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Summary	

	

One	of	the	biggest	innovations	in	human	prehistory	was	the	advent	of	food	production,	

consisting	of	 the	ability	 to	grow	crops	and	domesticate	animals	 for	consumption.	This	

wide-scale	 transition	 from	 hunting	 and	 gathering	 to	 food	 production	 led	 to	 more	

permanent	settlements,	and	set	in	motion	major	societal	changes.	In	western	Eurasia,	this	

revolution	spread	from	the	Near	East	into	Europe,	Africa	and	diverse	regions	of	Asia.	

Agriculture	 was	 brought	 into	 Europe	 by	 the	 descendants	 of	 early	 Anatolian	 farmers	

starting	approximately	8,000	years	ago.	But	little	was	known	of	the	people	who	developed	

agriculture	in	the	Fertile	Crescent:	where	they	all	closely	related	to	the	early	Anatolian	

farmers,	or	were	there	multiple	ethnic	groups	who	developed	agriculture	in	parallel?	In	

the	first	data	chapter,	I	use	the	first	genome	from	a	Neolithic	woman	from	Ganj	Dareh,	in	

the	Zagros	Mountains	(Iran),	a	site	with	evidence	of	early	goat	domestication	10,000	years	

ago.	I	showed	that	Western	Iran	wan	inhabited	by	populations	mostly	similar	to	Hunter-

gatherer	populations	from	the	Caucasus,	but	remarkably,	very	distinct	from	the	Anatolian	

farmers	 who	 spread	 the	 Neolithic	 package	 into	 Europe.	 While	 a	 degree	 of	 cultural	

diffusion	 between	 Anatolia,	 Mesopotamia	 and	 the	 Zagros	 highlands	 likely	 happened,	

genetic	 dissimilarity	 supports	 a	model	 in	 which	 Neolithic	 societies	 of	 that	 area	 were	

distinct.	

The	 second	 chapter	 deals	 with	 how	 Africa	 was	 affected	 by	 population	 movements,	

originating	in	the	Near	East,	during	the	Neolithic	times.	Characterising	genetic	diversity	

in	Africa	is	a	crucial	step	 for	analyses	reconstructing	human	evolution.	Using	Mota,	an	

ancient	 genome	 from	 a	male	 from	 the	 Ethiopian	 highlands,	 I	 showed	a	 backflow	 into	

Africa	by	populations	closely	related	to	the	Anatolian	Neolithic	farmers.	

The	 third	 chapter	 deals	 with	 some	 common	 problems	 and	 themes	 in	 the	 analysis	 of	

ancient	DNA,	such	as	merging	capture	datasets	with	diverse	number	of	ascertained	SNPs,	

combining	capture	and	shotgun	data	in	the	same	analysis,	and	the	effect	of	UDG	treatment	

in	ancient	samples.	I	describe	the	most	common	problems	and	their	effect	in	summary	

statistics,	 and	 propose	 a	 guide	 on	 how	 to	 work	 with	 ancient	 DNA	 to	 avoid	 data	

compatibility	problems.	
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1.	Introduction	

	

1.1.	Bioanthropology	before	the	advent	of	palaeogenetics	

	

The	emergence	and	expansion	of	Anatomically	Modern	Humans	

Anatomically	 Modern	 Humans	 (AMHs)	 constitute	 all	 the	 humans	 in	 today’s	 world:	

members	of	the	species	Homo	sapiens,	with	an	osteological	and	behavioural	modernity	

that	encompasses	the	entirety	of	modern	phenotypic	variation.	

	

The	 first	 defining	 feature	 of	 AMHs	 in	 the	 fossil	 record	 is	 osteological	modernity.	 The	

human	 archaeological	 record	 fully	 supports	 a	 slow,	 gradual	 accumulation	 of	 the	

osteological	 features	 that	 define	 AMHs,	 which	 happened	 more	 than	 200k	 years	 ago	

(Bräuer,	 2008;	McDougall	 et	 al.,	 2005).	 This	 fossil	 record	 equally	 suggests	 that	 these	

modern	morphological	features	evolved	in	Africa,	while	the	only	inhabitants	of	Eurasia	

were	the	Neanderthals	and	other	archaic	humans	(Pearson,	2008;	Weaver,	2012).		There	

are	 fossils	 in	Ethiopia	(the	Herto	and	Omo	skulls),	dated	 to	195k	and	160k	years	ago,	

which	start	to	resemble	the	form	that	AMHs	would	eventually	acquire,	although	there	is	

still	 a	 hint	 of	 robustness	 resembling	more	 archaic	 features.	 	 There	 is	 a	 temporal	 gap	

between	the	origin	of	the	fully	anatomically	modern	form	and	the	eventually	successful	

expansion	out-of-Africa	between	100k	and	60k	years	ago.	This	has	been	subject	 to	an	

intense	 paleoanthropological	 debate,	 and	 it	 is	 a	 study	 area	 where	 future	 climate	

reconstructions	and	genetic	studies	will	undoubtedly	shed	some	light	in	the	future.	

	

The	 second	 defining	 feature	 of	 all	 current	 humans	 is	 our	 current	 behavioural	

characteristics,	sometimes	labelled	as	behavioural	modernity:	an	accumulation	of	a	series	

of	 changes	 in	 cognition	 and	 behaviour,	 which	 include	 language,	 abstract	 thinking,	

symbolic	 behaviour	 (art,	music	 and	 rites),	 deep	 planning,	 and	 the	 usage	 of	 inanimate	

natural	 resources	 for	daily	 tasks	such	 as	hunting	megafauna	and	toolmaking.	 Some	of	

these	characteristics	might	however	been	already	present	in	more	archaic	humans,	such	

as	language	(D’Anastasio	et	al.,	2013).	Although	this	suite	of	developments	is	evident	from	

60k	years	ago,	Richard	Klein	in	1995	argued	that	these	changes	that	accumulated	in	order	

to	give	rise	to	AMHs	were	very	gradual	(Klein,	1995).	This	work	was	however	criticised	
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by	 John	Shea,	who	 criticises	 this	concept	of	behavioural	modernity	 in	a	context	of	 the	

strategic	 underpinnings	 of	 human	 behavioural	 variability	 in	 Palaeolithic	 Archaeology	

(Shea,	2011).	Prior	to	the	successful	out-of-Africa	expansions,	the	earliest	forms	of	AMHs	

in	 Africa	 were	 behaviourally	 indistinguishable	 from	 their	 more	 archaic,	 Eurasian	

contemporaries.	Strikingly,	the	major	behavioural	differences	between	AMHs	and	archaic	

humans	them	appeared	only	around	the	period	between	100k	and	60k	years	ago.	These	

changes	include	growth	and	formal	standardization	of	artefacts	(“points”,	“needles”,	etc.),	

appearance	 of	 art,	 evidence	 of	 spatial	 organisation	 of	 camp	 surfaces,	 evidence	 for	

transport	 of	 large	quantities	 of	 “raw”	materials	 such	 as	stones	and	bones,	 evidence	of	

ritual	art	and	elaborate	graves,	and	evidence	for	fishing	with	tools	and	other	advances	in	

human	ability	to	use	nature	(Klein,	1989;	Mellars,	1989;	Stringer	and	Gamble,	1993).		The	

most	economical	explanation	for	this	rapid	change	is	the	final	modernisation	of	the	brain,	

which	 has	 been	 argued	 that	 allowed	 for	 a	 collection	 of	 developments	 to	 be	 rapidly	

acquired.	These	developments,	 generally	 related	 to	 full	 behavioural	modernity,	would	

then	 open	 the	 door	 for	 the	 end	 of	 a	 strong	 dependence	 of	 climatic	 factors	 or	 food	

availability	 by	 AMHs,	 thereby	 allowing	 for	 successful	 expansions	 into	 Eurasia	 (Klein,	

1995).	
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Fig.	1.	While	 the	Homo	genus	has	evolved	 in	Africa,	 there	have	been	various	episodes	

through	which	Homo	populations	have	left	Africa	and	established	themselves	in	Eurasia.	

Homo	florisiensis,	a	species	of	a	yet	undiscovered	ancestry,	was	found	in	the	Flores	Island	

in	 Indonesia.	 Furthermore,	Homo	 erectus	 left	 Africa	 >	 2	million	 years	 ago,	 as	 did	 the	

archaic	human	subspecies	that	gave	rise	to	Neanderthals	and	Denisovans.	These	out-of-

Africa	 episodes,	 with	 their	 associated	 population	 bottlenecks,	 have	 been	 repeated	

throughout	hominin	history,	with	striking	similarity.	

	

Most	authors	argue	that	Homo	habilis	evolved	into	Homo	erectus	around	1.8m	years	ago.	

The	partially-incomplete	samples	of	Homo	erectus	found	in	Lake	Turkana	(Kenya)	include	

lower	jaws,	a	near-complete	but	fragmented	skull,	and	several	cranial	bones	(Rightmire,	

1992,	1993;	Wood,	1992),	featuring	for	the	first	time	a	large	brain	size,	a	larger	body	size,	

and	probably	regular	bipedalism,	in	contrast	to	a	mix	of	bipedalism	and	tree	climbing	seen	

in	 earlier	 species	 (McHenry,	 1992;	 Spoor	 et	 al.,	 1994).	 These	 developments	 allowed	

ancient	humans	to	expand	their	geographical	area	of	presence,	which	eventually	created	

the	oldest	safe	evidence	of	ancient	human	presence	in	Eurasia,	the	Dmanisi	site	in	Georgia,	
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1.81m	years	ago	(Gabunia	et	al.,	2000),	and	various	sites	in	the	Jordan	Valley,	1.4-1.3m	

years	ago	(Bar-Yosef,	1994).		

	

By	200k	years	ago,	the	ancient	hominins	who	left	Africa	had	evolved	in	distinct	fashions	

around	 the	world:	Europe	 and	Western	Eurasia	was	 inhabited	by	 the	Neanderthals,	 a	

species	 that	 looked	 remarkably	 distinct	 from	 the	 then	 almost-Anatomically	 Modern	

Humans	of	Africa	(Arsuaga	et	al.,	1994,	1993;	Stringer	and	Gamble,	1993).		

	

There	is	paleoanthropological	evidence	that	present	human	population	is	the	outcome	of	

a	large	demic	expansion	that	began	between	60k	and	100k	years	ago	out	of	Africa,	and	

resulted	in	a	rapid	human	occupation	of	almost	all	of	the	habitable	areas	of	the	planet.	

Before	 the	 advent	 of	 genetic	 studies,	 different	 forms	 of	 the	 Out-of-Africa	 theories	

advocated	 for	 different	 ways	 that	 AMHs	 expanded	 from	 Africa	 and	 replaced	 the	

Neanderthals	(and	the	equally	archaic	Denisovans,	discovered	through	ancient	DNA	and	

described	in	section	3	of	the	introduction).	At	the	time,	some	theories	supported	some	

gene	flow	between	expanding	humans	and	resident	archaic	humans,	while	others	did	not	

(Smith,	1994).		
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Fig.	 2.	 The	 spread	 of	 Anatomically	Modern	Humans	 throughout	 Eurasia	and	 the	

Americas.	 Once	 Anatomically	 Modern	 Humans	 left	 Africa	 (60-100k	 years	 ago),	 they	

quickly	 spread	around	 the	 Indian	Ocean	via	 the	Middle	East	 and	 India	 into	 the	 Sahul,	

around	50k	years	ago,	in	a	West-to-East	axis.	Subsequently,	humans	made	their	way	into	

Northern	Eurasia,	reaching	Europe	around	40k	years	ago,	Siberia	around	25k	years	ago,	

and	the	Americas	around	15k	years	ago.	In	the	figure,	kya	=	thousands	of	years	ago.		
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The	Advent	of	the	Neolithic	

Anatomically	Modern	Humans,	therefore,	have	occupied	the	entirety	of	the	inhabitable	

Old	World	 for	 40,000	 years;	 and	 for	 almost	 all	 of	 that	 period,	 they	 lived	 as	 foragers,	

hunters	and	gatherers.	Around	12,000	years	ago,	as	 the	global	 temperatures	began	 to	

increase	 at	 the	 end	of	 the	Pleistocene	 (the	 Ice	Age),	 and	 the	 transition	 to	 the	modern	

Holocene	 happened,	 humans	 developed,	 in	 a	 number	 of	 geographically-independent	

areas,	 a	 series	 of	 agricultural	 systems	 based	 on	 plant	 cultivation	 and	 sometimes	

domesticated	animal	farming	(Barker,	2006).	

	

The	first	component	of	this	Neolithic	Revolution	probably	happened	in	areas	where	the	

wild	ancestors	of	the	modern	domesticates	were	naturally	found.	Wild	forms	of	wheat	

and	barley,	 for	 example,	 thrived	 in	 the	 eastern	Mediterranean	and	 the	Mesopotamian	

valleys.	 Additionally,	 wild	 goats	 and	 sheep	 probably	 ranged	 across	 that	 same	

geographical	area	too.	However,	while	authors	such	as	Diamond	and	Bellwood	(2003)	

argue	 for	 a	 revolutionary	 change	 that	 gave	 great	 demographic	 and	 cultural	 to	 those	

societies	that	first	developed	the	Neolithic,	other	authors	such	as	Dorian	Fuller	argue	for	

a	more	protracted	process,	which	happened	 through	 individual	domestication	 events,	

coupled	to	different	enabling	technologies	in	each	region	(Fuller	et	al.,	2015).	

	

Secondly,	the	Urban	Revolution	that	accompanied	the	Neolithic	Revolution	occurred	in	

the	same	region,	as	the	two	most	ancient	known	civilizations	in	History	are	the	Sumerian	

in	Mesopotamia,	around	5,500	years	ago;	 the	 Indus	valley	civilisation,	starting	around	

5,300	years	ago;	and	the	Egyptians	in	the	Nile	valley,	which	started	around	5,000	years	

ago	 (Breasted,	 1916).	Both	 the	 Sumerians	 and	the	Egyptians	were	 civilizations	whose	

food	systems	were	based	on	wheat	and	barley,	watered	by	the	yearly	flooding	cycles	of	

the	 Tigris,	 Euphrates	 and	 Nile,	 respectively;	 and	 complemented	 by	 sheep	 and	 goat	

herding.			
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Fig.	3.	River	Valley	civilizations	in	the	Old	World.	The	Neolithic	revolution	was	mostly	

developed	 in	 river	 valleys	 in	 regions	of	warm,	 seasonal	 climates,	which	 allowed	 for	 a	

constant	arrival	of	fresh	water,	the	cultivation	of	seasonal	crops	such	as	wheat	and	rice,	

and	 the	domestication	of	the	 first	animals.	 It	also	 therefore	 led	 to	 the	 first	permanent	

settlements	of	human	history.	

	

The	third	component	of	the	Neolithic	Revolution	is	concerned	with	the	changes	in	climate	

at	 the	 end	 of	 the	 Pleistocene.	 As	 the	 European	 ice	 sheets	 melted,	 the	 rain-bearing	

atmospheric	depressions	shifted	northwards,	away	from	the	river	depressions	of	the	Nile	

and	Mesopotamian	river	valleys.	As	the	grasslands	were	probably	substituted	by	deserts	

and	oases,	watered	regularly	by	river	flooding	events,	different	human	groups	started	to	

congregate	around	those	 areas,	 seeding	what	would	 then	become	 the	 first	permanent	

settlements	(Childe,	1934).	

	

Excavations	from	what	is	now	northern	Israel,	 in	1937,	revealed	that	hunter-gatherers	

from	the	early	Holocene	had	developed	flint	tools	and	sickles	of	flint	blades	which	show	

signs	of	 having	been	used	 for	 cutting	 grass	of	 cereal	 stems.	This	 therefore	 is	 the	 first	

evidence	of	a	group	of	people	starting	to	become	agriculturally	based	(Garrod	and	Bate,	

1937).	

	

	 	



1	|	Introduction	

18 

Spread	of	the	Neolithic:	Cultural	vs	demic	diffusions?	

In	the	Late	Pleistocene,	large	areas	of	Europe	were	abandoned	by	people,	the	northern	

half	of	Britain	was	covered	by	ice,	and	European	Upper	Paleolithic	hunter-gatherers	lived	

in	so-called	“refugia”,	 such	as	south-west	France,	Spain,	 Italy	and	parts	of	 the	Balkans	

(Soffer	and	Gamble,	1990;	Straus	et	al.,	1996;	Street	and	Terberger,	1999).	As	soon	as	the	

ice	 sheets	 retreated,	 between	 14,700	 and	 12,800	 years	 ago,	 Europe	 was	 quickly	

repopulated	by	hunter-gatherers	(Charles,	1996;	Housley	et	al.,	1997;	Jochim,	1998).	

	

The	 earliest	 archaeological	 indications	 of	 agriculture	 and	 pastoralism	 in	 the	

Mediterranean	 come	 from	Cyprus,	 around	10,500-10,000	years	 ago	 (Peltenburg	 et	al.,	

2000).	The	material	artefacts	found	there	are	very	similar	to	those	in	Early	Neolithic	in	

the	Near	East	and	 follow	the	 same	pattern	of	 reliance	on	wheat,	 barley,	 livestock	 and	

legumes.	It	is	likely	that	these	Levantine	farmers	developed	over	that	time	an	expanded	

knowledge	of	seafaring	(Peltenburg	et	al.,	2000).	The	Neolithic	seems	to	have	arrived	in	

Crete	around	8,800	years	ago,	and	perhaps	the	first	humans	to	ever	live	there	(Broodbank	

and	Strasser,	1991).	Settlements	in	Greece,	contemporaneous	with	the	peopling	of	Crete,	

share	 many	 similarities	 with	 the	 villages	 of	 Anatolian	 Agriculturalists	 in	 terms	 of	

settlement	layout,	construction	materials	and	artefacts	found.	This	suggests	that	the	main	

expansions	 of	 the	 Neolithic	 culture	 into	 Europe	 came	 from	 Anatolian	 Agriculturalists	

(Perlès,	2001).		
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Fig.	4.	The	expansion	of	the	Neolithic	into	Europe.	Isochrone	map	of	the	expansion	of	

the	Neolithic	into	Europe.	[Figure	adapted	from	Burger	et	al.,	2012].		

	

By	8,500	years	ago	there	was	already	farming	in	the	Morava	and	Danube	valleys	through	

northern	Serbia.	These	societies,	like	those	of	the	Mediterranean	basin	at	the	time,	lived	

through	a	combination	of	farming	and	foraging.	Their	material	culture	was	however	much	

more	 simple	 than	 that	 of	 the	more	 southern	Mediterranean	 farmers	 (Chapman,	2003;	

Kosse,	1979).	The	 traditional	archaeological	 interpretation	of	 these	settlements	 is	that	

agricultural	 colonists	 from	 Greece	 and	 Anatolia	 moved	 into	 the	 Balkan	 river	 valleys,	

together	with	 the	Mediterranean	 system	 of	 farming	 and	 their	 artefacts.	 However,	 the	

incoming	agricultural	advances	are	found	side	by	side	with	evidence	of	more	traditional	

foraging	 and	waterscape	 fishing.	 This,	 very	 likely,	 resulted	 from	 the	mixing	 between	

incoming	 Neolithic	 populations	 and	 the	 local	 hunter-gatherers	 (Borić	 and	 Stefanović,	

2004).	 It	was	 only	 around	 7,000-6,000	 years	 ago	 that	 the	 commitment	 to	 agriculture	

rapidly	developed	in	these	societies,	as	well	as	the	organisation	of	their	settlements,	the	

first	multi-roomed	houses,	 etc.	Was	 it	 because	of	more	waves	of	 inhabitants	 from	 the	

southern	fringes	of	Europe,	were	these	developments	the	product	of	knowledge	diffusion	

after	the	first	Neolithic	wave,	or	was	there	a	second,	more	successful	wave	of	agriculture	

acquisition	in	Europe?		
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In	more	northern	Europe,	the	agriculture	border	had	stayed	within	the	area	around	the	

Danube	valleys	for	longer	than	a	thousand	years.	It	was	only	with	this	“second	wave	of	

agriculture	acquisition”,	7,000-6,000	years	ago	that	the	borders	were	drastically	pushed	

northwards.	 This	 is	 also	 coupled	 with	 the	 rapid	 appearance	 of	 archaeological	 sites	

displaying	 the	 Early	 Neolithic	 Linearbandkeramik	 pottery	 (LBK)	 (Barker,	 2006).	 This	

coupling	of	an	improvement	of	agricultural	techniques,	a	modernisation	of	pottery	and	

artefacts,	and	an	expansion	of	agriculture	and	farming	beyond	the	borders	of	the	Danube	

valley	into	the	northern	European	plains	suggests	that	there	might	have	been	a	definite	

demographic	push	towards	the	North.	This	question	was	left	unanswered	by	archaeology,	

until	the	advent	of	genetic	studies	on	ancient,	archaeological	samples.	

	

The	Neolithic	 in	 Europe	 therefore	 did	not	 arrive	 as	 an	 inexorable,	 constant	 spread	 of	

people	and	technology	from	the	Near	East	to	Europe	via	Anatolia	and	the	Balkans.	The	

picture	is	a	rather	complex	one:	communities	with	agriculture	shifted	into	new	territories,	

just	as,	a	few	millennia	before,	foragers	had	done	from	their	ice	age	refugia	into	the	depths	

of	continental	Europe	(Rowley-Conwy,	2004).	These	movements	illustrate	a	theme	that	

has	been	repeated	numerous	times,	and	which	defines	human	prehistory	as	a	collection	

of	repeated	expansion	events	with	different	focal	centres	and	directions.	Each	expansion	

event	 has	 brought	 palpable	 cultural	 consequences	 that	 shaped	 early	 human	 societies	

(Haak	et	al.,	2005;	Richards	et	al.,	1996).	
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1.2.	Ancient	DNA	

	

The	path	to	Ancient	DNA	

It	has	always	been	a	goal	of	human	genetics	 to	describe	human	evolution,	expansions	

across	 the	world,	and	ancient	history	with	current-day	genetic	variation.	The	usage	of	

reduced	genetic	information	and	a	small	number	of	loci	started	as	early	as	in	1964,	when	

Cavalli-Sforza	modelled	a	phylogenetic	tree	of	15	modern	human	populations	using	5	loci	

and	 20	 alleles,	 mostly	 blood	 groups	 (Cavalli-Sforza	 et	 al.,	 1964).	 Wright’s	 FST,	 gene	

frequencies	using	blood	polymorphisms,	and	various	genetic	distances	were	for	decades	

the	only	tool	to	describe	the	main	patterns	of	population	differentiation	(Cavalli-Sforza	et	

al.,	1994).	

	

Modern	and	ancient	data	availability,	however,	has	increased	in	a	very	fast	fashion.	Since	

the	early	1980s,	human	mitochondrial	DNA	variation	started	to	be	characterised	(Denaro	

et	al.,	1981).	Its	exclusively	maternal	inheritance,	its	relatively	fast	mutation	rate,	its	lack	

of	 recombination,	and	 its	 high	 copy	number	per	 cell,	 has	 resulted	 in	 the	possibility	 to	

describe	genealogical	relationships	between	whole	populations,	at	both	continental	and	

local	scales	(Hutchison	et	al.,	1974;	Merriwether	et	al.,	1991).	The	Mitochondrial	Eve,	or	

the	MRCA	(Most	Recent	Common	Ancestor)	was	placed	at	around	200k	years	ago	(Kivisild	

et	 al.,	 2006),	 which	 means	 that	 although	 the	 most	 distant	 early	 stages	 of	 human	

evolutionary	 history	 are	 lost	 in	 the	 mtDNA	 record,	 we	 can	 very	 easily	 use	 mtDNA	

variation	to	discern	the	details	of	the	colonization	process	of	the	Old	World	using	regional	

patterns	of	variation;	mtDNA	variation	was	a	key	application	in	the	era	before	nuclear	

genome	sequencing.	In	the	mid-1990s,	different	mtDNA	haplogroups	based	on	certain	key	

mutations	were	starting	to	be	labelled:	A-G	assigned	to	Asian	and	American	lineages,	H-K	

to	Europe,	and	L	to	Africa	(Torroni	et	al.,	1994,	1993).	It	was	later	shown	that	mtDNA	

differences	among	populations	in	Africa	were	the	highest,	while	Native	Americans	had	

the	lowest	(Lippold	et	al.,	2014),	consistent	with	the	root	of	mtDNA	phylogeny	and	the	

most	diverse	branches	being	located	in	Africa.	

	

The	first	human	genomic	sequences	were	obtained	in	2001	(Lander	et	al.,	2001;	Venter	

et	al.,	2001).	Back	then,	to	think	that	within	15	years,	thousands	of	genomes	from	people	

around	 the	 globe	 would	 have	 been	 sequenced,	 was	 almost	 unimaginable	 (The	 1000	
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Genomes	Project	Consortium,	2015).	 It	was	hence	unthinkable	 that	 technology	would	

allow	 us	 to	 access	 genomic	 information	 from	 thousands-years-old	 human	 fossils	

(Allentoft	 et	 al.,	 2015;	 Haak	 et	 al.,	 2015;	 Rasmussen	 et	 al.,	 2010b).	 Not	 only	 have	

anatomically	modern	humans	been	sequenced,	but	also	Neanderthals	(Green	et	al.,	2010;	

Prüfer	et	al.,	2014),	and	even	Denisovans,	a	sister	group	of	Neanderthals	only	discovered	

upon	DNA	sequencing	(Reich	et	al.,	2010;	Meyer	et	al.,	2012a).	The	sequencing	depth	of	

some	of	 these	 genomes	 is	 remarkable:	 the	 genotyping	 error	 rates	 are	almost	 equal	 to	

those	of	high-coverage	sequences	from	modern	genomes.	

	

The	analysis	of	ancient	DNA	has	been	successful	in	answering	a	great	deal	of	unanswered	

questions,	 while	 raising	 new	 questions	 in	 the	 process.	When	 and	 from	which	 human	

populations	did	particular	populations	arise?	Which	populations	admixed	and	when?	Are	

stark	 changes	 in	 the	 archaeological	 record	 the	 result	 of	 quick	 cultural	 innovation,	 or	

population	sweeps?	Which	past	cultures	left	descendants	in	the	present	world?	
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Fig.	5:	Changes	in	the	landscape	of	ancient	genomes	in	Europe	and	the	Near	East,	from	

2014	to	2017.	A)	represents	the	whole	genomes	sequenced	by	2014,	with	the	names	by	

which	they	are	commonly	known.	B)	represents	the	extent	of	ancient	genomes	obtained	

by	SNP	capture	(empty	circles)	and	whole	genome	sequencing	(filled	circles),	since	2014.	

Colours	 indicate	a	rough	 idea	of	 the	ages	of	each	sample:	blue	 represents	Palaeolithic	

samples,	red	 represents	Neolithic	samples,	green	 represents	bronze	age	samples,	and	

black	represents	near	eastern	samples	of	diverse	epochs.	
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Challenges	and	ancient	DNA	work	

One	of	the	main	challenges	with	working	with	aDNA	has	been	its	accessibility,	due	to	very	

low	 endogenous	 DNA	 presence	 in	 human	 fossils	 in	 archaeological	 contests	 (García-

Garcerà	 et	 al.,	 2011;	 Sánchez-Quinto	 et	 al.,	 2012b;	 Skoglund	 et	 al.,	 2012).	 A	 major	

breakthrough	came	in	2014,	when	Gamba	et	al.	(2014)	compared	endogenous	DNA	from	

the	temporal	bone	(specifically,	its	petrous	portion,	the	densest	bone	in	the	mammalian	

body	(Lam	et	al.,	1999)),	against	fossils	of	other	skeletal	parts	from	six	different	human	

individuals	from	Hungary,	at	different	time	depths.	They	found	that	the	endogenous	DNA	

yields	from	the	petrous	portion	of	the	temporal	bone	was	4-16	times	higher	than	those	

from	the	teeth,	and	up	to	183	times	higher	than	those	from	other	skeletal	bones.	

	

Another	major	hurdle	in	the	ability	to	successfully	sequence	aDNA	for	several	years	was	

contamination.	 Genetic	 material	 from	 a	 recent	 tissue	 sample	 mostly	 consists	 of	

endogenous	DNA	(i.e.	 fragments	of	DNA	from	that	 individual).	However,	aDNA	 is	very	

fragmented	 and	 scarce,	 which	 means	 that	 most	 of	 the	 genetic	 information	 found	 in	

ancient	human	bones	tends	to	be	exogenous	DNA	(i.e.	from	other	humans	who	have	been	

in	contact	with	the	fossil,	or	from	bacteria	and	fungi	from	the	environment)	(Green	et	al.,	

2009).	 Contamination	 from	 modern	 human	 DNA	 is	 particularly	 problematic,	 as	 the	

sequences	look	similar	to	endogenous	aDNA	and	can	very	easily	introduce	unwelcome	

biases	(Green	et	al.,	2006;	Wall	and	Kim,	2007).	

	

Strict	aseptic	room	conditions	are	now	standard	practice	in	aDNA	extraction:	bleaching	

surfaces,	UV	radiation,	and	filtered	refrigeration	(Green	et	al.,	2009).	At	the	time	of	DNA	

extraction,	 DNA	 molecules	 are	 tagged	 so	 that	 further	 contamination	 is	 detected	 and	

eliminated	(Briggs	et	al.,	2007).	

	

After	DNA	sequencing,	several	bioinformatic	tools	are	used	to	remove	exogenous	reads	

and	to	estimate	the	proportion	of	endogenous	DNA	in	the	library.	This	is	often	done	by	

estimating	 the	rate	of	exogenous	DNA	 in	 the	mitochondrial	DNA,	which	 is	much	more	

abundant	than	nuclear	DNA,	and	therefore	sequenced	to	a	much	higher	coverage	(Renaud	

et	 al.,	 2015).	 A	 second	 advantage	 of	mitochondrial	 DNA	 is	 the	 fact	 that	 it’s	 a	 haploid	

marker,	as	heterozygote	positions	can	easily	be	interpreted	as	contamination	(Rasmussen	

et	al.,	2011a).	
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1.3.	Understanding	human	prehistory	with	ancient	DNA	
	

Ancient	DNA	and	the	out-of-Africa	expansions	

Around	 the	period	between	100,000	and	60,000	years	 ago,	 a	 very	 rapid	 expansion	of	

anatomically	 modern	 humans	 occurred	 outside	 of	 Africa,	 and	 spread	 quickly	 in	 all	

directions	across	the	Eurasian	landmass,	eventually	reaching	nearly	all	inhabitable	areas	

of	the	world.	There	are	still	many	open	questions	surrounding	this	Great	Expansion:	The	

exact	location	of	the	population	or	populations	that	left	Africa,	the	timing	of	the	coastal	

migration	around	the	Indian	Ocean,	the	timing	of	the	expansion	into	Northern	Eurasia,	

the	 number	 of	waves	 across	 this	 landmass,	 etc.	 (Macaulay	 et	 al.,	 2005;	 Oppenheimer,	

2012;	Rasmussen	et	al.,	2011a).	

	

Ancient	 genomes	 have,	 however,	 deepened	 our	 understanding	 of	 many	 other	 issues	

regarding	 this	 Great	 Expansion:	 a	 rough	 timing	 of	 the	 exit,	 the	 size	 of	 the	 population	

bottleneck	associated	with	the	event,	and	the	general	mode	of	the	subsequent	expansion.	

	

However,	there	were	near-AMH	groups	in	the	Near	East	around	130-80k	years	ago,	as	

Dorothy	 Garrod	 showed	 in	 the	 1930s,	 where	 a	 series	 of	 caves	 in	 present-day	 Israel	

showed	a	long	sequence	of	Lower	Palaeolithic,	Middle	Palaeolithic,	and	Epipalaeolithic,	

occupations	 (Garrod,	 1937).	 This	 region	was	 at	 that	 time	 ecologically	 very	 similar	 to	

north-eastern	 Africa	 (Bar-Yosef,	 2000;	 Klein,	 1989).	 It	 is	 likely	 that	 this	 primary	

expansion	of	near-AMHs	was	unsuccessful	in	persisting,	and	was	subsequently	replaced	

by	Neanderthals	during	the	following	glacial	period,	starting	80k	years	ago.	Afterwards,	

50k	years	ago,	there	is	evidence	that	AMHs	were	present	in	the	Near	East,	and	only	after	

this	point	did	 they	become	widespread	 in	Eurasia	(Mellars,	2006).	Genomic	data	 from	

contemporary	humans	suggest	that	this	expansion	was	accompanied	by	a	continuous	loss	

of	genetic	diversity,	a	result	of	what	 is	called	 the	“serial	founder	effect”	 (Manica	et	al.,	

2007;	 Prugnolle	 et	 al.,	 2005),	 as	 demonstrated	 by	 recent	 studies	 in	 autosomal	

polymorphisms	and	blood	groups	(Li	and	Durbin,	2011;	McEvoy	et	al.,	2011).	
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Ancient	DNA	in	the	admixture	with	other	archaic	humans	

As	the	sequencing	of	ancient	nuclear	DNA	and	mtDNA	became	possible,	one	of	the	most	

sought-after	 questions	 was	 to	 understand	 the	 emergence	 of	 Anatomically	 Modern	

Humans	in	the	context	of	all	ancient	human	groups	present	at	the	time,	and	whether	there	

was	any	admixture	between	AMHs	and	different	archaic	human	populations,	as	AMHs	

expanded	out	of	Africa.	

	

The	 archaeological	 record	 clearly	 suggested	 that	 several	 groups	 of	 archaic	 hominins	

overlapped	in	time	and	space	with	this	main	out-of-Africa	migration	of	AMHs	(Higham	et	

al.,	 2014).	 Furthermore,	 using	 the	 recently-sequenced	 Neanderthal	 genomes,	 it	 was	

shown	that	there	was	a	certain	degree	of	interbreeding:	non-African	AMHs	have	between	

1.5	and	4%	of	Neanderthal	DNA,	inherited	from	an	interbreeding	episode	around	50,000	

years	ago	(Green	et	al.,	2010;	Prüfer	et	al.,	2014;	Sankararaman	et	al.,	2014;	Wall	et	al.,	

2013).		

	

However,	at	the	same	time,	there	was	a	group	of	ancient	humans	in	eastern	Eurasia,	which	

were	only	discovered	in	2010	through	genetic	analysis,	which	also	shows	a	large	degree	

of	divergence	from	the	Neanderthals	(Meyer	et	al.,	2012a).	These	ancient	humans,	called	

Denisovans	 (after	 they	 were	 first	 found	 in	 the	 Denisova	 cave	 in	 the	 Altai	 mountains,	

Siberia)	morphologically	shared	some	characteristics	with	Neanderthals,	while	they	also	

had	some	archaic	features	linking	them	back	to	Homo	erectus.	These	Denisovans,	after	

genetic	 analysis,	 were	 shown	 to	 have	 likely	 diverged	 from	 the	 Neanderthals	 as	 their	

ancestral	 population	 left	Africa,	 later	 shown	to	be	between	430k	and	473k	years	 ago,	

which	 has	 been	 shown	 via	 genome	 analysis	 (Prüfer	 et	 al.,	 2014),	 and	 archaeological	

analysis	(Arsuaga	et	al.,	2014).	The	split	between	this	common	ancestor	of	Neanderthal	

and	Denisovans	with	Modern	Humans	was	determined	to	be	around	550k	and	760k	years	

ago	 (Meyer	 et	 al.,	 2016).	 Australian	 aboriginal	 populations	 and	 Papua-New-Guineans	

additionally	 have	 around	 6-7%	 of	 Denisovan	 DNA	 (Lowery	 et	 al.,	 2013;	 Meyer	 et	 al.,	

2012a),	while	it	has	also	been	shown	that	modern	East	Asians	and	Native	Americans	also	

have	small	percentages	of	Denisovan	ancestry	in	their	DNA	(Qin	and	Stoneking,	2015).	
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Ancient	DNA	in	the	Neolithic	and	its	spread	

Western	 Eurasia	 has	 had	 a	 complex	 history,	 an	 aspect	 mostly	 due	 to	 its	 complex	

geography,	climatic	changes,	and	different	ecological	areas.	Also,	 in	the	past	few	years,	

this	region	has	produced	a	very	 large	number	of	ancient	DNA	genomes.	 	The	 first	 few	

ancient	genomes	to	be	sequenced	from	Europe	were	from	the	early	Neolithic	times.	Ötzi,	

a	mummy	 from	5,300	years	 ago,	 found	 in	 the	Tyrolean	Alps,	 ,	 showed	an	unexpected	

relationship	with	modern-day	Sardinians,	 and,	 to	a	 certain	 extent,	 current-day	Middle	

Eastern	populations	(Keller	et	al.,	2012;	Sikora	et	al.,	2014).	Furthermore,	Scandinavia	

revealed	 genomes	 from	 two	 drastically	 different	 ancestry	 sources:	 a	 5,000	 year	 old	

sample	belonging	to	a	Neolithic	farmer	in	southern	Sweden	also	showed	the	same	genetic	

similarities	 to	 Sardinians.	 However,	 contemporaneous	 samples	 found	 in	 contexts	 that	

related	them	to	hunter-gatherer	lifestyles	(then	termed	Scandinavian	Hunter-Gatherers)	

did	not	show	that	relationship	(Sikora	et	al.,	2014;	Skoglund	et	al.,	2012).	

	

This	led	the	scientific	community	to	believe	that	a	very	large	demographic	shift	must	have	

happened	 in	 Europe	 between	 5,000	 and	 10,000	 years	 ago,	 through	 which	 Europe,	

populated	by	established	communities	of	hunter-gatherer	populations,	was	affected	by	a	

large	 expansion	 of	 farmers	 from	 the	 south-eastern	 fringes	 of	 the	 continent,	 which	

drastically	reshaped	the	European	genetic	landscape.	

	

This	was	 then	confirmed	by	Lazaridis	et	al.,	 (2014),	who	sequenced	an	8,000-year-old	

original	 European	 hunter-gatherer	 (Loschbour,	 in	 Luxembourg),	 which	 showed	

relatedness	 to	the	previously-described	hunter-gatherer	 individuals,	and	a	7,500-year-

old	Neolithic	sample	(Stuttgart),	which	shared	genetic	resemblance	to	Ötzi	and	modern-

day	 Sardinians.	 These	 findings,	 pointing	 towards	 large-scale	 movements,	 and	 even	

replacements	of	people,	settled	the	long-standing	debate	of	demic	vs	cultural	diffusion	in	

the	transmission	of	the	Neolithic	package	into	Europe.	
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Figure	 6.	 History	 of	 the	 European	 Genetic	 make-up.	 A)	 10k	 years	 ago,	 Europe	 was	

dominated	 by	 native	 hunter-gatherer	 populations,	 which	 had	 just	 re-populated	 the	

continent	after	the	Last	Glacial	Maximum.	B)	Starting	6.5k	years	ago,	the	most	parts	of	the	

European	continent,	especially	along	the	river	valleys	in	Southern	and	Central	Europe,	

were	 Neolithisised,	 by	 populations	 coming	 form	 the	 Anatolian	 peninsula,	 and	 a	 high	

amount	of	population	replacement.	C)	Starting	4k	years	ago,	the	Bronze	Age	brought	new	

population	waves	into	Europe,	this	time	bringing	the	wheel,	bronze	technology	and	the	

currently-spoken	Indo-European	languages.		
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[previous	page]	Figure	7.	Admixture	 graph	 (methodical	 basis	 explained	 in	Chapter	2)	

where	 we	 can	 observe	 how	 the	 genetic	 make-up	 of	 all	 European	 populations	 is	 a	

composite	of	the	hunter-gatherer	component	(blue),	the	Neolithic	component	(red),	and	

the	bronze	age	component	(green).	

	

Lazaridis	 et	 al.,	 (2014),	 therefore,	 proposed	 a	 three-ancestry	 model	 for	 modern	

Europeans:	the	original	European	hunter-gatherers	(such	as	the	Loschbour	remains,	in	

Luxembourg),	 the	Neolithic	wave	 of	 agriculturalists	 and	 farmers	 (the	 group	 to	where	

Stuttgart	and	Ötzi	belonged),	and	a	third	ancestry	group	which	originated	in	the	Steppes	

between	the	Black	and	Caspian	Seas,	which	brought	Ancient	North	Eurasian	ancestry	into	

the	region,	and	were	probably	linked	to	the	spread	of	Indo-European	languages	(Allentoft	

et	al.,	2015).	This	Steppe	ancestry	group	was	later	termed	the	Yamnaya	ancestry	source,	

after	 Marja	 Gimbutas’s	 Steppe	 Theory.	 In	 2015,	 Jones	 et	 al.	 then	 linked	 part	 of	 this	

Yamnaya	 ancestry	 to	 the	 Caucasus	 Hunter	 Gatherers,	 a	 group	 of	 Hunter-gatherer	

populations	which	lived	in	the	valleys	south	of	the	Caucasus	during	the	Ice	Age.	

	

1.4.	Objective	and	structure	of	this	thesis	

This	thesis	aims	to	contribute	to	a	better	understanding	of	the	process	through	which	the	

Neolithic	revolution	originated	and	expanded	throughout	 the	Old	World,	coupled	with	

massive	human	movements	and	the	genetic	signatures	 that	 these	migrations	have	 left	

today.	

	

Agriculture	 was	 brought	 into	 Europe	 by	 the	 descendants	 of	 early	 Anatolian	 farmers	

starting	approximately	8,000	years	ago.	But	little	was	known	of	the	people	who	developed	

agriculture	 in	 the	Fertile	Crescent:	were	 they	all	 closely	related	 to	 the	early	Anatolian	

farmers,	or	were	there	multiple	ethnic	groups	who	developed	agriculture	in	parallel?	In	

the	second	chapter,	I	use	the	first	genome	from	a	Neolithic	woman	from	Ganj	Dareh,	in	

the	Zagros	Mountains	 in	 Iran,	a	site	with	evidence	of	 early	goat	domestication	10,000	

years	ago.	Were	the	Zagros	mountains	and	the	Iranian	Plateau	inhabited	by	populations	

mostly	 similar	 to	 from	 the	 Anatolian	 farmers	 who	 spread	 the	 Neolithic	 package	 into	

Europe	,	or	to	Hunter-gatherer	populations	from	the	Caucasus?	What	was	the	extent	of	

the	 genetic	 and	 cultural	 exchange	 between	 Anatolia,	 Mesopotamia	 and	 the	 Zagros	

highlands	in	the	early	Neolithic?	
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The	 third	 chapter	 addresses	 how	 Africa	 was	 affected	 by	 population	 movements,	

originating	in	the	Near	East,	during	the	Neolithic	times.	Characterising	genetic	diversity	

in	 Africa	 is	 a	 crucial	 step	 for	 analyses	 reconstructing	 human	 evolution,	 and	 little	was	

known	 previous	 to	 this	 thesis.	 Using	Mota,	 an	 ancient	 genome	 from	 a	male	 from	 the	

Ethiopian	highlands,	I	could	answer	the	following	questions:	was	there	a	backflow	into	

Africa	around	3,500	years	ago?	And	if	so,	what	was	the	likely	source	of	this	backflow?	

	

The	 fourth	 chapter	deals	with	 some	 common	problems	and	 themes	 in	 the	 analysis	 of	

ancient	DNA,	such	as	merging	capture	datasets	with	diverse	number	of	ascertained	SNPs,	

combining	capture	and	shotgun	data	in	the	same	analysis,	and	the	effect	of	UDG	treatment	

in	ancient	samples.	I	describe	the	most	common	problems	and	their	effect	on	summary	

statistics,	 and	 propose	 a	 guide	 on	 how	 to	 work	 with	 ancient	 DNA	 to	 avoid	 data	

compatibility	problems.	

	

I	 conclude	with	 a	 final	 chapter	 in	which	 I	 summarise	 how	my	 thesis	 has	 shaped	 our	

understanding	of	some	of	 the	main	migrational	processes	 in	 the	Old	World	 in	 the	 last	

10,000	years,	and	how	other	ancient	DNA	studies	have	advanced	our	understanding	of	

human	prehistory	and	our	roots	as	a	species,	and	its	importance	for	future	research.	I	will	

also	discuss	further	paths	that	my	research	opens	up,	in	one	of	the	fields	most	interesting	

for	understanding	our	origins,	and	our	past.	
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2.	The	genetics	of	an	early	Neolithic	pastoralist	from	the	Zagros,	Iran.	

	

Abstract	

The	 agricultural	 transition	 profoundly	 changed	 human	 societies.	 Here	 I	 present	 the	

analysis	of	the	first	genome	(1.39x)	of	an	early	Neolithic	woman	from	Ganj	Dareh,	in	the	

Zagros	Mountains	 of	 Iran,	 a	 site	 with	 early	 evidence	 for	 an	 economy	 based	 on	 goat	

herding,	 ca.	 10,000	 BP.	 This	 analysis	 shows	 that	 Western	 Iran	 was	 inhabited	 by	 a	

population	genetically	most	similar	to	hunter-gatherers	from	the	Caucasus,	but	distinct	

from	the	Neolithic	Anatolian	people	who	later	brought	food	production	into	Europe.	The	

inhabitants	of	Ganj	Dareh	made	 little	direct	 genetic	 contribution	 to	modern	European	

populations,	suggesting	those	of	the	Central	Zagros	were	somewhat	isolated	from	other	

populations	of	the	Fertile	Crescent.	Runs	of	homozygosity	are	of	a	similar	length	to	those	

from	 Neolithic	 farmers,	 and	 shorter	 than	 those	 of	 Caucasus	 and	 Western	 Hunter-

Gatherers,	 suggesting	 that	 the	 inhabitants	 of	 Ganj	 Dareh	 did	 not	 undergo	 the	 large	

population	 bottleneck	 suffered	 by	 their	 northern	 neighbours.	 While	 some	 degree	 of	

cultural	 diffusion	 between	 Anatolia,	 Western	 Iran	 and	 other	 neighbouring	 regions	 is	

possible,	the	genetic	dissimilarity	between	early	Anatolian	farmers	and	the	inhabitants	of	

Ganj	Dareh	supports	a	model	in	which	Neolithic	societies	in	these	areas	were	distinct.	

	

	

	

	

	

	

	

A	version	of	this	chapter	has	been	published:	Gallego-Llorente,	M.,	Connell,	S.,	Jones,	E.R.,	

Merrett,	D.C.,	Jeon,	Y.,	Eriksson,	A.,	Siska,	V.,	Gamba,	C.,	Meiklejohn,	C.,	Beyer,	R.,	Jeon,	S.,	

Cho,	Y.S.,	Hofreiter,	M.,	Bhak,	 J.,	Manica,	A.,	 Pinhasi,	R.,	 2016.	The	 genetics	 of	 an	 early	

Neolithic	pastoralist	from	the	Zagros,	Iran.	Sci	Rep	6.		
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Introduction	

The	 agricultural	 transition	 started	 in	 a	 region	 comprising	 the	 Ancient	 Near	 East	 and	

Anatolia	 ~12,000	 years	 ago	 with	 the	 first	 Pre-Pottery	 Neolithic	 villages	 and	 the	 first	

domestication	of	 cereals	 and	 legumes	 (Blockley	 and	Pinhasi,	2011;	Goring-Morris	and	

Belfer-Cohen,	 2011).	Archaeological	 evidence	 suggests	 a	 complex	 scenario	of	multiple	

domestications	in	a	number	of	areas	(Riehl	et	al.,	2013),	coupled	with	examples	of	trade	

(Aurenche	 and	Kozlowski,	 1999).	Ancient	DNA	 (aDNA)	has	 revealed	 that	 this	 cultural	

package	was	later	brought	 into	Europe	by	dispersing	 farmers	 from	Anatolia	 (so	called	

‘demic’	 diffusion,	 as	 opposed	 to	 non-demic	 cultural	 diffusion	 (Mathieson	 et	 al.,	 2015;	

Omrak	 et	 al.,	 2016))	~8,400	 years	 ago.	 However	 a	 lack	 of	 aDNA	 from	 early	Neolithic	

individuals	from	the	Near	East	leaves	a	key	question	unanswered:	was	the	agricultural	

transition	developed	by	one	major	population	group	spanning	the	Near	East,	including	

Anatolia	and	the	Central	Zagros	Mountains;	or	was	the	region	inhabited	by	genetically	

diverse	 populations,	 as	 is	 suggested	 by	 the	 heterogeneous	 mode	 and	 timing	 of	 the	

appearance	 of	 early	 domesticates	 at	 different	 localities?	 It	 is	 unknown	 whether	 the	

emergence	 of	 agriculture	 was	 a	 geographically	 homogeneous	 event	 throughout	 the	

Fertile	Crescent	 region,	 or	whether	 the	 picture	was	more	 a	mosaic	 of	 different,	more	

localised	processes	of	domestication.	In	a	similar	fashion,	we	can	extend	this	question	to	

the	genetics:	were	the	farming	populations	homogeneous,	or	did	they	have	a	structure	

that	was	preserved	as	the	Neolithic	package	was	introduced	in	other	areas	of	the	world?	

	

Additionally,	western	Eurasians	have	a	relative	genetic	homogeneity	in	a	world	context	

(Cavalli-Sforza	et	al.,	1994).	This	could	be	explained	by	the	 fact	 that	a	group	of	people	

extensively	migrated	 and	 admixed	with	 local	 populations	 in	 a	way	 that	 homogenised	

populations	with	deeper	splits	of	ancestry.	
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Fig.	1.	Map	of	the	Near	East	at	the	start	of	the	Neolithic.	The	Neolithic	revolution	was	

exported	 into	Europe	by	populations	 closely	 related	 to	 the	Anatolian	Neolithic	 farmer	

communities	 (found	 in	 Barcin	 Höyük).	 However,	 it	 remained	 unknown	 how	

homogeneous	the	Near	East	was,	and	how	the	Neolithic	revolution	affected	Central	and	

South	Asia	in	terms	of	demography.	

	

Recent	studies	in	ancient	DNA	have	shown	that	the	earliest	Anatolian	and	Aegean	farmers	

(from	around	6,500	years	ago)	have	a	similar	genetic	component	to	that	shown	by	the	

early	European	farmers	(Hofmanová	et	al.,	2016;	Mathieson	et	al.,	2015).	However,	it	is	

yet	unknown	whether	 this	 component	arrived	 from	 the	 farming	populations	 from	 the	

Fertile	Crescent	proper.	

	

To	 answer	 these	questions,	 the	 genome	of	 an	 early	Neolithic	 female	 from	Ganj	Dareh,	

GD13a	was	sequenced.	This	individual,	from	the	Central	Zagros	(Western	Iran),	dated	to	

10000-9700	cal	BP	(Zeder	and	Hesse,	2000),	a	region	located	at	the	eastern	edge	of	the	

Near	 East.	 Ganj	 Dareh	 is	 well	 known	 for	 providing	 the	 earliest	 evidence	 of	 herd	

management	of	goats	beginning	at	9,900	BP	(Zeder,	2011,	2008;	Zeder	and	Hesse,	2000).	

It	 is	a	classic	mound	site	at	an	altitude	of	~1400m	in	the	Gamas-Ab	Valley	of	the	High	

Zagros	zone	in	Kermanshah	Province,	Western	Iran.	It	was	discovered	in	the	1960s	during	

survey	work	and	excavated	over	four	seasons	between	1967	and	1974.	The	mound,	~40	
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m	in	diameter,	shows	7	to	8	m	of	early	Neolithic	cultural	deposits.	Five	major	levels	were	

found,	labelled	A	through	E	from	top	to	bottom.	Extended	evidence	showed	a	warren	of	

rooms	with	evidence	of	under-floor	 inhumations	within	what	may	be	burial	chambers	

and/or	disused	houses	(Smith,	1990).	The	current	Minimum	Number	of	 Individuals	 is	

116,	with	56	catalogued	as	skeletons	that	had	four	or	more	bones	recovered	(Merrett,	

2004).	 The	 individual	 analysed	 here	 was	 part	 of	 burial	 13,	 which	 contained	 three	

individuals,	 and	 was	 recovered	 in	 level	 C	 in	 1971	 from	 the	 floor	 of	 a	 brick-walled	

structure.	The	individual	sampled,	13A	(referred	to	as	GD13a	throughout	the	text),	was	a	

30-50	year	old	female;	the	other	individuals	in	the	burial	unit	were	a	second	adult	(13B)	

and	an	adolescent	(13).		

The	site	has	been	directly	dated	to	9650-9950	cal	BP	(Zeder	and	Hesse,	2000),	and	shows	

intense	occupation	over	two	to	three	centuries.	The	economy	of	the	population	was	that	

of	 pastoralists	 with	 an	 emphasis	 on	 goat	 herding	 (Zeder	 and	 Hesse,	 2000).	

Archaeobotanical	evidence	is	limited	(van	Zeist	et	al.,	1984)	but	the	evidence	present	is	

for	two-row	barley	with	no	evidence	for	wheat,	rye	or	other	domesticates.	This	implies	

that	 the	 overall	 economy	 was	 at	 a	 much	 earlier	 stage	 in	 the	 development	 of	 cereal	

agriculture	than	that	found	in	the	Levant,	Anatolia	and	Northern	Mesopotamian	basin.		
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Results	

Sequence	processing,	alignment,	and	authenticity	of	results	

Although	most	fossil	specimens	of	interest	in	palaeogenetics	only	contain	less	than	1%	of	

endogenous	DNA,	it	was	shown	in	2015	that	the	petrous	section	of	the	temporal	bone	

reliably	contains	a	higher	proportion	of	endogenous	DNA	than	any	other	skeletal	element	

(Pinhasi	et	al.,	2015).	In	this	case,	the	petrous	bone	of	GD13a	was	isolated,	cleaned	and	

sequenced,	following	the	approach	carried	out	in	Gamba	et	al.	(2014).	This	sample	yielded	

sequencing	 libraries	 comprising	 18.57%	 alignable	 human	 reads	 that	 were	 used	 to	

generate	1.39-fold	genome	coverage	(Table	1).	The	sequence	data	showed	read	lengths	

and	nucleotide	misincorporation	patterns,	which	are	indicative	of	post-mortem	damage,	

and	hence	are	compatible	with	that	of	ancient	DNA,	supporting	the	authenticity	of	results	

and	 discarding	 modern	 contamination	 (Fig.	 2).	 Furthermore,	 the	 estimation	 of	 the	

mitochrondrial	contamination	rate	is	<1%.	This	was	based	on	evaluating	the	proportion	

of	non-consensus	bases	at	haplogroup-defining	positions,	in	bases	with	qualiy	≥20	(Fig.	

3).	The	mitochondrion	of	GD13a	(91.74X)	was	assigned	to	haplogroup	X,	most	likely	to	

the	subhaplogroup	X2,	which	has	been	associated	with	an	early	expansion	from	the	Near	

East	 (Reidla	 et	 al.,	 2003;	Richards	 et	 al.,	 2000)	 and	 has	 been	 found	 in	 early	Neolithic	

samples	 from	 Anatolia	 (Mathieson	 et	 al.,	 2015),	 Hungary	 (Gamba	 et	 al.,	 2014)	 and	

Germany	(Haak	et	al.,	2015).		

	

	

Sample	 Total	reads	
Aligned	

reads	
(%)	

High	quality	

reads	
(%)	

Coverage	

(x)	

GD13a	 728,931,167	135,327,301	 18.57	 90,189,417	 12.37	 1.39	

Table	1.	Alignment	statistics	for	GD13a,	showing	the	total	reads,	the	percentage	of	reads	

that	were	 aligned,	and	 the	percentage	of	which	were	high	quality.	The	 total	 coverage,	

1.39x,	shows	that	every	position	was	covered	an	average	of	1.39	times.	
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Fig.	2.	Damage	patterns	for	GD13a.	Plots		show	mismatch		frequency		relative		to		the		

reference	 	 genome	 	 as	 	 a	 function	 	 of	 	 read	 	 position.	 The	 left	 hand	 figure	 shows	 the	

frequency	of	C	to	T	misincorporations	at	the	5’	ends	of	reads	(first	25	bases)	while	the	

right	hand	figure	shows	the	frequency	of	G	to	A	transitions	at	the	3’	ends	of	reads	(last	25	

bases).	

	

Fig.	3.	Sequence	length	distribution	for	GD13a.	Plot	shows	the	proportion	of	reads	of	

any	given	length.	After	the	cut-off	length	of	30,	the	highest	proportion	of	reads	was	

between	30	and	50	base	pairs,	with	longer	reads	being	more	infrequent.	
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GD13a	 shows	 affinity	 with	 Caucasus	 Hunter	 Gatherers	 and	 Central	 South	 Asian	

populations	

I	 compared	GD13a	with	a	number	of	 other	 ancient	 genomes	 and	modern	populations	

(Allentoft	et	al.,	2015;	Cassidy	et	al.,	2016;	Fu	et	al.,	2015;	Gamba	et	al.,	2014;	Günther	et	

al.,	2015;	Haak	et	al.,	2015;	Jones	et	al.,	2015;	Keller	et	al.,	2012;	Lazaridis	et	al.,	2014;	

Olalde	et	al.,	2015,	2014;	Omrak	et	al.,	2016;	Raghavan	et	al.,	2014;	Seguin-Orlando	et	al.,	

2014),	using	principal	component	analysis	 (PCA)	(Patterson	et	al.,	2006),	ADMIXTURE	

(Alexander	et	al.,	2009)	and	outgroup	f3	statistics	(Patterson	et	al.,	2012)	(Figs	3,	4	and	5).	

GD13a	did	not	cluster	with	any	other	early	Neolithic	individual	from	Eurasia	in	any	of	the	

analyses.	PCA	also	revealed	some	affinity	with	modern	Central	South	Asian	populations	

such	as	Balochi,	Makrani	and	Brahui	(Fig.	4).		

[figure	4	in	next	page]	
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Fig.	4.	A)	PCA	 loaded	on	modern	populations	(represented	by	open	symbols).	Ancient	

individuals	(solid	symbols)	are	projected	onto	these	axes.	B)	Zoom	into	the	populations	

visually	 close	 to	 GD13a,	 revealing	 affinities	 to	 modern	 Balochi,	 Brahui	 and	 Makrani	

populations.	
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Outgroup	f3	statistics,	a	statistical	tool	analysis	that	estimates	the	shared	genetic	drift	of	

two	 populations	 from	 an	 outgroup,	 identified	 Caucasus	 Hunter-Gatherers	 of	Western	

Georgia,	 just	 north	 of	 the	 Zagros	mountains,	 as	 the	 group	 genetically	most	 similar	 to	

GD13a	 (Figs.	5	 and	6,	Tables	2	and	3).	ADMIXTURE,	 a	 clustering	maximum	 likelihood	

algorithm,	 showed	 that	 also	 genetically	 close	 to	 GD13a	 (with	 mostly	 green-coloured	

component)	were	 ancient	 samples	 from	 Steppe	 populations	 (Yamanya	&	Afanasievo),	

which	share	the	green	component	of	GD13a,	together	with	blue.	These	steppe	populations	

were	part	of	one	or	more	of	the	Bronze	age	migrations	into	Europe,	as	well	as	the	early	

Bronze	age	cultures	in	that	continent	(Corded	Ware)	(Allentoft	et	al.,	2015;	Haak	et	al.,	

2015)	(Fig.	7).		The	UPGMA	(unweighted	pair	group	method	with	arithmetic	mean)	tree	

also	showed	GD13a	to	be	genetically	close	 to	Caucasus	Hunter	Gatherers	and	modern	

Caucasus	populations.	These	 results,	 therefore,	 are	 in	 line	with	previous	 relationships	

observed	for	the	Caucasus	Hunter-Gatherers	(Jones	et	al.,	2015).		

	

Fig.	5.	Outgroup	 f3(X,	GD13a;	Dinka),	where	Caucasus	Hunter	Gatherers	(Kotias	and	

Satsurblia)	share	the	most	drift	with	GD13a.	Ancient	samples	have	filled	circles	whereas	

modern	populations	are	represented	by	empty	symbols.	
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X	 f3	
Standard	
Error	

Kotias	 0.152	 0.003	
Satsurblia	 0.150	 0.004	
Russia	(Early	Bronze	Age)	 0.142	 0.007	
Yamnaya	Samara	 0.142	 0.003	
Lezgin	 0.142	 0.002	
Unetice	(Early	Bronze	Age)	 0.141	 0.003	
Afanasievo	 0.141	 0.003	
Chechen	 0.141	 0.002	
Abkhasian	 0.141	 0.002	
Georgian	 0.141	 0.002	
Balochi	 0.140	 0.002	
Corded	Ware	Germany	 0.140	 0.003	
Georgian	Jew	 0.140	 0.002	
Adygei	 0.140	 0.002	
Bell	Beaker	Germany	 0.140	 0.006	
Yamnaya	Kalmykia	 0.140	 0.003	
Iranian	 0.140	 0.002	
Brahui	 0.140	 0.002	
Iranian	Jew	 0.140	 0.002	
Kalash	 0.140	 0.002	
Armenian	 0.139	 0.002	
Iraqi_Jew	 0.139	 0.002	
Srubnaya	 0.139	 0.003	
Irish	(Bronze	Age)	 0.139	 0.003	
Tajik_Pomiri	 0.139	 0.002	
Nordic	(Middle	Neolithic)	 0.139	 0.006	
Makrani	 0.139	 0.002	
Pathan	 0.139	 0.002	
Kumyk	 0.139	 0.002	
Balkar	 0.138	 0.002	
Sindhi	 0.138	 0.002	

	

Table	 2.	 f3(X,	 GD13a;	 Dinka)	 where	 X	 represents	 a	 modern	 or	 ancient	

individual/population.	 Ancient	 individuals/populations	 are	 shown	 in	 bold.	

Populations/individuals	with	the	largest	f3	values	are	shown.	
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X	 f3	
Standard	
Error	

Kotias	 0.247	 0.004	
Satsurblia	 0.243	 0.005	
Spain	(Middle	Bronze	Age)	 0.237	 0.006	
Corded	Ware	Germany	 0.236	 0.008	
Chechen	 0.236	 0.003	
Abkhasian	 0.236	 0.003	
Lezgin	 0.236	 0.003	
Georgian	Jew	 0.236	 0.003	
Balochi	 0.236	 0.003	
Yamnaya	Samara	 0.236	 0.003	
Yamnaya	Kalmykia	 0.236	 0.004	
Unetice	(Early	Bronze	Age)	 0.235	 0.003	
Brahui	 0.235	 0.003	
Adygei	 0.235	 0.003	
Georgian	 0.235	 0.003	
Iranian	Jew	 0.235	 0.003	
Iranian	 0.235	 0.003	
Bell	Beaker	Czech	 0.235	 0.005	
Iraqi	Jew	 0.235	 0.003	
Kalash	 0.235	 0.003	
Tajik	Pomiri	 0.234	 0.003	
Makrani	 0.234	 0.003	
Pathan	 0.234	 0.003	
Afanasievo	 0.234	 0.003	
Armenian	 0.234	 0.003	

	

Table	 3.	 f3(X,	 GD13a;	 Ju’Hoansi)	 where	 X	 represents	 a	 modern	 or	 ancient	

individual/population.	 Ancient	 individuals/populations	 are	 shown	 in	 bold.	

Populations/individuals	with	the	largest	f3	values	are	shown.	
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Fig.	 6.	 GD13a	 shares	 genetic	 drift	 with	 modern	 Caucasus	 and	 South	 Asian	

populations.	The	statistic	f3(X,	GD13a;	Dinka)	shows	that	the	closest	modern	populations	

to	GD13a	are	Caucasus	populations	and,	to	some	extent,	South	Asian	populations	such	as	

Balochi	and	Makrani.	Map	of	populations	was	generated	with	the	library	“ggplot2”	with	R	

software	 (v3.1.2,	 https://cran.r-project.org/).	 Populations	 in	 blue	 with	 the	 lowest	 f3	

values	 represent	 Yemenite,	 Egyptian	 or	 Russian	 Jew	 populations,	with	more	 complex	

population	histories.	(R	Development	Core	Team,	2001).	
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Fig.	7.	ADMIXTURE	using	K=17,	where	GD13a	appears	very	similar	to	Caucasus	Hunter	

Gatherers,	and	to	a	lesser	extent	to	modern	south	Asian	populations.	
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Fig.	8.	ADMIXTURE	analysis	cross	validation	(CV)	error	as	a	function	of	the	number	of	

clusters	(K).	Both	the	lowest	minimal	and	mean	value	was	attained	at	K=17.	

	

The	UPGMA	tree	shows	that	GD13a	clusters	in	the	same	branch	as	the	Caucasus	Hunter-

Gatherers	(Kotias	and	Satsurblia)	(Fig.	9).	

Fig.	9.	UPGMA	Tree	(Unweighted	Pair	Group	Method	with	Arithmetic	Mean),	showing	that	

GD13a	 clusters	 together	with	Caucasus	Hunter	Gatherers	 (CHG).	EHG,	Eastern	Hunter	

Gatherers;	WHG,	Western	Hunter	Gatherers.	
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I	further	investigated	the	relationship	between	GD13a	and	Caucasus	Hunter-Gatherers	

using	D-statistics	(Green	et	al.,	2010;	Patterson	et	al.,	2012)	to	test	whether	they	formed	

a	 clade	 to	 the	 exclusion	of	 other	 ancient	 and	modern	 samples	 (Table	4).	 Every	 tested	

population,	 including	a	 large	number	of	Western	Eurasian	samples	(both	modern	and	

ancient)	 showed	 significant	 excess	 genetic	 affinity	 to	 the	 Caucasus	Hunter-Gatherers,	

whilst	 none	did	with	GD13a.	Overall,	 these	 results	point	 to	GD13a	having	 little	direct	

genetic	input	into	later	modern	populations,	European	or	Asian,	compared	to	its	northern	

neighbours,	the	Caucasus	Hunter-Gatherers.	

	

GD13a	did	not	undergo	a	recent	large	population	bottleneck	

To	 better	 understand	 the	 history	 of	 the	 population	 to	 which	 GD13a	 belonged,	 I	

investigated	the	distribution	of	lengths	of	runs	of	homozygosity	(ROH)	(Fig.	10).	A	bias	

towards	 a	 high	 frequency	 of	 both	 long	 and	 short	 ROH	 is	 indicative	 of	 past	 strong	

bottlenecks	followed	by	population	re-expansion.	GD13a	has	a	distribution	with	few	long	

ROH	(>2	Mb),	similar	to	that	of	the	descendants	of	Anatolian	early	farmers	(represented	

by	the	European	farmers	NE1	(Gamba	et	al.,	2014)	and	Stuttgart	(Lazaridis	et	al.,	2014)).	

In	contrast,	both	Western	(Lazaridis	et	al.,	2014)	and	Caucasus	Hunter-Gatherers	(Jones	

et	al.,	2015)		have	relatively	more	long	as	well	as	short	ROH.	Thus,	GD13a	is	the	descendant	

of	a	group	that	had	relatively	stable	demography,	i.e.	without	large	shifts	in	population	

numbers,	and	did	not	suffer	the	bottlenecks	that	affected	more	northern	or	mountainous	

populations.	Small	effective	population	sizes	and	recent	inbreeding	would	give	a	different	

pattern	to	the	one	we	see	in	GD13a	or	Kotias,	but	more	similar	to	the	one	presented	by	

Satsurblia.	 	 Satsurblia	 presents	 a	 higher	 proportion	 of	 longer	 ROH,	 due	 to	 less	

recombination	events	due	to	fewer	elapsed	generations.	This	supports	the	fact	that	the	

similar	ROH	distribution	 shared	by	GD13a	and	Kotias	 is	 indicative	of	 deep	population	

bottlenecks,	which	since	then	have	created	a	large	number	of	very	fragmented	ROH.		

	

[Next	 page]	 Table	 4.	D-statistics	 of	 the	 form	D(Dinka,	X;	 GD13a,	 Kotias)	where	X	

represents	a	modern	or	ancient	individual/population.	

Ancient	 individuals/populations	 are	 shown	 in	 bold.	 MN:	 Middle	 Neolithic,	 LN:	 Late	

Neolithic,	LBA:	Late	Bronze	Age,	MBA:	Middle	Bronze	Age,	EBA:	Early	Bronze	Age,	HG:	

Hunter	Gatherer,	BA:	Bronze	Age.	Populations/individuals	with	the	largest	values	of	D	are	

shown.		
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X	 D-statistic	 Z-score	
Satsurblia	 0.090	 6.70	
Esperstedt_MN	 0.058	 4.56	
Alberstedt_LN	 0.057	 4.81	
Corded_Ware_Estonia	 0.055	 3.67	
Srubnaya_Outlier	 0.053	 4.10	
Halberstadt_LBA	 0.053	 4.56	
Corded_Ware_Germany	 0.050	 5.92	
BenzigerodeHeimburg_LN	 0.050	 3.83	
Bell_Beaker_Germany	 0.049	 2.55	
Afanasievo.	 0.049	 5.28	
Iberia_Mesolithic	 0.048	 4.02	
Samara_HG	 0.047	 3.04	
Sintashta_MBA	 0.047	 4.56	
Georgian	 0.046	 6.99	
Unetice_EBA	 0.046	 4.51	
Orcadian	 0.046	 6.82	
Iberia_Chalcolithic	 0.045	 5.01	
Poltavka	 0.045	 4.71	
Karelia_HG	 0.044	 3.70	
Bell_Beaker_Germany	 0.043	 4.99	
Loschbour	 0.043	 4.09	
Iberia_EN	 0.043	 4.48	
MA1	 0.043	 3.20	
Estonian	 0.042	 6.11	
Abkhasian	 0.042	 6.23	
Yamnaya_Kalmykia	 0.042	 4.69	
Ukrainian	 0.042	 6.11	
Croatian	 0.041	 6.10	
Yamnaya_Samara	 0.041	 5.07	
Czech	 0.041	 5.91	
Norwegian	 0.040	 5.85	
English	 0.040	 5.75	
Remedello_BA	 0.040	 3.12	
French_South	 0.040	 5.51	
Lithuanian	 0.040	 5.79	
Baalberge_MN	 0.039	 2.70	
Kumyk	 0.039	 5.75	
Hungarian	 0.039	 5.83	
Srubnaya	 0.039	 4.92	
Icelandic	 0.039	 5.60	
North_Ossetian	 0.039	 5.73	
French	 0.038	 5.80	
Adygei	 0.038	 5.74	
BattleAxe_Sweden	 0.038	 2.49	
Balkar	 0.038	 5.60	
Iberia_MN	 0.038	 3.98	
Spanish_North	 0.037	 4.91	
Motala_HG	 0.037	 4.13	
Belarusian	 0.037	 5.38	
Spanish	 0.037	 5.72	
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Fig.	10.	GD13a	has	similar	runs	of	homozygosity	(ROH)	lengths	to	Neolithic	individuals,	

while	 Caucasus	 Hunter	 Gatherers	 (Kotias	 and	 Satsurblia),	 like	 European	 Hunter	

Gatherers	 (Loschbour	 and	 Bichon),	 underwent	 recent	 large	 population	 bottlenecks	

potentially	associated	with	the	LGM.		

	

GD13a	and	Kotias	are	possible	surrogates	for	Ancestral	Northern	Indians	

After	the	fact	that	analysing	GD13a	showed	a	large	degree	of	similarity	between	GD13a	

and	Kotias,	the	next	step	was	to	check	whether	these	two	populations	contributed	are	

equally	related	to	the	steppe	component	of	Ancient	Northern	Indians,	or	whether	one	of	

both	is	genetically	closer	to	said	component.		It	remained	a	possibility	that	farmers	from	

the	Near	East	contributed	to	the	eastern	diffusion	of	agriculture	from	the	Near	East	that	

reached	 Turkmenistan	 (Harris	 et	 al.,	 2010)	 by	 the	 6th	 millennium	 BP,	 and	 continued	

further	 east	 to	 the	 Indus	 Valley	 (Gangal	 et	 al.,	 2014).	 However,	 detecting	 such	 a	

contribution	 is	 complicated	 by	 a	 later	 influx	 from	 Steppe	 populations	 with	 Caucasus	

Hunter-Gatherer	ancestry	during	the	Bronze	Age.	I	tested	whether	the	Western	Eurasian	

component	found	in	Indian	populations	can	be	better	attributed	to	either	of	these	two	
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sources,	GD13a	and	Kotias	(a	Caucasus	Hunter	Gatherer),	using	D-statistics	to	detect	gene	

flow	into	an	ancestral	Indian	component	(represented	by	the	Onge	in	Fig.	11	and	Kharia	

in	Fig.	12).	Overall,	for	all	tests	where	a	difference	could	be	detected,	Kotias	was	a	slightly	

closer	source	than	GD13a.	In	other	tests,	Kotias	and	GD13a	were	equally	likely	sources	

(Fig.	11	and	Table	5).	These	results	remained	in	line	with	the	ones	observed	in	Table	4,	

where	every	 tested	population	showed	significant	excess	genetic	affinity	 to	the	Kotias.	

Using	the	Kharia,	a	non-admixed	population	from	Central	India,	as	the	representative	of	

the	ancestral	Indian	component	yielded	similar	results	(Fig.	12	and	Table	6).	Whilst	the	

attribution	 of	 part	 of	 the	 Western	 Eurasian	 component	 seen	 in	 India	 to	 Bronze	 Age	

migrations	 is	 supported	 by	 dating	 of	 last	 contact	 based	 on	 patterns	 of	 Linkage	

Disequilibrium	(Kirin	et	al.,	2010),	this	analysis	highlights	the	possibility	that	part	of	that	

component	might	derive	from	earlier	contact	during	the	eastern	diffusion	of	agriculture,	

as	GD13a	and	Kotias	have	similar	genetic	affinity	to	many	subcontinental	populations.	

	

Fig.	11.	D-statistics	of	the	type	D(Yoruba,	Ancient;	Onge,	South	Asian),	where	Ancient	

is	represented	by	Kotias	or	GD13a,	whereas	South	Asian	is	represented	by	Modern	

South	Asian	populations.	Overall,	both	genomes	were	equally	good	proxies	for	ANI,	even	

though	Kotias	was	marginally	better	for	a	few	comparisons	(Kalash	and	Tiwari).	
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D(Yoruba,		GD13a;	Onge,	S.	

Asian)	

D(Yoruba,		Kotias;	Onge,	S.	

Asian)	

Population	 D-statistic	 Z	 D-statistic	 Z	

Gujarati	A	 0.057	 11.086	 0.063	 13.737	

Gujarati	B	 0.050	 9.462	 0.060	 12.943	

Gujarati	C	 0.048	 9.641	 0.057	 12.176	

Gujarati	D	 0.044	 8.455	 0.055	 11.992	

Lodhi	 0.041	 8.914	 0.047	 11.531	

Mala	 0.030	 6.673	 0.038	 9.092	

Vishwabrahmin	 0.036	 7.946	 0.041	 9.952	

Tiwari	 0.046	 10.236	 0.062	 14.701	

Kharia	 0.008	 1.626	 0.010	 2.493	

Kalash	 0.060	 11.935	 0.079	 17.256	

Balochi	 0.062	 12.981	 0.069	 16.124	

Makrani	 0.057	 12.060	 0.062	 13.959	

	

Table	5.	D-statistics	of	the	form	D(Yoruba,		Ancient;	Onge,	S.	Asian),	where	Ancient	

is	 either	GD13a	or	Kotias,	while	S.	Asian	 are	different	modern	 Indian	and	South	

Asian	populations.	
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Fig.	 12.	 D-statistics	 of	 the	 type	 D(Yoruba,	 Ancient;	 Kharia,	 South	 Asian),	 where	

Ancient	is	represented	by	Kotias	or	GD13a,	whereas	South	Asian	is	represented	by	

Modern	South	Asian	populations.	Overall,	both	genomes	were	equally	good	proxies	for	

ANI,	even	though	Kotias	was	marginally	better	for	a	few	comparisons	(Kalash	and	Tiwari).	
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D(Yoruba,		GD13a;	Kharia,	S.	

Asian)	

D(Yoruba,		Kotias;	Kharia,	S.	

Asian)	

Population	 D-statistic	 Z	 D-statistic	 Z	

Gujarati	A	 0.050	 12.856	 0.054	 16.79	

Gujarati	B	 0.043	 10.743	 0.050	 14.688	

Gujarati	C	 0.041	 11.016	 0.047	 13.398	

Gujarati	D	 0.037	 9.252	 0.045	 14.45	

Lodhi	 0.034	 11.175	 0.037	 14.507	

Mala	 0.029	 7.781	 0.028	 10.964	

Vishwabrahmin	 0.029	 9.427	 0.032	 11.749	

Tiwari	 0.040	 12.752	 0.052	 18.66	

Kalash	 0.054	 14.101	 0.070	 20.194	

Balochi	 0.056	 16.199	 0.058	 20.142	

Makrani	 0.051	 14.399	 0.053	 16.662	

Table	6.	D-statistics	of	the	form	D(Yoruba,		Ancient;	Kalash,	S.	Asian),	where	Ancient	

is	 either	GD13a	or	Kotias,	while	S.	Asian	 are	different	modern	 Indian	and	South	

Asian	populations.	
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Phenotypes	of	Interest	

The	 phenotypic	 attributes	 of	 GD13a	 are	 similar	 to	 the	 neighbouring	 Anatolian	 early	

farmers	and	Caucasus	Hunter-Gatherers.	Based	on	diagnostic	SNPs,	she	had	dark,	black	

hair	and	brown	eyes	(see	Table	7).	She	lacked	the	derived	variant	(rs16891982)	of	the	

SLC45A2	gene	associated	with	light	skin	pigmentation	but	likely	had	at	least	one	copy	of	

the	 derived	 SLC24A5	 allele	 (rs1426654)	 associated	 with	 the	 same	 trait.	 The	 derived	

SLC24A5	variant	has	been	found	in	both	Neolithic	farmer	and	Caucasus	Hunter-Gatherer	

groups	(Gamba	et	al.,	2014;	Jones	et	al.,	2015;	Mathieson	et	al.,	2015)	suggesting	that	it	

was	already	at	appreciable	frequency	before	these	populations	diverged.	Finally,	she	did	

not	have	 the	most	common	European	variant	of	 the	LCT	gene	(rs4988235)	associated	

with	the	ability	to	digest	raw	milk,	consistent	with	the	later	emergence	of	this	adaptation	

(Allentoft	et	al.,	2015;	Gamba	et	al.,	2014;	Mathieson	et	al.,	2015).	

	

Using	the	Hirisplex	prediction	model	(Walsh	et	al.,	2013),	GD13a	was	predicted	to	have	

brown	eyes	(p-value	=	0.993)	and	dark	(p-value=0.997),	black	(p-value=0.899)	hair.	This	

was	confirmed	using	imputed	genotypes.	The	eye-colour	HERC2	variant	rs12913832	was	

assigned	 almost	 equal	 likelihoods	 of	 being	 homozygous	 for	 the	 ancestral	 allele	 (A;	

genotype	 probability	 =	 0.501)	 and	 heterozygous	 (AG;	 genotype	 probability	 =	 0.499).	

Given	 this	 result,	 and	 that	 the	 ancestral	 allele	 was	 observed	 (2-fold	 coverage)	 in	 the	

sample	it	is	very	likely	that	GD13a	had	at	least	one	copy	of	the	ancestral	dominant	allele	

associated	with	brown	eyes.	Using	either	state	(homozygous	ancestral	or	heterozygous)	

in	the	Hirisplex	model	and	imposing	a	genotype	probability	cut-off	of	0.9	for	the	other	

imputed	genotypes,	GD13a	was	predicted	with	the	imputation	approach	to	have	dark	(p-

value	≥	0.974),	black	(p-value	≥	0.703)	hair	and	brown	eyes	(p-value	≥	0.952).	

	

We	did	not	observe	the	derived	SLC45A2	variant	(rs16891982)	associated	with	light	skin	

pigmentation	in	GD13a	(also	supported	by	the	imputed	genotype)	but	did	observe	the	

derived	 SLC24A5	 variant	 (rs1426654)	which	 is	 also	 associated	with	 the	 same	 trait	 in	

modern	populations.	The	 imputed	genotype	 for	 the	 latter	suggests	 that	this	 individual	

was	heterozygous	at	this	position	(genotype	probability	>	0.999).	Using	either	observed	

or	imputed	genotypes,	GD13a	did	not	show	the	most	common	variant	of	the	LCT	gene	

(rs4988235)	 associated	 with	 lactase	 persistence	 in	 Europeans	 (Table	 7).	 	 I	 visually	

inspected	the	rs12913832	(HERC),	rs1110400	(MC1R),	and	rs1426654	(SLC24A5)	sites	

using	 the	 Integrative	 Genomics	 Viewer	 (Robinson	 et	 al.,	 2011;	 Thorvaldsdóttir	 et	 al.,	
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2013)	 	 as	 the	 observed	 alleles	 found	 at	 these	 sites	may	 be	 the	 result	 of	 deaminated	

cytosine	residues.	I	found	that	the	alleles	called	at	the	rs12913832	and	rs1110400	variant	

sites	are	greater	than	10	bp	from	either	end	of	the	read.	For	the	rs1426654	site	at	least	

one	 allele	 was	 10	 bp	 from	 either	 end	 of	 the	 read.	 This,	 combined	 with	 the	 imputed	

genotypes,	suggests	that	the	alleles	called	at	these	positions	are	unlikely	to	be	the	result	

of	postmortem	DNA	damage	which	is	more	prevalent	at	read	termini.	
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Gene Marker 
Observed 
genotype 

Coverage 
Imputed 

genotype 
Imputed Genotype 

probability 

EXOC2 rs4959270 - - CA > 0.999 

HERC2 rs12913832 AA 2A AA/GA 0.501/0.499 

IRF4 rs12203592 - - CC 0.999 

KITLG rs12821256 - - TC 0.752 

MC1R N29insA - - - - 

MC1R rs1110400 TT 1T TT 0.998 

MC1R rs11547464 - - GG > 0.999 

MC1R rs1805005 - - GG > 0.999 

MC1R rs1805006 - - CC 0.996 

MC1R rs1805007 CC 1C CC > 0.999 

MC1R rs1805008 CC 1C CC 0.999 

MC1R rs2228479 - - GG 0.999 

MC1R rs885479 - - GG 0.913 

MC1R Y1520CH - - - - 

MCIR rs1805009 GG 1G GG 0.999 

OCA2 rs1800407 - - CC 0.985 

PIGU/ASIP rs2378249 - - AA > 0.999 

SLC24A4 rs12896399 GG 3G GG > 0.999 

SLC24A4 rs2402130 GG 1G GA > 0.999 

SLC45A2 rs16891982 CC 2C CC > 0.999 

SLC45A2 rs28777 CC 1C CC 0.999 

TYR rs1042602 CC 1C CC > 0.999 

TYR rs1393350 GG 3G GG > 0.999 

TYRP1 rs683 CC 2C CC > 0.999 

SLC24A5 rs1426654 AA 2A AG > 0.999 

LCT rs4988235 GG 2G GG > 0.999 

Table	7.	Observed	and	 imputed	genotypes	 for	GD13a	at	 variant	 sites	associated	

with	phenotypes	of	interest.	
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Discussion	

GD13a	had	 little	direct	genetic	 input	 into	later	European	populations	compared	to	the	

Caucasus	Hunter-Gatherers	(its	northern	neighbours)	as	demonstrated	using	D-statistics.	

This	lack	of	connectivity	with	neighbouring	regions	might	have	arisen	early	on,	since	this	

report	also	finds	that	hunter-gatherers	from	the	Caucasus	show	higher	affinity	to	Western	

Hunter-Gatherers	and	early	Anatolian	farmers;	this	result	suggests	the	possibility	of	gene	

flow	 between	 the	 former	 and	 these	 two	 latter	 groups	 to	 the	 exclusion	 of	 GD13a.	 An	

alternative,	but	not	mutually	exclusive,	explanation	for	this	pattern	is	that	GD13a	might	

have	 received	 genetic	 input	 from	 a	 source	 equally	 distant	 from	 all	 other	 European	

populations,	and	thus	basal	to	them.	This	possible	deep	lineage	of	non-African	ancestry,	

which	branched	off	before	all	the	other	non-Africans	branched	off	from	one	another,	was	

suggested	by	Lazaridis	et	al.	in	2014,	and	termed	Basal	Eurasians.	

	

Fig.	 12.	 Map	 showing	 geographical	 location	 of	 Anatolian	 Neolithic	 samples,	

Caucasus	 Hunter	 Gatherers	 (CHG)	 and	 GD13a.	 Background	 colours	 indicate	 mean	

temperature	(°C)	of	coldest	quarter	during	the	LGM,	with	LGM	sea	levels.	Map	showing	

geographical	location	of	Anatolian	Neolithic	samples,	Caucasus	Hunter	Gatherers	(CHG)	

and	GD13a.	Background	colours	indicate	mean	temperature	(°C)	of	coldest	quarter	during	

the	LGM	(data	from	the	worldclim	database60	generated	by	the	CCSM4	model)	(Hijmans	

et	 al.,	 2005),	with	LGM	sea	 levels.	Map	of	 temperatures	was	 generated	with	MATLAB	

R2015b	(Mathworks,	http://www.mathworks.com/).	
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The	Last	Glacial	Maximum	(LGM)	made	entire	regions	in	northern	Eurasia	uninhabitable,	

and	therefore	a	number	of	hunter-gatherer	populations	likely	moved	to	the	south.	For	

Europe	 there	 may	 be	 a	 separation	 between	 Western	 and	 Eastern	 populations	 with	

minimal	 occupation	 of	 the	 Central	 European	plains	 (Seguin-Orlando	 et	 al.,	 2014).	 For	

Eastern	Europe,	Central	Asia	and	the	northern	Near	East,	glaciation	itself	was	less	a	factor.	

In	these	areas,	our	understanding	of	how	populations	weathered	the	LGM	is	still	vague	at	

best.	It	has	previously	been	suggested	that	differences	in	the	frequency	of	long	and	short	

runs	of	homozygosity	in	ancient	samples	may	be	associated	with	different	demographic	

experiences	during	the	LGM	(Gamba	et	al.,	2014;	Jones	et	al.,	2015).	Neolithic	farmers,	

with	their	lower	frequency	of	short	ROH,	have	been	argued	to	have	been	relatively	little	

affected	by	the	LGM	compared	to	Western	and	Caucasus	Hunter-Gatherers	(Gamba	et	al.,	

2014;	Jones	et	al.,	2015)	which	are	characterised	by	more	long	ROH	(>2Mb).	GD13a	has	a	

profile	 similar	 to	 that	 of	 the	 descendants	 of	 Anatolian	 farmers	 (i.e.	 early	 European	

farmers),	suggesting	that	her	ancestors	also	faced	more	benign	conditions	compared	to	

populations	further	north	during	the	LGM.	This	would	have	then	allowed	for	populations	

which	 didn’t	 undergo	 glaciation-induced	 shrinkages	 of	 population	 numbers,	 hence	

preventing	the	population	bottlenecks	that	occurred	in	other	populations	further	north,	

such	as	the	Caucasus	Hunter-Gatherers	A	bigger	population	size	of	origin	would	also	have	

been	subject	 to	 large	population	bottlenecks	due	 to	decreasing	resources	and	harsher	

climatic	conditions,	hence	why	it	would	not	fully	explain	the	patterns	seen	in	Figure	10.	

Superimposing	the	sampling	locations	of	these	groups	onto	climatic	reconstructions	from	

the	LGM	(Fig.	2b),	however,	does	not	reveal	clear	climatic	differences	among	the	regions.	

It	is	possible	that	the	ancestors	of	the	Anatolian	and	Ganj	Dareh	farmers	spent	the	LGM	in	

areas	further	south	or	east,	which	experienced	milder	climate.	But	it	is	also	possible	that	

they	exploited	local	pockets	of	favourable	climate	(refugia).	Whilst	high	elevation	sites	in	

the	Zagros	were	abandoned	during	 the	LGM	(Matthews	and	Nashli,	2013),	 there	are	a	

number	 of	 sites	 in	 the	 valleys	 that	were	 occupied	 during	 that	period	 and	might	 have	

experienced	more	favourable	conditions	(Tsuneki,	2013).	

The	archaeological	 record	 indicates	an	eastward	Neolithic	expansion	 from	the	eastern	

regions	of	 the	Near	East	 into	Central	and	South	Asia	 (Harris	et	al.,	2010;	Weeks	et	al.,	

2006).	This	analysis	shows	that	both	the	Caucasus	Hunter	Gatherer	Kotias	and	GD13a	are	

plausible	sources	for	the	Eurasian	Ancestry	found	in	that	part	of	Asia.	Even	though	part	

of	the	Western	Eurasian	component	found	in	India	can	be	linked	to	Bronze	Age	migrations	

by	dating	 the	 last	 contact	using	Linkage	Disequilibrium	 (thus	 coming	 from	 the	Kotias	

lineage),	 these	 results	highlight	 the	possibility	 of	 an	older	 contribution	 from	a	 source	

genetically	close	to	GD13a	(which	would	be	hard	to	disentangle	from	the	later	gene	flow	
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from	the	Steppe).	Eventually,	ancient	DNA	from	the	Indus	Valley	will	be	needed	to	detect	

conclusively	whether	any	genetic	traces	were	left	by	the	eastward	Neolithic	expansion	

from	the	Near	East,	or	whether	this	process	was	mostly	cultural.		

	

The	 presence	 of	 two	 distinct	 lineages	 (Anatolian-like	 agriculturalists	 and	 Zagros	

mountain	herders)	in	the	Near	East	at	the	beginning	of	the	Neolithic	transition	raises	an	

interesting	 question	 regarding	 the	 independence	 of	 innovations	 arising	 at	 different	

locations.	 Even	 within	 the	 Central	 Zagros,	 economies	 vary	 greatly	 in	 their	 rate	 and	

pathway	towards	Neolithisation	(Matthews	and	Nashli,	2013).	Ganj	Dareh,	 in	 the	high	

Zagros,	has	the	earliest	known	evidence	for	goat	domestication	(Zeder,	2011,	2008;	Zeder	

and	Hesse,	2000),	and	the	foothills	of	the	Zagros	mountains	have	also	been	argued	to	have	

been	the	site	of	early	farming	(Riehl	et	al.,	2013).	In	addition,	early	sites	such	as	Sheikh-e	

Abad	 (11.650-9,600	 cal	 BP)	 provide	 evidence	 of	 early	 stages	 of	 barley	 cultivation	

(Whitlam	et	al.,	2013).	Were	these	innovations	independent	of	similar	achievements	that	

made	up	the	Neolithic	package	that	North	West	Anatolians	brought	into	Europe?	Or	were	

they	exchanged	culturally?	If	the	latter,	it	would	imply	a	cultural	diffusion	in	the	absence	

of	much	genetic	interchange.	

	

Methods	

DNA	extraction	and	library	preparation	

Sample	 preparation,	 DNA	 extraction	 and	 library	 preparation	 were	 carried	 out	 in	

dedicated	 ancient	 DNA	 facilities	 at	 University	 College	 Dublin.	 The	 dense	 part	 of	 the	

petrous	bone	was	 isolated,	cleaned	and	sequenced	 following	experimental	procedures	

outlined	in	Gamba	et	al.	(2014).	DNA	was	extracted	from	310	mg	of	ground	bone	powder	

using	a	double-digestion	and	silica	column	method	as	described	in	Gamba	et	al.	(2016).	

Indexed	Illumina	sequencing	libraries	were	constructed	with	a	protocol	based	on	Meyer	

and	Kircher	 (2010)	with	modifications	 including	blunt	 end	 repair	using	NEBNext	End	

Repair	Module	(New	England	BioLabs	Inc)	and	heat	inactivation	of	Bst	DNA	polymerase	

(Gamba	et	al.,	2014).	
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Sequence	processing	and	alignment		

Libraries	were	sequenced	over	a	flow	cell	on	a	HiSeq	2000	at	the	TheragenEtex	(South	

Korea)	using	100	bp	single-end	sequencing.	Adapter	sequences,	either	complete	or	partial	

adapter	matches,	were	trimmed	from	the	3’	ends	of	sequences	using	cutadapt	version	1.3	

(Martin,	 2011),	 conservatively	 requiring	 an	 overlap	 of	 1	 base	 pair	 (bp)	 between	 the	

adapter	and	the	read.	Reads	were	aligned	using	BWA	(Li	and	Durbin,	2009),	with	the	seed	

region	 disabled,	 to	 the	 GRCh37	 build	 of	 the	 human	 genome	 with	 the	 mitochondrial	

sequence	replaced	by	the	revised	Cambridge	reference	sequence	(NCBI	accession	number	

NC_012920.1).	 Data	 from	 separate	 lanes	 were	 merged	 using	 Picard	 MergeSamFiles	

(http://picard.sourceforge.net/)	and	duplicate	reads	from	the	same	library	amplification	

were	filtered	using	SAMtools	rmdup	(Li	et	al.,	2009).	Sequences	were	further	filtered	to	

remove	those	with	mapping	quality	<	30	and	length	<	30	bp.	Indels	were	realigned	using	

RealignerTargetCreator	and	IndelRealigner	from	the	Genome	Analysis	Toolkit	(McKenna	

et	al.,	2010).	The	first	and	last	2	bp	of	each	read	were	soft-clipped	to	a	base	quality	of	2.	

The	 average	 genome-wide	 depth	 of	 coverage	 was	 calculated	 using	 the	 genomecov	

function	of	bedtools	(Quinlan	and	Hall,	2010).	A	summary	of	alignment	statistics	can	be	

found	in	Table	1.	

	

Authenticity	of	results	

The	 data	 were	 assessed	 for	 the	 presence	 of	 typical	 signatures	 of	 post-mortem	 DNA	

damage	(Briggs	et	al.,	2007;	Brotherton	et	al.,	2007).	The	sequence	length	distribution	of	

molecules	was	examined	as	outlined	in	Gallego-Llorente	et	al.	(2015)	(Fig.	2)	while	the	

prevalence	of	nucleotide	misincorporation	sites	at	the	ends	of	reads	was	evaluated	using	

mapDamage	2.0	and	a	random	subsample	of	1	million	reads	(Jónsson	et	al.,	2013)	(Fig.	3).		

	

The	mitochondrial	contamination	rate	was	assessed	by	evaluating	the	proportion	of	non-

consensus	bases	at	haplogroup	defining	positions	in	the	mitochondrial	genome	(Gamba	

et	al.,	2014;	Sánchez-Quinto	et	al.,	2012b).	Only	bases	with	quality	≥	20	were	used.		The	X	

chromosome	contamination	rate	could	not	be	evaluated	as	the	sample	was	determined	to	

be	female,	using	the	script	described	in	Skoglund	et	al.	(2013).		

	

		



The	genetics	of	an	Early	Neolithic	pastoralist	from	the	Zagros,	Iran		|	2	

 59 

Mitochondrial	Haplogroup	Determination	

To	determine	to	which	haplogroup	the	mitochondrion	of	GD13a	belonged,	a	consensus	

sequence	was	generated	using	ANGSD	(Korneliussen	et	al.,	2014).	Called	positions	were	

required	 to	 have	 a	 depth	 of	 coverage	 ≥	 3	 and	 only	 bases	 with	 quality	 ≥	 20	 were	

considered.	 The	 resulting	 FASTA	 files	 were	 uploaded	 to	 HAPLOFIND	 (Vianello	 et	 al.,	

2013)	 for	 haplogroup	 determination.	 Coverage	 was	 calculated	 using	 GATK	

DepthOfCoverage	(McKenna	et	al.,	2010).		

	

Dataset	preparation	for	population	genetic	analyses	

Genotypes	were	called	in	GD13a	at	sites	which	overlapped	those	in	the	Human	Origins	

dataset	published	on	Lazaridis	et	al.	(2014),	filtered	as	described	in	Jones	et	al.	(2015)	

using	GATK	Pileup	(McKenna	et	al.,	2010).	Triallelic	SNPs	were	discarded	and	bases	were	

required	to	have	quality	≥	30.	For	positions	with	more	than	one	base	call,	one	allele	was	

randomly	chosen	with	a	probability	equal	to	the	frequency	of	the	base	at	that	position.	

This	allele	was	duplicated	to	form	a	homozygous	diploid	genotype	for	each	position	called	

in	 GD13a.	 	 This	 method	 of	 SNP	 calling	 was	 also	 used	 for	 selected	 ancient	 samples	

described	in	Jones	et	al.	(2015),	Cassidy	et	al.	(2016),	Günther	et	al.	(2015),	Omrak	et	al.	

(2016)	and	Olalde	et	al.	(2015).	Genotype	calls	for	these	ancient	samples	were	merged	

with	calls	from	modern	samples	found	in	the	Human	Origins	dataset	and	ancient	samples	

provided	 in	 the	Mathieson	et	al.	 (2015)	dataset	which	also	included	genotype	calls	 for	

previously	published	ancient	samples	(Allentoft	et	al.,	2015;	Fu	et	al.,	2015;	Gamba	et	al.,	

2014;	Haak	 et	 al.,	 2015;	 Keller	 et	 al.,	 2012;	 Lazaridis	 et	 al.,	 2014;	 Olalde	 et	 al.,	 2015;	

Raghavan	 et	 al.,	 2014;	 Seguin-Orlando	 et	 al.,	 2014).	 To	 avoid	 biases	 caused	 by	 post-

mortem	 DNA	 damage,	 only	 transversion	 sites	 were	 used	 for	 PCA,	 ADMIXTURE,	f3-

statistics	and	D-statistics.		

	

Principal	component	analysis	

To	 explore	 GD13a	 and	 other	 ancient	 samples	 in	 the	 context	 of	 modern	 variation	 in	

Eurasia,	I	performed	PCA	with	a	panel	of	contemporary	populations	(196	contemporary	

populations,	145,004	transversion	SNPs).	The	analysis	was	carried	out	using	SmartPCA	

(Patterson	et	al.,	2006);	the	components	were	loaded	on	the	contemporary	populations,	

and	the	ancient	individuals	were	projected	onto	these	dimensions	(Fig.	4).		
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ADMIXTURE	

A	clustering	analysis	was	performed	using	ADMIXTURE	version	1.23	(Alexander	et	al.,	

2009),	 using	 the	 full	 panel	 of	 modern	 and	 ancient	 samples	 described	 above.	 SNPs	 in	

linkage	 disequilibrium	 were	 thinned	 using	 PLINK	 (v1.07)	 (Purcell	 et	 al.,	 2007)	 with	

parameters	–indep-pairwise	200	25	0.5	(Haak	et	al.,	2015),	resulting	in	a	set	of	116,834	

SNPs	 for	 analysis.	 Clusters	 (K)	 (2-20)	were	 explored	using	3	 runs	with	 fivefold	 cross-

validation	at	each	K	with	different	random	seeds.	The	minimal	cross-validation	error	was	

found	at	K=17,	but	the	error	already	starts	plateauing	from	roughly	K=10,	implying	little	

improvement	from	this	point	onwards	(Fig.	8).	The	ADMIXTURE	proportions	are	shown	

in	Fig.	7	for	all	samples.	

	

Outgroup	f3-statistics	and	D-statistics		

Outgroup	 f3-statistics	 and	D-statistics	were	 performed	 using	 the	 qp3Pop	 and	 qpDstat	

programs	from	the	ADMIXTOOLS	package	(Patterson	et	al.,	2012).	

	

Neighbour-joining	tree		

We	used	a	custom	Matlab	script	to	calculate	pairwise	pi	from	genome-wide	genotype	data	

using	 a	panel	 of	 22	 individuals	 (from	 the	 dataset	described	 above),	 including	 GD13a,	

representative	 ancient	 samples,	 and	 different	 modern	 populations	 from	 the	 same	

geographic	 area	 as	 GD13a,	 and	 generated	 an	 unweighted	 pair	 group	 method	 with	

arithmetic	mean	(UPGMA)	tree	using	the	seqlinkage	function	in	Matlab's	Bioinformatics	

Toolbox.	(The	MathWorks,	Inc.,	2016)	

	

Runs	of	homozygosity		

In	 order	 to	 examine	 runs	 of	 homozygosity	 (ROH)	 I	 used	 imputation	 to	 infer	 diploid	

genotypes	in	the	sample	following	the	method	described	in	Gamba	et	al.	(2014).	I	used	

GATK	Unified	genotyper	(McKenna	et	al.,	2010)	to	call	genotype	likelihoods	at	SNP	sites	

in	 Phase	 3	 of	 1,000	 genomes	 project	 (The	 1000	 Genomes	 Project	 Consortium,	 2015)	

(version	 5a	 downloaded	 from	 the	 BEAGLE	 website,	

https://faculty.washington.edu/browning/beagle/beagle.html).	 Genotype	 likelihoods	

were	called	for	alleles	observed	in	the	1,000	Genomes	Project	and	equal	likelihoods	were	
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set	for	positions	with	no	spanning	sequence	data	as	well	as	positions	where	the	observed	

genotype	could	be	explained	by	deamination.	Genotypes	were	imputed	using	Beagle	4.0	

with	default	parameters	in	intervals	of	1Mb	(Browning	and	Browning,	2007).	I	imposed	

a	 genotype	probability	 threshold	of	 0.99	 (any	SNP	without	 a	 genotype	 exceeding	 this	

threshold	had	a	missing	genotype	assigned)	while	converting	to	PLINK-format	genotype	

data.	 These	 data	 were	merged	with	 the	 dataset	 used	 in	 Jones	 et	 al.	 (2015)	 and	 ROH	

analysis	was	carried	out	as	outlined	in	Gamba	et	al.	(2014)	and	Jones	et	al.	(2015).		

	

Phenotypes	of	interest		

Genes	associated	with	a	particular	phenotype	in	modern	populations	were	explored	in	

GD13a.	Phenotypes	were	chosen	 from	the	 commonly-described	phenotypes	 in	ancient	

individuals:	such	as	eye,	hair	and	skin	pigmentation	according	to	the	Hirisplex	prediction	

model,	and	lactase	persistence	phenotypes.	Observed	genotypes	were	called	using	GATK	

Unified	 genotyper	 (McKenna	 et	 al.,	 2010),	 calling	 alleles	 present	 in	 Phase	 1	 of	 1,000	

genomes	dataset	(Consortium,	2012)	with	base	quality	≥	20.	As	many	diagnostic	markers	

had	1-fold	coverage	or	less,	I	also	used	imputation	to	infer	genotypes	at	these	positions.	

Imputation	 was	 performed	 using	 all	 1000	 genomes	 project	 populations	 (The	 1000	

Genomes	Consortium,	2015),	imputing	at	least	1Mb	upstream	and	downstream	of	the	SNP	

position	 (this	 interval	 was	 reduced	 for	 those	 variants	 within	 the	 first	 1Mb	 of	 the	

chromosome).	The	Hirisplex	prediction	model	(Walsh	et	al.,	2013)	was	used	to	explore	

hair	and	eye	colour	(Table	7).	For	the	observed	data,	if	the	sample	had	1x	coverage,	the	

variant	was	called	as	homozygous	for	that	allele.	Hair	and	eye	colour	predictions	were	

confirmed	using	imputed	data.	
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3.	Ancient	Ethiopian	genome	reveals	extensive	Eurasian	

admixture	in	Eastern	Africa	

	

Abstract	

Characterizing	genetic	diversity	in	Africa	is	a	crucial	step	for	most	analyses	reconstructing	

the	evolutionary	history	of	anatomically	modern	humans.	However,	historic	migrations	

from	 Eurasia	 into	 Africa	 have	 affected	many	 contemporary	 populations,	 confounding	

inferences.	This	chapter	presents	the	complete	ancient	genome	with	12.5x	coverage	of	an	

Ethiopian	male	(‘Mota’)	who	lived	approximately	4,500	years	ago.	This	genome	is	used	to	

demonstrate	 that	 the	 Eurasian	 backflow	 into	 Africa	 came	 from	 a	 population	 closely	

related	to	Anatolian	farmers,	also	genetically	close	to	Early	Neolithic	farmers,	and	who	

had	colonized	Europe	4,000	years	earlier.	

	

	

	

	

	

	

	

	

	

A	version	of	this	chapter	has	been	published:	Gallego-Llorente,	M.,	Jones,	E.R.,	Eriksson,	

A.,	Siska,	V.,	Arthur,	K.W.,	Arthur,	J.W.,	Curtis,	M.C.,	Stock,	J.T.,	Coltorti,	M.,	Pieruccini,	P.,	

Stretton,	S.,	Brock,	F.,	Higham,	T.,	Park,	Y.,	Hofreiter,	M.,	Bradley,	D.G.,	Bhak,	J.,	Pinhasi,	R.,	

Manica,	 A.,	 2015.	 Ancient	 Ethiopian	 genome	 reveals	 extensive	 Eurasian	 admixture	 in	

Eastern	Africa.	Science	350,	820–822.	
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Introduction	

The	ability	to	sequence	ancient	genomes	has	revolutionized	our	understanding	of	human	

evolution.	However,	 genetic	 analysis	 of	ancient	material	 has	 focused	on	samples	 from	

temperate	and	arctic	regions,	where	ancient	DNA	is	preserved	over	longer	time	frames	

(Hofreiter	et	al.,	2015).	

Africa	had	so	far	failed	to	yield	skeletal	remains	with	much	aDNA,	with	the	exception	of	a	

few	poorly	preserved	specimens	from	which	only	mitochondrial	DNA	could	be	extracted	

(Morris	et	al.,	2014).	This	is	particularly	unfortunate,	as	African	genetic	diversity	is	crucial	

to	 most	 analyses	 reconstructing	 the	 evolutionary	 history	 of	 anatomically	 modern	

humans,	by	providing	the	baseline	against	which	other	events	are	defined.	In	the	absence	

of	ancient	DNA,	geneticists	predominately	rely	on	contemporary	African	populations,	but	

a	 number	 of	 historic	 events,	 in	 particular	 a	 genetic	 backflow	 from	West	 Eurasia	 into	

Eastern	Africa	(Pagani	et	al.,	2012;	Pickrell	et	al.,	2014),	act	as	factors	that	can	confound	

the	 genetic	 analysis	 of	 modern	 African	 populations	 using	 exclusively	modern	 African	

genomes..	

	

Populations	of	hunter-gatherer	humans	have	been	present	in	southern	and	eastern	Africa	

for	hundreds	of	thousands	of	years	(Phillipson,	2005).	However,	during	the	last	two	to	

three	millennia,	 neolithisised	pastoralist	 and	agriculturalist	 groups	 joined	 the	 hunter-

gatherer	populations,	then	present	in	that	part	of	the	continent.	Nowadays,	southern	and	

eastern	 Africa	 are	 inhabited	 by	 genetically	 and	 culturally	 diverse	 populations	 with	

different	origins	(Fig	1).	Written	history	has	only	been	recently	introduced	in	southern	

Africa,	which	means	that	some	of	the	biggest	trends	in	migrations	and	population	history	

of	the	region	have	uniquely	been	elucidated	by	archaeological	studies	and	linguistics.	

In	2014,	Pickrell	et	al.	used	genome-wide	genetic	data	to	describe	two	different	events	of	

population	 admixture	 in	 the	 Khoi	 San	 populations	 of	 southern	 Africa.	 The	 Khoi	 San	

populations	are	non-Bantu-speaking,	southern	African	populations,	who	mostly	tend	to	

be	either	hunter-gatherer	or	pastoralist.	The	most	visible	admixture	event,	genetically	

speaking,	was	the	arrival	of	Niger-Congo-speaking	populations	originally	from	western	

Africa,	 into	 eastern	 Africa,	 followed	 by	 southern	 Africa.	 This	 arrival	 of	 Niger-Congo	

populations	 (termed	 the	 ‘Bantu	 expansions’,	 after	 the	 Bantu	 language	 family),	 was	

produced	between	900	and	1,800	years	ago.	However,	a	first,	older	event	was	also	seen:	

dating	to	between	2,700	and	3,300	years	ago,	was	also	seen.	This	event	brought	western	
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Eurasian	 ancestry	 into	 eastern	 Africa,	 and	 in	 particular,	 into	 Kenyan,	 Ethiopian	 and	

Tanzanian	populations.		

 

Fig.	1.	Distribution	of	Language	Families	in	Africa,	with	representative	examples	of	each	

family.	

This	chapter	presents	an	ancient	human	genome	from	Africa,	and	uses	it	to	disentangle	

the	 effects	 of	 this	 recent	 population	movement	 from	western	 Eurasia	 into	 Africa.	 By	

sampling	the	petrous	bone	(Gamba	et	al.,	2014),	the	genome	of	a	male	from	Mota	Cave	

was	sequenced	 (herein	 referred	 to	 as	 ‘Mota’).	Mota	was	 excavated	 from	a	 cave	 in	 the	

southern	Ethiopian	highlands.	The	sequenced	genome	has	a	mean	coverage	of	12.5x.	His	

remains	were	carbon	dated	to	~4,500	years	ago	(calendar	date),	and	thus	predate	both	

the	Bantu	expansion	(Li	et	al.,	2014),	and,	more	importantly,	the	3ky-old	West	Eurasian	

backflow	which	has	left	strong	genetic	signatures	in	the	whole	of	Eastern	and,	to	a	lesser	

extent,	Southern	Africa	(Pagani	et	al.,	2012;	Pickrell	et	al.,	2014).	

Ethiopia,	additionally,	has	always	been	on	the	center	of	research	dealing	with	the	origin	

and	evolution	of	modern	humans.	Some	of	the	earliest	hominin	species,	Australopithecus	

amanensis	 (from	 around	 4	million	 years	 ago),	 and	Australopithecus	 afarensis	 (“Lucy”,	

from	 3-3.9	million	 years	 ago)	were	 both	 unearthed	 in	 Ethiopia	 (Johanson	and	White,	
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1979).	Furthermore,	the	earliest	anatomically	modern	human	remains,	such	as	Omo	1,	

from	195k	years	ago	 (McDougall	 et	al.,	 2005),	 and	 the	Homo	 sapiens	 idaltu,	 154-160k	

years	ago,	(White	et	al.,	2003)	were	also	found	within	modern-day	Ethiopia.	

	

Additionally,	 given	 Ethiopia’s	 geographical	 position	 between	 Africa	 and	 the	 Eurasian	

landmass	Ethiopia	is	key	for	our	understanding	of	events	such	as	the	western	Eurasian	

backflow	described	by	Pickrell	et	al	in	2014.	In	2012,	Luca	Pagani	published	a	dataset	of	

modern	Ethiopian,	Sudanese	and	Somali	populations,	which	became	a	stepping	stone	for	

the	understanding	of	the	modern	genetic	diversity	in	the	region.	However,	the	population	

history	of	 the	 region	has	 traditionally	been	very	 incomplete,	 due	 to	 the	 sparseness	of	

information	and	sources	in	Ethiopia	in	the	last	100k	years.	For	example,	while	there	have	

been	local	developments	in	both	farming	and	agriculture	(such	as	the	domestication	of	

the	cereal	teff,	enset	and	coffee)	(Phillipson,	1998),	there	have	been	external	influences	

that	have	arrived	during	the	last	5k	years,	such	as	the	consumption	of	barley	and	wheat,	

and	arrived	through	Egypt	via	early	trade	links	(Pankhurst,	1998;	Phillipson,	1993).	Apart	

from	 trade	 and	 prehistorical	 and	 historical	 contacts	 between	 Ethiopians,	 Egyptians,	

Somalians,	Arabs	and	populations	from	the	rest	of	the	African	continent,	another	line	of	

evidence	of	the	complexity	of	Ethiopian	prehistory	is	its	linguistic	diversity.	There	are	two	

main	 linguistic	 families	 spoken	 in	 Ethiopia	 today:	 Afro-Asiatic	 languages	 and	 Nilo-

Saharan	languages.	This	linguistic	diversity	in	Ethiopia	is		likely	the	result	of	demographic	

events	happened	during	the	last	10k	years,	such	as	the	relatively	recent	arrival	of	Nilo-

Saharan	speaking	populations	from	current-day	Sudan	(Ehret,	1995).		

The	Horn	 of	 Africa	 is	 very	 likely	 the	 homeland	 of	 the	 Afro-asiatic	 languages,	 as	 their	

present	day	diversity	is	by	far	greater	in	this	region	(all	the	Afro-asiatic	languages	in	the	

Middle	East	are	of	Semitic	origin,	a	sub-clade	of	Afro-asiatic	languages	which	actually	also	

has	 representatives	 in	 Ethiopia)	 (Ehret	 et	 al.,	 2004).	 This	 was	 studied	 by	 Diakanoff	

(1998),	who	 explicitly	described	proto-Afroasiatic	 vocabulary	 as	 consistent	with	non-

food-	producing	and	links	it	to	pre-Neolithic	cultures	in	the	Levant	and	in	Africa	south	of	

Egypt,	noting	the	latter	to	be	older.	He	placed	the	origin	of	the	Semitic	branch	in	an	area	

shared	by	Northern	Egypt,	the	Sinai	and	Levant,	but	kept	the	remaining	two	branches	in	

current-day	Ethiopia,	a	view	supported	by	Kitchen	et	al.	in	2009.		These	arguments	were	

at	 one	 point	 challenged	 by	 Diamond	 and	 Bellwood	 (2003),	 who	 suggested	 that	 food	

production	and	the	Afroasiatic	 language	 family	were	brought	simultaneously	 from	the	

Near	East	by	demic	diffusion.	However,	the	Afro-asiatic	family	has	the	Cushitic	and	Omotic	
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sub-clades,	which	not	 only	 are	 self-contained	 in	 the	Horn	of	Africa,	 but	also	show	 the	

greatest	linguistic	divergence	of	the	language	family	(Table	1	and	Fig.	2).	

More	 recent	 demographic	 changes	 likely	 resulted	 in	 the	 current	 presence	 of	 Nilotic	

languages,	 which	 are	 more	 widespread	 in	 Sudan	 and	 other	 regions	 of	 the	 continent	

(Blench,	2006).	

 

 

Table	1.	Language	families,	subfamilies	and	individual	languages	present	in	Ethiopia	and	

the	 region	 of	 the	 Horn	 of	 Africa.	 Colours	 assigned	 here	 will	 be	 used	 throughout	 the	

chapter.	

	

Fig.	2:	Populations	from	Ethiopia	and	the	surrounding	area	included	in	this	study,	in	the	

context	of	Mota.	

Afro-Asiatic	Languages	 Nilo-Saharan	
Languages	

Semitic	 Cushitic	 Omotic	 Nilotic	

Amhara	

Tygray	

Afar	

Somali	

Oromo	

Wolayta	

Ari	

Gumuz	

Anuak	

South	Sudanese	
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It	was	seen	 in	Kivisild	et	al.	 (2004),	 that	around	half	of	 the	modern	Ethiopian	mtDNA	

haplotypes	originate	from	outside	Africa,	and	not	from	African	mtDNA	variation,	hinting	

to	a	sizeable	influx	of	non-African	ancestry	into	Ethiopia	and	the	Horn	of	Africa	region.	

Around	one	fifth	of	Y	haplotypes,	as	well,	originate	from	lineages	of	putative	non-African	

origin	(Semino	et	 al.,	 2002).	These	questions	provide	potential	 admixture	 events	with	

implications	for	history,	anthropology,	linguistics,	and	genetics.	

	

The	 study	 of	 the	 first	 African	 ancient	 whole	 genome	 was	 motivated	 by	 four	 main	

questions:	 Firstly,	 what	 is	 the	 position	 of	 a	 4,500	 year-old	 individual	 in	 the	 genetic	

landscape	of	the	African	continent?	Secondly,	what	is	the	extent	of	the	genetic	continuity	

between	ancient	Ethiopians	and	modern	Ethiopians?	Thirdly,	in	the	context	of	putative	

demographic	events,	such	as	the	advent	of	Neolithic	technologies	into	Eastern	Africa,	the	

expansions	of	Afro-asiatic	languages,	the	Bantu	expansions,	or	the	making	of	the	current	

landscape	of	Ethiopian	ethnic	variation,	can	an	Ancient	genome	provide	a	picture	of	the	

genomic	landscape	previous	to	these	events?	And	fourthly,	if	that	is	the	case,	can	we	use	

this	genome	to	elucidate	the	origin	and	direction	of	these	population	movements?	

	

I	 therefore	 analysed	Mota,	 together	with	 a	 dataset	 of	 populations	 from	 Pickrell	 et	 al.	

(2014),	 in	 order	 to	understand	 the	 genetic	 situation	of	Mota	 in	 an	African	 and	global	

context,	and	answer	the	open	questions	regarding	African	regional	population	continuity,	

the	historical	aspects	of	Ethiopian	population	diversity,	and	the	origin	and	extent	of	the	

latest	movements	back-to-Africa.	
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Results	

The	petrous	bone	of	Mota	yielded	a	genome	with	a	coverage	of	12.5x,	which	means	that	

every	position	in	the	genome	is	covered	by	an	average	of	12.5	reads.	Mota,	additionally,	

has	a	low	contamination	rate	of	<1.3%,	identified	by	evaluating	the	discordance	in	the	

rate	of	heterozygous	calls	between	known	polymorphic	sites	on	the	X	chromosome	and	

their	adjacent	sites.	As	the	X	chromosome	is	a	haploid	marker	in	males,	any	discordance	

may	be	a	function	of	contamination.	(Fig.	3).	Mota	was	determined	to	be	male	using	the	

script	described	in	Skoglund	et	al.	(2013),	by	considering	the	ratio	of	sequences	aligning	

to	the	X	and	Y	chromosomes.	

	

	

Fig	3.	Sequence	length	distribution	and	patterns	of	molecular	damage.	Plots		show	

mismatch		frequency		relative		to		the		reference		genome		as		a	function		of		read		position.	

The	left	hand	figure	shows	the	frequency	of	C	to	T	misincorporations	at	the	5’	ends	of	

A 
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reads	(first	25	bases)	while	the	right	hand	figure	shows	the	frequency	of	G	to	A	transitions	

at	the	3’	ends	of	reads	(last	25	bases).	

	

Mitochrondrial	haplogroup	

Mota	was	assigned	to	mitochondrial	haplogroup	L3x2a	(Table	2).	Haplogroup	L3	arose	

60-70	 kya	 (Soares	 et	 al.,	 2012)	 in	 Eastern	 Africa	 where	 the	 richest	 present-day	

haplogroup	diversity	is	found	(Torroni	et	al.,	2006).	All	mitochondrial	haplogroups	found	

outside	Africa	descend	from	the	L3	lineage	and	hence	this	haplogroup	is	associated	with	

the	spread	of	Homo	sapiens	out	of	Africa	to	the	rest	of	the	world	(Behar	et	al.,	2008).	The	

subhaplogroup	L3x2	 is	 restricted	 to	 the	Horn	of	Africa	and	 the	Nile	Valley	 in	modern	

Ethiopian	samples	(Kivisild	et	al.,	2004),	suggesting	a	degree	of	maternal	continuity	 in	

Ethiopia	over	the	past	4,500	years.	

Sample	 Haplogroup	 Haplotype	

Mota	 L3x2a	

146T	 150T	 152T	 195T	 200G	 247G	249del	 494T	 769G	 825T	
1018G	1442A	2758G	2885T	3435T	3483A	3594C	4104A	4312C	
4769A	 5899insC	 6401G	 7146A	 7256C	 7521G	 8311C	 8468C	
8655C	8817G	9941G	10101C	10664C	10688G	10810T	10819G	
10915T	 10978G	 11063T	 11914G	 13105A	 13276A	 13506C	
13650C	 13708A	 15283C	 15301A	 16129G	 16169T	 16187C	
16189T	 16193T	 16195C	 16223C	 16230A	 16278C	 16311T	
16519T	

Table	2.	Mitochondrial	haplogroup	and	haplotype	for	Mota.		

	

Y-chromosome	haplogroup	

The	 Y	 chromosome	 haplogroup	 of	 Mota	 was	 assigned	 to	 haplogroup	 E1b1.	 This	

haplogroup	was	verified	by	 looking	 for	mutations	 in	Mota	 that	were	described	by	 the	

International	Society	of	Genetic	Genealogy	(ISOGG)	as	defining	the	branches	leading	to	

haplogroup	E1b1	(Table	3).	

Macrohaplogroup	 E	 is	 the	 most	 prevalent	 haplogroup	 found	 in	 Africa	 with	 reduced	

frequencies	in	Europe	and	the	Middle	East	(Semino	et	al.,	2004;	Trombetta	et	al.,	2011).	

It	 is	 proposed	 to	 have	 originated	 in	 the	 East	 of	 Africa	 21,000-32,000	 years	 ago	

(Gebremeskel	and	Ibrahim,	2014;	Semino	et	al.,	2004;	Trombetta	et	al.,	2011).	Mutation	

E-P2	(Table	3),	present	in	Mota,	represents	the	most	widespread	subclade	of	haplogroup	

E	and	has	been	found	at	high	frequency	in	modern	Ethiopians	(Semino	et	al.,	2002).	
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Haplogroup	 Mutation	 Alternative	
names	 rs	ID	

Position	
(GRCh37	
build)	

Mutation	 Mota	(depth	
and	base)	

E	 M96	 PF1823	 rs9306841	 21778998	 C->G	 4G	
E1	 P147	 PF1938	 rs16980577	 21083420	 T->A	 5A	
E1b	 P177	 PF1939	 rs16980473	 14159846	 C->T	 6T	

E1b1	 P2	 PF1940;	
PN2	 rs9785756	 21610831	 G->A	 3A	

E1b1	 P178	 	 rs9786105	 7401836	 G->A	 8A	
E1b1	 P179	 	 rs16980621	 14060308	 A->C	 10C	
E1b1	 P180	 PF1941	 rs9786035	 18601274	 G->A	 6A	
E1b1	 P181	 	 rs9785940	 17394111	 C->G	 4G	

	

Table	3.	Mutations	defining	the	E1b1	Y-haplogroup	of	Mota.	

	

Ari	and	Sandawe	are	the	closest	contemporary	populations	to	Mota	

To	explore	this	first	Ethiopian	ancient	genome	in	the	context	of	modern	variation	in	Africa	

and	the	Middle	East,	I	performed	principal	component	analysis	(PCA)	with	a	global	panel	

of	75	contemporary	populations	form	Africa	and	the	rest	of	the	world,	first	published	by	

Pickrell	 et	 al.	 (2014),	 in	 order	 to	 identify	 the	 populations	 closest	 to	 Mota	 in	 a	wider	

context.	 The	 analysis	 was	 carried	 out	 using	 SmartPCA	 (Patterson	 et	 al.,	 2006);	 the	

components	were	loaded	on	the	contemporary	populations,	and	Mota	was	projected	onto	

these	dimensions.	

Mota	was	placed	close	to	the	Ethiopian	samples	(Fig.	4),	in	between	the	clusters	formed	

by	the	Ari	and	the	Sandawe	(but	very	close	to	an	Ari	individual	that	stands	out	from	the	

rest	of	that	group).	The	Ari	can	be	split	into	two	castes,	Ari	Cultivator	and	Ari	Blacksmith,	

which	share	a	common	origin	within	the	last	4,500	years	(van	Dorp	et	al.,	2015).	Since	

Mota	was	placed	 remarkably	 close	 to	modern	Ethiopian	 samples,	 and	 since	data	on	 a	

larger	 number	 of	 SNPs	 are	 available	 for	14	 Ethiopian	 and	Horn	 of	Africa	 populations	

(Pagani	 et	al.,	 2012),	 I	 repeated	 the	PCA	using	 this	higher	quality	dataset,	which	 gave	

484,161	usable	SNPs	that	could	be	called	in	Mota.	Once	again,	Mota	fell	in	between	the	Ari	

and	the	Sandawe	cluster	(Fig.	5).	

I	used	outgroup	 f3-statistics	to	estimate	 the	amount	of	shared	drift	between	Mota	and	

contemporary	populations,	in	order	to	look	for	the	extent	of	population	continuity	in	the	

Ethiopian	region	for	the	last	3,500	years,	and	the	amount	of	external	influences	on	the	

genetic	composition	of	the	region	over	this	time	frame.	I	computed	f3(X,	Mota	;	Ju|’hoansi),	

where	X	is	a	population	from	the	Pickrell	global	panel,	and	Ju|’hoansi	(Khoisan)	acts	as	an	

outgoup.	f3-statistics	were	calculated	with	the	3PopTest	program	from	the	ADMIXTOOLS	
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package	(Patterson	et	al.,	2012).	

Ari	(which	can	be	split	into	two	castes,	AriCultivator	and	AriBlacksmith),	have	by	far	the	

greatest	genetic	affinity	to	Mota	(Fig.	6,	7).	The	Ari	speak	a	language	classified	as	Omotic,	

which	is	the	most	differentiated	branch	of	the	Afro-asiatic	languages.	Gumuz,	a	population	

member	of	the	Nilo-saharan	family,	also	shows	a	high	level	of	shared	drift	with	Mota,	but	

significantly	less	than	the	Ari.	Sandawe,	which	are	closer	to	Mota	in	the	PCAs,	do	not	show	

high	shared	drift	with	Mota	 in	the	 f3,	possibly	because	 they	are	closer	 to	 the	Khoi-San	

populations	than	the	other	Eastern	African	populations.	Mota	confirms	the	view	that	this	

divergent	language	family	is	the	result	of	relative	isolation	of	its	speakers	(Blench,	2008),	

and	indicates	population	continuity	over	the	last	~4,500	years	in	this	region	of	Eastern	

Africa.	

	

Fig.	4.	Mota	shows	a	very	high	degree	of	similarity	with	the	highland	Ethiopian	Ari	

populations.	 PCA	 showing	Mota	projected	onto	 components	 loaded	on	 contemporary	

African	 and	 Eurasian	 populations.	 The	 inset	 magnifies	 the	 PCA	 space	 occupied	 by	

Ethiopian	and	Eastern	African	populations.		
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Fig.	5.	PCA	showing	the	relationship	between	Mota	and	contemporary	Ethiopian	

populations.	 Components	were	 loaded	on	 contemporary	Ethiopian	populations	using	

~480k	SNPs,	with	Mota	projected	on	these	dimensions.	

	

Fig.	6.	Outgroup	 f3	quantifying	the	shared	drift	between	Mota	and	contemporary	

African	 populations,	 using	 Khomani	 (Khoisan)	 as	 an	 outgroup.	 Bars	 represent	

standard	 error.	 Populations	 speaking	 Nilo-Saharan	 languages	 are	 marked	 with	 blue	

shades,	Omotic	speakers	with	red,	Cushitic	with	orange,	Semitic	with	yellow,	and	Bantu	

with	green.	Mota	is	denoted	by	a	black	symbol.	
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Fig.	 7.	 Map	 showing	 the	 distribution	 of	 outgroup	 f3	 values	 across	 the	 African	

continent,	f3(Mota,	X;	Khomani).	Populations	that	share	the	largest	amount	of	shared	

drift	with	Mota	are	represented	 in	red	colour,	whereas	 the	populations	with	a	smaller	

amount	of	shared	genetic	drift	are	represented	in	blue.	

	

Figures	4-7,	therefore,	show	that	there	has	been	a	large	extent	of	population	continuity	

over	 the	 region	of	 Eastern	Africa	 in	 general,	 and	Ethiopia	 in	particular.	Although	 it	 is	

possible	that	external	influences	have	affected	the	genetic	composition	of	the	region,	the	

populations	currently	present	in	the	region	show	a	large	degree	of	similarity	with	Mota,	

who	inhabited	the	area	3.500	years	ago.		
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f4	ratio	analysis	shows	that	Mota	has	no	component	of	West	Eurasian	admixture	

The	 age	 of	Mota	means	 that	 he	 should	 predate	 the	 putative	West	 Eurasian	 backflow,	

which	has	been	dated	to	~3,000	years	ago	(Pagani	et	al.,	2012;	Pickrell	et	al.,	2014).		

I	 used	 f4	ratio	 analysis	 (Patterson	 et	 al.,	 2012)	 to	 formally	 assess	 the	 extent	 of	 back-

migration	 to	Africa	by	West	Eurasians,	using	the	same	 logic	adopted	by	Pickerell	et	al	

(Pickrell	 et	 al.,	 2014),	 who	 quantified	 the	 West	 Eurasian	 component	 in	 Africa,	 using	

Yoruba	as	a	representative	of	a	non-admixed	African	reference,	and	Druze	as	the	source	

of	non-african	(i.e.	western	Eurasian)	ancestry	 into	eastern	Africa.	This	was	calculated	

with	the	ratio	f4(Han,	Orcadian;	X,	Druze)	/	f4	(Han.	Orcadian;	Yoruba,	Druze),	where	X	is	

a	contemporary	African	population	or	Mota.	However,	since	Druze	has	a	small	 level	of	

West	African	ancestry,	this	f4	ratio	is	biased	and	does	not	show	the	desired	fraction	of	

West	Eurasian	component.	To	correct	for	this,	I	define	λYoruba,Druze	as	the	fraction	of	Druze-

like	(i.e.	West	Eurasian)	ancestry	population	X,	and	F	as	the	fraction	of	Yoruba-like	(i.e.	

West	African)	ancestry	in	Druze	(estimated	in	other	studies	to	be	F=0.05)	(Moorjani	et	al.,	

2011).	We	can	then	write:	

f4	(Han,	Orcadian	;	X,	Druze)	/	f4	(Han,	Orcadian	;	Yoruba	,Druze)	=	(1	-	λYoruba,Druze	–	F)	/	(1	

–	F)	

and	solve	for	λYoruba,Druze		for	each	population	X.		

I	decided	to	use	Yoruba	as	a	representative	of	a	non-admixed	African	reference,	and	Druze	

as	the	source	of	western	Eurasian	ancestry,	as	this	was	needed	in	order	to	check	Mota’s	

situation	 relative	 to	 all	 modern	 populations	 analysed	 in	 the	 framework	 designed	 by	

Pickrell	et	al.	(2014).	Only	this	first	test	would	enable	me	to	identify	a	population	to	better	

represent	this	source	of	western	Eurasian	ancestry.	I	first	checked	that	subsetting	to	the	

SNPs	available	 for	Mota	did	not	affect	estimates	 for	contemporary	African	populations	

(Table	4),	which	are	in	line	with	those	estimated	by	Pickrell	et	al.	(2014)	using	all	available	

positions	(Pearson	Correlation	r=0.9998).	Mota	does	not	show	any	evidence	of	a	West	

Eurasian	component,	with	a	λYoruba,Druze	value	that	is	close	to	zero	(2.12%,	±	1.7%).	This	

contrasts	 in	 particular	with	 the	 Ari,	 their	 closest	 contemporary	 relatives,	which	 show	

large	West	Eurasian	components	(17.8%±1.0%	and	14.9%±1.2%	for	Ari	Cultivator	and	

Ari	Blacksmith,	respectively)	(Fig.	8).	I	confirmed	that	such	a	difference	is	not	due	to	a	

comparison	of	a	single	individual	to	population	estimates	by	recomputing	the	f4	ratio	for	

each	individual	belonging	to	an	Ethiopian	population	in	the	dataset	(Fig.	9).	The	absence	

of	a	West	Eurasian	component	in	Mota	supports	the	dating	of	the	backflow	into	Africa,	
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which,	at	~3.5kya,	is	younger	than	Mota		(dated	to	4.5	kya).	

Given	 that	 Mota	 predates	 the	 backflow,	 it	 potentially	 provides	 a	 similar	 unadmixed	

African	reference	 to	contemporary	Yoruba.	Thus,	 I	 recomputed	 the	extent	of	 the	West	

Eurasian	component	in	contemporary	African	populations	using	Mota,	λMota,Druze,	instead	

of	Yoruba	in	the	f4	ratio	(Table	4).	Importantly,	this	analysis	shows	that	the	West	Eurasian	

component	can	only	be	found	also	in	East	Africa.	No	West	Eurasian	component	from	this	

backflow	is	found	in	the	Yoruba	and	Mbuti,	which	are	often	used	a	representative	of	an	

unadmixed	African	population	

As	expected,	I	did	not	find	any	West	Eurasian	component	in	Mota	(Table	4),	thus	providing	

support	for	previous	dating	of	the	Eurasian	backflow	(Pagani	et	al.,	2012;	Pickrell	et	al.,	

2014).		

	

Fig.	8.	The	proportion	of	West	Eurasian	ancestry	for	all	African	populations	in	the	

global	 panel	 published	 by	 Pickrell	 et	 al.	 (2014).	 λYoruba,Druze	 gives	 estimates	 using	

Yoruba	as	the	non-admixed	reference	and	Druze	as	the	source.	Mota	is	shown	with	the	

double	line.	



Ancient	Ethiopian	genome	reveals	Eurasian	admixture	in	Eastern	Africa		|	3	

 77 

Although	no	western	Eurasian	has	been	found	in	Mota,	and	although	theis	analysis	shows	

a	sizeable	genetic	input	from	western	Eurasia	into	eastern	Africa,	it	is	worth	mentioning	

that	this	western	Eurasian	backflow	did	not	affect	the	entire	continent,	as	it	was	initially	

reported	 in	 Gallego-Llorente	 et	 al.	 (2015).	 This	 first	 2015	 analysis	 was	 affected	 by	 a	

samtools/vcftools/PLINK	 compatibility	 issue,	which	 skewed	 the	 results	by	deleting	 all	

reference	 homozyguous	 alleles	 in	Mota,	 therefore	 skewing	 it	 away	 from	 the	 Eurasian	

range	of	variation.	This	issue	showed	some	initial	results	that	pointed	towards	a	possible	

effect	of	 the	western	Eurasian	genetic	backflow	 in	distant	populations	such	as	Yoruba,	

Mandenka	 or	 Khoisan.	 Since	 the	 correction	 was	 made,	 Mota	 still	 does	 not	 show	

discernible	 western	 Eurasian	 component,	 but	 the	 results	 reflect	 that	 this	 backflow	

affected	mostly	eastern	Africa.		

 

Fig.	 9.	 The	 proportion	 of	 West	 Eurasian	 ancestry	 in	 modern	 eastern	 African	

populations.	λYoruba,Druze	(using	Yoruba	as	 the	non-admixed	reference	and	Druze	as	 the	

source),	estimated	for	individuals	belonging	to	a	number	of	Ethiopian	populations.	
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Population Language Family and Branch λYoruba,Druze (%) SE (%) ΛMota,Druze (%) SE (%) λMota,LBK (%) SE (%) 
Mota - 2.12 1.7 - -   
Ari Blacksmith Omotic (Afro-Asiatic) 15.67 1.0 14.06 1.6 11.75 1.3 
Ari Cultivator Omotic (Afro-Asiatic) 18.22 0.8 16.52 1.5 13.82 1.2 
Wolayta Omotic (Afro-Asiatic) 34.08 1.0 32.80 1.5 27.42 1.3 
Afar Cushitic (Afro-Asiatic) 45.96 0.9 44.74 1.3 37.50 1.4 
Ethiopian Somali Cushitic (Afro-Asiatic) 37.84 0.8 36.55 1.3 30.62 1.3 
Somali Cushitic (Afro-Asiatic) 38.43 0.8 37.11 1.3 31.10 1.3 
Oromo Cushitic (Afro-Asiatic) 41.59 0.7 40.41 1.2 33.88 1.2 
Tygray Semitic (Afro-Asiatic) 50.40 0.7 49.31 1.1 41.33 1.3 
Amhara Semitic (Afro-Asiatic) 49.14 0.7 48.09 1.1 40.28 1.3 
Ethiopian Jews Semitic (Afro-Asiatic) 46.57 0.9 45.52 1.2 38.15 1.4 
Ethiopians Semitic (Afro-Asiatic) 44.27 0.7 43.05 0.9 36.10 1.3 
Sudanese Nilotic (Nilo-Saharan) -0.51 0.7 -2.65 1.8 -2.31 1.5 
Gumuz Nilotic (Nilo-Saharan) 1.68 0.8 -0.36 1.8 -0.31 1.4 
Anuak Nilotic (Nilo-Saharan) -0.20 0.7 -2.40 1.8 -2.09 1.5 
Maasai Nilotic (Nilo-Saharan) 18.92 0.5 18.98 1.8 14.41 1.2 
Hadza Isolate 6.44 1.1 4.55 1.8 3.80 1.5 
Sandawe Isolate 15.79 0.7 14.04 1.6 11.74 1.3 
Mbuti Central Sudanic (Nilo-Saharan) -1.71 1.0 -3.68 2.0 -3.14 1.6 
Biaka Bantu (Niger-Congo) -0.66 0.7 -2.73 1.9 -2.36 1.5 
Luhya Bantu (Niger-Congo) 2.43 0.5 0.39 1.8 3.80 1.5 
Bantu Kenya Bantu (Niger-Congo) 2.24 0.7 0.15 1.9 11.74 1.3 
South East Bantu Bantu (Niger-Congo) 0.49 0.6 -1.57 1.9 -1.40 1.5 
South West Bantu Bantu (Niger-Congo) 7.54 0.7 5.56 1.9 4.60 1.5 
Bantu South Africa Bantu (Niger-Congo) -0.49 0.7 -2.67 2.0 -2.32 1.6 
Yoruba Atlantic-Congo (Niger-Congo) - - -2.13 1.9 -1.86 1.5 
Yoruba (HapMap) Atlantic-Congo (Niger-Congo) 0.27 0.4 -1.87 1.9 -1.60 1.5 
Mandenka Mande (Niger-Congo) 2.03 0.5 0.08 1.8 0.01 1.5 
Khomani Khoi-San 13.87 0.8 12.10 1.7 10.07 1.4 
Karretjie Khoi-San 5.02 1.0 3.25 1.9 2.68 1.5 
Khwe Khoi-San 2.49 0.7 0.50 1.9 0.37 1.5 
GuiGhanaKgal Khoi-San 0.81 0.9 -1.10 1.9 -0.96 1.5 
Juhoansi Khoi-San 1.18 1.1 -0.68 2.0 -0.70 1.6 
Nama Khoi-San 15.26 0.8 13.48 1.7 11.22 1.4 
Xun Khoi-San 0.89 1.0 -0.96 1.9 -0.85 1.6 
Khomani Henn Khoi-San 7.92 0.9 6.14 1.8 5.08 1.5 
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[Previous	page]	Table.	4.	The	proportion	of	West	Eurasian	ancestry	 for	all	African	

populations	in	the	global	panel	published	by	Pickrell	et	al.	(2014).	λYoruba,Druze	gives	

estimates	using	Yoruba	as	the	non-admixed	reference	and	Druze	as	the	source,	λYoruba,Druze	

using	and	Druze	as	the	source,	and		λMota,LBK	using	Mota	as	the	non-admixed	reference	and	

Stuttgart	as	a	source.		SE	are	the	standard	errors	for	these	quantities.	

	

Admixture	f3	statistics	show	that	the	West	Eurasian	component	originated	from	a	

population	similar	to	the	early	Neolithic	farmers	

Mota	lived	around	4,500	years	ago.	As	the	previous	section	has	shown	that	it	 lacks	the	

genetic	 component	 associated	with	 the	 Eurasian	 backflow	 suggested	 by	 Pickrell	 et	 al.	

(2014),	 I	 searched	 for	 its	 most	 likely	 source	 by	 modelling	 the	 Ari,	 the	 closest	

contemporary	 population	 to	 Mota,	 as	 a	 mixture	 of	 Mota	 and	 another	 West	 Eurasian	

population.	I	do	this	by	using	the	admixture	f3-statistics	(Patterson	et	al.,	2012)	in	the	form	

f3(X,	 Mota;	 AriCultivator),	 where	 X	 is	 a	 contemporary	 Eurasian	 population	 from	 the	

Pickrell	global	panel	or	one	of	the	two	then-available	Eurasian	ancient	genomes.	For	the	

latter,	I	used	a	representative	of	Mesolithic	hunter-gatherers	(Loschbour),	and	one	of	the	

Early	Neolithic	farmers	(Stuttgart,	also	known	as	LBK)	(Lazaridis	et	al.,	2014);	these	two	

genomes	 were	 chosen	 for	 their	 high	 coverage,	 allowing	 me	 to	 use	 most	 of	 the	 SNPs	

available	for	contemporary	populations	and	Mota,	given	that	Anatolian	farmer	genomes	

were	not	available	at	the	time	of	publication.	

In	this	analysis,	contemporary	Sardinians	and	the	early	Neolithic	Stuttgart	genome	stand	

out	as	the	most	likely	sources	for	this	backflow	(Fig.	10).	Previous	analyses	have	shown	

that	Sardinians	are	the	closest	modern	representatives	of	early	Neolithic	farmers	(Sikora	

et	al.,	2014;	Skoglund	et	al.,	2012).	Therefore,	this	result	suggests	that	the	backflow	came	

from	the	same	genetic	source	that	fueled	the	Neolithic	expansion	into	Europe	from	the	

Ancient	Near	East/Anatolia,	before	recent	historic	events	changed	the	genetic	makeup	of	

populations	 living	 in	 that	 region.	 An	 analysis	with	 haplotype	 sharing	 also	 identified	 a	

connection	between	contemporary	Ethiopians	and	Anatolia	(Kivisild	et	al.,	2004;	Pagani	

et	 al.,	 2012).	 Interestingly,	 archaeological	 evidence	 dates	 the	 arrival	 of	 Near	 Eastern	

domesticates	 (such	 as	wheat,	 barley	 and	 lentils)	 to	 the	 same	 time	period	 (circa	3,000	

years	 ago)	 (Curtis,	 M.C.,	 2013;	 Harrower	 et	 al.,	 2010),	 suggesting	 that	 the	 direct	

descendants	of	the	farmers	that	earlier	brought	agriculture	into	Europe	may	have	also	

played	a	role	in	the	development	of	new	forms	of	food	production	in	the	Horn	of	Africa.	
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Using	Mota	 as	 an	 unadmixed	 African	 reference	 and	 the	 early	 farmer	 Stuttgart	 as	 the	

source	 of	 the	West	 Eurasian	 component,	 it	 is	 possible	 to	 reassess	 the	magnitude	 and	

geographic	 extent	 of	 historical	 migrations,	 avoiding	 the	 complications	 of	 using	

contemporary	populations.	In	Eastern	Africa	estimated	an	Eurasian	backflow	admixture	

in	line	with	 that	detected	by	(Pickrell	et	al.,	2014),	while	now	the	Eurasian	source	has	

been	accurately	located.	More	importantly,	I	quantified	the	impact	of	the	backflow,	using	

for	the	first	time	an	unadmixed	Eastern	African	(Fig.	11).	

	

Fig.	 10	Admixture	 f3	 identifying	 likely	 sources	 of	 the	West	 Eurasian	 component	

(lowest	 f3	 values).	 Contemporary	 populations	 in	 blue,	 ancient	 genomes	 in	 red;	 bars	

represent	standard	error.	
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Fig.	11.	Map	showing	the	proportion	of	West	Eurasian	component,	λMota,LBK,	across	 the	

African	continent.	
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D	statistics	and	f4	ratios	show	that	Mota	has	no	discernible	Neanderthal	component	

Since	Mota	predates	recent	demographic	events,	his	genome	can	act	as	an	ideal	African	

reference	to	understand	episodes	during	the	out-of-Africa	expansion.	I	used	him	as	the	

African	 reference	 to	 quantify	 Neanderthal	 admixture	 in	 a	 number	 of	 contemporary	

genomes.	

I	performed	this	analysis	using	the	complete	genomes	(rather	than	a	subset	of	SNPs	as	in	

earlier	analysis),	since	a	large	number	of	SNPs	is	needed	to	obtain	accurate	estimates.	

D	statistics	have	been	used	to	detect	gene	flow	between	anatomically	modern	humans	and	

other	 hominins	 (Green	 et	 al.,	 2010;	Meyer	 et	 al.,	 2012b).	 Consider	 two	 contemporary	

populations	(A	and	B),	an	ancient	hominin	(C),	and	an	outgroup	(D,	often	a	chimpanzee).	

I	can	investigate	differential	hybridisation	into	A	vs.	B	by	computing:	

	

where	nBABA	represents	the	number	of	sites	for	which	alleles	are	identical	in	A	and	C,	and	

B	and	D	respectively,	but	different	in	AC	from	BD.	nABBA,	similarly,	is	the	number	of	sites	for	

which	alleles	are	identical	in	A	and	D,	and	B	and	C	respectively,	but	different	in	AD	from	

BC.	Under	the	assumption	that	no	gene	flow	occurred	between	the	outgroup	and	any	of	

the	 other	 populations,	 a	 positive	 D(A,B;C,D)	 statistic	 therefore	 indicates	 gene	 flow	

between	A	and	C,	whilst	a	negative	value	indicates	gene	flow	between	B	and	C.	

The	 proportion	 of	 admixture	 into	 a	 given	 genome	 can	 be	 estimated	 using	 the	 f4	 ratio	

(Meyer	 et	 al.,	 2012b).	 This	 quantity	 is	 based	 on	 a	 ratio	 of	 f4	 statistics	where	 f4	 is	 an	

unbiased	estimate	of	the	mean	of	allele	frequencies	in	A,	B,	C,	D,	denoted	respectively	as	

ai,	bi,	ci,	and	di,	where	i	is	the	ith	position	out	of	n.	

	

	

	

	

	

 

D(A,B;C,D) =
nBABA - nABBA
nBABA + nABBA

 

f4 (A,B;C,D) =
1
n

(ai - bii=1

nå )(ci - di)
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Considering	a	phylogeny	as	described	below:	

	

Where	population	X	is	considered	a	mixture	of	B	and	C,	and	an	outgroup	O	all	descending	

from	the	same	ancestor	R,	I	can	calculate	the	following	f4		ratio	estimation:
	

	

To	compute	the	D-statistics,	I	first	identified	all	positions	at	which	the	genomes	of	the	Altai	

Neanderthal	and	the	reconstructed	Human-Chimpanzee	Common	Ancestor	differ,	giving	

~19	million	SNPs.		

I	computed	D(X,	Mota;	AltaiNea,	CommonAncestor),	where	X	was	French,	Han,	Yoruba,	or	

Mbuti.	CommonAncestor	refers	to	 the	reconstructed	alleles	of	the	common	ancestor	of	

humans	 and	 chimpanzees.	 As	 expected,	 French	 and	 Han	 have	 significantly	 positive	D	

values	(Table	5),	indicating	that	they	are	both	more	similar	to	Neanderthal	than	Mota	is.	

The	 two	 African	 genomes,	 Yoruba	 and	 Mbuti,	 also	 have	 slightly	 positive	 D	 values,	

indicating	that	they	are	slightly	more	similar	to	Neanderthal	than	Mota	is.	This	result	is	

likely	driven	by	the	West	Eurasian	component	found	in	modern	Africans.	

	

Table	5.	Neanderthal	component	D	statistics.	D(AltaiNea,	CAnc;	Mota,	X),	where	CAnc	

is	the	reconstructed	human-chimpanzee	common	ancestor,	Mota	is	the	reference	and	X	

is	the	tested	genome.	

	

 

a =
f4 (A,O;X,C)
f4 (A,O;B,C)

Test	 D	(Haploid,	full	data)	 Z	
D	(Haploid,	

transversions	only)	 Z	

Yoruba	 0.017	 4.56	 0.002	 0.52	

Mbuti	 0.021	 5.29	 0.002	 0.37	

French	 0.039	 8.50	 0.033	 6.34	

Han	 0.057	 9.90	 0.051	 8.11	
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To	 compute	 the	 f4	 ratio,	 I	 first	 identified	 all	 positions	 at	which	 the	 Altai	 Neanderthal	

(AltaiNea)	genomes	and	Denisova	differ	(~3	million	SNPs).	All	estimates	were	obtained	

both	using	the	full	data,	as	well	as	considering	transversions	only.	(Table	6).	

Test	

%	Neanderthal	
component	(haploid,	

full	data)	
Z	

	

%	Neanderthal	
component	(haploid,	

transversions)	
Z	
	

Yoruba	
0.62	

(±	0.50)	 1.25	
0.77	

(±	0.64)	 1.26	

Mbuti	
0.23	

(±	0.45)	 0.51	
0.21	

(±	0.72)	 0.35	

French	
2.92	

(±	0.55)	 5.29	
2.75	

(±	0.61)	 4.30	

Han	
2.90	

(±	0.62)	 4.71	
2.96	

(±	0.66)	 4.09	
	

Table	6.	Neanderthal	component	based	on	f4	ratio.	f4	(AltaiNea,	Denisovan;	X,	Mota)	/	

f4	(AltaiNea,	Denisovan;	X,	MezNea),	where	Mota	is	the	unadmixed	reference	and	X	is	the	

tested	population.	

I	 computed	 the	 statistic	 f4(Denisova,	 AltaiNea	 ;	 X,	 Mota)	 /	 f4(Denisova,	 AltaiNea	 ;	 	 X,	

MezNea),	 where	Mota	 is	 the	 unadmixed	 individual,	 and	 X	 is	 the	 target	 genome.	 Both	

Yoruba	and	Mbuti	were	shown	to	have	a	small	Neanderthal	component	(Table	6),	in	line	

with	their	West	Eurasian	ancestry.	As	expected,	estimates	for	French	and	Han	were	slightly	

higher	than	than	either	of	the	two	contemporary	African	genomes	(from	0.21%	in	Mbuti	

to	2.96%	in	Han).	

	

D	statistics	to	quantify	Denisovan	component	in	Mota.	

To	compute	the	percentage	of	Denisovan	component	in	Mota,	I	first	identified	all	positions	

at	 which	 the	 Denisova	 genome	 and	 the	 reconstructed	 Human-Chimpanzee	 Common	

Ancestor	differ,	obtaining	~19	million	SNPs.		

I	 first	 computed	D(X,	 Yoruba;	 Denisova,	 CommonAncestor),	 from	 now	 referred	 to	 as	

DYoruba,	where	X	was	French,	Han	or	Mota.	As	expected,	Mota	did	not	show	any	Denisova	

component	(Table	7).	Also,	recomputing	D	but	using	Mota	instead	of	Yoruba	as	the	African	

reference	 (DMota)	 did	 not	 lead	 to	 any	 noticeable	 changes	 in	 the	 estimates	 of	 Denisova	

components	in	contemporary	populations	out	of	Africa	(Table	7). 
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D	statistic	 DYoruba(Denisovan,	CAnc;	Yoruba,	X)	 DMota(Denisovan,	CAnc;	Mota,	X)	

Target	
D	(Haploid,	
full	data)	 Z	

D	(Haploid,	
transversions	

only)	 Z	
D	(Haploid,	
full	data)	 Z	

D	(Haploid,	
transversions	

only)	 Z	

French	 -0.009	 -2.14	 -0.002	 -0.42	 0.002	 0.51	 -0.003	 -0.74	

Han	 0.002	 0.41	 0.006	 1.05	 0.013	 2.91	 0.004	 0.82	

Yoruba	 -	 -	 -	 -	 0.010	 2.68	 -0.002	 -0.39	

Papuan	 0.058	 10.70	 0.061	 10.25	 0.071	 12.76	 0.062	 10.02	

Mota	 -0.010	 -2.68	 0.002	 0.39	 -	 -	 -	 -	

	

Table	7.	Denisovan	component	D	statistics.	DYoruba,	D(Denisovan,	CAnc;	Yoruba,	X),	where	Yoruba	is	the	reference	and	X	is	the	tested	genome,	and	

DMota,	D(Denisovan,	CAnc;	Mota,	X),	where	CAnc	is	the	reconstructed	human-chimpanzee	common	ancestor,	Mota	is	the	reference	and	X	is	the	tested	

genome
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Both	Yoruba	and	Mbuti,	which	are	routinely	used	as	African	references	 for	 this	 type	of	

analysis	 (Fu	 et	 al.,	 2015;	 Green	 et	 al.,	 2010),	 show	 a	 marginally	 closer	 affinity	 with	

Neanderthal	than	Mota	based	on	D	 statistics,	and	an	 f4	 ratio	analysis	suggested	a	small	

Neanderthal	 component	 in	 these	 genomes	 around	 0.2-0.7%,	 consistent	 with	 the	

magnitude	 of	 their	 Western	 Eurasian	 ancestry.	 Whilst	 the	 magnitude	 of	 Neanderthal	

ancestry	in	these	contemporary	African	populations	is	not	enough	to	change	conclusions	

qualitatively	 (estimates	 of	 Neanderthal	 ancestry	 in	 French	 and	 Han	 only	 increased	

marginally	when	tested	with	Mota	as	a	reference),	it	should	be	accounted	for	when	looking	

for	specific	admixed	haplotypes	(Sankararaman	et	al.,	2014)	or	searching	 for	unknown	

ancient	hominins	who	might	have	hybridized	with	African	populations	(Hammer	et	al.,	

2011).		

Phenotypic	information	from	Mota	

I	 also	 investigated	 the	 Mota	 genome	 for	 a	 number	 of	 phenotypes	 of	 interest,	 namely	

phenotypes	on	skin,	eye	and	hair	pigmentation,	lactose	tolerance,	and	altitude	adaptation,	

as	Mota	lived	in	a	high-altitude	region.	

The	8-plex	 (Hart	 et	al.,	 2013)	 and	Hirisplex	 systems	 (Walsh	 et	al.,	 2013)	were	used	 to	

predict	skin,	eye	and	hair	colour.	Genotypes,	which	had	a	minimum	of	3x	coverage	in	Mota	

were	used	and	only	bases	with	quality	≥20	were	considered.	 Skin	 colour	 could	not	be	

determined	although	Mota	did	not	have	common	European	variants	associated	with	light	

skin	 colour	 (rs16891982	 and	 rs1426654,	 see	 Table	 8).	 Using	 the	 Hirisplex	 prediction	

system	(Table	9),	Mota	was	determined	to	have	had	brown	eyes	(p-value	=	0.997)	and	

dark	(p-value	=	0.996),	probably	black	(p-value	=	0.843)	hair.		

Mota	 lacked	 any	 of	 the	 known	 alleles	 that	 give	 lactose	 tolerance	 (Jensen	 et	 al.,	 2011;	

Tishkoff	et	al.,	2007)	(Table	10).	

However,	Mota	possessed	all	three	selected	alleles	that	have	been	recently	shown	to	play	

a	role	in	adaptation	to	altitude	in	contemporary	highland	Ethiopian	populations	(Udpa	et	

al.,	2014)	(Table	11).	LIPE,	for	which	Mota	has	homozyguous	alternate	alleles	in	two	key	

positions,	is	a	hormone-sensitive	lipase,	with	roles	in	the	mobilization	of	glycerol	and	fatty	

acids	from	adipose	cells,	and	has	been	identified	by	Udpa	et	al.	(2014)	as	being	selected	

for	 in	 high-altitude	 areas.	 UBAP2,	 another	 gene	with	 variants	 selected	 in	 high-altitude	

areas,	plays	a	role	in	uniquitination	of	proteins,	which	affects	the	cellular	stress	response	

and	hypoxia,	and	immunity	(Bergink	and	Jentsch,	2009).	The	presence	of	these	mutations	

supports	the	conclusion	that	Mota	is	the	descendant	of	highland	dwellers,	who	have	lived	
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in	 this	 environment	 long	 enough	 to	 accumulate	 adaptations	 to	 the	 altitude	 (Alkorta-

Aranburu	et	al.,	2012;	Huerta-Sánchez	et	al.,	2013).	

	

Gene	 Chrom.	 Position	 Marker	
Genotype	
Mota	

Coverage	
Mota	

SLC45A2	 5	 33951693	 rs16891982	 CC	 10C	

IRF4	 6	 396321	 rs12203592	 CC	 15C	

SLC24A4	 14	 92773663	 rs12896399	 GT	 13G	9T	

OCA2	 15	 28187772	 rs1545397	 AA	 15A	

HERC2	 15	 28365618	 rs12913832	 AA	 17A	

SLC24A5	 15	 48426484	 rs1426654	 GG	 17G	

MC1R	 16	 89986154	 rs885479	 GG	 3G	

ASIP	 20	 32785212	 rs6119471	 CG	 7C	4G	

	

Table	8.		Genotypes	for	SNP	panel	used	in	the	8-plex	prediction	system.		Genotypes	

are	 reported	 with	 respect	 to	 the	 GRCh37	 build	 of	 the	 human	 genome.	 Skin	 colour	

determination	was	inconclusive.	
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Gene	 Chromosome	 Position	 Marker	
Genotype	
Mota	

Coverage	
Mota	

SLC45A2	 5	 33958959	 rs28777	 CC	 18C	

SLC45A2	 5	 33951693	 rs16891982	 CC	 10C	

EXOC2	 6	 457748	 rs4959270	 CC	 11C	

IRF4	 6	 396321	 rs12203592	 CC	 15C	

TYRP1	 9	 12709305	 rs683	 CA	 5C3A	

TYR	 11	 88911696	 rs1042602	 CC	 14C	

TYR	 11	 89011046	 rs1393350	 GG	 11G	

KITLG	 12	 89328335	 rs12821256	 TT	 13T	

SLC24A4	 14	 92801203	 rs2402130	 AA	 20A	

SLC24A4	 14	 92773663	 rs12896399	 GT	 13G9T	

OCA2	 15	 28230318	 rs1800407	 CC	 7C	

HERC2	 15	 28365618	 rs12913832	 AA	 17A	

MC1R	 16	 89985753	 N29insA	 -	 -	

MC1R	 16	 89986091	 rs11547464	 GG	 18G	

MC1R	 16	 89986154	 rs885479	 GG	 3G	

MC1R	 16	 89986144	 rs1805008	 CC	 3C	

MC1R	 16	 89985844	 rs1805005	 GG	 17G	

MC1R	 16	 89985918	 rs1805006	 CC	 8C	

MC1R	 16	 89986117	 rs1805007	 CC	 12C	

MCIR	 16	 89986546	 rs1805009	 GG	 19G	

MC1R	 16	 89986122	 Y1520CH	 -	 -	

MC1R	 16	 89985940	 rs2228479	 GG	 11G	

MC1R	 16	 89986130	 rs1110400	 TT	 9T	

PIGU/ASIP	 20	 33218090	 rs2378249	 AA	 11A	
	

Table	9.	Genotypes	for	SNP	panel	used	in	the	Hirisplex	prediction	system.	Genotypes	

are	reported	with	respect	to	the	GRCh37	build	of	the	human	genome.	
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Chr	 Pos	(hg19)	 Ref/Alt	 rs	ID	 Traditional	Name	 Gene	 Mota	

2	 136608646	 C-G/A	 rs4988235	 −13910*T	 MCM6	 G/G	

2	 136608643	 G/C	 rs41525747	 −13907*G	 MCM6	 G/G	

2	 136608651	 A-T/C	 rs41380347	 −13915*G	 MCM6	 A/A	

2	 136608746	 G/C	 rs145946881	 −14010*C	 MCM6	 C/C	

Table	10.	SNPs	analysed	for	Lactase	Persistence	(Jones	et	al.,	2013).	For	each	SNP,	the	

chromosome	and	physical	position,	the	reference	and	alternate	(LP)	alleles,	dbSNP	code,	

the	gene	name,	and	the	genotype	for	Mota	are	given.	Note	that	traditional	names	refer	to	

alleles	on	the	reverse	strand.	

	

Chr	 Pos	(hg19)	 Ref/Alt	 rs	ID	 Gene	 Mota	

9	 34017106	 C/T	 rs1785506	 UBAP2	 T/T	

19	 42906914	 G/T	 rs7246232	 LIPE	 T/T	

19	 42931004	 A/G	 rs16975750	 LIPE	 G/G	

Table	 11.	 SNPs	 possibly	 related	 to	 altitude	 adaptation.	 Nonsynonymous	 SNPs	

identified	by	Udpa	et	al.	 (2014)	 as	potentially	 involved	 in	hypoxia	 tolerance	 (and	 thus	

altitude	adaptation).	For	each	SNP,	 the	chromosome	and	physical	position	is	given,	 the	

reference	and	alternative(selected)	alleles,	dbSNP	code,	the	gene	name,	and	the	genotype	

for	Mota.	

	

Until	now,	it	has	been	necessary	to	use	contemporary	African	populations	as	the	baseline	

against	which	events	during	the	worldwide	expansion	of	Anatomically	Modern	Humans	

are	defined	(Green	et	al.,	2010;	Eriksson	et	al.,	2012;	Eriksson	and	Manica,	2012;	Pagani	et	

al.,	2015).	By	obtaining	the	first	ancient	whole	genome	from	this	continent,	I	have	shown	

that	having	an	unadmixed	reference	that	predates	the	large	number	of	recent	historical	

migrations	 can	 greatly	 improve	 this	 inference.	 Mota	 allowed	 a	 reassessment	 the	

magnitude	and	spread	of	the	West	Eurasian	backflow	into	Africa.	Whilst	this	event	had	

already	been	detected	by	studying	contemporary	genomes	(Pagani	et	al.,	2012;	Pickrell	et	

al.,	2014),	its	true	extent	had	been	strongly	underestimated,	and	even	populations	that	had	

been	previously	described	as	unadmixed	were	shown	to	harbour	a	consistent	proportion	

of	 Eurasian,	 and	 thus	 Neanderthal,	 ancestry.	 This	 result	 stresses	 the	 importance	 of	
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obtaining	unadmixed	baseline	data	to	reconstruct	demographic	events,	and	the	limitations	

of	analyses	that	are	solely	based	on	contemporary	populations.		

	

Discussion	

I	aimed	to	study	the	following	questions:	Firstly,	what	is	the	position	of	a	4,500	year-old	

individual	in	the	genetic	landscape	of	the	African	continent?	Secondly,	what	is	the	extent	

of	the	genetic	continuity	between	ancient	Ethiopians	and	modern	Ethiopians?	Thirdly,	in	

the	context	of	putative	demographic	events,	such	as	the	advent	of	Neolithic	technologies	

into	Eastern	Africa,	the	expansions	of	Afro-asiatic	languages,	the	Bantu	expansions,	or	the	

making	of	 the	 current	 landscape	of	Ethiopian	 ethnic	 variation,	 can	an	Ancient	 genome	

provide	a	picture	of	the	genomic	landscape	previous	to	these	events?	And	fourthly,	if	that	

is	the	case,	can	we	use	this	genome	to	elucidate	the	origin	and	direction	of	these	population	

movements?	

Mota	 was	 situated	 very	 close	 to	 the	 rest	 of	 modern	 Ethiopians	 in	 a	 global	 PCA,	 and	

especially,	 very	 close	 to	 the	 Ari	 populations	 within	 Ethiopia,	 who	 speak	 a	 language	

classified	as	Omotic,	which	is	the	most	differentiated	branch	of	the	Afro-asiatic	languages.	

This	 showed	 that	 populations	 in	 Ethiopia	 have	 been	 geographically	 very	 stable,	 and	

although	current-day	Afro-asiatic-speaking	populations	have	a	relatively	large	percentage	

of	western	Eurasian	admixture,	Mota	is	the	only	example	of	a	non-admixed	population	that	

forms	a	clade	with	Afro-asiatic	speakers.	

	

A	proposed	model	would	be	 that	 the	Horn	of	Africa,	home	to	 the	Afro-asiatic	 language	

family,	received	an	input	from	western	Eurasian	farmers	after	Mota	lived.	As	Ehret	et	al.	

in	2014	proposed,	the	Horn	of	Africa	has	been	the	homeland	of	at	least	the	Omotic	and	

Cushitic	 branches	 of	 the	 Afro-asiatic	 languages,	 whereas	 the	 Semitic	 branch	 probably	

diverged	 in	 a	 more	 northern	 area,	 surrounding	 the	 Siani	 peninsula	 and	 the	 southern	

Levant,	only	spreading	southwards	by	demic	diffusion	(Diakanoff,	1998,	and	Kitchen	et	al.,	

2009).	This	is	compatible	with	the	results	of	this	analysis,	and	a	possible	suggestion	would	

be	 to	 link	 this	 southward	 expansion	 of	 western	 Eurasians	with	 the	 current	 spread	 of	

Semitic	 languages	 in	 Ethiopia,	 as	 these	 populations	 present	 percentages	 of	 western	

Eurasian	component	of	around	50%	(such	as	the	Tygray	and	the	Amhara).	As	the	Omotic	

and	Cushitic	language	branches	have	likely	been	continuously	spoken	in	Ethiopia	for	the	

entire	period,	and	as	Mota	shares	most	similarity	with	the	Ari	population,	who	speak	an	

Omotic	language,	it	is	likely	that	Mota	spoke	an	early	version	of	an	Omotic	language.	The	
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input	from	western	Eurasian	peoples,	therefore,	permeated	Ethiopia	in	a	north-to-south	

gradient,	 mostly	 affecting	 current-day	 Semitic-speaking	 populations,	 and	 in	 a	 lesser	

degree	 Omotic	 and	 Cushitic	 populations.	 Current-day	 Nilotic	 populations	 are	 however	

unaffected	by	this	admixture	event,	very	probably	because	their	arrival	into	Ethiopia	from	

modern-day	 Sudan	was	 after	 this	 western	 Eurasian	migration	 (Robertshaw,	 1987).	 In	

addition,	the	Bantu	expansions	originating	in	the	area	comprising	current-day	Nigeria	and	

Cameroon	did	not	affect	Ethiopia	to	a	large	extent,	as	the	modern-day	populations	show.	

Ethiopia	and	the	southern	Nile	region	already	had	had	influences	of	the	Neolithic	by	the	

time	Mota	lived,	as	evidence	of	animal	husbandry	(goats	and	cows)	in	the	Horn	of	Africa	

5k	years	ago	(Clark	and	Prince,	1978;	Marshall	et	al.,	1984).	However,	given	the	extent	of	

the	western	Eurasian	migration	into	Africa,	and	given	the	fact	that	this	is	linked	to	changes	

in	 the	 archaeological	 record,	 it	 is	 likely	 that	 this	 permeation	 of	 western	 Eurasians	 in	

Eastern	Africa	signified	a	change	in	agricultural	practices	and	probably	the	arrival	of	more	

recent	grains	into	the	region.	The	first	archaeological	evidences	of	wheat,	barley,	 lentils	

and	flax	in	the	Horn	of	Africa,	are	consequently,	from	2,500	years	ago	(Bard	et	al.,	1997;	

Boardman,	1999;	D’Andrea	et	al.,	2008).	Hence,	it	is	very	likely	that	these	more	modern,	

Middle	Eastern	cereals	were	brought	by	communities	with	the	same	origin	as	those	who	

brought	 agriculture	 into	 Europe	 and	 Northern	 Africa.	 This	 would	 also	 support	 a	

relationship	between	this	back-migration	and	a	further	development	of	agriculture	and	

farming	in	the	Horn	of	Africa.	

Mota,	however,	is	an	individual	which	is	4,500	years	old,	which	is,	according	to	Pickrell	et	

al	(2014)	the	time	when	the	back-migration	of	western	Eurasians	into	Africa	was	being	

produced.	 Should	 an	 even	 earlier	 genome	 be	 sequenced,	 it	 would	 no	 doubt	 show	

population	movements	that	Mota	does	not	show.	There	is	no	reason	to	think	that	Mota	is	

an	unadmixed	African,	as	there	could	be	older	back-migrations	of	peoples	with	Eurasian	

genetic	 drift	 into	 Africa,	 which	 affected	 Mota,	 but	 not	 genomes	 previous	 to	 these	

hypothetical	 migrations.	 This	 will	 only	 become	 clear	 once	 we	 start	 sequencing	 more	

ancient	 genomes	 of	 African	 origin.	 Since	 Anatomical	Modern	Humans	 left	 Africa	~60k	

years	 ago,	 until	 Mota,	 there	 are	 more	 than	 55k	 years	 of	 which	 we	 have	 no	 genetic	

information.	The	future	will	only	bring	exciting	developments	in	this	area.	
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Methods	

Sample	preparation	and	sequencing	

For	Mota,	all	molecular	work	and	data	processing	work	prior	to	analysis	was	carried	out	

in	the	dedicated	ancient	DNA	(aDNA)	facilities	at	Trinity	College	Dublin,	Ireland,	by	Eppie	

Jones,	co-author	of	the	publication	Gallego-Llorente	et	al.,	(2015).	The	petrous	portion	of	

the	right	temporal	bone,	which	has	been	shown	to	be	a	good	source	of	aDNA	(Gamba	et	al.,	

2014;	Pinhasi	et	al.,	2015),	was	sampled	from	Mota.	A	Dremel	engraving	cutter	attached	

to	a	dental	drill	was	used	to	remove	the	surface	of	the	petrous	and	the	remaining	bone	was	

exposed	to	ultraviolet	radiation	(Biometra	Biolink,	5	lamps	at	254	nm)	for	20	minutes.	The	

bone	fragment	was	then	ground	to	a	fine	powder	using	a	mixer	mill	(MM	400,	Retsch)	and	

DNA	was	extracted	from	this	powder	using	a	silica	column	based	protocol	(Gamba	et	al.,	

2014;	Yang	et	al.,	1998),	Libraries	were	prepared	and	amplified	with	AccuPrimeTM	Pfx	

Supermix	(Life	Technology),	using	a	modified	version	of	Meyer	and	Kircher	(Meyer	and	

Kircher,	2010)	as	outlined	in	Gamba	et	al	(Gamba	et	al.,	2014).	To	evaluate	the	human	DNA	

content	of	the	samples,	libraries	were	screened	on	an	Illumina	MiSeq	platform	at	TrinSeq,	

Dublin	using	70	base	pair	(bp)	single-end	sequencing.	Libraries	were	further	sequenced	

on	a	HiSeq2000	platform	at	the	Theragen	BiO	Institute	(South	Korea)	using	100	bp	single-

end	(8	lanes)	and	paired-end	sequencing	(1	lane).	

	

Data	Processing	

For	 all	 data,	 adapter	 sequences	 were	 trimmed	 from	 the	 ends	 of	 reads	 using	 leeHom	

(Renaud	et	al.,	2014)	with	the	--ancientdna	option	implemented.	The	program	leeHom	was	

chosen	 for	processing	 the	reads	of	 the	Mota	genome	as	 they	were	noth	single-end	and	

paired-end	reads.	The	Ganj	Dareh	genome	(Chapter	2)	was	composed	of	only	single-end	

reads,	and	hence	cutadapt	was	used.	For	paired-end	data	leeHom	was	also	used	to	merge	

mate	pairs	which	could	be	overlapped.	For	mate	pairs	which	could	not	be	overlapped	only	

data	 from	 read	 1	were	 considered	 for	 downstream	 analyses.	 Libraries	 for	Mota	were	

double-stranded.	Reads	were	 aligned	using	BWA	 (Li	 and	Durbin,	 2009),	with	 the	 seed	

region	 disabled,	 to	 the	 GRCh37	 build	 of	 the	 human	 genome	 with	 the	 mitochondrial	

sequence	 replaced	 by	 the	 Cambridge	 reference	 sequence	 (NCBI	 accession	 number	

NC_012920.1).	 Data	 from	 the	 same	 sample	 were	merged	 using	 Picard	MergeSamFiles	

(http://picard.sourceforge.net/)	 and	 clonal	 reads	were	 removed	 using	MarkDuplicates	

from	the	same	suite	of	tools.	Reads	were	filtered	to	allow	a	minimum	read	length	of	30	bp	

and	 indels	 were	 realigned	 using	 RealignerTargetCreator	 and	 IndelRealigner	 from	 the	

Genome	Analysis	Toolkit	(McKenna	et	al.,	2010).	Average	depth	was	calculated	using	the	
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genomecov	 function	 in	 bedtools	 (Quinlan	 and	 Hall,	 2010).	 Reads	 were	 filtered	 using	

SAMtools	(Li	et	al.,	2009)	to	remove	sequences	with	a	mapping	quality	of	less	than	30	and	

reads	were	rescaled	using	mapDamage	2.0	(Jónsson	et	al.,	2013)	to	reduce	the	qualities	of	

likely	damaged	bases,	therefore	lessening	the	effects	of	ancient	DNA	damage	associated	

errors	on	analyses	(Jónsson	et	al.,	2013).	

Sequence	length	distribution	and	molecular	damage		

The	data	was	examined	for	the	presence	of	typical	signatures	of	ancient	DNA,	namely	short	

average	sequence	length	and	a	prevalence	of	nucleotide	misincorporation	sites	at	the	ends	

of	molecules	(Briggs	et	al.,	2007;	Brotherton	et	al.,	2007),,	which	were	assessed	using	all	

available	paired-end	data.	These	data	were	derived	from	the	same	libraries	as	those	used	

for	 single-end	 sequencing,	 however,	 these	 paired-end	 sequences	 are	 less	 likely	 to	 be	

truncated	 at	 their	 3’-termini	 than	 their	 single-end	 counterparts.	 Sequence	 length	

distribution	was	 evaluated	 using	 command	 (1)	 (see	 below)	 and	 patterns	 of	molecular	

damage	 were	 assessed	 using	 mapDamage	 2.0	 (Jónsson	 et	 al.,	 2013).	 Only	 bases	 with	

quality	≥	30	were	considered	when	running	mapDamage.	

(1) samtools	view	<input.bam>	|	awk	'{print	length	($10)}'|	sort	-n	|	uniq	-c		
	

Length	distribution	(Fig	1)	of	the	Ethiopian	data	was	plotted,	shich	showed	peaks	at	<	50	

bp.	This	is	compatible	with	an	ancient	origin	for	these	data	as	ancient	DNA	molecules	tend	

to	have	an	average	sequence	length	of	less	than	100	bp	(Shapiro	and	Hofreiter,	2014).	An	

increase	 in	 nucleotide	 misincorporation	 sites	 was	 also	 observed,	 at	 the	 termini	 of	

molecules,	namely	C	to	T	and	G	to	A	transitions	at	the	5’	and	3’	ends	of	reads	respectively.	

Misincorporation	frequencies	were	greater	than	17%	at	the	ends	of	reads.	

X	chromosome	contamination	

The	level	of	X	chromosome	contamination	in	Mota	was	assessed,	using	the	‘Contamination’	

program	 in	 the	 ANGSD	 package	 (Korneliussen	 et	 al.,	 2014).	 This	 method,	 based	 on	

Rasmussen	 et	 al	 (Rasmussen	 et	 al.,	 2011b),	 evaluates	 the	 discordance	 in	 the	 rate	 of	

heterozygous	 calls	 between	 known	polymorphic	 sites	 on	 the	 X	 chromosome	 and	 their	

adjacent	sites.	As	the	X	chromosome	is	a	haploid	marker	in	males,	any	discordance	may	be	

a	 function	 of	 contamination.	 I	 used	 the	 HapMap	 resources	 provided	 with	 the	 ANGSD	

software	to	define	polymorphic	sites	and	restricted	the	analysis	to	the	non-recombining	

portion	of	the	X	chromosome	(X:5,000,000-154,900,000).	Only	considered	bases	with	a	

minimum	quality	of	20	were	considered.	Two	tests	were	performed;	“test	1”	which	uses	

all	reads	and	“test	2”	which	removes	the	assumption	of	independent	error	rates	by	only	
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sampling	a	single	read	per	site.	Mota	shows	a	low	contamination	rate	of	1.26	±	0.04	%	(p-

value	<	2.2	x	10-16)	using	“test	1”	and	1.17	±	0.10	%	(p-value	<	2.2	x	10-16)	using	“test	2”.	

Mitochondrial	contamination	

To	 assess	 the	 level	 of	 contamination	 in	 Mota’s	 mitochondrial	 genome	 he	 number	 of	

secondary	(non-consensus)	bases	 at	 haplogroup	defining	positions	was	 examined,	as	a	

function	of	the	total	coverage	for	each	of	these	sites	(Gamba	et	al.,	2014;	Sánchez-Quinto	

et	 al.,	 2012b).	 GATK	 Pileup	 (McKenna	 et	 al.,	 2010)	 was	 used	 to	 call	 genotypes	 at	

haplogroup	defining	positions	 that	were	determined	using	HAPLOFIND	(Vianello	et	al.,	

2013).	Only	bases	with	quality	>	30	were	considered	in	analyses.	The	contamination	rate	

was	estimated	omitting	sites	which	could	be	explained	by	residual	deamination	(“C”)	as	

well	as	with	all	available	high	quality	bases	(“C	+	MD”)	(Gamba	et	al.,	2014;	Sánchez-Quinto	

et	 al.,	 2012b).	 Contamination	 was	 estimated	 to	 be	 0.64%	 using	 all	 sites,	 and	 0.29%	

excluding	sites	with	potentially	damaged	bases.	

Mitochondrial	DNA	haplogroup	assignment	

The	 mitochondrial	 haplogroup	 was	 determined	 following	 the	 analysis	 described	 by	

Skoglund	 et	 al	 in	 2014	 (Skoglund	 et	 al.,	 2014).	 In	 brief,	 this	 involved	 generating	 a	

consensus	 mitochondrial	 sequence	 using	 SAMtools	 (Li	 et	 al.,	 2009)	 and	 assigning	 a	

haplogroup	using	HAPLOFIND	(Vianello	et	al.,	2013)	(Table	2).	

Y	chromosome	haplogroups	

A	 maximum	 likelihood-based	 approach	 was	 used	 to	 determine	 the	 Y	 chromosome	

haplogroup	of	Mota.	Genotypes	along	the	Y	chromosome	were	called	with	a	minimum	base	

threshold	of	20	using	GATK	and	employed	YFitter	(Jostins	et	al.,	2014)	to	predict	the	most	

likely	haplogroup.	Mota	was	assigned	to	haplogroup	E1b1.	This	haplogroup	was	verified	

by	 looking	 for	mutations	 in	Mota	 that	 were	 described	 by	 the	 International	 Society	 of	

Genetic	Genealogy	(ISOGG)	as	defining	the	branches	leading	to	haplogroup	E1b1	(Table	

3).	

Mutations	are	reported	with	respect	 to	 the	Reconstructed	Sapiens	Reference	Sequence	

(Behar	 et	 al.,	 2012).	 Mutations	 found	 in	 Mota,	 which	 are	 present	 in	 the	 reported	

haplogroup	are	shown	here	unless	marked	in	bold	or	underlined.	Underlined	mutations	

are	 those	 present	 in	 Mota	 but	 not	 associated	 with	 the	 haplogroup	 determined.	 Bold	

mutations	are	those	expected	for	the	assigned	haplogroup	but	which	are	absent	from	the	

sample.	
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SNP	 calling	 in	 Mota	 and	 comparison	 to	 other	 ancient	 and	 contemporary	

populations.	

Genotypes	in	Mota	were	called	using	mpileup	from	samtools	(Li	et	al.,	2009),	filtering	for	

sites	 with	 base	 quality	 ≥20	 and	 mapping	 quality	 ≥30.	 I	 then	 compared	 Mota	 to	

contemporary	populations	in	a	dataset	including	a	large	number	of	African	and	several	

Eurasian	populations	 typed	at	256,540	sites	 (Pickrell	et	al,	2014	(Pickrell	et	al.,	2012),	

herein	referred	to	as	the	“global	panel”).	SNPs	were	flipped	to	the	positive	strand,	using	

the	hg19	fasta	files	as	reference.	The	Mota	VCF	files	were	converted	to	PLINK	format	using	

VCFtools	(Danecek	et	al.,	2011).	Triallelic	positionswere	then	filtered,	and	positions	for	

which	there	was	no	call	for	Mota,	giving	127,069	SNPs,	and	merged	these	with	the	global	

SNP	panel	using	PLINK	(Purcell	et	al.,	2007).	The	merged	dataset	was	then	used	for	later	

analysis,	including	Principal	Component	Analysis	and	outgroup	f3	to	determine	the	affinity	

of	 Mota	 to	 contemporary	 populations,	 and	 f4	 ratios	 and	 admixture	 f3	 to	 quantify	 the	

magnitude	and	distribution	of	the	West	Eurasian	component	in	Africa.	

	

Neanderthal	and	Denisovan	Component	Determination		

To	compute	D	statistics	and	f4	ratios,	I	used	a	number	of	high	quality	whole	genomes	from	

modern	populations	(Meyer	et	al.,	2012):	HGDP00456-Mbuti	(24.3x),	HGDP00521-French	

(26.7x),	 00778-Han	 (27.7x),	 00927-Yoruba	 (32.1x),	 (rounded	 average	 coverage	 in	

brackets).	 I	 used	 the	 alignments	 to	 hg19	 available	 in	 BAM	 format	 from:	

http://www.cbs.dtu.dk/suppl/malta/data/Published_genomes/bams/.	 The	 Denisovan	

and	Neanderthal	genomes	were	obtained	from	the	set	of	vcf	files	from	Prüfer	et	al.	(2014),	

also	mapped	to	hg19,	and	contained	additional	information	such	as	the	inferred	alleles	of	

the	Human-Chimpanzee	common	ancestor	and	the	Human-Orangutan	common	ancestor	

(from	 now	 on,	 referred	 as	 “modified	 vcf	 files”).	 These	 files	 are	 available	 at	

http://cdna.eva.mpg.de/neandertal/altai/		

D	statistics	to	quantify	Neanderthal	component	

To	compute	the	D-statistics,	I	first	identified	all	autosomal	positions	at	which	the	genomes	

of	 the	Altai	Neanderthal	and	 the	 reconstructed	Human-Chimpanzee	Common	Ancestor	

differ,	giving	~19	million	SNPs.	This	was	done	using	the	set	of	modified	vcf	files	from	Prüfer	

et	al.	(2014),	as	detailed	above.	This	list	of	discordant	genomic	positions	was	then	called	

in	 the	 contemporary	 genomes	 as	well	 as	Mota	 using	 samtools,	 using	MAPQ≥30	 for	 all	

genomes.	 The	 resulting	 vcf	 files	 were	 then	 converted	 to	 PLINK	 format	 using	 vcftools.	
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PLINK-format	files	(ped	and	map)	of	the	different	genomes	were	subsequently	merged	into	

a	single	file	using	PLINK.	Genomes	were	turned	haploid	by	randomly	sampling	either	allele	

at	 heterozygote	 sites.	 All	 estimates	 were	 obtained	 both	 using	 the	 full	 data,	 as	 well	 as	

considering	transversions	only.	The	PLINK	file	was	in	turn	converted	to	eigenstrat	format,	

using	 the	 Admixtools	 utility	 CONVERTF	 (Patterson	 et	 al.,	 2012).	 D-statistics	 were	

estimated	using	the	D-statistics	software	of	Admixtools	(Patterson	et	al.,	2012).	

f4	ratio	to	quantify	Neanderthal	component	

To	 compute	 the	 f4	 ratio,	 I	 first	 identified	 all	 autosomal	 positions	 at	 which	 the	 Altai	

Neanderthal	(AltaiNea)	genomes	and	Denisova	differ,	by	using	the	set	of	modified	vcf	files	

from	 Prüfer	 et	 al.	 (2014)	 explained	 above.	 I	 obtained	 ~3	 million	 SNPs.	 This	 list	 of	

discordant	genomic	positions	was	then	called	in	Yoruba,	French,	Han,	Mbuti,	Mezmaiskaya	

Neanderthal	 (MezNea)	 (Ovchinnikov	 et	 al.,	 2000),	 and	 Mota	 whole	 genomes	 using	

samtools,	 using	 MAPQ≥30	 for	 all	 genomes	 except	 for	 the	 low	 quality	 Mezmaiskaya	

Neanderthal	 (MAPQ≥37).	The	 resulting	 vcf	 files	were	 then	 converted	 to	PLINK	 format,	

using	 vcftools.	 PLINK-format	 files	 (ped	 and	 map)	 of	 the	 different	 genomes	 were	

subsequently	merged	 into	 a	 single	 file	 using	 PLINK.	 Genomes	were	 turned	 haploid	 by	

randomly	sampling	either	allele	at	heterozygote	sites.	All	estimates	were	obtained	both	

using	the	full	data,	as	well	as	considering	transversions	only.	The	PLINK	files	were	in	turn	

converted	to	eigenstrat	format	using	the	Admixtools	utility	CONVERTF	(Patterson	et	al.,	

2012).	f4	ratio	estimation	was	performed	using	the	F4RatioTest	software	of	Admixtools.	

Analysis	was	carried	either	on	both	the	full	data	and	transversions	only.	

D	statistics	to	quantify	Denisovan	component	in	Mota.	

To	compute	the	D	statistics,	I	first	identified	all	autosomal	positions	at	which	the	Denisova	

genome	and	the	reconstructed	Human-Chimpanzee	Common	Ancestor	differ.	Like	for	the	

Neanderthal	component	analysis,	I	performed	this	analysis	using	the	complete	genomes,	

since	a	large	number	of	SNPs	is	needed	to	obtain	accurate	estimates.	I	obtained	~19	million	

SNPs.	This	was	done	using	the	set	of	modified	vcf	files	from	Prüfer	et	al.	(2014).	This	list	of	

discordant	genomic	positions	was	 then	called	 in	 the	contemporary	genomes	as	well	as	

Mota	using	samtools	(Li	et	al.,	2009).	The	resulting	vcf	files	were	then	converted	to	PLINK	

format	using	vcftools	(Danecek	et	al.,	2011).	PLINK-format	files	were	subsequently	merged	

into	a	single	file	using	PLINK	(Purcell	et	al.,	2007).	This	was	converted	to	eigenstrat	format,	

using	the	Admixtools	utility	CONVERTF	(Patterson	et	al.,	2012).	D	statistics	were	estimated	

using	the	D	statistics	software	of	Admixtools.	
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4.	Analysis	of	the	challenges	in	the	compatibility	of	ancient	
genetic	data	of	different	sources	and	their	solutions	

	
Abstract	

In	recent	years,	advances	in	the	recovery	and	high-throughput	sequencing	of	DNA	have	

revolutionised	the	field	of	ancient	DNA,	which	has	allowed	us	to	access	an	ever-increasing	

number	of	 ancient	 individuals.	However,	 ancient	DNA	 continues	 to	be	 very	difficult	 to	

work	 with,	 due	 to	 contamination	 from	 other	 organisms,	 contamination	 from	 modern	

human	DNA,	 and	DNA	damage	due	 to	molecular	degradation	over	 thousands	of	 years.	

Hence,	different	methods	to	approach	recovery	of	DNA	and	its	sequencing,	the	processing	

of	 reads,	 and	 different	 bioinformatic	 pipelines	 designed	 to	 tackle	 the	 problems	 of	

contamination	and	damage,	will	result	in	datasets	that	are	not	easily	compatible.	Here,	I	

analyse	the	most	patent	problems	in	terms	of	DNA	analysis,	including	the	use	of	SNP	panels	

with	different	ascertainment	biases	obtained	by	DNA	capture,	the	combination	of	datasets	

obtained	 by	 different	 sequencing	 methods,	 the	 use	 of	 uracil-DNA-glycosylase	 (UDG)	

treatment	to	eliminate	endogenous	deamination	damage,	how	different	algorithms	deal	

with	 DNA	 damage	 in	 silico,	 and	 how	 reference	 bias	 can	 affect	 the	mapping	 of	 ancient	

samples	to	a	reference	genome.	I	propose	that	subsetting	common	SNPs	in	capture	panels	

will	eliminate	ascertainment	biases	of	different	SNP	panels.	Using	only	transversion	SNPs	

or	 performing	 soft-clipping	 can	 reduce	 problems	 arising	 from	 differential	 damage	

patterns	in	aDNA.	Additionally,	a	method	to	align	ancient	samples	to	a	human	reference	

genome	where	the	reference	alleles	of	SNPs	have	been	substituted	by	a	third	allele	(i.e.	not	

the	usual	alternate	allele)	has	been	shown	to	fully	eliminate	reference	bias	–	I	name	this	

method	“third-base	mapping”.	
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The	problem	with	ascertainment	bias	in	SNP	datasets	

	

Introduction	

In	recent	years,	advances	in	the	recovery	and	high-throughput	sequencing	of	DNA	have	

revolutionised	 the	 field	of	ancient	DNA	(aDNA).	As	a	result,	aDNA	studies	have	rapidly	

progressed	to	whole-genome	sequencing	and	the	number	of	sequenced	ancient	genomes	

has	increased	exponentially.	Shotgun	sequencing	was	used	for	the	first	sequenced	ancient	

genomes	 of	 Anatomically	Modern	Humans,	 such	 as	 Saqqaq	 (Rasmussen	 et	 al.,	 2010a),	

Motala	 (Skoglund	 et	 al.,	 2012),	 Loschbour,	 Stuttgart	 (Lazaridis	 et	 al.,	 2014),	 Mal’ta	

(Raghavan	et	al.,	2014),	etc.	However,	in	2013,	David	Reich	and	his	team	pioneered	the	

extensive	use	of	a	method	to	sequence	ancient	genomes	 for	prehistorical	demographic	

analysis	focusing	on	a	previously-selected	subset	of	SNPs.	To	make	demographic	analysis	

of	large	numbers	of	ancient	individuals	economically	feasible,	they	developed	in-solution	

hybridization	capture	for	ancient	nuclear	DNA	(Haak	et	al.,	2015),	which	was	previously	

assayed	by	Rohland	and	Reich	in	2012,	and	then	used	by	Fu	et	al.	in	2013,	although	only	

in	 chromosome	 21	 of	 the	 40k	 year	 old	 Tianyuan	 individual.	 Haak	 et	 al.	 enriched	

sequencing	libraries	to	a	target	set	of	394k	SNPs,	354k	of	which	were	autosomal	SNPs	also	

genotyped	by	the	Human	Origin	array	(Patterson	et	al.,	2012):	this	reduced	the	amount	of	

sequencing	by	a	median	of	262-fold.		

	

Therefore,	for	demographic	studies,	SNP	capture	can	offer	a	more	economical	and	efficient	

alternative	(Haak	et	al.,	2015).	In	2015	a	human	enrichment	target	set	with	394,577	single	

nucleotide	polymorphisms	(SNPs)	(‘390k	capture’),	most	of	which	overlapped	with	the	

SNPs	genotyped	by	the	Affymetrix	Human	Origins	array	(HO	array,	or	‘600k	capture’)	was	

published	(Haak	et	al.,	2015).	This	390k	capture	dataset	was	then	 tripled	to	1,240,000	

SNPs	(‘1240k	capture’)	(Mathieson	et	al.,	2015),	and	subsequently	expanded	to	3.7	million	

SNPs	(‘3700k	capture’)		(Fu	et	al.,	2016).	

	

Because	SNP	genotypes	necessarily	contain	a	set	of	SNPs	designed	to	reflect	aspects	of	

human	genetic	variation,	any	genotyping	array	will,	by	definition,	be	ascertained.	This,	in	

turn,	means	that	different	SNP	genotyping	arrays	will	have	different	ascertainment	biases,	

and	 hence,	 different	 arrays	 will	 result	 in	 very	 different	 representations	 of	 human	

demographic	history	and	selection	(Lachance	and	Tishkoff,	2013).	The	SNP	capture	panels	
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used	in	aDNA	pose	no	difference:	every	time	a	SNP	is	added	into	a	panel,	the	ascertainment	

of	the	resulting	panel	subsequently	changes.	Hence,	going	from	a	390k	capture	to	a	1240k	

capture	poses	 great	difficulties	 in	 terms	 of	 keeping	 a	 similar	 ascertainment.	 The	 390k	

capture	panel	was	based	on	African	samples:	they	ascertained	SNPs	on	African	samples	to	

look	at	aDNA	from	the	European	Bronze	Age,	so	that	ascertainment	bias	would	not	affect	

theoir	 results.	However,	 as	 these	 SNPs	are	based	only	on	African	variation,	 it	presents	

potential	ascertainment	biases	when	compared	with	larger	datasets.	Additionally,	the	HO	

array	 (629k	 capture)	 contained	more	Eurasian	populations,	 and	was	ascertained	 for	 a	

more	global	set	of	human	variation.	Finally,	the	1240k	capture	was	equally	ascertained	to	

reflect	the	full	extent	of	human	variation.		

	

Results	

I	used	 the	1240k	capture	panel	(Mathieson	et	al.,	2015)	merged	to	 the	original	Human	

Origins	Array	(HO	array,	~629k	SNPs),	and	 to	a	series	of	previously-published	ancient	

genomes	(such	as	Wezmeh	Cave	(WC1)	(Broushaki	et	al.,	2016)),	to	compare	the	effect	of	

choosing	different	 subsets	 of	 SNPs	 in	different	analyses.	 Specifically,	 I	 focussed	on	 the	

outgroup	 f3	 statistics	 to	 compare	 individual	 and	 population	 affinities.	 I	 started	 by	

comparing	f3	values	computed	on	the	390k	and	on	the	HO	(629k)	capture	panels.	Whilst	

populations	are	ordered	in	the	same	way	in	the	two	panels,	the	magnitude	of	the	f3	values	

differ	greatly	between	the	two	panels	(Fig.	1A).	More	specifically,	f3	values	in	any	given	f3	-

statistics	test	differed	greatly	when	done	on	the	390k	panel	and	on	the	HO	(629k)	panel,	

by	around	3-4	error	bars.	This	is	not	simply	due	to	the	reduction	in	SNPs:	subsampling	a	

random	set	of	390k	SNPs	out	of	the	600k	panel	gave	f3	values	similar	to	those	obtained	

when	using	all	the	600k	SNPs	(blue	dots	of	Fig.	1A).	I	then	went	on	to	analyse	the	results	

of	heavy	random	SNP	subsampling,	down	to	30k	randomly-selected	SNPs,	wanting	to	see	

what	was	the	lower	limit	of	SNPs	necessary	for	an	f3	of	this	type	to	remain	informative.	

Subsampling	to	60k	SNPs	yielded		f3		results	with	error	bars	only	slightly	larger	than	the	

analyses	done	at	300K,	which	shows	how	much	the	number	of	SNPs	can	be	reduced,	while	

keeping	the		f3		informative	(Fig.	1B).	I	then	proceeded	to	compare	the	1240k	panel	against	

the	390k	panel,	obtaining	the	same	results	(Fig.	1C).	
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Figure	1.	A.	f3(X,	WC1;	Ju’hoansi	North)	and	B.	f3(Iran	LN,	WC1;	Ju’hoansi	North),	where	X	

is	other	ancient	individuals	and	modern	populations.	The	results	in	blue	were	performed	

using	the	600k	capture	panel	and	the	results	in	gold	were	performed	on	the	390k	capture	

panel.	The	points	in	light	blue	show	a	random	300k	SNP	subset	from	the	original	600k	

dataset.	The	points	in	red	are	random	60K,	40K	and	30K	subsets	of	the	600k	dataset.	C.	

f3(Iran	LN,	WC1;	Mbuti),	where	 the	 results	 in	blue	 are	done	over	 the	1240k	panel,	 the	

results	in	gold	are	done	on	the	390k	panel.	

	 There	have	been	recent	publications	(e.g.	Fu	et	al.,	2016)	using	a	mix	of	samples	

from	different	ascertainment	sets	(3.7M,	2.2M,	1.2M	and	390k).	This	poses	the	question	of	

what	to	do	in	those	cases;	should	one	use	the	maximum	number	of	SNPs	available	in	each	

pairwise	comparison,	or	subset	to	a	common	set	of	SNPs	available	in	all	samples?	In	Figure	

2,	I	replicate	an	analysis	done	by	Fu	et	al	(2016)	using	all	possible	pairwise	outgroup	f3	to	

describe	the	relationships	among	Ice	Age	European	samples.	I	present	two	versions	of	the	

analysis,	one	using	all	 samples	subsetted	to	 the	smallest	capture	panel,	 in	 this	case	 the	

390k	panel	(2A),	and	one	using	the	maximum	number	of	SNPs	available	for	each	pair	of	

samples	(2B).	Whilst	using	the	common	subset	highlights	similarities	among	samples	from	

a	similar	archaeological	context,	as	presented	by	Fu	et	al.,	the	analysis	using	all	available	

SNPs	obfuscates	these	patterns.	
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Figure	2.	Subsetting	to	the	common	SNPs	for	all	individuals	in	the	datasaset.	A.	Pairwise	f3(X,	Y;	Mbuti)	performed	on	Fu’s	ancient	individuals,	after	

subsetting	to	only	the	SNPs	in	the	390k	dataset.	B.	Pairwise	f3(X,	Y;	Mbuti)	done	on	Fu’s	ancient	individuals.	We	can	see	how	the	capture	panel	of	choice	

affects	the	result,	for	example	showing	lower	f3	values	for	those	individuals	for	which	only	the	390k	SNPs	were	captured	(Bockstein,	Ofnet,	HohleFels79	or	

HohleFels	49).	
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Figure	 2,	 therefore,	 shows	 that	 in	 individuals	 obtained	 by	 capture	 using	different	 SNP	

platforms,	we	must	subset	the	panel	to	SNPs	common	to	all	platforms	in	order	to	obtain	

comparable	results.	Otherwise,	biases	will	appear,	linking	samples	to	other	samples	with	

the	 same	 ascertainment,	 and	 away	 from	 samples	 with	 a	 different	 ascertaiment.	 A	

representative	 example	 is	 constituted	 by	 the	HohleFels	 individuals,	 captured	with	 the	

390k	panel.	They	show	a	disproportionate	lack	of	relatedness	to	the	rest	of	individuals	

that	 have	 been	 captured	 at	 other	 resolutions	 1240k	 or	 2200k,	 which	 completely	

disappears	when	subsetting	to	the	390k	panel	

	

Discussion	

The	 problem	 of	 mixing	 panels	 with	 different	 ascertainment	 is	 well	 known	 in	modern	

samples	typed	with	different	SNP	chips,	but	it	has	not	been	discussed	explicitly	in	analyses	

of	ancient	genome	captured	for	different	numbers	of	SNPs.	The	analyses	I	presented	here	

highlight	 that,	 unsurprisingly,	 ascertainment	 bias	 can	 have	 major	 effects	 on	 the	

conclusions	reached	on	aDNA,	and	that	care	should	be	taken	to	always	subset	data	to	the	

smallest	common	set	of	SNPs.	

In	previous	studies,	it	has	been	common	to	mix	individuals	from	the	390k	capture	panel	

with	 individuals	 from	 the	 600k	 capture	 panel.	 Additionally,	 the	 2016	 Fu	 et	 al	 study	

published	European	and	Eurasian	Ice	Age	individuals	sequenced	at	different	resolutions:	

3.7M,	 2.2M,	 1.2M	 and	 390k	 SNPs.	 This,	 however,	 causes	 an	 issue	 with	 platform	

compatibility.	As	Figure	2	shows,	common	SNPs	between	the	panels	need	to	be	subset	in	

order	 to	have	a	meaningful	analysis.	Differences	caused	by	platform	bias	are	relatively	

small,	 but	 they	 are	 enough	 to	 cause	 differences	 in	 analyses	 looking	 at	 closely-related	

populations,	as	shown	for	the	Ice	Age	Europe	samples	(Figure	2).	Subsetting	all	samples	

to	the	390k	capture	panel	fully	solves	the	problem.	I	recommend	that	the	SNP	set	used	in	

each	of	the	analyses	should	be	clearly	indicated	in	future	publications	(ideally	providing	

the	 commands	 used	 to	 subset	 the	 data),	 especially	 when	 individuals	 at	 different	

resolutions	are	used.		

	

I	 have	 additionally	 shown	 that	 using	 a	 small	 random	 subset	 of	 SNPs	 is	 actually	 not	 a	

problem,	and	that	most	f3	analysis	would	withstand	a	downsampling	to	300k	SNPs	(or	

even	60k	SNPs)	without	 causing	a	 loss	 of	 resolution,	which	 is	 especially	 important	 for	

distinguishing	drift	in	closely-related	populations	(such	as	this	analysis,	done	on	Ice	Age	

Europe)	(Fig.	1B).	Hence,	we	can	conclude	that	making	sure	that	the	dataset	is	compatible	
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in	terms	of	ascertainment	should	always	take	precedence	over	using	the	largest	number	

of	SNPs	available	for	each	individual	in	a	single	study.	

	

The	problem	with	platform	bias	

	

Introduction	

A	 second	problem	 regarding	 the	 integration	of	 ancient	data	 is	 the	 issue	of	 sequencing	

mode.	 Shotgun	 sequencing	 for	 ancient	 DNA	 in	 its	 current	 form	 was	 approached	 and	

developed	 by	 studies	 such	 as	 Rasmussen	 et	 al.,	 (2010);	 García-Garcerà	 et	 al.,	 (2011);	

Sánchez-Quinto	et	al.,	 (2012)	and	Skoglund	et	al.,	2012).	 In	2014,	 (Gamba	et	al.,	2014)	

discovered	 that	 sampling	 ancient	DNA	 from	 the	petrous	 section	of	 the	 temporal	 bone,	

could	yield	4	to	16	times	more	endogenous	DNA	than	from	teeth.	This	opened	the	way	for	

extensive	studies	of	human	ancient	DNA	by	whole	genome	sequencing,	which	have	been	

followed	in	studies	such	as	Allentoft	et	al.,	(2015);	Gallego-Llorente	et	al.,	(2015);	Gallego-

Llorente	 et	 al.,	 (2016);	 Jones	 et	al.,	 (2015);	 and	Lazaridis	 et	al.,	 (2014).	Whole	 genome	

sequencing	of	ancient	samples	paved	the	way	for	analyses	that	require	diploid	data	to	be	

carried	 out,	 such	 as	 looking	 at	 the	 runs	 of	 homozygosity	 (Gamba	 et	 al.,	 2015)	 and	

examining	coalescence	times	between	samples	using	GPhoCS	(Jones	et	al.,	2015;	Kuhlwilm	

et	al.,	2016).	

	

By	far,	the	most	common	type	of	damage	that	occurs	to	DNA	is	deamination,	which	results	

in	the	replacement	of	a	cytosine	by	a	uracil.	In	the	presence	of	water,	deamination	occurs	

spontaneously.	Hence,	samples	 found	 in	humid	conditions	have	higher	amounts	of	 this	

damage	(Smith	et	al.,	2003).	During	PCR	amplification,	the	uracil	is	treated	as	if	it	was	a	

thymine,	hence	rendering	an	original	CG	base-pair	 into	an	amplified	TA	base-pair.	This	

type	of	damage	has	commonly	been	dealt	with	by	treatment	with	uracil-DNA-glycosylase	

(UDG	treatment),	which	excises	the	uracil	from	DNA,	leading	a	site	with	no	base.	During	

PCR,	these	abasic	sites	will	lead	to	strand	breaks	at	these	damaged	sites,	yielding	shorter	

products	and	hence	shorter	reads.		

	

While	capture	data	is	normally	UDG-treated	(Fu	et	al.,	2016;	Haak	et	al.,	2015),	most	of	the	

samples	done	by	whole-genome	sequencing	are	not	UDG-treated	(Broushaki	et	al.,	2016;	
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Gallego-Llorente	et	al.,	2016),	as	deamination	damage	can	be	dealt	with	in	the	data	analysis	

steps,	and	also	as	UDG	eliminates	the	damage	patterns,	which	is	one	of	the	authenticity	

criteria	used	for	ancient	DNA.	Some	whole-genome-sequenced	individuals,	published	by	

Gamba	 et	 al	 in	 2014	 (Gamba	 et	 al.,	 2014)	 were	 captured	 and	 published	 in	 the	 2015	

Mathieson	 paper	 (Mathieson	 et	 al.,	 2015).	 Additionally,	 the	 whole-genome-sequenced	

Iranian	Farmer	from	Gallego-Llorente	et	al.	(2016)	was	also	captured	and	published	by	

Lazaridis	et	al.	(2016).	Additionally,	the	fact	that	the	capture	kits	are	not	publicly	available,	

made	comparison	more	difficult	by	restricting	the	output	of	all	of	the	captured	genomes	

to	 one	 laboratory.	 This	 creates	 a	 good	 dataset	 to	 compare	 the	 output	 of	 shotgun	

sequencing	 with	 the	 output	 of	 capture.	 In	 an	 ideal	 world,	 both	 datasets	 should	 be	

equivalent.	However,	this	assumption	has	proven	to	be	difficult	to	achieve	for	a	number	of	

reasons.	Amongst	them,	 the	differences	 in	 the	biochemistry	of	shotgun	sequencing	and	

DNA	capture,	the	differences	in	the	UDG	treatment	vs	using	an	in-silico	damage-removing	

approach,	and	the	different	sequencing	pre-processing,	mapping,	and	SNP	calling	steps.	

	

Here,	 I	 analyse	 the	 reasons	 that	 account	 for	most	 differences	 between	 platforms,	 and	

provide	easy	solutions	on	how	to	pre-process	data	 from	different	platforms	to	make	 it	

compatible.	I	use	the	fact	that	we	have	versions	of	genomes	that	have	been	both	shotgun	

sequenced	(NE1	and	BR2	from	Gamba	et	al.,	2014;	and	GD13a	from	Gallego-Llorente	et	al.,	

2016),	and	captured	(NE1	and	BR2	in	Mathieson	et	al.,	2016;	and	GD13a	n	Lazaridis	et	al.,	

2016),	and	I	perform	D	statistics	using	two	versions	of	the	same	genomes,	which	in	ideal	

circumstances	 should	 be	 0.	 An	 absolute	 Z	 value	 below	 3	 indicates	 non-statistically-

significant	differences	between	both	samples.		

	



4	|	Analysis	of	the	challenges	in	the	compatibility	of	ancient	genetic	data		

106 

Results	

First,	I	compared	the	shotgun-sequenced	genomes,	as	sequenced	and	processed	by	Gamba	

et	 al	 (2014),	 with	 the	 capture-sequenced	 individuals,	 as	 sequenced,	 processed	 and	

genotyped	by	Lazaridis	et	al	(2016)	and	Mathieson	et	al	(2015).	I	used	D	statistics	of	the	

form	 D(Mbuti,	 X;	 YC,	 YS)	 to	 compare	 the	 individual	 X,	 either	 shotgun-sequenced	 or	

captured;	to	individual	Y,	either	shotgun-sequenced	(YS	)	and	captured	(YC).	In	an	ideal	

setting,	 such	D	 should	 have	 a	 value	 of	 0,	 as	 genomes	 YC	 and	 YS	derive	 from	 the	 same	

individual.	As	I	show	below,	this	is	not	always	the	case.	

	

Table	 1	 illustrates	 how	 samples	 that	 were	 shotgun	 sequenced	 showed	 an	 attraction	

towards	the	shotgun	version	of	Y,	whereas	samples	that	were	captured	showed	an	affinity	

towards	the	captured	version	of	Y.	This	was	especially	apparent	with	shotgun-sequenced	

samples,	where	the	shotgun	version	of	BR2	showed	a	Z-score	of	7.791	towards	the	shotgun	

version	 of	 NE1,	 as	 opposed	 to	 the	 capture	 version	 of	 NE1.	 Other	 shotgun-sequenced	

samples	showed	similar	results	(Figure	3).	

	

Capture	samples,	 such	as	BR2C,	 showed	negative	values,	 suggesting	a	similar	(although	

non-significant)	affinity	towards	the	captured	sample.		

	

D	statistic	

All	 Transversions	only	

D	 Z	 SNPs	 D	 Z	 SNPs	

D	(Mbuti,	BR2C;	NE1C,	NE1S)	 -0.0087	 -1.622	 537357	 -0.0051	 -0.419	 105962	

D	(Mbuti,	BR2S;	NE1C,	NE1S)	 0.0363	 7.791	 702805	 0.0349	 3.416	 140370	

D	(Mbuti,	INeC;	NE1C,	NE1S)	 -0.0084	 -1.699	 596816	 -0.0149	 -1.415	 123618	

D	(Mbuti,	INeS;	NE1C,	NE1S)	 0.0391	 6.418	 406906	 0.0225	 1.723	 86226	

D	(Mbuti,	IrLN;	INeC,	INeS)	 -0.0139	 -2.267	 275825	 -0.0159	 -1.097	 56410	

D	(Mbuti,	NE1C;	INeC,	INeS)	 -0.0072	 -1.317	 370951	 -0.0066	 -0.519	 75313	

D	(Mbuti,	NE1S;	INeC,	INeS)	 0.0235	 5.044	 544727	 0.0112	 1.086	 113358	

D	(Mbuti,	BR2C;	INeC,	INeS)	 -0.0057	 -0.989	 356306	 -0.0137	 -1.039	 72539	

D	(Mbuti,	BR2S;	INeC,	INeS)	 0.0211	 4.437	 544793	 0.0134	 1.251	 113443	

Table	1.	D	statistics	comparing	attractions	between	capture	and	shotgun-sequenced	

genomes.	Here,	capture	genomes	have	been	taken	directly	from	the	dataset	published	in	

Lazaridis	et	al.,	(2016)	and	Mathieson	et	al.,	(2016).	
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These	 biases	 could	 be	 due	 to	 either	 platform	 (i.e.	 chemistry)	 or	 processing	 (i.e.	

bioinformatics)	differences.	In	order	to	have	a	full	picture	of	the	biases	exclusively	due	to	

platform	differences,	I	decided	to	re-process	the	captured	genomes	(NE1C,	BR2C,	INeC	and	

IrLNC)	 following	 the	same	guidelines	published	 in	Gamba	et	al.	 (2014),	which	 included	

using	only	sequence	data	with	a	base	quality	≥	20	and	depth	≥	15.	These	re-processed	

captured	genomes	were	used	for	the	shotgun	samples	used	in	this	analysis.		

	

Figure	 3:	 Shows	 that	 in	 ancient	 samples	 sequenced	 by	 either	 capture	 or	 shotgun	

sequencing,	there	seems	to	be	an	attraction	towards	other	samples	sequenced	by	the	same	

method.	Here,	I	do	D	statistics	of	the	form	D(Mbuti,	X;	YC,	YS),	where	YC	is	a	sample	obtained	

by	 SNP	 capture,	 and	 YS	 is	 the	 same	 individual	 sequenced	 by	 shotgun	 sequencing.	 X,	

depending	on	the	sequencing	method,	shows	more	affinity	towards	YC	or	YS	respectively.	

Table	2,	however,	shows	that	even	when	the	biases	due	to	processing	are	removed	by	using		

an	 identical	 bioninformatics	 pipeline	 for	 all	 samples,	 samples	 obtained	 on	 the	 same	

platform	still	show	a	degree	of	affinity.	It	 is	noticeable	that	while	using	all	SNPs	did	not	

change	the	pattern	previously	observed,	using	only	transversions	resulted	in	the	reduction	

of		large	Z-scores,	such	as	the	one	from	D(Mbuti,	BR2S;	NE1C,	NE1S)	going	from	3.416	to	

2.229.	 These	 results	 conclusively	 show	 that	 going	 back	 to	 the	 raw	 data,	 and	 re-pre-

processing	reads	and	re-mapping	reads	using	the	same	protocol	is	a	key	step	when	using	

datasets	from	different	laboratories	and	publications,	in	order	to	avoid	biases	that	would	

skew	results	towards	an	artefactual	pattern	created	by	differences	in	the	data	processing,	

rather	 than	 a	 real	 demographic	 pattern.	 However,	 this	 step	 was	 only	 effective	 when	

coupled	with	restricting	the	analysis	to	only	transversion	calls,	which	are	not	affected	by	

deamination.	 This	method	 has	 been	 used	 in	publications	 such	 as	 Fu	 et	 al.,	 (2015)	 and	

Gallego-Llorente	et	al.,	(2016).	
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Table	2.	D	statistics	comparing	attractions	between	capture	and	shotgun-sequenced	

genomes.	For	this	analysis,	capture	genomes	have	been	processed	from	the	raw	data	files	

using	the	same	protocol	as	shotgun	genomes.	

	

Table	2	therefore	shows	that	some	of	the	results	in	the	raw	data	are	probably	driven	by	

damage.	As	we	eliminate	patterns	arising	from	different	processing	and	mapping	options,	

the	 remaining	 factors	 that	may	affect	 the	observed	 results	 in	 the	D	 statistics	are	 those	

driven	by	the	biochemical	basis	of	the	sequencing,	the	degree	of	DNA	endogenous	damage,	

the	use	of	UDG	treatment,	or	exogenous	contamination.		

	

It	was	noticeable	that	while	the	absolute	values	of	the	Z	scores	went	down	in	value,	so	did	

the	D	scores,	but	the	relationship	was	not	linear.	I	then	decided	to	test	the	same	D	statistics	

using	a	random	subset	of	SNPs	(Table	3).	This	subset	panel	had	the	same	number	as	SNPs	

as	found	in	the	tranversion-only	dataset.	Strikingly,	by	using	a	random	subset	of	208,788	

SNPs	 I	 also	 removed	 some	 (though	 not	 all)	 of	 the	 patterns	 of	 the	 Z	 scores.	When	 the	

D(Mbuti,	BR2S;	NE1C,	NE1S)	was	calculated	on	all	SNPs,	the	resulting	Z	score	was	7.966,	

but	when	it	was	calculated	using	only	transversions,	the	resulting	Z	score	was	2.229;	when	

it	 was	 calculated	 using	 the	 same	 number	 of	 SNPs	 as	 the	 transversions,	 but	 randomly	

subsetted,	the	Z	score	was	4.116.	In	fact,	when	we	lower	the	number	of	SNPs	we	are	to	

	

D	statistic	

All		

(1,053,016	SNPs)	

Transversions	only	

(208,788	SNPs)	

D	 Z	 SNPs	 D	 Z	 SNPs	

D	(Mbuti,	BR2C;	NE1C,	NE1S)	 -0.0033	 -0.620	 493259	 -0.0132	 -1.026	 92668	

D	(Mbuti,	BR2S;	NE1C,	NE1S)	 0.0364	 7.966	 646641	 0.0238	 2.229	 122872	

D	(Mbuti,	INeC;	NE1C,	NE1S)	 0.0064	 1.248	 557281	 -0.0159	 -1.345	 105435	

D	(Mbuti,	INeS;	NE1C,	NE1S)	 0.0374	 5.923	 390106	 0.0118	 0.836	 75625	

D	(Mbuti,	IrLN;	INeC,	INeS)	 -0.0080	 -1.094	 245100	 -0.0265	 -1.445	 47607	

D	(Mbuti,	NE1C;	INeC,	INeS)	 -0.0071	 -1.125	 333750	 -0.0116	 -0.728	 64476	

D	(Mbuti,	NE1S;	INeC,	INeS)	 0.0185	 3.494	 485420	 0.0061	 0.491	 95711	

D	(Mbuti,	BR2C;	INeC,	INeS)	 -0.0019	 -0.284	 320561	 -0.0089	 -0.559	 62077	

D	(Mbuti,	BR2S;	INeC,	INeS)	 0.0175	 3.381	 485461	 0.0082	 0.648	 95770	
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some	extent	diluting	 the	power	of	 the	D-statistics,	 leading	 to	non-significant	 results	 in	

comparisons	that	would	have	been	significant	with	a	higher	number	of	SNPs.	This	shows	

that	 reducing	 the	 number	 SNPs	 covers	 up	 the	 platform	 bias	 pattern	 to	 some	 extent,	

especially	when	differences	are	small.	However,	 this	also	shows	that	only	selecting	 the	

transversion	SNPs	is	still	helpful	for	analyzing	data	without	deamination	biases.		

	

D	statistic	

Random	subset	

(208,788	SNPs)	

D	 Z	 SNPs	

D	(Mbuti,	BR2C;	NE1C,	NE1S)	 -0.0134	 -1.129	 97940	

D	(Mbuti,	BR2S;	NE1C,	NE1S)	 0.0428	 4.116	 128111	

D	(Mbuti,	INeC;	NE1C,	NE1S)	 -0.0083	 -0.698	 110430	

D	(Mbuti,	INeS;	NE1C,	NE1S)	 0.0325	 2.266	 77362	

D	(Mbuti,	IrLN;	INeC,	INeS)	 -0.0271	 -1.610	 48649	

D	(Mbuti,	NE1C;	INeC,	INeS)	 -0.0339	 -2.291	 66167	

D	(Mbuti,	NE1S;	INeC,	INeS)	 0.0032	 0.260	 96242	

D	(Mbuti,	BR2C;	INeC,	INeS)	 -0.0177	 -1.159	 63679	

D	(Mbuti,	BR2S;	INeC,	INeS)	 -0.0025	 -0.210	 96239	

	

Table	3	(previous	page).	D	statistics	showing	the	same	analysis	as	table	2,	but	using	a	

random	subset	of	SNPs	of	the	same	number	as	the	subset	including	only	transversions.		

	

As	 reprocessing	 the	data	did	not	 completely	 correct	 all	platform	biases	when	using	 all	

SNPs	(Table	2),	I	decided	to	perform	soft-clipping	on	the	shotgun-sequenced	samples	as	

non-UDG–treated	data	has,	overall,	more	damage.	It	is	a	known	pattern	that	the	mismatch	

frequency	exponentially	increases	at	the	ends	of	reads:	C	to	T	misincorporations	are	very	

common	near	the	5’	ends	of	reads,	and	G	to	A	misincorporations	are	reciprocally	common	

near	 the	 3’	 ends	 of	 reads	 (Brotheron	 et	 al.,	 2007,	 Briggs	 et	 al.,	 2007).	 As	 the	 shotgun	

genomes	were	not	UDG-treated,	I	decided	to	subject	the	mapped	reads	to	a	4-base,	7-base	

or	 10-base	 trimming	 at	 both	 ends	 (termed	 soft-clipping),	 to	 assess	 if	 the	 platform	

comparison	would	benefit	from	completely	eliminating	these	bases	at	the	ends	of	reads	

from	the	analysis.	
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Table	 4	 shows	 how	 soft-clipping	 deals	 reduces	 the	 discrepancy	 between	 shotgun	 and	

capture	data.	Clipping	7	and	10	base	pairs	at	each	end	almost	fully	removed	the	bias	in	the	

D	statistics,	which	 is	shown	 in	 the	 tests	D(Mbuti,	BR2S;	NE1C,	NE1S)	and	D(Mbuti,	 INeS;	

NE1C,	NE1S).	Here	we	can	clearly	see	that	Z	values	of	7.966	reduce	to	4.966	when	7bp	soft-

clipping	on	shotgun	samples	is	performed,	and	3.762	when	reads	are	soft-clipped	by	10bp.	

These	effects	are	not	due	to	a	reduction	in	the	number	of	SNPs,	as	soft-clipping	will	not	

reduce	much	the	number	of	bases	called	in	samples	with	coverage	above	1X.	

	

These	results	confirm	that	a	big	part	of	the	platform	bias	is	due	to	how	different	pipielines	

deal	 with	 damage.	 In	 non-UDG-treated	 shotgun-sequenced	 samples,	 damage	 is	

concentrated	at	the	ends	of	reads,	hence	requiring	a	large	degree	of	soft-clipping	to	deal	

with	this	damage.	Whilst	soft-clipping	helped	somewhat,	it	never	fully	removed	the	biases.	

For	sake	of	completeness,	I	have	added	the	values	from	the	transversions-only	analysis,	

but	as	we	saw	in	Tables	2	and	3,	the	reduction	in	Z-score	values	is	mostly	due	to	a	lower	

number	of	SNPs,	rather	than	actually	solving	the	artefact	created	by	different	platforms.	
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D	statistic	
All		

(1,053,016	SNPs)	
Transversions	only	
(208,788	SNPs)	

D	 Z	 SNPs	 D	 Z	 SNPs	

4bp	soft-clipping	

D	(Mbuti,	BR2C;	NE1C,	NE1S)	 -0.0038	 -0.703	 493166	 -0.0202	 -1.584	 92602	

D	(Mbuti,	BR2S;	NE1C,	NE1S)	 0.0297	 6.314	 646437	 0.0042	 0.397	 122731	

D	(Mbuti,	INeC;	NE1C,	NE1S)	 0.0044	 0.873	 557187	 -0.0193	 -1.678	 105366	

D	(Mbuti,	INeS;	NE1C,	NE1S)	 0.0268	 4.181	 390035	 -0.0080	 -0.564	 75572	

D	(Mbuti,	IrLN;	INeC,	INeS)	 -0.0143	 -1.924	 245100	 -0.0331	 -1.817	 47607	

D	(Mbuti,	NE1C;	INeC,	INeS)	 -0.0074	 -1.170	 333750	 -0.0145	 -0.906	 64476	

D	(Mbuti,	NE1S;	INeC,	INeS)	 0.0136	 2.541	 485331	 -0.0057	 -0.452	 95650	

D	(Mbuti,	BR2C;	INeC,	INeS)	 -0.0016	 -0.232	 320561	 -0.0093	 -0.579	 62077	

D	(Mbuti,	BR2S;	INeC,	INeS)	 0.0156	 3.013	 485399	 0.0001	 0.009	 95733	

7bp	soft-clipping	

D	(Mbuti,	BR2C;	NE1C,	NE1S)	 -0.0047	 -0.891	 493095	 -0.0237	 -1.857	 92555	

D	(Mbuti,	BR2S;	NE1C,	NE1S)	 0.0223	 4.966	 646232	 -0.0013	 -0.116	 122596	

D	(Mbuti,	INeC;	NE1C,	NE1S)	 0.0040	 0.807	 557104	 -0.0252	 -2.200	 105311	

D	(Mbuti,	INeS;	NE1C,	NE1S)	 0.0298	 4.426	 358042	 0.0006	 0.040	 69438	

D	(Mbuti,	IrLN;	INeC,	INeS)	 -0.0100	 -1.270	 225642	 -0.0354	 -1.864	 43843	

D	(Mbuti,	NE1C;	INeC,	INeS)	 -0.0079	 -1.183	 306299	 -0.0151	 -0.907	 59242	

D	(Mbuti,	NE1S;	INeC,	INeS)	 0.0146	 2.521	 448173	 0.0064	 0.498	 88470	

D	(Mbuti,	BR2C;	INeC,	INeS)	 0.0022	 0.322	 294093	 -0.0004	 -0.024	 57029	

D	(Mbuti,	BR2S;	INeC,	INeS)	 0.0119	 2.178	 448227	 -0.0043	 -0.310	 88542	

10bp	soft-clipping	

D	(Mbuti,	BR2C;	NE1C,	NE1S)	 -0.0073	 -1.349	 493004	 -0.0261	 -2.134	 92498	

D	(Mbuti,	BR2S;	NE1C,	NE1S)	 0.0170	 3.762	 645969	 -0.0096	 -0.931	 122429	

D	(Mbuti,	INeC;	NE1C,	NE1S)	 0.0014	 0.270	 556987	 -0.0232	 -2.059	 105234	

D	(Mbuti,	INeS;	NE1C,	NE1S)	 0.0255	 3.615	 320515	 -0.0059	 -0.376	 62066	

D	(Mbuti,	IrLN;	INeC,	INeS)	 -0.0095	 -1.154	 202563	 -0.0262	 -1.249	 39297	

D	(Mbuti,	NE1C;	INeC,	INeS)	 -0.0081	 -1.138	 273991	 -0.0009	 -0.049	 52945	

D	(Mbuti,	NE1S;	INeC,	INeS)	 0.0126	 2.115	 404051	 0.0037	 0.263	 79716	

D	(Mbuti,	BR2C;	INeC,	INeS)	 -0.0039	 -0.531	 263165	 -0.0062	 -0.350	 51018	

D	(Mbuti,	BR2S;	INeC,	INeS)	 0.0115	 2.010	 404108	 0.0006	 0.042	 79784	

Table	4.	Soft-clipping	capture	genomes.	D	statistics	showing	 the	same	analysis	as	 in	

tables	2	and	3,	but	introducing	a	post-mapping	trimming	of	all	reads	of	4,	7	or	10	base	

pairs	in	every	genome.	

Whilst	the	approaches	discussed	so	far	greatly	reduce	platform	bias,	none	of	them	fully	

removes	platform	bias	(with	 the	exception	of	 focussing	on	 transversions,	but	 that	 is	 in	
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large	part	a	result	of	 losing	power	due	to	the	lower	number	of	SNPs).	There	is	one	last	

mechanism	I	have	not	considered	yet:	could	the	platform	bias	also	arise	from	differential	

reference	bias	when	mapping	reads	 to	the	reference	genome?	 I	used	a	version	of	hg19	

where	 the	 Lazaridis	 SNPs	 were	 changed	 to	 a	 third	 allele	 (not	 the	 reference	 nor	 the	

alternate	allele),	to	allow	for	an	even	mapping	of	reads,	irrespective	of	whether	they	carry	

the	reference	or	alternate	allele.		

	

Table	5	shows	that,	in	fact,	when	removing	the	reference	bias	at	the	mapping	stage	

of	 the	analysis,	 I	also	remove	 the	attraction	of	shotgun-sequenced	genomes	with	other	

shotgun-sequenced	genomes,	 as	well	as	 the	 attraction	between	 captured	 samples.	 It	 is	

worth	 noting	 that	 even	 without	 soft-clipping,	 this	 approach	 eliminated	 platform	 bias	

completely.	This	could	be	explained	by	a	situation	in	which	most	of	the	bias	that	causes	

the	attraction	between	platforms		is	actually	introduced	in	the	alignment	step,	and	that,	in	

fact,	 the	way	 that	we	normally	deal	with	damage	by	discarding	damaged	 reads,	 taking	

reads	 longer	 than	30bp,	 trimming	 the	 ends	pre-processing,	 and	 the	mapping	and	base	

quality	filtering	actually	are	quite	successful.	A	caveat	would	be	that	the	SNP	numbers	are	

quite	 low	 (around	 35-40%	 of	 SNPs	 are	 lost),	 due	 to	 a	 combination	 of	 the	 third-base	

mapping	(which	removes	a	percentage	of	the	reads)	and	a	slightly	lower	coverage	of	the	

samples	(NE1	and	BR2	were	subsetted	to	1.86x	and	0.82x	respectively	for	computational	

speed).	 A	 further	 check	 will	 be	 needed,	 in	 order	 to	 run	 the	 same	 analysis	 at	 the	 full	

coverage	and	check	whether	the	effect	of	losing	the	platform	attraction	bias	is	real,	and	not	

an	artefact	of	the	lower	number	of	SNPs.		ANGSD	calling	(Korneliussen	et	al.,	2014)	without	

reference	was	not	attempted,	as	here	the	analysis	focused	on	removing	the	reference	bias	

at	the	mapping	stages	of	the	analysis.	This	will	be	included	in	further	analysis	as	part	of	

the	paper	about	this	study	that	is	currently	in	preparation,	however	it	is	worth	mentioning	

that	for	low	call	rates,	SAMtools	outperforms	ANGSD,	as	reported	by	Korneliussen	et	al.	

(2014).
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	 No	soft-clipping	 4bp	soft-clipping	 7bp	soft-clipping	 10bp	soft-clipping	

D	 Z	 SNPs	 D	 Z	 SNPs	 D	 Z	 SNPs	 D	 Z	 SNPs	

D	(Mbuti,	BR2C;	NE1C,	
NE1S)	

-0.0069	 -1.041	 303584	 -0.0091	 -1.221	 267796	 -0.0119	 -1.584	 239993	 -0.0158	 -2.055	 226726	

D	(Mbuti,	BR2S;	NE1C,	
NE1S)	

0.0130	 1.714	 232270	 0.0138	 1.660	 201415	 0.0183	 2.114	 177498	 0.0047	 0.521	 160475	

D	(Mbuti,	INeC;	NE1C,	
NE1S)	

-0.0142	 -2.257	 345723	 -0.0164	 -2.339	 299666	 -0.0080	 -1.073	 263378	 -0.0110	 -1.448	 249140	

D	(Mbuti,	INeS;	NE1C,	
NE1S)	

-0.0075	 -0.928	 220572	 -0.0082	 -0.919	 177344	 -0.0101	 -1.013	 145330	 -0.0113	 -1.018	 117928	

D	(Mbuti,	IrLN;	INeC,	INeS)	 -0.0041	 -0.491	 210616	 -0.0015	 -0.164	 175942	 -0.0046	 -0.469	 149308	 -0.0106	 -1.035	 141333	

D	(Mbuti,	NE1C;	INeC,	INeS)	 -0.0063	 -0.751	 221335	 -0.0175	 -1.967	 177565	 -0.0147	 -1.470	 145384	 -0.0171	 -1.566	 123664	

D	(Mbuti,	NE1S;	INeC,	INeS)	 0.0069	 0.938	 283529	 -0.0030	 -0.390	 226781	 0.0038	 0.411	 184215	 0.0021	 0.214	 151107	

D	(Mbuti,	BR2C;	INeC,	INeS)	 -0.0120	 -1.431	 211578	 -0.0093	 -1.019	 169307	 0.0032	 0.302	 138343	 0.0010	 0.084	 117780	

D	(Mbuti,	BR2S;	INeC,	INeS)	 0.0144	 1.718	 211578	 0.0091	 0.961	 155805	 0.0274	 2.545	 126166	 0.0221	 1.883	 103745	

	

Table	5.	Third-base	mapping	all	ancient	genomes.	D	statistics	showing	the	same	analysis	as	in	tables	2,	3	and	4,	but	after	having	re-processed,	realigned,	

and	re-mapped	all	genomes	to	a	version	of	the	human	reference	genome	where	the	Lazaridies	SNPs	have	been	substituted	by	a	3rd	base,	to	remove	the	

reference	bias.	I	have	also	introduced	a	post-mapping	trimming	of	all	reads	of	4,	7	or	10	base	pairs	in	every	genome.	Here	I	looked	at	all	SNPs,	both	

transitions	and	transversions.
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Discussion	

Here	I	have	attempted	to	tackle	a	very	common	problem	with	ancient	DNA	analysis,	the	

integration	of	ancient	data	obtained	by	different	people	in	different	laboratories.	

	

While	in	the	past	few	years,	publications	such	as	Lazaridis	et	al	(2014),	Lazaridis	et	al	

(2016),	Mathieson	et	al	(2016),	and	Fu	et	al	(2016)	have	made	SNP	datasets	of	ancient	

and	 modern	 populations	 available	 in	 eigenstratgeno	 format	 (admixtools)	 after	 being	

processed,	mapped	and	called,	it	was	incorrectly	assumed	that	they	could	be	merged	with	

other	 ancient	 genomes,	 irrespective	 of	 how	 those	 other	 ancient	 genomes	 had	 been	

sequenced,	pre-processed,	mapped	and	called.	Here,	I	have	shown	that	this	approach	is	

deeply	 flawed,	 and	 can	 lead	 to	 data	 incompatibility	 problems,	 including	 platform	and	

processing	biases.	

	

By	using	softclipping,	or	removing	transitions,	reference	bias	is	not	removed.	However,	

reference	bias	is	constant	amongst	coherent	datasets	with	similar	amounts	of	damage.	

Hence,	by	equalising	the	amount	of	damage	by	softclipping	the	ends	and	removing	the	

platform	 and	 processing	 bias	 as	 much	 as	 possible,	 if	 reference	 bias	 was	 constant	

irrespective	of	the	sequencing	platform,	then	reference	bias	would	not	skew	analysis.	

	

In	this	way,	the	main	goal	of	this	chapter	has	been	to	find	a	way	to	continue	using	the	most	

common	 tools	 and	 pipelines	 for	 analysing	 ancient	 data,	 but	 finding	 a	 way	 in	 which	

different	sources	of	data,	or	data	from	different	laboratories	do	not	affect	demographic	

results	and	fine	demographic	patterns.	

	

Data	 comes	with	 damage	 and	 biases.	 However,	 it	 has	 been	 a	 pattern	 in	most	 genetic	

analysis	using	ancient	genomes	to	keep	as	much	as	data	as	possible,	under	the	assumption	

that	more	data	is	automatically	better	resolution.		However,	here	I	show	that	removing	

biases	is	always	a	priority	even	if	a	percentage	of	data	is	lost.	As	an	example,	using	only	

transversions	loses	4/5ths	of	 the	data,	but	 this	has	proven	as	 the	best	way	 to	remove	

biases	caused	by	deamination	patterns	in	reads.	However,	here	I	show	that	care	is	needed	

when	using	transversions	only,	because	heavily	reducing	the	number	of	SNPs	will	mean	
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that	 some	 of	 the	 formal	 statistical	 tools	 might	 lose	 their	 power	 and	 result	 in	 non-

significant	results,	when	a	higher	number	of	SNPs	would	have	made	them	significant.	

	

Additionally,	the	experiments	shown	here	suggests	that	softclipping	of	10	bases	at	the	

end	 of	 each	 read	might	 be	 worth	 to	 decrease	 biases	 caused	 by	 damage.	 In	 a	 sample	

containing	reads	that	average	60bp	(which	is	typical	of	ancient	DNA),	by	soft-clipping	10	

bases	at	each	end	(20	bases	in	total),	we	would	keep	2/3rds	of	the	data:	a	much	higher	

percentage	than	using	transversions	only.	Additionally,	this	does	not	result	in	eliminating	

SNP	positions	as	selecting	only	transversions	does,	as	in	any	2-3X	sample,	most	SNPs	will	

have	enough	copies	to	be	called.	So,	in	fact,	we	will	be	using	close	to	90-95%	of	SNPs,	just	

with	a	smaller	number	of	copies	each	–	but	with	a	higher	certainty	that	the	variant	is	the	

correct	one.	It	is	worth	noting,	however,	that	soft-clipping	will	not	be	readily	achievable	

with	heavily	degraded	samples,	as	the	majority	of	reads	will	be	short	and	we	would	lose	

most	of	the	data.	However,	with	an	extremely	degraded	sample,	looking	at	transversions	

only	would	also	be	challenging.		

	

We	could	 therefore	conclude	 that	 “bad	data	 is	not	data”.	 In	my	analysis	of	Ganj	Dareh	

(Gallego-Llorente	et	al.,	2016)	60%	of	data	was	eliminated,	as	the	analysis	was	done	using		

only	transversions.	Doing	the	analysis	on	all	SNPs	could	have	created	spurious	artefacts	

and	attractions	could	have	been	introduced	by	the	transitions	data,	heavily	affected	by	

deamination	patterns.	

	

Finally,	 it	 is	worth	noting	that	highly	damaged	samples	of	low	coverage	are	inherently	

difficult	 to	work	with,	 even	without	 UDG	 treatment:	 the	 low	 coverage	will	mean	 that	

softclipping	would	in	fact	potentially	remove	large	numbers	of	SNPs,	while	a	high	number	

of	short	reads	would	be	automatically	discarded,	due	to	damage	patterns	at	the	ends	of	

reads.	If	to	that,	we	add	reference	bias,	we	end	up	with	an	extremely	challenging	sample.	

UDG	 treatment	would	 improve	 some	 aspects	 in	 terms	 of	 damage	 removal,	 but	would	

fragment	a	high	number	of	the	scarce	long	reads.	Hence,	for	samples	with	a	high	amount	

of	 predicted	 damage,	 it	 might	 be	 wise	 to	 wait	 until	 sequencing	 technology	 improves	

before	attempting	to	use	any	valuable	part	of	a	bone	in	an	experiment	that	might	not	yield	

the	desired	results.		
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Methods		

Sources	of	data	for	f3	statistics	(Fig.	1):	

The	datasets	from	Lazaridis	et	al.	(2016)	were	obtained	from	the	following	link:	

http://genetics.med.harvard.edu/reichlab/Reich_Lab/Datasets_files/NearEastPublic.tar

.gz	

It	contains	the	AncientLazaridis2016	dataset	(294	ancient	individuals	from	Europe	and	

the	Near	East),	and	the	HumanOriginsPublic2068	dataset,	with	2068	modern	individuals	

from	around	the	world.	

I	 used	 the	 Iranian	 Farmer	 individual	 which	 was	 published	 in	 Gallego-Llorente	 et	 al.	

(2016),	and	can	be	downloaded	from:	

ftp://ftp.sra.ebi.ac.uk/vol1/ERA669/ERA669868/bam/Iranian_farmer1_sort_merge_rm

dup_q30_l30_IR_2bpsoftclip.bam.	

I	used	the	Wezmeh	Cave	individual	from	Broushaki	et	al.	(2016),	which	was	downloaded	

from:		

ftp://ftp.sra.ebi.ac.uk/vol1/ERA637/ERA637051/bam/WC1.all_SG_join.Mkdup.len.real

g.bam.	

	

SNP	calling	and	processing	for	f3	statistics	(Fig.	1)	

SNPs	from	bam	files	from	the	Iranian	Farmer	and	Wezmeh	were	called	using	the	following	

SAMtools	(Li	et	al.,	2009)	command:	

samtools	mpileup	-C50	-t	DP4	-q	30	-Q	20	-uIf	FASTA	-l	BED		BAM	|	bcftools	call	-cA	-Ov	-	

>	OUT	

Where	FASTA	refers	to	the	hg19	fasta	file,	BED	to	a	file	covering	the	1,233,553	positions	

in	the	AncientLazaridis2016	dataset,	and	BAM	to	the	previously-downloaded	bam	files.	

I	used	an	in-house-developed	script	to	obtain	the	majority	call	from	the	vcf	file,	and	in	

case	of	equal	number	of	reads,	one	at	random.	

I	used	PLINK	(Purcell	et	al.,	2007)	to	merge	 the	ancient	genome	calls	with	 the	human	

reference	 genome	 hg19,	 after	which	 we	 converted	 it	 to	 eigenstratgeno	 format	 (using	

convertf	from	admixtools)	(Patterson	et	al.,	2012).	
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I	then	used	the	polarise	option	of	convertf	to	make	sure	both	the	ancient	dataset	and	the	

new	modern	genome	are	similarly	polarised	to	hg19.	I	used	the	mergeit	tool	(admixtools)	

(Patterson	et	al.,	2012),	to	merge	both	datasets.	Finally,	I	used	plink	to	merge	the	WC1-

IranianFarmer-AncientLazaridis2016	with	the	HumanOriginsPublic2068.		

In	 order	 to	do	 the	 comparison	between	the	1,233,553	positions	 in	 the	1240k	 capture	

dataset,	and	the	354,212	positions	in	the	Haak	ancient	and	modern	dataset(Haak	et	al.,	

2015),	I	used	admixtools	to	filter	out	those	SNPs	present	in	Haak	but	not	in	the	1240k	

capture	 dataset.	 I	 then	 merged	 both	 datasets	 using	 plink	 (Purcell	 et	 al.,	 2007).	 I	

additionally	 created	 random	subsets	of	300k,	 60k,	 40k	and	30k	SNPs	 from	 the	bigger	

dataset,	 and	 also	 merged	 with	 plink.	 F3	 statistics	 were	 done	 using	 qp3pop	 from	

admixtools	(Patterson	et	al.,	2012).	

	

Sources	of	data	for	pairwise	f3	statistics	(Fig.	2)	

The	 dataset	 from	 Fu	 et	 al.	 (2016)	 was	 downloaded	 from	

http://genetics.med.harvard.edu/reichlab/Reich_Lab/Datasets_files/FuQ.zip.		

I	 also	 downloaded	 the	 whole	 genome	 Yoruba	 (HGDP00927)	 from	

http://cdna.eva.mpg.de/denisova/BAM/human/HGDP00927.bam.	

The	2.2M	SNPs	in	the	Fu2.2M	dataset	were	called	in	the	HGDP	Yoruba	genome	using	the	

following	command:	

samtools	mpileup	-C50	-t	DP4	-q	30	-Q	20	-uIf	FASTA	-l	BED		BAM	|	bcftools	call	-cA	-Ov	-	

>	OUT	

Where	FASTA	refers	to	the	hg19	fasta	file,	BED	to	a	file	covering	the	2.2M	positions	in	the	

Fu2.2M	dataset,	and	BAM	to	the	previously-downloaded	HGDP	Yoruba	file.	

The	HGDP00927	Yoruba	was	merged	to	the	hg19	reference	genome	using	plink,	as	well	

as	the	Fu2.2M	dataset.	Both	datasets	were	then	converted	to	admixtools	format,	polarised	

to	hg19,	and	merged	using	mergeit.	F3	statistics	were	done	using	qp3pop	from	admixtools	

(Patterson	et	al.,	2012).	

I	downloaded	the	BR2	and	NE1	genomes	from	Gamba	et	al.	(2014)	using	ENA	accession	

code	PRJEB20905.	

	

Sources	of	data	for	D	statistics	
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The	BR2	and	NE1	genomes	were	individually	merged	to	the	hg19	reference	genome	using	

plink.	Both	datasets	were	then	converted	to	admixtools	format,	polarised	to	hg19,	and	

merged	 using	 mergeit.	 Finally,	 the	 BR2-NE1-hg19	 dataset	 was	 merged	 to	 the	 WC1-

IranianFarmer-AncientLazaridis2016-HumanOriginsPublic2068	as	explained	before.	D-

statistics	were	performed	using	qpDstat	from	admixtools	(Patterson	et	al.,	2012).	

I	downloaded	the	FASTQ	files	from	BR2,	NE1,	Ganj	Dareh	and	Iranian	Late	Neolithic	from	

ENA.	 Their	 individual	 codes	 were	 ERR1136467,	 ERR1136469,	 ERR1463779,	 and	

ERR1463796	respectively.	

	

Read	pre-processing	and	mapping	

Reads	 were	 processed	 as	 indicated	 in	 Gamba	 et	 al.,	 (2014).	 Given	 the	 rate	 of	

misincorporation	sites	at	the	3’	of	reads	(G	to	A),	and	at	5’	end	of	reads	(C	to	T),	I	trimmed	

two	bases	at	the	ends,	before	mapping	(MacHugh	et	al.,	2000).	This	was	done	with	trimfq	

(https://github.com/lh3/seqtk),	 using	 trimfq	 options	 -b	 2	 -e	 2.	 Afterwards,	 I	mapped	

reads	 to	 the	 GRCh37	 build	 of	 the	 human	 nuclear	 genome	 (hg19)	 and	 the	 revised	

Cambridge	 reference	 sequence	 for	 the	mitochrondrial	 genome	 (NCBI	NC_012920.1).	 I	

used	bwa,	the	Burrows	Wheeler	Aligner,	version	0.7.12-r1039.	(Li	and	Durbin,	2009).	I	

ran	the	program	with	default	parameters,	except	with		the	seed	option	disabled(-l	1000).	

Duplicate	 reads	were	 then	 removed	using	 samtools,	 version	0.1.19-44428cd	 (Li	 et	 al.,	

2009).	

Data	was	 then	merged	as	previously	described,	 using	plink,	 and	 convertf	and	mergeit	

from	admixtools.		

Softclipping	was	done	prior	to	SNP	calling,	using	a	home	script.	

FASTQ	files	from	the	shotgun	whole	genome	sequencing	of	GD13a	were	obtained	through	

EBI	 ENA,	 accession	 number	 PRJEB13189.	 The	 Adapter	 sequence	 was	 trimmed	 from	

reads,	and	the	length	of	selected	reads	was	set	to	a	minimum	of	34bp,	using	cutadapt,	

and	the	flags	-m	34	-O	1.	
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Third	base	mapping	was	done	by	using	a	GRCh37	build	of	the	human	nuclear	genome	

where	the	bases	of	the	SNPs	identified	in	the	phase	3	of	the	1,000	genomes	project	have	

been	substituted	to	a	base	not	being	the	alternate	base	identified	by	the	1,000	genomes	

project.	 A	 caveat	was	 added,	 that	 if	 the	 reference	 base	was	 a	 C,	 then	 it	would	 not	 be	

replaced	by	a	T.	If	the	base	was	a	G,	it	would	not	be	replaced	by	an	A.	This	was	done	to	

guard	against	possible	damage	patterns.	The	modified	 fasta	 file	was	created	using	 the	

mutfa	option	in	seqtk.	

	

SNP	calling	and	processing	for	D	statistics	

SNP	calling,	was,	again,	done	using	the	following	SAMtools	command:		

samtools	mpileup	-C50	-t	DP4	-q	30	-Q	20	-uIf	FASTA	-l	BED		BAM	|	bcftools	call	-cA	-Ov	-	

>	OUT	

	

I	 used	 plink	 (Purcell	 et	 al.,	 2007)	 to	merge	 the	 ancient	 genome	 calls	with	 the	 human	

reference	 genome	 hg19,	 after	 which	 I	 converted	 it	 to	 eigenstratgeno	 format	 (using	

convertf	from	admixtools)	(Patterson	et	al.,	2012).	

I	then	used	the	polarise	option	of	convertf	to	make	sure	both	the	ancient	dataset	and	the	

new	modern	genome	are	similarly	polarised	to	hg19.	I	used	the	mergeit	tool	(admixtools)	

(Patterson	et	al.,	2012),	to	merge	all	datasets.	

I	only	used	the	demographic	SNPs	from	the	HOIll.snp	file	(Lazaridis	et	al.,	2016).		

D	statistics	were	performed	using	qpDstat	from	admixtools	(Patterson	et	al.,	2012).
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5.	General	Discussion	

	

This	PhD	thesis	shows	that	past	human	movements	and	migrations	can	be	studied	using	

genetic	 analysis	 involving	 ancient	 and	 modern	 genomes,	 which	 can	 lead	 to	 close	

reconstructions	of	ancient	demographic	events.		When	this	PhD	was	started	back	in	2014,	

there	were	 very	 few	 ancient	 genomes,	 and	most	 of	 them	were	 sourced	 from	 Europe,	

Northern	 Eurasia	 and	 North	 America	 (Keller	 et	 al.,	 2012;	 Rasmussen	 et	 al.,	 2010a;	

Skoglund	et	al.,	2012),	whose	analysis	only	resulted	in	a	very	general	picture	of	some	of	

the	 largest	 demographic	 shifts	 in	 the	 last	 10,000	 years	 in	 the	 Northern	 Hemisphere.	

However,	there	were	no	samples	from	Africa,	no	samples	from	the	Middle	East,	and	very	

little	was	understood	about	human	movements	outside	Europe,	Siberia	or	North	America.	

	

This	thesis,	which	contains	material	from	two	publications	(chapters	2	and	3),	alongside	

other	 publications	 from	 various	 other	 authors,	 has	 meant	 a	 giant	 leap	 for	 our	

understanding	of	the	demographic	aspects	of	human	prehistory:	I	have	presented	the	first	

ancient	genome	from	Africa	(Mota	in	Chapter	3	of	this	thesis),	which	then	was	joined	by	

other	ancient	African	genomes	from	Schlebusch	et	al.	(2017)	and	Skoglund	et	al.,	(2017).	

Hundreds	of	genomes	from	Europe	have	been	made	available,	from	every	epoch	in	the	

last	15k	years	(Fu	et	al.,	2016;	Martiniano	et	al.,	2017).	And,	perhaps	most	importantly,	I	

have	presented	here	the	first	ancient	genome	from	the	Middle	East	(Ganj	Dareh	in	Chapter	

2	 of	 this	 thesis),	 which	 was	 simultaneously	 published	 alongside	 Broushaki	 et	 al.	 and	

Lazaridis	et	al.,	in	2016).	East	Asia	(Siska	et	al.,	2017)	and	the	Americas	(Raghavan	et	al.,	

2015)	have	 in	 addition	 received	quite	a	 lot	 of	 attention	 lately.	Therefore,	 in	 the	 last	4	

years,	this	field	has	changed	immensely,	in	a	way	that	would	have	been	unthinkable	a	few	

years	ago.	The	material	in	this	thesis	forms	an	important	part	of	this	change.	

	

From	 the	 start	 of	my	PhD,	 I	 have	benefited	 from	 the	publicly	 available	Human	Origin	

dataset	 of	 modern	 populations,	 as	 well	 as	 other	 datasets	 with	 modern	 populations	

specific	to	other	areas	of	the	world,	such	as	Pagani	et	al.,	(2012),	and	Pickrell	et	al.	(2014).	

My	 approach	 to	 analysing	 new	 samples	 followed	 the	 descriptive	 approaches	 used	 by	

Gamba	et	al.	(2014)	and	Jones	et	al.	(2015),	in	their	whole	genome	sequencing	approach	

to	understanding	European	prehistory	and	the	Caucasus	Hunter-Gatherers,	respectively.	

My	 analysis	 of	 Ganj	 Dareh	 and	 Mota	 followed	 this	 approach,	 which	 was	 useful	 for	
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understanding	the	genetic	 landscape	of	those	areas	of	 the	world	and	 the	demographic	

processes	 that	have	happened	in	East	Africa,	the	Near	East	and	Central	in	the	 last	 few	

millennia.	

	

How	do	human	cultures	expand?	

In	this	thesis,	questions	about	the	Neolithic	cultural	expansion	and	its	associated	human	

movements	 get	 asked	 constantly,	 while	 other	 related	 questions	 are	 also	 readily	

mentioned:	how	did	the	Neolithic	revolution	affect	the	genetic	landscape	of	the	Near	East?	

In	which	ways	did	the	demographic	landscape	of	Europe	change,	before,	during	and	after	

the	expansion	of	the	Neolithic?	Was	this	expansion	a	unique	event	in	terms	of	cultural	

shift,	 speed,	 permeability	 and	 reach,	 or	were	 there	 other	 similar	migratory	 events	 in	

prehistory?	 And	 hence,	 were	 the	 population	 movements	 associated	 with	 the	

development	of	the	Neolithic	package,	similar	to	the	ones	associated	with	its	expansion?	

How	did	 the	development	of	 the	Neolithic	affect	Africa	and	other	regions	of	Asia?	And	

finally,	 have	 these	migrations	 left	 any	 signature	 in	 terms	 of	 the	 genetic	 and	 linguistic	

landscape	of	today’s	human	diversity?	

	

My	results	show	that	 the	eastern	 fringes	of	 the	Fertile	Crescent	 (modern-day	western	

Iran)	was	inhabited	by	populations	mostly	similar	to	Hunter-gatherer	populations	from	

the	Caucasus,	but	remarkably,	very	distinct	from	the	Anatolian	farmers	who	spread	the	

Neolithic	 package	 into	 Europe.	While	 a	degree	 of	 cultural	 diffusion	 between	Anatolia,	

Mesopotamia	and	the	Zagros	highlands	likely	happened,	the	notable	genetic	dissimilarity	

between	individuals	of	both	areas	supports	a	model	in	which	the	Neolithic	societies	of	the	

Near	 East	 originated	 from	 very	 distinct	 lineages.	 However,	 it	 was	 then	 reported	 by	

Broushaki	 et	 al.	 (2016),	 that	while	Early	Neolithic	 samples	 from	 the	 eastern	 side	 and	

western	side	of	the	Fertile	Crescent	show	high	levels	of	genetic	difference,	more	recent	

samples	(such	as	Iron	Age	Iranians	or	Chalcolithic	Anatolians)	indicate	that	a	subsequent	

process	of	post-Neolithic	homogenization	 likely	happened	throughout	 the	region.	This	

subsequent	process	therefore	very	likely	involved	tri-directional	gene	flow	between	the	

Mesopotamian	lowlands,	the	Anatolian	highlands	and	the	Iranian	plateau	–	in	addition	to	

even	posterior	influences	from	the	Steppes	north	of	the	Caucasus,	likely	brought	by	the	

first	Indo-European	speakers	into	this	region.	
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The	 Neolithic	 transition	 in	 South	 and	 South-Western	 Asia	 included	 a	 wide	 range	 of	

different	crops	and	domestic	animals	in	different	parts	of	the	wider	region,	but	with	no	

archaeologically	 obvious	 unique	 geographical	 focus	 (Fuller	 et	 al.,	 2012).	 This	

archaeological	view	is	now	fully	consistent	with	what	we	see	in	the	genetics:	a	multi-polar	

development	of	agriculture	and	farming,	only	homogenised	later	by	subsequent,	probably	

unrelated	processes.	

	

However,	 it	 remains	 very	 surprising	 that	 Ganj	 Dareh	 and	 other	 of	 the	 Early	Neolithic	

genomes	from	the	Zagros	are	diverged	40-50k	years	ago	from	those	from	North-western	

Anatolia	and	the	typically	European	Neolithic	component.	This	is	primarily	surprising	due	

to	the	fact	that	there	is	archaeological	and	genetic	evidence	of	east-to-west	movements	of	

domestic	 cattle	 across	 Anatolia	during	 the	Neolithic	 (Scheu	 et	 al.,	 2015).	 There	 is	 the	

chance	that	not	only	prior	to	the	Neolithic	revolution,	but	also	at	the	start	of	it,	there	was	

limited	 demic	 movement	 across	 stark	 boundaries	 between	 biogeographically	

differentiated	areas,	which	would	explain	the	little	gene-flow	between	the	Mesopotamian	

river	valleys,	the	Anatolian	highlands	and	the	Iranian	plateau.	This	would	have	allowed	

for	 cultural	 expansion	 events	 without	 an	 associated	 demic	 homogenisation,	 at	 least	

during	the	first	few	millennia	of	the	Neolithic	revolution.	This	view	would	also	explain	

why	the	Early	Neolithic	Iranians	such	as	Ganj	Dareh	cluster	with	the	Ancient	Northern	

Indian	 component	 of	 South	 Asian	 populations,	 as	 the	 Iranian	 plateau	 progressively	

merges	with	the	Balochistan	ranges	to	end	in	the	Indus	River	Valley	–	incidentally	the	first	

centre	of	Agriculture	outside	the	Near	East.	

	

I	 also	 explored	 the	 effect	 that	 the	development	of	agriculture	 in	 the	Near	East	had	 in	

movements	of	people	in	other	areas	of	the	Old	World,	where	this	development	was	later	

spread.	It	was	already	known	that	the	Neolithic	arrived	into	Europe	via	Anatolia,	and	it	

was	reported	that	the	strong	Neolithic	genetic	component	in	European	populations	came	

from	the	Near	East	(Peltenburg	et	al.,	2000).	Here,	I	have	showed	how	this	component	

also	reached	East	Africa	in	a	really	strong	manner,	by	being	the	principal	component	of	

the	backflow	of	communities	of	Western	Eurasian	origin	into	Africa	around	4,000	years	

ago.	These	populations,	closely	related	 to	Anatolian	Farmers,	were	 identified	by	using	

Mota,	an	ancient	genome	from	a	male	from	the	Ethiopian	highlands,	in	comparison	with	

modern	populations	from	East	Africa,	which	show	the	genetic	signatures	of	this	backflow.	
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The	importance	of	standardising	methods	and	approaches	in	aDNA	

Finally,	I	have	also	studied	the	origin	of	some	of	the	common	problems	in	the	analysis	and	

usage	 of	 ancient	 DNA,	 such	 as	 merging	 capture	 datasets	 with	 diverse	 number	 of	

ascertained	SNPs,	combining	capture	and	shotgun	data	in	the	same	analysis,	and	the	effect	

of	 UDG	 treatment	 in	 ancient	 samples.	 I	 have	 shown	 that	 using	 a	 reduced	 dataset	 of	

common	SNPs	with	the	same	ascertainment	is	a	key	step	in	order	to	analyse	individuals	

from	different	sources	and	sequenced	at	different	resolutions.	

	

Additionally,	in	this	thesis	I	have	re-emphasised	the	importance	of	a	common	pipeline	for	

pre-processing	and	mapping	reads,	and	calling	SNPs.	Only	by	using	a	common	pipeline	

will	we	be	able	to	overcome	problems	of	data	compatibility	from	different	platforms.	In	

addition,	given	the	structures	of	damage	in	ancient	DNA,	and	given	the	drawbacks	of	UDG	

treatment	in	samples	to	be	shotgun-sequenced,	I	have	shown	that	there	are	a	series	of	

steps	that	one	should	take	in	order	to	make	shotgun	data	fully	compatible	with	capture	

data,	such	as	the	soft-clipping	of	reads,	and	the	alignment	to	a	reference	genome	where	

the	 bases	 corresponding	 to	 the	 SNPs	 being	 analysed	 have	 been	 substituted	 by	 an	

uncommon	third-base.	Third-base	mapping	also	solves	the	common	problem	of	reference	

bias.	With	this,	I	propose	a	how-to	guide	on	how	to	work	with	ancient	DNA	to	avoid	data	

compatibility	problems,	which	will	undoubtedly	be	incredibly	useful	in	the	future.	

	

This,	however,	leads	us	to	the	question	of	what	is	better:	whole	genome	sequencing	by	

shotgun,	 or	 SNP	 capture	by	 in-solution	hybridization.	 SNP	 capture	provides	us	with	 a	

cheap	and	easy	way	to	obtain	ready-to-use	data	to	study	demographic	processes	such	as	

migrations,	 admixture	 events,	 and	 recent	 cultural	 shifts	 associated	 with	 population	

movements.	 In	 addition,	 it	 allows	 the	 study	 of	 many,	 relatively	 undamaged	 modern	

samples	of	which	we	have	many	fossils	of	the	same	area,	epoch	and	culture.	

	

SNP	 capture,	 however,	 prevents	 us	 from	 using	 the	 entire	 genome	 for	 extra,	 very	

informative	 analysis,	 such	 as	 Runs	 of	 Homozygosity	 to	 look	 at	 past	 population	

bottlenecks,	 dating	 split	 times	 (e.g.	 using	 GPhoCS),	 calculating	 percentages	 of	 archaic	

human	ancestry	using	the	entire	genomes,	or	looking	at	the	dynamics	of	closely-related	

ancient	populations.	Hence,	it	can	be	argued	that	for	scarce,	valuable	samples,	a	shotgun-

sequencing	approach	should	be	always	preferred.	
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It	is	a	fact	that	obtaining	ancient	DNA	entails	the	destruction	of	portions	of	very	valuable	

and	 irreplaceable	 sample.	 We	 could	 also	 argue	 that	 as	 whole	 genome	 sequencing	

technology	keeps	improving,	we	will	be	able	to	fully	sequence	at	higher	quality	samples	

that	 today	 would	 be	 challenging	 to	 study.	 Hence,	 it	 seems	 reasonable	 that	 there	 are	

samples	for	which	we	should	wait	before	attempting	any	uncertain	aDNA	extraction,	at	

least	 before	 the	 physical	 skulls	 are	 fully	 documented,	 morphologically	 studied,	 and	

digitalised.	 An	 example	 of	 these	would	 be	 the	Neanderthal	 fossils	 from	Atapuerca,	 in	

Spain.	Care	must	be	taken	in	order	to	decide	which	samples	to	sequence	in	the	present	

and	 in	 which	 fashion,	 and	 which	 samples	 for	 which	 we	 should	 instead	 delay	 DNA	

extraction.	

	

Open	questions	and	further	research	avenues	

	

The	Indo-European	question	

One	of	 the	biggest	questions	 in	 the	prehistory	of	 the	Eurasian	Bronze	Age	has	been	 to	

locate	the	homeland	of	all	surviving	branches	of	the	Indo-European	language	family.	The	

majority	 of	 Indo-European	 specialists,	 starting	 with	 Marija	 Gimbutas	 in	 the	 1950s,	

supported	the	Kurgan	hypothesis,	which	linked	the	PIE	homeland	to	the	Pontic-Caspian	

steppes,	 between	 the	 Caspian	 and	 the	 Black	 Seas,	 around	6,000	 years	 ago	 (Gimbutas,	

2001;	 Gimbutas	 and	 Dexter,	 1997).	 There	 was	 a	 major	 alternative,	 the	 Anatolian	

hypothesis,	 which	 defended	 an	 earlier	 homeland	 in	 the	 Anatolian	 peninsula,	 around	

10,000	years	ago	(Renfrew,	1987).	

	

The	Kurgan	hypothesis	was	defined	as	a	way	 to	group	various	cultures	 that	appeared	

6,000	years	ago	in	the	Pontic-Caspian	Steppes,	which	included	the	Yamna,	the	Samara	and	

the	Seroglazovo	cultures	of	the	region.	These	peoples	were	pastoralist	and	nomadic,	and	

at	some	point	5,000	years	ago,	expanded	into	Eastern	Europe.	Haak	et	al,	in	2015,	using	

ancient	genomes	obtained	from	throughout	Europe	and	sequenced	by	capture,	linked	the	

Kurgan	model	 and	 the	 Bronze	 age	 expansions	 into	 Europe	 to	 the	 spread	 of	 the	 Indo-

European	 languages	 and	hence	 supported	 the	Kurgan	 theory	 regarding	 the	 late	 Indo-

European	homeland	(Haak	et	al.,	2015).	The	recent	publication	of	the	Iberian	genomes	

from	the	Bronze	Age	further	supported	this	theory	(Martiniano	et	al.,	2017).	
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However,	we	are	still	waiting	for	ancient	genomes	from	South	Asia	at	the	time	of	the	Indo-

European	expansions,	which	should	be	incredibly	informative.	Their	analysis	will	set	the	

tone	for	what	will	be	the	next	question	that	ancient	genetics	can	answer:	who	were	the	

inhabitants	of	the	Indus	Valley	civilization,	and	how	did	agriculture	appear	in	the	region?	

How	did	the	expansion	of	the	Indo-Aryan	languages	and	peoples	into	the	subcontinent	

affect	 culture	 and	population	 structure?	 Although	 it	 is	 favoured	 that	 the	 Indus	 Valley	

Civilization	 spoke	 a	 language	 likely	 related	 to	 Dravidian,	 it	 is	 not	 known	 how	 this	

civilization	 acquired	 agriculture:	 While	 some	 theories	 point	 to	 heavy	 trade	 and	

knowledge	 diffusion	 between	 the	 Near	 East	 and	 South	 Asia,	 other	 theories	 point	 to	

independent	developments	(Lockard,	2010;	McPherson,	2009).	Genomes	from	this	area	

will	particularly	help	elucidating	these	open	questions.	A	mostly	Dravidian	component	

would	point	 towards	either	an	 independent	development	of	agriculture,	or	knowledge	

diffusion	without	 any	demic	 component.	However,	 if	 genomes	 belonging	 Indus	 Valley	

Civilization	present	sizable	components	 from	either	 the	Near	East	of	Central	Asia,	 this	

could	 point	 to	 earlier	 events	 of	 population	 movements	 towards	 South	 Asia	 and	

subsequent	admixture.	

	

Another	pending	ancient	genome	related	to	the	Indo-European	expansions	would	be	the	

sequencing	of	Hittite	or	other	Indo-European	genomes	from	Bronze	Age	Anatolia.	This	

will	 be	 a	 stepping-stone	 for	 the	pinpointing	of	 the	Proto-Indo-European	homeland,	 as	

opposed	to	the	late	Indo-European	homeland.	If	genomes	from	Hittite	societies	have	a	

sizeable	Caucasus	hunter-gatherer	or	 the	 Iron	Age	steppe	component,	 then	 this	would	

greatly	support	the	Kurgan	theory	proposed	by	Maria	Gimbutas,	through	which	proto-

Indo-European	 languages	developed	 in	 the	Pontic	 steppes	between	 the	Black	 and	 the	

Caspian	seas,	to	posteriorly	expand	westwards	to	Europe,	southwards	to	Anatolia,	and	

south-eastwards	 to	 Central	 Asia,	 the	 Iranian	 Plateau	 and	 the	 Indian	 subcontinent.	

However,	 if	 the	 Hittites	 were	 genetically	 similar	 to	 Neolithic	 Anatolians,	 this	 would	

support	the	Anatolian	hypothesis	developed	by	Colin	Renfrew	in	1987.	
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Open	questions	in	Africa	

As	it	happens	when	exploring	prehistory,	new	sources	answer	old	questions,	while	the	

same	new	sources	open	new	questions.	This	is	extremely	patent	in	studies	concerning	

Africa:	modern	genomes	were	initially	used	to	show	the	genetic	signature	of	the	Bantu	

expansions,	a	movement	of	agriculturalist	peoples,	originating	in	western	Africa	(today’s	

Nigeria)	 and	expanded	to	 central	and	south-eastern	Africa,	 all	 the	way	 to	 current	day	

South	 Africa.	 This	 involved	 a	 replacement	 and	displacement	 of	 the	 native	 population,	

most	likely	related	to	today’s	Khoi-San	populations	in	Namibia.	The	genetic	signatures	left	

by	this	event	are	still	very	patent	using	contemporaneous	genetic	data	(de	Filippo	et	al.,	

2012;	Li	et	al.,	2014;	Patin	et	al.,	2017)	and	linguistic	evidence	(Vansina,	1995).	

	

Ancient	genomes,	however,	not	only	confirmed	these	old	findings	and	added	a	bit	more	

detail,	but	also	opened	a	whole	set	of	new	questions:	A	2017	pre-print	(Schlebusch	et	al.,	

2017)	and	a	2017	conference	abstract	(Skoglund	et	al.,	2017)	featuring	African	ancient	

genome	showed	direct	ancient	genomic	evidence	supporting	the	question	of	the	Bantu	

expansions	and	 the	 identity	 of	 those	who	were	 replaced.	 It	 showed,	 for	 example,	 that	

populations	 close	 to	 current-day	 Khoi-San	 inhabited	 areas	 as	 north	 as	 Malawi	 and	

Tanzania	before	 the	Bantu	 expansions.	However,	 these	papers	 also	 showed	hints	 that	

current-day	 western	 Africans	 might	 harbour	 ancestry	 from	 an	 ancient	 lineage	 that	

separated	from	the	more	modern	human	lineages	earlier	than	any	other	currently	known	

one,	including	the	Khoi-San.	More	ancient	genomes	will	surely	be	used	to	confirm	these	

findings,	while	opening	new	windows	to	the	even	deeper	past.	It	will	be	very	interesting	

to	further	this	research	in	the	future,	not	only	to	better	understand	some	details	of	African	

population	prehistory,	 but	 also	 to	 understand	more	 about	 African	 ancient	 population	

diversity,	which	in	turn	will	be	key	to	understanding	the	genetic	aspect	of	Africa	at	the	

time	of	the	first	Out-of-Africa	episodes,	50-70k	years	ago.	

	

Human	prehistory,	however,	has	many	blank	spots	in	different	parts	of	the	world.	So	far,	

we	only	have	an	almost-full	picture	of	the	events	that	shaped	Europe	and	western	Eurasia	

in	the	last	10,000	years.	However,	we	only	broadly	understand	glimpses	of	the	last	10,000	

years	in	Africa,	Asia	and	the	Americas.	What	happened	between	50,000	and	10,000	years	

ago	remains	a	mystery.	However,	it	makes	sense	to	presume	that,	if	during	the	last	10,000	

years,	 the	 European	 demographic	 composition	 has	 been	 reshaped	 at	 least	 twice	 by	

different	migration	events,	the	previous	40,000	years	have	probably	been	no	different.	
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Africa	is	another	such	example:	It	had	been	assumed	that	Africa	remained	more	or	less	

unchanged	since	humans	left	Africa,	around	80,000-70,000	years	ago.	However,	recent	

developments	 have	 shown	 that	 this	 could	 not	 be	 further	 from	 the	 truth:	 the	 Bantu	

examples	and	the	possible	western	African	old	population	split	show	how	the	continent	

might	 have	 been	 subject	 to	 constant	 internal	 movements	 and	 migrations	 that	 have	

reshaped	the	 genetic	 composition	of	 the	 continent.	 It	would	be	 tempting	 to	 link	 these	

migrations	to	climatic	events	or	cultural	developments.	

	

Continuous	development	of	techniques	

Another	aspect	of	working	with	ancient	DNA	 is	 the	physical	samples	and	the	mode	 in	

which	DNA	is	extracted	and	sequenced.	In	2015,	David	Reich	and	his	group	pioneered	the	

large-scale	use	of	 in-solution	hybridisation	capture	(or	capture,	 for	short)	(Haak	et	al.,	

2015),	to	enrich	next	generation	sequencing	libraries	for	a	target	set	of	predetermined	

SNPs.	 This	 lowers	 the	 cost	 of	 sequencing	 ancient	 samples	 for	 ancient	 demographic	

analysis,	which	most	of	the	time	allows	for	the	sequencing	of	many	more	individuals	for	

the	same	study.	However,	at	the	same	time,	it	does	not	produce	a	whole	genome	sequence	

that	can	be	used	for	other	analyses	which	need	whole	genomes	or	large	tracts	of	DNA	

(such	 as	GPhoCS	or	Runs	of	Homozygosity).	At	 the	 same	 time	as	David	Reich’s	 group	

sequenced	 large	numbers	of	 individuals	using	capture	 (Fu	et	al.,	2016;	Lazaridis	et	al.,	

2016;	 Mathieson	 et	 al.,	 2015),	 other	 studies	 published	 whole	 genomes,	 produced	 by	

shotgun	sequencing	(Broushaki	et	al.,	2016;	Gamba	et	al.,	2014;	Siska	et	al.,	2017).	

	

The	amount	of	usable	bone	 for	DNA	recovery	has	 traditionally	been	very	 low	(García-

Garcerà	et	al.,	2011;	Sánchez-Quinto	et	al.,	2012a;	Skoglund	et	al.,	2012),	and	so,	a	large	

amount	of	material	was	needed.	In	2014,	Gamba	et	al	(Gamba	et	al.,	2014)	pioneered	the	

extraction	 of	 ancient	 genetic	material	 from	 the	 petrous	 section	 of	 the	 temporal	 bone,	

which	yielded	4	to	16	times	more	DNA	than	teeth,	and	up	to	183	times	more	DNA	than	

other	skeletal	bones.	However,	ancient	remains	are	very	scarce,	and	every	round	of	aDNA	

isolation	destroys	 a	portion	of	 the	 sample.	Hence,	 it	 is	 possible	 that	 in	 the	process	of	

acquiring	 samples	 for	 cheaper	 sequencing	 techniques	 (such	 as	 capture),	we	might	 be	

destroying	invaluable	data	that	could	be	used	in	the	future	for	a	much	more	informative	

whole	genome	sequencing,	once	this	technique	becomes	cheaper	and	possibly	better	at	

yielding	high	coverage	results.	



General	Discussion	|	5	

 129 

	

Late	Bronze	Age	and	more	recent	samples	are	very	common	in	Europe,	and	so	losing	a	

portion	of	such	samples	by	using	them	for	capture	is	relatively	acceptable.	However,	for	

older	samples,	such	as	Palaeolithic	samples,	or	samples	from	other	regions	of	the	world	

where	 aDNA	 conservation	 is	more	 difficult,	 capture	would	 be	 a	 technique	 that	would	

favour	a	sneak	peek	today,	rather	than	an	eventual	full	picture	tomorrow.		

	

Future	of	the	field	and	final	words	

On	 the	whole,	 the	 field	of	 ancient	DNA	has	a	 lot	 of	 potential,	 as	 so	 far	 the	number	of	

samples	outside	Europe	remains	extremely	poor.	So	far,	samples	have	been	used	mostly	

in	a	descriptive	fashion,	through	which	we	have	been	able	to	understand	individual	events	

of	expansions,	admixture,	introgression,	migration,	and	replacement.	However,	a	larger	

number	of	samples	will	lead	us	to	more	integrated	approaches	for	our	understanding	of	

demic	and	cultural	migrational	patterns	throughout	human	history	and	their	relationship	

with	climate	and	ecology.	In	addition,	studies	linking	demographics	to	adaptation	are	now	

starting	to	appear,	which	will	shed	light	into	how	different	populations	have	developed	

traits	in	order	to	increase	chances	of	survival	in	different	environments.	

	

One	of	 the	biggest	reasons	 for	the	study	of	aDNA	has	been	 to	explore	 the	relationship	

between	 the	 cultural-linguistic	 shifts	 in	 human	 prehistory	 and	 their	 associated	

migrations.	This	builds	from	an	inherent	willingness	from	people	to	understand	their	own	

ancestral	 origins,	 as	 well	 as	 to	 understand	 the	 origins	 of	 their	 socio-cultural	 group.	

Ancient	DNA	has	benefited	from	these	pretensions	to	the	extent	that	a	lot	of	the	research	

that	has	been	done	so	far	has	tried	to	elucidate	the	origins	of	certain	cultural	aspects	in	

regions	 of	 the	 world,	 understand	 geographical	 patterns	 of	 language	 distribution,	 or	

pinpoint	arrival	dates	of	certain	human	groups	into	continents.	

	

I	would	like	to	conclude	this	thesis,	however,	by	emphasising	a	known	fact,	which	is	that	

humans	have	been	moving	all	the	time.	A	quirky	example	of	this	is	how	the	remoteness	of	

Polynesia	was	 colonised,	 during	 a	 time	when	 Europeans,	with	 their	 supposedly	more	

advanced	technology,	never	dared	to	venture	beyond	the	sight	of	land.	This	shows	how	
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humans,	using	whichever	technology	is	available,	have	always	strived	to	find	new	places	

in	search	of	resources,	and,	more	generally,	places	in	which	to	thrive.	

	

As	our	history	as	a	species	advances,	and	as	we	step	into	the	future,	we	must	never	forget	

that	we	have	always	moved	in	search	of	better	(or	just	different)	lives	and	that	we	have	

always	wanted	 to	 explore	 in	 search	of	 hope.	And	 that,	 in	 one	way	or	 another,	we	will	

continue	doing	so	in	the	future.
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