratios in 253 

treatments with lower maximum surface temperatures and residency times. The ascending 254 

order of severity, indicated by the reduction in photosynthetic capacity and damage 255 

(bleaching) sustained, of the treatments can be summarised as control <100 <400<400+ (with 256 

the increased temperature residency time) <400+D (greatest damage caused when S. 257 

capillifolium was dried prior to temperature treatment.).   258 

Other than the controls, the least reduction in photosynthetic capacity was seen in pots 259 

exposed to 100 oC, suggesting that this treatment did not cause severe damage.  A similar 260 

effect was seen for bleaching (results not shown).  Pots treated with a maximum surface 261 
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temperature of 400oC showed the greatest reduction in Fv/Fm.  Little difference was detected 262 

in Fv/Fm among 400 oC treatments where residence time and pre-treatment moisture content 263 

were varied.  This suggests that the maximum temperature reached at the surface of the 264 

Sphagnum layer may be a sufficient indicator of the short-term impact on photosynthetic 265 

capacity. As shown by here, damage to plant cells brought about by fire, such as protein 266 

denaturation or lipid mobility (Levitt 1972) can be brought about by exposure to surface 267 

temperatures of around 400 oC for just 3 s in S. capillifolium at a pre-treatment moisture 268 

content of around 90%.   269 

Another important observation was that the Fv/Fm varied both within a run and between 270 

runs, suggesting that both short-term changes in environment and seasonality are important. 271 

This was demonstrated by the control pots, which did not show the steady increase in Fv/Fm 272 

over time as seen in temperature-treated pots, but considerable variation between sample 273 

days.  Stem moisture content was found to account for the most within treatment and sample 274 

day variation with lowest Fv/Fm in control pots corresponding to lower stem moisture 275 

content and a particularity warm period during spring. During the winter run of the 276 

experiment, it was also found that the lowest Fv/Fm found in control pots occurred after a 277 

period of a few days when the Sphagnum had frozen.  278 

An optimum stem moisture content for photosynthesis has been shown in Sphagnum, with 279 

declining rates of CO2 assimilation coupled with a reduction in stem moisture content 280 

(Clymo 1973; Johansson and Linder 1980; Strack et al. 2009; Titus et al. 1983; Williams and 281 

Flanagan 1996).  The moisture content needed for maximum photosynthesis varies between 282 

species (Clymo 1973; Strack et al. 2009; Williams and Flanagan 1996) and seasonally 283 

(Johansson and Linder 1980; Titus et al. 1983). Specifically, the Fv/Fm measured using 284 

chlorophyll fluorescence has been shown to decline with reduced stem moisture content in 285 

Sphagnum (van Gaalen et al. 2007). Sphagnum has been shown to tolerate desiccation to a 286 
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critical moisture threshold (Schouwenaars and Gosen 2007) when reached net photosynthesis 287 

ceases (Schipperges and Rydin 1998). This  suggests that the drying experienced in control 288 

pots during this study was survivable and did not drop below this threshold. In the 400+D 289 

treatment, Sphagnum were dried to a moisture content of 80% prior to treatments, and they 290 

remained consistently drier, up to 88 days than other treatments. This could be caused by the 291 

water transport and holding capacity of the Sphagnum being compromised by exposure to 292 

high temperatures. This suggests that high temperatures caused by fire may make Sphagnum 293 

vulnerable to long-term damage brought about by drought, by increasing the likelihood of 294 

drying below the critical threshold.  Therefore, post-fire conditions may be important and 295 

short-term environmental changes may have long-term influences on productivity in 296 

Sphagnum (Backéus 1988; McNeil and Waddington 2003).  297 

Amax largely reflected the treatment effects on Fv/Fm with the exception of the lack of 298 

treatment effect on Amax in the winter run. During spring and autumn, the control pots showed 299 

higher Amax than the 400 oC temperature treatments with some degree of recovery shown in 300 

the temperature pots in spring. Recovery of the temperature treatments was not seen in either 301 

winter or autumn, but this could be because measurements were not continued for the 302 

duration of the autumn run because of mould contamination. There was no significant 303 

difference in Amax in the 100 oC treatment, suggesting that higher temperatures had a more 304 

detrimental effect on photosynthesis, which was further supported by the Fv/Fm 305 

observations. There was no clear treatment effect on respiration, despite it still being a 306 

significant term in the mixed effects model. This is likely to be due to differences in 307 

respiration rates observed on day 1 between the control pots and temperature treated pots in 308 

autumn.  309 
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There was considerable variation between sampling days particularly in winter Amax but no 310 

detectable difference between treatments. During both autumn and winter, Amax in temperature-311 

treated pots followed the same temporal pattern of Amax of control pots. This suggests that Amax 312 

in all pots was determined by other factors beyond the temperature treatments.  313 

Sphagnum has been found to exhibit strong seasonal variation in productivity, with short-day 314 

photoperiods (Gerdol 1995; Li and Glime 1991) and low temperatures associated with up to a 315 

five-fold reduction in growth (Gerdol et al. 1998). The findings here support this seasonality 316 

with the lack of CO2 assimilation during the winter run of the experiment. However, the 317 

lower stem moisture content experienced throughout the winter run could also account for 318 

low Amax in the control pots. This suggest that the implications for prescribed burning may be 319 

that if photosynthesis and growth rates are lower during the colder and shorter days of winter, 320 

then rates of recovery could be much slower following fires which have taken place from 321 

October to February that burns which happen at from March to April. Seasonality and timing 322 

of fire is therefore an important consideration when reducing the impact on Sphagnum is a 323 

goal.    324 

In real fires in the field, the deposition of ash on to the moss layer may have detrimental 325 

effects on photosynthesis, but very little is known about this. Future work using laboratory-326 

based simulated fires could usefully separate the effects of ash deposition from the effects of 327 

high temperature, and examine any interaction effects. 328 

New growth  329 

New growth in side and base innovations were only found in spring and autumn. Low light 330 

levels in the winter run of the experiment, could account for the lack of new growth 331 

observed. An additional control on growth is night-time temperature and S. capillifolium has 332 

been demonstrated to have a five-fold increase in growth at a night-time temperature of 15 oC 333 
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compared to 5 oC (Gerdol et al. 1998). The temperatures recorded during autumn declined 334 

from around day 50, making them lower than those in spring, so these low temperatures 335 

could also contribute to the lack of growth observed.  336 

It is important to highlight the need to take into account post-burn conditions when assessing 337 

Sphagnum recovery especially when assessing fire severity. For example, management burns 338 

occurring in the spring may show faster rates of Sphagnum recovery due to the more 339 

favourable growing conditions than those found in winter. Thus, post-burn recovery may 340 

have as much to do with season than with the fire itself as post-fire conditions, most notably 341 

the moisture status of the Sphagnum layer and height of the water table may retard or 342 

promote growth (Robroek et al. 2007; Rochefort et al. 2002). This would make it necessary 343 

to include post-burn environmental variables in methods that assess fire severity.   344 

Our observation regarding regeneration was that side innovations appeared to be very similar 345 

to those described by Clymo and Duckett (1986) who suspected that the ability of Sphagnum 346 

to produce new shoots was a widespread and important mechanism to overcome disturbance 347 

(see also Hamilton 2000; Rochefort et al. 2002).  Regeneration and production of new 348 

innovations has been observed in the field (Burch 2009; Hamilton 2000),where patches of 349 

Sphagnum produced new green capitula on the surface and capitula regained colouration 350 

after bleaching, following a fire. This suggests that the side innovations observed here were 351 

not just a product of experimental conditions.  352 

The most severe temperature treatment (400+D) used here was intended to be fatal to S. 353 

capillifolium but was still found to result in new growth. This suggests even higher surface 354 

temperatures and longer temperature residency times are needed to kill S. capillifolium. 355 

Clymo and Duckett (1986) demonstrated Sphagnum growth 30 cm below the surface, 356 

suggesting that high temperatures would have to penetrate very deep within the Sphagnum 357 
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layer to prevent any regeneration. However, at this depth, light may limit regeneration after 358 

fire, and complete consumption would prevent any regeneration. Nevertheless, partial 359 

consumption may allow sufficient light for side or base innovations to proliferate and hence 360 

allow recovery.    361 

 362 

Conclusions   363 

The aim of this research was to determine the short-term responses of Sphagnum 364 

capillifolium to fire. We found that the rate of photosynthesis was reduced by exposure to 365 

high surface temperatures. High temperature also increased the extent of bleaching and 366 

capitulum loss. Importantly though, within the range of surface temperatures and residence 367 

times used here, no critical threshold was found to cause widespread death of S. capillifolium.  368 

Even in the treatment specifically designed to be lethal, new auxiliary stem growth was 369 

found. Our results provide evidence that S. capillifolium has the ability to recover from the 370 

high temperatures experienced in typical prescribed fires, provided that at least some living 371 

material remains. The experiment also suggests seasonal effects are important to S. 372 

capillifolium recovery, and that recovery may be conditional on the fire timing. Although 373 

these results demonstrate that S. capillifolium has the ability to survive a fire event, it is 374 

important to consider these results within the context of management burning regimes. Lee et 375 

al. (2013) for instance have demonstrated that, although Sphagnum may survive a fire, long-376 

term frequent burning (every 10 years) can reduce the propagule bank within the peat. This 377 

could reduce the capacity for recovery from fire events which wholly consume the Sphagnum 378 

layer. Future research into the impact of the types of fires simulated here, which are 379 

supported by the current best practice guidance and legislation, should include other 380 

Sphagnum species, particularly those from differing micro-habitats, to establish if the 381 
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findings are generalizable to other Sphagnum spp. and identify micro-habitats or species 382 

which may be most vulnerable. 383 

  384 
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Table 1 Temperature treatments, designed to simulate conditions recorded in Calluna vulgaris fires, used on samples of Sphagnum 
capillifolium for three runs of an experiment to determine its capacity for recovery. Burn Season refers to the time of year the pots 
were exposed to each temperature treatment. All pots were observed and recovery measurements made for a total of 100 days after 
being exposed to each temperature treatment which is termed Observation Period in the table. n = 32 per treatment per run of the 
experiment. *400+D indicates where the treatment was carried out on pots of Scapillifolium subjected to three days of drying prior 
to the treatment. As some treatments were repeated in different runs total pots varied by treatment; control (n=96), 100 (n=32), 400 
(n=64), 400+ (n=64), 400+D (n=32).  

Run  
Simulated  
Burn  
Season  

Observation 
Period   

Treatment 
Name  

Maximum  
Surface  
Temp   
(oC)  

Maximum   
Temperature  Residence 
Time   
at Surface   
(s)  

Mean Sphagnum 
Moisture Content 
when burnt           
(% wet weight  
basis)  

1  Spring  Mar‘12 – Jun’12  Control  Ambient (~9oC)  -    
      100 100 3s at max surface temp 89.5 

      400 400 3s at max surface temp 89.6 

  
2  

  
Autumn  

  

Oct’12 – Jan’13  

  
Control  

  
Ambient (~16oC)  

 -   
  

      400 400 3s at max surface temp 89.6 

      400+ 400 30s between 350 & 450oC 92.5 

  
3  

  
Winter  

  

Feb’13 – May’13  

  
Control  

  
Ambient (~3oC)  

 -   
  

      400+ 400 30s between 350 & 450oC  92.5 

      400+D* 400 30s between 350 & 450oC  80.6 

  



  

 

Table  2 Fixed and random effects terms used in mixed effects modelling of the repeated 
measures of chlorophyll fluorescence and CO2 exchange of Sphagnum capillifolium samples 
exposed to temperature treatments designed to simulate conditions recorded in Calluna 
vulgaris fires.*Moisture content term only used in chlorophyll fluorescence model as stems 
were harvested for moisture content analysis only on days fluorescence measurements were 
made.   
 

Model term  Abbreviation  Description  

Fixed effects      

Treatment  Treat Treatment applied to each pot

Day    The day measurement was made (between 1 and  
100 per run). Treated as fixed effect as 
measurements made on same day each run of the 
experiment  

Random effects (accounting for variance within Treatment + Day fixed effect)  
Block    Block (1 to 4) within the tray pots were kept in  

Run    Run of the experiment (1 to 3), synonymous with 
“Burn Season”  

Hummock  Hum  Variance explained by the hummock from which 
potted S. capillifolium sample was taken (4 per run, 
12 different hummocks in total)  

Run:Hummock  Run:Hum  Hummock nested within run specifies variance 
between hummocks within the same run of the 
experiment (accounts for different hummocks used 
in each run)  

Moisture 
Content*  

MC Moisture content of samples taken concurrently 
with fluorescence measurements  

Pot    Random pot to pot variance

Run:Pot    Pot nested within run specifies variance between 
pots within the same run (accounts for different  
pots used in each run)  

  
  



  

 

Figure Captions 

 
Figure 1: (a) Fv/Fm ratio of Sphagnum capillifolium stems subjected to temperature 
treatments designed to simulate conditions recorded in Calluna vulgaris fires. The 
experiment was repeated in three seasons; spring, autumn and winter (n=8 per 
treatment per sampling time). Treatments were: control, no temperature treatment; 
400 surface exposed to 400oC for 3 seconds; 400+, surface exposed to temperatures 
between 350 and 450oC for 30 seconds; and 400+D, where the moss sample was 
dried prior to exposure to surface temperatures between 350 and 450oC for 30 
seconds. Points show mean Fv/Fm ±SEM bars.  (b) Amax in each treatment group 
(described above) during each run. Points show mean ±SEM bars. Positive values 
show CO2 uptake (indicating photosynthesis). (c) Respiration of pots in each 
treatment group in autumn and winter. Points show mean ±SEM bars. Respiration is 
expressed as a negative quantity in our sign convention.  No data were available from 
the spring experiment. 
 

Figure 2: Fv/Fm ratio of Sphagnum capillifolium stems subjected to temperature treatments 
designed to simulate conditions recorded in Calluna vulgaris fires.  The Fv/Fm ratio is shown 
in relation to distance down the stem, starting from the capitulum. Data are from a sub-sample 
of pots in the autumn experiment (n=6 per treatment).  Treatments were either a control 
without temperature treatment (C), exposed to 400 oC for 3 seconds (400), or exposed between 
350 and 450 oC for 30 seconds (400+). 

 

Figure 3: Examples of bleached Sphagnum capillifolium subjected to temperature treatments 
designed to simulate conditions recorded in Calluna vulgaris fires. (a) Pot showing the 
characteristic pale areas of bleaching of the capitula (red arrow).  Bright green capitula are 
growth innovations from the stem below. (b) Several stems with individual branches bleached 
(red arrow). The lack of colouration in the lower stem is a normal response to low light levels. 
(c) S. capillifolium plant showing bleached capitulum (red arrow) and new growth innovation 
near the top of the plant (green side stem). (d) S. capillifolium plant showing bleached stem 
(red arrow) and new growth innovation near the bottom of the plant (green side stem) which 
were characteristically smaller and thinner than those arising further up the stem. When 
bleaching occurred, capitula became brittle to touch and easily broke away from the stem. 

 

Figure 4  Depth of bleaching down stems of S. capillifolium (mean ± SEM) exposed to 
temperature treatments designed to simulate conditions recorded in Calluna vulgaris fires in a 
sub-sample of pots from experiments carried out in autumn and winter (n= 6 stems per pot, 16 
pots per treatment per run of the experiment). Treatments were either a control without 
temperature treatment (C), exposed to 400 oC for 3 seconds (400), exposed to between 350 oC 
and 450 oC for 30 seconds (400+), or dried prior to exposure to between 350 oC and 450 oC for 
30 seconds (400+D). No permanent bleaching was recorded in any control pots. All pots were 
harvested on day 100. Means with different letters are significantly different (Welch Two 
Sample t test: t=-4.6, df=39.6,P=<0.05 and t=-5.1, df=25.1, P=<0.05 respectively).   
 



  

 

Figure 5: Capitulum decay in S. capillifolium plants subjected to temperature treatments 
designed to simulate conditions recorded in Calluna vulgaris fires.  Bars show the number of 
stems showing capitulum decay (bleaching and/or reduced structural integrity) at each 
sampling time for each treatment during autumn and winter (n=8 stems per treatment per 
sampling time per run). ). Treatments were either a control without temperature treatment (C), 
exposed to 400 oC for 3 seconds (400), exposed to between 350 oC and 450 oC for 30 seconds 
(400+), or dried prior to exposure to between 350 oC and 450 oC for 30 seconds (400+D). No 
capitulum decay occurred in control pots.  
 
Figure 6: Bars show the number and location of regenerating stems of S. capillifolium 
following temperature treatments designed to simulate conditions recorded in Calluna vulgaris 
fires.  Plots show a subsample of 16 pots per treatment per run showing the total number of 
new side and base innovations in spring and winter experiments. The total number of new 
innovations (base+side) was significantly higher in the 400 treatment compared to the 100 and 
control treatments in spring (Welch Two-sample t test: t=-3.3, df=38, P=<0.05 and t=-3.2, 
df=37, P=<0.05 respectively). There were significantly more new innovations in the 400+ and 
400+D treatments compared to the control treatment in autumn (Welch Two Sample t test: 
t=2.6 df=39, p=<0.05 and t=3.4, df=36, P=<0.05 respectively). No significant difference was 
found between the 400+ and 400+D treatments.  

 

Figure 7: The location of regenerative growth in relation to the mean depth of bleaching in S. 
capillifolium, following temperature treatments designed to simulate conditions recorded in 
Calluna vulgaris fires.  Points show the mean ± SEM from a subsample of 16 pots per 
treatment per run from the winter experiment. Treatments were either a control without 
temperature treatment (C), exposed to between 350 oC and 450 oC for 30 seconds (400+), or 
dried prior to exposure to between 350 oC and 450 oC for 30 seconds (400+D). 
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