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SUMMARY 

 

Over the past decades, the construction industry lags further and further behind the manufacturing sector 

when productivity is considered. This is due to internal factors that take place on-site. Almost all of 

them are directly related to the way that productivity is monitored. Current practices for monitoring 

labour productivity are labour intensive, time - cost consuming and error prone. They are mainly 

reactive processes initiated after the detection of a negatively influencing factor. Although research 

studies have been performed towards leveraging these limitations, a gap still exists in monitoring labour 

productivity of multiple workers at the same time accurately, unobtrusively, cost and time efficiently. 

This thesis proposes a framework to address this gap. It hypothesizes that task productivity of 

construction workers can be monitored through their trajectory data. The proposed framework uses as 

input, video data streamed from cameras with overlapping field of view. It consists of two main 

methods. The output of the first is the input of the second. The first method tracks the location of 

workers across the range of a jobsite over time and returns their 4D trajectories. Such type of tracking 

requires that workers are matched under a unique ID not only across successive frames of a single 

camera (intra tracking) but also across multiple cameras (inter tracking). Existing tag-less studies fail 

to track construction workers due to the challenging nature of their working environments. Therefore, 

two novel computer vision-based algorithms are developed to perform both the intra and the inter 

camera tracking. The second method of the proposed framework converts the 4D trajectories of workers 

into productivity information. These trajectories are clustered into work cycles with an accuracy of 

95%, recall of 76% and precision of 76%. Such work cycles depict the actual execution of tasks. The 

overall proposed framework features an average accuracy of 95% in terms of determining the total time 

workers spend on construction-related tasks.  

 

 

 

 

 

 

 

 

 

 



vii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

ACKNOWLEDGMENTS  

Firstly, I would like to thank my academic supervisor Dr Ioannis Brilakis, for seeing my potential and 

giving me the opportunity of doing a PhD in a world-renowned university. I am grateful to all my fellow 

students, in the Construction Information Technology Group and all the staff of the Laing O’ Rourke 

Centre. Special thanks to Jan for all her kind support. I am extremely grateful to my industrial 

supervisor, Adam Locke for his excellent and amazing guidance. His help was essential throughout my 

studies, from data collection to the understanding of the research gap. Without his help this PhD would 

not have been possible. I also wish to express my sincere gratitude to my academic advisor Dr Joan 

Lasenby. Her help was critical all these years. Thank you to my good friends, Elia, Jason, Maria, and 

Ioannis. I am so grateful for all the nice moments we shared during my years in Cambridge.  

My deepest gratitude goes to my parents, Christos and Katerina, my sister Nichole, my aunt Helen, my 

cousin Vasilis, my Pepe and my best friend Zeta. This journey was very long and challenging. I can’t 

even think myself without their continual and unconditional support.  

Finally, I would also like to acknowledge and express gratitude for financial support from the 

Engineering and Physical Sciences Research Council (EPSRC) and the Laing O’ Rourke enterprise.  

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 

 

Contents 

 

1. Introduction ................................................................................................................................. 20 

1.1. Definition of productivity in construction ............................................................................ 20 

1.2. The problem with labour productivity in construction ......................................................... 21 

1.3. Factors affecting labour productivity .................................................................................... 22 

1.4. Current state of practice in monitoring of labour productivity ............................................. 25 

1.5. Conclusions and thesis overview .......................................................................................... 27 

2. Current state of research in monitoring of labour productivity ............................................. 28 

2.1. Region-based studies ............................................................................................................ 29 

2.1.1 Tagged studies............................................................................................................... 29 

2.1.2 Tag-less studies ............................................................................................................. 31 

2.2. Activity-based studies ........................................................................................................... 32 

2.3. Summary of current state of research ................................................................................... 34 

2.4. Hypothesis & Proposed framework ...................................................................................... 35 

2.4.1. Experimental set up ....................................................................................................... 38 

3. Adaptive computer vision-based 2D tracking of workers in complex environments ........... 40 

3.1. Introduction ........................................................................................................................... 40 

3.2. Background ........................................................................................................................... 41 

3.3. Proposed solution .................................................................................................................. 43 

3.4. Proposed methodology .......................................................................................................... 45 

3.4.1. Prediction model ........................................................................................................... 45 

3.4.2. Appearance model......................................................................................................... 47 

3.4.3. Filtering model .............................................................................................................. 51 

3.4.4. Adaptive Model............................................................................................................. 57 

3.5. Experiments and results ........................................................................................................ 58 

3.5.1. Definition of parameters ............................................................................................... 60 

2.5.1.1 Definition of scale parameters .................................................................................. 60 

2.5.1.2 Definition of segmentation parameters ..................................................................... 62 

3.5.2. Quantitative Evaluation ................................................................................................. 63 

3.5.3. Qualitative evaluation ................................................................................................... 68 

3.6. Chapter overview .................................................................................................................. 70 

4. Matching of construction workers across views for automated 4D vision tracking ............. 72 

4.1. Introduction ........................................................................................................................... 72 

4.2. Previous related work............................................................................................................ 74 

4.3. Proposed solution .................................................................................................................. 76 

4.4. Proposed methodology .......................................................................................................... 78 



xi 

 

4.4.1. Motion-based matching method .................................................................................... 79 

4.4.2. Geometry-based matching method ............................................................................... 83 

4.4.3. Template-based matching method ................................................................................ 86 

4.5. Calculation of 3D trajectories ............................................................................................... 86 

4.6. Experiments and results ........................................................................................................ 88 

4.6.1. Evaluation of the motion-based matching method ........................................................ 90 

4.6.2. Evaluation of the geometry-based matching method .................................................... 92 

4.6.3. Evaluation of the template-based matching method ..................................................... 96 

4.6.4. Evaluation of overall proposed matching method ........................................................ 97 

4.6.5. Accuracy of 3D trajectories .......................................................................................... 99 

4.7. Chapter overview ................................................................................................................ 100 

5. Detection of work cycles for monitoring labour productivity ............................................... 102 

5.1. Introduction to trajectory analysis for pattern recognition .................................................. 102 

5.2. Cluster analysis outline ....................................................................................................... 105 

5.3. Proposed solution ................................................................................................................ 111 

5.4. Proposed methodology ........................................................................................................ 113 

5.4.1. Smoothing of 4D trajectories ...................................................................................... 113 

5.4.2. Partitioning of 4D trajectories ..................................................................................... 116 

5.4.3. Classification of 4D sub-trajectories ........................................................................... 117 

5.4.4. Clustering of 4D sub-trajectories into work cycles ..................................................... 118 

5.5. Experiments and results ...................................................................................................... 119 

5.5.1. Definition of parameters ............................................................................................. 120 

5.5.1.1 Definition of smoothing parameters ....................................................................... 121 

5.5.1.2 Definition of classification parameters ................................................................... 122 

5.5.2. Evaluation of work cycles’ detection .......................................................................... 123 

5.6. Chapter overview ................................................................................................................ 129 

6. Conclusions and future work ................................................................................................... 132 

6.1. Conclusions ......................................................................................................................... 132 

6.2. Contributions ....................................................................................................................... 135 

6.3. Recommendations for future work ..................................................................................... 135 

Bibliography ...................................................................................................................................... 137 

 

 

 

 

 



xii 

 

List of Tables  

Table 1-1: Comparison “A” of factors affecting labour productivity in construction. ......................... 24 

Table 1-2: Comparison “B” of factors affecting labour productivity in construction........................... 25 

Table 3-1: Proposed features for overcoming most common tracking challenges ............................... 58 

Table 3-2: Average width and walking speed values of workers per scale. ......................................... 61 

Table 3-3: Proposed method’s tracking performance under different segmentation ............................ 62 

Table 3-4: Evaluation video samples. ................................................................................................... 63 

Table 3-5: Average quantitative evaluation results (best values are highlighted bold) ........................ 68 

Table 4-1: Expected efficiency of geometry, motion and template-based methods ............................. 77 

Table 4-2: Evaluation of proposed motion matching method ............................................................... 91 

Table 4-3: Experimentally defined 𝑒𝑟𝑟𝑜𝑟𝑓𝑖. ........................................................................................ 93 

Table 4-4: Evaluation of proposed geometry-based matching method................................................. 94 

Table 4-5: Evaluation of proposed template based matching method. ................................................. 97 

Table 4-6: Evaluation of motion and geometry matching method ....................................................... 98 

Table 4-7: Confusion matrix of the overall proposed method. ............................................................. 98 

Table 5-1: Smoothing step k of the method proposed ........................................................................ 121 

Table 5-2: Manually collected ground truth of semantic “stops” of worker “1” (data set steel). ....... 124 

Table 5-3: Manually collected ground truth of semantic “stops” of worker “2” (data set electrical). 126 

Table 5-4: Manually collected ground truth of semantic “stops” of worker “3” (data set electrical). 126 

Table 5-5: Confusion matrix of proposed method for detecting work cycles. .................................... 128 

Table 5-6: Quantitative summary of the labour input. ........................................................................ 129 

 

 

 

 

 

 

 

 

 



xiii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 

 

List of Figures  

Figure 1-1: Relationship between performance and productivity in construction ................................ 21 

Figure 1-2: Labour productivity growth rates of the construction sector and non–farm industries ...... 22 

Figure 1-3: Factors affecting labour productivity (Nasirzadeh & Nojedehi, 2013) .............................. 23 

Figure 1-4: Factors affecting labour productivity in construction. ....................................................... 24 

Figure 1-5: Crew Balance Chart of a pre-cast beam installation operation. (Al-qahtani et al. 2007) ... 26 

Figure 2-1: (a) GPS mounted on earthmoving equipment (RTD FasTracks, 2014) ............................. 29 

Figure 2-2: Monitoring of labour productivity given worker presence ................................................ 30 

Figure 2-3: Operation process model of a concrete pouring task (Gong & Caldas, 2010, 2011) ......... 31 

Figure 2-4: Productivity monitoring of earthmoving equipment (Golparvar-Fard et al., 2013) ........... 32 

Figure 2-5: Methodology of physiological-based studies for recognizing activities ............................ 33 

Figure 2-6: Overall framework for automated construction worker task productivity monitoring. ..... 36 

Figure 2-7: Assumptions of proposed framework ................................................................................ 36 

Figure 2-8: Camera centred coordinate system ..................................................................................... 38 

Figure 3-1: Flowchart of proposed computer vision-based 2D tracking method ................................. 45 

Figure 3-2: Prediction of the position of a tracked target in the following frame. ............................... 47 

Figure 3-3: HSV vs RGB channels for (a) orange & (b) yellow Hi-Vis apparel .................................. 47 

Figure 3-4: Proposed appearance model ............................................................................................... 48 

Figure 3-5: Training data of a multi-colour SVM classifier. ................................................................ 48 

Figure 3-6: Linear classification of colour image patches with an SVM. ............................................. 49 

Figure 3-7: Template matching of the same worker between non-successive frames. ......................... 50 

Figure 3-8: Proposed filtering method .................................................................................................. 51 

Figure 3-9: Failure of the proposed prediction model under the appearance of outliers. ..................... 51 

Figure 3-10: Motion-based classification of pixels. .............................................................................. 52 

Figure 3-11: Example of frame differencing between successive frames ............................................ 53 

Figure 3-12: Motion contour for filtering outliers. ............................................................................... 54 

Figure 3-13: Motion contour while target walks (a-b), partially moves (c), and bends (d) .................. 54 

Figure 3-14: Classification of tracked target as moving or stationary .................................................. 56 

Figure 3-15: Activation of proposed filtering model in (a) and deactivation in (d) .............................. 57 

Figure 3-16: Workers’ appearance variations due to posture (a-c), scale (d) and occlusion (e). .......... 57 

Figure 3-17: Distance error performance metric ................................................................................... 59 

Figure 3-18: F-measure performance metric ........................................................................................ 60 

Figure 3-19: Cumulative probability of tracked targets’ walking speed per scale. ............................... 60 

Figure 3-20: Screenshots of the evaluation of the proposed prediction model ..................................... 61 

Figure 3-21: Examples of tracking performance .................................................................................. 62 

Figure 3-22: Comparison results of this chapter’s proposed visual tracking method ........................... 64 



xv 

 

Figure 3-23: Screenshots of the performance of the proposed tracking method .................................. 65 

Figure 3-24: Comparison results of this chapter’s visual tracking method........................................... 66 

Figure 3-25: Screenshots of the performance of the proposed tracking method .................................. 67 

Figure 3-26: Screenshots of the performance of the proposed method................................................. 69 

Figure 3-27: Screenshots of the performance of the proposed method................................................. 69 

Figure 4-1: Worker’s motion through the surveillance cameras of a jobsite. ....................................... 73 

Figure 4-2: Typical workforce in a construction site. ........................................................................... 73 

Figure 4-3: Examples of occluded (a-d) and similarly dressed (e) construction workers ..................... 75 

Figure 4-4: Flowchart of computer vision-based method for matching construction workers ............. 77 

Figure 4-5: Image and world coordinate systems of a pinhole camera model ...................................... 78 

Figure 4-6: Worker’s 2D motion data across time. ............................................................................... 79 

Figure 4-7: Candidates correlation table (CCT) ................................................................................... 79 

Figure 4-8: Proposed searching algorithm for the “strongest” candidate. ............................................ 81 

Figure 4-9: Projection of tracked 2D motion paths ............................................................................... 82 

Figure 4-10: Reference coordinate system for motion matching between non-conjugated cameras .... 82 

Figure 4-11: Posture variations between frames of non-conjugated cameras ....................................... 83 

Figure 4-12: False negative (FN) matching of a single worker between two cameras (a-b). ............... 84 

Figure 4-13: Drifting issue of a computer vision tracking method ....................................................... 84 

Figure 4-14: Geometry-based matching search band............................................................................ 85 

Figure 4-15: Multiple candidates within the proposed matching search band ...................................... 86 

Figure 4-16: Mid-point triangulation method ....................................................................................... 87 

Figure 4-17: Experimental video data sets. (a) Data set A. (b) Data set B. .......................................... 88 

Figure 4-18:  Detection of corresponding points for stereo camera calibration. ................................... 89 

Figure 4-19: Stereo calibration accuracy .............................................................................................. 89 

Figure 4-20: Display of previous motion data (black line) over time ................................................... 90 

Figure 4-21: Total TP and FP matches over lengths of past motion data (per camera) ........................ 91 

Figure 4-22: Performance examples of the motion-based matching method........................................ 92 

Figure 4-23: Cumulative distribution of the fluctuation error (𝑒𝑟𝑟𝑜𝑟𝑓) ............................................... 93 

Figure 4-24: TN & FN missed matches over the probability (𝑃𝑒𝑟𝑟𝑜𝑟𝑓𝑖) of 𝑒𝑟𝑟𝑜𝑟𝑓𝑖 values. ............. 94 

Figure 4-25: Performance examples of the geometry-based matching method .................................... 95 

Figure 4-26: Illustration of compared colour templates with the HSV colour space ............................ 96 

Figure 4-27: Performance examples of the template based matching method ..................................... 97 

Figure 4-28: Performance of the overall vision-based matching method. ............................................ 99 

Figure 4-29: Ground truth trajectory ................................................................................................... 100 

Figure 4-30: Euclidean calculation of triangulated trajectory. ............................................................ 100 

Figure 5-1: Trajectory clustering for detecting abnormal human behaviour (Wiliem et al., 2008) .... 103 

Figure 5-2: Hausdorff distance between trajectories 𝑇𝐴, 𝑇𝐵. ............................................................. 103 



xvi 

 

Figure 5-3: Hidden states (1-10) of an HMM within a store (Suzuki et al., 2007) ............................. 104 

Figure 5-4: Cluster analysis of objects into three groups (clusters) .................................................... 106 

Figure 5-5: Locality In-between Polylines (LIP) distance of trajectories (Q, S) ................................ 107 

Figure 5-6: Types of clusters (Tan et al., 2005) .................................................................................. 108 

Figure 5-7: Partitioning of trajectories based on preciseness and conciseness (J. Lee et al., 2008) ... 109 

Figure 5-8:  Partitioning of trajectories based on spatiotemporal changes. ........................................ 110 

Figure 5-9: Semantic stop regions of trajectory data (Palma et al. 2008) ........................................... 110 

Figure 5-10: Flowchart of proposed method for monitoring the labour productivity of workers....... 112 

Figure 5-11: Screenshots of a tracked worker who remains still ........................................................ 114 

Figure 5-12: Unsmoothed trajectory data of a non-moving worker ................................................... 114 

Figure 5-13: Fitting a line to a time series .......................................................................................... 115 

Figure 5-14: Range of workers’ movements while at “stop” event. ................................................... 117 

Figure 5-15: Clustering of 4D sub-trajectories into three work cycles 𝑐𝑖 (blue, yellow, green) ......... 118 

Figure 5-16: Tested data sets (from top to bottom: data set steel fixing, data set electrical) .............. 119 

Figure 5-17: Tracked areas ................................................................................................................. 120 

Figure 5-18: 3D speed values of the smoothed trajectory data of a non-moving worker ................... 121 

Figure 5-19: Smoothed trajectory data of the almost still worker of previous Figure 5-11. ............... 122 

Figure 5-20: Precision, recall, and accuracy graphs ........................................................................... 123 

Figure 5-21: Normalized speed values of worker “1” along the floor plane 𝑣𝑖𝑥𝑧𝑖 = 1…𝑁. ............. 123 

Figure 5-22: Detected work cycles of worker “1” from data set steel fixing part A (a), and B (b) .... 125 

Figure 5-23: Significant fluctuation of implemented computer vision-based 2D tracking method .... 126 

Figure 5-24: Detected work cycles of worker “2” .............................................................................. 127 

Figure 5-25: Detected work cycles of worker “3” .............................................................................. 128 

 

 

 

 

 

 

 

 



xvii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xviii 

 

List of Abbreviations and Acronyms  

SVM: Support Vector Machine    

TP: True Positive 

TN: True Negative 

FP: False Positive 

FN: False Negative 

NCC: Normalized Cross Correlation  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xix 

 

 



20 
 

1 
 

1.Introduction  
 

 

This chapter presents the labour productivity gap between construction and other industries, its social 

and economic impact and identifies its causes.  

 

1.1. Definition of productivity in construction  

In general, productivity is defined as the ratio of output to input (Lim, 1996). Productivity rates are used 

by project managers during planning and scheduling in order to reduce the labour cost and improve the 

performance of workers (Alinaitwe et al., 2006). Several models have been proposed in order to 

quantify these productivity rates in construction. Such models are the following (Thomas et al.,1990):  

 The economic model that expresses both the input and the output in monetary units (e.g. dollars $):  

 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑖𝑛 $

𝑇𝑜𝑡𝑎𝑙 𝑖𝑛𝑝𝑢𝑡 𝑖𝑛 $ 
=

𝑇𝑜𝑡𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑖𝑛 $

(𝐿𝑎𝑏𝑜𝑢𝑟+𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠+𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡+𝐸𝑛𝑒𝑟𝑔𝑦+𝐶𝑎𝑝𝑖𝑡𝑎𝑙) 𝑖𝑛 $
      (1-1) 

 

 The project-specified model that estimates the productivity based on the size of the project (e.g. 

square meters m2): 

 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡  𝑖𝑛 𝑚2 

𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑖𝑛𝑝𝑢𝑡 𝑖𝑛 $ 
=

𝑇𝑜𝑡𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡  𝑖𝑛 𝑚2

(𝐿𝑎𝑏𝑜𝑢𝑟+𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡+𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠) 𝑖𝑛 $
                  (1-2) 

 

 The activity-oriented model that focuses on the labour input i.e. paid work hours and the installed 

quantity as output (e.g. cubic meters of soil excavated, meters of brick wall constructed, number of 

concrete buckets transferred, steel cages assembled): 

 

𝐿𝑎𝑏𝑜𝑢𝑟 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑎𝑠 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦

𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑖𝑛𝑝𝑢𝑡 𝑖𝑛 𝑤𝑜𝑟𝑘 ℎ𝑜𝑢𝑟𝑠
                          (1-3) 
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The economic and the project-oriented models are mainly used by governmental agencies and the 

private sector whilst the activity-oriented model is preferred by contractors (Shehata & El-Gohary, 

2011). This is because the latter model provides a better insight of the performance of workers. 

Performance refers to excellence. It is not only related to productivity but also to profitability, and 

several other metrics such as speed, quality and flexibility (see Figure 1-1). Another advantage of the 

activity-oriented model is that it relies on the labour input that can be managed much easier compared 

to other resources such as materials and equipment (Park, 2006). In addition, it has been reported that 

labour productivity in construction is not easily predictable as it usually returns big variations (Halligan 

et al., 1994). Due to these reasons, this thesis will focus on the labour productivity as defined by the 

activity-oriented model (see Equation 1-3).   

 

 

Figure 1-1: Relationship between performance and productivity in construction (Pekuri et al., 2011).  

 

 

1.2. The problem with labour productivity in construction  

The construction sector has gradually created a significant labour productivity gap compared to other 

industries over the past five decades. It is estimated that that only 50% of the total construction time is 

productive (Horman & Kenley, 2005; Picard, 2004). Data taken from the US Bureau of Labour Statistics 

show that labour productivity in construction is not improving over time, with an annual 0.59% 

declining rate in USA during the period 1964-2003 (Teicholz, 2004) and 0.32% during the 2003 to 2012 

period (Teicholz, 2013). In the UK for the period between 1998 to 2008, labour productivity was 11% 

less than at USGC (US Gulf Coast) and 6% less than Western Europe (Merrow et al., 2009). On the 

other hand, non-farm industries (i.e. the part of the domestic economy that does not include activities 

related to private households, government, farm and no profit organizations) in the US doubled their 

labour productivity over the past 50 years (see Figure 1-2). The resulting gap leaves a lot of room for 

innovation to improve construction productivity. Therefore, the question that arises is: “Why is the gap 

that big in the first place?” 

Before answering this question it is essential to define the impact that low productivity has on 

society. This can be estimated by considering the significance of the role that the construction sector 
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holds in national economies. According to the annual report of FIEC (European Construction Industry 

Federation, 2017), 8.6% of the gross domestic product (GDP) of the European Union (EU) belongs to 

the construction industry sector. This contributed 1278 billion Euros (€) in 2016 (EU28), and supplied 

almost 6.4% of Europe’s total employment (42.9 million workers). Almost 8% (11 million workers) of 

the total US workforce was engaged in the construction sector in 2008 just before the onset of the 

recession (Bureau of Labor Statistics, 2008). If labour productivity in construction is improved, then 

the construction sector will automatically increase its revenue, considering that 33-50% of the entire 

cost of a typical project is spent on labour (Hanna et al., 2005).  

 

 

Figure 1-2: Labour productivity growth rates of the construction sector and non–farm industries over 

the last 5 decades (Frinault, 2015). 

 

 

1.3. Factors affecting labour productivity  

Previous studies have performed a number of surveys in order to identify the factors that affect labour 

productivity. Figure 1-3 illustrates the large range of these factors. A survey carried out in the US (Dai 

et al., 2009) evaluated the impact of 83 factors as derived from a previous study (Dai et al., 2005) and 

concluded that the most important factors are mismanagement of construction equipment (e.g. 

availability, quality, lack), materials, tools and consumables. This study questioned in total 1996 craft 

workers from 28 industries. Lack of materials, overcrowded areas and rework can reduce the productive 

labour input by a factor of 5.1 to 13.6 man-hours per week based on a survey carried out in Hong Kong 

(Ng et al., 2004). Another survey conducted in the US concluded that most of the factors are related to 

a lack of efficient management (Wambeke et al., 2011). These factors were: equipment and senior 

management coordination, crew/labour force/material management, prerequisites and constructability, 

tools and PPE (personal protective equipment), supervisor skills and communication.  
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Figure 1-3: Factors affecting labour productivity (Nasirzadeh & Nojedehi, 2013).  

 

The problem with the above studies is that they do not reach the same conclusions about the factors that 

affect labour productivity in construction. Inconclusivity arises due to ambiguities about which factors 

are the most important. This chapter performs an analytic comparison of previously identified factors 

(Cundecha, 2012; El-gohary & Aziz, 2014; Jarkas & Bitar, 2012; Kuykendall, 2007; Lim & Alum, 

1995; Makulsawatudom et al., 2004) in order to resolve the ambiguity. To achieve this, all factors from 

each of these studies are grouped into four categories based on the categorization proposed by Jarkas & 

Bitar (2012). These categories are:  

 The management category: supervision, overtime, turnover, safety, resources, scheduling, rest 

areas, transportation, payment, congestion, and disruptions.  

 The technological category: designs, drawings, site layout, rework, and site access.  

 The workforce category: skills, fatigue, motivation, absenteeism, late arrivals, age, unscheduled 

breaks, and personal issues.  

 The external category: weather, law regulation, and owner (change of orders)  

The horizontal lines of Table 1-1 illustrate the resulting influence rates of the four categories 

for each study. It appears that 61% of the factors on average are related to management issues such as 

supervision incompetency (e.g. delays, communication problems), resource management (e.g. lack of 

materials, workforce), disruption of labourers and congestion implications. The next most significant 

factors deal with technological challenges (15.71%) like rework and design complexity. Workforce 

problems exerted the same influence (15.55%) and included factors such as absenteeism, skills, age, 

and late arrivals. Lastly, external influences proved to have a small contribution of just 7.64% in total 
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because of their random nature (e.g. weather, law regulations). The knowledge that management is the 

main reason behind low labour productivity still does not explain why project managers fail to take the 

correct decisions. Hence, further analysis is required in order to achieve a clearer understanding of the 

problem. On this basis, an alternative comparison is proposed.  

 

Table 1-1: Comparison “A” of factors affecting labour productivity in construction. 

Survey Data Management External Workforce Technological 

(Cundecha, 2012) 47.12 9.75 20.72 22.41 

(Kuykendall, 2007) 66.91 4.79 22.70 5.60 

(Jarkas & Bitar, 2012) 45.96 11.44 10.93 31.67 

(Makulsawatudom et al., 2004) 73.20 6.35 5.12 15.33 

(E. Lim & Alum, 1995) 72.85 6.76 20.39 0.00 

(El-gohary & Aziz, 2014) 60.52 6.79 13.43 19.27 

Average (%) 61.09 7.64 15.55 15.71 

 

This second (“B”) comparison categorizes the factors that affect labour productivity based on their level 

of influence on on-site tasks. In this chapter, the term on-site refers to construction jobsites. These 

categories are: a) the internal on-site that consists of factors that are directly related to on-site tasks (i.e. 

overtime, safety, resources, scheduling, rest areas, transportation, congestion, disruptions, site layout, 

supervision, rework, skills, fatigue, absenteeism, late arrivals and unscheduled breaks), b) the internal 

off-site that includes factors which have an indirect side-effect relationship with on-site tasks (i.e. age, 

motivation, turnover, payment, personal issues), and c) the external off-site that contains factors which 

are out of the range of a jobsite (i.e. weather, owner change of orders, law regulations, site access and 

designs). Figure 1-4 illustrates this categorization graphically.  

 

 

Figure 1-4: Factors affecting labour productivity in construction. 

 

Table 1-2 presents the results of the second (“B’) comparison of factors that affect labour productivity. 

This table shows that the internal on-site category is the most important as it contains 64.77% of the 

total factors. The other two categories, the internal on-site and the external off-site, are less significant 

with 22.56% and 12.67% respectively. In particular, the external off-site factors are considered fixed 
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risk in construction since weather and higher hierarchy levels (e.g. owners) can be mitigated but not 

fully controlled. The same holds for the internal offsite factors. For instance, age does not affect 

performance of workers in the same way, as it also depends on parameters such as their physical 

condition, personal weight. Additionally, although lack of motivation is responsible for 5-14 wasted 

work-hours per week, it has been suggested that lack of materials, overcrowded areas and rework are 

important factors behind this demotivation (Ng et al., 2004). Hence, it is logical to focus on the 

characteristics of the factors of the internal on-site category. An interesting observation about this 

category is that all its factors can be easily detected and eliminated during productivity monitoring. For 

example, although disruptions during a hoisting operation, caused from tracks traversing the same 

region, result from congestion, they can still be identified by project managers while they monitor this 

hoisting task’s productivity. Given this, the questions that arise are: “Are we monitoring labour 

productivity proactively? If not, why?” 

 

Table 1-2: Comparison “B” of factors affecting labour productivity in construction. 

Survey Data Internal on-site Internal off-site External off-site 

(Cundecha, 2012) 42.95 18.41 38.64 

(Kuykendall, 2007) 82.42 12.79 4.79 

(Jarkas & Bitar, 2012) 48.46 40.03 11.51 

(Makulsawatudom et al. 2004) 75.61 22.49 1.90 

(E. Lim & Alum, 1995) 75.06 18.18 6.76 

(El-gohary & Aziz, 2014) 64.13 23.48 12.39 

Average (%) 64.77 22.56 12.67 

 

 

1.4. Current state of practice in monitoring of labour productivity  

The current state of practice in monitoring construction workers is mainly based on manual observation 

and work sampling techniques (AMAC Consultants, 2004; Carrasco, Hall, & Sweany, 2013; Dozzi & 

AbourRizk, 1993; Shehata & El-Gohary, 2011). This section groups existing practices in two categories 

given the level of detail they return about worker performance. 

The first category does not identify any management issues. It only provides an indication about 

a worker’s performance state as “productive/unproductive” or “working/non-working” based on an 

observation sample. This category contains: a) the five minute rating that relies on observations of tasks 

for a small period of time, b) the field rating that calculates the fraction of productive workers over the 

total number of productive and unproductive ones in order to pinpoint whether something is wrong with 

a task’s productivity (i.e. 
∑𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒

∑(𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒+𝑢𝑛𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒)
 ≤ 60%), and c) the work sampling that analyses 

a small sample of data collected based on statistical sampling theory and returns a general assessment 

about worker performance e.g. effective, contributory and non-effective. 
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The second category comprises practices that monitor workers in greater detail. Such practices 

are: a) the crew balance charts that illustrate each worker’s performance over time using a stopwatch, 

b) the field surveys that use questionnaires (e.g. foreman delay survey, craftsman questionnaire) in order 

to provide an understanding of the possible causes of bad performance, c) the photographic and video 

based techniques that rely on human operators to review video data and still images, and lastly d) the 

Method Productivity Delay Models (MPDM) where an observer fills in a form regarding the cycle time 

of a leading resource along with the causes of delays. This second category provides a lot more 

information about potential productivity issues compared to the first, but it is still labour intensive and 

time consuming considering that a large number of workers must be monitored on a daily basis for the 

entire duration of their work shifts. For instance an expert engineer needs on average 3.5 hours to extract 

the productivity of a 14 minute video capturing a worker while installing a scaffold (Gong & Caldas, 

2011).  

In summary, collecting data with high frequency and extent is a cumbersome process due to the 

manual procedures involved in current practices. Given the fact that a construction site has multiple 

activities that take place simultaneously and spread across a large area, i.e. excavation works, concrete 

pouring, the task of recording everything in detail becomes time consuming and labour intensive. 

Therefore, most of the time problems are first detected (e.g. delays, congestion, lack of materials, 

absenteeism) and then reported by the project managers, after which corrective actions can be taken. 

However, this strategy entails a delayed reaction time. As highlighted by Al-qahtani et al. (2007), the 

wasted time during a hoisting operation had first to be detected through a crew balance chart (Figure 

1-5), before the project manager was able to implement the appropriate changes. In addition, given the 

fact that most tasks are not fixed processes and that influencing factors are not periodic phenomena, a 

significant amount of time may be spent until the malfunctions are redetected. Therefore, project 

managers should be monitoring labour productivity on a constant basis. However, this is not currently 

feasible given the existing practices. For all these reasons, project managers do not have a clear and 

solid idea of the state of the productivity of workers or the reasons behind the problems (Navon & 

Sacks, 2006). Hence, the question that arises is: “How can labour productivity be monitored 

proactively?” 

 

 

Figure 1-5: Crew Balance Chart of a pre-cast beam installation operation. (Al-qahtani et al. 2007). 
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1.5. Conclusions and thesis overview  

To date, the construction sector has not yet managed to improve labour productivity over the past 5 

decades. This is due to factors that affect on-site construction tasks negatively. Almost all of them are 

related to the way that productivity is monitored. Construction project managers currently evaluate 

worker performance based on questionnaires, manual observations, and work sampling practices. 

Construction requires proactive monitoring of labour productivity in order to detect issues sufficiently 

early. However, this is not feasible as current practices are labour intensive and time consuming due to 

the large number of employees and the long lasting tasks. Therefore, this thesis presents a method that 

performs proactive monitoring of labour productivity regardless of the type of tasks the workers are 

involved in. The remainder of this thesis is structured as follows: Chapter 2 discusses the current state 

of research on automated monitoring of labour productivity in construction. The chapter closes with a 

presentation of the overall proposed framework that aims to address the existing gap in knowledge and 

the objectives. This framework consists of three intermediate methods which are separately presented 

and evaluated in Chapters 3, 4 and 5. Then, Chapter 6 presents the conclusions of the research presented 

in this thesis along with recommendations for future work.  
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2.Current state of research in monitoring of 

labour productivity  
 

 

This chapter reviews the latest studies that focus on monitoring of labour productivity. Current studies 

are divided in two main categories based on the methods they employ to infer productivity. The first 

contains the region-based studies that link the location of workers to regions of management interest 

(work zones) such as steel fixing zone, concrete pouring zone. The second consists of the activity-based 

studies that detect and link activities such as bending, hammering, and drilling to specific tasks. The 

aim of this chapter is to conclude whether existing research has managed to address the limitations of 

the current state of practice as presented in Chapter 1 and to devise a solution that addresses the existing 

gap in knowledge.  

At this point, it is important to explicitly define some terms that will be repeatedly used 

throughout this thesis. These terms are the following:  

 Task is a construction related operation such as brick laying, scaffolding, hoisting etc.  

 Sub-task is an operation related to a task. For example, a steel task consists of sub-tasks such as 

placing, fixing, and picking the reinforcement bars (re-bars).  

 Activity is the physical description of a sub-task such as bending, stretching, sound, strain etc.  

 Pattern is a repetitive activity of a task.   

 Construction entity is any worker or earthmoving equipment (e.g. trucks, excavators, cranes) that 

performs a construction related operation.  

The remainder of this chapter is structured as follows. Sections 2.1 and 2.2 analyse the current 

state of research in monitoring of labour productivity in construction. Section 2.3 discusses the 

objectives, scope, and aims of this thesis. Section 2.4 presents an overview of the overall proposed 

framework presented in this thesis.  
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2.1. Region-based studies 

Region-based studies monitor labour productivity through the time construction entities spend at zones 

of management interest (e.g. excavation zone, concrete pouring zone). In order to achieve this, the 

location of monitored entities is tracked across the jobsite. The studies of this category are sub-divided 

into tagged and tag-less given the methods they use for calculating the location data of construction 

entities.  

 

2.1.1 Tagged studies  

The tagged (RF tagged) studies employ tags to extract the location of construction entities. These tags 

are physically attached on workers and earthmoving equipment. The most frequently used tags are 

based on technologies such as the Global Positioning System (GPS) (see (a) in Figure 2-1), the Radio 

Frequency Identification system (RFID) (see (b) in Figure 2-1), and of the Ultra-Wide band system 

(UWB) (see (c) Figure 2-1).  

 

 

Figure 2-1: (a) GPS mounted on earthmoving equipment (RTD FasTracks, 2014). (b) Passive tags on 

worker hardhats (Sedehi, 2010). (c) UWB tags placed on worker hardhats (T. Cheng et al., 2011). 

 

The GPS navigation system was developed by the US and is based on a constellation of 24 orbiting 

satellites. A receiver requires a clear view of at least 4 satellites in order to calculate its location on 

earth. Because of this, GPS has a poor performance indoors and in dense urban environments due to the 

multipath effect (Kos et al., 2010), but has an unlimited coverage outdoors with an accuracy that ranges 

from 1m to 2.5m (Pawłowski, 2015). The RFID positioning systems locate a tagged object within the 

range of readers with an accuracy of 15cm (Chawla et al., 2010). A full installation requires receivers 

for detecting the tags and antennas for transmitting the signal between them. Tags are either passive or 

active (Beinat et al. 2007). Passive tags can be detected only within a range of 1m from the readers 
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(Ubisense.net, 2017). On the other hand, active tags that are powered from an energy source (e.g. 

battery) are located within a significantly larger range of 100m (Ubisense.net, 2017). An important 

advantage of RFID over GPS systems is that the former perform better indoors. Lastly, UWB systems 

are based on active tags (battery – powered) and sensors. Such systems can locate targets within 100m 

range (Ubisense.net, 2017) with an accuracy from 5cm to 10cm (Connell, 2015).  

The above systems provide the input data of tagged studies. On this basis, the speed and the 

location of a haul truck were both combined for monitoring its productivity while performing an 

earthmoving operation (Hildreth et al. 2005). If the haul truck's location was within the range of fixed 

known distances from specific work zones (e.g. load and dump zones), then the time during which its 

speed was equal to zero was converted into labour input. On the other hand, the labour productivity of 

workers, was monitored by linking their presence at predefined work zones (T. Cheng et al., 2011; T. 

Cheng et al., 2013; Jiang et al., 2015; Navon & Goldschmidt, 2003; Sedehi, 2010). For instance, if a 

concrete worker is located at zones “A” and “B” which are scheduled for concrete pouring, then the 

total time the worker spent in these zones is considered productive and equal to his/her labour input. 

The studies of this category also sub-divide the areas between the actual work zones into waiting and 

travelling zones, for a more detailed insight of worker productivity (see Figure 2-2).  

 

 

Figure 2-2: Monitoring of labour productivity given worker presence within predefined work zones. 

(left: Jiang et al., 2015,  right: Cheng et al., 2011) 

 

The most important disadvantage of the tagged studies is that they can neither identify the unproductive 

time (idle time) nor the low productivity pace. For example, even if a worker is located in the correct 

work zone, but without performing any task due to shortage of materials or congestion he/she will be 

still considered productive. This is due to the fact that labour productivity is monitored only based on 

the presence of workers at work zones. The tagged studies do not provide any extra information about 

what really happens within these work zones. In addition, the purchase and maintenance of multiple 
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tags impose a regular cost in the long term (Nasr et al., 2013). Last but not least, the physical attachment 

of tags creates a feeling of discomfort to workers (Juels, 2006).  

 

2.1.2 Tag-less studies  

The tag-less studies rely on computer vision-based 2D tracking methods in order to calculate the 

location of workers. This location is 2D instead of 3D. Therefore, entities are tracked only within the 

range of a camera's view. This type of tracking is non-obtrusive as it processes video data collected 

through surveillance cameras used for security purposes.  

The studies in this category convert the location data into labour productivity through two 

approaches. The first, links the presence of tracked entities (workers, earthmoving equipment) to 

specific work zones similar to tagged studies (see section 2.1.1) (Bügler et al., 2014). For this reason, 

the ambiguity about what really happens within these zones arises again. The second, fits the monitored 

entities to operation process models (Gong & Caldas, 2010, 2011; Yang et al., 2014). Such models 

(Halpin & Riggs, 1992; Martinez & Ioannou, 1994): a) break down the construction tasks into sub-tasks 

(semantic context), b) describe how the sub-tasks relate to specific work zones across the jobsite (spatial 

context), and c) define the sequential order (i.e. workflow) between the sub-tasks (temporal context). 

Figure 2-3 illustrates how a concrete pouring task is monitored automatically through such an operation 

process model.  

 

 

Figure 2-3: Operation process model of a concrete pouring task (Gong & Caldas, 2010, 2011).  

 

In the above Figure 2-3, the work zones (yellow and red rectangles) are manually marked and linked to 

the operation process model by the user (Gong & Caldas, 2011). In the example of this figure, if the 

tracked concrete bucket passes through the marked work zones in a sequence that agrees to the operation 

process model, then the total time the bucket spends in these zones is equal to the labour input of this 

task. The total output is equal to the number of buckets poured. This study translates successfully and 
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with high accuracy the video data into labour productivity. However, it relies on human intervention in 

order to adjust the appropriate process model to each entity. It takes 5-10minutes for an operator to 

achieve this. Such adjustments should be repeated for every entity on a daily basis. The large numbers 

of workers and earthmoving equipment entails that such type of studies will be labour intensive if 

applied in practice.  

 

 

2.2. Activity-based studies  

The studies of this category firstly detect and secondly link activities to specific construction tasks in 

order to monitor labour productivity. These activities are the physical description of tasks. For example, 

a brick layer bends to pick up bricks and stretches his arms to place them. Bending and stretching are 

both activities that describe the brick laying task. This type of studies exploit posture, physiological 

(e.g. heart, breathing rate) and audio data. 

The posture-based studies have been used for monitoring both the labour productivity of 

earthmoving equipment (Golparvar-Fard, Heydarian, & Niebles, 2013; Zou & Kim, 2007) and 

construction workers (Bai et al., 2008; Golparvar-Fard et al., 2013; Khosrowpour et al., 2014; Yang et 

al., 2016; Zou & Kim, 2007). Posture data are detected via feature descriptors such as the Histogram of 

Oriented Gradients (Dalal & Triggs, 2005) and skeletisation algorithms (Abu-Ain et al., 2013). Figure 

2-4 illustrates with coloured rectangles the detected posture data of a truck in (a-c), and an excavator in 

(d-f), while filling dumping, moving, hauling/swinging, digging, and dumping.  

 

 

Figure 2-4: Productivity monitoring of earthmoving equipment (Golparvar-Fard et al., 2013). 

(a: filling, b: dumping, c: moving, d: hauling/swinging, e: digging and f: dumping) 

 

Machine learning-based algorithms such as Support Vector Machine Classifiers (SVMs) (Brereton & 

Lloyd, 2010) and Artificial Neural Networks (ANNs) (da Silva et al., 2017) are then trained to link 

(label) the detected activities to construction tasks. The highest achieved accuracy so far is equal to 59% 

(Jun Yang et al., 2016). In particular, this study was tested on workers while performing 11 types of 

tasks i.e. brick laying, transporting, plate cutting, drilling, re-bars fixing, nailing, plastering, shovelling, 
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bolting, welding, and sawing. The authors admitted that this low accuracy was due to the fact that most 

of these tasks were not distinguishably described by posture data. On the other hand, posture-based 

studies perform very well (accuracy >80%) for the case of earthmoving equipment, as such entities have 

a small but well defined range of postures. For example, an excavation task performed by a dump truck 

is described only by two postures. The first depicts the unloading of materials and the second the 

transportation of materials. In addition, earthmoving equipment is used for only one type of tasks 

whereas workers perform a much larger variety.  

The second group of studies of this category, exploits physiological data such as heart rate 

(beats/minute), breathe rate (breaths/minute), body's force and angular rate (Akhavian & Behzadan, 

2016; Chen et al., 2017; Gatti et al., 2014). Such data are acquired through physiological status 

monitoring (PSMs) and inertial measurement unit (IMU) wearable sensors. The physiological data are 

used for training machine learning-based classification methods similarly to the studies that exploit 

posture data. In general, physiological-based studies follow the methodology presented in Figure 2-5.  

 

 

Figure 2-5: Methodology of physiological-based studies for recognizing activities. 

(Akhavian & Behzadan, 2016) 

 

However, it has been proven that heart and breathe rates cannot establish any relationship with 

individual’s labour productivity (Gatti et al., 2014). On the other hand, body's force and angular rate, 

extracted with accelerometers and gyroscopes of IMUs sensors, achieved a promising performance 

(≈80% accuracy) in terms of detecting and labelling activities such as hammering, sawing, turning a 

wrench, loading/unloading/pushing a wheelbarrow (Akhavian & Behzadan, 2016). Physiological-based 

studies have been also successfully used for identifying abnormalities in the performance of workers 

(awkward postures) for health and safety purposes (J. Chen et al., 2017). Their main limitation is that 

they rely on data collected with wearable sensors that give rise to privacy issues.  
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Lastly, audio data which are recorded by microphones placed at construction jobsites have also 

been exploited for monitoring the productivity of construction entities (Cheng et al., 2017; Weerasinghe 

& Ruwanpura, 2010). These audio-based studies are applicable only to tasks that produce discrete 

sounds such as nailing, hammering, excavating, and drilling. Although they have managed to 

successfully remove background noise, they are still not designed to monitor the labour productivity of 

multiple entities that perform similar tasks simultaneously.  

 

 

2.3. Summary of current state of research  

Monitoring of labour productivity relies on the calculation of the labour input and output. Existing 

studies focus mainly on the former. This is because the measurement of the latter is quite straightforward 

through visual inspection (e.g. meters of wall constructed, number of columns poured with concrete). 

The labour input is equal to the amount of time each construction entity spends on a task. Current state 

of research in monitoring of labour productivity is grouped in two categories: a) the region-based, and 

b) the activity-based.  

The region-based studies infer the labour input by measuring the time each entity spent in pre-

defined work zones. In each of these zones, one or more specific tasks are scheduled to take place such 

as steel fixing, concrete pouring, bricklaying etc. The region-based studies are subdivided into tagged 

and tag-less. The former group of studies, calculates the location of workers through sensors (UWB, 

RFID and GPS), whereas the latter uses computer vision-based tracking methods. These studies are 

limited by: a) the way the location of entities is calculated, and b) the way the labour input is inferred. 

With regards to the first limitation, the tagged studies are obtrusive and costly whereas the tag-less 

studies are restricted to monitoring workers only within the range of a camera’s view. The second 

limitation, relates to the ambiguity that arises when workers are idle instead of productive even if they 

are located within the correct work zones according to schedule. The tag-less studies link operation 

process models to work zones to alleviate this ambiguity. In practice, this is not easily applicable as it 

takes 5 to 10 minutes for an operator to select and adjust the appropriate operation process model to 

every construction entity. 

On the other hand, the activity-based studies estimate the labour input by measuring the 

duration of the total activities each entity performed. These activities depict sub-tasks of specific tasks. 

To achieve monitoring, the activity-based studies rely on posture, physiological and audio data. 

However, none of these has been proven robust. Firstly, the studies that use posture data are accurate 

only if tasks are depicted by distinguishable postures or involve earthmoving equipment. This is due to 

the disproportionately small number of human postures compared to the large number of construction 

tasks. For example, two workers stretch (activity), but one in order to place a pipe and the other to 

tighten a scaffold. In this case, two similar postures, depict two different tasks. The opposite holds for 
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the earthmoving equipment. In fact, each posture of such entities depicts a very specific activity. 

Secondly, the studies that analyse physiological data are restricted mainly by privacy conflicts similar 

to tagged studies. Thirdly, the activity-based studies that exploit sound data are applicable only if tasks 

produce dissimilar sounds.  

Chapter 1 concluded that all construction entities should be monitored proactively in order for 

the labour productivity to be improved. Proactively means that multiple workers should be monitored 

at the same time on a daily basis. Current practices have failed to achieve this, as they are labour 

intensive and time consuming. Important research has been conducted in order to address these 

shortcomings. However, none of them has managed to propose a method that can accurately, 

unobtrusively, and cost and time efficiently monitor the labour productivity of multiple construction 

workers at the same time. Accurately means that the project manager knows the number of productive 

hours of each worker with an accuracy of 100%. Unobtrusively means that workers are monitored 

without any feeling of discomfort. Efficiently in terms of time and cost means that it is practically 

feasible for a construction company to monitor the labour productivity of multiple workers during their 

entire work shifts on a daily basis. This gap in knowledge exists because current studies are mainly 

tailored to entities that perform specific tasks. However, it applies only to workers as activity-based 

studies have already successfully addressed the monitoring of earthmoving equipment’s productivity. 

Therefore, the main objective of this thesis is to develop a fully automated framework for monitoring 

labour productivity of construction workers regardless of the type or number of tasks they perform 

through their work shift. The aims of the researcher are to:  

 

 Aim 1: Track construction workers unobtrusively.    

 Aim 2: Extract the labour productivity of construction workers accurately.  

 Aim 3: Monitor the labour productivity of construction workers proactively.  

 

2.4. Hypothesis & Proposed framework  

The scope of this framework is to monitor the labour productivity of multiple workers at the same time. 

Figure 2-6 illustrates the overall proposed framework. The skewed parallelogram shapes refer to 

methods and the circular to inputs/outputs. The framework consists of two main methods illustrated 

with black coloured skewed parallelogram shapes. The output of the first is the input for the second. In 

more detail, the cyan coloured skewed parallelogram shapes depict methods of novel contribution, 

whilst the uncoloured skewed parallelogram shapes are methods taken from literature. The inputs of the 

framework are video data streamed from multiple cameras, whilst the output of the framework is the 

total productive and unproductive time spent by each worker. This thesis hypothesizes that task 

productivity of construction workers can be monitored through their trajectory data.  
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Figure 2-6: Overall framework for automated construction worker task productivity monitoring.  

 

The labour productivity is calculated by diving a worker’s total output over the total input (Shehata & 

El-Gohary, 2011). The determination of output is quite straightforward through visual inspections (e.g. 

number of pipes installed, number of m3 being excavated). Hence, this thesis focuses only on the input. 

The main assumption of this thesis is that all construction-related tasks fit to the same pattern. This 

pattern dictates that if a worker’s “move” is followed sequentially by one “stop” and a second “move”, 

then these three semantic events define a work cycle. This assumption is based on the fact that workers 

“stop” in order to perform a construction-related task and they “move” to start another. In construction, 

a work cycle is defined as the total time a worker spends on a task (Dozzi & AbourRizk, 1993). Hence, 

the duration of a work cycle is equal to the duration of the semantic “stop” event. Sequentially, the 

duration of all work cycles is equal to the labour input of a worker. Therefore, the labour input can be 

extracted by detecting these work cycles. The four equations in Figure 2-7 form the core of the proposed 

framework.   

 

 

Figure 2-7: Assumptions of proposed framework. 
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The first method of the proposed framework is a computer vision-based method for 4D tracking of 

construction workers. This type of tracking is unobtrusive as it is tag-less. The input data are videos 

collected through the cameras of jobsites’ surveillance systems. It returns one 4D trajectory for every 

worker as output. These 4D trajectories depict the 3D (X, Y, and Z) location of workers across the entire 

range of a jobsite over time. This 4D localization overcomes the limitation of previous tag-less studies 

that monitored workers only within a camera’s view. An intra and an inter camera tracking are 

performed sequentially in order to achieve this 4D tracking. The former matches workers under the 

same unique ID across subsequent frames of a camera, whilst the latter matches workers across multiple 

cameras. A computer vision-based 2D tracking method is developed in order to perform the intra camera 

tracking. It returns one 2D trajectory for every worker monitored. A computer vision-based matching 

method is also devised in order to perform the inter camera tracking. This visual matching method 

returns the 2D trajectories that belong to the same worker from all cameras. Then, a triangulation 

method, that is taken from literature (Hartley, 1997), is applied in order to convert the 2D trajectories 

into 4D. Τhe 4D computer vision-based tracking method addresses the first aim of this thesis. 

The second method of the proposed framework is productivity monitoring. It uses the output of 

the 4D tracking method as input. Initially, a smoothing method removes the noise from the 4D 

trajectories. Then, the 4D trajectory of each worker is partitioned into smaller 4D sub-trajectories. The 

3D speed values of these partitions are exploited to cluster them into work cycles based on the main 

assumption of this thesis (see Figure 2-7). The accurate detection of these work cycles addresses the 

second aim of this thesis as their total duration is equal to the labour input of construction workers. The 

3D speed values depict the motion of workers along the floor (XZ) and the vertical plane (Y). The 

detected work cycles are classified as: a) unproductive, b) normal productive, and c) abnormal 

productive. Initially, they are classified as either productive or unproductive through region-based 

classification that splits the jobsite into two types of areas, “active” and “inactive”. The former contains 

the areas of the jobsite where tasks such as excavation, brick laying are performed. The latter consists 

of areas where no construction-related tasks take place. These are the: a) rest areas, b) materials’ storage 

areas, and c) office areas. The work cycles that take place at “active” areas are classified as productive 

while those that take place at “inactive” areas are classified as unproductive. Then, the productive work 

cycles are further classified in order to detect potential abnormalities in the pace of the labour input. 

The durations of the productive work cycles are compared for this purpose. Those with the highest 

duration are classified as potentially abnormal and the rest as normal. This second classification is used 

as an indicator. It shows project managers whether something appears to be “wrong” with workers’ 

productivity pace. Such indication can be very beneficial considering that several factors affect labour 

productivity in a negative way as shown in Chapter 1. Managers can then look into the video data at the 

time of the day the abnormalities occurred and check whether something was actually incorrect with 

these work cycles. This way problems are identified and treated fast. The productivity monitoring 

method does not need any prior knowledge about the type or the number of tasks workers perform. 
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Therefore, labour productivity of multiple workers can be monitored at the same time. This entails 

proactivity. With this, the third aim of this thesis is addressed.  

Each of the methods of the proposed framework are presented in detail in the following 

chapters. Chapters 3 and 4 present the visual tracking and matching methods respectively. The proposed 

framework concludes with Chapter 5 that analyses the pattern recognition method for task productivity 

monitoring of construction workers.  

 

2.4.1. Experimental set up  

The performance of each method of the proposed framework is tested with a C# implementation in 

Microsoft Visual Studio.Net framework running in a Windows 8.1 operating system. The integrated 

development environment is Visual Studio 2013, using Windows Forms (WinForms). A desktop PC 

with the following specs is used: Intel core i7 CPU, 4.0GHz, and 32 GB RAM.  

The cameras used in the experiments are two GoPro cameras, black edition 4 with a 1920x1080 

frame size, and selected 900 narrow field of view to reduce the distortion of camera fish eye effect. Both 

cameras are mounted in such a way that monitored workers are captured within their overlapping field 

of views. The 4D trajectories have as reference the local coordinate system of one of the two cameras 

used (see Figure 2-8). 

This thesis validates the proposed framework with data collected both off-site and on-site. This 

is aligned to construction industry’s vision to reduce cost by increasing the off-site production of pre-

fabricated construction elements. One of the largest construction companies in the UK stated back in 

2012, that the company’s aim is to perform 70% of the total construction in off-site facilities (Ferguson, 

2012). The main discrepancy between off-site and on-site jobsites is the level of organization in terms 

of materials’ management. In an off-site pre-manufacturing facility workers and materials are pre-

allocated within well designated areas. On the other hand, in an on-site environment materials and 

workers are more difficult to control as work zones change constantly. Therefore, more engineers are 

required to monitor the workers within each of these work zones and to manage the supply of materials 

and equipment. 

 

 

Figure 2-8: Camera centred coordinate system.  
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3 
 

3.Adaptive computer vision-based 2D 

tracking of workers in complex 

environments  
 

 

In this chapter, a computer vision-based method for 2D tracking of construction workers is presented. 

This type of tracking provides the 2D trajectories that are required in order to calculate the 4D 

trajectories (3D location over time) of workers. The overall proposed framework presented in Chapter 

2 uses these 4D trajectories as input data. To date, such trajectories are extracted either by manual 

observation techniques, the so called spaghetti diagrams (Nyström & Per, 2009), or by tag-based 

practices. The former is impractical considering the large number of workers that must be monitored 

on a daily basis. The latter is accurate but it is not welcomed by the personnel as discussed in Chapter 

2.     

 

3.1. Introduction  

Current vision-based tracking technologies provide automated and tag-less monitoring (Accuware.com, 

2017; Projectfine.eu, 2010). These types of technologies are usually applied for tracking targets such as 

pedestrians and sports players. However, they fail when targets are either partially occluded or very 

close to each other, and will therefore not provide an efficient way of tracking construction workers. 

This is due to the challenging nature of construction sites. Such work environments often contain 

multiple uniformed workers with similar appearance under occlusions/illumination/scale/posture 

variations, and who may exhibit abrupt changes in movement over the course of their task.  

A successful monitoring system for construction workers as proposed by Cheng et al. (2011) 

has to satisfy the following 5 criteria: a) low cost and maintenance, b) non-disturbing regarding the 

tasks, c) applicable both indoors and outdoors, d) accurate, e) high data frequency, and f) non-intrusive 

(privacy issues) for the personnel. Current vision based-tracking complies with 4 out of 5 of these 

criteria. Accuracy is the only shortcoming. This is mainly because in a construction work environment 
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workers are excessively congested and occluded. To the best of the authors’ knowledge, there is no 

existing monitoring practice that satisfies all of the above criteria. 

In summary, the main problem of existing practices for monitoring construction workers is the 

lack of accuracy. The aim of this chapter is to address this shortcoming by proposing a novel 2D vision-

based method for tracking workers in complex environments. The proposed method uses as input video 

frames with marked regions, highlighting the positions of workers in view in the first frame. The normal 

distribution of workers’ walking speed values at various depth scales are experimentally measured and 

used to predict the marked regions’ future positions. An offline trained SVM classifier detects the sub-

regions of every marked region that contain high visibility worker apparel. A filtering method is then 

applied to denoise these sub-regions. The boundaries of the apparel’s new position are set by 

implementing a distance based clustering method. Lastly, the proposed vision-based 2D tracking 

method updates the adaptive model with the current position and appearance in order to be able to 

predict the future position and remove noise. With such updates, the proposed method adapts to 

posture/scale/illumination variations, abrupt movements, occlusions and congestion caused by targets 

similar in appearance (co-workers). 

This chapter is structured as follows. Section 3.2 analyses the current state of research on vision-

based 2D tracking methods. Then, the proposed solution and methodology are discussed in sections 3.3 

and 3.4 respectively, and evaluated in section 3.5. Conclusions are presented in the final section 3.6. 

 

 

3.2. Background  

There has been much research on 2D visual tracking, so that a complete review of the current state of 

the art is beyond the scope of this thesis. Hence, this section focuses on studies that address the 

challenges that most commonly appear while tracking workers through the cameras of a construction 

jobsite’s surveillance system. Such challenges are: a) scale variations, b) appearance similarity due to 

Hi-Vis apparel, c) occlusions caused, for example, by work benches, structural elements and workers, 

d) posture variations, e) abrupt movement, f) background clutter, g) congestion caused by workers that 

overlap with each other, and h) illumination variations.  

Vision–based tracking methods search to localize the same target across subsequent frames. 

Each target is represented via a unique appearance model to achieve this. This model describes both the 

shape of the target and the appearance features within it. Shape can be a rectangle, contour, point(s), 

skeleton, or ellipse, whilst the appearance features are usually colour, edges, and texture. Both the 

tracking environment and the type of the target (rigid, non-rigid) are taken into account for the selection 

of the most appropriate shape and appearance features. Yilmaz et al. 2006 groups tracking methods into 

three categories based on the appearance model they use. These are: a) the kernel-based methods that 

use both shape and appearance features (Comaniciu et al., 2003; Ross et al., 2008), b) the point-based 
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methods that track point(s) shaped targets (Ding and Zhang 2012; Yang and Cao 2013), and c) the 

silhouette-based methods that rely on edges (Hu et al., 2013).  

Kernel-based methods are better for tracking construction resources (equipment & workers) 

under occlusion, illumination, and scale variations (Park et al., 2011). Such methods mask the 

appearance features with a kernel in the spatial domain. They track (localize) the target across 

successive frames via a gradient-based optimization method that returns the position of either the global 

minimum or maximum of a cost function. In that respect, Yang et al. (2010) used the colour features of 

workers’ legs and torso and their spatial arrangement to track workers through a kernel covariance 

method. This tracking method was successful under congestion and partial occlusions but failed under 

illumination variations. In addition, the Kalman filter that was used for predicting workers’ future 

position lost track when workers were severely occluded for a long time. The benefits of an online-

based tracking method (Ross et al., 2008) were combined to those of a worker detector (Park & Brilakis, 

2012) to track multiple workers in the long term (Park and Brilakis, 2016). However, this method 

terminates the tracking process when no worker is detected within a close distance to the current 

position of a worker for at least 3 seconds. This failure will be amplified by occlusions as the proposed 

worker detector requires a clear view of the worker’s full body (Dalal & Triggs, 2005). Zhu et al. (2016) 

instead employed a particle filter point–based method to track a single worker under severe occlusions 

and posture variations. This method outperforms those that use Kalman filters or gradient-based 

optimization methods in terms of accurate prediction of a target’s future position. This is because the 

particle filter based methods, as compared to the Kalman filter based methods, are applicable to both 

linear and nonlinear problems that follow a non-Gaussian distribution (Yilmaz et al., 2006). In addition 

they do not get confused by local minima or maxima like the gradient-based optimization methods. 

However, so far particle filtering based tracking methods focus mainly on single target tracking (Shen 

et al., & Tao, 2015; Sun et al., 2015; Zhou, Fei et al., 2014). In summary, none of the existing state of 

the art methods is able to tackle all of the aforementioned challenges that relate to the visual tracking 

problem of construction workers. Hence, this chapter extends the review on studies that focus on visual 

tracking of targets which are similar to workers. Such targets are either people or non-rigid objects in 

general. These studies are grouped into two categories. These are the detection-based and the online-

based. The former learns a target’s appearance offline through a detector, whilst the latter learns online 

during tracking.  

The detection-based methods improve tracking in two ways. Firstly, they automate the 

initialization of the tracking process. Secondly, they stabilize the performance of the tracker and reduce 

drifting over background pixels. Breitenstein et al. (2009), Choi et al. (2015), and Li et al. (2016) used 

a human detector’s output as an observation model for tracking multiple pedestrians through particle 

filtering. The common limitation of all the detection-based methods is that detectors are not invariant 

to appearance variations. However, such changes in appearance are very common for workers, due to 

occlusions, congestion, variations in posture, scale, and illumination.  
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The online-based methods update the appearance model while tracking, to overcome the 

shortcomings of the detection-based methods. Ross et al. (2008) proposed an incremental learning 

method that keeps the latest but discards the oldest appearance data after a predefined number of frames. 

Their method was successful for single target tracking under posture, scale, and illumination variations. 

However, the authors admit that it fails when targets get partially occluded. Similarly, Ji et al. (2014) 

proposed an online updated appearance model that consists of two separate models. The first uses 

random ferns to localize the target, whilst the second compares the target’s previous and current 

templates to validate the localization of the first model. However, as the authors highlight, their method 

does not perform well on data that contains a fluttering background. Zhao et al. (2016) enhanced the 

continuously adaptive mean shift algorithm (CAMShift) (Allen et al., 2006) with an updated online 

structural local sparse appearance model to alleviate this. Still, their method is designed for single 

human tracking only. Gaxiola et al. (2016) deployed a dynamically updated correlation filter that 

contains all past templates of a target. This study uses this filter to compare a search area with all past 

templates of the target. If the comparison returns a score higher than a threshold, then the filter gets 

updated and tracking continues. A similarity score smaller than the threshold, terminates tracking, and 

re-initializes it by searching for the target within a larger search area. However, these search methods 

are not appropriate for workers, as construction sites are usually congested and workers share similar 

appearance due to their safety apparel (Hi-Vis). Hence, more than one potential comparison match 

might be enclosed within a single search area. The main common drawback of all the online-based 

tracking methods is drifting that appears over time (Liu et al., 2014). The tracker loses the target when 

this occurs. This is due to background pixels that slowly propagate within the online updated appearance 

model (Bertinetto et al., 2016). In summary, none of the existing studies can fully tackle the visual 

tracking problem of construction workers (Kalal et al., 2012).  

The remainder of this chapter aims to deal with all the aforementioned shortcomings in order 

to achieve long term tracking of multiple workers within a construction jobsite. The main objectives 

are: a) to deploy an appearance model that can adapt to all changes of workers’ appearance caused by 

e.g. occlusions, illumination variations, b) to discard background objects that share similar appearance 

with workers, c) to retain tracking of multiple targets within a congested environment, and e) to absorb 

abrupt changes of workers’ motion. The key research question that this chapter wishes to answer is: 

“Can targets that share similar appearance be tracked under abrupt movements and variations (scale, 

posture, and illumination) within a complex environment?” 

 

3.3. Proposed solution    

This section addresses the tracking issue of construction workers when occlusions, variations in posture, 

scale and illumination, background clutter (i.e. objects similar to target, abrupt movement) and 

congestion occur. Figure 3-1 illustrates the flowchart of the overall tracking method. The input data are 
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video frames, whilst the output data are bounding boxes (rectangular regions) that enclose each target. 

In this figure, skewed parallelogram shapes refer to the sequential processes applied to all tracked 

targets within a frame at time 𝑡𝑛. The shaded areas next to each of these skewed parallelograms 

represent the output of each process. A bounding box is manually applied around each target in the first 

frame to initialize tracking. Automatic initialisation could be implemented as shown by Park et al. 

(2012). 

The method outlined in the following section relies on an adaptive model to achieve long term 

tracking of multiple construction workers. This model predicts at time 𝑡𝑛−1 the regions that enclose 

each target’s position within a frame at time 𝑡𝑛 using a prior. Figure 3-1 illustrates with a yellow 

outlined rectangle the predicted search region for one target. Then, an appearance model searches for 

unique features of workers within these regions and it returns only the image patches that most likely 

belong to tracked targets. These patches are depicted as cyan coloured rectangles within the green 

shaded region. Then, a filtering model is applied in order to discard the image patches that either belong 

to background objects or simply depict noise. The remaining patches (pink coloured rectangles) within 

each search region are clustered into a bounding box, which is the output for each target at time 𝑡𝑛. 

Finally, the adaptive model updates a feature vector about all possible variations (e.g. posture, 

occlusions) that occurred at time 𝑡𝑛. This allows us to accurately predict each target’s future position at 

time 𝑡𝑛+1. The rest of this section describes in detail each of these processes. 

The method presented in this chapter makes the following key assumptions: a) tracked workers 

cannot disappear from frame to frame unless they are within a specific distance from the borders of the 

frame which is possible to be covered given the camera’s frame rate (fps), b) construction workers do 

not run across construction sites, they walk instead for safety reasons, c) colour features are robust for 

describing workers under appearance variations caused by occlusions, scene illuminations, posture and 

scale variations, d) a worker’s appearance does not change during congestion due to its short duration, 

as in practice workers need enough free space to perform their tasks, and e) noise appears at random 

positions from frame to frame e.g. noise that appears at position A at time 𝑡𝑛+1 does not re-appear at 

the same position A at time 𝑡𝑛+2.  
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Figure 3-1: Flowchart of proposed computer vision-based 2D tracking method. 

 

3.4. Proposed methodology     

This section presents a computer vision-based 2D tracking method of construction workers.  

 

3.4.1. Prediction model  

The proposed prediction model relies on a prior to predict a search region 𝑅𝑠 for each tracked target 

within the following frame. This prior is not a threshold. It is derived from the mathematical 

interpretation of assumptions (a) and (b) of section 3.3, that workers do not run and cannot disappear 

from frame to frame. Given these assumptions, each tracked worker should be located within a specific 

walking distance from his/her previous position in the image. The average human walking speed is 

known and equal to1.45m/s (Boonstra et al., 1993). This needs to be converted into speed in the image, 

noting that targets which are close to the camera (large scale) cover a larger distance between successive 

frames compared to targets that are further away (small scale). The camera frame rate (fps) and the 

scale of the targets are used in order to achieve this conversion.  
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Firstly, the proposed tracking method groups targets into three scale sizes {𝑠𝑐𝑎𝑙𝑒𝑖}𝑖=1,2,3: a) 

large (i=1), b) medium (i=2), and c) small (i=3). This prediction model exploits the width of targets 

instead of the height in order to predict the scale of workers, as the latter fluctuates significantly 

especially under occlusions (e.g. work benches, equipment). A Gaussian distribution is fitted to the data 

sample of each scale, in order to calculate the probability of a tracked target at time 𝑡𝑛 belonging to one 

of the three scales given its width at time 𝑡𝑛−1: 

 

𝑃(𝑠𝑐𝑎𝑙𝑒𝑖|𝑤𝑖𝑑𝑡ℎ𝑡𝑛−1
) =

1

𝜎𝑖𝑤𝑖𝑑𝑡ℎ
√2𝜋

𝑒

−(𝑤𝑖𝑑𝑡ℎ𝑡𝑛−1−�̅�𝑖𝑤𝑖𝑑𝑡ℎ
)
2

2𝜎𝑖𝑤𝑖𝑑𝑡ℎ
2

                                (3-1) 

 

 

where �̅�𝑖𝑤𝑖𝑑𝑡ℎ
, 𝜎𝑖𝑤𝑖𝑑𝑡ℎ

  are the average (mean) and standard deviation respectively of the width of 

workers in each scale. These parameters are defined in the following section. Every tracked target is 

assigned at time 𝑡𝑛 to the scale that scored the highest probability. For each target, this is expressed as:    

 

𝑠𝑐𝑎𝑙𝑒𝑡𝑛
= max

𝑖=1,2,3
𝑃(𝑠𝑐𝑎𝑙𝑒𝑖|𝑤𝑖𝑑𝑡ℎ𝑡𝑛−1

)                                          (3-2) 

 

After all tracked targets are grouped into scales, their walking speed values ‖�⃗�(𝑤𝑎𝑙𝑘)‖𝑡𝑛
 at time 𝑡𝑛 are 

calculated by linearly interpolating the representative walking speed ‖�⃗�(𝑤𝑎𝑙𝑘)‖𝑖
 and width  𝑤𝑖𝑑𝑡ℎ𝑖  

values of each scale {𝑠𝑐𝑎𝑙𝑒𝑖}𝑖=1,2,3. This interpolation is expressed as:  

 

‖�⃗�(𝑤𝑎𝑙𝑘)‖𝑡𝑛
= ‖�⃗�(𝑤𝑎𝑙𝑘)‖𝑖

+ 
|(𝑤𝑖𝑑𝑡ℎ𝑡𝑛−1−𝑤𝑖𝑑𝑡ℎ𝑖)(‖�⃗⃗�(𝑤𝑎𝑙𝑘)‖𝑖+1

−‖�⃗⃗�(𝑤𝑎𝑙𝑘)‖𝑖
)|

|𝑤𝑖𝑑𝑡ℎ𝑖+1−𝑤𝑖𝑑𝑡ℎ𝑖|
                   (3-3) 

 

 

The representative ‖�⃗�(𝑤𝑎𝑙𝑘)‖𝑖
 and  𝑤𝑖𝑑𝑡ℎ𝑖  values correspond to the highest cumulative probability. 

Secondly, the proposed prediction model uses ‖�⃗�(𝑤𝑎𝑙𝑘)‖𝑡𝑛
 to predict the maximum distance 𝑑𝑥𝑦 that 

every worker covers between two successive frames {𝑡𝑛−1, 𝑡𝑛} with time difference 𝑑𝑡 =
1

fps
 through 

the equation:  

 

𝑑𝑥𝑦 = ‖�⃗�(𝑤𝑎𝑙𝑘)‖𝑡𝑛
𝑑𝑡                                                            (3-4) 

 

This distance 𝑑𝑥𝑦 is the prior that is used in order to define the dimensions {𝑊𝑆  ×  𝐻𝑆} of the search 

region 𝑅𝑠 for each target. In the example presented in Figure 3-2 all corners of a target’s tracking region 

𝑅𝑇 (cyan rectangle) with dimensions {𝑊𝑇  ×  𝐻𝑇} at time 𝑡𝑛 are expanded by a radius equal to 𝑑𝑥𝑦. This 

way the proposed method captures all possible regions that a target might move towards in the following 
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frame at time 𝑡𝑛: a) left, b) right, c) upwards, d) downwards, and e) diagonally. The search region 𝑅𝑠 of 

a target at time 𝑡𝑛 given its previous position at time 𝑡𝑛−1 is expressed by the following equations:   

 

𝑊𝑆𝑡𝑛
= 𝑊𝑇𝑡𝑛−1

+ 2𝑑𝑥𝑦                                                          (3-5) 

𝐻𝑆𝑡𝑛
= 𝐻𝑇𝑡𝑛−1

+ 2𝑑𝑥𝑦                                                           (3-6) 

 

 

where 𝑊𝑆𝑡𝑛
, 𝐻𝑆𝑡𝑛

is the width and height respectively of the search region 𝑅𝑆 in current frame at time 𝑡𝑛, 

and 𝑊𝑇𝑡𝑛−1
, 𝐻𝑇𝑡𝑛−1

is the width and height respectively of tracking region 𝑅𝑇 in previous frame at 

time 𝑡𝑛−1. 

 

  

Figure 3-2: Prediction of the position of a tracked target in the following frame. 

 

3.4.2. Appearance model  

The proposed method applies the appearance model once the search region 𝑅𝑆 is predicted for each 

tracked target. This model exploits the colour features of workers’ high visibility apparel (Hi-Vis). 

Hence, only the part of a worker’s body that is covered by Hi-Vis is tracked. The proposed appearance 

model uses the HSV colour space to extract these colour features. This is because it describes better 

both orange (a) and yellow (b) colours of Hi-Vis apparel as compared to the RGB colour space, as seen 

in Figure 3-3.  

 

 
Figure 3-3: HSV vs RGB channels for (a) orange & (b) yellow Hi-Vis apparel. 
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The Hi-Vis apparel of workers commonly varies in terms of: a) colour combinations i.e. orange, yellow, 

b) type of apparel i.e. jacket, vest, uniform, c) design pattern of reflecting grey stripes, and d) faded 

colours i.e. dirty or worn out. Each target’s body is segmented in order to alleviate the effect of such 

appearance variations. A grid divides the search region 𝑅𝑆 of every target with dimensions {𝑊𝑆  ×  𝐻𝑆} 

into smaller equally sized rectangular patches 𝑝𝑖 with dimensions {𝛿𝑥  ×  𝛿𝑦}. The size of these patches 

𝑝𝑖  is experimentally defined in the following section 3.5.1. A support vector machine classifier (SVM) 

identifies the segmented patches 𝑝𝑖 that belong to workers’ Hi-Vis apparel. Figure 3-4 shows in (a) the 

segmentation and in (b) the classification processes. 

 

 

Figure 3-4: Proposed appearance model. (a) Segmentation of the search region 𝑅𝑆 into rectangular 

patches {𝑝𝑖}𝑖=1..𝑁. (b) Classification of the segmented patches {𝑝𝑖}𝑖=1..𝑁 as part of tracked worker’s Hi-

Vis apparel.  

 

Images of both colours (orange & yellow) of workers’ Hi-Vis apparel are used as positive, whilst 

random background images are used as negative to train the SVM. In total, 688 images are used as 

training data. From them, 491 are positive and 197 are negative. The positive training data are labelled 

with +1 and the negative with -1. Figure 3-5 illustrates the training data.  

 

 

Figure 3-5: Training data of a multi-colour SVM classifier. 

 

The histograms of hue (actual colour) and saturation (purity of colour) colour channels are extracted for 

each of these images. The value (brightness) colour channel is discarded as it is sensitive to illumination 

variations. The histograms of hue and saturation have 360 and 100 values respectively. These values 
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are normalized since the SVM is not scale invariant. Hence, the feature vector �⃗� that describes each 

worker belongs to the two dimensional feature space (𝑥 ∈ 𝑅2) and is expressed as follows:  

 

�⃗� = { [

ℎ1.
.

ℎ360

]

𝑇

, [

𝑠1.
.

𝑠100

]

𝑇

}                                                     (3-7) 

    

After the SVM is trained, it returns a hyperplane 𝑓(�⃗�) that maps the segmented patches 𝑝𝑖 from the two 

dimensional feature space (𝑅2) into a higher one through a Gaussian kernel:  

 

𝑓(�⃗�) = ∑ 𝛼𝑖
𝑁
1 �⃗�𝑖 exp (−

1

2𝜎2
‖�⃗� − �⃗�𝑖‖

2) + 𝑏                                       (3-8) 

 

 

where �⃗�𝑖 are the values of the training input (support vectors), �⃗�𝑖 are the binary labels {-1, +1} of the 

training input, �⃗� are the values of the input data, N is the size of the training data, σ is the standard 

deviation of the kernel, 𝑓(�⃗�) are the binary labels {-1, +1} of the input data, and 𝛼𝑖 are weights of the 

training input. The SVM performs cross-validation to calculate the parameters of the hyperplane 𝑓(�⃗�) 

(i.e. 𝛼𝑖, 𝑏, 𝜎). The training data are split into a total of K subsets for this purpose. One of these subsets 

is repetitively used for validation and the others for training. This repetitive validation minimizes the 

estimation error of the parameters. For our training data, cross validation converges to the same gamma 

variable (𝛾 =
1

2𝜎2 = 0.5063) for random values of subsets K (2, 5, 10). Therefore, the total number of 

subsets K is taken equal to the minimum (i.e. K=2) for computational efficiency. This hyperplane 𝑓(�⃗�) 

linearly separates the segmented patches {𝑝𝑖}𝑖=1..𝑁 into two groups (see Figure 3-6). In this figure, any 

segmented patch 𝑝𝑖 that falls above the hyperplane 𝑓(�⃗�) is positively classified as part of a worker’s 

Hi-Vis apparel (green points), whilst any pixel that falls below is negatively classified as part of the 

background (blue points). Finally, all positively classified segmented patches {𝑝𝑖}𝑖=1..𝑁 of a search 

region 𝑅𝑆 are clustered within a bounding box that depicts the final tracking output 𝑅𝑇 of a target.  

 

 

Figure 3-6: Linear classification of colour image patches with an SVM.  
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Every search region 𝑅𝑆 should contain only one worker’s positive classified segmented patches 𝑝𝑖 as 

mentioned above. However, this is difficult in congested working environments such as construction 

sites, and the search regions 𝑅𝑆 of close by workers may overlap as a result. The proposed appearance 

model uses templates instead of the colour features of Hi-Vis apparel when this overlapping occurs to 

track workers. This is because the spatial arrangement of colours as provided by templates is more 

representative than colour histograms especially when congested targets share similar appearance e.g. 

workers in the same colour of Hi-Vis apparel. The normalized cross correlation (NCC) is implemented 

in order to compare the templates of congested workers between consecutive frames. The main 

disadvantage of such template comparison methods is that they are not invariant to posture, scale and 

appearance variations. The proposed method re-activates tracking via colour features when targets are 

not occluded any more. The NCC compares the search regions 𝑅𝑆 of the congested workers within a 

frame at time 𝑡𝑛 with all possible matching candidates from a previous frame at time 𝑡𝑛−𝑘. These 

candidates are the tracking regions 𝑅𝑇 of the workers at the time instance that congestion appeared. 

They depict each worker’s appearance as long as congestion lasts. This relies on the previous (b) 

assumption of section 3.3 that a worker’s appearance does not change during congestion. The 

implementation of the NCC is expressed as follows: 

 

𝑃𝑥,𝑦 =
∑ (𝑇(𝑥′,𝑦′)∗𝐼(𝑥+𝑥′,𝑦+𝑦′))𝑥′,𝑦′

√∑ 𝑇(𝑥′,𝑦′)2∗ ∑ 𝐼 (𝑥+𝑥′,𝑦+𝑦′)2 𝑥′,𝑦′ 𝑥′,𝑦′ 

                                        (3-9) 

 

where the regions 𝑅𝑆 are the source images 𝐼(𝑥), and the tracking regions 𝑅𝑇 are the template images 

𝑇(𝑥). The above equation is used to scan each template image 𝑇(𝑥) along all available source images 

𝐼(𝑥). It finally returns the position 𝑃𝑥,𝑦 of each congested worker in the frame at time 𝑡𝑛 when a positive 

match is confirmed between a source 𝐼(𝑥) and a template 𝑇(𝑥) image (see Figure 3-7).  

 

 

Figure 3-7: Template matching of the same worker between non-successive frames.  
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3.4.3. Filtering model  

This section presents how the proposed filtering model filters the segmented patches {𝑝𝑖}𝑖=1..𝑁 that are 

wrongly classified as positive by the appearance model of section 3.4.2. Then, the filtered patches 

{𝑝′𝑖}𝑖=1..𝑁 are clustered into a bounding box to return the corrected tracked region 𝑅𝑇. We use the term 

outliers for these patches for the remainder of this chapter for simplicity. These outliers depict either 

noise or objects that belong to the background and share a similar colour to the Hi-Vis apparel. Figure 

3-8 summarizes the proposed filtering model. Firstly, the outliers are detected. Secondly, the filtering 

model discards them and thirdly, the corrected tracked region is extracted 𝑅𝑇.  

 

 

Figure 3-8: Proposed filtering method. (a) Detection of outliers within a filter region 𝑅𝐹 (green large 

rectangle). (b) Filtering of outliers (cyan rectangles). (c) Clustering of positively classified patches (pink 

rectangles) into the final tracking region 𝑅𝑇 (cyan rectangle).  

 

The filtering model enhances the performance of the appearance model. This is because the latter 

calculates the tracking region 𝑅𝑇 by fitting all positively classified patches {𝑝𝑖}𝑖=1..𝑁 of a search region 

𝑅𝑆 into a bounding box. However, if some of these patches are either wrongly classified as part of a 

worker’s body or correctly classified but belong to the background, then the prediction model will fail 

to track the same worker across successive frames. Figure 3-9 illustrates such an example. In this figure, 

the proposed prediction model fails to track a worker while passing in front of an object of a similar 

colour (Hi-Vis jacket hanging on the wall).  

 

 

Figure 3-9: Failure of the proposed prediction model under the appearance of outliers.   
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The proposed filtering model exploits target motion contours to filter outliers. These contours are 

extracted by frame differencing each search region 𝑅𝑆 between two successive frames (𝑡𝑛, 𝑡𝑛−1):  

 

𝛥𝑅𝐺𝐵(𝑥,𝑦)𝑡𝑛
= 𝑅𝐺𝐵(𝑥,𝑦)𝑡𝑛

− 𝑅𝐺𝐵(𝑥,𝑦)𝑡𝑛−1
=

𝑅(𝑥,𝑦)𝑡𝑛
+ 𝐺(𝑥,𝑦)𝑡𝑛

+𝐵(𝑥,𝑦)𝑡𝑛
−(𝑅(𝑥,𝑦)𝑡𝑛−1

+𝐺(𝑥,𝑦)𝑡𝑛−1
+𝐵(𝑥,𝑦)𝑡𝑛−1

)

3
   

(3-10) 

 

 

where 𝑅𝐺𝐵(𝑥,𝑦)𝑡𝑛
 is the RGB value of a pixel at position (x, y) in the image. The pixels that belong to 

the foreground are labelled as “1” value and the pixels that belong to the background as “0”. Then, a 

matrix 𝑀(𝑚,𝑛) is populated with the binary {0, 1} results of frame differencing (see Figure 3-10). This 

matrix 𝑀(𝑚,𝑛) has dimensions {𝑚, 𝑛} equal to the height and width respectively of each target’s search 

region 𝑅𝑆. Hence, each cell within the matrix 𝑀(𝑚,𝑛) corresponds to a pixel within 𝑅𝑆.   

 

 

Figure 3-10: Motion-based classification of pixels. 

 

This binary labelling depends on a threshold value (𝑡ℎ𝑟𝑒𝑠) that filters out random noise and is expressed 

as follows: 

 

𝑀𝑥,𝑦 = {
1, 𝛥𝑅𝐺𝐵𝑥,𝑦𝑡𝑛

> 𝑡ℎ𝑟𝑒𝑠

0, 𝛥𝑅𝐺𝐵𝑥,𝑦𝑡𝑛
≤ 𝑡ℎ𝑟𝑒𝑠

                                                (3-11) 

 

Noise appears due to systematics such as lighting conditions, hardware, and camera mounting. A range 

of values has been tested in order to experimentally define this parameter given the specific 

experimental set up conditions described in section 2.4. Figure 3-11 shows how the proposed method 

removes noise. 
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Figure 3-11: Example of frame differencing between successive frames for motion extraction. (a) Noisy 

outcome. (b) Denoised outcome.  

 

The foreground pixels are categorised into four groups. The 𝐶𝐿 group that contains the far left 

foreground pixels: 

𝐶𝐿 = { ∀ (𝑥𝑖, 𝑦𝑖)𝑝𝑖
∈ 𝑅𝑆: 𝑀𝑥𝑖,𝑦𝑖

= 1| argmin
𝑥

 }                                  (3-12) 

 

the 𝐶𝑅 group that contains the far right foreground pixels: 

 

𝐶𝑅 = { ∀ (𝑥𝑖, 𝑦𝑖)𝑝𝑖
∈ 𝑅𝑆: 𝑀𝑥𝑖,𝑦𝑖

= 1| argmax
𝑥

 }                                  (3-13) 

 

the 𝐶𝑇 group that contains the top foreground pixels:  

 

𝐶𝑇 = {∀ (𝑥𝑖, 𝑦𝑖)𝑝𝑖
∈ 𝑅𝑆: 𝑀𝑥𝑖,𝑦𝑖

= 1| argmin
𝑦

 }                                  (3-14) 

 

 and lastly the 𝐶𝐵 that contains the bottom foreground pixels:  

 

𝐶𝐵 = {∀ (𝑥𝑖, 𝑦𝑖)𝑝𝑖
∈ 𝑅𝑆: 𝑀𝑥𝑖,𝑦𝑖

= 1| argmax
𝑦

 }                                  (3-15) 

 

where 𝑥𝑖, 𝑦𝑖 = image coordinates of a pixel i, (𝑥𝑖, 𝑦𝑖)𝑝𝑖
 = position of a patch 𝑝𝑖 in an image, and 𝑀𝑥𝑖,𝑦𝑖

 

= motion label of each patch (𝑝𝑖).  

 

Only the foreground pixels that overlap with the image coordinates of positively classified segmented 

patches {𝑝𝑖}𝑖=1..𝑁 are returned as pixels of the motion contour 𝑅𝐶. This pairing (see (a) in Figure 3-12) 

ensures that all pixels of the motion contour 𝑅𝐶 positively belong to a tracked target rather to random 

noise. Therefore, the motion contour 𝑅𝐶 of each target defines a region which is expressed as follows:  
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𝑅𝐶 = {∀ (𝑥𝑖, 𝑦𝑖)𝑝𝑖
≥ 𝐶𝐿} ∩ {∀ (𝑥𝑖, 𝑦𝑖)𝑝𝑖

≤ 𝐶𝑅} ∩ {∀ (𝑥𝑖, 𝑦𝑖)𝑝𝑖
≤ 𝐶𝑇} ∩ {∀ (𝑥𝑖, 𝑦𝑖)𝑝𝑖

≥ 𝐶𝐵} (3-16) 

 

 

Figure 3-12: Motion contour for filtering outliers. (a) Categorisation of motion contour’s pixels into 

four groups (orange: left, green: right, blue: top, yellow: bottom). (b) Calculation of potential outlier 

regions (red shaded) between successive frames (𝑡𝑛−1 = dotted shaped contour, 𝑡𝑛 = continuous shaped 

contour).  

 

Figure 3-13 illustrates with white lines four examples of motion contours of construction workers as 

they walk (a-b), stretch (c) or bend (d). These contours correspond only to the part of a worker’s body 

that is covered by Hi-Vis apparel.  

 

 

Figure 3-13: Motion contour while target walks (a-b), partially moves (c), and bends (d). 

 

Then, the motion contours 𝑅𝐶 of the same target across successive frames are compared in order to 

locate the regions that most likely (±) enclose potential outliers. In (b) of Figure 3-12, the continuous 

shaped motion contour of a target at time 𝑡𝑛 is compared spatially to the dotted shaped motion contour 

of the same target at previous time 𝑡𝑛−1. The searching for outliers takes place only within the non-

overlapping region 𝑅𝑁 of the motion contour at 𝑡𝑛 (red shaded region in (b) of above Figure 3-12). 

The 𝑅𝑁 is equal to the image area that a moving target occupies within a period of time 𝑑𝑡 =  𝑡𝑛 − 𝑡𝑛−1 

and is expressed as follows:  

 

𝑅𝑁 = 𝑅𝐶|𝑡𝑛 − 𝐶𝐶                                                          (3-17) 
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where 𝐶𝐶 is the overlapping region of the motion contours of a target between two successive frames 

(𝑡𝑛, 𝑡𝑛−1) and is expressed as follows:  

 

𝐶𝐶 = {∀ (𝑥𝑖 , 𝑦𝑖)𝑝𝑖
∈ 𝑅𝐶|𝑡𝑛} ∩ {∀ (𝑥𝑖, 𝑦𝑖)𝑝𝑖

∈ 𝑅𝐶|𝑡𝑛−1}                            (3-18) 

 

The region 𝐶𝐶 is positively (+) classified as part of a tracked target’s body as it only encloses segmented 

patches 𝑝𝑖 that have already been classified as positive in the previous frame at time 𝑡𝑛−1. Finally, the 

filtering model discards all outliers within region 𝑅𝑁 and all positively patches 𝑝𝑖 that are not enclosed 

by the motion contour  at time 𝑡𝑛:  

 

{𝑝′𝑖}𝑖=1…𝑁 = {∀ 𝑝𝑖 ∈  𝑅𝑁: 𝛥𝑅𝐺𝐵(𝑥𝑖,𝑦𝑖)𝑝𝑖
≥ 𝑡ℎ𝑟𝑒𝑠} ∪ { 𝐴𝑁𝐷 ∀ 𝑝𝑖 ∈ 𝐶𝐶}              (3-19) 

 

This way the proposed filtering method keeps only the patches 𝑝𝑖 that are enclosed within the motion 

contour of a target. The filtering method is activated only if potential outliers are detected within a small 

distance from the target. This selective activation ensures computational efficiency. The prediction 

model calculates at time 𝑡𝑛−1 the search region 𝑅𝑆 of a tracked target at time 𝑡𝑛 (see section 3.4.1). 

Therefore, all outliers that are located outside 𝑅𝑆 are at least one time interval away from the target at 

time 𝑡𝑛 and two time intervals away from the target at time 𝑡𝑛−1. These are not assumptions. They are 

derived from the proposed prediction model. Given this, all corners of each search region 𝑅𝑆 at time 

𝑡𝑛−1 are expanded by a distance equal to two times 𝑑𝑥𝑦 (see section 3.4.1) to calculate the dimensions 

of a filter region 𝑅𝐹 {𝑊𝐹𝑡𝑛
, 𝐻𝐹𝑡𝑛  }. The filter region 𝑅𝐹 of a target at time 𝑡𝑛 given its previous position 

at time 𝑡𝑛−1 is expressed by the following equations:   

 

 𝑊𝐹𝑡𝑛
= 𝑊𝑆𝑡𝑛−1

+ 4𝑑𝑥𝑦                                                     (3-20) 

 

𝐻𝐹𝑡𝑛
= 𝐻𝑆𝑡𝑛−1

+ 4𝑑𝑥𝑦                                                      (3-21) 

 

The role of 𝑅𝐹 is to activate and deactivate the proposed filtering model. It activates the filtering model 

only if the target moves towards the outliers. This section proposes a method that classifies a tracked 

target as either moving or stationary to achieve this. Motion is detected by comparing the RGB values 

within a target’s search region 𝑅𝑆. This relies on the fact that the sub-regions towards which the target 

does not move retain their RGB values across successive frames. A moving target might move towards 

at least eight possible sub-regions {𝑗}1…8 between two successive frames as seen in (a) of Figure 3-14.  
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Figure 3-14: Classification of tracked target as moving or stationary. (a) Potential future directions of 

tracked target. (b) Layers of RGB intensity values.   

 

Each of these sub-regions {𝑗}1…8 is split into layers of RGB intensity values to detect motion. These 

layers are set parallel to the biggest direction of each sub-region so that their total number is the same 

and equal to 𝑑𝑥𝑦 (see (b) in Figure 3-14). The Pearson’s correlation coefficient is used to compare the 

RGB intensity similarity of the same layer 𝑙𝑖 across two successive frames 𝑡𝑛−1 and 𝑡𝑛. The coefficient 

of each layer 𝑙𝑖 at time 𝑡𝑛 within a sub-region j is expressed as follows:  

 

𝑟𝑙𝑖𝑡𝑛
= 

∑ (𝑅𝐺𝐵(𝑥𝑘,𝑦𝑘)𝑡𝑛−1
− 𝑅𝐺𝐵̅̅ ̅̅ ̅̅ (𝑥,𝑦)𝑡𝑛−1

)(𝑅𝐺𝐵(𝑥𝑘,𝑦𝑘)𝑡𝑛
− 𝑅𝐺𝐵̅̅ ̅̅ ̅̅ (𝑥,𝑦)𝑡𝑛

)𝑁
𝑘=1

√∑ (𝑅𝐺𝐵(𝑥𝑘,𝑦𝑘)𝑡𝑛−1
− 𝑅𝐺𝐵̅̅ ̅̅ ̅̅ (𝑥,𝑦)𝑡𝑛−1

)2N
𝑘=1 √∑ (𝑅𝐺𝐵(𝑥𝑘,𝑦𝑘)𝑡𝑛

− 𝑅𝐺𝐵̅̅ ̅̅ ̅̅ (𝑥,𝑦)𝑡𝑛
)2N

𝑘=1

                  (3-22) 

 

where 𝑅𝐺𝐵(𝑥𝑘,𝑦𝑘)𝑡𝑛
is the RGB intensity value of a pixel “k” at position (𝑥𝑘 , 𝑦𝑘) along a layer 𝑙𝑖 at 

time 𝑡𝑛, 𝑅𝐺𝐵̅̅ ̅̅ ̅̅
(𝑥,𝑦)𝑡𝑛

is the average intensity RGB value of all pixels along a layer 𝑙𝑖 at time 𝑡𝑛, and N is 

the total number of pixels along a layer. 

 

The Pearson’s correlation coefficient 𝑟𝑙𝑖𝑡𝑛
 is equal to 1 only when all compared layers of a sub-region 

j at time 𝑡𝑛 have not changed with respect to the previous frame at time 𝑡𝑛−1. Therefore, a target most 

likely moves towards a sub-region j if all layers return 𝑟𝑙𝑖𝑡𝑛
< 1. Given this, the probability that a target 

moves towards a sub-region j is expressed as follows:  

 

𝑃(𝑗) =
∑ 𝑟𝑙𝑖𝑡𝑛

𝑑𝑥𝑦
𝑖=1

𝑑𝑥𝑦
                                                            (3-23) 

 

The proposed method classifies a target as moving if 𝑃(𝑗) is higher than 99% for any of the sub-

regions {𝑗}1…8. The filtering model combines the motion of targets and the appearance of outliers to 

activate the filtering model. These form two criteria which are combined under a scoring system. The 
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motion of a target is the first criterion and the appearance of outliers is the second. One point is added 

(+) to the total score if both criteria are true whilst one point is removed (-) when the first criterion is 

false. A total score equal to two activates the filtering model. This allows the proposed tracking method 

to identify all outliers that lie within two frame time 𝑑𝑡 =  𝑡𝑛+1 − 𝑡𝑛−1 distance. Equally, two 

sequential false results of the first criterion deactivate the filtering model and set the total score to zero. 

Figure 3-15 illustrates how the proposed filtering model improved the performance of the prediction 

model under the appearance of outliers of previous Figure 3-9. In Figure 3-15, the filter is activated 

after (a) and deactivated after (c) as the worker moves away from the outliers.  

 

 

Figure 3-15: Activation of proposed filtering model in (a) and deactivation in (d). The filtered patches 

{𝑝′𝑖}𝑖=1..𝑁 are coloured pink in (b-c).  

 

3.4.4. Adaptive Model  

The proposed tracking method continuously updates a feature vector �⃗� to achieve long term tracking 

of multiple workers under all of the most common tracking challenges within a construction jobsite.  

Such challenges are background clutter, posture, appearance and scale variations, and changes in scene 

illumination, abrupt movement, occlusions, and congestion. Figure 3-16 illustrates an example of how 

the proposed tracking output (cyan rectangle) adapts to some of these challenges  

 

 

Figure 3-16: Workers’ appearance variations due to posture (a-c), scale (d) and occlusion (e).  
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The feature vector �⃗� contains for each target at time 𝑡𝑛 the following features: a) dimensions �⃗�𝑅𝑇
 of 

tracking region 𝑅𝑇 , b) position �⃗�𝑃 in the frame, c) RGB values �⃗�𝑅𝐺𝐵𝑅𝐹
 of all pixels within the filter 

region 𝑅𝐹 , d) motion contour �⃗�𝑅𝐶
, e) template �⃗�𝑇𝑒𝑚𝑅𝑇

 of tracking region 𝑅𝑇, and lastly f) vector �⃗�𝐻𝑆 

that contains the hue and saturation values of patches 𝑝𝑖 within the search region 𝑅𝑆. Table 3-1 

summarizes which features are used to overcome each of the aforementioned tracking issues.   

 

Table 3-1: Proposed features for overcoming most common tracking challenges within the complex 

environment of a construction jobsite.   

 �⃗�𝑅𝑇
 �⃗�𝑃 �⃗�𝑅𝐺𝐵𝑅𝐹

 �⃗�𝑅𝐶
 �⃗�𝑇𝑒𝑚𝑅𝑇

  �⃗�𝐻𝑆 

1.Background clutter       
2.Occlusions       
3.Posture variations       
4.Scale variations       
5.Abrupt movement       
6.Congestion       
7.Scene illuminations       
8.Appearance Similarity       

:satisfied, : unsatisfied  

 

 

3.5. Experiments and results  

The evaluation video samples were collected from real construction sites both indoors and outdoors. 

The indoor video samples depict workers performing pipe installation and steel fixing. The outdoor 

video samples capture workers involved in a concrete pouring task. The indoor sample was recorded at 

30 fps with a GoPro camera (see Section 2.4.1), whilst the outdoor sample was captured at 5fps with a 

Logitech web camera. Both cameras were fixed at a large height in order to simulate the setup of a 

jobsite’s surveillance camera system.  

Two measurement metrics as defined by Čehovin et al. (2015) are used in order to evaluate the 

performance of the proposed tracking method. The first is a distance error 𝑑𝑒𝑟𝑟𝑜𝑟 metric. It is equal to 

the Euclidean distance (see Equation 3-24) between the reference points that represent the tracker’s 

output 𝑃𝑇 and the ground truth 𝑃𝐺 (see Figure 3-17). The proposed method uses as a reference tracking 

point, the upper middle point of the tracker’s output region 𝑅𝑇. Such a reference point better represents 

a moving target in comparison with the centre of the bounding box that is commonly used by most 

tracking methods. This is because the latter depends on the height of the tracked object which however 

resizes abruptly when occlusions appear. In construction sites, the lower part of workers’ bodies is often 

occluded by work benches, structural elements and equipment.  
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𝑑𝑒𝑟𝑟𝑜𝑟 = √(𝑥𝑃𝑇 − 𝑥𝑃𝐺)2 + (𝑦𝑃𝑇 − 𝑦𝑃𝐺)2                                     (3-24) 

 

 

Figure 3-17: Distance error performance metric between the tracking output (red shaded region) and 

the ground truth (greed shaded region).  

 

The second metric is the F-measure. It returns the spatial overlap between the region of the tracker 

𝑅𝑇 and the region of the ground truth 𝑅𝐺𝑇 :  

 

𝐹 =
𝑅𝐺𝑇 ∩ 𝑅𝑇

𝑅𝐺𝑇 ∪ 𝑅𝑇
=

𝑇𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃
                                                (3-25) 

 

where true positive TP depicts the correctly tracked region:  

 

𝑇𝑃 = 𝑅𝐺𝑇  ∩  𝑅𝑇                                                        (3-26) 

 

false positive FP depicts the incorrectly tracked region:  

 

𝐹𝑃 = 𝑅𝑇 − (𝑅𝐺𝑇  ∩  𝑅𝑇)                                              (3-27) 

 

and false negative FN depicts the incorrectly not tracked region:   

 

𝐹𝑁 = 𝑅𝐺𝑇 − (𝑅𝐺𝑇  ∩  𝑅𝑇)                                              (3-28) 

 

Figure 3-18 illustrates two examples of the F metric. In the first example (a) in Figure 3-18, the 

bounding boxes of the tracker 𝑅𝑇 (red shaded) and the ground truth 𝑅𝐺𝑇 (green shaded) overlap 

partially. The true positive TP value is equal to this overlapping region. In the second example (b) in 

Figure 3-18, where no overlapping region (TP = Ø) exists between the tracking output 𝑅𝑇 and the 

ground truth 𝑅𝐺𝑇, the F-measure metric returns zero. The ground truth for the evaluation of the proposed 

vision-based 2D tracking method is manually extracted. A bounding box that captures the part of each 
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worker’s body that is covered by safety apparel (Hi-Vis) is fitted in each frame (recall the appearance 

model relies only on such colour features).  

 

 

Figure 3-18: F-measure performance metric of partial (a) and zero (b) overlapping between the tracked 

output (red shaded region) and the ground truth (green shaded region).  

 

3.5.1. Definition of parameters 

This section determines experimentally the parameters of the proposed computer vision-based 2D 

tracking method of construction workers.   

 

2.5.1.1 Definition of scale parameters 

The proposed prediction model must be calibrated to the scale of the tracked targets. As mentioned in 

section 5.4.1 three scales are used to achieve this. A data sample of width and walking speed values is 

collected for every scale by manually tracking 3 workers while walking across 40 successive frames. 

The goodness of fit of a Gaussian cumulative distribution function to the manually collected width and 

walking speed values of each scale is illustrated in Figure 3-19. The walking speed and width values 

with a cumulative probability equal to 1.00 are selected as representative of each scale as this entails 

that the probability for a worker to have either a width or a walking speed higher than the representative 

is 0%.  

 

Figure 3-19: Cumulative probability of tracked targets’ walking speed per scale.  
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The quality of the manually collected width and speed values is evaluated through true positives TP and 

false positives FP. If a worker is correctly captured within the predicted region 𝑅𝑠, then it is a TP 

prediction. If not, then it is a FP prediction. The interpolation Equation 3-3 as described in section 3.4.1 

is not used during this evaluation. The regions of workers in following frames are predicted only through 

the speed values of the scale they are manually assigned during this evaluation. The sample size is 

defined by (Eng, 2003):  

 

𝑛 =  
4𝑍𝑐𝑟𝑖𝑡

2𝑝(1−𝑝)

𝐷2                                                        (3-29) 

 

where 𝑍𝑐𝑟𝑖𝑡 is the confidence level based on normal distribution, D is the limit of error and p is an 

estimate of the accuracy of the test. For a confidence level of 95%, a limit of error (D) equal to ±5% 

and a pessimistic estimation of the expected accuracy (𝑝 = 50%), the minimum sample size to be tested 

for each scale is equal to 384. For the large scale 393 frames were tested, for the medium scale 388, and 

for the small scale 389 (see Figure 3-20). This evaluation returns 0 FP results for all three scales. 

Therefore, the proposed method uses the values of Table 3-2 to predict the regions that contain workers 

in the following frames.  

 

 

Figure 3-20: Screenshots of the evaluation of the proposed prediction model (yellows rectangles) given 

the representative speed values of scale small (a), scale medium (b), and scale large (c).   

 

Table 3-2: Average width and walking speed values of workers per scale. 

Scale Width (pixels) Walking speed (pixels/ms) 

(i) �̅�𝑖𝑤𝑖𝑑𝑡ℎ
 𝜎𝑖𝑤𝑖𝑑𝑡ℎ

 �̅�𝑖𝑤𝑎𝑙𝑘
 𝜎𝑖𝑤𝑎𝑙𝑘
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1. Small 55.51 7.11 0.19 0.08 

2. Medium 133.26 6.72 0.40 0.17 

3. Large 243.22 20.52 0.68 0.20 

2.5.1.2 Definition of segmentation parameters  

The optimum values for the size (width, height) of the segmented patches 𝑝𝑖 are experimentally defined. 

The proposed method is tested under the most challenging appearance variations to achieve this. Such 

variations in workers’ appearance are: a) small scale, b) open vest and c) worn out or dirty apparel (see 

Figure 3-21). This figure illustrates the ground truth GT with dark blue and the classified patches, 𝑝𝑖 

with cyan, for three different sizes of the segmentation grid (1x1, 5x5, and 10x10).  

 

 

Figure 3-21: Examples of tracking performance for different sizes of the segmentation grid under small 

scale (left) and dirty apparel (right).  

 

Table 3-3 illustrates the tracking performance of the proposed method based on the F-measure metric 

for different sizes of patches 𝑝𝑖 that range from 1x1 to 10x10 pixels values for a small scale worker with 

an open vest and a worker with dirty Hi-Vis apparel.  

 

Table 3-3: Proposed method’s tracking performance under different segmentation 

 Small scale & Open Vest Worn out Colours 

Size 

𝒑𝒊 

Region  

𝑹𝑻 

F-

measure 

Processing 

Time (msec) 

Region 

 𝑹𝑻 

F-

measure 

Processing 

Time (msec) 

1x1 52x73 0.737 1623 186x258 0.774 8254 

2x2 50x72 0.719 494 186x214 0.839 1718 

3x3 66x81 0.699 264 159x192 0.806 724 

4x4 60x64 0.635 202 160x204 0.808 455 

5x5 60x65 0.757 134 145x175 0.713 286 

6x6 60x66 0.741 115 138x114 0.415 204 

7x7 56x63 0.708 107 133x105 0.369 174 

8x8 56x56 0.709 97 128x112 0.378 125 

9x9 27x63 0.323 91 117x99 0.306 111 

10x10 20x50 0.280 93 140x100 0.37 96 
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The smallest size (1x1) is the worst performer in both datasets in terms of processing time. It also returns 

false positive classified patches 𝑝𝑖. On the other hand, the largest (10x10) is the fastest but exhibits the 

worst performance. It appears that for a small scale (GT = 65x66) and an open jacket the best 

performance is achieved for a segmentation grid of 5x5, whereas for a larger scale (GT = 174x214) but 

worn out apparel a 4x4 grid gives the best performance. Ultimately, the filter region 𝑅𝐹 is segmented 

into patches 𝑝𝑖  of 5x5 in order to increase the proposed method’s computational efficiency considering 

that multiple workers will be tracked simultaneously. 

 

3.5.2. Quantitative Evaluation  

In this section, the tracking method outlined in this chapter is compared to the method in Park and 

Brilakis (2016). The Park and Brilakis (2016) study (here after referred to as Park2016) is selected for 

the following two reasons: a) it combines the advantages of both a detector-based and an online-based 

tracking method, and b) is the most recent study in the literature on visual tracking of multiple 

construction workers. Both methods are tested under all of the aforementioned challenges that most 

commonly appear while tracking workers. Seven video samples were collected for each of these 

challenges separately (1-7) and one video sample (8) that combines several challenges together. These 

video samples are described in detail in Table 3-4.  

 

Table 3-4: Evaluation video samples.  

Video Sample #Frames Challenges 

1.Abrupt movement 180 1 worker jumps in formwork 

2.Background clutter 179 1 worker passes through hanging Hi-Vis jackets  

3.Scene illuminations 149 1 worker in a sunny jobsite 

4.Posture variations 151 2 workers bend and rotate 

5.Scale variations 96 1 worker captured at small scale  

6.Occlusions    

i)   by wall 466 1 worker occluded almost totally ≥ 86% 

ii)  by steel bars (A) 114 1 worker (“0-2”) occluded totally and                     

1 worker (“1-3”) partially by 35%  

iii) by ladder 212 1 worker occluded  almost totally ≥ 90% 

iv) by steel bars (B) 127 1 worker occluded (“0-2”) by 67% and                                   

1 worker (“1-3”) by 62% 

7.Congestion 186 3 workers share similar appearance, 4 overlap 

 

8. Combined 

 

219 

9 workers exhibit congestion, occlusions, 

background clutter, similar appearance and scale 

variations 

 

The proposed visual tracking method is quantitatively evaluated based on both the distance error 𝑑𝑒𝑟𝑟𝑜𝑟 

metric and the spatial overlap F-measure metric. The higher the values of the F-measure the better the 

tracking performance, and the smaller the distance error 𝑑𝑒𝑟𝑟𝑜𝑟 the better the accuracy of the extracted 

trajectories. The former reflects the tracking error of the extracted trajectories whilst the latter reflects 
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how efficiently the tracking method’s output encloses the figure of the target. The graphs in Figure 3-22 

illustrate the performance per frame of our method (red) and Park2016 (green) under: a) abrupt 

movement, b) background clutter, c) illumination, d) posture variations, and e) scale variations. The 

results for both metrics are normalized to 1.  

 

Figure 3-22: Comparison results of this chapter’s proposed visual tracking method (red) vs Park2016 

(green) under: a) abrupt movement, b) background clutter, c) illumination, d) posture variations, and e) 

scale variations.  

 

Our method outperforms Park2016 in all cases except that of illumination variation. This is because the 

former resizes in a more abrupt way as compared to the latter. For the posture variation case, our method 
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is better than Park2016 in terms of both performance and long term tracking. This is due to the 

termination criteria of the latter that are activated when the detector loses the tracker. The bending 

posture of both workers in this video sample caused the termination of tracking of Park2016 as no 

detector appeared for a period of 3 seconds. Figure 3-23 contains screenshots of the performance of 

both methods. In this figure, the cyan coloured rectangles depict our method’s output whilst the dark 

blue coloured rectangles the output of Park2016.  

 

 

Figure 3-23: Screenshots of the performance of the proposed tracking method (cyan coloured rectangle) 

and Park2016 (dark blue coloured rectangle) under: 1) abrupt movement, 2) background clutter, 3) 

illumination, 4) posture variations, and 5) scale variations. 

 

The graphs in Figure 3-24 depict the performances of the proposed visual tracking method and Park2016 

under partial and severe occlusions. An occlusion is defined as partial when a worker’s body is hidden 

by less than 70% and severe when it exceeds this percentage. The F-measure graphs show that this 
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chapter’s proposed method resizes in a more abrupt way as compared to Park2016. However, it still 

manages to maintain tracking in all tested occlusion cases in contrast to Park2016 that terminates, due 

to failure to identify workers under occlusion. Park2016 appears to perform better only in one case. 

This is when the worker “1-3” in 6.ii video sample is partially occluded (35%) by steel bars.  

 

Figure 3-24: Comparison results of this chapter’s visual tracking method (red) vs Park2016 (green) 

under: a) total occlusion by a wall, b) total occlusion by steel bars for worker with IDs “0”-“2”, b) 

partial occlusion of worker with IDs “1”-“3” by steel bars, and c) total occlusion of worker by ladder. 

 

Figure 3-25 illustrates representative screenshots of the performance of this chapter’s method and 

Park2016 under different occlusion levels. The video sample 6.i contains the most challenging case of 
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occlusion as a worker gets almost totally hidden by a wall. Still, our method preserves tracking as the 

worker moves two times through this wall in order to return back to his work bench. Park2016 loses the 

target in an early stage as seen in 6.i of Figure 3-25. As a result it terminates after 3 seconds.     

 

Figure 3-25: Screenshots of the performance of the proposed tracking method (cyan coloured rectangle) 

and Park2016 (dark blue coloured rectangle) under almost total occlusions (worker in 6.i, worker “0-2” 

with orange Hi-Vis in 6.ii, and worker in 6.iii) or by partial occlusions (worker “1-3” with yellow Hi-

Vis in 6.ii, and both workers in 6.iv).  

 

Table 3-5 summarizes the average F-measure and average distance error 𝑑𝑒𝑟𝑟𝑜𝑟 metrics of all the above 

challenges. It highlights in bold the best performances achieved. Our visual tracking method 

outperforms Park2016 in terms of spatial overlap as described by the F-measure metric under 

occlusions, abrupt movement, background clutter, posture and scale variations. It performs worse by 

2.86% only under illumination. The average distance error 𝑑𝑒𝑟𝑟𝑜𝑟 of our method is, however, worse 

under both scene illumination changes and under partial occlusions (worker “0-2” in 6.ii and worker 

“1-3” in 6.iv).0 

 We can also compare our method with the results of the latest method on single worker tracking 

under occlusions (Zhu et al., 2016). The authors of this study achieved an average F-measure metric of 

65.2% and a distance error that ranged from 8.6 pixels to 19.7 pixels. Our method performs better for 
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similar and higher (>80%) occlusion levels in both metrics as it returns an average distance error 

𝑑𝑒𝑟𝑟𝑜𝑟  of 6.34 pixels and an average F-measure metric equal to 75.74%.  

 

Table 3-5: Average quantitative evaluation results (best values are highlighted bold). 

Video 

 samples 

F-measure (%) 𝒅𝒆𝒓𝒓𝒐𝒓 (pixels) 

Chapter 3 Park2016  Chapter 3 Park2016 

1. Abrupt movement 83.68 55.45 10.64 50.78 

2. Background clutter 77.31 50.84 11.97 30.04 

3. Scene illuminations 72.95 75.81 13.34 12.74 

4. Posture variations     

 Worker (“0-2”) 50.89 30.88 23.89 25.36 

 Worker (“1-3”) 57.12 20.62 14.96 42.89 

5. Scale variations 81.62 61.03 4.92 16.31 

6.i Occlusion by wall 65.31 15.72 11.00 18.61 

6.ii Occlusion by steel bars (A)     

 Worker (“0-2”) 67.48 27.09 7.51 32.09 

 Worker (“1-3”) 81.40 60.64 3.78 2.46 

6.iii Occlusion by ladder  75.62 16.63 7.91 23.74 

6.iv Occlusion by steel bars (B)     

 Worker (“0-2”) 84.71 39.74 3.00 17.01 

 Worker (“1-3”) 79.90 54.05 4.85 3.64 

 Occlusion Average 75.74 35.65 6.34 16.26 

Total Average 72.17 42.38 9.81 22.97 

 

3.5.3. Qualitative evaluation  

This section evaluates the performance of the method proposed in this chapter in a qualitative way to 

show that it is able to track multiple workers under appearance similarity. Firstly, the proposed visual 

tracking method is tested on a video sample that contains congested workers as illustrated in Figure 

3-26. In this video sample workers “4” and “2” are overlapped by workers “3” and “1” respectively. 

Figure 3-26 shows that the method maintains tracking in both cases of congestion even when workers 

are almost identical (“2” vs “1”). Secondly, the method is evaluated under several challenges that occur 

simultaneously (see Figure 3-27). In this figure: a) worker “4” is initially occluded by a wall as seen in 

frame #2 while worker “9” is hidden by limitations of the field of view, b) workers “3”, “6”, “7,” and 

“8” are continuously occluded by their work benches, c) worker “1” is severely overlapped by worker 

“2” in frames #17, #19, d) worker “7” is overlapped by worker “6” in frame #85, e) workers “6”, “7”, 

and “8” are of a very small scale as compared to worker “9” from frame #2 to frame #85, and f) workers 

“2”, “4” and “9” have background clutter caused by floor stripes and a steel separation wall which are 

both coloured with the same Hi-Vis apparel’s yellow colour.  As seen in this figure, our method is able 

to preserve tracking for all nine workers, and terminates tracking for workers “6” and “9” that left the 

field of view. 
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Figure 3-26: Screenshots of the performance of the proposed method while tracking workers under 

congestion (the IDs of the tracked workers are manually highlighted with pink).  

 

 

Figure 3-27: Screenshots of the performance of the proposed method while tracking multiple workers 

under combined challenges: a) congestion, b) scale variations, c) occlusions and d) background clutter 

(floor with yellow coloured stripes, wall coloured yellow), (the IDs of the tracked workers are manually 

highlighted with pink). 
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3.6. Chapter overview  

This chapter proposes a computer vision-based method that exploits targets’ colour features to track 

multiple workers that share similar appearance under several challenges. These challenges are: a) abrupt 

movement, b) background clutter, c) scene illuminations, d) posture variations, e) scale variations, f) 

occlusions and g) congestions. The proposed method outperforms the latest visual methods that focus 

on tracking of workers in terms of spatial overall accuracy and distance error. It scores an average F-

measure metric equal to 72.17% and an average distance error 𝑑𝑒𝑟𝑟𝑜𝑟 of 9.81 pixels and succeeds in 

tracking multiple workers when several challenges occur at the same time.  

This type of worker monitoring improves safety in construction sites and labour productivity. 

Existing monitoring practices either rely on work sampling and observation techniques or exploit tags. 

The former is extremely labour intensive and time consuming considering it must be repeated for all 

workers on a daily basis. The latter is not usually welcome by the personnel and implies high cost in 

the long term due to maintenance and purchase of hundreds of tags. Existing visual based tracking 

methods are less obtrusive and more cost efficient since they use the cameras of the surveillance system. 

However, they lack applicability as they require human operators to correct tracking under congestion. 

The main restriction of the method proposed in this chapter is that it is limited to construction 

workers that wear Hi-Vis apparel. This is due to the offline training of the appearance model with the 

according colour features. This method proves that it successfully overcomes the most common 

challenges that arise while tracking workers within a construction jobsite in order to achieve long term 

monitoring.  
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4 
 

4.Matching of construction workers across 

views for automated 4D vision tracking  
 

 

In this chapter, a computer vision-based method for matching the same workers across multiple cameras 

is introduced. This method uses as inputs the outputs of the 2D tracking method presented in Chapter 

3. This target matching is essential to computer vision-based 3D tracking. This type of tracking requires 

that targets are matched under the same unique ID not only across subsequent frames of a single camera 

(intra tracking) but also across multiple cameras (inter tracking). This inter camera matching is 

straightforward when it involves easily distinguishable targets in uncluttered scenes. However, it can 

be challenging in industrial scenes such as construction sites due to congestion, occlusions, and workers 

in greatly similar high visibility apparel.  

 

4.1. Introduction  

To date, target matching is performed mostly manually. In sports particularly, two to three human 

operators are required in order to constantly label the twenty two players across all cameras that spread 

along the sports field (Chyronhego.com, 2016). However, this manual labelling gets labour intensive 

and time consuming as the operators repeat the process every time tracking is initialized per target per 

view. This occurs when a target enters a view or re-appears after being occluded. This process is even 

more labour intensive in construction for the following reasons: a) the total number of workers exceeds 

by far the one of players, b) work shifts last longer than a sports match, and c) more cameras in general 

are required in order to capture the entire range of a job site due to its size. Especially the latter makes 

matching workers manually a nearly impossible task. Figure 4-1   illustrates such an example. Typically, 

construction workers traverse the jobsite several times per day for either: a) picking up material, b) 

visiting rest areas, and c) getting instructions by engineers or foremen. A worker in area 1 moves only 

within the field of views of cameras 1, 3 & 4. This worker is also captured by camera 2 when he/she 

moves to area 2, and likewise in area 5 and camera 4. Each time the operator must match him/her 

manually.  
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Figure 4-1: Worker’s motion through the surveillance cameras of a jobsite. 

 

Tracking errors is another cause that increases the labour intensiveness of manual matching. This is 

mainly due to illumination and posture variations, occlusions, and congestion issues that challenge the 

performance of vision-based tracking methods (Park et al., 2011; Teizer & Vela, 2009). As a result, 

tracking fails frequently and terminates (FINE, 2017; Y. Liu, Wang, & Chen, 2014). Targets lose their 

previously assigned identification label when this occurs. Hence, matching has to be repeated every 

time tracking re-initializes.  

Existing software solutions have tried to address this matching problem using facial appearance 

features (Axis.com, 2016; Business.panasonic.co.uk, 2016; Facefirst.com, 2016). These solutions 

automatically recognize the same person across several either disjoint or overlapping cameras. This 

approach requires a clear line of sight to each target’s face. However, the nature of construction jobsites 

makes this impossible due to several occlusions, caused by construction components and equipment 

(e.g. formwork), frequent bending (e.g. steel fixing, brick laying), and the hard hat and goggles. These 

issues are clearly illustrated in Figure 4-2. In this example, out of a total of sixteen workers only the 

worker with ID “13” is clearly captured by the camera field of view.  

 

 

Figure 4-2: Typical workforce in a construction site. 
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In summary, the main issue of the existing inter camera matching practices is the lack of automation. 

The large number of workers in combination with the large scale of jobsites turns manual matching into 

a time consuming and labour intensive practice. Hence, the aim of this chapter is to propose a method 

that automatically matches workers across multiple cameras. The proposed method uses as input the 

output of the computer vision-based 2D tracking method of Chapter 3 and searches for potential matches 

in three sequential steps. It terminates only when a positive match is found. The first step returns the 

strongest candidate by correlating a segment of workers’ past 2D trajectories. The second employs 

geometric restrictions, whilst the third correlates colour intensity values. The chapter concludes with 

the performance evaluation of the proposed matching method.  

The remainder of this chapter continues with section 4.2 that provides a discussion of the 

current state of research in computer vision-based matching methods. Then, the proposed method is 

presented in sections 4.3, 4.4 and evaluated in section 4.5. Lastly, a chapter overview is provided in the 

final 4.6 section.  

 

 

4.2. Previous related work   

The studies that focus on target inter camera matching can be roughly grouped into two categories based 

on the features used. The first category relies on appearance based features, and specifically colour, 

texture and shape. The second uses spatiotemporal features, such as speed, trajectory position and 

direction, entry/exit zones of monitored areas and camera topology. The author reviews the latest 

matching methods mainly for people, since the objective of this chapter is to automate matching in 

order to achieve 3D tracking of construction workers. 

Studies that rely on appearance features only use vectors to efficiently describe the 

neighbourhood around each pixel point (Bay et al., 2008; Dalal & Triggs, 2005; Lowe, 2004).  These 

feature vectors depict either corners and edges or entire blobs (Kong et al., 2013). Such methods perform 

matching by comparing the feature vectors based on experimentally defined thresholds (Joglekar et al., 

2010). Blobs are more efficient in matching people because the human body lacks distinguishable edges 

or corners. Such blobs are predominately described via colour histograms that are robust under 

occlusions and scale variations. However, the same people might appear differently from camera to 

camera due to discrepancies in the viewing angle. The same target can be captured frontside in one 

camera and sideways in the second if the cameras have a large relative rotation. Such changes in posture 

variations often change the colours seen, and hence can be very challenging for colour based matching 

methods.  

Unique soft-biometric trails, such as hair/sleeves length and clothes colour/pattern were  

extracted separately for the head, torso and legs to overcome appearance restrictions (Zhou et al., 2016). 

Other researchers employed instead machine learning-based classification algorithms trained online 
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with both colour and texture features (An et al., 2016; Gray & Tao, 2008; Lin et al., 2016; Shah et al., 

2016; Teixeira & Corte-Real, 2009; Wang et al., 2014). Such type of training improves matching 

efficiency as the appearance model is incrementally updated with the latest changes. The outcome 

depends only on the quality of the dynamically available data in these studies. This lack of offline 

training can be a downside only if not all appearance features are available (Wang, 2013).  Such 

probability is quite common in highly occluded environments like construction jobsites. Different types 

of obstacles (e.g. equipment, co-workers, and benches) may visually block the workers’ distinguishable 

training data for long durations in these cases (see (a-d) in Figure 4-3).  

Illumination and lighting variations can also make colour histograms appear differently from 

camera to camera. Han & Kim (2013) proposed the use of Hue values of the HSV colour space to 

overcome this. Mazzeo & Spagnolo (2008) employed supervised training for learning the Brightness 

Transfer Model (BTF) among several non-overlapping cameras. However, such training requires 

manual labelling of the same tracked people that has to be repeated every time the position of a camera 

is changed i.e. tilted. Chen et al. (2008) and Gilbert & Bowden (2006) extracted the colour 

correspondences through unsupervised methods to avoid this computational complexity. Overall, as 

noted by Cheikh et al. (2012), existing appearance based matching methods are not efficient when 

people have relatively similar appearance. This is the case of construction workers because of their high 

visibility (Hi Vis) apparel as illustrated in (e) of Figure 4-3.  

 

 
Figure 4-3: Examples of occluded (a-d) and similarly dressed (e) construction workers. 

 

Researchers incorporated both appearance and spatiotemporal features to overcome the limitations of 

the above mentioned appearance-based inter camera matching methods. In this respect, Choi & Seo 

(2011) trained a support vector machine classifier in order to match the same football players across 4 

cameras. The training data comprised of players’ appearance and position across the sports field. The 

authors used the former to group all players into 5 categories (team A/B, goal-keeper A/B, and referees). 

This way they managed to reduce the number of candidates for each player. Then they used position in 

order to match the remaining players within each classified group. Position was calculated through 

planar homography. To achieve this, the authors set the height Y of the tracked players equal to zero 

and used only their bottom coordinates. However, such method is not efficient for construction workers 
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because planar homography is not applicable due to occlusions such as benches and ladders that block 

the bottom half of workers. The projection on the ground plane of a point that corresponds to the upper 

half of a target’s body (𝑌 ≠ 0) could potentially overcome this restriction. However, this type of 

projection results to an error that leads to mismatching close by targets (Lee et al., 2000). Peng et al. 

(2015) reduced this error by combining multiple views of the same target. Still, the performance of their 

method is not promising under congestion and occlusions. In particular, they achieved a high precision 

of 94% and a lower recall of 87% for basketball players. But recall dropped to 81% when tested in a 

data set that comprised of more occluded and congested walking pedestrians. Suolan et al. (2016) and 

Yang et al. (2014) combined appearance features along with prior knowledge of the camera topology 

and temporal cues. However, such features are efficient only in distinguishing tracked targets across 

disjoint camera views. This is due to the fact that all targets that move across overlapping camera views 

share the same camera topology and hence temporal features. In this case geometric restrictions can be 

applied. Target matching can be achieved through epipolar geometry. According to this, the same point 

from one view lies along specific lines (epipolar) across all available overlapping camera views. Lee et 

al. (2016) applied this principle based on an arbitrary defined threshold in order to match workers. Such 

approach can be seriously challenged under congestion as multiple candidates might be equally close 

to the same epipolar line. In that respect, Liu et al. (2014) used an expanded epipolar line and managed 

to reduce by 50% the total number of potential matching candidates. 

In summary, the currently available methods have not been able to provide a robust solution to 

the matching problem. This is mainly due to similarities in workers’ appearance, congestion, 

posture/scale variations, and heavy occlusions. This chapter focuses on construction workers for the 

following reasons: a) their performance is directly related to labour productivity, b) their number 

exceeds by far any other type of construction resource, and c) the rest of the resources (e.g. earthmoving 

equipment, cranes) are in practice easily trackable through tags without arising any privacy conflicts.  

The main objectives of this chapter are: a) to identify which features are able to uniquely 

describe construction workers, b) to develop a method that incorporates these features for the 

comparison of workers, and c) to devise a method that will be able to efficiently adopt to all matching 

challenges that arise in a construction site. The key research question that this chapter aims to answer 

is: “how can similar in appearance entities be matched among multiple camera views under occlusions, 

congestion, and posture/scale variations?”  

 

4.3. Proposed solution   

In this section, the matching problem is addressed by proposing a multi-step method for construction 

workers. Figure 4-4 illustrates the flowchart of the overall proposed method. The skewed parallelogram 

shapes refer to processes and the circular shapes to inputs/outputs. The grey coloured processes depict 

the parts of the method with novel contribution. A 2D vision tracking method is used in order to obtain: 



Matching of construction workers across views for automated 4D vision tracking 

 

Eirini Konstantinou – October 2017                                                   77 

a) the 2D trajectory over a period of time ΔT (see (a) in Figure 4-4), b) the position (x, y) in a frame at 

time 𝑡𝑛 (see (b) in Figure 4-4), and c) the appearance at time 𝑡𝑛 as enclosed within the bounding box 

that depicts the output of tracking (see (c) in Figure 4-4).  

 

 

Figure 4-4: Flowchart of computer vision-based method for matching construction workers across 

multiple camera views.  

 

The overall proposed method comprises of three steps. Each of them depicts a unique matching method 

that tackles only a few of the matching challenges. They exploit 2D trajectories, geometric restrictions, 

colour data and are sequentially activated. Such type of processing allows computational efficiency 

since the searching for a match terminates after one step returns a positive result. The processing 

sequence is chosen given the expected effectiveness of each method (see Table 4-1).  

 

Table 4-1: Expected efficiency of geometry, motion and template-based methods under the most 

common matching challenges met on a construction site. 

 

 

 

 

 

 

The proposed method employs the motion-based method in the first step even if it is expected to perform 

equally well with the geometry-based method. This choice relies on the hypothesis that the motion-

based method will be more efficient in a congested environment since workers have motion while 

walking in and out from camera views. In the second and third steps, the geometry-based and template-

based matching methods are implemented respectively. The latter is expected to be quite negatively 

affected by issues such as posture variations, occlusions, and appearance similarity since it relies on 

colour features. However, its addition assists in reducing potential missed matches caused by the 

assumed ineffectiveness of the geometry-based method under congestion.  

 Geometry Motion Template 

Congestion    
Occlusions    
Posture Variations    
Scale Variations    
Similar Appearance    
Lack of Motion     
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The 2D image coordinates of the same workers are triangulated after a positive match is 

confirmed in order to turn them into 3D world coordinates. This output is illustrated with “P” in Figure 

4-5 and represents each worker’s position across the range of a jobsite. The proposed method uses as 

reference point the upper middle point of the tracker’s bounding box for each target in contrast to 

Konstantinou & Brilakis (2016), and Y. Lee et al. (2016) that used the centroid. This choice was made 

after noticing large triangulation errors that are caused by the use of centroids as reference points under 

occlusions. For example if one worker’s body is fully captured in camera A but half captured in camera 

B then the y coordinate of the centroid in camera A will be 
𝐻

2
 whilst in camera B 

𝐻

4
.  

 

 

Figure 4-5: Image and world coordinate systems of a pinhole camera model. 

 

The proposed method makes the following assumptions: a) workers will not move simultaneously out 

of all the field of views in order to enter new ones 𝐶𝑎𝑚𝑛𝑒𝑤, b) all areas of the  monitored jobsite are 

covered by at least two cameras, and c) no “blind” areas exist. A camera set-up that complies with these 

assumptions, allows to: a) retain workers’ previous IDs in at least one camera’s view 𝐶𝑎𝑚𝑝𝑟, and b) 

keep an equal number of unlabelled candidates and workers with known IDs. This works as prior 

knowledge that allows to re-assign to all unlabelled workers that enter new camera views 𝐶𝑎𝑚𝑛𝑒𝑤 their 

previous IDs. This way all workers are uniquely represented by the same labels during large periods of 

time. Such label stability will assist project managers to review easier and faster several workers’ 

movement diagrams for improving construction practices. In a different case, where it is impossible to 

arrange cameras in such way that allows to keep the IDs in at least one view, the IDs of workers in 

𝐶𝑎𝑚𝑝𝑟 will simply represent newly assigned ones.  

 

4.4. Proposed methodology    

This section presents a computer vision-based method for matching construction workers across 

multiple camera views.  
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4.4.1. Motion-based matching method   

This method compares one worker from 𝐶𝑎𝑚𝑝𝑟 with candidates from all 𝐶𝑎𝑚𝑛𝑒𝑤 based on a feature 

motion vector M. This vector contains workers’ 2D coordinates (x, y) of past positions 𝑃𝑡𝑖
 over a period 

of time ΔΤ: 

 

𝑀(𝑛𝑥1) = 

[
 
 
 

𝑃t.
.
.

𝑃t+𝛥𝛵]
 
 
 

=  

[
 
 
 
 

{𝑥𝑡 , 𝑦𝑡}.
.
.

{𝑥𝑡+𝛥𝛵, 𝑦𝑡+𝛥𝛵}]
 
 
 
 

                                              (4-1) 

 

where 𝑡  is a timestamp, and 𝑥𝑡 , 𝑦𝑡 are a worker’s coordinates at time t. It is assumed that each worker 

has the same uniquely distinguishing motion pattern over time across all camera views, in terms of 

direction and magnitude (see Figure 4-6). Hence, only workers with identical motion pattern depict the 

same entity.  

 

Figure 4-6: Worker’s 2D motion data across time. 

 

This motion-based matching method compares workers between 𝐶𝑎𝑚𝑝𝑟 and 𝐶𝑎𝑚𝑛𝑒𝑤 by correlating 

their 2D trajectories over time ΔΤ. A candidates’ correlation table (CCT) (see Figure 4-7) is introduced 

in order to achieve this.  

 

 

Figure 4-7: Candidates correlation table (CCT). 

 

The vertical column contains the workers with known IDs 𝐼𝐷𝑝𝑟, whilst the horizontal column all the 

unlabelled candidates 𝐼𝐷𝑛𝑒𝑤. Each cell of the table contains a similarity score 𝑎𝑖,𝑗 which results from 
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the comparison between each worker from 𝐶𝑎𝑚𝑝𝑟 across line i and one candidate from 𝐶𝑎𝑚𝑛𝑒𝑤 in 

column j. This is expressed as follows:  

 

𝑎𝑖,𝑗 = 
𝑟𝑥+ 𝑟𝑦

2
                                                               (4-2) 

 

where 𝑟𝑥, 𝑟𝑦 are the Pearson’s correlation coefficients:  

 

𝑟𝑥 = 
∑ (𝑥𝑝𝑟𝑖

−�̅�𝑝𝑟)(𝑥𝑛𝑒𝑤𝑖
−�̅�𝑛𝑒𝑤)𝑖=𝑛

𝑖=1

√∑ (𝑥𝑝𝑟𝑖
−�̅�𝑝𝑟)

2𝑖=𝑛
𝑖=1 √∑ (𝑥𝑛𝑒𝑤𝑖

−�̅�𝑛𝑒𝑤)2𝑖=𝑛
𝑖=1

                                        (4-3) 

𝑟𝑦 = 
∑ (𝑦𝑝𝑟𝑖

−�̅�𝑝𝑟)(𝑦𝑛𝑒𝑤𝑖
−�̅�𝑛𝑒𝑤)𝑖=𝑛

𝑖=1

√∑ (𝑦𝑝𝑟𝑖
−�̅�𝑝𝑟)

2𝑖=𝑛
𝑖=1 √∑ (𝑦𝑛𝑒𝑤𝑖

−�̅�𝑛𝑒𝑤)2𝑖=𝑛
𝑖=1

                                        (4-4) 

 

where 𝑥𝑝𝑟, 𝑦𝑝𝑟 are the coordinates in the image of the labelled tracked worker in 𝐶𝑎𝑚𝑝𝑟, and 𝑥𝑛𝑒𝑤 , 𝑦𝑛𝑒𝑤 

are the coordinates in the image of the unlabelled tracked worker in 𝐶𝑎𝑚𝑛𝑒𝑤.  

 

A worker will have the same motion pattern across cameras in terms of direction and speed. This is 

valid only when trajectories are positively correlated i.e. 𝑟𝑥 , 𝑟𝑦 > 0. Hence, candidates with either 𝑟𝑥 or 

𝑟𝑦 negative are discarded. The proposed matching method searches for the “strongest” candidate to 

confirm speed similarity. It relies on an algorithm that performs repetitive search rounds until the 

maximum correlation score is confirmed between one worker with known previous ID 𝐼𝐷𝑝𝑟 and one 

candidate 𝐼𝐷𝑛𝑒𝑤. This searching occurs in two directions. Firstly, the proposed algorithm calculates for 

each 𝑖𝑡ℎ line the maximum horizontal 𝑎𝑖,𝑗 (𝑝𝐻𝑖
):  

 

𝑝𝐻𝑖
=  argmax

i
{ai,j}                                                        (4-5) 

 

 Then, at the 𝑗𝑡ℎ position of this horizontal maxima (𝑝𝐻𝑖
) the algorithm calculates also the vertical 

maximum (𝑝𝑉𝑗
): 

𝑝𝑉𝑗
=  argmax

j|i
{ai,j}                                                      (4-6) 

 

This two-dimensional searching for local maxima guarantees the uniqueness of a returned positive 

match which is expressed as follows:  

 

∀ 𝐼𝐷𝑛𝑒𝑤 → {
𝑚𝑎𝑡𝑐ℎ , 𝑝𝐻𝑖

= 𝑝𝑉𝑗
 

𝑛𝑜𝑛 𝑚𝑎𝑡𝑐ℎ, 𝑝𝐻𝑖
≠ 𝑝𝑉𝑗

 
                                           (4-7) 
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Hence, if 𝑝𝐻𝑖
 is equal to 𝑝𝑉𝑗

 then this method matches the compared workers and removes the candidate 

from the column with the unlabelled IDs 𝐼𝐷𝑛𝑒𝑤. Matching terminates only when all candidates within 

𝐼𝐷𝑛𝑒𝑤 are successfully matched with all workers from 𝐼𝐷𝑝𝑟. The advantage of the proposed searching 

for the “strongest candidate” algorithm is that it is invariant to similarity thresholds. Two representative 

examples in Figure 4-8 illustrate how the proposed searching algorithm works. In the example of case 

A, the algorithm performs three search rounds (a)-(c), until all three candidates are correctly matched 

(green shaded cells). This is the optimum/minimum number of search rounds and is equal to the total 

number of candidates. It is achieved only when each round returns a positive match. However such a 

case is not always feasible, especially when workers have quite similar motion patterns i.e. direction 

and speed. Case B shows such an example where the searching algorithm requires four search rounds 

(d)-(g) instead of three until all three candidates are matched to the three workers with known previous 

IDs. This is due to the first round R1st that returns no positive match as the proposed searching algorithm 

results in two workers 𝑊1 & 𝑊3, as potential matches for candidate 𝐶3 in (d). When this occurs, the 

searching algorithm repeats in R2nd the R1st in order to update the CCT table that  𝑎13 is not a potential 

positive match for 𝐶3 (cell 𝑎13 is shaded red).  

 

 

Figure 4-8: Proposed searching algorithm for the “strongest” candidate. 

 

Lastly, the motion-based matching method is adjusted for non-conjugated cameras. Figure 4-9 

illustrates analytically the reason for this. In this figure, two cameras capture the 2D trajectory of the 

same worker over a period of time ΔT (a). However, the angle θ between the local image coordinate 

systems of the two cameras as seen in (b) affects the way a worker’s 2D trajectory projects on each 

camera’s local coordinate system. Figures in (c) and (d) show how the resulting x/y and x΄/y΄coordinates 

differ in terms of magnitude. 
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Figure 4-9: Projection of tracked 2D motion paths on the local coordinate systems of non-conjugated 

cameras. 

 

All trajectories are transformed with respect to a common coordinate system to alleviate the effect of 

the above issue while correlating trajectories. The proposed method uses the 1st horizontal line of a 

chessboard as the x axis of the proposed reference coordinate system (see Figure 4-10).  

 

 

Figure 4-10: Reference coordinate system for motion matching between non-conjugated cameras. 

 

Firstly, the corners that lie along this reference line from all camera views are detected. Then, principal 

component analysis (PCA) uses the coordinates of the detected corners to define the relationship 

between the reference system and a camera’s 𝑐𝑎𝑚𝑖 local coordinate system. PCA extracts a 2x1 

eigenvector 𝑒𝑐𝑎𝑚𝑖
= [𝑒𝑥𝑖

 𝑒𝑦𝑖]
𝑇 that fits a line through the coordinates of the detected corners. This 

eigenvector corresponds to the maximum eigenvalue and is used to calculate the relative rotation 𝜃𝑐𝑎𝑚𝑖
 

between the reference system and each of the local coordinate systems i:  

 

𝜃𝑐𝑎𝑚𝑖
= tan−1 𝑒𝑥𝑖

𝑒𝑦𝑖

                                                       (4-8) 
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Lastly, 𝜃𝑐𝑎𝑚𝑖  is used in a 2D rotation matrix in order to align the local trajectories of a 𝑐𝑎𝑚𝑖 according 

to the proposed reference coordinate system:  

 

[
𝑥𝑟𝑒𝑓𝑖

𝑦𝑟𝑒𝑓𝑖
] =  [

cos 𝜃𝑐𝑎𝑚𝑖
−sin𝜃𝑐𝑎𝑚𝑖

sin 𝜃𝑐𝑎𝑚𝑖
    cos 𝜃𝑐𝑎𝑚𝑖

] [
𝑥𝑖

𝑦𝑖
]                                    (4-9) 

 

where 𝑥𝑟𝑒𝑓𝑖
, 𝑦𝑟𝑒𝑓𝑖

 are the coordinates of a target 𝑊1 tracked in 𝑐𝑎𝑚𝑖 with respect to a reference 

coordinate system, and 𝑥𝑖, 𝑦𝑖 are the coordinates of the tracked target 𝑊1 with respect to the local 

coordinate system of 𝑐𝑎𝑚𝑖.  

 

4.4.2. Geometry-based matching method   

The matching method of the second step introduces a geometric restriction for matching workers.  This 

method combines the epipolar constraint and the reference point as provided by the vision tracker to 

achieve this. This method is invariant to occlusions, scale and posture variations that occur due to the 

relative distance and rotation of cameras (see Figure 4-11). Traditional appearance-based matching 

methods would fail under such conditions since not all features are equally visible from all cameras.  

 

 

Figure 4-11: Posture variations between frames of non-conjugated cameras. 

 

Initially, all cameras are calibrated. The calibration method of Zhang & Member (2000) is implemented 

in order to extract the intrinsic parameters and the eight point algorithm (Hartley, 1997) is used for 

calculating the extrinsic. These methods return the camera matrix K, and the essential matrix E. The K 

is a 3X3 matrix that contains the intrinsic parameters i.e. principal point, skew coefficients, distortions, 

and focal length. The E is also a 3X3 matrix that depicts the extrinsic parameters i.e. relative rotation 

(R) and translation (T) between the fixed cameras:   

 

𝐸 = 𝑇𝑥𝑅                                                              (4-10) 

 

Then the epipolar constraint is applied in order to calculate for each worker’s 𝑃𝑝𝑟 reference point in  

𝐶𝑎𝑚𝑝𝑟 its projection as an epipolar line l𝑒𝑝 in 𝐶𝑎𝑚𝑛𝑒𝑤:  
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l𝑒𝑝 = 𝐾𝐶𝑎𝑚𝑛𝑒𝑤

−𝑇𝐸𝐾𝐶𝑎𝑚𝑝𝑟

−1𝑃𝑝𝑟                                                      (4-11) 

 

where 𝐾𝐶𝑎𝑚𝑛𝑒𝑤
, 𝐾𝐶𝑎𝑚𝑝𝑟

 is the camera matrix K of 𝐶𝑎𝑚𝑛𝑒𝑤 and 𝐶𝑎𝑚𝑝𝑟 respectively. A positive match 

occurs if along one l𝑒𝑝  lies only one candidate 𝑃𝑛𝑒𝑤. However, the epipolar constraint may fail to return 

a match due to instabilities of the proposed reference point. This is illustrated in Figure 4-12. In this 

example the centroid of worker with ID “0” from 𝐶𝑎𝑚𝑝𝑟 does not lie along the l𝑒𝑝 (black line) of 

candidate with ID “1” in 𝐶𝑎𝑚𝑛𝑒𝑤 as the tracking method fails to capture both workers equally 

accurately.  

 

 

Figure 4-12: False negative (FN) matching of a single worker between two cameras (a-b). 

 

This tracking instability becomes obvious when the bounding box of a tracker drifts away (fluctuates) 

from the target. Figure 4-13 presents such an example. In this figure, a kernel-based tracking method 

(Ross et al., 2008) drifts while a worker walks (a-d) or changes posture (e-f). The red rectangle depicts 

the tracking output whilst the yellow dotted rectangle the ground truth. The difference between these 

two rectangles highlights the tracking instability. For simplicity, the remainder of this thesis uses the 

term fluctuation error 𝑒𝑟𝑟𝑜𝑟𝑓 when referring to this. 

 

 

Figure 4-13: Drifting issue of a computer vision tracking method under walking (a-d) and posture 

variations (e-f).  
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This geometry based method turns l𝑒𝑝 into a search band in order to alleviate the effect of 𝑒𝑟𝑟𝑜𝑟𝑓. Figure 

4-14 illustrates with a continuous line the l𝑒𝑝 and with dotted lines the upper 𝑙𝑒𝑝
𝑢𝑝

 and the lower l𝑒𝑝
𝑙𝑜𝑤 

boundaries of the proposed matching search band. These boundaries are expressed as follows:   

 

𝑙𝑒𝑝
𝑢𝑝

=  𝑎𝑥𝑛𝑒𝑤 + 𝑏𝑦𝑛𝑒𝑤 + 𝑐 + ℎ                                           (4-12) 

𝑙𝑒𝑝
𝑙𝑜𝑤 =  𝑎𝑥𝑛𝑒𝑤 + 𝑏𝑦𝑛𝑒𝑤 + 𝑐 − ℎ                                         (4-13) 

 

 

Figure 4-14: Geometry-based matching search band. 

 

This geometry-based method defines 𝑒𝑟𝑟𝑜𝑟𝑓 as equal to the average vertical difference h between two 

parallel lines:  

 

ℎ = 𝑙𝑒𝑝 − (𝑎𝑥𝑛𝑒𝑤 + 𝑏𝑦𝑛𝑒𝑤 + 𝑐 ± 𝑒𝑟𝑟𝑜𝑟𝑓)                                           (4-14) 

 

It uses 𝑙𝑒𝑝 to calculate the line that depicts the ground truth. To achieve this, we manually select for a 

worker 𝑃𝑝𝑟 in 𝐶𝑎𝑚𝑝𝑟 the reference points for which no drifting appears (𝑒𝑟𝑟𝑜𝑟𝑓 = 0). This way we 

restrict the appearance of 𝑒𝑟𝑟𝑜𝑟𝑓 on the tracked target of 𝐶𝑎𝑚𝑛𝑒𝑤. Hence, this first line is defined as 

𝑙𝑒𝑝= 𝑎𝑥𝑝𝑟+ 𝑏𝑦𝑝𝑟 + 𝑐. The second line passes through the same candidate 𝑃𝑛𝑒𝑤 in 𝐶𝑎𝑚𝑛𝑒𝑤 and is equal 

to 𝑎𝑥𝑛𝑒𝑤 + 𝑏𝑦𝑛𝑒𝑤 + 𝑐 ± 𝑒𝑟𝑟𝑜𝑟𝑓. Once we have extracted h, the width (d) of the proposed matching 

search band is measured through the following equation:  

 

𝑑 =
|𝑎𝑥𝑛𝑒𝑤+ 𝑏𝑦𝑛𝑒𝑤+(𝑐±ℎ)|

√𝑎2+ 𝑏2

                                                           (4-15) 

 

This geometry-based method returns a positive match if only one candidate’s reference point is 

measured within a search band. It returns no match if a search band encloses multiple candidates. This 

occurs due to congestion i.e. several workers within a restricted area. Figure 4-15 illustrates such an 
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example. In this figure, a worker will have to be compared to five candidates. This is because all the 

reference points of these candidates fall within the same matching search band (red shaded area).   

 

 

Figure 4-15: Multiple candidates within the proposed matching search band. 

 

4.4.3. Template-based matching method   

The third step is activated when the second step yields a false outcome. This step overcomes the 

ambiguity when the proposed matching search band encloses multiple candidates. This matching 

method uses candidates’ correlation table (CCT) of section 4.4.1 to compare colour values instead. It is 

hypothesized that small differences in a worker’s appearance (i.e. sleeves, colour hat) may be enough 

for achieving high similarity scores. This matching method, employs the normalized cross correlation 

method (NCC) to compare one template patch T(x, y) to a source patch I(x, y): 

 

𝑟𝑐 =
∑ (𝑇(𝑥′,𝑦′)∗𝐼(𝑥+𝑥′,𝑦+𝑦′))𝑥′,𝑦′

√∑ 𝑇(𝑥′,𝑦′)2∗ ∑ 𝐼 (𝑥+𝑥′,𝑦+𝑦′)2 𝑥′,𝑦′ 𝑥′,𝑦′ 

                                           (4-16) 

 

Each of the T(x, y), I(x, y) is taken equal to the colour patch as enclosed within the tracking output 

(bounding box) to reduce computational complexity. The template patches T(x, y) represent workers 

in 𝐶𝑎𝑚𝑝𝑟 and the source patches I(x, y) depict candidates in all 𝐶𝑎𝑚𝑛𝑒𝑤.  

 

 

4.5. Calculation of 3D trajectories  

The final step of the overall proposed method employs the mid-point triangulation method to turn the 

2D corresponding reference points into 3D coordinates when a positive match is returned from any of 

the previous steps. This method is selected as noise (e.g. fluctuation, calibration error) prevents the rays 

of corresponding points projected in two images from intersecting at the original 3D point as illustrated 

in Figure 4-16. The proposed triangulation method alleviates this issue by calculating instead the mid-
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point of the minimum vertical distance 𝑉𝑚 between the two rays. This method is taken from the literature 

and is explained in more detail below.  

 

 

Figure 4-16: Mid-point triangulation method. 

 

A world coordinate 𝑃𝑚 is expressed as 𝑃𝑝𝑟 = [𝑋𝑝𝑟 𝑌𝑝𝑟 𝑍𝑝𝑟] with respect to the coordinate system 

of camera 𝐶𝑎𝑚𝑝𝑟 and as 𝑃𝑛𝑒𝑤 = [𝑋𝑛𝑒𝑤 𝑌𝑛𝑒𝑤 𝑍𝑛𝑒𝑤] with respect to camera 𝐶𝑎𝑚𝑛𝑒𝑤. If the 

coordinate system of 𝐶𝑎𝑚𝑝𝑟 is used as reference, then 𝑃𝑝𝑟 and 𝑃𝑛𝑒𝑤 are linked through the following 

equation:  

𝑃𝑝𝑟 = 𝑅𝑃𝑛𝑒𝑤 + 𝑇                                                       (4-17) 

 

where R, T is the rotation and translation matrix respectively between cameras 𝐶𝑎𝑚𝑝𝑟 and  𝐶𝑎𝑚𝑛𝑒𝑤. 

𝑃𝑝𝑟 and 𝑃𝑛𝑒𝑤 are mapped in image planes at points 𝑝𝑝𝑟 = [𝑥𝑝𝑟  𝑦𝑝𝑟 1] and 𝑝𝑛𝑒𝑤 = [𝑥𝑛𝑒𝑤  𝑦𝑛𝑒𝑤 1] 

respectively as follows:  

𝑃𝑝𝑟 = 𝑎𝑝𝑝𝑟                                                         (4-18) 

𝑃𝑛𝑒𝑤 = 𝑅−1(𝑏𝑝𝑛𝑒𝑤 − 𝑇)                                               (4-19) 

 

where 𝑎, 𝑏 are real numbers. A perpendicular vector 𝑉𝑚 is equal to the vector product between 𝑃𝑛𝑒𝑤 

and 𝑃𝑝𝑟:  

𝑉𝑚 = 𝑐(𝑝𝑝𝑟⨂(𝑅−1𝑝𝑛𝑒𝑤 − 𝑇) − 𝑇)                                        (4-20) 

 

where 𝑐 is a real number. The three parameters 𝑎, 𝑏, 𝑐 are calculated by summing 𝑃𝑝𝑟, 𝑃𝑛𝑒𝑤, and 𝑉𝑚 

vectors though the following equation:  

 

𝑃𝑝𝑟 + 𝑉𝑚 = 𝑃𝑛𝑒𝑤  

⟺ (𝑎𝑝𝑝𝑟) + 𝑐(𝑝𝑝𝑟 ⊗ (𝑅−1𝑝𝑛𝑒𝑤 − 𝑇) − 𝑇) = 𝑅−1(𝑏𝑝𝑛𝑒𝑤 − 𝑇) 

⟺ (𝑎𝑝𝑝𝑟) − (𝑏𝑅−1𝑝𝑛𝑒𝑤) + 𝑐(𝑝𝑝𝑟 ⊗ (𝑅−1𝑝𝑛𝑒𝑤 − 𝑇) − 𝑇) = −𝑅−1𝑇          (4-21) 
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Finally the 3D location 𝑃𝑚 of a target is taken equal to:  

 

𝑃𝑚 = 𝑃𝑝𝑟 +
1

2
𝑉𝑚                                                      (4-22) 

 

 The hypothesis tested in this chapter is that the proposed solution comprised of the methods proposed 

above can significantly enhance the accuracy, precision and recall in matching multiple workers within 

a congested jobsite under posture/scale variations, appearance similarity, and occlusions.  

 

 

4.6. Experiments and results  

This chapter uses two data sets for validation. The first (data set A) is collected at the structures group 

laboratory at the Engineering Department of the University of Cambridge (see (a) in Figure 4-17). The 

second (data set B) is from an offsite manufacturing facility (see (b) in Figure 4-17). The latter depicts 

a more challenging environment since it contains more workers and heavier occlusions. Hence, data set 

A is used for the determination of the proposed method’s parameters whilst data set B is used for the 

overall method’s validation. Both data sets were collected through two cameras that were mounted 

similarly to the set-up of a typical surveillance camera system (see (c-d) in Figure 4-17). The 

experimental set up is described in Chapter 2 (see section 2.4.1) 

 

 

Figure 4-17: Experimental video data sets. (a) Data set A. (b) Data set B.  

 

The quality of the proposed method’s evaluation process depends on the sample size to be tested. Hence, 

this evaluation section defines the minimum number of required samples n through the following 

equation (Eng, 2003):  
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𝑛 =  
4𝑍𝑐𝑟𝑖𝑡

2𝑝(1−𝑝)

𝐷2                                                          (4-23) 

 

A confidence level of 95% is set based on normal distribution (𝑍𝑐𝑟𝑖𝑡 = 1.960) and a limit of error (D) 

equal to ±5%. This explicitly means that the accuracy of 95 out of 100 samples will fall within a range 

of ±5%. The p variable is the proportion of each sample with a specific characteristic and is 

experimentally measured.  The tracked region as described by the tracking output (bounding box) is the 

type of samples used during evaluation.   

A 13x12 chessboard with 60mm square size was used for the calibration of the cameras. 

Initially, the corners of this chessboard, as captured in each of the synchronized images of the 

experimental stereo camera set up system, are detected. Then, the known coordinates of the 

corresponding corners are used for the calculation of the extrinsic and intrinsic camera parameters. 

Figure 4-18 illustrates these correspondences with same coloured circles.  

 

 

Figure 4-18:  Detection of corresponding points for stereo camera calibration. 

 

The accuracy of this calibration is evaluated by comparing the estimated (see (a) in Figure 4-19) and 

the real (see (b) in Figure 4-19) baseline between the two cameras (baseline). Figure 4-19 shows that 

the resulting error was approximately equal to 22mm.  

 

 

Figure 4-19: Stereo calibration accuracy. 
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Three metrics measure the proposed method’s performance: precision, recall, and accuracy. Precision 

is the fraction of the total number of correctly matched tracked workers (TP, True Positive) over the 

total number of incorrectly and correctly matched ones (TP + FP, True Positive + False Positive):  

 

𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                   (4-24) 

 

Recall represents the matching completion level and is equal to the number of workers correctly 

matched (TP) divided by the total number of correctly matched and missed (TP + FN, True Positive + 

False Negative):   

 
𝑇𝑃

𝑇𝑃+𝐹𝑁 
                                                                  (4-25) 

 

Lastly, accuracy is defined by the number of workers that were correctly matched as same (TP) and 

those that were correctly not matched (TN, True Negative), over the total sum of the matched workers:  

 

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                                                            (4-26) 

 

4.6.1. Evaluation of the motion-based matching method   

Initially, the performance of this method is evaluated over a variety of lengths of past motion data as 

seen in Figure 4-20. In this figure, a black line depicts the trajectory of one worker’s motion over the 

past 100ms, 500ms, 1000ms and 1500ms respectively. Performance is measured only when motion 

exists. This section tests three workers from data set A while walking both in similar and opposite 

directions.  

 

 

Figure 4-20: Display of previous motion data (black line) over time. 

 

In total, 1063 pairs of stereo frames with 3189 tracked targets were processed for the determination of 

the optimum length of past motion data. The unique characteristic of this tested sample is motion. 

Hence, the p variable of Equation 4-23 is defined by the number of the non-moving targets over the 

total tracked targets. For the involved tracked targets of data set A, p is set equal to 8%. This method is 

not designed to return any results for the non-moving targets. Therefore, we consider these missed 
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matches as TN. Figure 4-21 displays for each tested length of past motion data the total TP and FP 

matches.  

 

 

Figure 4-21: Total TP and FP matches over lengths of past motion data (per camera). 

 

The TP and FP performance metrics in Figure 4-21, are normalized to one by dividing with the total 

number of tracked targets for display purposes. Figure 4-21 shows that for larger lengths of past motion 

data the total of TP matches increases whilst the total of FP matches decreases. The resulting optimum 

length is 1500ms since it scores the highest performance for data set A with 99% precision, 94% recall, 

and 94% accuracy (see Table 4-2). This length parameter was also validated with data set B. In this 

testing, p variable was measured equal to 39% for a data set of 1205 targets tracked across 1205 pairs 

of stereo frames. The method returned a high performance of 97% precision, 99% recall, and 98% 

accuracy, equal to data set A. This confirms the effectiveness of 1500ms as the optimum length of past 

motion data for comparing moving workers.   

 

Table 4-2: Evaluation of proposed motion matching method over various lengths of past motion data. 

 

Performance 

metrics 

Past motion data (ms) 

Data Set A Data Set B 

100 500 1000 1500 1500 

Precision 63% 92% 97% 99% 97% 

Recall 45% 84% 92% 94% 99% 

Accuracy 43% 80% 90% 94% 98% 

 

Figure 4-22 illustrates the performance of the motion-based matching method by comparing workers’ 

2D trajectories over the last 1500ms. The examples in this figure depict candidates moving either in 

similar, opposite or random direction. The image pair in (a-b) of Figure 4-22 contains three positive 

matches. In 𝐶𝑎𝑚𝑝𝑟, candidates with IDs “3” and “4”  move similarly in terms of direction, whilst 

candidate with ID “2” walks in the opposite direction. The longer the length of the trajectory the faster 
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the worker moved over the past 1500ms. This is depicted in (c-d) of Figure 4-22. Candidates with IDs 

“1” and “2” move faster compared to candidates “3” and “4” in 𝐶𝑎𝑚𝑝𝑟. Figure 4-22 in (e-f) shows two 

TP matches while workers are partially occluded and two TN matches. These missed matches are 

justified by the lack of motion of workers with IDs “2” and “3” in 𝐶𝑎𝑚𝑝𝑟 as they stand still while 

tightening steel re-bars. 

 

 

Figure 4-22: Performance examples of the motion-based matching method. (a-b) Three TP matches 

among two workers in similar and one worker in opposite direction (Data set A). (c-d) Four TP matches 

among two workers in similar and two workers in random direction (Data set B). (e-f) Two TN matches 

due to lack of motion and two TP matches under occlusions (Data set B). 

 

4.6.2. Evaluation of the geometry-based matching method   

The matching method of the 2nd step searches for unique candidates within the boundaries of a 

geometrically defined area. Equation (4-15 expresses the width of this search band in accordance to the 

fluctuation error (𝑒𝑟𝑟𝑜𝑟𝑓) for the specific implemented tracking method. In this section, 𝑒𝑟𝑟𝑜𝑟𝑓 is 

experimentally defined by following the process as described in section 4.4.2. The sample size for this 

measurement depends on the proportion of targets whose reference points in 𝐶𝑎𝑚𝑝𝑟 fail to lie along 
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their corresponding epipolar lines in 𝐶𝑎𝑚𝑛𝑒𝑤. The p variable for this data set was measured equal to 

92%. This percentage depicts that only 8% of the candidates can be matched using epipolar geometry 

only. In total 532 tracked targets from subsequent stereo frames of data set A are used for this 

evaluation. This sample captures workers while walking and under posture and scale variations.  

The 𝑒𝑟𝑟𝑜𝑟𝑓 for each tracked target is expressed as a percentage of his/her height. This turns the 

geometry-based matching method invariant to specific threshold values. Figure 4-23 illustrates the 

experimental (actual) and the fitted (normal) cumulative probability distribution of the resulting values 

of 𝑒𝑟𝑟𝑜𝑟𝑓.  

 

 
Figure 4-23: Cumulative distribution of the fluctuation error (𝑒𝑟𝑟𝑜𝑟𝑓). 

 

The cumulative probability distribution is used to interpolate values of 𝑒𝑟𝑟𝑜𝑟𝑓𝑖
 for specific probability 

values (𝑃𝑒𝑟𝑟𝑜𝑟𝑓𝑖
). This interpolation is expressed as follows:  

 

𝑒𝑟𝑟𝑜𝑟𝑓𝑖
= 𝑒𝑟𝑟𝑜𝑟𝑓𝑖−1

+ (𝑃𝑒𝑟𝑟𝑜𝑟𝑓𝑖
− 𝑃𝑒𝑟𝑟𝑜𝑟𝑓𝑖−1

)
𝑒𝑟𝑟𝑜𝑟𝑓𝑖+1

− 𝑒𝑟𝑟𝑜𝑟𝑓𝑖−1

𝑃𝑒𝑟𝑟𝑜𝑟𝑓𝑖+1
− 𝑃𝑒𝑟𝑟𝑜𝑟𝑓𝑖−1

                    (4-27) 

 

Table 4-3 contains the measured width of the proposed matching search band only for 𝑒𝑟𝑟𝑜𝑟𝑓𝑖
 with a 

probability higher than 50% ( 𝑃𝑒𝑟𝑟𝑜𝑟𝑓𝑖
> 0.5). 

 

Table 4-3: Experimentally defined 𝑒𝑟𝑟𝑜𝑟𝑓𝑖
. 

𝑷𝒆𝒓𝒓𝒐𝒓𝒇
 𝒆𝒓𝒓𝒐𝒓𝒇 (%𝑯) 

0.5 0.12 

0.6 0.15 

0.7 0.19 

0.8 0.22 

0.9 0.28 

1.0 0.56 



Matching of construction workers across views for automated 4D vision tracking 

 

Eirini Konstantinou – October 2017                                                   94 

It is possible for a single matching search band in a congested environment to contain more than one 

candidate. The geometry-based method does not return any matches due to this ambiguity. Hence, such 

missed matches are considered as true negative (TN). The FN results depict the number of the not 

matched workers when the width of the search is not big enough to capture the reference point of the 

same worker due to the effect of 𝑒𝑟𝑟𝑜𝑟𝑓. Table 4-4 shows the matching performance for different widths 

of the proposed search band. Initially, 1199 pairs of stereo frames from data set “A” are processed for 

every tested width, containing a total of 3596 tracked targets in both cameras. The p variable for this 

testing depicts the total number of targets that are not matched due to congestion and is equal to 6%. 

This table highlights how effectively the proposed search band leverages the instability caused by 

𝑒𝑟𝑟𝑜𝑟𝑓 and increases matching performance.  

 

Table 4-4: Evaluation of proposed geometry-based matching method over various values of 𝑒𝑟𝑟𝑜𝑟𝑓 . 

 

Performance 

Metrics 

𝑷𝒆𝒓𝒓𝒐𝒓𝒇𝒊
  

Data Set A Data Set B 

0.0 0.5 0.6 0.7 0.8 0.9 1.0 0.9 

Precision 0.98 1.00 0.99 1.00 1.00 1.00 1.00 0.93 

Recall 0.08 0.73 0.79 0.82 0.87 0.90 0.99 0.94 

Accuracy 0.08 0.74 0.80 0.82 0.88 0.91 0.99 0.95 

 

The graph in Figure 4-24 defines the optimum width of the proposed matching search band. This figure 

displays the total normalized TN and FN matches for  𝑒𝑟𝑟𝑜𝑟𝑓𝑖
 values that correspond to the chosen 

𝑃𝑒𝑟𝑟𝑜𝑟𝑓𝑖
 probabilities of Table 4-3. Figure 4-24 shows a trade-off between the width of the search band 

and the resulting matching performance.  

 

 

Figure 4-24: TN & FN missed matches over the probability (𝑃𝑒𝑟𝑟𝑜𝑟𝑓𝑖
) of 𝑒𝑟𝑟𝑜𝑟𝑓𝑖

 values. 

 

The more the size increases, the more total candidates fall within the same search band in a congested 

environment. As a result of this, the total FN matches decreases whilst the total TN matches increases. 
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Hence, 𝑒𝑟𝑟𝑜𝑟𝑓 is set equal to the x value at the intersection point between the TN and FN curves since 

beyond this point matching ambiguity escalates due to the increasing TN matches. This x value 

corresponds to 𝑒𝑟𝑟𝑜𝑟𝑓 with 𝑃𝑒𝑟𝑟𝑜𝑟𝑓
= 0.90. Hence, the probability of getting 𝑒𝑟𝑟𝑜𝑟𝑓  larger than 

28

100
H 

is only 10% based on the interpolated values of Table 4-3. This experimentally defined width is tested 

in the congested (p=53%) working environment of data set B to validate its effectiveness. Overall, 415 

pairs of stereo frames, and 1806 tracked targets in both cameras are processed. Previous Table 4-4  

shows that the geometry-based method features a high performance of 93% precision, 94% accuracy, 

and 95% recall for Data set B.  

 

 

Figure 4-25: Performance examples of the geometry-based matching method. (a-b) Three TP matches, 

(c-d). Three TN matches due to congestion. (e-f) Two TP matches and one FN caused by tracking 

inaccuracy (Data set A). (g-h) Three TN matches due to congestion and two TP (Data set B).  
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Figure 4-25 shows representative performance examples. In these examples, white lines represent the 

matching search band, whilst black are the epipolar lines. In Figure 4-25 (a-b) candidates with IDs “1-

3” are correctly matched (TP) to workers with IDs “4-6”. However, in Figure 4-25 (c-d) the matching 

approach fails due to congestion and returns three TN. The same holds for candidates of data set B in 

Campr with IDs “1-3” (see Figure 4-25 (g-h)). All these TN matches result when search bands 

encompass more than one candidates. Figure 4-25 (e-f) illustrates two TP matches and one FN. The 

latter is due to the large 𝑒𝑟𝑟𝑜𝑟𝑓 of the worker with ID “6” in Camnew. 

 

4.6.3. Evaluation of the template-based matching method  

This last matching method compares workers using their colour templates. The HSV colour space is 

selected for this purpose due to observations of previous Chapter 3 (see section 3.4.2). The template-

based matching method uses as input the colour templates of workers. Minor dissimilarities like posture 

and appearance variations (e.g. length of sleeves, open jacket) are exploited in this step. Figure 4-26 

depicts such examples. In this figure, two workers that wear Hi-Vis vests of the same colour  but trousers 

and hard hats of different colour in (a), and two workers with Hi-Vis vests and hard hats of different 

colour in (b), are distinguishably described though the HSV colour space. In these examples “p” stands 

for 𝐶𝑎𝑚𝑝𝑟 and “n” for 𝐶𝑎𝑚𝑛𝑒𝑤. This method can be useful even if it has significant restrictions when 

matching is required among congested candidates with no motion. Such scenario occurs when tracking 

re-initializes after a sudden termination due to problems such as occlusion and posture changes. 

 

 

Figure 4-26: Illustration of compared colour templates with the HSV colour space. (a) Workers with 

same colour of Hi-Vis jacket. (b) Workers with different colour of Hi-Vis jacket. 



Matching of construction workers across views for automated 4D vision tracking 

 

Eirini Konstantinou – October 2017                                                   97 

Table 4-5 shows that the proposed template-based matching method performs better for the workers of 

data set A (see (a-b) in Figure 4-27) than for the workers of data set B (see (c-d) in Figure 4-27). This 

is because data set B has a bigger proportion of similar in appearance targets (p=80%). Overall, 385 

targets for data set B and 351 for data set A (p=67%) are processed. Table 4-5 shows that precision 

drops by 8%, whilst recall and accuracy by 6% and 12% respectively. This is due to the almost identical 

appearance of workers of data set B that increased the total number of FP matches.     

 

Table 4-5: Evaluation of proposed template based matching method. 

Performance 

Metrics 

HSV 

Data Set A Data Set B 

Precision 0.96 0.88 

Recall 0.95 0.89 

Accuracy 0.91 0.79 

 

 

Figure 4-27: Performance examples of the template based matching method. (a-b) Three TP matches 

(Data set A). (c-d) Three FP and Two TP matches (Data set B). 

 

4.6.4. Evaluation of overall proposed matching method  

The previous 4.6.1-4.6.3 sections confirm the hypothesis of this chapter that the motion-based matching 

method is the most efficient for matching construction workers. Second follows the geometry and third 

the template-based method. Each of them is robust under specific conditions. Hence, their performance 

depends on the appearance frequency of these conditions. The two best methods, motion and geometry, 

are separately tested under congestion, posture/scale variations, appearance similarity and occlusions.  
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In total 252 pairs of stereo frames from data set B, capturing 1122 tracked targets in both cameras are 

processed. The sample size is defined by the proportion (p) of the tracked targets of data set B that face 

congestion and occlusions, have no motion, and share similar appearance. This proportion is measured 

equal to 53%. Table 4-6 shows that, the performance of motion and geometry-based methods drops 

significantly under multiple challenges in terms of recall and accuracy compared to the overall method 

that features 97% precision, 98% recall, and 95% accuracy. This validates the previous hypothesis that 

none of these methods is robust under all matching challenges at the same time.  

 

Table 4-6: Evaluation of motion and geometry matching method under congestion, posture and scale 

variations, appearance similarity, and occlusions (data set B).  

Performance  

Metrics 

Only  

Motion 

Only 

Geometry 

Overall 

Method 

Precision 0.97 0.93 0.97 

Recall 0.60 0.43 0.98 

Accuracy 0.59 0.42 0.95 

 

Table 4-7 describes in detail the exact number of the total: a) correctly matched targets (TP), b) 

incorrectly matched (FP), c) incorrectly not matched (FN), and d) correctly not matched (TN) of the 

overall proposed method. The low total of FP compared to the high total of TP proves the good 

performance of the proposed method, whilst the low totals of FN and TN show the completion achieved.  

 

Table 4-7: Confusion matrix of the overall proposed method. 

 

 

 

 

Finally, Figure 4-28 illustrates some representative examples of how the three matching methods 

supplement each other. Each of them corresponds to a different colour. Green stands for the motion-

based method, orange for the geometry and pink for the template-based. In (a-b) of Figure 4-28, the two 

walking candidates with IDs “1” and “4” in 𝐶𝑎𝑚𝑝𝑟 are matched with motion whereas the two standing 

still candidates with IDs “2” and “3” are matched with the geometry and template respectively. The 

same holds for the examples presented in (c-f) of Figure 4-28. 

A
ct

u
a
l 

 Predicted    

 Yes No    

Yes TP FN 1065 20 

No FP TN 35 2 
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Figure 4-28: Performance of the overall vision-based matching method under congestion, appearance 

similarity and occlusions (green labels: motion based matching; orange labels: geometry based 

matching; pink labels: template based matching).  

 

4.6.5. Accuracy of 3D trajectories 

Finally, the accuracy of the extracted 3D trajectories is evaluated by using the upper middle point of 

tracking’s bounding box for triangulation. For the evaluation, the extracted ground plane coordinates 

(X, Z) are exploited. The ground truth 𝐷𝑟𝑒𝑎𝑙 trajectory is manually marked with yellow chalk on the 

floor and is equal to 6.4m (see Figure 4-29). The worker with orange jacket from data set A is tracked 

while walking along this line. The extracted trajectory 𝐷𝑐𝑎𝑙𝑐 is illustrated in Figure 4-30. Firstly, a line 

is fitted to 𝐷𝑐𝑎𝑙𝑐 in order to measure the total length with Euclidean distance which is then subtracted 

from the ground truth. The resulted distance error is equal to 13cm. This error falls within satisfying 

accuracy limits as it is smaller than the 15cm error of tagged 3D tracking methods (Chawla et al., 2010). 
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Figure 4-29: Ground truth trajectory. 

 

 

Figure 4-30: Euclidean calculation of triangulated trajectory.  

 

 

4.7. Chapter overview  

The current state of practice for inter-camera tracking of construction resources is time consuming and 

labour intensive. This is due to the manual effort involved in matching the same targets across multiple 

camera views. This matching is essential in order to turn the 2D image trajectories (x, y) into 3D 

trajectories (X, Y, Z). Up to date the current state of research has not managed to solve the matching 

problem for targets that: a) share greatly similar appearance such as workers, b) are under occlusions, 

c) appear with variant posture and scale, and d) are within a congested environment. This chapter 

presents a computer vision-based method for matching the same workers across all available 

overlapping cameras views. The novelty of the method presented in this chapter lies in the sequential 
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combination of three methods, each of which exploits unique features in order to achieve matching of 

the same workers across different cameras.  

Firstly, a computer vision-based 2D tracking method that follows each worker across 

subsequent frames of the same camera is implemented. This tracking provides the input data of the 

proposed method. The first step tests the hypothesis that a small segment of previous motion data is 

enough for distinguishably describing a worker. This step uses a motion-based matching method that 

compares workers’ 2D trajectories over the last 1500ms. If this fails to return a positive match for all 

candidates, then the second step that employs geometric restrictions in order to predict the area where 

a possible match lies is activated. If more than one possible candidates lie within the same search band 

then this geometry-based method returns no match. When this occurs the third step compares workers 

based on their colour templates. This method uses only the templates as enclosed by the bounding box 

of the vision tracking method for computational efficiency.   

Each method performs well separately only under specific conditions. The two first steps 

employ methods that are invariant to posture and scale variations, heavy occlusions, and appearance 

similarity compared to the method of the third step. However, the latter performs better under 

congestion and lack of motion. The motion-based method features 97% precision, 99% recall, and 98% 

accuracy for tested walking workers. The geometry-based method achieves 93% precision, 94% recall, 

and 95% accuracy in a non-congested environment. Lastly, the template-based method returns 88% 

precision, 89% recall, and 79% accuracy for greatly similar workers which are captured under the same 

posture.  

The performance of the two best performed methods under all conditions at the same time is 

also evaluated. The resulting performance of the motion-based method is significantly lower with 97% 

precision, 60% recall, and 59% accuracy. The same holds for the geometry-based method that scores 

93% precision, 43% recall and 42% accuracy. On the other hand, for the same conditions the overall 

proposed method features 97% precision, 98% recall, and 95% accuracy. This proves that the 

hypothesis of this chapter that only the combination of all methods can efficiently tackle all matching 

challenges is correct.    

The limitations of the research presented in this chapter are the following: a) all tests were 

conducted with data from indoor working environments due to the nature of the construction sites the 

researchers had access to, b) all data were collected from only a set of cameras (stereo camera), and c) 

the proposed method is designed only for cameras with overlapping views.  
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5 
 

5.Detection of work cycles for monitoring 

labour productivity   
 

 

In this chapter, a trajectory analysis-based method for monitoring the labour productivity of 

construction workers is presented, using as inputs the outputs of Chapters 3 and 4. It detects repetitive 

patterns in trajectories of workers. These patterns depict work cycles. The total duration of these work 

cycles is equal to the labour input of every worker on a task level. Labour productivity is calculated by 

dividing the total labour output over the total input. The method presented in this chapter focuses on 

the input as the monitoring of the output is quite straight forward through visual inspection at the end 

of work shifts (e.g. number of steel cages prepared, meters of brick wall painted). The aim of this chapter 

is to monitor the labour productivity of construction workers accurately and proactively.  

 

5.1. Introduction to trajectory analysis for pattern recognition 

The prevalent approach to estimating labour productivity is through an analysis of the trajectories of 

the construction entities. This analysis typically exploits four types of trajectory data: a) walking path 

trajectories, b) dense trajectories (posture), c) physiological rates such as heart rate (beats/minute) and 

respiratory rate (breaths/minute), and d) sound signals. The output of this analysis is the number of work 

cycles performed by construction workers. The total duration of these cycles is equal to the labour input 

of a task. Chapter 2 concludes that all methods proposed so far do not meet the requirements for 

proactive monitoring of labour productivity in an accurate, non-obtrusive, time and cost efficient way 

for multiple workers.  

Several studies have focused on trajectory analysis in order to detect trajectories that depict 

strange behaviour profiles, for security purposes (Junejo & Foroosh, 2008; Wiliem et al., 2008). The 

trajectories of people are compared to those that correspond to normal behaviour to achieve this. After 

comparison, trajectories are grouped into clusters of similar motion patterns. Figure 5-1 illustrates an 

example of clustered trajectories based on their spatial similarity. The trajectories in this figure belong 
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to people that were monitored while walking along the corridor of a shopping mall. The trajectories in 

(a-h) of Figure 5-1 depict normal behaviour, whilst the trajectories in (i-l) of Figure 5-1 belong to 

abnormal behaviours.  

  

 

Figure 5-1: Trajectory clustering for detecting abnormal human behaviour (Wiliem et al., 2008).  

(a - h: trajectory clusters of normal behaviour, i-l: trajectory clusters of abnormal behaviour) 

 

The Hausdorff distance (Rote, 1991) metric is one of the most commonly used functions for calculating 

the spatial similarity between trajectories with multiple sample points and different lengths (Junejo & 

Foroosh, 2007). Trajectories are treated as sets of points. In more detail, the Hausdorff distance for two 

trajectories (𝑇𝐴, 𝑇𝐵), is equal to the maximum distance of trajectory 𝑇𝐴 or 𝑇𝐵 to the nearest point of 

trajectory 𝑇𝐵 or 𝑇𝐴 respectively (see Figure 5-2). Hence, such spatial proximity-based clustering implies 

that monitored targets should move along the same designated paths. This is feasible in shopping malls 

or parking lots but not at construction jobsites as in such environments, walking paths change over time 

as the project progresses. 

 

 

Figure 5-2: Hausdorff distance between trajectories 𝑇𝐴, 𝑇𝐵.  
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Researchers have included temporal features, such as speed, in clustering in order to overcome the 

limitations of spatial proximity-based clustering methods. In this respect, a Hidden Markov Model 

(HMM) (Fosler-lussier, 1998), was trained to cluster trajectories given their spatiotemporal features i.e. 

speed and position (Suzuki et al. 2007). This training process calculated the probability of a person 

moving in different state sequences. Each of these sequences consists of all possible transitions from 

state to state for all hidden states of a Hidden Markov Model. However, these states are not really 

hidden. In fact, they depict real positions as illustrated in the example of Figure 5-3.  

 

 

Figure 5-3: Hidden states (1-10) of an HMM within a store (Suzuki et al., 2007).  

 

In the above figure, each state stands for a semantically important area within a store e.g. magazines 

area, noodles area. The trajectories of people are grouped into clusters based on their minimum distance 

from each cluster's centroid. The trajectories of a cluster were classified as abnormal behaviour if the 

maximum likelihood of this cluster’s HMM was less than an empirically defined threshold.  This type 

of clustering requires that “hidden” states are known (e.g. entrance, cashier, exit). Such states for 

construction are the work zones e.g. steel fixing zone, concrete pouring zone, materials storage zone, 

rest areas and hoisting zone. However, the locations of these work zones (“hidden” states) change over 

time. This is due to the dynamic nature of construction projects. For instance, a brick layering task on 

day “1” is described by three “hidden” states (A, B, and C). “Hidden” state A is the area where bricks 

are stored. “Hidden” state B is the area where brick walls are constructed. “Hidden” state C is the exit 

areas. When the construction of brick walls at “hidden” state B is finished on day “2”, then the workers 

will move to another “hidden” state D in order to continue with the construction of another wall. If this 

new “hidden” state D is positioned on another floor level or far from the previous “hidden” state B, then 

most likely “hidden” states A and B will also be repositioned in order to be closer to the area where the 

new walls are constructed (“hidden” state D). Therefore, as obtaining prior knowledge on the “hidden” 

states is not generally feasible, HMMs cannot be applied to clustering workers’ trajectories.  
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In summary, this section presents studies that compare clusters of trajectories in order to detect the ones 

that most likely depict abnormal motion patterns. The main limitation of such studies in terms of 

detecting work cycles instead of abnormal patterns, relates to the way trajectories are clustered. Hence, 

this chapter aims to answer the following question: “How can trajectory data be efficiently clustered 

into work cycles in order to measure the labour input?”  

This chapter presents a semantic-based method for clustering workers’ trajectories into work 

cycles regardless of the type or the numbers of tasks the workers perform. These trajectories are four-

dimensional (4D) and describe the motion of workers across the jobsite over time. They are segmented 

into 4D sub-trajectories which are then classified as either “move” or “stop” semantic events. The 

“move” events describe workers while transitioning between sub-tasks, whilst the “stop” events depict 

workers while performing sub-tasks. A task consists of sub-tasks. For instance, the steel fixing task 

consists of the following sub-tasks: placing, fixing, and picking of reinforcement bars (re-bars). Each 

worker’s classified 4D sub-trajectories are clustered together under the main assumption presented in 

Chapter 2 in order to detect work cycles. The total duration of these work cycles is equal to the labour 

input of workers. Workers while at “stop” are relatively still. This spatiotemporal stability combined 

with the presence of workers at pre-scheduled work zones imply productive time. The following 

Chapter 6, classifies these work cycles in order to achieve proactive monitoring of labour productivity.  

The remainder of this chapter is organized as follows. Sections 5.1 and 5.2 present the current 

state of research in trajectory analysis-based methods for pattern recognition. Then, the proposed 

solution and methodology are presented in sections 5.3 and 5.4 respectively, and evaluated in section 

5.5. Lastly, section 5.6 presents an overview of the conclusions of this chapter.   

 

 

5.2. Cluster analysis outline  

Machine learning methods are divided into supervised and unsupervised methods. The supervised 

methods use a sample of labelled data to “teach” the relationship between inputs and outputs. On the 

other hand, unsupervised methods use unlabelled data to “learn” to recognize similar objects without 

any notion of the output. Such methods are the clustering methods. Their goal is to group similar objects 

into clusters. Unique features of objects are exploited in order to achieve this. Each object is described 

by an observation of features {𝑥𝑖}. These features form an 𝑁-dimensional feature vector �⃗� =

{𝑥1, 𝑥2, … , 𝑥𝑁}𝑇(see Figure 5-4). This section presents an overview of existing clustering methods in 

order to identify the most suitable for grouping trajectories that depict similar construction-related 

patterns (i.e. tasks or sub-tasks). This review specializes on workers. Therefore, the suitability of the 

clustering methods reviewed in this section is evaluated based on the characteristics of workers’ 

trajectories. The specific characteristics which are taken into account are the following: a) a worker’s 

trajectory is of high dimensionality as he/she moves across the jobsite over a large period of time (≥ 
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work shift), b) several workers’ trajectories should be processed as construction jobsites are congested 

environments where numerous tasks take place simultaneously, and c) the trajectories of workers depict 

multiple different patterns that should be grouped in an equal number of clusters. The latter is due to 

the large variety of construction tasks and the fact that even the trajectory of one worker consists of 

multiple patterns as he/she is involved in many different tasks within a single work shift. In summary, 

an efficient clustering method should be able to deal with data sets (i.e. objects) of large dimensionality 

(i.e. long feature vector �⃗�) and high diversity (i.e. many clusters).  

 

 

Figure 5-4: Cluster analysis of objects into three groups (clusters).  

 

The similarity between objects is calculated through distance-based measure functions. Some of the 

most common are presented below:  

 The Euclidean distance: 𝑑(�⃗�, �⃗�) =  ‖�⃗� − �⃗�‖ = √∑ (𝑥𝑖 − 𝑦𝑖)
2𝑁

𝑖=1  

 The Manhattan distance: 𝑑(�⃗�, �⃗�) =  ∑ |𝑥𝑖 − 𝑦𝑖|
𝑁
𝑖=1  

 The Minkowski distance: 𝑑(�⃗�, �⃗�) = ‖𝑥 − 𝑦‖𝛼 = (∑ (𝑥𝑖 − 𝑦𝑖)
𝛼𝑁

𝑖=1 )
1

𝛼⁄ , 𝑓𝑜𝑟 𝛼 > 1    

 The cosine distance: 𝑑𝜃 = 
∑ 𝑥𝑖 𝑦𝑖

𝑁
𝑖=1

‖𝑥𝑖‖‖𝑦𝑖‖
 

where 𝜃 = tan−1 ‖𝑥‖

‖�⃗⃗�‖
 

 The Mahalanobis distance: 𝑑(�⃗�, �⃗�) = √(�⃗� − �⃗�)𝑇 ∑ (�⃗� − �⃗�)−1
  

where ∑ = 
 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 

 The Locality In-between Polylines (LIP) distance: 𝑑(�⃗�, �⃗�) =  ∑ 𝐴𝑟𝑒𝑎𝑖
𝑁
𝑖=1 ∗ 𝑤𝑖                 

where N = total intersections between trajectories (�⃗�, �⃗�), and 𝑤𝑖 = 
𝐿𝑒𝑛𝑔𝑡ℎ�⃗⃗⃗�(𝑙𝑖,𝑙𝑖+1)+𝐿𝑒𝑛𝑔𝑡ℎ�⃗⃗⃗�(𝑙𝑖,𝑙𝑖+1) 

𝐿𝑒𝑛𝑔𝑡ℎ�⃗⃗⃗� + 𝐿𝑒𝑛𝑔𝑡ℎ�⃗⃗⃗�
 

 

The distance-based measure functions are chosen according to the type of objects to be clustered. The 

Euclidean, Manhattan and Minkowski measures are mainly used to compare objects that are described 

by feature vectors of low dimensionality. This is because the distance between two objects increases 

along with their dimensionality. Hence, two objects of different dimensionality (low vs high) but of the 

same type, score a large (i.e. dissimilar) rather than a low similarity value (similar). As a result of this, 
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these objects of the same nature will be wrongly assigned to different clusters. This problem can be 

alleviated by the cosine distance measure as it normalizes the features of the objects to a common range. 

The Mahalanobis distance measure is also invariant to the dimensionality of objects since it exploits the 

Gaussian distribution of objects. It computes the distance of an object 𝑥 to an object 𝑦 given their 

covariance matrices Σ. Distance-based measures for specifically calculating similarities between 

trajectories have also been proposed. The Locality In-between Polylines (LIP) is such a measure 

(Pelekis et al., 2007).  It treats trajectories as polylines and measures their similarity by summing up the 

areas formed between intersections of points of the compared trajectories (see Figure 5-5).  

 

 

Figure 5-5: Locality In-between Polylines (LIP) distance of trajectories (Q, S) (Pelekis et al., 2007). 

 

Figure 5-6 illustrates with two-dimensional examples the different types of clusters which are 

categorized as follows:  

a) Well-separated clusters: All objects within a cluster have the smallest distance between them rather 

than with any object from another cluster.  

b) Centre-based clusters: All objects within a cluster have the smallest distance from their cluster’s 

centre rather than with any other cluster’s centre.    

c) Contiguous clusters: All objects within a cluster have the smallest distance to at least one object 

within its cluster rather than with any other object from other clusters.    

d) Density-based clusters: Regions with high density as compared to their surroundings are grouped 

into clusters.  

e) Conceptual clusters: All objects within a cluster are described by a general property.  
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Figure 5-6: Types of clusters (Tan et al., 2005).  

 

The advantages and disadvantages of existing clustering methods are presented below (Madhulatha, 

2012; Omran et al., 2007) : 

 Hierarchical clustering: Extracts clusters that can be further divided into more than one sub-cluster. 

The methods in this category can be either agglomerative (bottom-up) or divisive (bottom-down). 

The former assigns a cluster to each object and then successively merges the initial clusters into 

larger ones whilst the latter starts with a single cluster that contains all objects and gradually divides 

it into smaller clusters. Such methods are not efficient in clustering large data sets (i.e. many 

objects). This is because the computational and time complexity of diving clusters into subsets 

grows along with the size of the data. In addition, the clustering process is not reversible. Hence, 

there is no possibility to correct the clustering of an object in future steps.  

 Partitional clustering: Assigns the objects into a predefined number of clusters at once. The k-means 

algorithm (Hartigan & Wong, 1979) is a representative example of this category. Such clustering 

methods are computationally efficient with large input data, but are limited by the requirement of 

manually providing the total number of clusters in advance.  

 Density-based clustering: Assigns into clusters regions of arbitrary shape that have much higher 

density than their surroundings. Such methods are efficient in discarding noise. This is because 

noise has low density. However, they can only group objects with similar density into clusters. The 

DBSCAN algorithm (Bäcklund et al., 2011) is a representative example of this category.  

 Grid-based clustering: Divides the space around the objects into a grid of cells. Then, objects are 

assigned to cells and form clusters if the density within each cell exceeds a threshold. The adjacent 

clusters are all then merged together into bigger ones. The main limitation of such methods is that 

the boundaries of the clusters are not flexible. They are of rectangular shape only. Because of this 
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restriction, the input data should be either vertically or horizontally separable. Otherwise, they will 

be either wrongly assigned to clusters or not assigned at all.  

 Model-based clustering: Clusters in this category are governed by Gaussian distributions. An object 

is assigned into the cluster that scores the highest probability of being part of it. Such methods are 

inefficient when input data do not fit to the Gaussian model.  

Another main issue of existing clustering methods is that if the common patterns of trajectories 

“hide” within smaller segments, then they fail to group these trajectories into the same clusters (Lee et 

al, 2007). This is due to the fact that clustering methods treat trajectories as objects and cluster them as 

a whole. In an effort to alleviate this shortcoming, previous studies introduced the partitioning of 

trajectories into smaller sub-trajectories before performing clustering. Partitioning methods are either 

based on criteria such as preciseness and conciseness  (Lee et al., 2008; Lee et al., 2007) or on changes 

of spatiotemporal features i.e. speed and position (Liu & Schneider, 2012; Sung et al., 2012).  

The former partitioning methods that use preciseness and conciseness, apply the minimum 

description length principle MDL (Grunwald et al. 2004) that calculates the best combination between 

the number of partitions (conciseness) and the discrepancy of the partitions as compared to the original 

trajectory (preciseness). These two criteria are contradictory to each other. The number of sub-

trajectories 𝑝𝑖 that the partitioning of a trajectory 𝑇𝑅𝑖 produces is equal to the value that minimizes the 

cost between these two criteria (see Figure 5-7).  

 

 

Figure 5-7: Partitioning of trajectories based on preciseness and conciseness (J. Lee et al., 2008). 

 

The latter partitioning methods that rely on spatiotemporal features, divide trajectories into partitions 

every time the target changes either its direction or speed. Manually defined speed and directional 

thresholds (see (a-b) in Figure 5-8) (Liu & Schneider, 2012) and line simplification algorithms (see (c-

d) in Figure 5-8) are exploited in order to detect these spatiotemporal changes. The main problem with 

partitioning of trajectories is that the extracted sub-trajectories increase even more the total number of 

input data. However as previously mentioned, such increase is not desirable as existing clustering 

methods struggle under large input data.  
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Figure 5-8:  Partitioning of trajectories based on spatiotemporal changes. 

(a-b: Liu & Schneider, 2012, c-d: Sung et al., 2012).  

 

Semantic analysis was also introduced for clustering trajectories (Palma et al., 2008; Pasha & 

Monajjemi, 2013). These studies considered the semantic importance of “stops” and “moves” areas 

with the aim of localizing semantically important sub-trajectories. They used intersections of 

trajectories with known geographically important places provided by the user (A, B, and C regions in 

(a) of Figure 5-9), and lower speed values (X, Y regions in (b) of Figure 5-9). Trajectories were then 

clustered into similar groups using a density-based clustering method (DBSCAN), on the assumption 

that semantic “stops” are regions with high density of small speed values as the driver slows down to 

look at something interesting. The parts of trajectories that were not classified as “stops” were 

automatically considered as “moves” clusters depicting moving targets. This analysis-based clustering 

method is a promising technique for deriving semantically important clusters, and is invariant to both 

initialization parameters and data size. However, it is still restricted by the limitations of the applied 

density-based clustering method.  

 

 

Figure 5-9: Semantic stop regions of trajectory data (Palma et al. 2008).  
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In summary, existing clustering methods still suffer from two main disadvantages in terms of detecting 

patterns (i.e. clusters) from trajectory data. Both of them relate to the large dimensionality and high 

diversity of worker trajectories as previously explained. Firstly, trajectories should be segmented into 

sub-trajectories. This is necessary as patterns “hide” in smaller segments of workers’ single trajectories. 

When this occurs, one single trajectory (i.e. object) is converted into multiple smaller trajectories (i.e. 

objects). However, clustering methods as previously mentioned struggle with large data sets (i.e. 

objects). Secondly, clustering methods are often reliant on user-provided initialization of parameters 

such as the number of clusters or the threshold values of similarity metrics. Such estimations are not 

always possible due to the dynamically changing nature of construction tasks. For instance, a steel 

fixing task can either be described by two patterns (i.e. clusters) that depict fixing and picking of re-

bars or by even more patterns if the worker undertakes extra tasks e.g. assists a colleague, visits the 

foreman for further instructions etc. Therefore the user needs to know in advance all types of tasks the 

workers performed to explain the high diversity (i.e. multiple clusters) resulting from their trajectories.  

The main objectives of this chapter are: a) to develop a method that groups trajectories of 

workers into clusters of similar pattern, and b) to devise a method invariant to the large variety of 

construction tasks. The research question that this chapter aims to answer is: “how can the trajectory 

data of a single worker be translated into labour input accurately?” 

 

 

5.3. Proposed solution    

This section presents a method that turns the trajectory data into labour input. Firstly, the work cycles 

of construction workers are detected regardless of the type or the number of tasks they perform. The 

flowchart of Figure 5-10 illustrates the overall proposed method to achieve this. The skewed 

parallelogram shapes refer to processes and the circular to inputs/outputs. The initial inputs of the 

proposed method are the 4D trajectories of workers which are extracted by a 4D computer vision-based 

tracking method as shown in Chapters 3 and 4. A 4D trajectory 𝑇𝑤 depicts the motion of a single worker 

across the jobsite over time. This motion is described by the X, Y, and Z Cartesian coordinates. Hence, 

it can be decomposed into three time series XT, YT and ZT. In this chapter, the X and Z axis are aligned 

with the floor plane of a jobsite whilst the Y axis is vertical to the floor plane. Initially, the 4D 

trajectories are smoothed to remove noise. Then, each single smoothed 4D trajectory 𝑇𝑤 of a worker is 

partitioned into 𝑁 smaller sub-trajectories 𝑆𝑤 = {𝑠𝑖}𝑖=1…𝑁. This allows the proposed method to search 

for work cycles that correspond to smaller segments of the 4D trajectories of workers. The partitioning 

is time-based. A representative 3D speed value is then calculated for each 4D sub-trajectory 𝑠𝑖. It depicts 

the speed of workers along the floor ‖�⃗⃗�𝑥𝑧‖ =  {‖�⃗�𝑖‖𝑥𝑧}𝑖=1…𝑁 and the vertical ‖�⃗⃗�𝑦‖ =  {‖�⃗�𝑖‖𝑦}
𝑖=1…𝑁

 

plane. The 4D sub-trajectories are classified as either part of “stop” or “move” semantic events based 

on these 3D speed values. This classification relies on the assumption presented in Chapter 2 that if a 
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worker’s “move” is followed by one “stop” and a second “move” sequentially, then these three 

semantic events define a work cycle. The semantic “move” event depicts the transition between sub-

tasks or tasks whereas the semantic “stop” event depicts the actual execution of a sub-task. Finally, the 

classified 4D sub-trajectories are clustered into work cycles. The time a worker spends on a task (labour 

input) is equal to the total duration of these cycles. This type of semantic-based clustering overcomes 

the disadvantages of existing clustering methods.  

 

 

Figure 5-10: Flowchart of proposed method for monitoring the labour productivity of workers. 

 

The detected work cycles are further classified as: a) unproductive, b) normal productive, and c) 

abnormal productive. This classification highlights potential management and work flow issues. All 

work cycles are initially classified as productive and unproductive through region–based classification. 

This classification categorizes the areas of a jobsite as “active” and “inactive”. The former are areas 
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where construction related-tasks take place e.g. steel fixing, concrete pouring and brick laying. The 

latter are areas where no construction related-tasks take place. If the work cycles are detected within 

the “active” areas, then they are classified as productive. If not, then they are classified as unproductive. 

Given that the overall proposed framework tracks the 3D location of workers over time, this region-

based classification is achieved by providing the coordinates of the “inactive” areas. Similar 

classification has also been proposed by previous researchers to turn the trajectory data into labour 

input. However, this chapter uses the region-based classification only to provide an overview of the 

time the workers spend at areas that are linked to management issues and low productivity rates as 

shown in Chapter 1. Such areas are the rest, the office and the materials’ storage areas. Then, the 

productive work cycles are further classified as normal and abnormal based on their duration. The 

abnormal are those with the longest duration compared to the total cycles of a worker. This allows 

project managers to check first the tasks that consumed most of workers’ time, if the labour output is 

not the desirable output. This is achieved by deriving the video footages at the exact time of the day the 

abnormal cycles occurred.  

The method presented in this chapter makes the following assumptions: a) workers have a range 

of movements (i.e. bending, sideway steps) while performing a task. Hence, their 3D speed values are 

not zero (≠0) while at a “stop”, b) the triangulation and calibration errors, which propagate as noise in 

the calculation of the computer vision-based 4D trajectories, have the same effect on all data sets 

regardless of the experimental settings i.e. distance of cameras from workers, size of calibration board, 

indoors/outdoors monitoring, c) the range of workers’ speed values while at “stop” is more 

representative for classifying the 4D sub-trajectories compared to the speed values while at “move”, as 

the latter varies due to the fact that workers also carry equipment while walking, d) the location of the 

“inactive” areas does not change often, and e) the longest duration work cycles imply problems such as 

work flow inefficiencies, congestion, disruptions and safety.  

 

5.4. Proposed methodology     

This section analyses the method of the proposed solution for monitoring the labour input of 

construction workers through their trajectory data.   

 

5.4.1. Smoothing of 4D trajectories  

This section proposes a method to remove noise from 4D trajectory data (smoothing). The overall 

proposed framework of this thesis uses a computer vision (tag-less) method (see Chapters 3 and 4) to 

calculate the 4D trajectories of workers. This way the labour productivity of workers is monitored in a 

non-obtrusive way. However, such visual methods entail noise. This is due to errors caused by the 

implementation of 2D tracking (see Chapter 3), triangulation and calibration methods (see Chapter 4). 

An example of a worker who remains almost totally still while performing an electrical task on the top 
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of a ladder (see Figure 5-11) is used to display how such types of noise, affect the quality of the 

trajectory data.  

 

 

Figure 5-11: Screenshots of a tracked worker who remains still while performing an electrical task. 

 

Given that the worker in the example of Figure 5-11 does not move, the XT, YT, and ZT time series 

should have been depicted by straight lines of zero degrees inclination. However, the ZT time series 

displays motion as shown in (a) of Figure 5-12. As a result, the worker in (b) of Figure 5-12 appears as 

if he has moved 0.45m along the X axis and 1m along the Z axis. Therefore, noise must be removed 

before classifying the 4D sub-trajectories as either part of “stop” or “move” events.  

 

 

Figure 5-12: Unsmoothed trajectory data of a non-moving worker (see Figure 5-11). (a) Time series 

along X (blue), Y (purple), and Z (green) axes. (b) Floor plane trajectory.  

 

Existing smoothing methods such as moving averages are robust for removing random noise from time 

series. They replace every data point of a time series by averaging k previous points. These methods 

either treat all data points with the same significance or consider that the most recent are more important. 

The moving average methods are: a) the simple moving average (SMA):  

 

𝑥𝑡 = 
1

𝑘
∑ 𝑥𝑡−𝑖,

𝑘−1
𝑖=0  𝑓𝑜𝑟  𝑡 = 𝑘 + 1,… , 𝑛                                         (5-1) 

 

b) the weighted moving average (WMA):  
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𝑥𝑡 =
1

∑ 𝑤𝑖
𝑘−1
𝑖=0

 ∑ 𝑤𝑖𝑥𝑡−𝑖,
𝑘−1
𝑖=0   𝑓𝑜𝑟  𝑡 = 𝑘 + 1,… , 𝑛                                (5-2) 

 

and c) the exponential moving average (EMA):  

 

𝑥𝑡 = 𝜆𝑥𝑡−1 + (1 − 𝜆)𝑥𝑡−1 = ∑ 𝜆(1 − 𝜆)𝑖𝑥𝑡−𝑘
𝑘−1
𝑖=0 + (1 − 𝜆)𝑡�̂�0,    𝑓𝑜𝑟 0 < 𝜆 ≤ 1        (5-3) 

 

where weights 𝑤𝑖 and constant λ of WMA and EMA respectively, are chosen either based on the 

experience of the user, the nature of the data or through trial and error processes (Gor & Man, 2009). 

All moving average methods are experimentally evaluated in the following section in order to choose 

the best. The problem of such smoothing methods is that they also discard non-noise peak values if a 

large smoothing step k is chosen (Guiñuinón et al., 2007). This section presents a method that searches 

for the optimum smoothing step k to alleviate this issue. It exploits the fact that all three time series 

(XT, YT and ZT) of a worker who does not move are straight lines of almost zero degrees inclination. 

Firstly, all three time series are smoothed by a randomly selected initialization step k. Secondly, simple 

linear regression fits a line  𝑓𝑡 = 𝑎𝑥𝑡 + 𝑏 to every smoothed time series that minimizes the sum of 

residuals 𝑒𝑡 = 𝑥𝑡 − 𝑓𝑡 (see Figure 5-13). 

 

 

Figure 5-13: Fitting a line to a time series.  

 

Smoothing and fitting are repeatedly performed for all three time series. During this searching, the 

smoothing step k is increased successively. Two metrics are commonly used for measuring this 

goodness of fit. These metrics are: a) the adjusted coefficient of determination or adjusted R-

squared 𝑟𝑎𝑑𝑗
2  that is expressed as:   

𝑟𝑎𝑑𝑗
2 = 1 −

(1 − 𝑟2)(𝑛−1)

(𝑛−𝑗−1)
                                                  (5-4) 

 

where 𝑛 is the sample size, and 𝑗 is the number of independent variables in the regression equation, and 

b) the coefficient of determination 𝑟2: 

𝑟2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
                                                          (5-5) 
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where  𝑆𝑆𝑟𝑒𝑠 is the total sum of squares:  

 

𝑆𝑆𝑡𝑜𝑡 = ∑ (𝑥𝑡 − �̅�)2
𝑡                                                      (5-6) 

 

and 𝑆𝑆𝑡𝑜𝑡 is the total sum of residuals:  

 

𝑆𝑆𝑟𝑒𝑠 = ∑ (𝑥𝑡 − 𝑓𝑡)
2

𝑡                                                     (5-7) 

 

The adjusted R-squared  𝑟𝑎𝑑𝑗
2  is selected as it penalizes the addition of variables that do not contribute 

to the goodness of fit. Therefore, the proposed method searches repeatedly for the optimum smoothing 

step k, if 𝑟𝑎𝑑𝑗
2  of all three time series (XT, YT, ZT) increases, and if the fitted lines have inclinations 

larger than zero degrees. It terminates searching, if either  𝑟𝑎𝑑𝑗
2  of any of the three time series (XT, YT, 

ZT) decreases, or if straight lines of almost zero degrees inclination are fitted to all time series. Finally, 

the value of step k, when searching terminates is used to smooth the 4D trajectories. Algorithm 5-1 

illustrates the searching loop for the calculation of the optimum smoothing step k. 

 

Algorithm 5-1: Loop of proposed smoothing method. 

1: for each k 

2:    for each 𝑋𝑇, 𝑌𝑇, 𝑍𝑇   

3:    Apply simple linear regression  

4:    Calculate 𝑟𝑎𝑑𝑗𝑋𝑇

2 , 𝑟𝑎𝑑𝑗𝑌𝑇

2 , 𝑟𝑎𝑑𝑗𝑍𝑇

2 , 𝑎𝑋𝑇 , 𝑎𝑌𝑇 , 𝑎𝑌𝑇 

5:    If 𝑟𝑎𝑑𝑗𝑋𝑇𝑘

2 ≥ 𝑟𝑎𝑑𝑗𝑋𝑇𝑘−1

2 & 𝑟𝑎𝑑𝑗𝑌𝑇𝑘

2 ≥ 𝑟𝑎𝑑𝑗𝑌𝑇𝑘−1

2 & 𝑟𝑎𝑑𝑗𝑍𝑇𝑘

2 ≥ 𝑟𝑎𝑑𝑗𝑍𝑇𝑘−1

2 & 𝑎𝑋𝑇 , 𝑎𝑌𝑇 , 𝑎𝑌𝑇 > 00  

6:       k = k+1; 

7:       continue; 

8:    else  

9:       Smoothing step = k 

10:       break; 

11:    end if 

12: end for 

 

5.4.2. Partitioning of 4D trajectories  

The partitioning of trajectories allows the detection of work cycles that are hidden in small segments of 

single trajectories. The proposed method partitions the 4D trajectories in a way that describes the best 

proposed semantic “stop” and “move” events. Therefore it is essential at this point to clearly define 

these two semantic events. Workers while at “stop” perform tasks. This entails either torso movement 

(i.e. forward bending, backward bending, sideways bending, and rotation) or sideway steps (see Figure 

5-14). On the other hand, workers while at “move” either walk along the floor plane or along the vertical 

plane (e.g. climbing a ladder).  
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Figure 5-14: Range of workers’ movements while at “stop” event.  

 

The partitioning is time-based. It is known that the stride length of a person is 0.815m on average 

(Barreira et al., 2010). This is almost half of the 1.4m that a walking person covers on average in 1sec 

(Boonstra et al., 1993). This entails that in 1sec a worker who makes sideway steps while at “stop” has 

smaller speed along the floor plane than a worker who walks while at “move”. Therefore, every single 

4D trajectory 𝑇𝑤 is partitioned into 𝑁 4D sub-trajectories 𝑆𝑤 = {𝑠𝑖}𝑖=1…𝑁 of equal duration 𝑑𝑠. A 4D 

sub-trajectory 𝑠𝑖 is then described by a representative 3D speed value that depicts the motion of a worker 

along the floor and the vertical plane and is expressed as follows:  

 

‖�⃗�𝑖‖
̅̅ ̅̅ ̅̅

𝑦 =
|𝑦𝑡𝑎+𝑑𝑠

−𝑦𝑡𝑎|

𝑑𝑠
                                                                (5-8) 

  ‖�⃗�𝑖‖
̅̅ ̅̅ ̅̅

𝑥𝑧 =
√(𝑥𝑡𝑎+𝑑𝑠

−𝑥𝑡𝑎)
2
+ (𝑧𝑡𝑎+𝑑𝑠

−𝑧𝑡𝑎)
2

𝑑𝑠
                                                (5-9) 

 

5.4.3. Classification of 4D sub-trajectories   

This section classifies the 4D sub-trajectories {𝑠𝑖}𝑖=1…𝑁 of workers as either part of “stop” or “move” 

events. If the speed value of a 4D sub-trajectory 𝑠𝑖 falls within the range of “stop” speed values, then it 

is classified as part of a “stop” event, if not, then it is classified as part of a “move” event. This range is 

experimentally defined in the following section. Both, the speed along the floor plane ‖�⃗�𝑖‖𝑥𝑧 and the 

speed along the vertical plane ‖�⃗�𝑖‖𝑦 must return a positive “stop” to ensure a correct classification. If 

either ‖�⃗�𝑖‖𝑥𝑧 or ‖�⃗�𝑖‖𝑦 returns a positive “move”, then the 4D sub-trajectory is classified as part of a 

“move” event. The classification along the floor plane is expressed as follows:  

 

‖�⃗�𝑖‖𝑥𝑧 = {
“stop”, 𝑖𝑓: ‖�⃗�𝑖‖𝑥𝑧 ≤ [0, ‖�⃗�𝑖‖𝑥𝑧𝑠𝑡𝑜𝑝

]

“move”, 𝑖𝑓: ‖�⃗�𝑖‖𝑥𝑧 > [0, ‖�⃗�𝑖‖𝑥𝑧𝑠𝑡𝑜𝑝
]
                              (5-10) 

 

and along the vertical plane as:  
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‖�⃗�𝑖‖𝑦 = {
“stop”, 𝑖𝑓: ‖�⃗�𝑖‖𝑦 ≤ [0, ‖�⃗�𝑖‖𝑦𝑠𝑡𝑜𝑝

]

“move”, 𝑖𝑓: ‖�⃗�𝑖‖𝑦 > [0, ‖�⃗�𝑖‖𝑦𝑠𝑡𝑜𝑝
]
                                  (5-11) 

 

where ‖�⃗�𝑖‖𝑥𝑧𝑠𝑡𝑜𝑝
, ‖�⃗�𝑖‖𝑦𝑠𝑡𝑜𝑝

 is the upper threshold of a worker´s speed values along the floor plane and 

the vertical plane respectively while at “stop”.  

 

5.4.4.  Clustering of 4D sub-trajectories into work cycles  

This section presents how all classified 4D sub-trajectories are clustered into work cycles. Initially, all 

4D sub-trajectories that are sequentially classified as either part of “stop” or “move” events are grouped 

into semantic events of larger duration. Then, the proposed clustering method relies on the main 

assumption of this thesis as shown in Chapter 2 to detect work cycles {𝑐𝑖}. This assumption dictates that 

if one “move” event is followed by one “stop” and one “move” event sequentially, then all 4D sub-

trajectories that belong to these three sequential semantic events depict a work cycle 𝑐𝑖. This is 

expressed as follows:  

  

Work Cycle 𝑐𝑖 = "move"t𝑒𝑛𝑑

t𝑠𝑡𝑎𝑟𝑡 + "stop"t𝑒𝑛𝑑

t𝑠𝑡𝑎𝑟𝑡 + "move"t𝑒𝑛𝑑

t𝑠𝑡𝑎𝑟𝑡                        (5-12) 

 

The starting t𝑠𝑡𝑎𝑟𝑡 and ending t𝑒𝑛𝑑 time of a semantic event is equal to the starting and ending time of 

its first and last 4D sub-trajectory respectively. Figure 5-15 illustrates how the semantic events are 

clustered into work cycles. The minimum duration of a detectable semantic event is equal to 1sec given 

that the proposed method partitions the 4D trajectories every 1sec.  

 

 

Figure 5-15: Clustering of 4D sub-trajectories into three work cycles 𝑐𝑖 (blue, yellow, green).  
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5.5. Experiments and results 

This section presents the performance of the method proposed in this chapter in terms of: a) detecting 

work cycles, and b) determining the labour input of construction workers.   

The performance of the proposed method is evaluated with two data sets. The first, (data set 

steel fixing) captures one worker while performing a steel fixing task. The second, (data set electrical) 

consists of two workers who perform an electrical task. Data set steel fixing was recorded at a pre-

manufacturing facility (Bison), whilst data set electrical was collected at a jobsite in Cambridge (James 

Dyson building). The total durations of data sets steel fixing and electrical are 35minutes and 

51.5minutes respectively. Figure 5-16 illustrates the camera setup for each data set.   

 

 

Figure 5-16: Tested data sets (from top to bottom: data set steel fixing, data set electrical).  

 

Figure 5-17 illustrates with yellow dotted cubes the tracked areas. Because of the limited number of 

cameras used, the proposed method could not track the workers at “inactive” areas (i.e. rest, office, and 

materials’ storage areas). Due to this, the time the workers spend outside the tracked areas is 

automatically returned as unproductive. This section classifies as abnormal those work cycles that last 

at least 50% longer. This threshold is not experimentally defined given that the scope of the overall 

proposed framework is to approach the monitoring of labour productivity in a generalized way for all 

types of tasks.  
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Figure 5-17: Tracked areas (from left to right: worker “1” of data set steel fixing, workers “2” and “3” 

of data set electrical).  

 

The ground truth consists of 85 work cycles in total. This sample corresponds to a confidence level of 

95% (𝑍𝑐𝑟𝑖𝑡 = 1.960) and a limit of error D equal to ±6% based on the following equation (Eng, 2003): 

 

𝑛 =  
4𝑍𝑐𝑟𝑖𝑡

2𝑝(1−𝑝)

𝐷2                                                         (5-13) 

 

In the above equation, work cycles are the sample type. Therefore, the p variable which is the proportion 

of sample with a specific characteristic, is equal to the proportion of the unproductive work cycles. 

Productive work cycles are those when workers actually perform sub-tasks while at “stop”, whilst 

unproductive cycles depict workers who are not involved in any construction-related task. In total, steel 

and electrical data sets contain 78 productive work cycles and 7 unproductive. Hence, the p variable is 

equal to 8%.   

Precision, recall, and accuracy metrics are used for the evaluation of this chapter’s proposed 

method. Precision is the fraction of the total number of correctly detected work cycles (TP, True 

Positive) over the total number of incorrectly and correctly detected work cycles (TP + FP, True Positive 

+ False Positive). Recall depicts the detection completion level and is equal to the total number of 

correctly detected work cycles (TP) divided by the total number of correctly detected and incorrectly 

not detected work cycles (TP + FN, True Positive + False Negative). Lastly, accuracy is defined by the 

number of correctly detected work cycles (TP) and the number of work cycles which were correctly not 

detected (TN, True Negative), over the total sum of work cycles. The work cycles are manually 

measured for the evaluation of the proposed method.  

 

5.5.1. Definition of parameters  

This section defines experimentally the parameters of this chapter’s proposed methodology.  
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5.5.1.1 Definition of smoothing parameters  

This section determines experimentally the smoothing step k in order to remove noise from the 4D 

trajectories of workers. This section uses the data sample of the still (non-moving) worker of previous 

Figure 5-11 to achieve this. The method proposed in 5.4.1 returns a smoothing step k equal to 80 points 

with EMA, 459 with for SMA and 570 points with WMA (see Table 5-1). 

 

Table 5-1: Smoothing step k of the method proposed in section 5.41 with SMA, EMA, and WMA. 

Method Smoothing step (k)  

SMA 459 

λ 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

EMA 71 77 77 80 72 73 70 57 14 

WMA 570 

 

Both the speed values along the floor {‖�⃗�𝑖‖𝑥𝑧}𝑖=1…𝑁 and the vertical {‖�⃗�𝑖‖𝑦}
𝑖=1…𝑁

 plane must be close 

to zero given that smoothing was performed on trajectories of a non-moving worker. Figure 5-18 

illustrates the 3D speed values of this worker for each of the smoothing steps of Table 5-1.  

 

 

Figure 5-18: 3D speed values of the smoothed trajectory data of a non-moving worker (see Figure 5-11).  

Speed of worker along the floor plane {‖�⃗�𝑖‖𝑥𝑧}𝑖=1…𝑁 with SMA (a), WMA (c), and EMA (e). Speed of 

worker along the vertical plane {‖�⃗�𝑖‖𝑦}
𝑖=1…𝑁

 with SMA (b), WMA (d), and EMA (f).   
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In Figure 5-18 it appears that EMA performs the worst compared to SMA and WMA, whilst the latter 

performs the best as it returns the lowest 3D speed values. The speed error along the vertical plane with 

WMA is almost equal to zero. However, the speed error along the floor plane reaches the 1.5meters/min. 

This is because the smoothing method of section 5.4.1 did not manage to fit straight lines of zero 

inclination to all time series due to the large noise of the ZT time series as seen in previous Figure 5-12. 

Figure 5-19 shows that all three smoothed time series (XT: blue, YT: purple and ZT: green) are almost 

perfectly linear. The maximum distance error is equal to 4cm along the X axis and equal to 10cm along 

the z axis. The smoothing step k with WMA (𝑘 = 570) is finally selected as it returns the smallest speed 

error.  

 

 

Figure 5-19: Smoothed trajectory data of the almost still worker of previous Figure 5-11. (a) Smoothed 

time series of X (blue), Y (purple), and Z (green) axis.  (b) Smoothed floor plane trajectory. 

 

5.5.1.2 Definition of classification parameters   

Worker “1” from data set electrical was randomly selected in order to experimentally determine the 

range of 3D speed values of any worker while at “stop”. This worker performs a steel fixing task for 

17minutes. During this time he is not visible from the cameras for 4.15minutes. The performance of the 

proposed classification method is manually measured for different ranges of 3D speed values through 

precision, recall, and accuracy. The 3D speed values are normalised by dividing: a) the speed values 

along the floor plane with the known average human walking speed (Boonstra et al., 1993), and b) the 

speed values along the floor (ΧΖ) plane with the known average climbing speed (Chang et al., 2004).  

Figure 5-20 shows that the best performance was achieved for a range of [0, ‖�⃗�𝑖‖𝑥𝑧𝑠𝑡𝑜𝑝
] =

[0, 0.4] along the floor plane, and for a range of [0, ‖�⃗�𝑖‖𝑦𝑠𝑡𝑜𝑝
] = [0, 0.6] along the vertical plane. For 

these ranges of 3D speed values, the proposed method returns an accuracy, precision, and recall of 

100% in terms of detecting work cycles. Therefore, they are selected in order to evaluate the 

performance of the proposed method.  
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Figure 5-20: Precision, recall, and accuracy graphs for the determination of the range of speed values 

of any worker while at “stop” along the (a) floor [0, ‖�⃗�𝑖‖𝑥𝑧𝑠𝑡𝑜𝑝
], and (b) vertical [0, ‖�⃗�𝑖‖𝑥𝑧𝑠𝑡𝑜𝑝

] plane.  

 

Figure 5-21 illustrates the normalized speed values {‖�⃗�𝑖‖𝑥𝑧}𝑖=1…𝑁 along the floor plane of worker “1”.  

It displays with green colour the parts of the diagram that correspond to “moves” and with red colour 

the time the worker was not visible from the cameras.  

 

 

Figure 5-21: Normalized speed values of worker “1” along the floor plane {‖�⃗�𝑖‖𝑥𝑧}𝑖=1…𝑁. 

 

5.5.2. Evaluation of work cycles’ detection  

This section evaluates the performance of the method presented in this chapter in terms of translating 

the trajectory data into labour input. It colours red the unproductive, yellow the abnormal productive 

and green the normal productive work cycles. 

 

Data set steel fixing  

This data set consists of two recordings (part A, B) with a duration of approximately 17minutes each. 

Both recordings were collected the same day. Table 5-2 shows the ground truth of the manually 

collected work cycles. In total, worker “1” performed 29 work cycles that depict the following sub-
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tasks: a) fixing steel re-bars, b) picking re-bars or equipment, and c) reading drawings. Only one is 

unproductive, whilst none of the productive work cycles corresponds to idle time.  

 

Table 5-2: Manually collected ground truth of semantic “stops” of worker “1” (data set steel). 

Part A (GT) Part B (GT) 

#         Start - End #         Start - End #         Start - End 

1. 00:00:033-0:05:105(TN) 11. 00:00:033-00:13:680(TN) 21. 14:15:388-15:02:268(FN) 

2. 00:12:645-03:37:884(TP) 12. 00:19:919-00:21:287(TN) 22. 15:03:670-16:15:175(TP) 

3. 03:39:153-07:48:035(TP) 13. 00:25:258-00:30:697(TP) 23. 16:18:645-16:28:988(TP) 

4. 07:50:036-11:41:067(TP) 14. 00:33:867-00:34:768(FN) 24. 16:32:359-16:42:102(TP) 

5. 11:42:268-11:44:070(TP) 15. 00:37:771-01:24:150(TP) 25. 16:47:173-17:02:422(TP) 

6. 11:52:545-15:31:798(TP) 16. 01:28:855-02:36:322(TP) 26. 17:05:658-17:08:628(FN) 

7. 15:35:101-15:40:273(TP) 17. 02:40:293-02:47:667(FN) 27. 17:09:896-17:18:171(TP) 

8. 15:45:645-16:49:609(TP) 18. 02:49:202-02:51:071(FN) 28. 17:23:943-17:29:416(FN) 

9. 15:57:317-17:02:989(TP) 19. 02:52:205-05:53:687(FN) 29. 17:30:517-17:41:227(TP) 

10 17:11:131-17:42:962(TP) 20. 05:55:021-14:14:087(TP)   

Start/End → min:sec:msec 

 

The proposed method detects 9 TP, 1 TN, 0 FP and 0 FN work cycles in part A, and 10 TP, 2 TN, 7 FN 

and 1FP work cycles in part B. The pie charts in these figures show the durations of the detected work 

cycles. The 3 TN results (#1, #11, and #12) result from the way trajectories are smoothed. The 

smoothing step k (see section 5.4.1) is equal to 19sec if divided by camera frame rate i.e. 
𝑘

𝑓𝑝𝑠
=

570

30
. 

Hence, all smoothed time series are 19sec shorter in length at the beginning compared to the 

unsmoothed. Hence, work cycles that fall within the initial 19sec cannot be detected. Table 5-2 confirms 

that all TN results occur at the beginning of each recording. The missed #17 and the 1FP work cycles 

of part B are due to instabilities of the implemented computer vision-based 2D tracking method. All the 

rest FN work cycles are of short duration (< 4sec). This shows that that the proposed method does not 

perform well in terms of detecting work cycles of such short duration.  

In Part A, the work cycle #3 shows that worker “1” was unproductive i.e. definitely not 

performing the steel fixing task, for 4.15minutes. Work cycles #5, and #7 to #10 are all classified as 

normal productive whilst the work cycles with the largest duration #2, #4, and #6, are all classified as 

abnormal productive (see  (a) in Figure 5-22). In part B, nine out of ten work cycles of this recording, 

are returned as normal (#13, #15, #16, #22 to #25, #27 and #29) and only one is classified as abnormal 

(#20) (see (b) in  Figure 5-22). The interesting observation about this recording, is that the abnormal 

cycle has a duration of 11.56minutes which is by far the largest compared to the rest cycles of both parts 

A and B. This raises an ambiguity about the performance of worker “1” during this time. It can be easily 

observed, if we check the video footages at the exact time the abnormal cycle #20 occurred, that worker 

“1” could not fit a reinforcing steel bar in the formwork due to complexity of drawings. This is a 

common issue that affects labour productivity negatively and is identified as one of the on-site factors 

in Chapter 1. If we sum all the TP normal and abnormal work cycles, then the labour input of the worker 
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“1” is equal to 28.29minutes for both parts (A, B). The manually calculated labour input is equal to 

30.62minutes. Therefore, the proposed method measured the total labour input of the steel worker with 

an accuracy of 92%.   

 

 

Figure 5-22: Detected work cycles of worker “1” from data set steel fixing part A (a), and B (b). 

 

Data set electrical  

This data consists of three recordings (part A, B, C) that were all collected the same day. The duration 

of part A is 12minutes, of part B is 7minutes and of part C is 11minutes. Table 5-3 and Table 5-4 

illustrate the manually collected work cycles (ground truth/GT) of worker “2” and worker “3” 

respectively. Overall, worker “2” performed 24 work cycles and worker “3” performed 32. From the 

total work cycles of both workers, only 6 are unproductive. The rest 50 are productive work cycles that 

depict sub-tasks such as picking of material or equipment and placing of electrical cables. None of the 

productive work cycles of both workers corresponds to idle time.  

The proposed method detects 17 TP, 3 TN, 1 FP and 4 FN for worker “2”, and 22 TP, 3 TN, 1 

FP and 7 FN for worker “3” for all three A, B, and C parts. Similarly to data set steel, all TN results of 

data set electrical of both workers are due to the shortening of the length of trajectories by 19sec. These 

TN are detected either at the beginning of each recording (see #18 and #19 for worker “2”) or when 

workers re-enter the camera field of view (see #12 for worker “2”, and #3, #9, #10 for worker “3”). The 

proposed method fails again to detect work cycles of relatively short duration (< 4sec). Only, the #21 

work cycle of worker “3” that lasts 16sec is missed due to performance issues of the implemented 

computer vision-based 2D tracking method. Such an example is presented in Figure 5-23. The same 

holds for all FP work cycles of this data set.  
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Figure 5-23: Significant fluctuation of implemented computer vision-based 2D tracking method.  

 

Table 5-3: Manually collected ground truth of semantic “stops” of worker “2” (data set electrical).  

Part A (GT) Part B (GT) Part C (GT) 

#         Start - End #         Start - End #         Start - End 

1. 00:00:033-03:48:261(TP) 8. 00:00:033-02:26:513(TP) 18. 00:00:033-00:01:868(TN) 

2. 03:50:263-03:56:569(TP) 9. 02:29:549-02:32:819(FN) 19. 00:03:003-00:08:341(TN) 

3. 04:02:375-07:46:265(TP) 10. 02:46:566-02:48:134(TP) 20. 00:14:948-04:20:593(TP) 

4. 07:55:641-08:11:190(TP) 11. 02:50:370 03:18:064(TP) 21. 04:23:963-04:34:407(TP) 

5. 08:15:561-08:38:551(TP) 12. 03:20:833-03:24:804(TN) 22. 04:37:610-04:39:412(FN) 

6. 08:40:219-08:41:954(TP) 13. 03:33:346-03:44:857(FN) 23. 04:41:381-04:43:983(FN) 

7. 08:50:463-11:49:608(TP) 14. 03:47:894-05:49:916(TP) 24. 04:47:253-11:07:166(TP) 

  15. 05:50:016-05:51:584(TP)   

  16. 05:51:584-06:43:636(TP)   

  17. 06:58:518-07:00:653(TP)   

Start/End → min:sec:msec 

 

Table 5-4: Manually collected ground truth of semantic “stops” of worker “3” (data set electrical). 

Part A (GT) Part B (GT) Part C (GT) 

#         Start - End #         Start - End #         Start - End 

1. 00:00:033-05:16:049(TP) 18. 00:00:033-07:00:420(TP) 19. 00:00:033-05:52:185(TP) 

2. 05:23:823 05:31:331(TP)   20. 05:57:690-06:03:329(FN) 

3. 05:33:566-05:39:839(TN)   21. 06:08:201-06:24:250(FN) 

4. 05:41:974-05:43:876(FN)   22. 06:27:353-06:33:025(TP) 

5. 05:53:920-06:55:748(FN)   23. 06:35:128-06:36:896(TP) 

6. 07:04:824-07:07:593(TP)   24. 06:50:176-06:53:246(FN) 

7. 07:11:063-07:31:017(TP)   25. 07:02:422-07:09:128(TP) 

8. 07:33:920 08:17:263(TP)   26. 07:11:164-07:25:845(TP) 

9. 08:18:698-08:21:667(TN)   27. 07:28:414-07:30:283(TP) 

10. 08:25:872-08:33:145(TN)   28. 07:36:856-07:52:805(TP) 

11. 08:36:749-08:39:652(FN)   29. 07:57:877-08:00:580(TP) 

12. 08:41:988-08:42:655(FN)   30. 08:11:757-09:24:063(TP) 

13. 08:45:992-09:04:911(TP)   31. 09:26:566 09:28:634(TP) 

14. 09:08:180-09:13:286(TP)   32. 09:39:178-11:07:166(TP) 

15. 09:36:075-09:56:562(TP)     

16. 10:01:000-10:13:746(TP)     

17. 10:19:352-11:49:608(TP)     

Start/End → min:sec:msec 
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Figure 5-24 shows that worker “2” performed 7 abnormal work cycles (#1, #3, #7, #8, #14, #20 and 

#24), 7 normal (#2, 5, #6, #10, #16, #17, and #21) and 3 unproductive (#4, #11 and #15). All abnormal 

work cycles have durations close to 3minutes. On the other hand, all 4 normal work cycles have very 

short durations of less than 1minute. Therefore, not any particular “suspicious” performance, that could 

imply work flow issues or negatively influencing factors, is obvious. The proposed method returns a 

total labour input equal to 26.21minute for worker “2”. The manually measured labour input is 

27.55minutes. Therefore, the accuracy of the proposed method in terms of estimating the total labour 

input is equal to 95%.  

 

 

Figure 5-24: Detected work cycles of worker “2” from data set electrical part A (a), B (b), and C (c). 

 

Figure 5-25 shows that worker “3” performed 3 unproductive work cycles (#2, #8, and #31) of short 

duration (< 1minute), 3 abnormal (#1, #18 and #19) that last close to 6minutes and 16 normal (#6, #7 

#13 to #17, #22, #23, #25 to #30, and #32) with a duration less than 1minute. If we sum up all normal 

and abnormal productive cycles, then the total labour input of worker “3” is equal to 25.55minutes. This 

compared to the 26.35minutes of the ground truth returns an accuracy of 97% in terms of estimating 

the labour input. Overall, the total labour input of both workers “2” and “3” is similar. The only 

difference, is that worker “3” has longer in duration abnormal cycles (5.88mintes on average) compared 

to worker “2” (3.4minutes on average). If we go back to the video data, we observe that this is because 

worker “3” spends more time to pick up equipment and materials compared to worker “2”. This is a 

work flow issue that could be resolved if materials were brought either closer to both workers or if one 

worker was assigned to assist workers “2” and “3” until they finish their electrical task on top of the 

ladders. However, it is on the project manager’s judgment to apply changes on the workflow of the 

electrical task if he/she is not satisfied with the labour output of workers. The advantage of the method 
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proposed in this last chapter is that it provides all the information that a project manager needs in order 

to monitor the labour productivity of all three workers proactively.  

 

 
Figure 5-25: Detected work cycles of worker “3” from data set electrical part A (a), B (b), and C (c). 

 

Table 5-5 summarizes the performance of the method proposed in this chapter in terms of detecting 

work cycles for the purpose of converting the trajectory data into labour input. This table presents in 

detail the exact number of the total: a) correctly detected (TP), b) incorrectly detected (FP), c) 

incorrectly not detected (FN), and d) correctly not detected (TN) work cycles for both data set steel and 

data set electrical. The method features 95% precision, 76% recall, and 76% accuracy. The small 

number of FP results shows that the proposed method is not significantly affected by noise, whilst the 

high rate of FN indicates that the proposed method is not efficient in detecting work cycles of short 

duration (<4sec).  

 

Table 5-5: Confusion matrix of proposed method for detecting work cycles. 

 

 

 

 

Table 5-6 shows that the proposed method returns an accuracy of 95% on average in terms of calculating 

the labour input i.e. the time workers spend on performing construction-related tasks. This accuracy 

A
ct

u
a

l 

 Predicted    

 Yes No    

Yes TP FN 58 18 

No FP TN 3 9 
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outperforms the 59% of Jun Yang et al. (2016) and the 86% of Gong & Caldas (2011) and addresses 

the second aim of this thesis.  

 

Table 5-6: Quantitative summary of the labour input of the monitored steel fixing and electrical task.  

 GT  

labour Input  

Detected  

labour input  
Accuracy 

Worker “1” (data set steel) 30.62 28.29 92% 

Worker “2” (data set electrical) 27.55 26.21 95% 

Worker “3” (data set electrical) 26.35 25.55 97% 

Average  95% 

 

An advantage of the proposed method is that it does not need any prior knowledge about the type or the 

number of tasks. Therefore it is applicable to multiple workers at the same time. Additionally, workflow 

inefficiencies and potential management issues can be identified through the abnormal productive 

cycles or through the trajectories of workers. Up to date, project managers have to manually draw the 

spaghetti diagrams that depict workers’ motion on the floor plane (Nyström & Per, 2009) to achieve 

this. The main limitation of the proposed method is that it also detects as productive work cycles that 

depict idle time i.e. workers simply standing without performing any task. However, as shown in chapter 

2, idle time is not one of the main reasons of low labour productivity in the construction sector. Another 

limitation relates to the lack of many cameras. Due to this restriction, the benefit of monitoring workers 

across the entire range of jobsites is not efficiently evaluated.   

In summary, with the method presented in this chapter, the proposed framework monitored the 

labour productivity of three workers: a) accurately, through the detection of work cycles, b) regardless 

of any knowledge of the type or of the number of tasks these three workers performed, c) time and cost 

efficiently, as none of the intermediate methods of the proposed framework required any human 

intervention or tags besides the cameras that in the real case scenario would be the cameras of the 

surveillance system, and d) unobtrusively, due to the computer vision-based methods employed in the 

proposed framework. For all these reasons, it is proved that the framework presented in this thesis can 

monitor the labour productivity of multiple construction workers at the same time i.e. proactively. This 

addresses the third aim of this thesis. 

 

 

5.6. Chapter overview  

The current state of research as presented in Chapter 2 has not yet proposed a method that performs a 

non-obtrusive, accurate, cost efficient and generalized monitoring of labour productivity for 

construction workers. Existing studies focusing on trajectory analysis for security purposes, fail to 

detect repetitive patterns in trajectories of workers due to limitations of clustering methods. Such 

clustering methods struggle: a) to cluster large data sets accurately, due to the computational and time 
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complexity that grows in parallel to the size of the data, and b) to achieve automation as clustering 

depends on users’ estimations. This chapter presents a clustering method that addresses these issues in 

order to detect repetitive patterns in the trajectories of construction workers that depict work cycles. 

The total duration of these work cycles is equal to the labour input of workers.  

The novelty of the proposed method lies in clustering. Firstly, the 4D trajectories of workers 

are smoothed in order to remove noise. Then, they are segmented into 4D sub-trajectories and classified 

as either “move” or “stop” semantic events. The former event depicts the motion of workers along the 

floor plane, whilst the latter depicts the motion of workers along the vertical plane. The classified 4D 

sub-trajectories are finally grouped into clusters based on the main assumption of this thesis that: every 

work cycle is described by two semantic “move” events and one semantic “stop” event. 

The main limitations of the method presented in this chapter are the following: a) work cycles 

that depict workers who while at “stop” do not perform any task (idle time) are mistakenly detected as 

productive, and b) the productivity of workers who perform tasks mainly characterized by motion such 

as transferring materials, supervising work progress etc. cannot be monitored. This is because the 

“move” events depict the actual labour input instead of the “stop” events in such cases. This second 

limitation indicates that the automated monitoring of workers presented in this chapter cannot be applied 

to the entire range of construction related tasks. Only if the proposed method was updated with the type 

of tasks of workers it would be possible to turn also the detected “move” events into labour input.  

The method presented in this chapter is not tested on complicated scenarios involving multiple 

workers performing different tasks. This is mainly due to the time restrictions of this research project. 

However, the proposed productivity monitoring method is successfully tested on a statistically 

sufficient sample size which was collected at real construction jobsites. In particular, it features a 

precision of 95%, a recall of 76% and an accuracy of 76% in terms of detecting work cycles and an 

average accuracy of 95% in terms of determining the total productive time (labour input) that three 

workers spent on a steel fixing and an electrical task. Such high performance shows that the proposed 

productivity monitoring method is accurate, and hence addresses the second aim of this thesis. Finally, 

the combined results of chapters 3, 4 and 5 address the third and final aim of this thesis as: a) the method 

presented in chapter 5 monitors the labour productivity of three workers accurately without any prior 

knowledge about the types of tasks the workers performed, and b) the methods of chapters 3 and 4 show 

that multiple workers can be tracked along the jobsite simultaneously. These two achievements entail 

that the framework presented in this thesis can monitor the labour productivity proactively i.e. monitor 

the labour productivity rates of multiple construction workers at the same time on a daily basis.  

 

 

 

 

 



Detection of work cycles for monitoring labour productivity 

 

Eirini Konstantinou – October 2017                                                   131 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Eirini Konstantinou – October 2017                                             132 

6 
 

6.Conclusions and future work 
 

 

This final chapter, summarizes the research presented in this thesis, highlights the contributions 

achieved and suggests a number of directions for future work.  

 

6.1. Conclusions  

Labour productivity is the fraction of the labour output over the labour input. In construction, the labour 

input is equal to the time workers spend on construction tasks, whilst the output quantifies what workers 

achieved during this time such as the number of concrete buckets poured, the number of steel cages 

prepared, the meters of brick walls constructed etc.  

Chapter 1 describes the problem of labour productivity in construction. It is reported that, since 

1960 up to date, the construction sector has not managed to improve labour productivity. On the 

contrary, the non-farm industries (i.e. part of the domestic economy that does not include activities 

related to private households, government, farm and no profit organizations) have managed to double 

their labour productivity. The numerous factors that affect labour productivity in a negative way are 

behind this lack of growth in construction. Most of these factors, with a percentage of 64.77%, are easily 

detectable during the monitoring of labour productivity. They are problems that appear on-site and are 

related to overtime, safety, resources, scheduling, rest areas, transportation, congestion, disruptions, site 

layout, supervision, rework, skills, fatigue, absenteeism, late arrivals and unscheduled breaks. 

Considering that these factors are not periodic phenomena, significant amounts of time might be lost 

until they are detected. Therefore, monitoring of labour productivity should be performed proactively. 

However, this is not feasible with current practices. Such practices are extremely labour intensive and 

time consuming as they rely on manual observation and work sampling techniques.  

Chapter 2 discusses the current state of research in monitoring of labour productivity. Region-

based and activity-based studies focused on the calculation of the labour input in order to achieve this. 

The labour output is not researched by current studies as its calculation is quite straight forward through 

visual inspection at the end of work shifts. The region-based studies monitor the labour input by linking 
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the location of workers to predefined zones of specific management interest (e.g. excavation zone, brick 

laying zone). If workers are located at the correct zones given their assigned task, then the time they 

spend at these zones is simultaneously considered productive. On the other hand, the activity-based 

studies monitor the labour input by detecting and linking the activities of workers (e.g. bending, 

stretching, sound, strain) to specific tasks (e.g. nailing, brick laying). However, none of the existing 

studies has proposed a method for monitoring labour productivity of multiple construction workers at 

the same time, accurately, unobtrusively, time and cost efficiently. Therefore, the main objective of the 

research conducted in this thesis is to develop a fully automated computer vision-based framework for 

monitoring labour productivity of construction workers regardless of the type or number of tasks they 

perform through their work shift. The specific aims are to: a) track workers unobtrusively, b) extract 

the labour input of construction workers accurately, and c) monitor the labour productivity of 

construction workers proactively. This thesis hypothesizes that task productivity of construction 

workers can be monitored through their trajectory data. 

Chapter 2 closes with a detailed summary of the overall proposed framework for monitoring 

labour productivity of construction workers. The research presented in this thesis assumes that all work 

cycles fit to the same pattern. The total duration of these work cycles per worker is equal to his/her 

labour input. The proposed framework is formed based on this assumption. It consists of two main 

methods which are sequentially applied. The first, performs computer vision-based 4D tracking of 

construction workers. This method uses as input the video data streamed from multiple cameras with 

overlapping field of view. The output of this tracking method are 4D trajectories of workers that depict 

their 3D location over time. The second, uses as input these 4D trajectories in order to detect work 

cycles.  

Chapter 3 describes a computer vision-based 2D tracking method of construction workers. This 

type of tracking matches the same worker across subsequent frames of a single camera (intra camera 

tracking) and returns his/her 2D trajectories. This tracking method is designed for complex working 

environments. None of the existing computer vision-based tracking methods has succeeded to track 

multiple targets like workers that share similar appearance under illumination/scale/posture variations, 

and abrupt movements in the long term. This is mainly because construction jobsites are complex 

environments due to congestion, background clutter and occlusions. This chapter proposes a novel 

computer vision-based method that tackles all these challenges. The proposed 2D tracking method 

outperforms the latest state of the art method that also focuses on tracking of construction workers. It 

returns an F-measure metric equal to 72.17% and an average distance error 𝑑𝑒𝑟𝑟𝑜𝑟 of 9.81 pixels 

compared to the 42.38% and 22.97 pixels respectively of the existing state of the art method that is used 

for comparison.  

Chapter 4 describes a computer vision-based method for matching the same workers across 

multiple cameras (inter camera) with overlapping view for automated 4D vision tracking of construction 

workers. This type of matching is challenging due to the greatly similar high visibility apparel of 
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workers, occlusions, and congestion. This chapter presents a novel method that addresses all these 

issues. The proposed matching method uses as input the output of the computer vision-based 2D 

tracking method of Chapter 3. It searches for potential matches in three sequential steps. This searching 

stops only when a positive match is returned for all workers. The first step searches for the strongest 

match by correlating 1500ms of workers’ past 2D trajectories. If this step fails to return a positive match, 

then the second step applies geometric restrictions in order to define the area within an image that most 

likely contains a positive match for a worker. If more than one potential match is detected within this 

geometrically defined area, then the proposed matching method activates the third step that correlates 

workers’ colour intensity values. The proposed matching method features a very promising 

performance of 97% precision, 98% recall, and 95% accuracy. After all workers are matched across 

multiple cameras, their 3D locations over time are calculated through the mid-point triangulation 

method. The successful performance of the method presented in this chapter addresses the first aim of 

this thesis as workers are tracked unobtrusively.  

Chapter 5 describes how the 4D trajectories of Chapter 4 are converted into labour input. This 

chapter concludes the framework presented in Chapter 2. Existing studies that focus on trajectory 

analysis for detecting abnormal behavior profiles fail to detect patterns in trajectories of workers due to 

restrictions of current clustering methods. It has been noted by previous studies, that trajectories must 

be divided into smaller sub-trajectories in order to detect patterns that “hide” in smaller segments of 

trajectories. Such segmentation automatically increases the size of the data. In addition, the trajectories 

of workers contain several patterns due to the large variety of tasks they perform. These patterns depict 

an equal number of clusters. Considering the large number of workers that must be monitored on a daily 

basis, initialization clustering parameters should be provided in an automated way for time and cost 

efficiency. However, existing clustering methods struggle with large data sets and are reliant on user-

provided initialization of parameters (e.g. number of clusters). Therefore, this chapter proposes a 

clustering method that addresses these shortcomings in order to detect repetitive patterns in trajectories 

of workers. This method is based on the assumption presented in Chapter 2 that every work cycle is 

described by two semantic “moves” and one semantic “stop”.  This assumption supports that workers 

remain at “stop” while performing tasks and “move” only to start new ones. Therefore, the labour input 

of any worker is equal to the total duration of his/her work cycles. The 4D trajectories are initially 

partitioned into smaller 4D sub-trajectories in order to detect work cycles of short duration. Then, these 

4D sub-trajectories are classified as either semantic “stop” or “move” events. The method proposed in 

this chapter detects work cycles by clustering the classified 4D sub-trajectories in accordance to the 

main assumption of this thesis.The detected work cycles are finally returned as unproductive, normal 

productive, and abnormal productive. The unproductive work cycles are detected through region-based 

classification. They depict the time workers spend at areas of the jobsite where no construction-related 

tasks take place directly. Such areas are the rest, office and materials’ storage areas given that they are 

linked to low productivity rates as shown in Chapter 1. The abnormal and normal work cycles are both 
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considered productive. Their main difference is that the former have by 50% larger duration compared 

to the latter. This threshold is arbitrarily defined by the researcher as such classification aims only to 

highlight the work cycles that consumed most of the time of workers through their work shift. This 

simplifies the assessment of workers’ performance if the labour output is not the desirable. The 

productivity monitoring method of this chapter features an accuracy of 95%, recall of 76% and precision 

of 76% in terms of detecting work cycles, and an average accuracy of 95% in terms of determining the 

total time workers spend on construction-related tasks. This time is the actual labour input of 

construction workers. This good performance addresses the second aim of this thesis. In addition, it is 

proved that labour productivity of multiple workers can be monitored at the same time as no prior 

knowledge of either the type or the number of tasks that workers perform is needed. This addresses the 

third aim of this thesis and proves true our hypothesis that task productivity of construction workers 

can be monitored through their trajectory data.  

 

 

6.2. Contributions  

This research contributes to the civil engineering community by providing an automated framework for 

monitoring the labour productivity of construction workers proactively. The developed framework 

achieves this for multiple workers at the same time regardless of the type or number of tasks that 

workers perform. More specifically, the contributions of the research conducted in this PhD are the 

following:  

 

1. Developed a novel computer vision-based method that performs 2D tracking of construction 

workers in complex environments.   

2. Developed a novel computer vision-based matching method for automated and unobtrusive 4D (3D 

location over time) tracking of construction workers.  

3. Developed a novel trajectory analysis-based method for converting the trajectory data of 

construction workers into labour input accurately. 

 

 

6.3. Recommendations for future work 

The research presented in this thesis tried to address most of the challenges related to monitoring of 

labour productivity of construction workers. However, there are still some recommendations for future 

work that could improve the efficiency of the proposed framework.  

One such recommendation would be the recognition of workers (i.e. name, task assigned). This 

could be achieved by attaching on the hard hats of workers unique identification features similar to QR 

codes. A computer vision-based method could be developed in order to detect firstly the hard hats and 
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then the QR codes. This additional information could improve both the proposed 4D tracking and the 

productivity monitoring method. With regards to the former, the proposed 4D tracking method tracks 

the 3D location of workers over time under the condition that workers are captured within the 

overlapping view of two cameras at least. If workers leave the view of all cameras and return after a 

while a new ID will be assigned to them. However, if the recognition system is added, then the proposed 

framework will attach to these workers their previous IDs the moment they re-enter the view of cameras. 

This way, all trajectories of the same worker will be automatically sorted out. With regards to the latter, 

the proposed productivity monitoring method could also generate detailed crew balance charts if the 

tasks of workers are known. This could be achieved by attaching to every detected work cycle a label 

such as hammering, pushing wheel barrel, nailing. However, this entails further research on the 

detection of a large variety of construction-related objects such as hammers, nail guns, wheel barrels, 

concrete buckets.  

A second recommendation relates to the monitoring of earthmoving equipment labour 

productivity. Although existing studies have been successful for such construction entities, there is still 

some space for improvement. Earthmoving equipment usually has an optimum productivity pace 

compared to workers. This is because the number of sub-tasks they perform are very limited. For 

instance a crane performs only two sub-tasks i.e. loading and unloading, with a relatively steady pace 

given that the cranes are usually fixed in place. Taking that into account the proposed framework could 

be able to notify the project managers about when the productivity pace (𝑤𝑜𝑟𝑘 𝑐𝑦𝑐𝑙𝑒𝑠 𝑡𝑖𝑚𝑒⁄ ) of such 

entities is less than the expected optimum. The abnormality classification method presented in Chapter 

5 could return such information if only the optimum pace was known.  

A third recommendation is to apply the framework to a larger camera network that will cover 

the entire jobsite (both “active” and “inactive” areas). The “inactive” areas as mentioned in Chapter 5, 

are the rest, office and materials’ storage areas. This way the benefits of monitoring the time workers 

spend at areas that are not directly related to construction tasks will be better evaluated. In general, the 

time spent at these areas has been proven to be responsible of low labour productivity rates in 

construction. Existing studies have proposed tagged based methods. However, such methods have not 

yet been proven applicable due to the obtrusive nature of this type of monitoring.  
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