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Topics in metric geometry, combinatorial geometry,

extremal combinatorics and additive combinatorics

Luka Milićević

Abstract

In this thesis, we consider several combinatorial topics, belonging to the areas

appearing in the thesis title.

Given a non-empty complete metric space (X, d), a family of n continuous

maps f1, f2, . . . , fn:X → X is a contractive family if there exists λ < 1 such that

for any x, y ∈ X we have d(fi(x), fi(y)) ≤ λd(x, y) for some i. In the first part

of the thesis, we

(i) construct a compact metric space (X, d) with a contractive family {f, g},
such that no word in f, g has a fixed point, and

(ii) show that if {f, g, h} is a contractive family such that f, g, h commute and

λ < 10−23, then they have a common fixed point.

The proofs of these two statements are combinatorial in nature. For (i), we

introduce a new concept of a diameter space, leading us naturally to a combi-

natorial problem about constructing certain sets of words. The result (ii) has a

Ramsey-theoretic flavour, and is based on studying the local and global structure

of a related metric space on N3. These answer questions of Austin and Stein.

In the second part, we prove that given any 4-colouring of the edges of Kn,

we can find sets X,Y, Z and colours x, y, z (not necessarily distinct) such that

X ∪ Y ∪ Z = V (Kn), and each of Kn[X, x], Kn[Y, y] and Kn[Z, z] has diame-

ter bounded by 160 (where KN [X, x] denotes the edges in X that have colour

x). This theorem is motivated by the work on commuting contractive families,

where the analogous statement for 3 colours played a crucial role, and by the

Lovász-Ryser conjecture. The proof is in the spirit of structural graph theory.

The key point is the fact that the diameters are bounded. This strengthens a

result of Gyárfás, who proved the same but with no diameter bounds (i.e. just

with the sets being connected).



Recall that a set of points in Rd is in general position if no d + 1 lie on a

common hyperplane. Similarly, we say that a set of points in Rd is in almost

general position if no d + 2 lie on a common hyperplane. In the third part, we

answer a question of Füredi, by showing that, for each d, there are sets of n

points in almost general position in Rd, whose subsets in general position have

size at most o(n). The proof is based on algebraically studying to what extent

polynomial maps preserve cohyperplanarity, and an application of the density

version of the Hales–Jewett theorem.

In the fourth part, we answer a question of Nathanson in additive combina-

torics about sums, differences and products of sets in ZN (the integers modulo

N). For all ϵ > 0 and k ∈ N, we construct a subset A ⊂ ZN for some N , such

that |A2 + kA|≤ ϵN , while A− A = ZN . (Here A− A = {a1 − a2 : a1, a2 ∈ A}
and A2 + kA = {a1a2 + a′1 + a′2 + · · ·+ a′k : a1, a2, a

′
1, a

′
2, . . . , a

′
k ∈ A}.) We also

prove some extensions of this result. Among other ingredients, the proof also

includes an application of a quantitative equidistribution result for polynomials.

In the final part, we consider the Graham-Pollak problem for hypergraphs.

Let fr(n) be the minimum number of complete r-partite r-graphs needed to

partition the edge set of the complete r-uniform hypergraph on n vertices. We

disprove a conjecture that f4(n) ≥ (1 + o(1))
(
n
2

)
, by showing that f4(n) ≤

14
15
(1 + o(1))

(
n
2

)
. The proof is based on the relationship between this problem

and a problem about decomposing products of complete graphs, and under-

standing how the Graham-Pollak theorem (for graphs) affects what can happen

here.
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1 Introduction

This dissertation is divided into three parts, the first comprising Chapters 2

and 3, the second consisiting of Chapers 4 and 5 and the third having Chapters 6

and 7. Chapters 2 and 3 are devoted to a problem in metric geometry. Chapter 4

deals with a problem in graph theory that naturally arises in Chapter 3, while

Chapter 5 we study a problem in extremal combinatorics. Chapter 6 of this thesis

is about a result in combinatorial geometry. In Chapter 7, we consider some

topics in additive combinatorics. The results in this thesis are my own work,

except for Chapter 5, which was done in collaboration with Imre Leader and Ta

Sheng Tan. The remainder of this introductory chapter is a brief discussion of

the problems and results presented in this thesis.

1.1 Metric Geometry

In the first part of the thesis we consider a couple of problems in metric ge-

ometry.

Let (X, d) be a (non-empty) complete metric space. Given n functions f1,

f2, . . . , fn:X → X, and a real number λ ∈ (0, 1), we call {f1, f2, . . . , fn} a

λ-contractive family if for every pair of points x, y in X there is i such that

d(fi(x), fi(y)) ≤ λd(x, y). Further, we say that {f1, f2, . . . , fn} is a contractive

family if it is a λ-contractive family for some λ ∈ (0, 1). In particular, when f is

a function on X and {f} is a contractive family we say that f is a contraction.

Recall the well-known theorem of Banach [8] which says that any contraction on

a complete metric space has a unique fixed point.

An operator on X is a continuous map from space to itself. In [51], Stein

conjectured the following generalisation of the theorem of Banach:

Let {f1, f2, . . . , fn} be a λ-contractive family of operators on a complete met-

1



ric space. Then some composition of f1, f2, . . . , fn (i.e. some word in f1, . . . , fn)

has a fixed point.

In [7], Austin constructed a counterexample to this statement.

Theorem I.1 (Austin [7]). There is a complete metric space (X, d) with a con-

tractive family of operators {f, g}, such that no word in f, g has a fixed point.

Furthermore, Austin asked if this is possible in a compact space.

Question I.2 (Austin [7]). Does every contractive family of operators on a

compact space have a composition with a fixed point?

Our first result is that even with the additional assumption of compactness,

there still need not be a fixed point.

Theorem. There is a compact metric space (X, d) with a contractive family of

operators {f, g}, such that no word in f, g has a fixed point.

We remark that our construction provides the counterexample for any given

λ ∈ (0, 1).

This work appears in [36].

In [7], Austin additionally showed that if n = 2 and f1 and f2 commute the

conjecture of Stein will hold.

With this in mind, we say that {f1, f2, . . . , fn} is commuting if every fi and

fj commute.

Theorem I.3 (Austin [7]). Suppose that {f, g} is a commuting contractive fam-

ily of operators on a complete metric space. Then f and g have a common fixed

point.

Let us mention another result in this direction, which was proved by Arvan-

itakis in [6] and by Merryfield and Stein in [35].

Theorem I.4 (Arvanitakis [6], Merryfield, Stein [35], Generalized Banach Con-

traction Theorem). Let f be a function from a complete metric space to itself,

such that {f, f 2, . . . , fn} is a contractive family. Then f has a fixed point.

2



Note that there is no assumption of continuity in the statement of The-

orem I.4. We also remark that Merryfield, Rothschild and Stein proved this

theorem for the case of operators in [34]. Furthermore, Austin raised a question

which is a version of Stein’s conjecture, and generalizes these two theorems in

the context of operators.

Conjecture I.5 (Austin [7]). Suppose that {f1, f2, . . . , fn} is a commuting con-

tractive family of operators on a complete metric space. Then f1, f2, . . . , fn have

a common fixed point.

Our second result proves the case n = 3, provided λ is sufficiently small.

Theorem I.6. Let (X, d) be a complete metric space and let {f1, f2, f3} be a

commuting λ-contractive family of operators on X, for a given λ ∈ (0, 10−23).

Then f1, f2, f3 have a common fixed point.

This work appears in [37].

1.2 Graph Theory

The second part of the thesis is about problems in graph theory.

1.2.1 Covering Complete Graphs by Monochromatically

Bounded Sets

Given a graph G, whose edges are coloured with a colouring χ:E(G) →
C (where adjacent edges are allowed to use the same colour), given a set of

vertices A, and a colour c ∈ C, we write G[A, c] for the subgraph induced

by A and the colour c, namely the graph on the vertex set A and the edges

{xy:x, y ∈ A,χ(xy) = c}. In particular, when A = V (G), we write G[c] instead

of G[V (G), c]. Finally, we also use the usual notion of the induced subgraph G[A]

which is the graph on the vertex set A with edges {xy:x, y ∈ A, xy ∈ E(G)}.
We usually write [n] = {1, 2, . . . , n} for the vertex set of Kn.

Our starting point is the following conjecture of Gyárfás.

Conjecture I.7 (Gyárfás [23], [25]). Let k be fixed. Given any colouring of the

edges of Kn in k colours, we can find sets A1, A2, . . . , Ak−1 whose union is [n],

and colours c1, c2, . . . , ck−1 such that Kn[Ai, ci] is connected for each i ∈ [k − 1].

3



This is an important special case of the well-known Lovász-Ryser conjecture,

which we now state.

Conjecture I.8 (Lovász-Ryser conjecture [33], [27]). Let G be a graph, whose

maximum independent set has size α(G). Then, whenever E(G) is k-coloured,

we can cover G by at most (k − 1)α(G) monochromatic components.

Conjectures I.7 and I.8 have attracted a great deal of attention. When it

comes to the Lovász-Ryser conjecture, we should note the result of Aharoni

([1]), who proved the case of k = 3. For k ≥ 4, the conjecture is still open. The

special case of complete graphs was proved by Gyárfás ([24]) for k ≤ 4, and by

Tuza ([52]) for k = 5. For k > 5, the conjecture is open.

Let us also mention some results similar in the spirit to Conjecture I.7. In [46],

inspired by questions of Gyárfás ([23]), Ruszinkó showed that every k-colouring

of edges of Kn has a monochromatic component of order at least n/(k − 1) and

of diameter at most 5. This was improved by Letzter ([32]), who showed that in

fact there are monochromatic triple stars of order at least n/(k − 1). For more

results and questions along these lines, we refer the reader to surveys of Gyárfás

([23], [25]).

In a completely different direction, recall Theorem I.6 about contraction map-

pings on metric spaces. Some of the ingredients in the proof of Theorem I.6 were

the following simple lemmas. Note that next lemma is in fact a classical obser-

vation due to Erdős and Rado.

Lemma. Suppose that the edges of Kn are coloured in two colours. Then we

may find a colour c such that Kn[c] is connected and of diameter at most 3.

Lemma. Suppose that the edges of Kn are coloured in three colours. Then

we may find colours c1, c2, (not necessarily distinct), and sets A1, A2 such that

A1 ∪A2 = [n], with Kn[A1, c1], Kn[A2, c2] are each connected and of diameter at

most 8.

A common generalization of these statements and a strengthening of Conjec-

ture I.7 is conjectured in Section 3.9.

Conjecture I.9. For every k, there is an absolute constant Ck such that the

following holds. Given any colouring of the edges of Kn in k colours, we can

4



find sets A1, A2, . . . , Ak−1 whose union is [n], and colours c1, c2, . . . , ck−1 such

that Kn[Ai, ci] is connected and of diameter at most Ck, for each i ∈ [k − 1].

The main result in this chapter of thesis is

Theorem. Conjecture I.9 holds for 4 colours, and one may take C4 = 160.

The work of this chapter appears in [38].

1.2.2 Decomposing the Complete r-Graph

The work we now describe is the content of Chapter 5 and is done in collab-

oration with Imre Leader and Ta Sheng Tan.

The edge set of Kn, the complete graph on n vertices, can be partitioned into

n−1 complete bipartite subgraphs: this may be done in many ways, for example

by taking n − 1 stars centred at different vertices. Graham and Pollak [21, 22]

proved that the number n− 1 cannot be decreased. Several other proofs of this

result have been found, by Tverberg [53], Peck [42], and Vishwanathan [55, 56].

Generalising this to hypergraphs, for n ≥ r ≥ 1, let fr(n) be the minimum

number of complete r-partite r-graphs needed to partition the edge set of K
(r)
n ,

the complete r-uniform hypergraph on n vertices (i.e., the collection of all r-sets

from an n-set). Thus the Graham-Pollak theorem asserts that f2(n) = n − 1.

For r ≥ 3, an easy upper bound of
(
n−⌈r/2⌉
⌊r/2⌋

)
may be obtained by generalising the

star example above. Indeed, having ordered the vertices, consider the collection

of r-sets whose 2nd, 4th, . . . , (2⌊r/2⌋)th vertices are fixed. This forms a complete

r-partite r-graph, and the collection of all
(
n−⌈r/2⌉
⌊r/2⌋

)
such is a partition of K

(r)
n .

(There are many other constructions achieving the exact same value; see, for

example Alon’s recursive construction in [4].)

Alon [4] showed that f3(n) = n− 2. More generally, for each fixed r ≥ 1, he

showed that

2(
2⌊r/2⌋
⌊r/2⌋

)(1 + o(1))

(
n

⌊r/2⌋

)
≤ fr(n) ≤ (1− o(1))

(
n

⌊r/2⌋

)
,

where the upper bound is from the construction above.

The best known lower bound for fr(n) was obtained by Cioabǎ, Küngden and

Verstraëte [12], who showed that f2k(n) ≥
2(n−1

k )
(2kk )

. For upper bounds for fr(n),

5



the above construction is not sharp in general. Cioabǎ and Tait [13] showed that

f6(8) = 9 <
(
8−3
3

)
, and used this to give an improvement in a lower-order term,

showing that f2k(n) ≤
(
n−k
k

)
− 2

⌊
n
16

⌋ (⌊n
2
⌋−k+3

k−3

)
for any k ≥ 3. (We mention

briefly that any improvement of f4(n) for any n will further improve the above

upper bound. Indeed, one can check that f4(7) = 9 <
(
7−2
2

)
, and this will imply

that fr(n) ≤
(
n−⌊r/2⌋
⌊r/2⌋

)
− cn⌊r/2⌋−1 for some positive constant c. But note that,

again, this is only an improvement to a lower-order term.)

Despite these improvements, the asymptotic bounds of Alon have not been

improved. Perhaps the most interesting question was whether the asymptotic

upper bound is the correct estimate.

The main result of the last part of thesis is that the asymptotic upper bound

is not correct for each even r ≥ 4. In particular, we will show that

f4(n) ≤
14

15
(1 + o(1))

(
n

2

)
,

and obtain the same improvement of 14
15

for each even r ≥ 4.

The work of this chapter appears in [31].

1.3 Combinatorics on Algebraic Structures

In the final part of the thesis we consider a problem in combinatorial geometry

and a problem in additive combinatorics.

1.3.1 Combinatorial Geometry

A set of points in the plane is said to be in general position if it has no 3

collinear points, and in almost general position if there are no 4 collinear points.

Let α(n) be the maximum k such that any set of n points in the plane in almost

general position has k points in general position. In [15], Erdős asked for an

improvement of the (easy) bounds
√
2n− 1 ≤ α(n) ≤ n (see equation (13) in the

paper). This was done by Füredi [17], who proved Ω(
√
n log n) ≤ α(n) ≤ o(n).

In [11] Cardinal, Tóth and Wood considered the problem in R3. Firstly, let

us generalize the notion of general position. A set of points in Rd is said to

be in general position if there are no d + 1 points on the same hyperplane, and

6



in almost general position if there are no d + 2 points on the same hyperplane.

Let α(n, d) stand for the maximum integer k such that all sets of n points in

Rd in almost general position contain a subset of k points in general position.

Cardinal, Tóth and Wood proved that α(n, 3) = o(n) holds. They noted that

for a fixed d ≥ 4, only α(n, d) ≤ Cn is known, for a constant C ∈ (0, 1), and

they asked whether α(n, d) = o(n). The goal of the fourth part of thesis is to

answer their question in all dimensions. In particular, we prove the following.

Theorem. For a fixed integer d ≥ 2, we have α(n, d) = o(n).

In fact, we are able to get better bounds for certain dimensions. This is the

content of the next theorem.

Theorem. Suppose that d,m ∈ N satisfy 2m+1 − 1 ≤ d ≤ 3 · 2m − 3. Let N ≥ 1.

Then

α(2N , d) ≤
(
25

N

)1/2m+1

2N .

It is worth noting the lower bound α(n, d) = Ωd((n log n)
1/d) due to Cardinal,

Tóth and Wood ([11]), but we do not try to improve their bound here.

In [17] Füredi used the density Hales-Jewett theorem ([18], [14]) to establish

α(n) = α(n, 2) = o(n). Here we reproduce his argument. By the density Hales-

Jewett theorem, for a given ϵ > 0, there is a positive integer N such that all

subsets of [3]N of density ϵ contain a combinatorial line. Map the set [3]N to R2

using a generic linear map f to obtain a set X = f([3]N) ⊆ R2. By the choice of

f , collinear points in X correspond to collinear points in [3]N , and f restricted

to [3]N is injective. Therefore, X has no 4 points on a line, and so is in almost

general position, but if S ⊆ X has size at least ϵ|X|, the set f−1(S) ⊆ [3]N has

density at least ϵ in [3]N . Therefore, f−1(S) has a line, hence S = f(f−1(S)) has

3 collinear points. Since ϵ > 0 was arbitrary, this proves that α(n, 2) = o(n).

If one tries to generalize this argument to higher dimensions, by mapping

[m]N to Rd, then there will be md−1 cohyperplanar points, and we must have

md−1 = d + 1 to get almost general position. But the only positive integers

that have this property are (m, d) ∈ {(3, 2), (2, 3)}. Taking m = 2, d = 3 gives

α(n, 3) = o(n), as observed by Cardinal, Tóth andWood ([11]). For other choices

of (m, d) we have too many cohyperplanar points as md−1 > d+ 1. Overcoming
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this obstacle is the main goal of our work.

The work of this chapter appears in [39].

1.3.2 Additive Combinatorics

The problem of comparing different expressions involving the same subset A

of an abelian group G (e.g. A + A and A − A) is one of the central topics in

additive combinatorics. For example, one of the starting points in the study of

this field is the Plünnecke-Ruzsa inequality that bounds |kA − lA| in terms of

|A| and |A+ A|.

Theorem I.10 (Plünnecke-Ruzsa inequality [43], [47]). Let A be a subset of an

abelian group. Then, for any k, l ≥ 1 we have

|kA− lA||A|k+l−1≤ |A+ A|k+l.

To illustrate the difficulties in determining the right bounds for such inequal-

ities, we note that even for the comparison of |A + A| and |A − A| the right

exponents are not known. In fact, the best known lower bounds for |A + A| in
terms of |A− A| have not changed for more than 40 years.

Theorem I.11 (Freiman, Pigaev [16], Ruzsa [49]). Let A be a subset of an

abelian group. Then |A− A|3/4≤ |A+ A|.

In the opposite direction, the best known lower bound is given by the follow-

ing result.

Theorem I.12 (Hennecart, Robert, Yudin, [28]). There exist arbitrarily large

sets A ⊂ Z such that |A + A|≤ |A − A|α+o(1), where α: = log(2)/log(1 +
√
2) ≈

0.7864.

In 1973, Haight [26] found for each k and ϵ > 0, an integer q and a set

A ⊂ Zq such that A−A = Zq and |kA|≤ ϵq. Recently, Ruzsa [48] gave a similar

construction, and observed that Haight’s work even gives a constant αk > 0 for

each k with the property that there are arbitrarily large q with sets A ⊂ Zq such

that A−A = Zq and |kA|≤ q1−αk . The ideas in both constructions are relatively

similar, but Ruzsa’s argument is considerably more concise.
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In [41], Nathanson applied Ruzsa’s method to construct sets A ⊂ R with

A − A = R, but kA small, for rings R that are more general than Zq. In the

same paper, he posed the following more general question. Given a polyno-

mial F (x1, x2, . . . , xn) with coefficients in Z, and a set A ⊂ ZN , write F (A) =

{F (a1, a2, . . . , an): a1, . . . , an ∈ A}. His question can be stated as: given two

polynomials F,G over Z and ϵ > 0, does there exist arbitrarily large N and a

set A ⊂ ZN such that F (A) = ZN , but |G(A)|< ϵN?1

Let us now state the main result of the fourth part of the thesis, which an-

swers the first interesting cases of Nathanson’s question. Once again we recall

the notation

A2 + kA = {a1a2 + a′1 + a′2 + · · ·+ a′k : a1, a2, a
′
1, . . . , a

′
k ∈ A},

and more generally,

lA2+kA = {a1a2+· · ·+a2l−1a2l+a
′
1+a

′
2+· · ·+a′k : a1, a2, . . . , a2l, a′1, . . . , a′k ∈ A}.

Theorem. Given k ∈ N0 and any ϵ > 0, there is a natural number q and a set

A ⊂ Zq such that

A− A = Zq, but |A2 + kA|≤ ϵq.

In fact we prove rather more.

Theorem. For l ∈ {1, 2, 3}, any k ∈ N0 and any ϵ > 0, there is a natural

number q and a set A ⊂ Zq such that

A− A = Zq, but |lA2 + kA|< ϵq.

Moreover, we can take q to be a product of distinct primes, and we can take the

smallest prime dividing q to be arbitrarily large.

We shall discuss each of the cases l = 1, 2, 3 separately. Note also an in-

teresting phenomenon in the opposite direction. Namely, if we are not allowed

freedom in the choice of the modulus, a statement like the theorem above cannot

hold. The reason is that, by the result of Glibichuk and Rudnev (Lemma 1 in

1Actually, Nathanson poses this question for more general rings R, but for R = Z, the
formulation we give here is a natural one.
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[19]) whenever A ⊂ Fp for a prime p, is a set of size at least |A|> √
p, then

10A2 = Fp (and A−A = Fp certainly implies |A|> √
p). Hence, unlike the linear

case, already for quadratic expressions we have strong obstructions.

The work of this chapter appears in [40].
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Part I

Contractive Families





1.1 Introduction

Let (X, d) be a (non-empty) complete metric space. Given n functions f1,

f2, . . . , fn:X → X, and a real number λ ∈ (0, 1), we call {f1, f2, . . . , fn} a

λ-contractive family if for every pair of points x, y in X there is i such that

d(fi(x), fi(y)) ≤ λd(x, y). Further, we say that {f1, f2, . . . , fn} is a contractive

family if it is a λ-contractive family for some λ ∈ (0, 1). In particular, when f is

a function on X and {f} is a contractive family we say that f is a contraction.

Recall the well-known theorem of Banach [8] which says that any contraction on

a complete metric space has a unique fixed point.

An operator on X is a continuous map from space to itself. In [51], Stein

conjectured the following generalisation of the theorem of Banach:

Let {f1, f2, . . . , fn} be a λ-contractive family on a complete metric space.

Then some composition of f1, f2, . . . , fn (i.e. some word in f1, . . . , fn) has a

fixed point.

In [7], Austin constructed a very nice counterexample to this statement.

Theorem 1.1 (Austin [7]). There is a complete metric space (X, d) with a

contractive family of operators {f, g}, such that no word in f, g has a fixed point.

Furthermore, Austin asked if this is possible in a compact space.

Question 1.2 (Austin [7]). Does every contractive family of operators on a

compact space have a composition with a fixed point?

Our first result in this part of the thesis is that even with the additional

assumption of compactness, there still need not be a fixed point.

Theorem 1.3. There is a compact metric space (X, d) with a contractive family

of operators {f, g}, such that no word in f, g has a fixed point.

We remark that our construction provides the counterexample for any given

λ ∈ (0, 1).

Remarkably, Austin also showed that if n = 2 and f1 and f2 commute, the

conjecture of Stein will hold.
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With this in mind, we say that {f1, f2, . . . , fn} is commuting if every fi and

fj commute.

Theorem 1.4 (Austin [7]). Suppose that {f, g} is a commuting contractive fam-

ily of operators on a complete metric space. Then f and g have a common fixed

point.

Let us mention another very elegant result in this direction, which was proved

by Arvanitakis in [6] and by Merryfield and Stein in [35].

Theorem 1.5 (Arvanitakis [6], Merryfield, Stein [35], Generalized Banach Con-

traction Theorem). Let f be a function from a complete metric space to itself,

such that {f, f 2, . . . , fn} is a contractive family. Then f has a fixed point.

Note that there is no assumption of continuity in the statement of Theo-

rem 1.5. We also remark that Merryfield, Rothschild and Stein proved this

theorem for the case of operators in [34]. Furthermore, Austin raised the follow-

ing fascinating question which is a version of Stein’s conjecture, and generalizes

these two theorems in the context of operators.

Conjecture 1.6 (Austin [7]). Suppose that {f1, f2, . . . , fn} is a commuting con-

tractive family of operators on a complete metric space. Then f1, f2, . . . , fn have

a common fixed point.

Let us now state the second result that we establish in this part of the thesis,

which proves the case n = 3 and λ sufficiently small:

Theorem 1.7. Let (X, d) be a complete metric space and let {f1, f2, f3} be a

commuting λ-contractive family of operators on X, for a given λ ∈ (0, 10−23).

Then f1, f2, f3 have a common fixed point.

We remark that such a fixed point is necessarily unique.
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2 Contractive Families on Compact Spaces

This chapter is devoted to the proof of Theorem 1.3, where we construct a

compact metric space (X, d) with a contractive family of operators {f, g}, such
that no word in f, g has a fixed point.

2.1 Outline of the construction of the

counterexample

We begin by providing some motivation for our steps. Suppose that (X, d), f, g

satisfy the conclusion of Theorem 1.3. Given any set S of points in our space,

since X is compact, we know that S is bounded. Let D be its diameter. Then,

it is not hard to show that the diameter of one of f(S) or g(S) is at most 4λD.

To see this, pick any point x in S and consider set Sf = {y ∈ S : λd(x, y) ≥
d(f(x), f(y))} and let Sg = S \ Sf . If Sf = S, we are done, so suppose that

Sg ̸= ∅. If we can find y ∈ Sf such that λd(y, z) ≥ d(f(y), f(z)) for all z ∈ Sg,

then, by looking at distance from f(y), the diameter of f(S) does not exceed

4λD. On the other hand, if there is no such y, then each point of g(Sf ) is on

distance at most λD from some point in g(Sg) which is on distance at most λD

from g(x), so g(S) has diameter at most 4λD.

This simple observation leads us to the idea that instead of considering dis-

tances between each pair of points in the wanted space, thinking about diameters

of sets should be much more convenient in our problem. With this in mind, we

develop the notion of ‘diameter spaces’, which will play a key role throughout

our construction. Due to their importance in our work, we include a proper

definition.

Definition. Let X be a non-empty set. Given a collection D of subsets of X,

we call (X,D) a diametrisable space provided the following conditions are met.
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(i) Given x, y ∈ X, there is U ∈ D with x, y ∈ U .

(ii) If U, V ∈ D and U ∩ V ̸= ∅, then U ∪ V ∈ D.

We refer to elements of X as points and elements of D as diametrisable sets.

Further, if a function diam:D → R≥0 is such that whenever U, V ∈ D intersect,

the inequality

diam(U) + diam(V ) ≥ diam(U ∪ V )

holds, we call diam the diameter and (X,D, diam) a diameter space. We refer

to this inequality as the triangle inequality for the diameter spaces.

In a very natural way, one can use a diameter space to induce a pseudometric

on the underlying space, by simply finding the infimum of diameters of all the

diametrisable sets containing any two given (distinct) points. Furthermore, by

imposing suitable conditions on the diametrisable sets, one can get nice proper-

ties to hold for the pseudometric space.

In order to proceed further, we must first specify the underlying set. Hence,

let us look for the space that should, in some vague sense, be the minimal coun-

terexample. One of the possible ways to approach this issue is to fix a point x0,

and then examine what other points we can obtain. It is not hard to see that

completion of the set of all images that one can get by applying f and g to x0

is itself a compact metric space, and that f, g form a λ-contractive map on this

subspace of X as well. Now, starting from x0 we must include all the points

described, and we can actually map all these points that are obtained using f, g

from x0 to finite words over a two-letter alphabet (this is a bijection if no two

results of distinct compositions of f, g applied to x0 coincide). Therefore, our

construction will start from an underlying set X of all finite words over {a, b},
with the obvious functions f and g, each of which adds one of the characters a

and b to the beginning of the word that is given as input. Then, provided we

have a metric on X, we will take its completion, and hope that the metric space

that we get, along with f and g, satisfies all the properties of Theorem 1.3. This

is where diameter spaces come in play. We will introduce properties of a collec-

tion D of diametrisable sets on X, that will guarantee that the completion of the

induced pseudometric space, along with f and g, (which are the concatenation

functions described), is the desired counterexample. Being a relatively long list,
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we refer the reader to Corollary 2.9 to get an idea of what conditions we impose

on D. The collection D will in fact be a sequence of subsets of X, denoted by

S0, S1, S2, . . . .

2.2 Inducing a counterexample from a diameter

space

2.2.1 Diameter spaces and their connection with metric spaces

In this subsection we show how one can obtain a pseudometric space from

diameter spaces. The following proposition tells us how to induce pseudometric

on the underlying set.

Proposition 2.1. Let (X,D, diam) be a diameter space. Define a function

d:X2 → R by d(x, y) = inf diam(U) when x and y are distinct, where infimum

is taken over all diametrisable sets that contain points x and y, and d(x, y) = 0

otherwise. Then d is well-defined and (X, d) is a pseudometric space.

Proof. Firstly, suppose we are given two distinct points x and y. Then the set

S of all values that diameter of a diametrisable set containing x, y can take, is

non-empty and bounded from below by 0, so inf S exists, and d is well-defined.

To prove that d is a pseudometric, we just need to show that the triangle

inequality holds, since d(x, x) = 0 holds for all points x and d is symmetric by

construction. Let x, y, z ∈ X. If any of these points are equal, we are done.

Otherwise, given ϵ > 0 we can find sets U, V ∈ D such that x, y ∈ U , y, z ∈ V ,

d(x, y) ≤ diamU ≤ d(x, y) + ϵ/2, d(y, z) ≤ diamV ≤ d(y, z) + ϵ/2. But U and

V intersect, hence U ∪ V is also a diametrisable set, and further diam(U ∪ V ) ≤
diam(U)+diam(V ) ≤ d(x, y)+ d(y, z)+ ϵ, so d(x, z) ≤ d(x, y)+ d(y, z)+ ϵ. But

this holds for any positive ϵ, proving the triangle inequality, and therefore the

proposition follows.

The pseudometric that we constructed from a given diameter space will be

referred to as the induced pseudometric by diam.

Note that given any metric space (X, d) we can construct a diameter space

(X,D, diam) by taking diametrisable sets to be the finite subsets of X, and the
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diameter function diam to have the usual meaning, that is for any U ∈ D, we

set diam(U) to be max d(x, y) where maximum is taken over all pairs of points

in U . Then, the metric d coincides with the pseudometric induced by diam. In

this way, we can view any metric space as a diameter space at the same time.

2.2.2 Required properties of the diameter space

In the previous subsection we saw how to obtain a pseudometric space from

a diameter space. To construct a counterexample to the conjecture, we will use

that procedure, but as the proposition only guaranties that we get a pseudomet-

ric space, we need to add additional properties of a diameter space to ensure

that we reach our goal. First of all, we work with specific underlying set X and

the diameter function which are consistent with the nature (or more precisely

the geometry) of the problem. As noted before, we are essentially considering

compositions of functions applied to an element of the given metric space satis-

fying the assumptions of the conjecture, and therefore we will work with points

of X being finite words over the alphabet consisting of two letters Σ = {a, b},
including the empty word. Before we proceed further, let us introduce some

notation.

Notation. If u, v are two words of X, we write uv for the word obtained by

writing first u then v. Say that u is a prefix or an initial segment of v, if there is

another word w with v = uw, and if this holds write u ≤ v. The length of a word

u, denoted by l(u), is the number of letters in u. Characters are considered to

be words of length one simultaneously as being characters. When S is a subset

of X and u ∈ X, we write uS = {us : s ∈ S} and Su = {su : s ∈ S}. Given

a positive integer n and word u, write un for uu . . . u, where u appears n times.

The empty word is denoted by ∅. Finally, we occasionally allow infinite words

in our arguments (although these are not elements of X), and write u∞ to stand

for the infinite word obtained by writing consecutive copies of u infinitely many

times.

We will take our functions f, g:X → X to be given by f(u) = au and

g(u) = bu for all words u ∈ X. Then every word is actually equal to the result

of applying the corresponding composition of functions to the empty word. On
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the other hand, having in mind the contraction property of the family of the

functions that we want to hold, we take D to be a sequence of subsets of X,

namely D = {S0, S1, S2, . . . } and set diam(Sk) = λk for some fixed λ ∈ (0, 1).

Now, we just need to specify what needs to hold for D so that we get a coun-

terexample.

Let us start with ensuring that (X,D, diam) is a diameter space. We accom-

plish this by requiring the following property.

A1 For any non-negative integers i < j, if Si ∩ Sj ̸= ∅, then Sj ⊂ Si. Also,

S0 = X.

If this property holds, then we see that given any two intersecting diametrisable

sets Si and Sj, we have Si ∪ Sj = Si or Si ∪ Sj = Sj. Therefore, (X,D) is

a diametrisable space and the triangle inequality holds for diam, thus this is

indeed a diameter space.

Consider now (X, d), where d is the pseudometric induced by diam. To make

d non-degenerate, we introduce another property.

A2 Each point belongs to only finitely many diametrisable sets.

If A2 holds, since diam is always positive, and the infimum defining d(x, y)

for x ̸= y is actually minimum taken over finitely many positive values, we get

that d is non-degenerate, and thus a metric.1

As far as the compactness is concerned, the fact that we can obtain a compact

space from a totally bounded one by taking its completion is what motivates our

following step. Hence, another condition is introduced.

A3 For any positive integer N , there are integers i1, i2, . . . , in, greater than N ,

such that X \ (Si1 ∪ Si2 ∪ . . . ∪ Sin) is finite.

Proposition 2.2. Provided D satisfies A1-A3, the completion (X, d) of the

metric space induced by (X,D, diam) is compact.

Proof. By the comments above, we just need to show that (X, d) is totally

bounded. Let ϵ > 0 be given, and choose N for which λN < ϵ/2 holds. By

1It is easy to see that this is in fact an ultra metric.
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A3, there are i1, i2, . . . , in > N for which the union of Si1 , Si2 , . . . , Sin covers all

but finitely many points, denoted by y1, y2, . . . , ym. Then, each Sik is contained

in Bxk
(ϵ) for some xk ∈ Sik , and yk ∈ Byk(ϵ), so X is covered by finitely many

open balls of radius ϵ, and so the metric space is totally-bounded.

Say that a Cauchy sequence (xn)n≥1 is proper if there is no N with xN =

xN+1 = . . . . The three conditions described so far give us a nice characterisation

of the proper Cauchy sequences in (X, d), whose elements lie in X.

Proposition 2.3. Suppose that D satisfies properties A1-A3. Then a sequence

of points in X is proper Cauchy with respect to the induced metric if and only if

for any given positive integer M there is m > M such that Sm contains all but

finitely many points of the sequence.

Proof. Only if direction. Let (xn)n≥1 be a proper Cauchy sequence in X and

let a positive integer M be given. Take a positive ϵ < λM . Then, as the given

sequence is Cauchy, we have N such that m,n > N implies d(xn, xm) < ϵ.

Now fix any m > N and let I = {i > M : ∃n > N, xn, xm ∈ Si}. By

the definition of d, we know that this set is nonempty, therefore has a minimal

element i0. If n > N then d(xn, xm) < ϵ < λM , so there is j > M with xn, xm

both belonging to Sj. But xm ∈ Si0 so Si0 , Sj intersect and by the choice of i0

and property A1 we have xn ∈ Sj ⊂ Si0 , so almost all points of the sequence

are contained in Si0 .

If direction. Given ϵ > 0 take M such that λM < ϵ. Then there is m > M with

Sm containing almost all points in the sequence, and the distance between two

points in Sm is at most λM+1 < ϵ, so the sequence is Cauchy. If it was not a

proper one, the point which is equal to almost all of its members would belong

to infinitely many of the sets Si which is impossible by A2.

Proposition 2.4. Under the same assumptions as in the previous proposition,

no proper Cauchy sequence in (X, d) converges to a point in X.

Proof. Suppose that a point x ∈ X is a limit of a proper Cauchy sequence

(xn) in X. First of all, if xn ∈ X \ X, substitute xn by a point y ∈ X such

that d(xn, y) <
1
2
d(xn, x). The newly obtained sequence now lies in X, and is

still proper Cauchy, with unchanged limit. As x ∈ X belongs to Si for only
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finitely many i, we have Bx(λ
n) ∩ X = {x}, for sufficiently large n, which is a

contradiction.

Lemma 2.5. Let (X, d) be the metric space considered so far. Suppose F is a

function on X that preserves Cauchy sequences, that is given Cauchy sequence

(xn)n≥1, the sequence of images (F (xn))n≥1 is Cauchy as well. Then, extension

of F to the completion of the space given by F (x) = limn→∞ F (xn), where (xn)

is any Cauchy sequence in X tending to x in X \X, is continuous.

Proof. Firstly, we should prove that such an extension of F is well-defined. Take

arbitrary x ∈ X \X, and thus since X is completion of x, there must be Cauchy

sequence inX whose limit is x. But the image of this sequence under F is Cauchy

as well, so it has limit in X, so we just need to show its uniqueness. Therefore,

suppose that (xn)n≥1 and (yn)n≥1 are two sequences in X tending to x. Merging

these two sequence into (tn)n≥1, where t2n−1 = xn, t2n = yn, implies that (tn)n≥1

is Cauchy, hence (F (tn))n≥1 is also Cauchy, so (F (xn))n≥1 and (F (yn))n≥1 have

the same limit, as required.

Secondly, we should prove that F is continuous inX. Let (xn)n≥1 be sequence

tending to some x ∈ X. If x ∈ X, then sequence is eventually constant and equal

to x, hence (F (xn))n≥1 trivially tends to F (x). Otherwise, x ̸∈ X, so consider

new sequence (tn)n≥1 given as follows. If xn ∈ X, set tn = xn, and if this does not

hold, there is Cauchy sequence (ym)m≥1 in X whose limit is xn. By assumption,

(F (ym))m≥1 is Cauchy in X, and as we have shown previously, it tends to F (xn).

Hence, for sufficiently large m, we have that d(xn, ym), d(F (xn), F (ym)) < 1/n,

so set tn = ym. Thus, as for all n we have d(xn, tn) < 1/n, we have that (tn)n≥1 is

Cauchy in X and tends to x, so its image under F is Cauchy sequence with limit

F (x), but d(F (xn), F (tn)) < 1/n holds for all n, thus limn→∞ F (xn) = F (x), as

required, implying continuity of F .

This lemma suggests the fourth property of the diametrisable sets.

A4 If i1 < i2 < . . . are indices such that Si1 ⊃ Si2 ⊃ . . . , then, given any N , we

can find na, nb > N for which Sna contains all but finitely many elements

of aSim for some m, and Snb
contains all but finitely many elements of bSip

for some p.
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Proposition 2.6. If D satisfies A1-A4, then f, g : X → X, defined before

and then extended as in the previous lemma are continuous with respect to the

induced metric.

Proof. We will show the claim for f , proof for g follows the same lines. We only

need to show that f preserves Cauchy sequences in X, in fact, it is sufficient

to prove that if (xn)n≥1 is proper Cauchy, then (f(xn))n≥1 is Cauchy. Thus,

suppose we are given a proper Cauchy sequence (xn)n≥1 in X, so there are

indices i1 > 1, i2 > 2, . . . (without loss of generality i1 < i2 < . . . ) such that

Sik covers all but finitely many elements of the sequence for every k. Due to

intersections and A1 we have Si1 ⊃ Si2 ⊃ . . . . Let ϵ > 0 be given and take N

which satisfies λN < ϵ. Further, by A4 there is n > N and some m for which

Sn contains all but finitely many elements of aSim . Exploiting the fact that

almost all elements of (f(xn))n≥1 are contained in aSim yields that there is M

such that k, l > M implies f(xk), f(xl) ∈ Sn. Hence d(xk, xl) ≤ λN < ϵ holds

when k, l > M , as required.

Next property is defined in order to make {f, g} a contractive family.

A5 For any i ∈ {0, 1, 2, . . . }, there are j > i and a character c ∈ {a, b}, such
that cSi ⊂ Sj.

Proposition 2.7. If D satisfies A1-A5, then f, g form a λ-contractive family

in (X, d).

Proof. Let us consider first x, y ∈ X. Taking the largest possible n for which

x, y ∈ Sn, by A5 we have m > n such that without loss of generality aSn ⊂ Sm,

thus d(f(x), f(y)) = d(ax, ay) ≤ λm ≤ λ · λn = λd(x, y), as wanted. (If we had

character b instead, we would get contraction when applying g.)

In the general case, when x, y ∈ X, we can find two sequences in X, (xn)n≥1

tending to x, and (yn)n≥1 tending to y (if one of these is already in X, then take

trivial sequence). Then, by the previous case, one of f, g contracts infinitely

many pairs (xn, yn), f say. Let indices of those pairs be i1 < i2 < . . . . Then,

λd(x, y) = λ limn→∞ d(xin , yin) ≥ limn→∞ d(f(xin), f(yin)) = d(f(x), f(y)), since

f is continuous, as required.
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Proposition 2.8. Suppose that a function F , which is a word in f and g, has a

fixed point. Let w be the nonempty word which corresponds to F , i.e. F (x) = wx

for all x. Then there are infinitely many i such that there is ui in Si with wui

also being a member of Si.

Proof. Suppose F fixes u. Then u ̸∈ X, so take (xn)n≥1 in X converging to u.

Hence (wxn)n≥1 converges to u = F (u) as well, so merging these two sequences

together, we get a Cauchy sequence, and the result follows from Proposition 2.3.

Based on this proposition, we now introduce the final property of the di-

ametrisable sets that we want to hold. The following corollary does this and

sums up our work so far.

Corollary 2.9. Let λ ∈ (0, 1). Consider a collection D of diametrisable subsets

of X that obeys:

A1 The set S0 is the whole of X and given any nonnegative integers i < j,

Si ∩ Sj ̸= ∅ implies Sj ⊂ Si.

A2 Any point in X belongs to only finitely many diametrisable sets.

A3 For any positive integer N , there are integers i1, i2, . . . , in greater than N

such that X \ (Si1 ∪ Si2 ∪ . . . ∪ Sin) is finite.

A4 If i1 < i2 < . . . are indices such that Si1 ⊃ Si2 ⊃ . . . then, given any N , we

can find na, nb > N for which Sna contains all but finitely many elements

of aSim for some m, and Snb
contains all but finitely many elements of

bSip for some p.

A5 For any i ∈ {0, 1, 2, . . . }, there is j > i such that cSi ⊂ Sj for some

character c ∈ {a, b}.

A6 Given a nonempty word w in X there are only finitely many diametrisable

sets Si with ui ∈ Si for which wui ∈ Si.

Then, with constructions described above, (X, d) is a compact metric space with

continuous functions f, g : X → X that form a λ-contractive family, but no word

in f and g has a fixed point.
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2.3 Choosing the diametrisable sets

Our main task now is to find a collection of diametrisable sets D which has

the properties A1-A6. The obvious candidates for the subsets in the desired

collection are Ww = wX, where w is any word in X. Immediately, we observe

that these, ordered by length of w, then by alphabetical order (so that S0 =

W∅, S1 = Wa, . . . ) satisfy all the properties we demand except for A6. Hence,

we will use these as the pillar of our construction, however, to make A6 hold,

we need to modify these slightly. The issue with the sets described is that given

any nonempty word w ∈ X, we allow Ww to contain all the initial segments of

w∞. With this in mind, we say that a nonempty word w in X is forbidden if

there is another finite word u such that w is a prefix of u∞ and l(w) > l(u)2.

Otherwise, say that w is available. For example, ∅, a, abab are available, while

ababa is forbidden.

Proposition 2.10. Given a word w ∈ X, either aw or bw is available.

Proof. If w = ∅, aw is available. Suppose l(w) ≥ 1 and that the claim is false, so

aw is an initial segment of w∞
1 for some non-empty w1, bw is an initial segment

of w∞
2 for some non-empty w2 and l(w) ≥ l(w1)

2, l(w2)
2. We can permute w1

cyclically to v1 so that av∞1 = w∞
1 holds, and we can correspondingly trans-

form w2 to v2. Observe that the last character of v1 is a and of v2 is b. This

way, w becomes a prefix of v∞i for i = 1, 2. But l(w) ≥ l(v1)
2, l(v2)

2, hence

l(w) ≥ l(v1)l(v2) and so v
l(v2)
1 = v

l(v1)
2 , by comparing them as initial segments of

w. However, this implies equality of the last characters of v1 and v2, which is

impossible. The claim now follows.

In the same spirit, we prove the following statement.

Proposition 2.11. Given a word w ∈ X, either wa or wb is available.

Proof. Suppose, on the contrary contrary, both are forbidden. Let t1, t2 be words

such that wa ≤ t∞1 , wb ≤ t∞2 , l(wa) > l(t1)
2, l(wb) > l(t2)

2. Observe that both

t
l(t2)
1 and t

l(t1)
2 are prefixes of w, so being of the same length, they coincide. But,

then t∞1 = t∞2 , which is a contradiction, as otherwise wa ̸= wb would be two

prefixes of the same length of this infinite word.
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Corollary 2.12. Let w be a non-empty word. Let u be an initial segment of

w∞, and suppose l(u) ≥ l(w)2. Take character s such that v = us is not a prefix

of w∞. Then v is available.

Say that a word w is minimal if it is non-empty and given non-empty u for

which u∞ = w∞ we have l(w) ≤ l(u).

Proposition 2.13. A non-empty word w is not minimal if and only if there is

word u such that w = uk, for some k ≥ 2.

Proof. If w = uk with k > 1 then l(w) > l(u) and w∞ = u∞, therefore w is

not minimal. Suppose now that we have non-empty w, for which there exists

u such that u∞ = w∞, but l(u) < l(w). Write d = gcd(l(u), l(w)), so l(u) =

qd, l(w) = pd, for some positive integers p, q, in particular p ≥ 2. Further up =

wq = v1v2 . . . vpq, where v1, v2, . . . , vpq are of length d. Considering successive

copies of u we have that vi+q = vi, when i ≤ pq − q and similarly by looking at

copies of w we have vi+p = vi when i ≤ pq − p. So vi = vp+i = · · · = vp(q−1)+i

for i ∈ [p], (where for a positive integer N , [N ] denotes the set {1, 2, . . . , N}).
Observe that vq = v2q = · · · = vpq and as p and q are coprime q, 2q, . . . , pq take

all possible values modulo p hence v1 = v2 = · · · = vpq, allowing us to conclude

w = vp1, p > 1.

Having established these results about the words, we are ready to choose the

diametrisable subsets D of X. Consider the following subsets.

For all available words w, including ∅, we include Ww in D. We refer to these

as the W-type sets, i.e say that Si is of W -type if Si = Ww, for some available

w.

For all minimal words w, all integers p, r such that p ∈ {2i : i ∈ N0} and

0 ≤ r ≤ p− 1, we set Aw,p,r = {u ∈ X : u initial segment of w∞, l(u) ∈ {r + ip :

i ∈ N}, l(u) > l(w)2}. Call these sets the A-type sets.

Finally, for each minimal word w and k ∈ N, we define Bw,k, which we refer

to as the B-type sets. For these, we need additional notation.

First of all, for each k ∈ N we define an infinite arithmetic progression Ik. We

set I1 = N, I2 = I1\{min I1} = N\{1}. For each integer m ≥ 2, if k is an integer

such that 2m − 1 ≤ k ≤ 2m + 2m−1 − 2, we set Ik = {s+ i · 2m−1: i ∈ N0} where
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s = min I k−1
2

+2m−2 , when k is odd; if k is even, then put Ik = {s+i ·2m−1: i ∈ N0}
where s = min I k−2

2
+2m−2 +2m−2. On the other hand, if k is an integer such that

2m + 2m−1 − 1 ≤ k ≤ 2m+1 − 2, then we set Ik = Ik−2m−1 \ {min Ik−2m−1}.
Note that, given a minimal word w and n ∈ N, by Corollary 2.12 we get a

unique word wn such that: wn is of the form vnsn where vn ≤ w∞ and sn is

a character, wn is available, and l(wn) = l(w)2 + n. At last, we define Bw,k =

∪i∈IkWwi
.

Thus, we set

D ={Ww : w ∈ X,w is available}

∪{Aw,p,r:w ∈ X, p, r ∈ Z, w is minimal, p ∈ {2i: i ∈ N0}, 0 ≤ r ≤ p− 1}

∪{Bw,k : w ∈ X, k ∈ N, w is minimal}.

To illustrate the definition of B-type sets, we list a couple of examples.

I7 = {4, 8, 12, 16, . . . },

Ba,7 = Waaaab ∪Waaaaaaaab ∪Waaaaaaaaaaaab ∪ . . . ,

I13 = {9, 13, 17, 21, . . . },

Bba,13 = Wbabababababaa ∪Wbabababababababaa ∪Wbabababababababababaa ∪ . . . .

Let us make a few easy remarks about D. Fix a minimal word w. Then we

have Bw,1 = Wwl(w) \ (Aw,1,0 ∪ {wl(w)}). Also, if m ≥ 2 is an integer, and k is an

odd integer that satisfies 2m−1 ≤ k ≤ 2m+2m−1−2, then I k−1
2

+2m−2 = Ik∪Ik+1.

Furthermore, if Ik1 ∩ Ik2 ̸= ∅ then Ik1 ⊂ Ik2 or vice-versa.

For any U ∈ D, observe that there is a unique word in U of the shortest

length, which we will denote by σ(U).

Let us now establish a few claims about the structure of D, which will be

exploited in the rest of the proof.

Proposition 2.14. If U ̸= V are two diametrisable sets and they intersect, then

one is contained in the other. Furthermore, if they are not identical, then U△V
is infinite.

Proof. We are going through possible types of U and V .

Case 1. U and V are W -type sets.

Suppose U = Ww1 , V = Ww2 , without loss of generality l(w1) ≤ l(w2).
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If w1 is not initial segment of w2, then U and V do not intersect, so we

must haveWw1 ⊃ Ww2 , that is U ⊃ V . If U ̸= V , then w1 ̸= w2, and hence

Ww1s ⊂ (U \V ), where s is character for which w1s is not prefix of w2. We

will use this case for showing the other ones.

Case 2. U and V are A-type sets.

Suppose U = Aw1,p1,r1 , V = Aw2,p2,r2 , where w1, w2 are some minimal

words, and p1, p2, r1, r2 are suitable integers. There is word w ∈ U ∩ V , so

w is initial segment of w∞
1 and w∞

2 , while l(w) ≥ l(w1)
2, l(w2)

2, from which

we deduce that w
l(w2)
1 = w

l(w1)
2 , being the initial segment of w of length

l(w1)l(w2). Therefore w∞
1 = w∞

2 and due to minimality w1 = w2. Now,

due to definition of A-type sets for fixed minimal word, we get U ⊂ V or

vice versa and infinite symmetric difference.

Case 3. U is a A-type set, V is a B-type set.

Let w ∈ U∩V . This makes w a prefix of some t∞, where t is minimal and

l(t)2 < l(w), as U = At,p,r, p, r being suitable integers. Also w ∈ Wv ⊂ V ,

some available v, so as v is an initial segment of w, hence t∞, we have

l(v) ≤ l(t)2, since v is available. But then U ⊂ At,1,0 ⊂ Wtl(t) ⊂ Wv ⊂ V ,

which proves the first claim.

On the other hand U has no available words, but V has infinitely many

of these, which gives the second part.

Case 4. U is a A-type set, V is a W -type.

Same proof as in the Case 3.

Case 5. U and V are B-type sets.

Suppose U = Bw1,k1 , V = Bw2,k2 , for some minimal words w1, w2 and

positive integers k1, k2. Let w ∈ U ∩ V , thus w ∈ Wv1 ⊂ Bw1,k1 and

w ∈ Wv2 ⊂ Bw2,k2 . By Case 1, without loss of generality, Wv1 ⊂ Wv2

holds.

If v1 = v2, letting ui be vi without the last character, gives us prefix of

w∞
i , i ∈ [2], and l(w1)

2, l(w2)
2 ≤ l(u1), so as before w∞

1 = w∞
2 and due to

minimality w1 = w2. So U ⊂ V or V ⊂ U , due to construction of B-type

sets for a fixed minimal word, and also the second part of the claim follows.
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On the other hand, if v1 ̸= v2, then v2 ≤ u1, u1 being v1 after omitting

the last character, as before. Further we have that u1 is a prefix of w∞
1 , so

v2 is too, but v2 is available, hence l(v2) ≤ l(w1)
2, hence U ⊂ Wv2 ⊂ V .

For the second part of the claim, consider any other W -type set con-

tained in V , distinct form Wv2 .

Case 6. U is a B-type set, V is a W -type set.

Let V = Wv, some available word v, and w ∈ U ∩ V , so w ∈ Wu ⊂ U .

If Wv ⊂ Wu, then V ⊂ U , so we are done, and second part follows as in

previous case. Otherwise, by Case 1, Wu ( Wv, so v ̸= u and v ≤ u.

We have U = Bt,k, some minimal t and integer k, so v ≤ t∞ and available

so l(v) ≤ l(t)2, hence U ⊂ Wv = V . Also, (Wv \ U) ⊃ Wtl(t) \ Bt,1 =

At,1 ∪ {tl(t)}, which is infinite.

Proposition 2.15. If U is any of the diametrisable sets, then there are unique

V1, V2 (up to ordering) which are proper subsets of U in D, such that V1∪V2 has

almost all elements of U .

Proof. Firstly, let us show the existence of such sets. Of course, we go through

the possible types of set U . The only non-trivial case, that is the one that does

not directly follow from construction of D is the third one.

Case 1. U is of A-type.

Say U = Aw,p,r, some minimal w and integers p, r. Then, we can take

V1 = Aw,2p,r, V2 = Aw,2p,p+r.

Case 2. U is of B-type.

Say U = Bw,k, some minimal w and integer k. Then, by construction,

we have either Bw,k = Bw,k1 ∪ Bw,k2 , some two integers k1, k2, or Bw,k =

Bw,k+1 ∪Wv, some available v, giving us the needed sets V1, V2.

Case 3. U is of W -type.

Suppose U = Ww, for some available w. If both wa and wb are available,

we can take V1 = Wwa and V2 = Wwb.

Otherwise, ws is not available for some character s. Therefore, there is

a word t such that ws is prefix of t∞, and l(t)2 < l(ws) = l(w) + 1. But
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w is also a prefix of t∞ and available so l(t)2 ≥ l(w) so l(w) = l(t)2, i. e.

w = tl(t).

The next thing to do is to establish the minimality of t. Let u be

any word such that l(u) ≤ l(t) and t∞ = u∞. Then, as before ws is

an initial segment of u∞ and l(u)2 < l(ws) = l(w) + 1, so by the same

arguments we get l(w) = l(u)2, thus l(u) = l(t), as wanted. But then

Ww = At,1,0 ∪Bt,1 ∪ {w}, proving the existence part of the claim.

Suppose now that U ′ is any set strictly contained in U . Then, by Proposi-

tion 2.14, U \U ′ is infinite, so U ′ cannot contain both V1, V2. Also, from the same

proposition we get that V1 and V2 are disjoint, as otherwise, one must contain

the other and thus be equal to U . So, U ′ intersects at precisely one of V1, V2,

since all diametrisable sets are infinite. W.l.o.g. U ′ intersects V1. If V1 ( U ′,

then U ′ \ V1 is infinite, and thus intersects V2, which is impossible. Hence, by

Proposition 2.14, U ′ ⊂ V1. So, if we had any other V ′
1 , V

′
2 with the property in

assumption, we would have V ′
1 ⊂ V1 and V ′

2 ⊂ V2, reordering if necessary, (we

cannot have both sets included in the same Vi), so unless these are both equali-

ties V1∪V2 \ (V ′
1 ∪V ′

2) would be infinite, yielding a contradiction, and concluding

the proof.

Corollary 2.16. If U is a diametrisable set with proper diametrisable subsets

V1, V2, U
′, such that U \ (V1 ∪ V2) is finite, then V1, V2 are disjoint and one of

them contains U ′.

Proposition 2.17. Given word w, there are only finitely many diametrisable

sets containing it.

Proof. If w ∈ Wu, for some u, then u is prefix of w, hence there are only finitely

many such sets containing w.

If w ∈ At,p,r, then, l(w) ≥ p, l(t), so there are only finitely many choices for

t, p, r.

Finally, suppose w ∈ Bt,k. Length of w must be greater than l(t)2, which

gives us finitely many choices for minimal word t. Fix t. Recalling the definition

of B-type sets, we have Bt,k = ∪i∈IkWwi
, where l(wi) = l(t)2 + i. But if m is a

nonnegative integer, then min Ik ≥ m for k ≥ 2m − 1. Thus, for such k, we get

l(σ(Bt,k)) ≥ l(t)2 +m, so w ∈ Bt,k for only finitely many k, as desired.
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Figure 2.1: Structure of the collection of diametrisable sets

These claims serve us to better understand the structure of D. In particular,

we can view D as a binary tree whose nodes are the diametrisable sets, the root

is W∅ and given a set U ∈ D, its children V1, V2 are given by Corollary 2.16.

What is not clear, however, is that the tree so defined actually contains all the

diametrisable sets. But, given any such a set U ∈ D, we have either U =

W∅ or U is contained in one of the children of the root, by Corollary 2.16.

Proceeding further in this fashion, either we reach U , or we get an infinite

collection of diametrisable sets all containing U . But, that implies that if we

do not reach U , its elements belong to infinitely many members of D, which

contradicts Proposition 2.17. Hence this binary tree has precisely D for its set

of nodes. Moreover, to say that a diametrisable set U1 is a subset of another

such set U2 is equivalent to having U2 as an ancestor of U1 in this binary tree.

To depict what has just been discussed, we include Figure 2.1 which shows the

first few layers of tree. We refer to this tree as T .

2.4 Ordering D

In order to finish constructing the counterexample, we must make D well-

ordered, so that then we know which diametrisable set is which Sn. Defining

such an order, and proving that it is in fact what we need, is the purpose of this

section.
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Consider the relation < on D, given as follows: if U ̸= V , we say U < V if

any of these holds:

O1 l(σ(U)) < l(σ(V )),

O2 l(σ(U)) = l(σ(V )) and U ⊃ V,

O3 l(σ(U)) = l(σ(V )), none is contained in the other and we have that either

U is of A-type, but V is not, or U is of B-type and V is of W -type,

O4 l(σ(U)) = l(σ(V )), none is contained in the other, they are of the same

type and σ(U) is alphabetically before than σ(V ).

Proposition 2.18. If U < V by O2, then either:

(i) both U and V are A-type, or,

(ii) both U and V are B-type, or,

(iii) U is B-type, V is W -type.

Proof. Regard D as a binary tree T that was described in the final remarks of

the previous section. Then, U ⊃ V tells us that U is an ancestor of V , and as

U < V by O2, we have σ(U) = σ(V ). Thus, the shortest word must be the

same for all sets on the path from U to V in T . Now, we analyze the splits,

i.e. given a node, what its children are. Returning back to the choice of the

diametrisable sets, we see that A-type sets always split into two A-type sets,

and B-type sets split into B and W -type sets. We conclude that the claim is

true if, when W -type set splits into an A-type and a B-type set, the shortest

word of the parent is not in any of the children. But, suppose that we have such

a situation, a set T = Ww, whose children are At,1,0 and Bt,1. From the proof

of Case 6 of Proposition 2.14, recall that w = tl(t). But then w /∈ At,1,0 and

w /∈ Bt,1, as desired.

Proposition 2.19. Relation < on the chosen sets is a total order. Furthermore,

the collection of chosen sets is well ordered under <.

Proof. If U, V are two distinct sets among the chosen ones, we want that pre-

cisely one of U < V , V < U is true.
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Suppose neither of these holds. Hence σ(U) = σ(V ). But then their inter-

section is non-empty, hence one is contained in the other, so U < V or vice versa

by O2.

Now, assume that both hold. Therefore, l(σ(U)) = l(σ(V )), none is con-

tained in the other (otherwise we have U ⊂ V and V ⊂ U , thus U = V ), they

are of the same type, and further σ(U) = σ(V ). But as before, these must in-

tersect, leading us to a contradiction.

Having proved the trichotomy, we now move to establishing transitivity of

the relation. Suppose we have three chosen sets U, V, T such that U < V < T ,

from which U ̸= V , V ̸= T follows. Further, we cannot have T = U as this

would imply U < V < U . Hence, we can assume that all three sets are distinct.

If O1 holds for U < V or V < T , then it also holds for U, T . So, assume this is

not true. Then we have the following cases:

Case 1. U < V by O2, V < T by O2.

Then U ) V ) T , so U < T by O2 as well.

Case 2. U < V by O2, V < T by O3.

By Proposition 2.18, we see that (as V cannot be of W -type), U and V

are of same type. As V ⊂ U and V ̸⊂ T , then U ̸⊂ T , so either T ⊂ U

and U < T by O2, or U < T by O3.

Case 3. U < V by O2, V < T by O4.

As above, we get U ̸⊂ T . If T ⊂ U then T > U . Hence, assume that

T ̸⊂ U . Suppose that U is B-type and V is W -type, thus U < T by O3.

Otherwise, by Proposition 2.18 U and V have the same type, hence so does

T , and σ(U) = σ(V ) (because of inclusion) so U < T by O4.

Case 4. U < V by O3, V < T by O2.

If T ⊃ U , then U ⊂ V , which is impossible, so U ̸⊂ T . If T ⊂ U , we are

done, otherwise from Proposition 2.18 we obtain U < T by O3.

Case 5. U < V by O3, V < T by O3.

Thus U is of A-type, V is of B-type, T is ofW -type. By Proposition 2.18,

we conclude that U ̸⊂ T , T ̸⊂ U , so U < T by O3.
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Case 6. U < V by O3, V < T by O4.

By Proposition 2.18, U ̸⊂ T , so either T ⊂ U giving U < T by O2, or

none is contained in the other and U < T by O3.

Case 7. U < V by O4, V < T by O2.

Having U as a subset of T implies U ⊂ V which is impossible. So U ̸⊂ T

and if T ⊂ U , then U < T by O2. Otherwise, unless U and T are of the

same type, we have U < T by O3, due to Proposition 2.18. Finally, from

inclusion we deduce σ(T ) = σ(U) and thus U < T by O4.

Case 8. U < V by O4, V < T by O3.

If U ⊂ T , by Proposition 2.18, we reach a contradiction. Hence U ⊃ T ,

so U < T by O2, or U < T by O3 otherwise.

Case 9. U < V by O4, V < T by O4.

If T ⊃ U or vice versa, we have σ(T ) = σ(U) which is impossible. As

all three sets are of same type, we get U < T by O4.

Finally, given a subset P of D, consider its subset P ′ of those sets U ∈ P

such that l(σ(U)) = min{l(σ(V )) : V ∈ P}. This is finite by Proposition 2.17,

hence we can find the minimal element of P ′ with respect to <, which is smaller

than any member of P \ P ′ by O1, making D well-ordered under <.

Hence, as D is countable, we can take S0 = minD and for k ≥ 1, Sk+1 =

min(D \ {S0, S1, . . . , Sk}). Observe that for any given U ∈ D there are only

finitely many words of length at most l(σ(U)). Proposition 2.17 then tells us

that there are only finitely many V ∈ D such that l(σ(V )) ≤ l(σ(U)). Hence,

there are only finitely many V ∈ D such that V < U , so U = Sk for some k ∈ N.
Therefore, {S0, S1, S2, . . . } = D. Note also that S0 = X = W∅ because W∅ is

the only set whose shortest word has zero length.

2.4.1 Proof that D satisfies the required properties

All that is left is to show that S0, S1, . . . satisfy A1 - A6. Having done the

most of the work already, the proofs of the following claims will either be rather

short or the obvious case-examination.
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Proposition 2.20. (Sn)n≥0 satisfy A1.

Proof. Let Si, Sj be such that i < j and they intersect. Thus, Si < Sj, l(σ(Si)) ≤
l(σ(Sj)) and also Si ⊂ Sj or Si ⊃ Sj, by Proposition 2.14. But if Si ⊂ Sj,

then we must have l(σ(Si)) = l(σ(Sj)) and hence Sj < Si by O2, which is a

contradiction. Also S0 = X.

Proposition 2.21. (Sn)n≥0 satisfy A2.

Note that this is Proposition 2.17, but we include it here for completeness.

Proposition 2.22. (Sn)n≥0 satisfy A3.

Proof. Let N be given. By Corollary 2.16, given Si, we can find Sj, Sk, disjoint

subsets of Si, which cover all but finitely many elements of Si, therefore i < j, k

by O1 or O2. So, we can start with S0, and perform such splits until we are

left with sets Sm1 , Sm2 , . . . , Smk
, with m1,m2, . . . ,mk > N , which cover almost

all elements of X, as in each split we lose only finitely many elements.

Proposition 2.23. (Sn)n≥0 satisfy A4.

Proof. Suppose that Si1 ⊃ Si2 ⊃ . . . for some i1 < i2 < . . . . As usual, we

consider different cases.

Case 1. There is set of A-type among these.

Let Sik be such a set. As A-type set splits into A-type sets, we have that

when n ≥ k, Sin = Aw,pn,rn , some minimal word w, and integers pn, rn, and

pn+1 > pn, so in fact pn+1 ≥ 2pn, as these are powers of 2. In particular,

we deduce that for sufficiently large n, pn > nl(w) and thus wn is prefix of

all words in Sin implying Sin ⊂ Wwn . By Proposition 2.10, one of awn, bwn

is available, w.l.o.g. the former is true, hence aSin ⊂ Wawn = Sjn , some jn.

Consider the cyclic permutation u of w such that sw = us, s being the

last character of w. Let v be a word such that v∞ = u∞ and l(u) ≥ l(v).

But then for the cyclic permutation t of v such that for character s′ we have

s′t = vs′, we have s′t∞ = v∞ = sw∞, so l(u) = l(t) ≥ l(w) = l(v), proving

the minimality of v. If s = a, we would have that awn is not available

as it would be initial segment of u∞, but l(u) = l(w). Hence s = b, and

bSin ⊂ Av,pn,r = Sjn , where r = rn + 1, unless rn = pn − 1 and then r = 0,

jn suitable index. As jn tends to infinity as n does, A4 holds in this case.
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Case 2. There are no A-type sets, but there are infinitely many of W -type.

Denote W -type sets among these by Ww1 ) Ww2 ) . . . . As wi is prefix

of wi+1, for all i, these define an infinite word w whose initial segments

the words wi are. By Proposition 2.10, w.l.o.g. awi is available infinitely

often, so we can take Wawi1
for suitable i1 < i2 < . . . , to establish a part

of the claim.

Similarly, if there are infinitely many initial segments of bw available,

choosing these and their corresponding W -type sets establishes the claim.

Suppose contrary, i. e. there is m such that prefixes of bw of length

greater or equal to m are all forbidden. Denote by un initial segment of

bw of length n, and let tn be the shortest word such that l(tn)
2 < l(un)

and un is initial segment of t∞n . Now, suppose there is no n ≥ m such that

l(tn+1) > l(tn), hence l(tm) ≥ l(tm+1) ≥ . . . , so bw = t∞n , some n. But this

means that wi are forbidden from some point, resulting in a contradiction.

So, there must be such an n ≥ m, pick the smallest possible. Hence un+1

is not the initial segment of t∞n , but un is both initial segment of t∞n and

t∞n+1. Further, l(un) ≥ l(tn)
2, l(tn+1)

2 so as before, t∞n = t∞n+1, but un+1 is

prefix of the latter, but not former, giving us a contradiction.

Case 3. Almost all sets are of B-type.

Given Sin = Bw,k, let s be the last character of w, so sw
l(w) is forbidden.

Let u be the cyclic permutation of w such that sw = us, and so u is minimal

as well, by arguments in Case 1 of this proof. Then, sBw,k = Bu,l or

sBw,k = Bu,l\Wv for suitable index l and word v, so take Sjn = Bu,l. Let s
′

be the character not equal to s and u be σ(Bw,k) without the last character.

Then as su is forbidden, so s′u is available and s′Bw,k ⊂ Ws′u = Sjn . As

jn tends to infinity as n does, we are done.

Proposition 2.24. (Sn)n≥0 satisfy A5.

Proof. Let Sn be given. If it is of A or W -type, Sn ⊂ Wσ(Sn), so choose a

character s such that sσ(Sn) is available and hence sSn ⊂ Wsσ(Sn) and Sn <

Wsσ(Sn), since l(σ(Sn)) < l(σ(Wsσ(Sn))). If Sn is of B-type, then let u be the

shortest word in Sn after erasing the last character, so Sn ⊂ Wu and once again

choose s ∈ {a, b} for which su is available, hence sSn ⊂ Wsu. If Wsu intersects
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Wu, it must be its subset and u prefix of su, but then u = sl(u), so su is forbidden,

as l(u) ≥ 1. So Wsu and Wu are disjoint, hence Wsu and Sn are also. Combining

this with l(σ(Sn)) = l(σ(Wsu) and comparing the types gives Sn < Wsu, by

O3.

Proposition 2.25. (Sn)n≥0 satisfy A6.

Proof. Let w ̸= ∅ be given. We will divide the proof into three cases, each

showing the claim for particular set type.

Case 1. Suppose for some word u we have u,wu ∈ Sn = At,p,r, where t is minimal.

Hence l(u) > l(t)2. Suppose further l(w) < l(t). So w is an initial segment

of u, as u is an initial segment of wu. But then, w2 is also an initial segment

of u, etc. up to wl(t) as l(u) > l(t)2 > l(w)l(t). Hence tl(w) = wl(t), but

t is minimal so l(w) ≥ l(t). Hence we have only finitely many choices for

A-type Sn, as l(w) ≥ l(t) and p ≤ l(w) must hold.

Case 2. If Sn is of W -type, say Wv, we have u,wu ∈ Wv, v available. As there are

only finitely many v such that l(v) ≤ l(w), w.l.o.g. l(v) > l(w). We have

u = vr1, some word r1. Hence wvr1 ∈ Wv so wv ∈ Wv. But then wv = vr2,

some r2, so v = wv1, for some v1, as l(w) < l(v), and wwv1 = wv1r2

implies wv1 = v1r2. We can iterate this until v = wkvk, l(vk) < l(w). But

wvk = vkrk+1, some rk+1, making v an initial segment of w∞, but it is

available hence l(v) ≤ l(w)2, therefore we have finitely many choices for

Sn of W -type.

Case 3. Finally, suppose Sn is B-type, and u,wu ∈ Sn. Then we have two available

words w1s1, w2s2, where s1, s2 are characters, w1, w2 prefixes of t∞, some

minimal word t, u ∈ Ww1s1 , wu ∈ Ww2s2 , l(w1), l(w2) ≥ l(t)2. So u =

w1s1r1, wu = w2s2r2 holds for some words r1, r2.

Suppose l(w) ≤ l(t). Let wu′ be the initial segment of wu of length

l(t)2 thus it is a prefix of w2, and hence of t∞. Thus wtl(t)−1 is a prefix of

tl(t). Hence, wktl(t)−k is a prefix of tl(t) for all k ∈ [l(t)]. In particular, wl(t)

is prefix of tl(t), thus wl(t) = tl(w), implying w∞ = t∞, but t is minimal,

so w = tα, some α ≥ 1, so w = t as l(w) ≤ l(t). Now we have wu =

w2s2r2 = ww1s1r1 = tw1s1r1, which differ from t∞ for the first time at s1
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and s2, hence w2 = tw1. However, due to construction of B-type sets and

the fact that the common difference of arithmetic progression Ik is at least

k/4, there are only finitely many k for which Bw,k have such Ww1s1 ,Ww2s2

as subsets.

Now, suppose l(w) > l(t). If the claim is to be false, we can assume

without loss of generality, that for infinitely many k we have some u ∈ Bt,k

and wu ∈ Bt,k too. Hence we can assume that there are w1, w2 prefixes

of t∞, with some characters s1, s2, such that w1s1, w2s2 are available, u ∈
Ww1s1 , wu ∈ Ww2s2 , w1, w2 arbitrarily long, thus say l(w1), l(w2) > l(w)2.

So u = w1s1r1, wu = w2s2r2 for some words r1, r2, thus wu = ww1s1r1 =

w2s2r2. Hence t
l(w) is a prefix of w2 as l(w1) > l(w)2 > l(t)2, and similarly

wtl(w)−1 is initial segment of ww1 so both are prefixes of wu hence tl(w) is

a prefix of wtl(w)−1, which is then prefix of w2tl(2)−2, etc. and a prefix of

wl(w), so w∞ = t∞ and due to minimality w = tk, some k ≥ 2. Hence

w2s2r2 = wu = tkw1s1r1 so the character where wu first differs from t∞

is at the same time at s1 and s2, hence w2 = tkw1 = ww1, implying

l(w2) = l(w1) + l(w), but as previously explained, this can occur just for

finitely many Bt,k, which proves the claim.

Having proved the desired properties of our collection of sets, we are ready

to conclude:

Theorem 2.26. Given λ ∈ (0, 1), there is a compact (pseudo-)metric space

(X, d) on which we have continuous functions f, g : X → X such that given

x, y ∈ X either d(f(x), f(y)) ≤ λd(x, y) or d(g(x), g(y)) ≤ λd(x, y) holds, but

no word in f, g has a fixed point.
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3 Commuting Contractive Families

This chapter contains the proof of Theorem 1.7, which we recall here.

Theorem. Let (X, d) be a complete metric space and let {f1, f2, f3} be a com-

muting λ-contractive family of operators on X, for a given λ ∈ (0, 10−23). Then

f1, f2, f3 have a common fixed point.

3.1 Main goal, notation and definitions

In this section, we provide the notation and definitions that will be used

extensively throughout the proof of Theorem 1.7. We write N0 for the set of

nonnegative integers and recall that for a positive integer N , [N ] stands for the

set {1, 2, . . . , N}.
When a is an ordered triple of nonnegative integers and x ∈ X, we define

a(x) = fa1
1 ◦ fa2

2 ◦ fa3
3 (x). Since our functions commute, we have a(b(x)) =

(a+ b)(x), for a, b ∈ N3
0.

Pick an arbitrary point p0 of our space X, and define a new pseudometric

space (abusing the notation slightly)G(p0) = (N3
0, d), where d(a, b) = d(a(p0), b(p0)),

when a, b, are ordered triples of non-negative integers. Therefore, we will actu-

ally work on an integer grid instead. Define ei to be triple with 1 at position

i, and zeros elsewhere. We now derive a few basic observations culminating in

a proposition that implies Theorem 1.7 and whose proof will therefore occupy

most of this chapter.

Proposition 3.1. Let (X, d) be a complete metric space and λ ∈ (0, 10−23)

given, with f1, f2, f3 : X → X which form a commuting λ-contractive family.

Then for some i, fi has a fixed point.

Proposition 3.2. Proposition 3.1 implies Theorem 1.7.
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Proof. Without loss of generality, we have a fixed point x of f1. Thus, define X1

to be the set of all fixed points of f1. It is a closed subspace ofX, hence complete.

Further, s ∈ S1 implies f1(fi(s)) = fi(f1(s)) = fi(s), so fi(s) ∈ S1, hence the

other two functions preserve S1, and form a λ-contractive family themselves, so

f2 has a fixed point in S1, and repeat the same argument once more to obtain a

common fixed point.

Proposition 3.3. Let (N3
0, d) be a pseudometric space and λ ∈ (0, 10−23). Sup-

pose that given any a, b ∈ N3
0, there is i ∈ [3] such that λd(a, b) ≥ d(a+ei, b+ei).

Then there is a Cauchy sequence (xn)n≥1 in this space, such that xn+1 − xn is

always an element of {e1, e2, e3}.

Proposition 3.4. Proposition 3.3 implies Theorem 1.7.

Proof. It suffices to show that Proposition 3.3 implies Proposition 3.1. Let (X, d)

be a metric space as in Proposition 3.1, along with three functions acting on

it. Pick an arbitrary point p0 ∈ X, and consider pseudometric space G(p0)

defined before. By Proposition 3.3, we have a Cauchy sequence (xn)n≥1, with

the property above. So, (xn(p0)) is Cauchy in X. Without loss of generality, we

have that xn and xn+1 differ by e1 infinitely often, say for (xni
)i≥1, xni+1 = xni

+e1

holds. As X is complete, xn(p0) converges to some x. Hence xni
(p0) converges

to x, and so does f1(xni
(p0)), but f1 is continuous, thus, f1(x) = x.

Therefore, it suffices to prove Proposition 3.3. The following definitions aim

to capture some of the structure of the integer grid relevant to our proof.

Let x be a point in the grid. Define ρ(x) to be the maximum of the distances

d(x, x + e1), d(x, x + e2), d(x, x + e3). As we shall see in the following section,

ρ will be of fundamental importance. Given x in the grid, we define N(x) =

{x+ e1, x+ e2, x+ e3} and refer to this set as the neighbourhood of x.

Let S be a subset of the grid. Given k ∈ [3], we say that S is a k-way set, if

for all s ∈ S, precisely k elements of N(s) are in S. We denote the unique 3-way

set starting from x by ⟨x⟩3 = {x+ k : k ∈ N3
0}.
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3.2 Overview of the proof of Proposition 3.3

The proof of Proposition 3.3 will occupy the most of the remaining part of

this chapter. To elucidate the proof, we will structure it in a few parts. The

short first section will explain our strategy in the proof along with some of the

basic ideas. The second part will be about k-way sets and how they interact

with each other. Afterwards, we shall be dealing with local structure, namely

we shall show existence or non-existence of certain finite sets of points, and our

main means to this end will be the k-way sets. Finally, after we have clarified the

local structure sufficiently well, we will be able to obtain the final contradiction.

Let us now be more precise and elaborate on these parts of the proof.

First of all, we shall establish a few basic facts about ρ, most importantly

µ = inf ρ(x) > 0, where x ranges over all points. The proof of this statement

is based on a lemma that says d(x, y) ≤ (ρ(x) + ρ(y))/(1 − λ). The fact that

µ > 0 will be the pillar of the proof, and the mentioned lemma will be used

quite frequently. The basic idea which is introduced in this part of the proof

is to create sets of points by contracting with some previously chosen ones (by

contracting a pair x, y we mean choosing suitable function f in our family such

that d(f(x), f(y)) ≤ λd(x, y)). By doing so, we will be able to construct k-ways

sets of bounded diameter.

After that, we shall prove a few propositions about the k-way sets. For ex-

ample, if we have 3-way set of bounded diameter then it contains 2-way subset of

much smaller diameter, in a precise sense discussed afterwards. At first glance,

it seems that we have lost a dimension by doing this, however, we shall also show

that if we have 2-way set of sufficiently small diameter, we can obtain 3-way set

of small diameter as well. So, for example, given K and provided λ is small

enough, we cannot have 3-way sets of diameter Kµ, and we cannot have 2-way

sets of diameter λKµ inside every 3-set. From that point on, we shall combine

the results and approaches of these two parts in the proof. Most of the claims

that we establish later will either show that certain finite configuration (by which

we mean finite set of points with suitable distances between) exists or do not

exist, and we do so by supposing contrary, contracting the new points with the

given ones and finding suitable k-way sets, which give us a contradiction.
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Figure 3.1: Examples of diagrams

As a basic example of this method, we note that each point x induces a 1-

way set of diameter at most 2ρ(x)/(1 − λ), and importantly, such a set exists

in every 3-way set. With a greater number of suitable points we are able to

induce bounded k-way sets for larger k. Using the facts established, we prove

the existence or non-existence of specific finite sets. Gradually, we learn more

about the local structure of the grid. For example, for some constant C (in-

dependent of λ) we have y with ρ(y) ≤ Cµ, d(y + e1, y + e2) ≤ λCµ, provided

λ is small enough. Similarly, we shall establish that there is no point y with

ρ(y) ≤ Cµ, diamN(y) ≤ λCµ, for suitable λ,C. Such points will be used at a

few places in the later part of the proof and in the final argument to reach the

contradiction.

Let us now introduce the (somewhat vague) notion of a diagram of a point x.

A diagram for x contains the information about the contractions in {x}∪N(x).

Diagrams will be shown as figures, and usually the dashed lines will imply that

the corresponding edge is a result of a contraction. In the Figure 3.1 we give ex-

amples of two diagrams1, the left one, denoted by A, tells us among others that

x+e1, x+e2 are contracted by 1 (i.e. d(x+2e1, x+e1+e2) ≤ λd(x+e1, x+e2)).

The claims established so far allow us to have a very restricted number of pos-

sibilities for diagrams, and one of the possible strategies will then be to classify

the diagrams, see how they fit together and establish the existence of a 1-way

Cauchy sequence. The most important claim that we use for rejecting diagrams

is the following proposition. (Here C1 = 49158.) Let us now introduce the

(somewhat vague) notion of a diagram of a point x. A diagram for x contains

1In other figures we shall not explicitly name the points on the diagram itself, however, the

coordinate axes will always be the same.
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the information about the contractions in {x} ∪N(x). Diagrams will be shown

as figures, and usually the dashed lines will imply that the corresponding edge is

result of a contraction. In the Figure 3.1 we give an example of two diagrams2,

the left one, denoted by A, tells us among others that x+e1, x+e2 are contracted

by 1 (i.e. d(x+2e1, x+ e1 + e2) ≤ λd(x+ e1, x+ e2)). The claims established so

far allow us to have a very restricted number of possibilities for diagrams, and

one of the possible strategies will then be to classify the diagrams, see how they

fit together and establish the existence of a 1-way Cauchy sequence. The most

important claim that we use for rejecting diagrams is the following proposition.

(Here C1 = 49158.)

Proposition 3.5. Given K ≥ 1, suppose we have x0, x1, x2, x3 such that diam{xi+
ej : i, j ∈ [3], i ̸= j} ≤ λKµ. Furthermore, suppose ρ(x0) ≤ Kµ and that

d(x0, xi) ≤ Kµ for i ∈ [3]. Let {a, b, c} = [3].

Provided λ < 1/(820C1K), whenever there is a point x which satisfies d(x+

ea, x+ eb) ≤ λKµ and d(x, x0) ≤ Kµ, then we have d(x+ ec, xc + ec) ≤ 16λKµ.

The final part of the proof is based on the following proposition.

Proposition 3.6. Fix arbitrary x0 with ρ(x0) < 2µ. Given K ≥ 1, when

i ∈ [3], define Si(K, x0) = {y : d(x0, y) ≤ Kµ, d(y, y + ei) ≤ Kµ}. Provided

1 > 10λKC1, in every ⟨z⟩3 there is t such that d(t, x0) ≤ 3Kµ, but for some i

we have s
i

̸⌢t when s ∈ Si(K, x0).

Using the point t, whose existence is provided, we shall discuss the cases on

d(t+ e1, t+ e2) being large or small. Both cases help us to reject many diagrams

and then to establish the contradiction in a straightforward manner.

To sum up, the basic principle here is that contractions ensure that we get

specific finite sets. On the other hand, certain finite sets empower contractions

further, allowing us to construct k-way sets of small diameter. Therefore, if we

are to establish a contradiction, we can expect a dichotomy; either we get finite

sets that imply global structure that is easy to work with, or we do not have

such sets, and we impose strong restrictions on the local structure of the grid.

2In other figures we shall not denote the points on the diagram itself, however, the coordi-

nate axes will always be the same.
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We are now ready to start the proof of Proposition 3.3. The proof will run

for the most of the chapter, ending in Section 3.7.

Proof of Proposition 3.3. Suppose contrary, there is no 1-way Cauchy sequence

in the given pseudometric space on N3
0. This condition will, as we shall see, imply

a lot about the structure of the space, and we will start by getting more familiar

with the function ρ, which will, as it was already remarked, play a fundamental

role.

3.3 Basic finite contractive configurations

arguments and properties of ρ

In this section we establish some properties of ρ, together with some claims

which will come in handy at several places throughout the proof.

Lemma 3.7 ((Furthest neighbour inequality - FNI)). Given x, y in the grid we

have d(x, y) ≤ (ρ(x) + ρ(y))/(1− λ).

Proof. Let i be such that λd(x, y) ≥ d(x+ei, y+ei), which we denote from now on

by x
i
⌢y, and say that i contracts3 x, y. Using the triangle inequality a few times

yields d(x, y) ≤ d(x, x+ei)+d(x+ei, y+ei)+d(y+ei, y) ≤ λd(x, y)+ρ(x)+ρ(y),

which implies the result.

Similarly to x
i
⌢y, we write x

i

̸⌢y to mean that d(x+ ei, y + ei) > λd(x, y).

Lemma 3.8. Let x, y be any two points in the grid. Then we can find a 1-way

subset S, such that y ∈ S and given ϵ > 0 we have d(s, x) ≤ 1
1−λ

ρ(x) + ϵ for all

but finitely many s ∈ S.

Proof. Consider the sequence (xn)n≥0 defined inductively by x0 = y and for any

k ≥ 0, we set xk+1 = xk + ei when i contracts x and xk. By induction on k, we

prove that d(x, xk) ≤ λkd(x, y) + ρ(x)/(1− λ).

Case k = 0 is clear as ρ(x0) ≥ 0. If the claim holds for some k and xk
i
⌢x,

then by the triangle inequality we have d(xk+1, x) ≤ d(xk+1, x+ei)+d(x+ei, x) ≤
λd(xk, x)+ρ(x0) ≤ λk+1d(x, y)+λρ(x0)/(1−λ)+ρ(x0) ≤ λk+1d(x, y)+ρ(x0)/(1−

3We also say x, y is contracted by i, or x, y is contracted in the direction ei.
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λ), as desired.

Now, take n sufficiently large so that ρ(x0)/(1−λ)+λnd(x, y) ≤ 1
1−λ

ρ(x0)+ϵ.

Hence d(xk, x) ≤ 1
1−λ

ρ(x0) + ϵ for all k ≥ n, so choose (xk)k≥0 as the desired

set.

Proposition 3.9. Given any x in the grid, we have ρ(x) > 0.

Proof. Suppose contrary, ρ(x) = 0 for some x. Then Lemma 3.8 immediately

gives a 1-way Cauchy sequence, which is a contradiction.

Proposition 3.10. The infimum inf{ρ(x) : x ∈ N3
0} is positive.

This result is one the of crucial structural properties for the rest of the proof,

and having it in mind, we will try either to find small ρ, or use the structure

implied to get a Cauchy sequence, which will yield a contradiction. To prove

this statement, we use Lemma 3.8, the difference being that we now contract

with many different points of small ρ instead of just one.

Proof. Suppose contrary, hence we get (yn)n≥1 such that ρ(yn) < 1/n. As ρ is

always positive, we can assume that all elements of the sequence are distinct.

We define a 1-way sequence (xk)k≥0 as follows: start from arbitrary x0 and

contract with y1 as in the proof of Lemma 3.8 until we get a point xk1 with

d(xk1 , y1) ≤ 2ρ(y1)/(1−λ) (such a point exists by Lemma 3.8). Now, start from

xk1 and contract with y2 until we reach xk2 with d(xk2 , y2) ≤ 2ρ(y2)/(1−λ). We

insist that ki+1 > ki for all possible i, so that, proceeding in this way, one defines

the whole sequence. Recalling the estimates in the proof of Lemma 3.8, we see

that for ki ≤ j ≤ ki+1 we have d(xj, yi+1) ≤ d(xki , yi+1) + ρ(yi+1)/(1 − λ) ≤
d(xki , yi) + d(yi, yi+1) + ρ(yi+1)/(1 − λ). So by FNI, we see that d(xj, yi+1) ≤
(3ρ(yi) + 2ρ(yi+1))/(1 − λ) ≤ 5

i(1−λ)
. Hence, if we are given any other xj′ with

ki′ ≤ j′ ≤ ki′+1, by the triangle inequality and FNI we see that d(xj, xj′) ≤
6

1−λ
(1/i+1/i′), which is enough to show that the constructed sequence is 1-way

Cauchy.

We will denote inf ρ, where the infimum is taken over the whole grid, by µ.

The proposition we have just proved gives µ > 0.
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3.4 Properties of and relationship between k-way

sets

The following propositions are about the nature of k-way sets. These both con-

firm their importance for the problem and are useful at various places throughout

the proof.

Proposition 3.11. If ⟨α⟩3 is a 3-way set of diameter D, then it contains a

2-way subset of diameter not greater than λC1D, where C1 = 49158.

Proof. The proof will be a consequence of Proposition 3.12 and Lemma 3.14,

each requiring its own auxiliary lemma. Let us start by establishing

Proposition 3.12. If the conclusion of Proposition 3.11 does not hold, then

given x, y ∈ ⟨α⟩3 and distinct i, j ∈ [3], there is z ∈ ⟨α⟩3 with d(x, z+ ei) > 2λD

and d(y, z + ej) > 2λD.

The purpose of this proposition is to provide us with a finite set of points

which will then be used to induce a 2-way set of the wanted diameter, by con-

tractions. To prove this claim, we examine two cases on the distance between x

and y, one being d(x, y) > 5λD and the other being d(x, y) ≤ 5λD.

Proof of Proposition 3.12. As noted above, we look at the two cases on d(x, y).

Case 1. Suppose d(x, y) > 5λD. We actually obtain a slightly more general

conclusion in this case; if d(x, y) > 5λD and we cannot find a desired point z,

then we get a 3-way subset T of ⟨α⟩3 of diameter not greater than 4λD.

Suppose there is no such z, hence for all z ∈ ⟨α⟩3 either d(x, z + e1) ≤ 2λD

or d(y, z + e2) ≤ 2λD is true. We can colour all points t in this 3-way set

by c(t) = 1 if d(t, x) ≤ 2λD, by c(t) = 2 if d(t, y) ≤ 2λD, and c(t) = 3

otherwise. This is well-defined as the triangle inequality prevents the first two

conditions from holding simultaneously. Thus, for any z either c(z + e1) = 1 or

c(z+e2) = 2. Also given any two points z, t in the grid such that t
j
⌢z, and whose

neighbours take only colours 1 and 2, it cannot be that c(z + ej) ̸= c(t + ej),

as otherwise, w.l.o.g. c(t + ej) = 1, c(z + ej) = 2. Then we get d(x, y) ≤
d(x, t+ej)+d(t+ej, z+ej)+d(z+ej, y) ≤ 5λD, which is a contradiction. Thus

for any such z and t, there is an i such that c(t+ ei) = c(z + ei).
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The following auxiliary lemma tells us that all such colourings are essentially

trivial. (Note that we are still in the Case 1 of the proof of Proposition 3.12.)

Lemma 3.13. Let c : ⟨β⟩3 → [3] be a colouring such that

(i) given z ∈ ⟨β⟩3 either c(z + e1) = 1 or c(z + e2) = 2,

(ii) given z, t ∈ ⟨β⟩3 such that neighbours of z, t take only colours 1 and 2, then

c(z + ei) = c(t+ ei) for some i.

Then there is a 3-way subset of ⟨β⟩3 which is either entirely coloured by 1 or

entirely coloured by 2.

Proof of Lemma 3.13. We denote the coordinates by superscripts. Given non-

negative integers a ≥ β(3), b ≥ β(1) + β(2) denote L(a, b) = {z ∈ N3
0 : z(3) =

a, z(1) + z(2) = b}. Hence such a line must be coloured as c(b − β2, β2, a) =

1, c(b − β2 − 1, β2 + 1, a) = 1, . . . c(t + e1 − e2) = 1, c(t) arbitrary, c(t + e2 −
e1) = 2, . . . , c(β1, b − β1, a) = 2, for some point t. If all z in L(a, b), with

z(1) ≥ β(1) + 3, z(2) ≥ β(2) + 3 are coloured by 1, say that L(a, b) is 1-line.

Similarly, if these are coloured by 2, call it a 2-line, and otherwise 1,2-line.

Observe that if L(a, b) is 1,2-line for a ≥ β(3) and b > β(1) + β(2) + 10, then

L(a+ 1, b− 1) is not 1,2-line, for otherwise we have

• (β(1), b−β(1), a), (β(1)+1, b−β(1)−1, a), (β(1), b−β(1)−1, a+1) are coloured

by 1,

• (b−β(2), β(2), a), (b−β(2)−1, β(2)+1, a), (b−β(2)−1, β(2), a+1) are coloured

by 2,

which is impossible by the second property of the colouring.

Suppose we have a 1,2-line L(a, b) for a > β(3), b > β(1) + β(2) + 20. Then

L(a+ 1, b− 1) and L(a− 1, b+ 1) are either 1- or 2-lines. But as above we can

exhibit x′, y′ such that x′ + e1, x
′ + e2, y

′ + e3 are of colour 1 while y′ + e1, y
′ +

e2, x
′ + e3 are of 2, or we can find x′, y′ for which x′ + e1, x

′ + e2, x
′ + e3 have

c = 1, and y′ + e1, y
′ + e2, y

′ + e3 are coloured by 2. So, there can be no such

1,2-lines. Further, by the same arguments we see that L(a, s − a) for fixed s

must all be 1-lines or all 2-lines, for a > β3+1, and that in fact only one of these

possibilities can occur, hence we are done.
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Applying Lemma 3.13 immediately yields the Case 1 of the proof.

Case 2. Assume that d(x, y) ≤ 5λD, and suppose contrary. Then, in particular,

for any z, we have d(x, z + e1) ≤ 7λD or d(x, z + e2) ≤ 7λD. Further, we must

have z such that d(x, z + ei1), d(x, z + ei2) > 10λD holds for some distinct

i1, i2 ∈ [3]. Take such a z, and without loss of generality i1 = 2, i2 = 3. So d(z+

e1, x) ≤ 7λD. Hence d(z + (−1, 1, 1), x) ≤ 7λD and contracting z, z + (−1, 0, 1)

gives d(z + (−1, 0, 2), x) > 9λD. Now contract z, z + (−1, 1, 0) to get d(z, z +

(−1, 2, 0)) > 9λD. However, this is a contradiction, as both z + (−1, 1, 0) + e1

and z + (−1, 1, 0) + e2 are too far from x.

Having settled both cases on the distance d(x, y), the proposition is proved.

If there is x ∈ ⟨α⟩3 such that for some x′ ∈ ⟨α⟩3 and for all points y ∈ ⟨x′⟩3 we
have d(x, y) ≤ 5λD, we are done. Hence, we can assume that for all x, x′ ∈ ⟨α⟩3
there is y ∈ ⟨x′⟩3 which violates the above distance condition.

Take now an arbitrary x0 ∈ ⟨α⟩3. Due to the observation we have just made,

we know that for any i ∈ [3] there is an xi ̸= x0 such that d(xi + ei, x0 + ei) >

5λD. To be on the safe side, assume that the neighbourhoods of x0, x1, x2, x3

are all disjoint. Now, by Proposition 3.12, given i ̸= j in [3], we can find

xi,j ∈ ⟨α⟩3 such that d(xi,j + ei, x0 + ei) > 2λD, d(xi,j + ej, xi + ej) > 2λD.

Now, let y be any element of the 3-way set generated by α. Take i which

contracts x0, y, implying d(x0 + ei, y + ei) ≤ λD. Hence, by triangle inequality

d(xi + ei, y + ei) > λD, so xi, y must be contracted by some j ̸= i. Using the

triangle inequality once more, we get d(xi,j+ej, y+ej) > λD and by construction

d(xi,j + ei, y + ei) ≥ d(xi,j + ei, x0 + ei) − d(x0 + ei, y + ei) > λD, therefore for

k ̸= i, j, d(y + ek, xi,j + ek) ≤ λD. We are now ready to conclude that there is

finite set of points P such that whenever y ∈ ⟨α⟩3 is given, for each i ∈ [3] there

is a point p ∈ P with d(p, y + ei) ≤ λD. Here P consists of N(x0), xi + ej and

xi,j + ek for suitable induces i ̸= j ̸= k ̸= i. In particular, |P |= 15.

Lemma 3.14. Suppose we are given a 3-way set ⟨β⟩3 = ∪k
i=1Ai of diameter C,

where diameters of sets Ai are not greater than λrC. Then there is constant Kk,r

(i.e. does not depend on λ or C) such that ⟨β⟩3 has a two-way subset of diameter

at most Kk,rλC. Further, we can take K1,r = r,K2,r = 2r + 8, Kk+1,r = Kk,2r+1
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for all r and k ≥ 2.

Proof of Lemma 3.14. We prove the lemma by induction on k. When k = 1,

there is nothing to prove, and K1,r = r. Suppose k = 2.

Before we proceed, we need to establish

Lemma 3.15. Consider a 3-colouring of edges of complete graph G whose vertex

set consists of positive integers, namely c : {{a, b} : a ̸= b, a, b ∈ N} → [3]. Then

we can find sets A,B whose union is N, while for some colours cA, cB, we have

diamcA G[A], diamcB G[B] ≤ 8. (Here diamc0 means diameter of the subgraph

induced by the colour c0.) Furthermore, we can assume that A and B intersect

when ca ̸= cb.

Proof of Lemma 3.15. Let x be any vertex. Define Ai = {a : c(a, x) = i}, for
i ∈ [3], the monochromatic neighbourhood of colour i of x. We shall start by

looking at sets Ai. If these are not sufficient to complete the proof, we shall look

at similar candidates for A,B until we find the right pair of sets. The following

simple fact will play a key role: if X,Y intersect and diamcG[X], diamcG[Y ] are

both finite, then diamcG[X ∪ Y ] ≤ diamcG[X] + diamcG[Y ].

Firstly, if any of the sets Ai is empty, then taking Aj ∪ {x} and Ak ∪ {x} for

the other two indices j, k proves the lemma. Otherwise, we may assume that all

Ai are non-empty. The next idea is to try to ‘absorb’ all the vertices into two of

the sets Ai. To be more precise, let Bi,j = {ai ∈ Ai : ∀aj ∈ Aj, c(ai, aj) ̸= j} for

distinct i, j ∈ [3]. Then,

diami{x} ∪ Ai ∪ (Aj \Bj,i) ≤ 4

for all distinct i, j (which is what we meant by ‘absorbing vertices’ above).

Observe that if {i, j, k} = [3] and Bj,i and Bj,k are disjoint, then Aj \ Bj,i

and Aj \ Bj,k cover the whole Aj so we can take cA = i, cB = k and A =

{x} ∪ Ai ∪ (Aj \ Bj,i), B = {x} ∪ Ak ∪ (Aj \ Bj,k). Hence, we may assume that

Bj,i and Bj,k intersect, and that in particular these are non-empty.

Observe also that for {i, j, k} = [3], if we are given ai ∈ Bi,j, aj ∈ Bj,i then

c(ai, aj) ̸= i, j so c(ai, aj) = k. This implies diamkG[Bi,j ∪ Bj,i] ≤ 2. We shall

exploit this fact to finish the proof.
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Now pick arbitrary a3 ∈ B3,1 ∩B3,2. If c(a1, a3) = 3 for some a1 ∈ B1,2, then

diam3(B1,2∪B2,1∪A3∪{x}) ≤ 5 and diam1(A1∪(A2\B2,1)∪{x}) ≤ 4, so we are

done. The same arguments works for a3 and B2,1, allowing us to assume that no

edge between B1,2∪B2,1 and a3 is coloured by 3. Therefore, since a3 ∈ B3,1∩B3,2,

we have c(B1,2, a3) = 2 and c(B2,1, a3) = 1.

Recall that previously we tried to absorb the vertices of A1 to A2 to have a

set of bounded diameter in colour 2, but this failed for the set B1,2. Now, we

have c(B1,2, a3) = 2, so we can once again try the same idea, by looking for an

edge of colour 2 between a3 and A1 \ B1,2 (vertices of which are joined by an

edge of colour 2 to a vertex in A2).

Suppose that c(a1, a3) = 2 for some a1 ∈ A1 \ B1,2. Then diam2(A1 ∪ A2 ∪
{x}∪{a3}) ≤ 8, and taking A3∪{x} for the other set, proves the lemma. Anal-

ogously, the lemma is proved if c(a2, a3) = 1 for some a2 ∈ A2 \B2,1.

Finally, since a3 ∈ B3,1 ∩ B3,2, we may assume that c(A1 \ B1,2, a3) = 3 and

c(A2 \B2,1, a3) = 3. Observing that diam3(B1,2 ∪B2,1) ≤ 2 and diam3(N \B1,2 \
B2,1) ≤ 4, completes the proof.

We refer to diamc as the monochromatic diameter for c.

Consider the complete graph on ⟨β⟩3 along with a edge 3-colouring c, such

that x
c(xy)
⌢ y. Due to Lemma 3.15, we have sets B1, B2 whose union is ⟨β⟩3,

and their monochromatic diameters for some colours are at most 8, that is,

by the triangle inequality diam(B1 + ei1) ≤ 8λC, diam(B2 + ei2) ≤ 8λC for

some i1, i2. If i1 = i2 we are done, hence we can assume these are different,

and in fact without loss of generality i1 = 1, i2 = 2. If A1, A2 intersect, then

diameter of union is not greater than 2rλC, proving the claim. Therefore, we

shall consider only the situation when these are disjoint. Similarly, if B1 + e1

intersects both A1, A2, by triangle inequality, diam ⟨β⟩3 ≤ (2r+8)λC, so without

loss of generality B1 + e1 ⊂ A1. Depending on which of the two sets contains

B2 + e2, we distinguish the following cases.

Case 1. A1 ⊃ B2 + e2.

We now claim that A1 has a 2-way subset, whose diameter is then

bounded by the diameter of A1, which suffices to prove the claim. Suppose

a ∈ A1. Then a ∈ Bi for some i, hence a + e1 or a + e2 is in A1. If both
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are, there is nothing left to prove. Otherwise, the other point must be in

A2, say a + e1 ∈ A1, a + e2 ∈ A2. Suppose a + e3 ∈ A2 as well. Then

a+ e2 − e1, a+ e3 − e1 ∈ B2, thus a+ (−1, 2, 0), a+ (−1, 1, 1) ∈ A1, hence

contracting a, a−e1+e2 gives that d(A1, A2) ≤ λC. Otherwise a+e3 ∈ A1,

hence we are done.

Case 2. A2 ⊃ B2 + e2.

Colour point by i if it belongs to Ai. Such a colouring satisfies the

hypothesis of Lemma 3.13 since given a point y, either y + e1 is coloured

by 1, or y + e2 is coloured by 2, and the second condition is also satisfied,

(or after contraction we get d(A1, A2) ≤ λC so done). Hence, we have a

colouring that is essentially trivial, proving the claim.

Suppose the claim holds for some k ≥ 2, and we have k + 1 sets. As before,

we can assume that these are disjoint and thus define colouring c, such that y ∈
Ac(y). Further, we can assume that d(Ai, Aj) > λC for distinct i, j. Moreover, we

have Ai∩⟨β + (1, 1, 1)⟩3 ̸= ∅, as otherwise we are done by considering β+(1, 1, 1)

instead of β.

Let z ∈ ⟨β⟩3. Define signature of z as σ(z) = (c(z + e1), c(z + e2), c(z + e3)).

By the discussion above, given i ∈ [k + 1], l ∈ [3] we have a point z such that

σ(z)(l) = i. Also, whenever z, z′ are two points in our 3-way set, we must have

σ(z)(i) = σ(z′)(i) for some i, for otherwise we violate the condition on the distance

between the sets Aj.

Let (a, b, c) be a signature. Suppose there was another signature (p, d, e),

where b ̸= d, c ̸= e, which implies p = a. Since k + 1 ≥ 3, there are signatures

(g1, h1, j1), (g2, h2, j2), where g1, g2, a are distinct. Then (h1, j1) = (h2, j2) ∈
{(b, e), (d, c)}, without loss of generality these are (b, e). Hence, for any z we

have σ(z)(2) = b or σ(z)(3) = e. Now, define a new colouring c′ of ⟨β⟩3, if a
point p was coloured by b set c′(p) = 1, if it was coloured by e set c′(p) = 2

otherwise c′(p) = 3. Recalling the previous observations, we see that c′ satisfies

the necessary assumptions in Lemma 3.13, and apply it (formally change the

coordinates first) to finish the proof.

Otherwise, any two signatures must coincide at at least two coordinates.

In particular, the only possible ones are (·, b, c), (a, ·, c), (a, b, ·), where instead

of a dot we can have any member of [k + 1]. If a ̸= b, c, we have that σ(z +
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(1, 0,−1)) = (a, b, a) and σ(z+(1,−1, 0)) = (a, a, c). Thus σ(z+(2,−1,−1))(2) =

σ(z + (2,−1,−1))(3) = a, which is impossible. Similarly b ∈ {a, c}, c ∈ {a, b}
hence a = b = c, and so Aa is a two-way set with the wanted diameter.

By Lemma 3.14, there is a 2-way set T with diamT ≤ K15,2λD. Setting s =

3, we have K15,s−1 = K14,2s−1 = K13,22s−1 = · · · = K2,213s−1 = 214 ·3+6 = 49158,

as wanted.

We say that a set of points of the grid Q is a quarter-plane if there are distinct

i1, i2 ∈ [3] such that Q = {t+ aei1 + bei2 : a, b ∈ N0}, for some point t.

Proposition 3.16. Suppose λ < 1/4 and there is a 2-way set S of diameter D.

Provided m1 = infs∈S ρ(s) > (2 + λ)D, S contains a quarter-plane subset Q.

Proof. Without loss of generality, we can assume that S has a point p such

that S ⊂ ⟨p⟩3, and all points s of S except p have a unique point s′ such that

s ∈ N(s′). This is because we can always pick such subset of S, and it suffices

to prove the statement in such a situation. We say that such a k-way set is

spreading (from p).

Case 1. For all i ∈ [3], there is x with x+ ei not in S.

Let x, y ∈ S be points such that x+ ei, y+ ej ̸∈ S, for i, j distinct. Take

k so that {i, j, k} = [3]. Then if x
i
⌢y, by the triangle inequality we have

m1 ≤ d(x, x+ei) ≤ d(x, y)+d(y, y+ei)+d(y+ei, x+ei) ≤ (2+λ)D, which

is a contradiction. Similarly we drop the possibility of x
j
⌢y happening,

hence x
k
⌢y. Hence, if we define Al = {s ∈ S : s = t+ el for some t ∈ S},

these are all of diameter ≤ 2λD.

Suppose A1 and A2 are disjoint. Consider x such that x + e3 /∈ S. If

x + e1 + e2 ∈ S, it is both in A1, A2, which is impossible. Hence, we have

that x + e1 + e3, x + e2 + e3 ∈ S, thus x + e3 + e1 + e2 is not in S, so we

can repeat the argument, to get all the x+ (1, 0, n) and x+ (0, 1, n) in S.

Now, by triangle inequality, we must have x+ (1, 0, n)
3
⌢x+ (0, 1, n), x+

(1, 0, n)
3
⌢x + (0, 1, n + 1), for all non-negative n, so (x + (1, 0, n))n≥1 is

Cauchy, which is contradiction. Thus A1, A2 intersect, and similarly A1

and A2 intersect A3, therefore, take T to be union of these, which is thus
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2-way (as every point of S belongs to some Ai, except the starting one),

and has diamT ≤ 4λD.

Case 2. Suppose that there is i such that for any x ∈ S, x+ ei is in S.

Without loss of generality, we assume i = 3. Pick any x0 in S and set

a = (x0)
(3). Thus, starting at x0 we can form the sequence (xn)n≥0 such

that {xn+1} = S ∩ {xn + e1, xn + e2}. Suppose we have x, y among these

such that x+e1, y+e2 ∈ S. Hence, x+(1, 0, n), x+(0, 0, n), y+(0, 1, n), y+

(0, 0, n) belong to S for all nonnegative n, thus x+(0, 1, n), y+(1, 0, n) are

never elements of S. Now, contracting pairs x + (0, 0, n), y + (0, 0, n) and

x + (0, 0, n + 1), y + (0, 0, n) gives 1-way Cauchy sequence as in the Case

1. If there are no such x, y then we have that S contains a quarter-plane.

Therefore, if we ever get into Case 2, we are done. Hence, let S1 = S, then by

Case 1, we have a 2-way S2 subset of S1, which we can assume to be spreading,

by the same arguments as those for the set S. It also satisfies the necessary

hypothesis of this claim, so we can apply the Case 1 once more to obtain 2-way

set S3 ⊂ S2. Proceeding in the same manner, we obtain a sequence of spreading

2-way sets S1 ⊃ S2 ⊃ . . . , whose diameters tend to zero, so just pick a point in

each of them, and then find a 1-way Cauchy sequence containing these to reach

a contradiction.

Proposition 3.17. Let {i1, i2, i3} = [3]. Suppose we have a quarter-plane S =

{α + mei1 + nei2 : m,n ∈ N0}, of diameter D, and let R = infS ρ. Provided

λ < 1/3 and D(1 − λ2) < (1 − 4λ)R, there is a 3-way set of diameter at most

2λ( 2
1−λ

D + 1+2λ
1−λ

R).

Proof. Without loss of generality i3 = 1. Observe that for any point s ∈ S we

must have ρ(s) = d(s, s+ e1). The reason for this is that both s+ e2, s+ e3 ∈ S

and so d(s, s + e2), d(s, s + e3) ≤ diamS = D, but max{d(s, s + e1), d(s, s +

e2), d(s, s+ e3)} = ρ(s) ≥ R > D.

Let xn ∈ S be a point with ρ(xn) < (1 + 1/n)R ≤ 2R. As λ < 1/2, we must

have xn
1
⌢xn + e1. Furthermore, suppose i ̸= 1 contracts y, xn + e1, for some

point y in S. Thus xn + ei ∈ S and so ρ(xn + ei) = d(xn + ei, xn + e1 + ei).

Then, by triangle inequality, we have ρ(xn + ei) = d(xn + ei, xn + e1 + ei) ≤
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d(xn+ei, y+ei)+d(y+ei, xn+e1+ei) ≤ λd(y, xn+e1)+D ≤ λ2R+(1+λ)D < R,

therefore it must be y
1
⌢xn+e1. Hence ρ(y) ≤ d(y, xn)+d(xn, xn+2e1)+d(xn+

2e1, y + e1) ≤ D + R(1 + 1/n)(1 + λ) + λ(D + R(1 + 1/n)), for all n, hence

ρ(y) ≤ D(1 + λ) +R(1 + 2λ) < 2R.

Now we claim that for all y ∈ S, and all k ≥ 1, we have y
1
⌢y + ke1, which

we prove by induction on k. For k = 1, we are done as otherwise there is y with

ρ(y) < 2λR < R.

Suppose the claim holds for some k ≥ 1. Then for any y and l ≤ k + 1

we have d(y, y + le1) ≤ d(y, y + e1) + d(y + e1, y + le1) ≤ ρ(y) + λd(y, y + (l −
1)e1) ≤ . . . ≤ ρ(y)(1 + λ + · · · + λl−1) < ρ(y)/(1 − λ). Also, d(y, y + le1) ≥
d(y, y + e1) − d(y + e1, y + le1) ≥ ρ(y) − λd(y, y + (l − 1)e1) > ρ(y)1−2λ

1−λ
. As

λ < 1 − 2λ, we have that 1 always contracts y, y + (k + 1)e1. In particular

ρ(y)1−2λ
1−λ

< d(y, y + ke1) < ρ(y)/(1− λ).

Fix any x ∈ S. Now, suppose x
i
⌢y + ke1 for some i ̸= 1. Then R 1−2λ

1−λ
≤

ρ(y+ei)
1−2λ
1−λ

< d(y+ei, y+ei+ke1) ≤ d(y+ei, x+ei)+λ(d(x, y)+d(y, y+ke1)) ≤
D(1 + λ) + λρ(y)/(1− λ) < (1 + λ)D + 2λ

1−λ
R, which is a contradiction. Hence,

by looking at distance from x+ e1, we see that diam{α + (a, b, c) : a ≥ 2, b, c ≥
0} ≤ 2λ(D +D(1 + λ)/(1− λ) +R(1 + 2λ)/(1− λ)), as required.

In order to make the calculations throughout the proof easier, we use the

following corollary instead.

Corollary 3.18. Suppose we have a 2-way set S of diameter D, and R =

infs∈S ρ(s). Provided λ < 1/9 and R > (2+λ)D, there is a 3-way set of diameter

at most 6λR.

Proof. Firstly, apply Proposition 3.16 to find a quarter-plane inside the given 2-

way set. Since R(1−4λ) > R/(2+λ) > D > (1−λ2)D and λ < 1/3, we can apply

Proposition 3.17, to obtain a 3-way set of diameter at most 2λ( 2
1−λ

D + 1+2λ
1−λ

R).

An easy calculation shows that this expression is smaller than λ(5D + 3R) <

6λR.

Recall that we defined µ = infx ρ(x), where x ranges over the whole grid.

Recall also that µ > 0 by Proposition 3.10.
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Proposition 3.19. Given K, provided 1 > (2+λ)λKC1, all 3-way sets of have

diameter greater than Kµ.

Proof. The proposition is trivial whenK < 1, so assumeK ≥ 1 and in particular

λ < 1/9. Suppose contrary, let T be a 3-way set of diameter D ≤ Kµ. By

Proposition 3.11, we know that there is a 2-way set S ⊂ T , with diamS ≤
λC1Kµ. Therefore by Corollary 3.18, as λC1Kµ < µ/(2 + λ), we have a 3-way

set of diameter not greater than 6λKµ < µ, resulting in a contradiction.

Proposition 3.20. Given K, provided λ < 1/9, 1/(3K), all 2-way sets have

diameter greater than λKµ.

Proof. Suppose contrary, pick a 2-way set S0 of diameter at most λKµ. Since

Kλµ(2 + λ) < µ, we have a 3-way set T1 with r1 = diamT1 by Corollary 3.18.

Now take a 2-way subset S1 ⊂ T1 with diamS1 ≤ Kλµ, so we have 3-way set T2

of diameter not greater than r2 = 6λr1. Repeating this argument, for all k ≥ 1

we find 3-way set Tk, with diameter bounded by rk, where rk+1 = 6λrk. But,

then we must have rk < µ for some k, resulting in a contradiction.

Note that the only way for a 2-way subset not to have elements in every

⟨(n, n, n)⟩3 is to be contained in a union of finitely many quarter-planes.

3.5 Finite contractive structures

Recall the proofs of Proposition 3.11 and Lemma 3.8. There we fixed a finite

set S of points, and then contracted various points with points in S to obtain

k-way sets. We pursue this approach further in the following few claims. In this

section, we also show that we cannot have certain configurations of points.

Proposition 3.21. Suppose we have K ≥ 1 and that λ < 1/(24K) holds. Then

we cannot have a point x0 in the grid with ρ(x0) ≤ Kµ such that N(x0) =

{x1, x2, x3}, where x1, x2, x3 satisfy diam(N(x0) ∪ {xi + ej : i, j ∈ [3], i ̸= j}) ≤
λKµ.

When using this proposition (in order to obtain a contradiction in the proofs

to follow), we say that we are applying Proposition 3.21 to (x0;x1, x2, x3) with

constant K.
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Proof. Suppose we do have points described in the assumptions. By Lemma 3.8,

in each 3-way set we have a point t such that d(t, x0) ≤ 2Kµ. Consider the

contractions of t with x0, x1, x2, x3; our main aim is to obtain a 2-way set of a

small diameter and then use Proposition 3.20 to yield a contradiction.

Observe that from the assumptions of the proposition, for any {i, j, k} = [3],

we have max{d(xi, xi + ei), d(xi, xi + ej), d(xi, xi + ek))} = ρ(xi) ≥ µ > λKµ ≥
max{d(xi, xi+ej), d(xi, xi+ek)}. Thus for all i ∈ [3], ρ(xi) = d(xi, xi+ei) holds.

Suppose first that t
i
⌢xi for all i ∈ [3]. Take i so that t

i
⌢x0. Then ρ(xi) =

d(xi, xi + ei) ≤ d(xi, x0 + ei) + d(x0 + ei, t + ei) + d(t + ei, xi + ei) ≤ λKµ +

λd(x0, t) + λd(xi, t) ≤ 6λKµ < µ, which is impossible.

Thus, there are distinct i, j ∈ [3] with t
j
⌢xi. If j was to contract t, xj, we

get ρ(xj) = d(xj, xj + ej) ≤ d(xj, xi+ ej)+ d(xi+ ej, t+ ej)+ d(t+ ej, xj + ej) ≤
λKµ + λd(xi, t) + λd(t, xj) ≤ 7λKµ < µ, which is impossible. Therefore, for

some k ̸= j, we have t
k
⌢xj. In particular, d(t + ej, x1 + e2) ≤ d(t + ej, xi +

ej) + d(xi + ej, x1 + e2) ≤ λd(t, xi) + λKµ ≤ 4λKµ, and in a similar fashion

d(t + ek, x1 + e2) ≤ 4λKµ. Furthermore by the triangle inequality, both t + ej

and t + ek are on the distance at most Kµ + 4λKµ ≤ 2Kµ from x0, so the

same arguments we used for t can be applied to these points as well. Hence, we

obtain a bounded 2-way set of diameter at most 4Kµ. But, considering all the

points of the 2-way set except t and their distance from x1 + e2, this is actually

a 2-way set of diameter at most 8λKµ, and we have such a set in every 3-way

subset of the grid. Now, apply Proposition 3.20 to obtain a contradiction, since

λ < 1/(24K) and K ≥ 1.

Proposition 3.22. Given K ≥ 1, provided λ < 1/(78K), 1/(13C1), there is no

x such that ρ(x) ≤ Kµ, but ρ(x+ ei) > 7Kµ for all i ∈ [3].

Sometimes we refer to a pair of points a, b in the grid as the edge a, b, and by

the length of the edge a, b we mean d(a, b). The points a and b are the endpoints

of the edge a, b.

Proof. Suppose there was such an x. Consider the contractions of x+ ei, x+ ej

for i ̸= j and suppose that two such pairs are contracted by the same k. Thus

diam{x+ ek + e1, x+ ek + e2, x+ ek + e3} ≤ 4λKµ. Now, contract x, x+ ek to

get ρ(x + ek) ≤ (2 + 5λ)Kµ < 3Kµ, giving us contradiction. So, the pairs de-
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Figure 3.2: Case 1

scribed above must be contracted in different directions. Further, we can make

a distinction between the short edges of the form a, a + ei and the long edges4

a+ ei, a+ ej, where a is any point of the grid and i, j are distinct integers in [3].

For every such long edge we have a unique short orthogonal edge a, a+ ek where

{i, j, k} = [3]. We can observe that if we have a short edge and a long edge in

{x} ∪ N(x) which are not orthogonal, but both contracted by some i, we must

have another such pair, contracted by some j ̸= i. One can show this by looking

at the short edge e which is orthogonal to the long one in a given pair of edges

contracted by i.

If we write [3] = {i, j, k}, then j contracts one long edge, and so does k. But

now consider the described orthogonal short edge e. It cannot be contracted by

i, for otherwise ρ(x + ei) is too small. Thus, it gives us another desired pair.

Having shown this, we have two cases, the first where there are at least two such

pairs (i.e. non-orthogonal short and long edge contracted in the same direction),

and the second without such pairs.

Case 1. There are at least two such pairs.

In Figure 3.2, we show the possibilities for contractions. The edges shown

as dashed lines have length at most 3Kλµ. Here we actually consider possible

contractions and then apply triangle inequalities. This way, we obtain very few

possible diagrams. We only list the possible configurations up to rotation or re-

flection, as the same arguments still carry through. In the diagram A, by short

edge contractions we see that we get ρ(x+ei) ≤ 3Kµ for some i, which gives the

claim. Dotted lines with letter D will be called the D-lines. On the other hand,

4Note, words ‘short’ and ‘long’ have nothing to do with the length of an edge previously

defined. Instead, they simply describe how these edges look like in the figures used in the

proofs.

57



Figure 3.3: Case 2

in the diagrams B, C and D, we claim that we are either done or the dotted lines

with letter D are of length at most 9λKµ. Once this is established, we have

ρ(x+ ei) ≤ 3Kµ for some i, resulting in a contradiction.

For each i ∈ [3], let xi ∈ N(x) be such that xi + ei is not an endpoint of long

edge shown as dashed line. By Lemma 3.8, in each 3-way set we have a point t

with d(x, t) ≤ 2ρ(x)/(1 − λ) ≤ 3Kµ. Observe that from the diagrams we have

d(xi, xi + ej) ≤ (2 + 6λ)Kµ whenever i ̸= j. Further, we cannot have xi
i
⌢t for

all i, otherwise we get a contradiction by considering contraction x
j
⌢t. If x+ ej

is an endpoint of a edge shown as a D-line, and x+ ej + el is the other endpoint,

we have x+el = xk, hence d(x+el+ej, x+ej) ≤ λ(d(x+ej, t)+d(t, x)) ≤ 7λKµ,

which is impossible. Thus, x + ej is not on a D-line edge, which gives ρ(xj) =

d(xj, xj + ej) ≤ d(xj, x) + d(x, x + ej) + d(x + ej, t + ej) + d(t + ej, xj + ej) ≤
(2 + 7λ)Kµ.

Previous arguments imply that we must have i ̸= j with xi
j
⌢t, and hence

xj
j

̸⌢t (otherwise ρ(xj) ≤ (2 + 14λ)Kµ), so, given such a t, we get t+ ea, t+ eb,

a ̸= b on distance at most 13λKµ from x1 + e2 and on distance not greater than

3Kµ from x, by the triangle inequality. Hence, in every ⟨z⟩3 we get a 2-way

subset of diameter not greater than λ26Kµ, yielding a contradiction, due to

λ < 1
78K

and Proposition 3.20. Hence, edges shown as D-lines satisfy the wanted

length condition.

Case 2. There are no such pairs.

The possible cases up to rotation or reflection are shown in Figure 3.3, where

the short edges shown as dashed lines are of length at most λKµ, while the

long ones shown as dashed lines are of the length at most 2λKµ. As above,

the diagram E gives ρ(x + ei) ≤ 3Kµ immediately. On the other hand, if we
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get diagram F or G, we can consider points shown as black squares and empty

circles. We call a point black if it is a black square and white if it is shown as

an empty circle. In the course of the proof, we shall colour more points in black

and white. Let r be the minimal length of dotted edges in Figure 3.3, and r′ the

maximal. Then we have r′ ≤ r + 2Kµ + 6λKµ. Furthermore, given i ∈ [3] we

have 7Kµ < ρ(x+ ei) ≤ r′ < r + 3Kµ, so r > 4Kµ.

Consider t such that d(x, t) ≤ 2r. Let j contract x + ei, t, so we have

d(t+ej, x) ≤ d(t+ej, x+ei+ej)+d(x+ei+ej, x+ei)+d(x+ei, x) ≤ λd(t, x+ei)+

ρ(x+ei)+ρ(x) ≤ λ(d(t, x)+d(x, x+ei))+r
′+Kµ ≤ 2λr+λKµ+r+2Kµ+6λKµ+

Kµ ≤ (1+2λ)r+(3+8λ)Kµ < (1+2λ+ 3+8λ
4

)r ≤ 2r, since λ < 1/16. Similarly if

j contracts x, t we have d(t+ej, x) ≤ d(t+ej, x+ej)+d(x+ej, x) ≤ 2λr+Kµ ≤ 2r,

as well. Further, observe that if t+ej is the result of a scontraction as before, then

we have a point a ∈ N(x)∪{x+ei+ej : i, j ∈ [3]} with d(t+ej, a) ≤ λ(2r+Kµ).

Restrict our attention to the black (shown as black squares) and white (shown

as empty circles) points shown in Figure 3.3. We have diam{white points} ≤
6λKµ, diam{black points} ≤ (2 + 2λ)Kµ and distance from any white to any

black point is at least r−Kµ−4λKµ. Take a point t on distance at most 2r from

x (note that by Lemma 3.8 such a point exists in every 3-way set). Consider

contractions with {x}∪N(x) and suppose that t+ei, w and t+ei, b are results of

these operations, where w is a white and g is a black point. Then, using the trian-

gle inequality, we establish r−Kµ−4λKµ ≤ d(w, b) ≤ d(w, t+ei)+d(t+ei, b) ≤
2λ(2r + Kµ), which is a contradiction. For any given i ∈ [3] let xi stand for

the point of N(x) such that d(xi, xi + ei) ≤ λKµ, thus N(x) = {x1, x2, x3}. Let
t

i
⌢x. Then take j ∈ [3] distinct from i. We see that xj+ei is white, while x+ei

is black, hence i does not contract t, xj. Let k ̸= i contract t, xj and let l be such

that {i, j, l} = [3]. If k = j then similarly we see that xl
l
⌢t, while in the other

case k = l and xl
j
⌢t. Hence, in conjunction with the previous arguments, we

obtain a 3-way set of diameter at most 4r.

Furthermore, recall that given pairs t + ei, p and t + ei, q, which are results

of contracting t with x or a point in N(x), we must have p and q of the same

colour. As each of t + e1, t + e2 and t + e3 is a result of such a contraction, we

can extend the 2-colouring of the points in the diagrams F and G to all points of

⟨x⟩3, namely c : ⟨x⟩3 → {black, white}, with point t+ei being coloured by black,
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if p described above is black in the original colouring, and white otherwise.

Now, the distance between any black point and any white point in the ex-

tended colouring is at least r−Kµ−4λKµ−2λ(2r+Kµ) = (1−4λ)r−(1+6λ)Kµ.

Recall Proposition 3.11, which guarantees the existence of a 2-way set S ⊂ ⟨x⟩3
of diameter at most 4λC1r from which we infer that S is monochromatic, since

4λC1r < (1− 4λ)r − (1 + 6λ)Kµ.

Case 2.1. S is black.

Consider any t ∈ ⟨x⟩3 which has two black neighbours t + ei1 , t + ei2 , where

i1 ̸= i2. Then, letting i3 be the third direction, that is [3] = {i1, i2, i3}, we have

t
i3⌢xi3 , since the points of N(xi3) \ {xi3 + ei3} are white. Hence, for any t ∈ S,

we have that N(t) is black. Furthermore, from the same arguments we see that

t
i
⌢xi for all i ∈ [3]. Now, if t is in S, and without loss of generality so are

t + e1, t + e2, then N(t + e1), N(t + e2) are black, so at least two elements of

N(t+ e3) are black too, implying that N(t+ e3) is black. But, now looking at t

gives t
3
⌢x3 and similarly, looking at t+ e1, t+ e2, t+ e3 tells us that 3 contracts

points t+ e1, t+ e2, t+ e3 with x3.

Let s be the distance from such a t to x. Then, for all i ∈ [3], we have a black

point p in {x}∪N(x), which is contracted with t by i, so that p+ei is black as well.

Now, by the triangle inequality, we get d(x, t+ ei) ≤ d(x, p)+d(p, p+ ei)+d(p+

ei, t+ei) ≤ d(x, p)+d(p, p+ei)+λd(p, t) ≤ λd(t, x)+(1+λ)d(x, p)+d(p, p+ei) ≤
λs + (2 + λ)(Kµ). As in the proof of Lemma 3.8, we see that there is t ∈ S,

such that d(t, x) < 3Kµ. From the estimates we have just made, we can see that

d(t+ ei, x) < 3Kµ for all i ∈ [3]. Without loss of generality t, t+ e1, t+ e2 ∈ S.

Recalling that this implies d(t+ e3, x3), d(t+ e3 + ei, x3) < 3λKµ where i takes

all the values in [3], shows that ρ(t+ e3) < 6λKµ, which is a contradiction.

Case 2.2. S is white.

If t ∈ S, after contracting t, x, we see that the single point in N(t) \ S must

be black. Hence, by Proposition 3.18, we must have a 3-way set inside ⟨x⟩3 of

diameter at most 6λr, since (1− 4λ)r− (1+6λ)Kµ > (1− 4λ)r− (1+6λ)r/4 >

2r/3 > (2+ λ)λ4C1r, since λ < 1/(13C1). But, such a set has at least one black

point, so it must have black points only, and we have a contradiction as in Case

2.1.
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Figure 3.4: Possible distances in the proof of Proposition 3.23

Proposition 3.23. Given K ≥ 1, provided λ < 1/(41KC1), there is no x with

ρ(x) ≤ Kµ and diamN(x) ≤ λKµ.

Proof. Suppose we have such an x. We start by observing that two pairs of

the form x + ei, x + ej cannot be contracted by the same k. Otherwise, since

diamN(x) ≤ λKµ, after an application of the triangle inequality, we also have

N(x + ek) ≤ 2λ2Kµ. Let t be such that x
t
⌢x + ek. Then d(x + ek, x + 2ek) ≤

d(x+ek, x+et)+d(x+et, x+ek+et)+d(x+ek+et, x+2ek) ≤ diamN(x)+λd(x, x+

ek)+diamN(x+ek) ≤ λKµ+λKµ+2λ2Kµ < 4λKµ. But then, for any s ∈ [3],

we have d(x+ek, x+ek+es) ≤ d(x+ek, x+ek+ek)+diamN(x+ek) < 6λKµ < µ,

implying that ρ(x+ ek) < µ, which is impossible.

Thus, all three pairs of the form x + ei, x + ej are contracted in different

directions, hence we can distinguish the following cases (up to symmetry).

Case 1. The results of contractions are shown as dashed lines in the Figure 3.4,

diagram marked by A. It is not hard to see that after contracting pairs x, x+ ei,

we get ρ(x+ ej) < µ for some j, giving us contradiction.

Case 2. The results of contractions are shown as dashed lines in Figure 3.4,

diagram marked by B. By considering the contractions of pairs x, x + ei, we

either get ρ(x + ej) < µ for some j, or diagrams B.1, B.2 in figure 3.4, where

dashed lines edges now indicate lengths at most 3λKµ.

Case 3. The results of contractions are shown as dashed lines in Figure 3.4,
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diagram marked by C. By considering the contractions of pairs x, x + ei, we

either get ρ(x + ej) < µ for some j, or diagrams C.1, C.2 in Figure 3.4, where

now dashed line implies length at most 3λKµ.

We now examine more closely diagrams B.1, B.2, C.1 and C.2. Firstly, we

will use Proposition 3.21 to reject B.1 and C.1. In these two diagrams, for each

i ∈ [3], we can find a unique xi ∈ N(x) such that ρ(xi) = d(xi, xi+ ei). Then we

have diam(N(x) ∪ {xi + ej : i, j ∈ [3], i ̸= j}) ≤ 15λKµ. Also ρ(x) ≤ Kµ, hence

we can apply Proposition 3.21 to (x;x1, x2, x3) with constant 15K to obtain a

contradiction, since λ < 1/(360K).

Observe that in diagrams B.2 and C.2 we can denote N(x) = {x1, x2, x3} so

that d(xi, xi+ei) ≤ 3λKµ. By Proposition 3.22, we have that ρ(xi) ≤ (7+7λ)Kµ

holds for all i ∈ [3], as λ < 1/(78K), 1/(13C1). Now, start from a point t with

d(t, x) ≤ 2ρ(x)/(1 − λ) ≤ 2Kµ/(1 − λ) ≤ 10Kµ, which exists by Lemma 3.8.

Take any p ∈ {x} ∪ N(x) and contract with t. If t
i
⌢p, then d(t + ei, x) ≤

d(t+ei, p+ei)+d(p+ei, p)+d(p, x) ≤ λd(t, p)+d(p+ei, p)+d(p, x) ≤ λ(d(t, x)+

d(x, p)) + d(p+ ei, p) + d(p, x) ≤ λ10Kµ+ (7 + 7λ)Kµ+ (1 + λ)Kµ ≤ 10Kµ.

Contract such a point t with x by some i. Write [3] = {i, j, k} and consider the

contraction of t, xj. It is not i that contracts this couple of points, as otherwise

ρ(xj) < µ. If it is j, then we can see that xk
k
⌢t, and if it is k, then xk

j
⌢t.

Hence, all the points of N(t) are on distance at most 10Kµ from x, so we can

repeat the argument to obtain a bounded 3-way set of diameter at most 20Kµ.

However, we get a contradiction by Proposition 3.19, since 1 > 41KC1λ.

Proposition 3.24. Given K ≥ 1, suppose we have x0, x1, x2, x3 such that

diam{xi + ej : i, j ∈ [3], i ̸= j} ≤ λKµ. Furthermore, suppose ρ(x0) ≤ Kµ

and that d(x0, xi) ≤ Kµ for i ∈ [3]. Let {a, b, c} = [3].

Provided λ < 1/(820C1K), whenever there is a point x which satisfies d(x+

ea, x+ eb) ≤ λKµ and d(x, x0) ≤ Kµ, then we have d(x+ ec, xc + ec) ≤ 16λKµ.

Note that this is Proposition 3.5 in the overview of the proof. When using

this proposition, we say that we are applying Proposition 3.24 to (x0;x1, x2, x3;x)

with constant K.

Proof. Suppose contrary. Without loss of generality, we may assume a = 1, b =
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2, c = 3. Let us first establish d(x, x+ e1), d(x, x+ e2) ≤ 3Kµ. As d(x+ e3, x3 +

e3) > 16λKµ, we must have 1 or 2 contracting x, x3. Similarly, we cannot have

x
3
⌢x0 and x0

3
⌢x3 simultaneously. If x

3
⌢x0 then we have x0

i
⌢x3 for some

i ∈ [2], and recall that x
j
⌢x3 some j ∈ [2], so d(x, x+e1) ≤ d(x, x0)+d(x0, x0+

ei) + d(x0 + ei, x3 + ei) + d(x3 + ei, x3 + ej) + d(x3 + ej, x + ej) + d(x + ej, x +

e1) ≤ Kµ + Kµ + λKµ + λKµ + 2λKµ + λKµ < 3Kµ and in the same way

we get d(x, x + e2) < 3Kµ. On the other hand if x
i
⌢x0 for i ∈ [2] we get

d(x, x + ej) ≤ d(x, x0) + d(x0, x0 + ei) + d(x0 + ei, x + ei) + d(x + ei, x + ej) ≤
Kµ+Kµ+ λKµ+ λKµ < 3Kµ for any j ∈ [2].

Similarly, let us observe that diam{x1, x2, x3} ∪ {xi + ej : i, j ∈ [3], i ̸= j} ≤
5Kµ. We see that this certainly holds in the case that there are distinct i, j ∈ [3]

with x0
j
⌢xi, as then d(xi, xi+ej) ≤ d(xi, x0)+d(x0, x0+ej)+d(x0+ej, xi+ej) ≤

(2+λ)Kµ, and the claim about the given diameter follows. Hence, suppose that

for all i ∈ [3] the contractions are x0
i
⌢xi. Then we cannot have x0

3
⌢x, so

suppose that x0
j
⌢x and also that x

k
⌢x3, where j, k ∈ [2]. Now, we can apply

the triangle inequality to see d(x3+ek, x3) ≤ d(x3+ek, x+ek)+d(x+ek, x+ej)+

d(x+ej, x0+ej)+d(x0+ej, x0)+d(x0, x3) ≤ 2λKµ+λKµ+λKµ+Kµ+Kµ =

(2 + 4λ)Kµ, so once again we have the desired bound on the given diameter.

Now, by Lemma 3.8, in every 3-way set we have a point t with d(t, x0) ≤
7Kµ. Suppose that for some distinct i, j ∈ [3] we have t

i
⌢xi and t

i
⌢xj. Then

d(xi+ei, xi+ek) ≤ d(xi+ei, t+ei)+d(t+ei, xj+ei)+d(xj+ei, xi+ek) ≤ 17λKµ

for any k ̸= i. Hence diamN(xi) ≤ 17λKµ. However, contract x0, xi to see

that ρ(xi) ≤ (2 + 18λ)Kµ < 17Kµ. But we can apply Proposition 3.23, as

λ < (17 · 41KC1), to obtain a contradiction. Hence, we cannot have xi
i
⌢t and

xj
i
⌢t.

Suppose that for every such t we have distinct i, j ∈ [3] with t
i
⌢xj. Then, by

the previous observation, we see that t
k
⌢xi, for some k ̸= i. Hence d(t+ei, x0) ≤

d(t+ ei, xj + ei)+ d(xj + ei, xj)+ d(xj, x0) ≤ 8λKµ+6Kµ ≤ 7Kµ and similarly

for t + ek. So, we can apply the same arguments to the newly obtained points

and proceeding in this manner we construct a bounded 2-way set. However, the

points that we construct after t are on distance at most 9λKµ from x1+e2, hence,

we get a 2-way set of diameter at most 18λKµ. This is a contradiction with

Proposition 3.20, as we have such a point t in every 3-way set and λ < 1/(54K).
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Figure 3.5: Possible contractions in the proof of existence of auxiliary point

With this in mind, we see that in every 3-way set, there is a point t with

d(x0, t) ≤ 7Kµ but for all i ∈ [3] we have t
i
⌢xi. Contract such a t with x. It

cannot be by 3, as then d(x+ e3, x3+ e3) ≤ 16λKµ, so without loss of generality

we have x
1
⌢t. But then for any j ∈ {2, 3} and k ∈ [2] that contracts x and x3 we

obtain d(x1+e1, x1+ej) ≤ d(x1+e1, t+e1)+d(t+e1, x+e1)+d(x+e1, x+ek)+

d(x+ ek, x3+ ek)+d(x3+ ek, x1+ ej) ≤ 8λKµ+8λKµ+λKµ+2λKµ+λKµ =

20λKµ, giving diamN(x1) ≤ 20λKµ and as before ρ(x1) ≤ 20Kµ. Applying

Proposition 3.23 establishes the final contradiction, as λ < 1/(820C1K).

3.6 Existence of certain finite configurations

Our next aim is to show that, provided λ is sufficiently small, certain finite

configurations must exist. Recalling Proposition 3.23, which is a non-existence

result, we see that we are approaching the final contradiction in the proof of

Proposition 3.3.

Proposition 3.25. Provided λ < 1/(5 ·1012), there is a point x such that ρ(x) ≤
C2µ and diam{x, x + ei, x + ej} ≤ λC2µ for some distinct i, j ∈ [3]. Here

C2 = 100000.

Proof. Suppose contrary. The first part of the proof will be to establish the

existence of an auxiliary point y with ρ(y) ≤ 15µ and d(y, y+ei) ≤ 192λµ, d(y+
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ej, y + ek) ≤ 4λµ for some {i, j, k} = [3]. Pick any t with ρ(t) ≤ 2µ and con-

sider contractions {t} ∪N(t). As before, up to symmetry, we have diagrams A,

B and C in Figure 3.5 as the possibilities for contractions of pairs of the form

t+ ea, t+ eb, since no two such long edges can be contracted by the same i. If an

edge is a dashed line in Figure 3.5, then it is the result of a contraction of some

pair of points in {t} ∪N(x). Dotted lines with letter P indicate that bounds on

the lengths of those edges are results of applying Proposition 3.24.

Case 1. Suppose that we have diagram A. We see that we have diagrams A.1 and

A.2 up to symmetry or otherwise some ρ(z) is too small. However, diagram A.1

is impossible since ρ(t+e1) ≤ C2µ and diam{t+e1, t+e1+e1, t+e1+e2} ≤ λC2µ,

which does not exist by the assumption. Hence, it is diagram A.2 that must oc-

cur, so we have y with ρ(y) ≤ (4+6λ)µ, d(y, y+e3) ≤ 2λµ, d(y+e1, y+e2) ≤ 4λµ.

Case 2. Suppose that we have diagram B. As above, we can distinguish diagrams

B.1, B.2, B.3, up to symmetry. First of all, if we have diagram B.3, we can apply

Proposition 3.22 to t, as λ < 1/(13 ·C1), 1/(78 · 2), to obtain ρ(t+ ei) ≤ 14µ for

some i. Using this, we see that we have ρ(y+e3) ≤ 15µ, d(y+e3+e1, y+e3+e2) ≤
4λµ, d(y + e3, y + 2e3) ≤ 2λµ, as desired.

Consider now diagrams B.1 and B.2. We can denote N(t) = {t1, t2, t3} so

that t1 + e2, t1 + e3 is a result of a contraction in N(t) and so on. Observe that

diam{ti + ej : i, j ∈ [3], i ̸= j} ≤ 12λµ and that ρ(t) ≤ 2µ, and in diagram B.1

d(t+e1, t+e3) ≤ 8λµ, while in diagram B.2 d(t+e1, t+e2) ≤ 10λµ, we can apply

Proposition 3.24, as λ < (9840C1), to (t; t1, t2, t3; t) with constant 12 to see that

d(t+e2, t2+e2) ≤ 12·16λµ = 192λµ in diagram B.1 and d(t+e3, t3+e3) ≤ 192λµ.

Hence, t+e2 in diagram B.1 and t+e3 in the diagram B.2 are the desired points.

Case 3. As in the previous case, we are able to reach the same conclusion using

the similar arguments.

To sum up, without loss of generality, we can assume that there is y0, with

ρ(y0) ≤ 15µ, d(y0 + e1, y0 + e2) ≤ 4λµ and d(y0, y0 + e3) ≤ 192λµ. We shall now

use this point to obtain a contradiction.

LetK = 20000, and consider now those points which satisfy ρ(y) ≤ Kµ, d(y+

ei, y+ ej) ≤ λKµ and d(y, y+ ek) ≤ λKµ for some {i, j, k} = [3]. We know that

y0 is one such point. Contract first the pairs inside N(y), that is, the long edges.
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Figure 3.6: Possible contractions in the neighbourhood of an auxiliary point

As a few times before, it is not hard to see that for i = 1, j = 2, k = 3 we can

only have diagrams A, B, C and D in Figure 3.6 (if an edge is shown as dashed

line, that implies that it is a result of a contraction) and diagrams symmetric to

these for different values of i, j, k. However, we can immediately reject diagram

A, for if a point y has diagram A, by contracting the short edges, we either ob-

tain a point t ∈ N(y) with ρ(t) ≤ 3Kµ and diam{t, t+ ei, t+ ej} ≤ 3λKµ, or we

get a point t ∈ N(y) with ρ(y) ≤ 4λKµ < µ, both resulting in a contradiction.

Furthermore, if we are given a diagram B, then we can immediately apply Propo-

sition 3.24 to (y; y+ e3, y+ e2, y+ e1; y) with constant 6K, as λ < 1/(4920C1K),

which gives d(y+e3, y+e1+e3) ≤ 96λKµ. Then we must have y
2
⌢y+e3, hence

ρ(y+e1) ≤ (1+97λ)Kµ < (K+1)µ, diam{y+e1, y+e1+e1, y+e1+e2} ≤ 5λKµ

giving a contradiction once more.

Therefore, we must end up with either diagram C or D. Also observe that

y + ei
k
⌢y + ej must then hold for any y that satisfies the properties stated

above. Furthermore we must have d(y + ek, y + 2ek) ≤ 96λKµ, as we can apply

Proposition 3.24 to (y; y1, y2, y3; y), where {y1, y2, y3} = N(y) with constant 6K.

From this, we can conclude that neither y
k
⌢y+ei nor y

k
⌢y+ej can occur. Also

we cannot have y
i
⌢y + ei and y

i
⌢y + ej simultaneously, as then ρ(y + ei) < µ,

and similarly cannot have both y
j
⌢y + ei and y

j
⌢y + ej. Hence, contracting

the short edges implies that in fact we can only have diagrams C.1, C.2, D.1 or
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D.2.

Observe that we can actually only have either C.1 and D.1, or C.2 and D.2

appearing. This is because if we had y1 with its diagram among C.1 and D.1,

and a point y2 with a diagram among C.2 and D.2, we could first find the unique

ei, ej such that d(y1+ei, y1+ei+e1) ≤ λKµ and d(y2+ej, y2+ej+e1) = ρ(y2+ej).

Now, apply Proposition 3.24 to (y1; y1+ ei, y1+ ek, y1+ e3; y2+ ej) with constant

6K, where k ∈ [2] distinct from i, to obtain ρ(y2+ej) = d(y2+ej, y2+ej +e1) ≤
d(y2 + ej, y2) + d(y2, y1) + d(y1, y1 + ei) + d(y1 + ei, y1 + ei + e1) + d(y1 + ei +

e1, y2 + ej + e1) ≤ Kµ + 2Kµ/(1 − λ) + Kµ + λKµ + 96λKµ ≤ 5Kµ, while

diam{y2 + ej, y2 + ej + e2, y2 + ej + e3} ≤ 3λKµ, which is a contradiction. Thus,

we shall consider the cases depending on the allowed pair of diagrams among

these four.

Case 1. We can only have diagrams C.1 and D.1.

Suppose that we had y with ρ(y) ≤ Kµ/10, d(y+ei, y+ej) ≤ λKµ/10, d(y, y+

ek) ≤ λKµ/10, for some {i, j, k} = [3] that gave us diagram C.1 after contrac-

tions in {y}∪N(y). Without loss of generality, take i = 1, j = 2 and k = 3. Then,

by Proposition 3.22 and the triangle inequality, we get ρ(y+e1), ρ(y+e2) ≤ Kµ.

In conjunction with d(y+ e1+ e1, y+ e1+ e3), d(y+ e2+ e2, y+ e2+ e3) ≤ λKµ/5

and d(y+e1, y+e1+e2), d(y+e2, y+e2+e1) ≤ λKµ/10, we see that y+e1, y+e2

are points whose neighbourhoods contracting gives one of the diagrams consid-

ered, in particular y + e1 + e1
2
⌢y + e1 + e3 and y + e2 + e2

1
⌢y + e2 + e3.

But contract y + e1 + e2 with y, this gives ρ(y + e1 + e2) ≤ Kµ/5 < Kµ and

diamN(y + e1 + e2) ≤ λ2Kµ < λKµ which is a contradiction with Proposi-

tion 3.23, since λ < 1/(41C1K).

Hence, as long as y satisfies ρ(y) ≤ Kµ/10, d(y+ei, y+ej) ≤ λKµ/10, d(y, y+

ek) ≤ λKµ/10, for some {i, j, k} = [3] it must have diagram D.1. Start from y0.

Then we have d(y0 + e3 + e1, y0 + e3 + e2) ≤ λ2Kµ, d(y0 + e3, y0 + 2e3) ≤ λ2Kµ.

Now, apply Proposition 3.22 to y0 see that ρ(y0 + e3) ≤ 8ρ(y0). Therefore, con-

tractions around y0 + e3 give us diagram D.1. But, contract y0 + e1, y0 + e1 + e3

to obtain ρ(y0 + e1 + e3) < µ or ρ(y0 + e1) < µ.

Case 2. We can only have diagrams C.2 and D.2.

Start from y0 and define yn = y0 + ne3 for all n ≥ 1. By induction on n

we claim that ρ(yn) ≤ 16µ, d(yn + e1, yn + e2) ≤ 4λn+1µ, d(yn + e1, yn+1 + e1) ≤
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(45 + 8n)λn+1µ, d(yn + e2, yn+1 + e2) ≤ (45 + 8n)λn+1µ, d(yn, yn + e3) ≤ 2000λµ.

For n = 0 the claim holds, since y0 has diagram C.2 or D.2. Suppose

the claim holds for some n ≥ 0. Then it must have diagram C.2 or D.2,

so yn + e1
3
⌢yn + e2, giving d(yn+1 + e1, yn+1 + e2) ≤ λd(yn + e1, yn + e2) ≤

4λn+1µ. We can apply Proposition 3.24 to (y0; y0 + e2, y0 + e1, y0 + e3; yn)

or (y0; y0 + e1, y0 + e2, y0 + e3; yn) (depending on the diagram of y0) and to

(y0; y0 + e2, y0 + e1, y0 + e3; yn+1) or (y0; y0 + e1, y0 + e2, y0 + e3; yn+1) with con-

stant 60, so we get d(y0 + e3, yn + e3), d(y0 + e3, yn+1 + e3) ≤ 960λµ, thus

d(yn+1, yn+1 + e3) ≤ 2000λµ. So ρ(yn+1) ≤ (1 + 3λ)ρ(yn) ≤ 17µ, so yn+1 has

diagram C.2 or D.2.

If the diagrams of yn and yn+1 are distinct, then yn + e1
3
⌢yn+1 + e1 and

yn + e2
3
⌢yn+1 + e2, so the inequalities for d(yn+1 + e1, yn+2 + e1) and d(yn+1 +

e2, yn+2 + e2) follow. Otherwise, yn + e1
3
⌢yn+1 + e2 and yn + e2

3
⌢yn+1 + e1,

so d(yn+1 + e1, yn+2 + e1) ≤ d(yn+1 + e1, yn+1 + e2) + d(yn+1 + e2, yn+2 + e1) ≤
4λn+2µ+λ(d(yn+e2, yn+e1)+d(yn+e1, yn+1+e1)) ≤ 8λn+2µ+λ(45+8n)λn+1 =

(45 + 8(n+ 1))λn+2µ. The inequality for d(yn+1 + e2, yn+2 + e2) is proved in the

same spirit.

Finally, by the triangle inequality we get d(y0+e1, yn+1+e1) ≤ d(y0+e1, y1+

e2) + d(y1 + e2, y1 + e1) + d(y1 + e1, y2 + e2) + · · ·+ d(yn + e1, yn+1 + e1) < 50λµ.

Also d(y0, yn+1) ≤ d(y0, y0+ e3)+d(y0+ e3, yn+ e3) ≤ 192λµ+960λµ = 1152λµ.

Combining these conclusions further implies ρ(yn+1) ≤ 16µ, as desired. Having

established this claim, we can see that (yn + e1)n≥0 is a 1-way Cauchy sequence,

which is the final contradiction in this proof.

Proposition 3.26. Set C3 = 24 ·1010, C3,1 = 19 ·109 and let i, j ∈ [3] be distinct.

If λ < 1/(7380C1C3,1), there is x such that ρ(x) ≤ C3µ; d(x+ ei, x+ ej) ≤ λC3µ.

Proof. The proof will be a consequence of a few lemmas, the last one being

Lemma 3.32. It suffices to prove the claim for i = 1, j = 2. Suppose contrary,

there is no such a point. Consider those y which satisfy ρ(y) ≤ C3,1µ and

d(y + e3, y + ei) ≤ λC3,1µ. For such a point y say that it is C3,1-good, and more

generally use this definition for arbitrary constant instead of C3,1. We already

know that such a y exists by Proposition 3.25. We list the possible diagrams

of contractions in {y} ∪N(y) for such a point, these are given in Figure 3.6 for
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Figure 3.7: Possible diagrams in the proof of Proposition 3.26

i = 1. If an edge is shown as a dashed line, then it is a result of a contraction.

Furthermore, with dotted lines with letter P we mark edges whose bound on

length will be the result of applying Proposition 3.24. It is not hard to show

that these are the only possible diagrams, but for the sake of completeness we

include the full proof in Section 3.8 devoted to the contraction diagrams, which

in particular provides an explanation for Figure 3.6. The symmetric diagrams

to these for the case i = 2 are denoted by A’, B’, etc.

Our aim is to reject diagrams one by one. We shall start by discarding

diagram A, and this method will then be used for the others. As we shall see, we

can first apply the propositions proved so far to discard many diagrams in the

presence of the given one, and then the remaining ones can be fitted together so

that we obtain a 1-way Cauchy sequence.

Lemma 3.27. Set C3,2 = 31 ·108. There is no C3,2-good y such that contractions

give diagram A or A’ for y.

Proof of Lemma 3.27. Suppose contrary, we do have such a point y, and without

loss of generality d(y + e1, y + e3) ≤ λC3,2µ. Firstly, suppose that there was

another point z that is C3,1-good, but whose diagram is among D, D’, E, E’, F,

F’. By FNI we have d(y, z) ≤ (C3,2+C3,1)µ/(1−λ) < 2C3,1µ. Then, for a suitable

choice {z1, z2, z3} = N(z), we can apply Proposition 3.24 to (z; z1, z2, z3; y + e1)

with constant 6C3,1 to get d(z3, z3 + e3) ≤ d(z3, z) + d(z, y) + d(y, y + e1 + e3) +

d(y + e1 + e3, z3 + e3) ≤ C3,1µ + 2C3,1µ + (1 + λ)C3,2µ + 96λC3,1µ < 4C3,1µ.

Hence, ρ(z3) ≤ 4C3,1µ, except when the diagram is D or D’, so we must apply

Proposition 3.22 to z first, so obtain ρ(z3) ≤ 10C3,1µ. Also, d(z3 + e1, z3 + e2) ≤
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2λC3,1µ, but such a point z cannot exist by the assumptions.

Now, take an arbitrary (C3,1/3)-good point z with diagram A. Consider the

point z+e3. We have ρ(z+e3) ≤ (2+3λ)ρ(z), d(z+e3+e1, z+e3+e3) ≤ 2λρ(z)

so z+e3 is C3,1-good, so its diagram is one of A, B or C (it cannot be among the

symmetric to these ones as then ρ(z+e3) < µ). If it was B, then contracting the

pair z + e1, z + e3 + e2 would give immediate contradiction, for we would obtain

one of ρ(z+ e1) < C3,1µ, ρ(z+ e2) < µ or ρ(z+ e2+ e3) < µ. Similarly, it cannot

be C, since contracting the same pair of points would give the contradiction once

again as it would yield ρ(z + e2) < µ or ρ(z +2e3) < µ. Therefore, whenever we

have a (C3,1/3)-good point z with diagram A, then z + e3 is C3,1-good and has

the same diagram.

Now, start from the y given, and define yn = y+ne3, for n ≥ 0. We shall now

show that (yn)n≥0 is a Cauchy sequence and hence obtain a contradiction. By

induction on n we claim d(yn, yn + e1) ≤ λnC3,2µ, d(yn + e1, yn+1) ≤ λn+1C3,2µ,

ρ(yn) < (2 + 10λ)C3,2µ and diagram of yn is A. This is clearly true for n = 0.

Suppose that the claim holds for n ≥ 0. Note d(y0, yn+1) ≤ d(y0, y1) +

d(y1, y2)+ · · ·+d(yn+ yn+1) ≤ C3,2µ+2λC3,2µ+2λ2C3,2µ+ · · · < (1+3λ)C3,2µ.

The fact that yn has the diagram A and is in fact C3,1/3-good implies that

yn+1 is C3,1-good and itself has diagram A. Further, yn
3
⌢yn + e1 and yn +

e1
3
⌢yn + e3. This is then sufficient to obtain the next two inequalities. Also

d(y0 + e2, yn+1) < C3,2µ + 3C3,2µ/(1 − λ) < 5C3,2µ. Hence, we must have

y0 + e2
2
⌢yn+1, for otherwise ρ(y0 + e1) < µ or ρ(y1) < µ. So d(y0, yn+1 + e2) ≤

d(y0, y0+2e2)+λd(y0+ e2, yn+1) ≤ C3,2µ+λC3,2µ+5λC3,2µ, from which we can

infer ρ(yn+1) = d(yn+1, yn+1 + e2) ≤ d(yn+1, y0) + d(y0, y0 + e2) + d(y0 + e2, y0 +

2e3) + d(y0 + 2e2, yn+1 + e2) < (2 + 10λ)C3,2µ, as claimed.

From this we immediately get that (yn)n≥0 is a Cauchy sequence.

Lemma 3.28. Set C3,3 = 1029 · 106. There is no C3,3-good point y with diagram

E or E’.

Proof of Lemma 3.28. Suppose contrary, without loss of generality d(y+ e1, y+

e3) ≤ λC3,3µ. Firstly, suppose there was a C3,2-good point z with d(z + e1, z +

e3) ≤ λC3,2µ and diagram among B, C, D. Take p = z + e2 for diagrams B, D,

p = z + e3 for C, and apply Proposition 3.24 with constant 3C3,2 (for d(p, y) ≤
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3C3,2µ and for such a constant the other necessary assumptions also hold) to

(y; y+ e3, y+ e2, y+ e1; p) to obtain a contradiction at y+ e1, as it has d(y+ e1+

e1, y + e1 + e2) ≤ 2C3,3λµ and ρ(y + e1) = d(y + e1, y + e1 + e3) ≤ d(y + e1, y) +

d(y, z) + d(z, p+ e1) + d(p+ e1, y + e3 + e1) ≤ C3,3µ+ (C3,3 + C3,2)µ/(1− λ) +

2C3,2µ + 48λC3,2 < C3,1µ. Hence, any such a C3,2-good point z can only have

diagram E or F.

Now, return to the point y and define yn = y + ne2, for all n ≥ 0. We show

that (yn)n≥0 is a Cauchy sequence. By induction on n we show that d(yn+e1, yn+

e3) ≤ λn+1C3,3µ, d(yn + e3, yn+1 + e3) ≤ (3 + 2n)λn+1C3,3µ and ρ(yn) < 3C3,3µ.

Case n = 0 is clear.

Suppose the claim holds for some n ≥ 0. Firstly, yn is C3,2-good, so it has

diagram E or F, so in particular d(yn+1 + e1, yn+1 + e3) ≤ λd(yn + e1, yn +

e3) ≤ λn+1C3,3µ. Applying the triangle inequality gives d(yn+1 + e3, y0 + e3) ≤
d(yn+1+e3, yn+e3)+ · · ·+d(y1+e3, y0+e3) ≤ (5+2n)λn+1C3,3µ+ . . . 3λC3,3µ <

3λC3,3µ/(1− 2λ). Further, since d(y0, yn+1) ≤ d(y0, yn) + d(yn, yn+1) ≤ (ρ(y0) +

ρ(yn))/(1− λ) + ρ(yn) ≤ 8C3,3µ apply Proposition 3.24 to (y; y + e3, y + e2, y +

e1; yn+1) with constant 8C3,3 which gives d(y1, yn+2) ≤ 128λC3,3µ. Therefore,

ρ(yn+1) < 3C3,3µ, in particular is C3,2-good, hence its diagram can also only be

E or F. If yn and yn+1 have the same diagram, then contract yn + e1, yn+1 + e3,

otherwise yn+e3, yn+1+e3. These must be contracted by 2, so using the triangle

inequality gives in the former case d(yn+1 + e3, yn+2 + e3) ≤ d(yn+1 + e3, yn+1 +

e1) + d(yn+1 + e1, yn+2 + e3) ≤ λn+2C3,3µ+ λd(yn + e1, yn+1 + e3) ≤ λn+2C3,3µ+

λ(d(yn+e1, yn+e3)+d(yn+e3, yn+1+e3)) ≤ 2λn+2C3,3µ+λd(yn+e3, yn+1+e3) ≤
(5 + 2n)λn+2C3,3µ as desired. In the latter case we are immediately done.

Furthermore this claim implies that (yn+ e1)n≥0 is a Cauchy sequence, so we

obtain a contradiction.

Lemma 3.29. Set C3,4 = 147 · 106. There is no C3,4-good point y with diagram

F or F’.

Proof of Lemma 3.29. Suppose contrary, there is such a point y and without loss

of generality we may assume d(y + e1, y + e3) ≤ λC3,4µ.

Suppose that we have a point z that is 3C3,4-good with diagram F and that

d(z + e1, z + e3) ≤ 3λC3,4µ, and that z + e2 being C3,3-good has diagram B, C
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or D. If it was B, we would immediately obtain a contradiction by contracting

z + e1, z + 2e2, and if it was C, contracting z + e1, z + e2 + e3, would once

again end the proof, both giving a point p with ρ(p) < µ, so suppose that it

was D. Apply Proposition 3.24 to (z; z + e1, z + e2, z + e3; z + e2 + e3) and to

(z; z + e1, z + e2, z + e3; z +2e2) with constant 12C3,4. Now z + e1 is 7C3,4-good,

so it has diagram among B’, C’, D’, F’. However diam{z + e1 + e2, z + 2e1 +

e2, z + e1 + e2 + e3} ≤ 4λC3,4µ, so it must in fact be F’. Apply Proposition 3.24

to (z; z+e1, z+e2, z+e3; z+e1+e3) with constant 12C3,4. Thus z+e3
3
⌢z+2e3.

Write r = d(z+e3, z+2e3), so we see that FNI implies r−ρ(z) ≤ d(z, z+2e3) ≤
λ(r + ρ(z))/(1− λ), but r ≥ C3µ and ρ(z) ≤ 3C3,4µ give contradiction.

Hence, whenever z is a 3C3,4-good point with diagram F, z + e2 is C3,3-good

and has the same diagram. Now (y + ne2)n≥0 is Cauchy by the arguments from

the proof of Lemma 3.28, since there we allow both E and F as diagrams.

Lemma 3.30. Set C3,5 = 21 · 106. There is no C3,5-good point y with diagram

D or D’.

Proof of Lemma 3.30. Suppose contrary, there is such a point y and without loss

of generality we may assume d(y + e1, y + e3) ≤ λC3,5µ.

Consider a point 3C3,5-good point z with the diagram D and d(z+e1, z+e3) ≤
λ3C3,5µ. Since z+ e1 is C3,4-good, it can only have diagram B, C or D. If it was

not D, contract z+e2, z+e1+e3 for the sake of contradiction, namely, if it was B

we would get ρ(z+e2) < µ or ρ(z+2e1) ≤ C3µ, but d(z+2e1+e1, z+2e1+e2) ≤
2λC3,5µ and if it was C, we would obtain ρ(z + e1 + e3) < µ or ρ(z + 2e1) < µ.

Hence, whenever z has the given properties, z + e1 has diagram D.

Return to y, and consider the sequence yn = y+ne1, for n ≥ 0. By induction

on n, we show that ρ(yn) ≤ 3C3,5µ, d(yn, yn+e3) ≤ λnC3,5µ and d(yn+e3, yn+1) ≤
λn+1C3,5µ. The claim is clearly true for n = 0.

Suppose that the claim holds for some n ≥ 0. Then yn is 3C3,5-good so

it has diagram D. Hence, yn
1
⌢yn + e3 and yn+1

1
⌢yn + e3, which establishes

two of the necessary inequalities. Also, by the triangle inequality d(yn+1, y0) ≤
C3,5µ + 2λC3,5µ/(1 − λ), so we can apply Proposition 3.24 to (y0; y0 + e2, y0 +

e1, y0 + e3; yn+1) with constant 6C3,5 to get d(yn+1 + e2, y0 + e1 + e2) ≤ 96C3,5µ,

in particular ρ(yn+1) ≤ 3C3,5µ, as desired.
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It follows that (yn)n≥0 is a Cauchy sequence.

Lemma 3.31. Set C3,6 = 3 · 106. There is no C3,6-good point y with diagram C

or C’.

Proof of Lemma 3.31. Suppose contrary, there is such a point y and without loss

of generality we may assume d(y + e1, y + e3) ≤ λC3,6µ.

Firstly, suppose that we have a 3C3,6-good point z such that d(z+e1, z+e3) ≤
3λC3,6µ, and z + e1 has diagram B. We shall obtain a contradiction by con-

sidering contractions in such a situation. First of all we can observe that

z+e3
3
⌢z+e1+e3. Note that d(z+2e1, z+2e1+e3) > C3µ, so d(z+e3, z+2e3) ≥

d(z+2e1, z+2e1+e3)−d(z+e3, z+2e1)−d(z+2e3, z+2e1+e3) > C3µ−24λC3,6µ.

Case 1. Suppose that z + e3
2
⌢z + 2e3.

We see that z+e2+e3, z+2e3 is not contracted by 1, and from FNI, we must

have ρ(z+2e3) ≥ (1−λ)d(z, z+2e3)−ρ(z) ≥ (1−λ)d(z+e3, z+2e3)−(2−λ)ρ(z),
thus z+e2+e3, z+2e3 is neither contracted by 3, hence z+e2+e3

2
⌢z+2e3. Now

suppose that z+2e2
3
⌢z+e1+e2. Then d(z+e3, z+2e3) ≤ d(z+e3, z+e2+2e3)+

d(z+e2+2e3, z+e2+e3)+d(z+e2+e3, z+2e3) so d(z+e3, z+2e3)(1−λ) ≤ 3ρ(z)

which is impossible.

Therefore we must have z+2e2
2
⌢z+e1+e2 and z+2e1

3
⌢z+2e2, otherwise

ρ(z + e1 + e2) < µ. Finally, contract z + 2e1with z + 2e3 to get ρ(z + 2e1) < µ

or ρ(z + 2e3) < µ.

Case 2. Suppose that z + e3
3
⌢z + 2e3.

By FNI applied to z, z + 2e3 we see that ρ(z + 2e3) ≥ (1 − λ)d(z + e3, z +

2e3) − (2 − λ)ρ(z), hence ρ(z + 2e3) = d(z + 2e3, z + e2 + 2e3) ≥ (1 − λ)d(z +

e3, z+2e3)− (2−λ)ρ(z). So we have z+2e3
2
⌢z+e2+e3. Also z+2e2

2
⌢z+e3,

from which we see that z + 2e2
2
⌢z + 2e1, giving a contradiction.

Thus, whenever we have a point z as described, we must have z + e1 with

diagram C as well. Now, set yn = y+ne1 for n ≥ 0. By induction on n we prove

that d(yn, yn + e3) ≤ λnC3,6µ, d(yn + e3, yn+1) ≤ λn+1C3,6µ, ρ(yn) ≤ 3C3,6µ and

yn has diagram C. This is clear for n = 0.

Suppose the claim holds for some n ≥ 0, so yn must have diagram C, from

which the first two inequalities follow. Observe that d(yn+1, y0) < ρ(y0) +

2λρ(y0)/(1− λ) and d(y0 + e2, y0 + e2 + e3) > C3µ, so yn+1
2
⌢y0 + e2. Therefore
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ρ(yn+1) < 3ρ(y0) ≤ 3C3,6µ, which gives the rest of the claim, as yn+1 = yn + e1

must have diagram C, by the previous conclusions.

Hence (yn)n≥0 is a 1-way Cauchy sequence, which is a contradiction.

Lemma 3.32. Set C3,7 = 105. There is no C3,7-good point y with diagram B or

B’.

Proof of Lemma 3.32. Suppose contrary, there is such a point y and without loss

of generality we may assume d(y + e1, y + e3) ≤ λC3,7µ.

Consider a 6C3,7-good point z, which has d(z + e1, z + e3) ≤ 6λC3,7µ, which

therefore must have diagram B. We have ρ(z + e2) ≤ (2 + 3λ)ρ(z), d(z + e2 +

e2, z + e2 + e3) ≤ 2λρ(z), so z + e2 is C3,6-good so has diagram B’. Observe

that z + e3
3
⌢z + e2 + e3 as d(z + (1, 0, 1), z + (1, 1, 1)) ≥ R − 4λρ(z) and

d(z+(0, 1, 1), z+(0, 2, 1)) > C3µ−2λρ(z), where R = d(z+e1, z+e1+e3) > C3µ.

Also z+e1
3
⌢z+e3 since z has diagram B. Similarly, since z+e2 has diagram B’,

we must have z+2e2
3
⌢z+e2+e3. Furthermore ρ(z+e1+e2) ≤ (2+3λ)ρ(z+e2) ≤

(2 + 3λ)2ρ(z), d(z + e1 + e2 + e1, z + e1 + e2 + e3) ≤ 2λρ(z + e2) ≤ 5λρ(z),

so z + e1 + e2 is C3,6-good, hence itself has diagram B, from which we infer

z + (0, 1, 1)
3
⌢z + (1, 1, 1).

Suppose that z + e1 + e3
3
⌢z + e2 + e3, so have d(z + (1, 0, 2), z + (0, 1, 2)) ≤

λ(R+3ρ(z)) and d(z+(1, 0, 2), z+(0, 0, 2)) ≤ λ(R+6ρ(z)). Thus d(z+(1, 0, 1), z+

(1, 0, 2)) ≤ λ(R+ 8ρ(z)), hence z
3
⌢z + 2e3, which implies d(z + 2e3, z + 3e3) ≥

R(1 − λ) − 3ρ(z), so z + e1 + e3
1
⌢z + 2e3 (if z + e1 + e3

2
⌢z + 2e3, then

ρ(z + 2e1 + e2) < µ) giving d(z + (2, 0, 1), z + (1, 0, 1)) ≤ λ(R + 10ρ(z)). Also

z+(1, 1, 0)
1
⌢z+(2, 0, 0) and z+2e1

3
⌢z+2e2, but then contracting z+2e1, z+2e3,

results in contradiction.

Thus z+(1, 0, 1)
1
⌢z+(0, 1, 1), as otherwise R(1−λ) ≤ 2C3,7µ, which is not

possible. From the fact that z has the diagram B, we have z
1
⌢z + e1. Also, we

must have z+e1
1
⌢z+e1+e2. As d(z+e1+e3, z+2e1+e3) ≥ (1−λ)R−7λρ(z),

we cannot have z + e1
3
⌢z + 2e1. Suppose that z + e1

1
⌢z + 2e1, then contract-

ing z + 2e2, z + e1 and z + 2e2, z + 2e1 (both must be in the direction e3) gives

d(z + e1 + e3, z + 2e1 + e3) ≤ 6λρ(z), which is a contradiction.

We conclude that z
1
⌢z + e1, z + e1

1
⌢z + e1 + e2 and z + e1

2
⌢z + 2e1,

for such a z. By symmetry, when d(z + e2, z + e3) ≤ 6λC3,7µ holds instead of
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d(z + e1, z + e3) ≤ 6λC3,7µ, then we must have z
2
⌢z + e2, z + e2

2
⌢z + e1 + e2

and z + e2
1
⌢z + 2e2.

Return now to the point y and consider the sequence given as y0 = y, when

k is even set yk+1 = y + e2, otherwise yk+1 = y + e1. By induction on k we

obtain ρ(yk) ≤ 3C3,7µ, d(yk, yk+2) ≤ 3λk 1+λ2

1−λ
C3,7µ, d(yk, yk + e3) ≤ λkC3,7µ;

and for even k we have d(yk, yk + e1) ≤ 3λkC3,7µ, and for odd k we have

d(yk, yk + e2) ≤ 3λkC3,7µ.

When k = 0, the claim clearly holds. Suppose that the claim is true for

all values less than or equal to some even k ≥ 0. We shall argue when k

is even, the same argument works in the opposite situation. By the trian-

gle inequality, we have d(y0, yi) ≤ 3 1+λ2

(1−λ)(1−λ2)
C3,7µ for even i ≤ k + 2 and

d(y1, yi) ≤ 3λ 1+λ2

(1−λ)(1−λ2)
C3,7µ for the odd i ≤ k + 2. In particular, as yk

is C3,6-good, it has diagram B, so ρ(yk+1) = d(yk+1, yk+2) ≤ d(yk+1, y1) +

ρ(y0) + d(y0, yk+2) ≤ 3(1 + λ) 1+λ2

(1−λ)(1−λ2)
C3,7µ + C3,7µ ≤ 5C3,7µ and d(yk+1 +

e2, yk+1 + e3) ≤ 2λρ(yk) ≤ 10λC3,7µ. Then yk+1 is 10C3,7-good, so it must

have diagram B’. From the contractions implied by this diagram described pre-

viously, we get that d(yk+1, yk+1 + e3) ≤ λk+1C3,7µ. Moreover, yk+1
2
⌢yk+1 + e2,

yk+1+e2
2
⌢yk+1+e1+e2 and yk+1+e2

1
⌢yk+1+2e2. Therefore d(yk+1+e2, yk+3) ≤

d(yk+1+e2, yk+1+2e2)+d(yk+1+2e2, yk+1+2e2+e1)+d(yk+1+2e2+e1, yk+3) ≤
λd(yk+1+ e2, yk+3)+ (1+λ)d(yk+1+ e2, yk+1+2e2) ≤ λd(yk+1+ e2, yk+3)+λ(1+

λ)d(yk+1, yk+1 + e2). Hence d(yk+1, yk+3) ≤ 1+λ2

1−λ
d(yk+1, yk+1 + e2), proving the

claim.

We infer that y0, y0+e1, y1, y1+e1, y2, . . . is a 1-way Cauchy sequence, which

is a contradiction.

But Proposition 3.25 provides us with a C3,7-good point, which however

cannot exist because of the lemmas we have shown in the course of this proof.

3.7 Final contradiction

In the rest of the proof of Proposition 3.3, an important role will be played

by the sets Si(K, x0) = {y : d(x0, y) ≤ Kµ, d(y, y + ei) ≤ Kµ}, defined for any

point x0, constant K and i ∈ [3]. Given any point t, the set Si(K, x0) serves to

give approximate versions of contractions of x0 and t in the direction i, in the
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following sense. If t
i
⌢y for some y ∈ Si(K, x0), then we have

d(x0, t+ ei) ≤ d(x0, y) + d(y, y + ei) + d(y + ei, t+ ei) ≤ Kµ+Kµ+ λd(y, t)

≤ 2Kµ+ λ(d(y, x0) + d(x0, t)) ≤ (2 + λ)Kµ+ λd(x0, t).

Using this idea, unless t never contracts with Si(K, x0) in the direction i for

some i, we can get 3-way sets of small diameter, as we shall see in the proof of

the next proposition.

An additional benefit of using these sets is that they usually do not con-

sist of x0 only (note x0 ∈ Si(K, x0) if ρ(x0) ≤ Kµ), and that for example,

under certain circumstances, we can find a point y with the property that

y, y + e3 ∈ S3(K, x0). Such points will play an important role in the proofs

of Propositions 3.35 and 3.36, which, when combined with the following propo-

sition, are used to deduce the key result in this chapter.

Recall that x
i

̸⌢y means that d(x+ ei, y + ei) > λd(x, y).

Proposition 3.33. Fix arbitrary x0 with ρ(x0) < 2µ. Given K ≥ 2, when

i ∈ [3], define Si(K, x0) = {y : d(x0, y) ≤ Kµ, d(y, y + ei) ≤ Kµ}. Provided

1 > 2λKC1(2+ λ)2/(1− λ), in every ⟨z⟩3 there is t such that d(t, x0) ≤ 2+λ
1−λ

Kµ,

but for some i ∈ [3], we have t
i

̸⌢s for all s ∈ Si(K, x0).

Proof. First of all, we have x0 ∈ S1(K, x0), S2(K, x0), S3(K, x0), making these

non-empty, as Kµ ≥ ρ(x0) ≥ d(x0, x0 + ei) for all i ∈ [3]. Suppose contrary

to our statement, there is z without any t described above. Since 2+λ
1−λ

Kµ >

ρ(x0)/(1 − λ), we know that there is y ∈ ⟨z⟩3 such that d(x0, y) ≤ 2+λ
1−λ

Kµ, by

Lemma 3.8. Then we have s1 ∈ S1(K, x0) such that s1
1
⌢y. Hence d(y+e1, x0) ≤

d(y + e1, s1 + e1) + d(s1 + e1, s1) + d(s1, x0) ≤ λ(d(y, x0) + d(x0, s1)) + 2Kµ ≤
λ(2+λ

1−λ
Kµ+Kµ)+2Kµ = 2+λ

1−λ
Kµ. Similarly, we get the same result for y+e2, y+

e3, and so we have constructed a 3-way set of diameter not greater 22+λ
1−λ

Kµ, but

there are no such sets since 1 > 2λKC1(2 + λ)2/(1 − λ) by Proposition 3.19,

giving a contradiction.

Similarly as before, we use tighter constraints on λ. Here we use λ < 1/10

implies 2+λ
1−λ

< 3 and (2 + λ)2/(1− λ) < 5. Note that the following statement is

Proposition 3.6 described in the overview of the proof.
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Corollary 3.34. Fix arbitrary x0 with ρ(x0) < 2µ. Given K ≥ 2, when i ∈ [3],

define Si(K, x0) = {y : d(x0, y) ≤ Kµ, d(y, y + ei) ≤ Kµ}. Provided 1 >

10λKC1, in every ⟨z⟩3 there is t such that d(t, x0) ≤ 3Kµ, but for some i we

have s
i

̸⌢t when s ∈ Si(K, x0).

Based on this, we shall reach the final contradiction in the proof of Proposi-

tion 3.3. To do this, we consider the possible cases on the d(t+ ej, t+ ek) where

{i, j, k} = [3] and t is a point given by Corollary 3.34. Namely, suppose that

d(t+ ej, t+ ek) is small enough, and in fact j = 1, k = 2, i = 3. Then whenever

we have a point y with y ∈ S3(K, x0) and if d(y+e1, y+e2) is small we also have

diam{y+e1, y+e2, t+e1, t+e2} small as well. On the other hand, if d(t+e1, t+e2)

is large, and y1, y2 ∈ S3(K, x0) with d(y1 + e1, y1 + e2), d(y2 + e1, y2 + e2) small,

but d(y1 + e1, y2 + e1) large, we also have pairs t, y1 and t, y2 contracted by the

different values in {1, 2}. Of course, we need to specify what we mean by small

and large in this context, and this is done in the following two propositions.

Proposition 3.35. Let C4 = 16C3. Fix x0 with ρ(x0) < 2µ. Let {i, j, k} = [3].

Given K, provided λ < 1/(44C3+6C4+K), 1/(34440C1C3), we have d(t+ej, t+

ek) > Kλµ, when t is such that d(t, x0) ≤ 3C4µ and s
i

̸⌢t when s ∈ Si(C4, x0).

Proposition 3.36. Let C5 = 1000C3. Fix x0 with ρ(x0) < 2µ. Let {i, j, k} = [3].

Provided λ < 1/(8200000C1C3), we have d(t + ej, t + ek) ≤ 10C5λµ, when t is

such that d(t, x0) ≤ 3C5µ and s
i

̸⌢t when s ∈ Si(C5, x0).

Once we have shown these propositions, we just need to take λ small enough

so that they both hold.

Let us now prove a lemma that classifies the relevant possible diagrams we

will need in the incoming arguments.

Lemma 3.37. Let K ≥ 1 and λ < 1/(4920KC1). Suppose that we have a point

y with ρ(y) ≤ Kµ and d(y + e1, y + e2) ≤ λKµ. Then y must have one of the

diagrams shown in Figure 3.7 (up to symmetry).

Proof of Lemma 3.37. Contracting the long edges in N(y) ∪ {y} can only, up

to symmetry, give us diagrams A, B, C and D, as described in the first part of

Section 3.8, with the requirement 1/(164KC1) > λ. Observe that in diagrams B,

C and D, we can apply Proposition 3.24 to (y; y+e3, y+e2, y+e1; y+e1), (y; y+
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Figure 3.8: Possible diagrams for ρ(y) ≤ Kµ, d(y + e1, y + e2) ≤ λKµ.

e2, y + e1, y + e3; y + e3) and (y; y + e1, y + e2, y + e3; y + e3) respectively with

constant 6K, as long as λ < 1/(4920KC1). Further, by contracting the short

edges, we can only obtain diagrams A.1, A.2, B.1, etc. shown in Figure 3.7, up

to symmetry, as otherwise we obtain a point p ∈ {y} ∪N(y) with ρ(p) < µ.

Proof of Proposition 3.35. We prove the claim for i = 3, j = 2, k = 1, the

other cases follow from symmetry. Suppose contrary, for some K and λ <

1/(44C3 + 6C4 +K), 1/(34440C1C3), we have t0 such that d(t0 + e1, t0 + e2) ≤

Kλµ, d(t0, x0) ≤ 3C4µ and s
3

̸⌢t0 whenever s ∈ S3(C4, x0), where x0 is a point

with ρ(x0) < 2µ.

Consider points y with ρ(y) ≤ 7C3µ, d(y + e1, y + e2) ≤ 7λC3µ. Existence of

such points is granted by Proposition 3.26. Apply Lemma 3.37 to y. We shall

now discard some of the diagrams by contractions with t0.

Suppose that y had the diagram A.1. By FNI d(y, x0) ≤ (7C3+2)µ/(1−λ) ≤
8C3µ, and so y, y + e3 ∈ S3(C4, x0). Hence y, t0 and y + e3, t0 would be con-

tracted by 1 or 2. However, from this we see that if y + e3
1
⌢t0 we would get

ρ(y + e1) = d(y + e1, y + e3 + e1) ≤ d(y + e1, t0 + e1) + d(t0 + e1, y + e3 + e1) ≤
d(y+e1, y+e2)+λd(t0, y)+d(t0+e1, t0+e2)+λ(d(t0, y)+d(y, y+e3)) ≤ 7λC3µ+

3λC4µ+λd(x0, y)+λKµ+3λC4µ+λd(x0, y)+7λC3µ ≤ λ(30C3+6C4+K)µ < µ.
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On the other hand if y+e3
2
⌢t0, we would get ρ(y+e2) ≤ d(y+e3+e2, y+e2)+

d(y+ e2 + e3, y+ e2 + e2) ≤ d(y+ e3 + e2, t0 + e2)+ d(t0 + e2, y+ e2)+ 14λC3µ ≤
λ(d(t0, x0)+d(x0, y)+d(y, y+e3))+d(y+e1, y+e2)+d(t0+e1, t0+e2)+λd(y, t0)+

14λC3 ≤ 3λC4µ+8λC3µ+7λC3µ+7λC3µ+λKµ+3λC4µ+8λC3µ+14λC3µ ≤
λ(44C3 + 6C4 +K)µ < µ.

Similarly, if it was A.2 instead of A.1, we would have y, y+e1 ∈ S3(C4, x0) and

so contracting these two points with t0, would give ρ(y+ e2) = d(y+ e2+ e1, y+

e2) ≤ d(y+e1+e2, y+2e1)+λd(y+e1, t0)+d(y+e1, y+e2)+λd(y, t0)+λKµ ≤
λ(14C3 + 15C3 + 3C4 + 8C3 + 3C4 +K)µ < µ.

Now consider diagrams C.2 and D.2. We have y, y + e3 ∈ S3(C4, x0) so

contracting these points with t0 must be by 1 or 2, so we immediately get

ρ(y + e1) ≤ λ(44C3 + 6C4 +K)µ < µ.

Therefore, we can only have diagrams B.1, C.1, D.1 and the diagram sym-

metric to B.1, which we shall refer to as B.2. Suppose now that y with ρ(y) ≤
7C3µ, d(y+e1, y+e2) ≤ 7λC3µ had diagram C.1 or D.1. Also, assume ρ(y+e3) ≤
7C3µ, d(y+e3+e1, y+e3+e2) ≤ λC3µ, thus y+e3 itself has one of the mentioned

diagrams. Suppose that it had diagram B.1 or B.2. Without loss of generality,

it was B.1, the other case is symmetric to this one.

Suppose y has diagram C.1. Then given any point z with d(z, y) ≤ 2ρ(y),

suppose d(y+e1, z+e1), d(y+e2, z+e2) > 5λρ(y). Then z
3
⌢y and so y+e1

2
⌢z,

y+e2
1
⌢z. However, we can apply Proposition 3.24 to (y; y+e2, y+e1, y+e3; y+

2e3) with constant 42C3, to see that diamN(z) ≤ 800λC3µ, so after contracting

y, z we obtain ρ(z) < 12C3µ and applying Proposition 3.23 gives the contradic-

tion, provided λ < 1/(32800C1C3). So whenever d(z, y) ≤ 2ρ(y), we must have

d(y + e1, z + e1) ≤ 5λρ(y) or d(y + e2, z + e2) ≤ 5λρ(y). But contract z with

y+ e2 in the former case and with y+ e1 in the latter to see that for some choice

of distinct i, j ∈ [3] we must have d(z+ ei, y+ e1), d(z+ ej, y+ e1) ≤ 20λρ(y), so

d(z + ei, y), d(z + ej, y) ≤ 2ρ(y), thus we can repeat these arguments to points

z + ei, z + ej. Doing so, we obtain a 2-way set of diameter at most 280λC3µ

by considering the distance from y + e1, if the point z is dropped out. But, by

Lemma 3.8, we get such a 2-way set in every 3-way set, which is a contradiction

by Proposition 3.20, since λ < 1/(840C3). We argue similarly, if y has diagram

D.1.
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We conclude that if y is as described and has diagram C.1 or D.1, then

y + e3 also has diagram among these two. Now, start from a point y0 with

d(y0+e1, y0+e2) ≤ 3λC3µ, ρ(y0) ≤ 3C3µ and diagram C.1 or D.1, provided such

a point exists. Define the sequence yn = y0 + ne3, for all n ≥ 0. Our aim is to

show that this is Cauchy. By induction on n we show that ρ(yn) ≤ 7C3µ, d(yn+

e1, yn+1+e1), d(yn+e2, yn+1+e2) ≤ (n+3)λn+1C3µ, d(yn+e1, yn+e2) ≤ 3C3λ
n+1µ

and yn has either diagram C.1 or diagram D.1, which is true for n = 0.

Suppose the claim holds for all m not greater than some n ≥ 0. By Proposi-

tion 3.24 applied to (y0; p1, p2, p3; yn) with constant 18C3 with suitable {p1, p2, p3} =

N(y0) we get d(y1, yn+1) ≤ 288λC3µ, so we infer that ρ(yn+1) ≤ d(yn+1, yn+1 +

e1) + d(yn+1 + e1, yn+1 + e2) ≤ d(yn+1, y1) + d(y1, y0 + e2) + d(y0 + e2, y1 + e2) +

d(y1 + e2, y2 + e2) + · · · + d(yn + e2, yn+1 + e2) ≤ 7C3µ and yn + e1
3
⌢yn + e2

so d(yn+1 + e1, yn+1 + e2) ≤ 3λn+2C3 therefore, yn+1 must itself have diagram

C.1 or D.1. If yn and yn+1 have the same diagram, then we can see that

yn+e1
3
⌢yn+1+e2 and yn+1+e1

3
⌢yn+e2, which is sufficient to establish the claim,

as we obtain d(yn+1+e1, yn+2+e1) ≤ d(yn+1+e1, yn+2+e2)+d(yn+2+e2, yn+2+

e1) ≤ λ(d(yn+e1, yn+1+e1)+d(yn+1+e1, yn+1+e2))+λd(yn+1+e1, yn+1+e2) ≤
λd(yn+e1, yn+1+e2)+6λn+3C3µ ≤ (n+3)λn+2C3µ+λ

n+2C3µ ≤ (n+4)λn+2C3µ.

Likewise, we get the bound on d(yn+1+ e2, yn+2+ e2). If the diagrams are differ-

ent, it must be the case that yn + e1
3
⌢yn+1 + e1 and yn + e2

3
⌢yn+1 + e2, once

again proving the claim.

Hence, if y is a point such that ρ(y) ≤ 3C3µ, d(y + e1, y + e2) ≤ 3λC3µ,

then it can only have diagram B.1 or B.2. In the light of this, pick y0 with

ρ(y0) ≤ C3µ, d(y0 + e1, y0 + e2) ≤ λC3µ, whose existence is provided by Propo-

sition 3.26, so it has diagram B.1, without loss of generality. Set y1 = y0 + e1

and so have diam{y1, y1+ e1, y1+ e2} ≤ 3λρ(y0) for the diagram for y0. Also, by

Proposition 3.24 applied to (y0; y0 + e3, y0 + e2, y0 + e1; y1) with constant 6C3 we

get ρ(y1) ≤ 3C3µ, so y1 has diagram B.1 or B.2. If it is B.1 define y2 to be y1+e1,

otherwise y1 + e2. We similarly proceed to define a sequence (yk)k≥0. As long as

yk is defined and has one of these diagrams, define yk+1 = yk+e1 when yk has dia-

gram B.1, and set yk+1 = yk+e2 if it has diagram B.2. We now claim by induction

on k that yk is defined, ρ(yk) ≤ 3C3µ and diam{yk, yk+e1, yk+e2} ≤ 3(3λ)kC3µ.

This is clear for k = 0.
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Suppose the claim holds for some k ≥ 0. Then we have that yk has B.1 or B.2

for its diagram. Suppose it is the former, we argue in the same way for the other

option. Firstly, yk+1 is defined. Then, from contractions implied by the dia-

gram B.1, we get diam{yk+1, yk+1+ e1, yk+1+ e2} ≤ 3λ diam{yk, yk+ e1, yk+ e2}.
Finally, as d(y0, yk) ≤ (ρ(y0) + ρ(yk))/(1 − λ) < 5C3µ, we may apply Propo-

sition 3.24 to (y0; y0 + e3, y0 + e2, y0 + e1; yk+1) with constant 6C3 to obtain

ρ(yk+1) = d(yk+1, yk+1+ e3) ≤ d(yk+1, y0)+d(y0, y0+ e3)+d(y0+ e3, yk+1+ e3) ≤
d(yk+1, yk) + d(yk, yk−1) + · · ·+ d(y1, y0) + ρ(y0) + 96λC3µ ≤ 9λC3µ/(1− 3λ) +

2C3µ+ 96λC3µ ≤ 3C3µ, which proves the claim.

This brings us to the conclusion that (yk)k≥0 is a 1-way Cauchy sequence,

providing us with a contradiction.

Proof of Proposition 3.36. During the course of our argument, we shall prove a

few auxiliary lemmas, the last one being Lemma 3.41, allowing us to conclude the

proof. It suffices to prove the claim for i = 3, j = 2, k = 1. Suppose contrary,

there is t0 with d(t0 + e1, t0 + e2) > 10λC5µ, d(t0, x0) ≤ 3C5µ and whenever

s ∈ C3(C5, x0), we must have either s
1
⌢t0 or s

2
⌢t0.

Set C5,1 = 100C3 and consider the points y with ρ(y) ≤ C5,1µ, d(y + e1, y +

e2) ≤ λC5,1µ. Note that such a point exists by Proposition 3.26. The possible

diagrams of contractions are shown in Figure 3.9, and the arguments to justify

these are provided in Section 3.8. These are precisely the same diagrams as in

the previous proposition. Using d(t0 + e1, t0 + e2) > 10λC5µ, we reject most of

these.

B.1 Suppose that y as above has diagram B.1. First of all, as λ < 1/(4920C1C5,1),

apply Proposition 3.24 to (y; y + e3, y + e2, y + e1; y) with constant 6C5,1

to see that in particular y, y + e1, y + e2, y + e3 are all in C3(x0, C5), as

d(y, x0) ≤ (C5,1 + 2)µ/(1 − λ), ρ(y) ≤ C5,1µ, d(y, y + e3) ≤ C5,1µ, d(y +

e1, y + e1 + e3) ≤ (2 + 96λ)C5,1µ, d(y + e2, y + e2 + e3) ≤ λC5,1µ and

d(y + e3, y + 2e3) ≤ (2 + 3λ)C5,1µ.

If t0
1
⌢y, then contract t0, y+e3 to get ρ(y+e1) < 6λ(C5,1+C5)µ < µ when

t0
1
⌢y+ e3 or d(t0+ e1, t0+ e2) ≤ d(t0+ e1, y+ e1)+d(y+ e1, y+ e3+ e2)+

d(y+e3+e2, t0+e2) ≤ λ(3C5,1+3C5)µ+3λC5,1µ+(3C5,1+3C5)µ < 10λC5µ

otherwise, both of which are not allowed.
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Figure 3.9: Possible diagrams of points p with d(p+ e1, p+ e2) ≤ λC5,1µ, ρ(p) ≤
C5,1µ

C.1 Suppose that y as above has diagram C.1. Then d(y, y+e3) ≤ C5,1µ, d(y+

e1, y+e1+e3), d(y+e2, y+e2+e3) ≤ 3λC5,1µ, d(y+e3, y+2e3) ≤ 96λC5,1µ.

Also d(y, x0) ≤ (C5,1+2)µ/(1−λ), ρ(y) ≤ C5,1µ, so y, y+e1, y+e2, y+e3 ∈
S3(x0, C5). Without loss of generality y

1
⌢t0. But if y + e2

1
⌢t0, then

ρ(y + e1) = d(y + e1, y + e1 + e2) ≤ λd(y, t0) + λd(y + e2, t0) ≤ 6λ(C5,1 +

C5)µ < µ. However, y + e2
2
⌢t0 is impossible as well, for that implies

d(t0+e1, t0+e2) ≤ d(t0+e1, y+e1)+d(y+e1, y+2e2)+d(y+2e2, t0+e2) ≤
6λ(C5,1 + C5)µ+ 7λC5,1 < 10λC5µ.

C.2 Assume that y as above has diagram C.2. First of all apply Proposition 3.22

to y (we have λ < 1/(78C5,1)) to see that d(y+e1, y+e1+e3), d(y+e2, y+

e2+e3) ≤ 9C5,1µ. Also d(y+e3, y+2e3) ≤ λC5,1µ, ρ(y) ≤ C5,1µ, d(y, x0) ≤
(C5,1+2)µ/(1−λ), so y, y+ e1, y+ e2, y+ e3 ∈ S3(x0, C5). Without loss of

generality y
1
⌢t0. If y+ e1

1
⌢t0 then ρ(y+ e1) ≤ d(y+ e1, y+2e1) + d(y+

2e1, y + e1 + e2) ≤ λ(d(y, t0) + d(y + e1, t0)) + 2λC5,1µ ≤ 6λ(C5,1 +C5)µ+

2λC5,1 < µ. So, we must have y+e1
2
⌢t0, but this also yields contradiction
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as d(t0+e1, t0+e2) ≤ d(t0+e1, y+e1)+d(y+e1, y+y1+e2)+d(y+e1+e2, t0+

e2) ≤ λd(y, t0)+λC5,1µ+λd(y+e1, t0) ≤ 6λ(C5+C5,1)µ+λC5,1µ < 10λC5µ.

D.1 Let y have diagram D.1. Then d(y, y + e3) ≤ C5,1µ, d(y + e1, y + e1 +

e3), d(y + e2, y + e2 + e3) ≤ 3λC5,1µ, d(y + e3, y + 2e3) ≤ 96λC5,1µ. Also

d(y, x0) ≤ (C5,1 + 2)µ/(1 − λ), ρ(y) ≤ C5,1µ, so y, y + e1, y + e2, y + e3 ∈
S3(x0, C5). Without loss of generality y

1
⌢t0. If t0

1
⌢y+e1, then ρ(y+e1) =

d(y + e1, y + 2e1) ≤ d(y + e1, t0 + e1) + d(t0 + e1, y + 2e1) ≤ λ(d(y, t0) +

d(t0, y + e1)) ≤ 6λ(C5 + C5,1) < µ. On the other hand t0
2
⌢y + e1 implies

d(t0 + e1, t0 + e2) ≤ d(t0 + e1, y + e1) + d(y + e1, y + e1 + e2) + d(y + e1 +

e2, t0 + e2) ≤ λ(6C5 + 7C5,1)µ < 10λC5µ. Thus, y cannot have diagram

D.1.

D.2 Suppose that y as above has diagram D.2. First of all apply Proposi-

tion 3.22 to y to see that d(y+e1, y+e1+e3), d(y+e2, y+e2+e3) ≤ 9C5,1µ.

Also d(y+e3, y+2e3) ≤ λC5,1µ, ρ(y) ≤ C5,1µ, d(y, x0) ≤ (C5,1+2)µ/(1−λ),
so y, y + e1, y + e2, y + e3 ∈ S3(x0, C5). Without loss of generality y

1
⌢t0.

Now contract y + e2, t0. If these are contracted by 1, then ρ(y + e1) ≤
d(y+e1, y+e1+e2)+d(y+e1+e2, y+e1+e3) ≤ λ(6C5+8C5,1)µ < µ, which

is a contradiction. Therefore t0
2
⌢y + e2, which gives d(t0 + e1, t0 + e2) ≤

d(t0+e1, y+e1)+d(y+e1, y+2e2)+d(y+2e2, t0+e2) ≤ λ(6C5+8C5,1)µ <

10λC5µ.

Thus, we are only left with diagrams A.1 and A.2. Let A.1’ and A.2’ be the

diagrams symmetric to these, obtained by swapping the roles of e1 and e2. Let

y once again be the same point as before. We distinguish the possibilities for

contractions with t0.

A.1 If y has diagram A.1, then y, y+e1, y+e3 ∈ S3(x0, C5), and it is easy to see

that t0, y and t0, y+e1 are contracted in the same direction, while t0, y+e3

is contracted in the other. Similarly, we obtain the possible contractions

with t0 for diagram A.1’.

A.2 If y has diagram A.2, we have all the points in {y}∪N(y) being members of

S3(x0, C5), and pairs t0, y and t0, y+ e1 must be contracted in the different

directions (otherwise ρ(y+e2) < µ). Same holds for the pairs y+e1, t0 and
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y+e3, t0. From this we see that t0
2
⌢y, t0

2
⌢y+e3, t0

1
⌢y+e1. Analogously,

we classify the contractions for A.2’.

Lemma 3.38. Let K ≤ C5,1. There is no sequence (yk)k∈I for suitable index set

I ⊂ N0, with the following properties:

1. y0 is defined, has ρ(y0) ≤ K/(2 + 6λ), d(y0 + e1, y0 + e2) ≤ λK/(2 + λ)µ,

2. If yk is defined, and satisfies ρ(yk) ≤ Kµ, d(y0 + e1, y0 + e2) ≤ λKµ, then

yk has diagram A.1 or A.1’, and we define yk+1 = yk + ei, with i = 1 when

diagram of yk is A.1 and i = 2 otherwise.

Proof of Lemma 3.38. By induction on k, we claim that yk is defined and diam{yk, yk+
e1, yk + e2} ≤ (3λ)kKµ/(2 + 6λ). This trivially holds for k = 0. Also, without

loss of generality y0 has diagram A.1.

Suppose that the claim holds for all k′ not greater than k, where k ≥ 0.

Observe that d(y0, yk) ≤ d(y0, y1) + d(y1, y2) + . . . d(yk−1, yk) ≤ (1 + 3λ + · · · +
(3λ)k−1)Kµ/(2+6λ) < 1

(1−3λ)(2+6λ)
Kµ. Now, contract y0+e3, yk. It is contracted

neither by 1 nor by 2, since we either get ρ(y0+e1) < µ or ρ(y0+e2) < µ. Hence

yk
3
⌢y0 + e3, so d(yk + e3, y0 + e3) ≤ d(yk + e3, y0 + 2e3) + d(y0 + 2e3, y0 + e3) ≤
λ(3−6λ)

(1−3λ)(2+6λ)
Kµ < 2λKµ. Finally, we establish ρ(yk) ≤ (2 + 6λ)Kµ/(2 + 6λ) =

Kµ, which combined with d(yk + e1, yk + e2) ≤ λKµ gives that yk itself has dia-

gram A.1 or A.1’. Hence yk+1 is defined, and diam{yk+1, yk+1 + e1, yk+1 + e2} ≤
3λ diam{yk, yk + e1, yk + e2}, as desired.

However, this shows that (yk)k≥0 is a 1-way Cauchy sequence, which is not

allowed. Therefore, we reach a contradiction, and the end of the proof.

Corollary 3.39. There exists a point y with ρ(y) ≤ 3C3µ, d(y + e1, y + e2) ≤
3λC3µ with diagram A.2 or A.2’.

Proof of Corollary 3.39. Suppose contrary, and let y0 be a point with ρ(y0) ≤
C3µ, d(y0 + e1, y0 + e2) ≤ λC3µ, given by Proposition 3.26. We shall now define

a sequence (yk) inductively, as long as we can. The starting point y0 is as above.

Given yk, provided it satisfies ρ(yk) ≤ 3C3µ, d(yk + e1, yk + e2) ≤ 3λC3µ, define

yk+1 to be yk + e1 when yk has diagram A.1 and yk + e2 if yk has diagram A.1’,

(note that by assumption these two are the only permitted diagrams). But this

gives a contradiction by Lemma 3.38 with K = 3C3.
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Corollary 3.40. We have d(t0 + e1, t0 + e2) > 5C3µ.

Proof of Corollary 3.40. Suppose contrary. In order to reach a contradiction, we

shall obtain a Cauchy sequence as in the previous proof. Consider a point y with

ρ(y) ≤ 36C3µ, d(y + e1, y + e2) ≤ 36λC3µ. Assume that this point has diagram

A.2. Recall that we have t0
1
⌢y + e1, t0

2
⌢y. This gives ρ(y + e1) ≤ C5,1µ and

from contractions of {y} ∪N(y) we get that d(y + e1 + e1, y + e1 + e2) ≤ λC5,1µ

holds as well, so y+ e1 has one of the four diagrams considered so far. However,

we immediately see that it is not possible for y + e1 to have diagram A.2, for

t0
1
⌢y + e1.

Suppose that y+e1 had diagram A.2’. Firstly, suppose that y+e1
3
⌢y+e2+e3.

Then contract y, y+2e3. If it is by 3, we have ρ(y+2e3) < µ, otherwise we obtain

ρ(y + e3) < µ. Hence y + e1
2
⌢y + e2 + e3. This further implies y + e1

2
⌢y + 2e2

(or otherwise ρ(y+2e1) < µ). However y+2e2 ∈ S3(x0, C5), so contract y+e2, t0

to get a contradiction.

Suppose now that y has diagram A.1 and ρ(y) ≤ 17C3µ, d(y + e1, y + e2) ≤
17λC3µ. If y+e1 has diagram A.2, then y+e1

2
⌢t0, y+e1+e3

2
⌢t0, y+2e1

1
⌢t0.

But y has diagram A.1, so t0 contracts with y+e1, y in the same direction, thus in

e2, and t0, y+e3 in the other, i.e. e1. However, then diamN1(x+2e1) < 10λC5µ,

which is in contradiction with Proposition 3.23 used with constant 10C5 after

contracting y, y + 2e1.

Assume that y + e1 has diagram A.2’. Thus t0
1
⌢y + e1, t0

1
⌢y + e1 + e3 and

t0
2
⌢y + e1 + e2. As y has diagram A.1, we have t0

1
⌢y and t0

2
⌢y + e3. But, as

d(t0 + e1, t0 + e2) ≤ 5C3µ, we have y + e1 + e2 100C3-good, so by the previous

discussion y+e1+e2 can only have diagram A.1 or A.1’ (as y+e1 is 36C3-good).

If y+ e1 + e2 has diagram A.1 then t0
1
⌢y+ e1 + e2 + e3, so ρ(y+ e1) < µ, so we

may assume y + e1 + e2 has diagram A.1’, which implies t0
1
⌢y + e1 + e2 + e3.

Look at pairs y+2e1, y+2e1+ e3 and y+2e1+ e2, y+2e1+ e3, both have length

at most 6C3µ, so cannot be contracted by 2, as otherwise d(t0 + e1, t0 + e2) <

10C5µ. Suppose that at least one of these pairs is contracted by 1. Then apply

Proposition 3.24 to (y; y + 3e1, y + 2e1, y + e1; y + e2) with constant 10C5 (since

λ < 1/(8200C1C5)), to see that ρ(y+ 3e3) < µ. Hence, the two considered pairs

are contracted by 3. But, contract y+ e2, y+2e1 + e3 to get ρ(y+2e1 + e3) < µ

or d(t0 + e1, t0 + e2) < 200λC5µ giving ρ(y + e2) < µ.
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Now, start from y′0 with ρ(y′0) ≤ C3µ, d(y
′
0 + e1, y

′
0 + e2) ≤ λC3µ, given

by Proposition 3.26. If y′0 has diagram A.1 or A.1’ set y0 = y′0, otherwise set

y0 = y′0+e1 if the diagram is A.2, and y0 = y′0+e2 if the diagram is A.2’. Hence,

y0 satisfies ρ(y0) ≤ 6C3µ, d(y0+ e1, y0+ e2) ≤ 6λC3µ, and defining a sequence as

in Lemma 3.38, gives a contradiction for K = 17C3 by the discussion above.

Lemma 3.41. Suppose that y1, y2 are two points with ρ(y1), ρ(y2) ≤ C3µ. Then

d(y1 + e3, y2 + e3) ≤ 40λC3µ.

Proof of Lemma 3.41. Recall that we have a point y0 with ρ(y0) ≤ 6C3µ, d(y0 +

e1, y0+e2) ≤ 6λC3µ, with diagram A.2 or A.2’, given by Corollary 3.39. Without

loss of generality it is A.2.

Let z be any point with ρ(z) ≤ C3µ. We shall prove d(y0 + e3, z + e3) ≤
20λC3µ, which is clearly sufficient. Note that we have d(z, x0) ≤ (C3+2)µ/(1−
λ) ≤ C5µ,d(z, t0) ≤ d(z, x0) + d(x0, t0) ≤ (C3 +2)µ/(1− λ) + 3C5µ ≤ 4C5µ, and

similarly d(y0, z) ≤ 4C5µ and y0, z ∈ S3(x0, C5).

Assume t0
1
⌢z. Recall that t0

2
⌢y0. If y0

1
⌢z, then d(t0 + e1, t0 + e2) ≤

d(t0 + e1, z + e1) + d(z + e1, y0 + e1) + d(y0 + e1, y0 + e2) + d(y0 + e2, t0 + e2) ≤
λ4C5µ+ λ7C3/(1− λ) + 6λC3µ+4λC5µ < 5C3µ < d(t0 + e1, t0 + e2), which is a

contradiction. Similarly we discard the case y0
2
⌢z, as then d(t0 + e1, t0 + e2) ≤

d(t0+e1, z+e1)+d(z+e1, z+e2)+d(z+e2, y0+e2)+d(y0+e2, t0+e2) ≤ 5C3µ.

Therefore, y0
3
⌢z, so d(y0 + e3, z + e3) ≤ λ7C3µ/(1− λ) < 8λC3µ.

Thus, we must have z
2
⌢t0. But we cannot have neither y0 + e1

1
⌢z nor

y0 + e1
2
⌢z, for otherwise we obtain d(t0 + e1, t0 + e2) ≤ d(t0 + e1, y0 + 2e1) +

d(y0 + 2e1, z + e2) + d(z + e2, t0 + e2) ≤ λd(t0, y0 + e1) + d(y0 + 2e1, y0 + e1 +

e2) + λd(y + e1, z) + 2ρ(z) + λd(z, t0) ≤ 5C3µ. Hence, we get y0 + e1
3
⌢z, so

d(y0 + e3, z + e3) ≤ λd(y0 + e1, z) + d(y0 + e1 + e3, y0 + e3) ≤ 14λC3µ+6λC3µ =

20λC3µ, as desired.

We are now ready to establish the final contradiction. By Proposition 3.26, we

have points x1, x2, x3 with whenever {i, j, k} = [3], we have ρ(xi) ≤ C3µ, d(xi +

ej, xi + ek) ≤ λC3µ. First of all, x1, x2, x3 all belong to S3(x0, C5), since

d(x0, xi) ≤ (C3 + 2)µ/(1 − λ). Suppose that for some i, j we have t0
1
⌢xi

and t0
2
⌢xj. Then, by the triangle inequality and FNI, d(t0 + e1, t0 + e2) ≤

d(t0+ e1, xi+ e1)+ d(xi+ e1, xi)+ d(xi, xj)+ d(xj, xj + e2)+ d(xj + e2, t0+ e2) ≤
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Figure 3.10: All possible contraction diagrams

λ(d(t0, x0) + d(x0, xi)) + ρ(xi) + (ρ(xi) + ρ(xj))/(1− λ) + ρ(xj) + λ(d(xj, x0) +

d(x0, t0)) ≤ λ(3C5µ + (ρ(x0) + ρ(xi))/(1 − λ)) + C3µ + 2C3µ/(1 − λ) + C3µ +

λ((ρ(xj) + ρ(x0))/(1 − λ) + 3C5µ) ≤ 5C3µ, which is not possible, hence t0

contracts with x1, x2, x3 in the same direction, e1 without loss of generality.

But also Lemma 3.41 gives diam{x1 + e3, x2 + e3, x3 + e3} ≤ 40λC3µ, and

diam{x1 + e1, x2 + e1, x3 + e1} ≤ 8λC5µ so diamN(x1) ≤ 9λC5µ, which is a

contradiction due to Proposition 3.23.

Combine Corollary 3.34 with Propositions 3.35 and 3.36 to obtain a contra-

diction.
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3.8 Discussion of the Possible Contraction Diagrams

In this section we discuss the possible diagrams for contractions in the later

part of the proof of Proposition 3.3. In this discussion we assume that the propo-

sitions preceding Proposition 3.25 all hold.

Let us start with a point x with ρ(x) ≤ Kµ, for some K ≥ 1. Consider first

the contractions of the long edges, that is those of the form x+ ei, x+ ej, where

i, j are distinct elements of [3]. If two such edges are contracted in the same

direction, say k, then diamN(x + ek) ≤ 4λKµ. Furthermore, we can contract

x, x + ek, to get ρ(xk) ≤ (2 + 5λ)Kµ, which is a contradiction due to Proposi-

tion 3.23, provided λ < 1/(164C1K), which we shall assume is the case. Thus,

all three long edges must be contracted in different directions.

Contract now the short edges, i.e. those edges of the form x, x+ ei, for some

i ∈ [3]. Given such an edge, there is a unique long edge x+ ej, x+ ek, such that

{i, j, k} = [3]. We say that these edges are orthogonal. Suppose that a short edge

x+ ei is not contracted in the same direction as its orthogonal long edge. Then

x+ei must be contracted in the same direction el as x+ei, x+ej, for some j ̸= i.

Let k be such that {i, j, k} = [3]. Then x+ ek cannot be contracted in the same

direction as x+ ei, as otherwise ρ(x+ el) ≤ 3λKµ < µ, which is impossible. So,

x+ek is contracted in the same direction as one of its nonorthogonal long edges.

Hence diam{x+el, x+el+ei, x+el+ej}, diam{x+em, x+em+ek, x+em+en} ≤
3λρ(x) holds for some m,n ∈ [3] where m ̸= l and n ̸= k. From this we can

conclude that contractions in {x} ∪ N(x) can only give the diagrams shown in

Figure 3.8. There, an edge shown as dashed line implies that its length is at

most 3λρ(x).

3.8.1 Diagrams in the proof of Proposition 3.26

As in the proof of Proposition 3.26 we consider a point y with d(y + e1, y +

e3) ≤ λC3,1µ and ρ(y) ≤ C3,1µ, i.e. we set previously considered K to be C3,1

instead, and so assume λ < 1/(164C1C3,1). Consider the possible diagrams of

contractions of edges in {y} ∪N(y). Recall that our assumption is that there is

no point x with ρ(x) ≤ C3µ and d(x+ e1, x+ e2) ≤ λC3µ. We now describe how
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to reject all diagrams except 2, 4, 6, 11, 15 and 23.

1 Immediately we get ρ(y + e3) ≤ 4λC3,1µ < µ.

3 We have ρ(y + e1) ≤ 4λC3,1µ < µ.

5 Similarly to previous ones ρ(y + e1) ≤ 7λC3,1µ.

7 We get ρ(y + e3) ≤ 4λC3,1µ < µ.

8 Have ρ(y + e2) ≤ (2 + 3λ)C3,1µ, d(y + e2 + e1, y + e2 + e2) ≤ 3λC3,1, but

we assume that there are no such points.

9 Diameter of N(y) is at most 7λC3,1µ and ρ(y) ≤ C3,1µ so apply Proposi-

tion 3.23, provided λ < 1/(287C1C3,1).

10 Diameter of N(y) is at most 10λC3,1µ and ρ(y) ≤ C3,1µ so apply Proposi-

tion 3.23, provided λ < 1/(410C1C3,1).

12 We apply Proposition 3.24 to (y; y + e2, y + e1, y + e3; y) with constant

9C3,1, so ρ(y + e2) ≤ 144λC3,1µ < µ, as long as λ < 1/(7380C1C3,1).

13 Use Proposition 3.22 to get ρ(y + e1) ≤ (11 + 9λ)C3,1µ and d(y + e1 +

e1, y + e1 + e2) ≤ 3λC3,1µ, as λ < 1/(936C3,1). This is a contradiction as

C3 > 12C3,1.

14 Apply Proposition 3.24 to (y; y + e3, y + e2, y + e1; y) with constant 9C3,1

to get ρ(y + e2) ≤ 144λC3,1µ. Here we need λ < 1/(7380C1C3,1).

16 As 14.

17 As for 13, get ρ(y + e2) ≤ (11 + 9λ)C3,1µ and d(y + e2 + e1, y + e2 + e2) ≤
3λC3,1µ.

18 Apply Proposition 3.24 to (y; y + e1, y + e3, y + e2; y) with constant 9C3,1

to get ρ(y + e2) ≤ 144λC3,1µ < µ.

19 Apply Proposition 3.24 to (y; y + e1, y + e3, y + e2; y + e3) with constant

9C3,1 to get ρ(y+ e2) ≤ (2+6λ)C3,1µ, d(y+ e2+ e1, y+ e2+ e2) ≤ 3λC3,1µ.

20 As 18.
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21 Use Proposition 3.22 to get ρ(y+e3) ≤ (9+3λ)C3,1µ and d(y+e3+e1, y+

e3 + e2) ≤ 3λC3,1µ, as λ < 1/(78C3,1).

22 Have diamN(y) ≤ 7λKµ which is in contradiction with Proposition 3.23,

when λ < 1/(287C1C3,1).

24 Apply Proposition 3.24 to (y; y + e1, y + e2, y + e3; y + e2) with constant

6C3,1 to get ρ(y + e2) ≤ 96λC3,1µ.

Therefore, we obtain that for the y given above, provided λ < 1/(7380C1C3,1),

we can only have diagrams 2, 4, 6, 11, 15 and 23. However, in all of these

diagrams we can classify contractions more precisely.

2 Observe that we cannot have y + e1
2
⌢y or y + e1

3
⌢y as the first one of

these gives ρ(y + e2) ≤ 10λC3,1µ < µ, while the latter implies ρ(y + e1) ≤
10C3,1µ < µ. Hence y + e1

1
⌢y. Similarly, we must have y

2
⌢y + e3,

otherwise we get a point p with ρ(p) ≤ 10λC3,1µ < µ.

4 As in 2, if we do not have y
3
⌢y + e1 and y

2
⌢y + e2, we obtain a point p

with ρ(p) ≤ 10λC3,1µ < µ.

6 As in 2, if we do not have y
2
⌢y + e2 and y

1
⌢y + e3, we obtain a point p

with ρ(p) ≤ 10λC3,1µ < µ.

11 If y
3
⌢y + e3, then ρ(y + e3) ≤ 10λC3,1µ < µ. On the other hand, if

y
2
⌢y+e3, then diamN(y) ≤ 8λC3,1µ and ρ(y) ≤ C3,1µ which is impossible

by Proposition 3.23, if λ < 1/(328C1C3,1). Thus, y
1
⌢y + e3, and in the

same fashion y
3
⌢y + e2. Furthermore, apply Proposition 3.24 to (y; y +

e2, y + e1, y + e3; y) with constant 6ρ(y)/µ to get d(y + e2, y + e1 + e2) ≤
96λρ(y).

15 As in 11, we obtain y
1
⌢y + e1 and y

3
⌢y + e3. Apply Proposition 3.24 to

(y; y+ e3, y+ e2, y+ e1; y) with constant 6ρ(y)/µ to get d(y+ e2, y+2e2) ≤
96λρ(y).

23 As in 11, we obtain y
3
⌢y + e1 and y

1
⌢y + e3. Apply Proposition 3.24 to

(y; y+ e1, y+ e2, y+ e3; y) with constant 6ρ(y)/µ to get d(y+ e2, y+2e2) ≤
96λρ(y).
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3.9 Concluding Remarks

We now return to the (refuted) conjecture of Stein which stated that every

contractive family had a common fixed point. Recall that Austin showed that

the conjecture fails in general, but that it holds for families consisting of two

commuting functions. Let us recollect once again the main results of this part

of the thesis. These are Theorems 1.3 and 1.7, both extending Austin’s results,

and having rather contrasting conclusions.

Firstly, Theorem 1.3 tells us that, even with a strong topological restriction

imposed on the underlying metric space X, we may still find a contractive family

of two functions such that no composition has a fixed point. Therefore, trying to

find a strengthening of Stein’s conjecture that involves a topological condition

on X is likely doomed to failure. On the other hand, Theorem 1.7 tells us

that λ-contractive families of three commuting functions have a common fixed

point (when λ is small enough). Recall also the remarkable Generalized Banach’s

Contraction theorem (Theorem 1.5), which states that contractive families of the

form {f, f 2, . . . , fn} always have a common fixed point. These two theorems give

evidence that Austin’s conjecture, stating that commuting contractive families

necessarily have a common fixed point, should be true. In fact, an algebraic

condition on functions in the considered family like the one in Austin’s conjecture

naturally defines the geometry of our problem. Namely, if the family is F =

{f1, . . . , fn} and we pick arbitrary point x0 ∈ X and consider compositions of

length k applied to x0, i.e. the set

Sk =
{
fi1 ◦ fi2 ◦ . . . ◦ fik(x0): i1, i2, . . . , ik ∈ [n]

}
,

then the size of Sk is directly related to the algebraic properties of F . In par-

ticular, if the family is commuting, then |Sk|≤ nk, while in the general case,

when there are no additional assumptions on F , it may well be the case that

|Sk|≥ exp(Ω(k)). In other words, Sk grows polynomially when F is commuting,

rather than exponentially, and this should be very helpful for finding fixed points.

The rest of this section is devoted to the analysis of some aspects of the proof

of Theorem 1.7 and we conclude the chapter with some questions and conjectures.
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Recall that the starting point of our proof was to change our viewpoint by

moving from the original space X with a λ-contractive family to a pseudometric

space (N3
0, d), with the property that for any a, b ∈ N3

0 there is some i ∈ [3] such

that d(a+ ei, b+ ei) ≤ λd(a, b). Motivated by Austin’s conjecture, we formulate

the following one.

Conjecture 3.42. Let n be a positive integer and λ a real with 0 ≤ λ < 1.

Suppose that (Nn
0 , d) is an n-dimensional λ-contractive grid, i.e. a pseudometric

space with the property that given x, y ∈ Nn
0 we have some i ∈ [n] with d(x +

ei, y + ei) ≤ λd(x, y). Then there is a 1-way Cauchy sequence (xm)m≥1, i.e.

(xm)m≥1 is Cauchy and xm+1 − xm ∈ {e1, e2, . . . , en} holds for all m.

Recall µ = inf ρ(x), where x ranges over all points in the grid and set µ∞ =

limk→∞ infx∈Ak
ρ(x), where Ak is the n-way set generated by (k, k, . . . , k). We

say that a pseudometric space is a contractive grid if it is n-dimensional λ-

contractive grid, for some 0 ≤ λ < 1 and a positive integer n. Remember that µ

plays a very important role in our proof, since µ = 0 immediately gives rise to a

1-way Cauchy sequence (this is the content of Proposition 3.10).

Question 3.43. Can µ > 0 occur in a contractive grid?

Question 3.44. Can µ∞ = ∞ occur in a contractive grid?

Even though Theorem 1.7 looks like an analytical statement, our proof is of

a combinatorial nature, with the flavour of Ramsey theory. We remark that the

proof of Generalized Banach Theorem (Theorem 1.5) in fact rests on Ramsey’s

Theorem. We suspect that the complete proof of Conjecture 3.42 should be

based on a similar approach.

It might be interesting to examine some arguments used in the proof of

Theorem 1.7 further, and we pose the following questions and conjectures. First,

recall Proposition 3.11 and Corollary 3.18. The former states that a bounded

3-way set contains a bounded 2-way set of considerably smaller diameter, while

the latter tells us that a 2-way set of small diameter induces a 3-way set of

diameter which is not much larger.
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Question 3.45. Does an n-way set of bounded diameter necessarily contain an

n − 1-way set of much smaller diameter? In general, what is the relationship

between the k-way sets and the k + 1-way sets in higher dimensional grids?

Finally, recall that Lemma 3.15 about colourings of edges of Kn in three

colours played an important role in the proof. We conjecture the following

generalization to be true.

Conjecture 3.46. For each k ≥ 2 there is a positive constant Ck with the

following property. Given a k-colouring of the edges of Kn, we can find sets of

vertices A1, A2, . . . , Ak−1 which cover the vertex set, and colours c1, c2, . . . , ck−1 ∈
[k], such that diamci G[Ai] ≤ Ck holds for all i ∈ [k − 1].
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Part II

Graph Theory





4 Covering Complete Graphs by

Monochromatically Bounded Sets

4.1 Introduction

Given a graph G, whose edges are coloured with a colouring χ:E(G) →
C (where adjacent edges are allowed to use the same colour), given a set of

vertices A, and a colour c ∈ C, we write G[A, c] for the subgraph induced

by A and the colour c, namely the graph on the vertex set A and the edges

{xy:x, y ∈ A,χ(xy) = c}. In particular, when A = V (G), we write G[c] instead

of G[V (G), c]. Finally, we also use the usual notion of the induced subgraph G[A]

which is the graph on the vertex set A with edges {xy:x, y ∈ A, xy ∈ E(G)}.
We usually write [n] = {1, 2, . . . , n} for the vertex set of Kn.

Our starting point is the following conjecture of Gyárfás.

Conjecture 4.1 (Gyárfás [23], [25]). Let k be fixed. Given any colouring of the

edges of Kn in k colours, we can find sets A1, A2, . . . , Ak−1 whose union is [n],

and colours c1, c2, . . . , ck−1 such that Kn[Ai, ci] is connected for each i ∈ [k − 1].

This is an important special case of the well-known Lovász-Ryser conjecture,

which we now state.

Conjecture 4.2 (Lovász-Ryser conjecture [33], [27]). Let G be a graph, whose

maximum independent set has size α(G). Then, whenever E(G) is k-coloured,

we can cover G by at most (k − 1)α(G) monochromatic components.

Conjectures 4.1 and 4.2 have attracted a great deal of attention. When it

comes to the Lovász-Ryser conjecture, we should note the result of Aharoni ([1]),

who proved the case of k = 3. For k ≥ 4, the conjecture is still open. The special
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case of complete graphs was proved by Gyárfás ([24]) for k ≤ 4, and by Tuza

([52]) for k = 5. For k > 5, the conjecture is open.

Let us also mention some results similar in the spirit to Conjecture 4.6.

In [46], inspired by questions of Gyárfás ([23]), Ruszinkó showed that every

k-colouring of edges of Kn has a monochromatic component of order at least

n/(k − 1) and of diameter at most 5. This was improved by Letzter ([32]),

who showed that in fact there are monochromatic triple stars of order at least

n/(k − 1). For more results and questions along these lines, we refer the reader

to surveys of Gyárfás ([23], [25]).

In a completely different direction, relating to contraction mappings on metric

spaces, we recall Theorem 1.7, that was proved in Chapter 3. (We mention in

passing that this chapter is self-contained, and in particular no knowledge of

chapter 3 is assumed.)

Theorem 4.3 (Theorem 1.7). Let (X, d) be a complete metric space and let

{f1, f2, f3} be a commuting λ-contractive family of operators on X, for a given

λ ∈ (0, 10−23). Then f1, f2, f3 have a common fixed point.

Some of the ingredients in the proof of Theorem 1.7 were the following simple

lemmas. Note that Lemma 4.4 is in fact a classical observation due to Erdős

and Rado.

Lemma 4.4. Suppose that the edges of Kn are coloured in two colours. Then

we may find a colour c such that Kn[c] is connected and of diameter at most 3.

Lemma 4.5. Suppose that the edges of Kn are coloured in three colours. Then

we may find colours c1, c2, (not necessarily distinct), and sets A1, A2 such that

A1 ∪A2 = [n], with Kn[A1, c1], Kn[A2, c2] are each connected and of diameter at

most 8.

Recall also that a common generalization of these statements and a strength-

ening of Conjecture 4.1 was conjectured in Section 3.9.

Conjecture 4.6 (Conjecture 3.46). For every k, there is an absolute constant

Ck such that the following holds. Given any colouring of the edges of Kn in

k colours, we can find sets A1, A2, . . . , Ak−1 whose union is [n], and colours
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c1, c2, . . . , ck−1 such that Kn[Ai, ci] is connected and of diameter at most Ck, for

each i ∈ [k − 1].

The main result of this chapter is

Theorem 4.7. Conjecture 4.6 holds for 4 colours, and one may take C4 = 160.

4.1.1 An outline of the proof

We begin the proof by establishing the weaker Conjecture 4.1 for the case of

4 colours. Although this was proved by Gyárfás in [24], the reasons for giving

a proof here are twofold. Firstly, we actually give a different reformulation of

Conjecture 4.1 that has a more geometric flavour. The proof given here and the

reformulation we consider emphasize the importance of the graph Gk, defined

as the tensor product1 of k copies of Kn, to Conjecture 4.1. Another reason for

giving this proof is to make the chapter self-contained.

We also need some auxiliary results about colourings with 2 or 3 colours, like

Lemmas 4.4 and 4.5 mentioned above. In particular, we generalize the case of 2

colours to complete multipartite graphs. Another auxiliary result we use is the

fact that Gk essentially cannot have large very sparse graphs.

The main tool in our proof is the notion of c3, c4-layer mappings, where c3, c4

are two colours. For P ⊂ N2
0, this is a mapping L:P → P(n), (where [n] is the

vertex set of our graph), with the property that

(i) sets L(A) partition [n] as A ranges over P , and

(ii) for A,B ∈ P with |A1−B1|, |A2−B2|≥ 2, we have all edges between L(A)

and L(B) coloured using only c3, c4.

This is a generalization of the idea that if we fix a vertex x0 and we assign

A(x) = (dc1(x0, x), dc2(x0, x)) ∈ N2
0 to each vertex x, where dc1 , dc2 are distances

in colours c1, c2 (which are the remaining two colours), then if A(x), A(y) satisfy

|A(x)
1 − A

(y)
1 |, |A(x)

2 − A
(y)
2 |≥ 2, the edge xy cannot be coloured by c1 or c2.

Given a subset P ′ of the domain P , we say that it is k-distant if for all distinct

1Recall that the tensor product of graphs G and H is the graph on the vertex set V (G)×
V (H) with edges of the form (u, u′), (v, v′) for all pairs of edges (u, v) in G and (u′, v′) in H.
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A,B ∈ P ′ we have |A1 − B1|, |A2 − B2|≥ k. Once we have all this terminology

set up, we begin building up structure in our graph, essentially as follows:

Step 1. We prove that if a c3, c4-layer mapping has a 3-distant set of size at least

4, then Theorem 4.7 holds.

Step 2. We continue the analysis of distant sets, and prove essentially that if a

c3, c4-layer mapping has a 6-distant set of size at least 3, then Theorem 4.7

holds.

Step 3. We prove Theorem 4.7 when every colour induces a connected subgraph.

Step 4. We prove Theorem 4.7 when any two monochromatic components of dif-

ferent colours intersect.

Step 5. We put everything together to finish the proof.

Organization of the chapter. In the next subsection, we briefly discuss a

reformulation of Conjecture 4.1. In Section 4.2, we collect some auxiliary results,

including results on 2-colourings of edges of complete multipartite graphs and

the results on sparse subgraphs of Gk and independent sets in G3. In Section 4.3,

we prove Conjecture 4.1 for 4 colours, reproving a result of Gyárfás. The proof

of Theorem 4.7 is given in Section 4.4, with subsections splitting the proof into

the steps described above. Finally, we end the chapter with some concluding

remarks in Section 4.5.

4.1.2 Another version of Conjecture 4.1

For each l ∈ N, define the graph Gl with vertex set Nl
0 by putting an edge

between any two sequences that differ at every coordinate. Equivalently, Gl is

the tensor product of l copies of KN0 (the complete graph on the vertex set N0).

We formulate the following conjecture.

Conjecture 4.8. Given a finite set of vertices of X ⊂ Nl
0, we can find l sets

X1, . . . , Xl ⊆ X that cover X and each Xi is either contained in a hyperplane of

the form {xj = c} or Gl[Xi] is connected.

This conjecture is actually equivalent to Conjecture 4.1.
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Proposition 4.9. Conjectures 4.1 and 4.8 are equivalent for k = l + 1.

Proof. Conjecture 4.1 implies Conjecture 4.8. Let X ⊂ Nl
0 be a finite set. Let

n = |X| and define an (l+1)-colouring χ:E(Kn) → [l+1] by setting χ(xy) = i,

where i is the smallest coordinate index such that xi = yi; otherwise, when x

and y differ in all coordinates, set χ(xy) = l + 1. If Conjecture 4.1 holds, we

may find sets A1, A2, . . . , Al that cover [n], and colours c1, c2, . . . , cl such that

Kn[Ai, ci] are all connected. Fix now any i, and let B ⊂ X be the set of vertices

corresponding to Ai. If ci ≤ l, then for any x, y ∈ B, there is a sequence of

vertices z1, z2, . . . , zm ∈ B such that xi = (z1)i = (z2)i = · · · = (zm)i = yi, so

xi = yi. Hence, B is subset of the plane {xi = v} for some value v. Otherwise,

if c = l+1, that means that the edges of Kn[Ai, ci] correspond to edges of G[B],

so G[B] is connected, as desired.

Conjecture 4.8 implies Conjecture 4.1. Let χ:E(Kn) → [k] be any k-colouring

of the edges of Kn. For every colour c, look at components C
(c)
1 , . . . , C

(c)
nc of

Kn[c]. For each choice of x1, x2, . . . , xk−1 with xc ∈ [nc] for c ∈ [k− 1], we define

Cx = Cx1,x2,...,xk−1
= ∩c∈[k−1]C

(c)
xc , which is the intersection of monochromatic

components, one for each colour except k. Let X ⊂ Nk−1 be the set of all

(k − 1)-tuples x for which Cx is non-empty. If Conjecture 4.8 holds, then we

can find A1, A2, . . . , Ak−1 that cover X such that each Ai is either contained in

a hyperplane, or induces a connected subgraph of Gk−1. If Ai ⊂ {xc = v}, then
the corresponding intersection Cx is a subset of C

(c)
v for each x ∈ Ai. On the

other hand, if Gk−1[Ai] is connected, then taking any adjacent x, y ∈ Gk−1[Ai],

we have that xc ̸= yc for all c ∈ [k − 1]. Hence all the edges of between Cx and

Cy are coloured by k. Hence, all the sets Cx for x ∈ Ai are subset of the same

component of Kn[k]. This completes the proof of the proposition.

4.2 Auxiliary Results

As suggested by its title, this section is devoted to deriving some auxiliary

results. Firstly we extend Lemma 4.4 to complete multipartite graphs. The case

of bipartite graphs is slightly different from the general case of more than 2 parts,

and is stated separately. We also introduce additional notation. Given a colour c

and vertices x, y we write dc(x, y) for the distance between x and y inG[c]. If they

101



are not in the same c-component, we write dc(x, y) = ∞. In particular, dc(x, y) <

∞ means that x, y are in the same component of G[c]. Further, we write Bc(x, r)

for the c-ball of radius r around x, defined as Bc(x, r) = {y: dc(x, y) ≤ r}, where
c is a colour, x is a vertex, and r is a nonnegative integer. For any graph G,

throughout the chapter, the diameter of G, written diamG, is the supremum of

all finite distances between two vertices of G. Thus, diamG = ∞ only happens

when G has arbitrarily long induced paths (as we focus on the finite graphs

in this chapter, this will not occur). For a colour c and a set of vertices A,

the c-diameter of A, written diamcA, is the diameter of G[A, c]. We use the

standard notation for complete multipartite graphs, so Kn1,n2,...,nr stands for the

graph with r vertex classes, of sizes n1, n2 . . . , nr, and all edges between different

classes are present in the graph.

Lemma 4.10. Suppose that the edges of G = Kn1,n2 are coloured in two colours.

Then, one of the following holds:

(i) either there is a colour c, such that G[c] is connected and of diameter at

most 10, or

(ii) there are partitions [n1] = A1∪B1 and [n2] = A2∪B2 such that all edges in

A1×A2∪B1×B2 are of one colour, and all the edges in A1×B2∪B1×A2

are of the other colour.

Proof. Let χ be the given colouring. We start by observing the following. If there

are two vertices v1, v2 such that for colour c1 the inequality 6 ≤ dc1(v1, v2) <

∞ holds, then for every vertex u such that χ(uv1) = c1, we must also have

dc2(u, v1) ≤ 3, where c2 ̸= c1 is the other colour. Indeed, let v1 = w0, w1, w2, . . . ,

wr = v2 be a minimal c1-path from v1 to v2. Hence r ≥ 6, the vertices wi with

the same parity of index belong to the same vertex class of G = Kn1,n2 and the

edges v1w3 = w0w3, w3w6, w6u ∈ E(G) are all of colour c2 (otherwise, we get a

contradiction to the fact that dc1(wi, v2) = r − i), implying that dc2(v1, u) ≤ 3.

Now, suppose that a c1-component C1 has diameter at least 7. The observa-

tion above tells us that if a vertex y is adjacent to x1, and dc2(x1, y) > 1, then

χ(x1, y) = c1, so dc2(x1, y) ≤ 3. Hence, every vertex y adjacent to x1 in G, satis-

fies dc2(x1, y) ≤ 3. Similarly, any vertex y adjacent to x2 satisfies dc2(x2, y) ≤ 3.

But, x1, x2 are in different vertex classes (as their c1-distance is odd), so their
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neighbourhoods cover the whole vertex set, and x1x2 is an edge as well, from

which we conclude that G[c2] is connected and of diameter at most 9. Thus, if

any monochromatic component has diameter at least 7, the lemma follows, so

assume that this does not occur.

Now we need to understand the monochromatic components. From the work

above, it suffices to find monochromatic components of the desired structure, as

the diameter is automatically bounded by 6. Suppose that there are at least 3

c1-components, X1 ∪X2, Y1 ∪ Y2, Z1 ∪ Z2 with X1, Y1, Z1 subsets of one class of

Kn1,n2 and X2, Y2, Z2 subsets of the other. Let u, v ∈ X1 ∪ Y1 ∪ Z1 be arbitrary

vertices. Then we can find w ∈ X2∪Y2∪Z2 in different c1-component from u, v.

Hence, χ(uw) = χ(wv) = c2, so dc2(u, v) ≤ 2. Therefore, both vertex classes of

G are c2-connected and consequently the whole graph is c2-connected.

Finally, assume that each colour has exactly 2 monochromatic components.

Let [n1] = A1 ∪ B1, [n2] = A2 ∪ B2 be such that A1 ∪ A2, B1 ∪ B2 are the c1-

components. Hence, A1 ∩ B1 = A2 ∩ B2 = ∅, and all edges in A1 × B2 and

B1 × A2 are of colour c2. Thus, sets A1 ∪ B2 and B1 ∪ A2 are c2-connected and

cover the vertices of G, so they must be the 2 c2-components. Thus, all edges in

A1 × A2 and B1 ×B2 must be coloured by c1, proving the lemma.

Lemma 4.11. Let r ≥ 3, and suppose that G = Kn1,n2,...,nr is a complete r-

partite graph. Suppose that the edges of G are 2-coloured. Then, there is a

colour c such that G[c] is connected and of diameter at most Cr, where we can

take C3 = 20, and Cr = 60 for r > 3.

Proof. Assume first that r = 3. Let A,B,C be the vertex classes. We shall

use Lemma 4.10 throughout this part of the proof, applying it to every pair of

vertex classes. We distinguish three cases, motivated by the possible outcomes

of Lemma 4.10 (these cases are not identically the possible results of applying

the lemma, but they do resemble the conclusion of the lemma).

Observation. Suppose that D,E, F is a permutation of A,B,C and that D∪E
is contained in a c1-component of diameter at mostN1, and for each colour, D∪F
splits into two monochromatic components, all of diameter at most N2. Then,

G[c1] is connected and of diameter at most N1 + 2N2.

Case 1. Suppose that D,E, F is a permutation of A,B,C, and that Lemma
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4.10 gives different outcomes when applied to pairs D,E and D,F . Then, by

Observation, there is a colour c such that G[c] is connected and of diameter at

most 14. (We took N1 = 10 and N2 = 2.)

Case 2. Suppose that D,E, F is a permutation of A,B,C, and that Lemma

4.10 gives a single monochromatic component for each of pairs D,E and D,F .

If we use the same colour c for both pairs, then G[c] is connected and of diameter

at most 20. Otherwise, let D∪E be c1-connected, and let D∪F be c2-connected,

with c1 ̸= c2. Apply Lemma 4.10 to E,F . If it results in a single monochromatic

component, it must be of colour c1 or c2, so once again G[c] has diameter at most

20 for some c. Finally, if E∪F splits in two pairs of monochromatic components,

by Observation G[c] has diameter at most 14, for some c.

Case 3. Lemma 4.10 gives the second outcome for each pair of vertex classes.

Look at the complete bipartite graphs G[A ∪ B] and G[A ∪ C]. Then, we have

partitions A = A1 ∪ A2 = A′
1 ∪ A′

2, B = B1 ∪B2 and C = C1 ∪ C2 such that all

edges (A1 ×B1)∪ (A2 ×B2)∪ (A′
1 ×C1)∪ (A′

2 ×C2) receive colour c1, while the

edges (A1 × B2) ∪ (A2 × B1) ∪ (A′
1 × C2) ∪ (A′

2 × C1) take the other colour c2.

If {A1, A2} ̸= {A′
1, A

′
2}, then we must have that some Ai intersects both A

′
1, A

′
2,

or vice-versa. In particular, since any two vertices x, y in the same set among

A1, A2, A
′
1, A

′
2 obey dc1(x, y) ≤ 2, this means that for any two vertices x, y ∈ A,

we have dc1(x, y) ≤ 6. Now, every point in B∪C in on c1-distance at most 1 from

a vertex in A, so G[c1] is connected and of diameter at most 8. Hence, we may

assume that A1∪A2 and A
′
1∪A′

2 are the same partitions of A, and similarly for B

and C, we get the same partition for both pairs of vertex classes involving each

of B and C. Let A = A1 ∪A2, B = B1 ∪B2, C = C1 ∪C2 be these partitions, so

the colouring is constant on each product Ai×Bj, Ai×Cj, Bi×Cj, i, j ∈ {1, 2}.
Renaming Bi, Cj, we may also assume that A1 ×B1, A2 ×B2, A1 × C1, A2 × C2

all receive colour c1. Thus A1 ×B2, A2 ×B1, A1 ×C2, A2 ×C1 all receive colour

c2. But looking at the colour c of B1 × C2, we see that G[c] is connected and of

diameter at most 5. This finishes the proof of the case r = 3, and we may take

C3 = 20.

Now suppose that r > 3. Let V1, V2, . . . , Vr be the vertex classes. Fix the

vertex class Vr, and look at the 2-colouring χ′ of the edges of Kr−1 defined as

follows: whenever i, j ∈ [r − 1] are distinct, then applying the case r = 3 of
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this lemma that we have just proved to the subgraph induced by Vi ∪ Vj ∪ Vr,
we get a colour c such that G[Vi ∪ Vj ∪ Vr, c] has diameter at most 20; we set

χ′(ij) = c. By Lemma 4.4, we have a colour c such that Kr−1[c] is of diameter

at most 3 for the colouring χ′. Returning to our original graph, we claim that

G[c] has diameter at most 60. Suppose that x, y are any two vertices of G. If

any of these points lies in Vr, or if they lie in the same Vi, then we can pick i, j

such that y ∈ Vi ∪ Vj ∪ Vr and χ′(ij) = c. Hence, by the definition of χ′, we

actually have dc(x, y) ≤ 20 in G. Now, assume that x, y lie in different vertex

classes and outside of Vr. Let x ∈ Vi, y ∈ Vj. Under the colouring χ′ of Kr−1

we have that dc(ij) ≤ 3, so we have a sequence i1 = i, i2, . . . , is = j, with s ≤ 4,

such that χ′(i1i2) = · · · = χ′(is−1is) = c. For each t between 1 and s, pick

a representative xt ∈ Vit , with x = x1, y = xs. Then, dc(xt−1, xt) ≤ 20, so

dc(x, y) = dc(x1, xs) ≤ 60, as desired.

4.2.1 Induced subgraphs of Gl

Recall that Gl is the graph on Nl, with edges between pairs of points whose all

coordinates differ. In this subsection we prove a few properties of such graphs,

particularly focusing on G3. We begin with a general statement, which will be

reproved for specific cases with stronger conclusions.

Lemma 4.12. If S is a set of vertices in Gl and the maximal degree of G[S] is

at most d, then the number of non-isolated vertices of G[S] is at most Ol,d(1).

Proof. By Ramsey’s theorem we have an integer N such that whenever E(KN)

is coloured using 2l − 1 colours, there is a monochromatic Kl+1. Let S ′ be the

set of non-isolated vertices in S. We show that |S ′|< (d2 + d + 1)N . Suppose

contrary, since the maximal degree is at most d, we have a subset S ′′ ⊂ S of

size |S ′′|≥ N such that sets s ∪ N(s) are disjoint for all s ∈ S ′′ (simply pick a

maximal such subset, their second neighbourhoods must cover the whole S ′). In

particular, S ′′ is an independent set in Gl, so for every pair of vertices x, y ∈ S,

the set I(x, y) = {i ∈ [l]:xi = yi} is non-empty. Thus, I:E(KS′′) → P(l)\{∅} is

2l − 1 colouring of the edges of a complete graph KS′′ on the vertex set S ′′. By

Ramsey’s theorem, there is a monochromatic clique on subset T ⊂ S ′′ of size at

least l + 1, whose edges are coloured by some set I0 ̸= ∅. Take a vertex t ∈ T ,
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and since t is not isolated and the neighbourhoods of vertices in S ′′ are disjoint,

we can find x ∈ S ′ such that tx is an edge, but t′x is not for other t′ ∈ T . Hence,

xi ̸= ti for all i ∈ [l] and for distinct t′, t′′ ∈ T we have t′i = t′′i if and only if i ∈ I0.

Thus, xi ̸= t′i for all t
′ ∈ T and i ∈ I0. But, xt′ is not an edge for t′ ∈ T \ {t},

so we always have i ∈ [l] \ I0 such that xi = t′i. But, for each i ∈ I0, the values

of t′i are distinct for each t′ ∈ T . Hence, for each i, there is at most one vertex

t′ ∈ T \ {t} such that xi = t′i. Therefore |T |−1 ≤ |[l] \ I0|≤ l − 1, so |T |≤ l,

which is a contradiction.

We may somewhat improve on the bound in the proof of the lemma above

by observing that for colour I0 we only need a clique of size l − |I0|+2. Thus,

instead of Ramsey number

R(l + 1, l + 1, . . . , l + 1︸ ︷︷ ︸
2l−1

),

we could use

R(l + 2− |I1|, l + 2− |I2|, . . . , l + 2− |I2l−1|),

where Ii are the non-empty sets of [l]. But, even for paths in G3, which we shall

use later, taking l = 3, d = 2, we get the final bound of 7R(2, 3, 3, 3, 4, 4, 4),

where 7 comes from d2 + d + 1 factor we lose when moving from S ′ to S ′′. We

now improve this bound.

Lemma 4.13. If S is a set of vertices of G3 such that G3[S] is a path, then

|S|≤ 30.

Proof. Let S = {s1, s2, . . . , sr} be such that s1, s2, . . . , sr is an induced path in

G3, so the only edges are sisi+1.

Case 1. For all i ∈ {4, 5, . . . , 10}, si coincides with one of s1 or s2 in at least

two coordinates.

Since s1s2 is an edge, s1 and s2 have all three coordinates different. Thus,

for i ∈ {4, 5, . . . , 10}, we have (si)c ∈ {(s1)c, (s2)c} for all coordinates c. Hence,

there are only at most 6 possible choices of si (as si ̸= s1, s2), so r ≤ 9.

Case 2. There is i0 ∈ {4, 5, . . . , 10} with at most one common coordinate

106



with each of s1, s2. Since s1si0 , s2si0 are not edges, w.l.o.g. we have s1 =

(x1, x2, x3), s2 = (y1, y2, y3), si0 = (x1, y2, z3), where xi ̸= yi, z3 /∈ {x3, y3}.
Consider any point sj, for j ≥ i0 + 2. It is not adjacent to any of s1, s2, si0 .

If (sj)1 = x1 and (sj)2 ̸= y2, then (sj)3 = y3. Similarly, if (sj)1 ̸= x1 and

(sj)2 = y2, then (sj)3 = x3. Also, if (sj)1 ̸= x1, (sj)2 ̸= y2, then sj = (y1, x2, z3).

Hence, for j ≥ i0 + 2, the point sj is on one of the lines

(x1, y2, ·), (x1, ·, y3), (·, y2, x3) or it is the point (y1, x2, z3),

where (a, b, ·) stands for the line {(a, b, z): z arbitrary}, etc. Note that a point on

(x1, y2, ·) is not adjacent to any point on (·, y2, x3), and the same holds for lines

(x1, y2, ·) and (x1, ·, y3). Hence, along out path, a point on the line (x1, ·, y3) is
followed either by a point on (·, y2, x3) or the point (y1, x2, z3) (the latter may

happen only once). In any case, if |S|≥ 30, then among si0+2, si0+3, . . . , si0+20,

we must get a contiguous sequence sj, sj+1, . . . , sj+7 of points

sj, sj+2, sj+4, sj+6 ∈ (x1, ·, y3), sj+1, sj+3, sj+5, sj+7 ∈ (·, y2, x3).

Finally, we look at A = sj, B = sj+2, C = sj+5, D = sj+7. These four points

form an independent set, but A ̸= B gives A2 ̸= B2, so one of A2 ̸= y2, B2 ̸= y2

holds, and similarly, one of C1 ̸= x1, D1 ̸= x1 holds as well. Choosing a point

among A,B and a point among C,D for which equality does not hold gives an

edge, which is impossible.

Finally, we study independent sets in G3. Note that Lemma 4.12 in this case

does not tell us anything about the structure of such sets. When we refer to

line or planes, we always think of very specific cases, namely the lines are the

sets of the form {x:xi = a, xj = b} and the planes are {x:xi = a}. Similarly,

collinearity and coplanarity of points have a stronger meaning than the usual

one, and imply that points lie on a common line or plane defined as above.

Lemma 4.14. Let S be a set of vertices in G3. If every two points of S are

collinear, then S is a subset of a line. If every three points of S are coplanar,

then S is a subset of a plane.

Proof. We first deal with the collinear case. Take any pair of points, x, y ∈ S,

w.l.o.g. they coincide in the first two coordinates. Take third point z ∈ S. If z
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does not share the values of the first 2 coordinates with x and y, then we must

have x3 = z3 = y3, which is impossible. As z was arbitrary, we are done.

Suppose now that we have all triples coplanar. W.l.o.g. we have a non-

collinear pair x, y, which only coincide in the first coordinate. Then all other

points may only be in the plane {p: p1 = x1}.

Lemma 4.15. (Structure of the independent sets of size 4.) Given an indepen-

dent set I of G3 of size 4, (at least) one of the following alternatives holds

(S1) I is coplanar,

(S2) I = {(a, b, c), (a′, b′, c), (a′, b, c′), (a, b′, c′)}, where a ̸= a′; b ̸= b′ and c ≠ c′,

(S3) up to permutation of coordinates I = {(a, b, c), (a, b, c′), (a, b′, x), (a′, b, x)},
where a ̸= a′; b ̸= b′ and c ̸= c′.

Proof. Suppose that I = {A,B,C,D} is not a subset of any plane. We distin-

guish between two cases.

Case 1. There are no collinear pairs in I.

Let A = (a, b, c). But AB is not an edge and not collinear so A and B differ

in precisely two coordinates. Thus, w.l.o.g. B = (a′, b′, c) where a ̸= a′ and

b ̸= b′. If C3 also equals c, then we must have C3 = (a′′, b′′, c) with a′′ different

from a, a′ and b′′ from b, b′. However, looking at D, we cannot have D3 = c as

otherwise I ⊂ {x3 = c}, so D must differ at all three coordinates from one of

the points A,B,C, making them joined by an edge, which is impossible. Thus

C3 = c′, with c′ ̸= c. Since AC and BC are not edges, C ∈ {(a, b′, c′), (a′, b, c′)}.
The same argument works for D, so D3 = c′′ ̸= c, and D ∈ {(a, b′, c′′), (a′, b, c′′)}.
However, if c′ ̸= c′′, then C,D are either collinear or adjacent in G3, which are

both impossible. Hence c′′ = c′, and {C,D} = {(a, b′, c′), (a′, b, c′)}, as desired.

Case 2. W.l.o.g. A and B are collinear.

Let A = (a, b, c), B = (a, b, c′) with c ̸= c′. Since {x1 = a} does not contain

the whole set I, we have w.l.o.g. C1 = a′ ̸= a. If C2 ̸= b, then AC or BC is an

edge, which is impossible. Therefore, C2 = b. Hence D2 = b′ ̸= b, and by similar

argument D1 = a. Finally CD is not an edge, so their third coordinate must be

the same, proving the lemma.
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Lemma 4.16. (Structure of the independent sets of size 5.) Given an indepen-

dent set I of G3 of size 5, (at least) one of the following alternatives holds

(i) I is coplanar,

(ii) I is a subset of a union of three lines, all sharing the same point.

Proof. List the vertices of I as x1, x2, x3, x4, x5. W.l.o.g. x1, x2, x3 are not copla-

nar. By the previous lemma, {x1, x2, x3, xi} for i = 4, 5 may have structure S2

or S3. But if both structures are S2, then we must have that in both quadru-

ples, at each coordinate, each value appears precisely two times. This implies

x4 = x5. Hence, w.l.o.g. {x1, x2, x3, x4} has structure S3. Therefore, assume

w.l.o.g. that

x1 = (1, 0, 0), x2 = (0, 1, 0), x3 = (0, 0, 1), x4 = (0, 0, c′)

for some c′ ̸= 1 (which corresponds to the choice a = 0, a′ = 1, b = 0, b′ = 1, x =

0, c = 1 in the previous lemma, swapping the roles of c and c′ if necessary).

Looking at {x1, x2, x3, x5}, if it had S2 for its structure, we would get x5 =

(1, 1, 1), which is adjacent to x4, and thus impossible. Hence {x1, x2, x3, x5} also

has structure S3. Permuting the coordinates only permutes x1, x2, x3, and does

not change the number of zeros in x5. Thus, w.l.o.g.

{(1, 0, 0), (0, 1, 0), (0, 0, 1), x5} = {x1, x2, x3, x5}

= {(d, e, f), (d, e, f ′), (d′, e, y), (d, e′, y)},

for some d ̸= d′, e ̸= e′, f ̸= f ′. But in the first coordinate, only zero can appear

three times, so d = 0. Similarly, e = 0, so x5 ∈ (0, 0, ·), after a permutation of

coordinates. Thus x5 has at least 2 zeros, so our independent set I is a subset

of the union of lines passing through the point (0, 0, 0), as required.

4.3 Conjecture 4.1 for 4 Colours

In this short section we reprove a result of Gyárfás.

Theorem 4.17. (Gyárfás) Conjecture 4.1 for 4 colours and Conjecture 4.8 for

G3 are true.
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Proof. By the equivalence of conjectures, it suffices to prove Conjecture 4.8 for

G3. Let X be the given finite set of vertices in G3. Assume that G3[X] has at

least 4 components, otherwise we are done immediately. By a representatives

set we mean any set of vertices that contains at most one vertex from each

component of X. A complete representatives set is a representatives set that

intersects every component of X.

Observation 4.18. If there are three collinear points, each in different com-

ponent, then X can be covered by two planes. In particular, if two planes do

not suffice, then among every three points in different components, there is a

non-collinear pair.

Proof. W.l.o.g. these are points (0, 0, 1), (0, 0, 2), (0, 0, 3). Then, unless X ⊂
{x1 = 0}∪{x2 = 0}, we have a point of the form (a, b, c) with a, b both non-zero,

so it is a neighbour of at least two of the points we started with, contradicting

the fact that they belong to different components. For the second part, recall

that if every pair in a triple is collinear, then the whole triple lies on a line.

By the observation above, every representatives set of size at least 3 has a non-

collinear pair. Suppose firstly that every complete representatives set is a subset

of a plane. Pick a complete representatives set {x1, x2, . . . , xr}, with xi ∈ Ci,

where Ci are the components. W.l.o.g. x1, x2 is a noncollinear pair, therefore, it

determines a plane π, forcing components C3, C4, . . . , Cr to be entirely contained

in this plane. Hence, we may cover the whole set X by components C1 and C2,

and the plane π. Therefore, we may assume that we have a representatives set

of size three which does not lie in any plane.

Case 1. X has more than 4 components.

Let x1, x2, x3 be a representatives set, xi ∈ Ci, which is not coplanar. Then,

for any choice of y4, . . . , yr, such that {x1, x2, x3, y4, . . . , yr} is a complete repre-

sentatives set, we have 3 lines that meet in a single point, that contain all these

points. Observe that this structure is determined entirely by x1, x2, x3. Indeed,

since these three points are not coplanar, they cannot coincide in any coordinate.

However, since there are at least 5 components, x1, x2, x3 extend to an indepen-

dent set of size 5, which must be a subset of three lines sharing a point p. But we

can identify p, since pi must be the value that occurs precisely two times among
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(x1)i, (x2)i, (x3)i, and hence the lines are l1 = px1, l2 = px2, l3 = px3. Thus, the

union of lines l1, l2, l3 contains whole components C4, . . . , Cr and xi ∈ li. By the

Observation above, each li has representatives from at most two components.

Hence, the common point p of the lines l1, l2, l3 cannot belong to X, as otherwise

some line li would have three components meeting it. W.l.o.g. l2, l3 intersect two

components, and l1 may intersect 1 or 2. Then, picking any y ∈ l2 in a different

component than that of x2 and any z ∈ l3 with a component different from that

of x3, using the argument above applied to {x1, y, z} instead of {x1, x2, x3}, we
deduce that C2 ⊂ l2, C3 ⊂ l3. Thus, we actually have singleton components

C2, C3, . . . , Cr. Finally, any point in C1 must be either in the plane of l2, l3 or

on the line l1, so we can cover by two planes.

Case 2. X has precisely 4 components and there exists a coplanar complete

representatives set.

Let x1, x2, x3, x4 be a complete representatives set, with xi ∈ Ci. W.l.o.g.

we have xi = (ai, bi, 0). As a few times before, we do not have a collinear triple

among these 4 points, so each of the sequences (ai)
4
i=1 and (bi)

4
i=1 has the prop-

erty that a value may appear at most twice in the sequence.

Suppose for a moment that each of these two sequences has at most one value

that appears twice. Write v for the value that appears two times in (ai), if it

exists, and let v be the corresponding value for (bi). If we take a point y outside

the plane (·, ·, 0), then the number of appearances of y1 in (ai) and y2 in (bi)

combined is at least three. So, either y1 is the unique doubly-appearing value u

for ai or is y2 = v, so the three planes (u, ·, ·), (·, v, ·) and (·, ·, 0) cover X.

Now, assume that w.l.o.g. has two doubly-appearing values, i.e. a1 = a2 =

u ̸= a3 = a4 = v. If y is outside the plane (·, ·, 0), then if y1 ̸= u, one of the pairs

x1y, x2y must be an edge, so x3y and x4y are not edges, so we must have y1 = v.

Similarly, if y is outside the plane (·, ·, 0) and y1 ̸= v, then y1 = u. Hence, for all

points y ∈ X, we have y1 ∈ {u, v} or y3 = 0, and three planes cover once again.

Case 3. X has precisely 4 components, but no complete representatives set is

coplanar.

Thus, by Lemma 4.15, every complete representatives set has either S2 or S3

as its structure. Observe that if S2 is always the structure, then all the compo-

nents are singleton, and we are done by taking a plane to cover two vertices. So,
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there is a representatives set with structure S3. Take such a representatives set

x1, x2, a, b, w.l.o.g. x1 = (1, 0, 0), x2 = (2, 0, 0). Take any y that shares the com-

ponent with a, and any z that shares the component with b. Then, x1, x2, y, z

is also a complete representatives set, so it is not coplanar. But, as x1, x2 are

collinear, it may not have structure S2, so the structure must be S3, which

forces y1 = z1. Hence, we can cover X by components of x and y and the plane

(a1, ·, ·). This completes the proof.

Note that the theorem is sharp; we can take X = {0, e1, e2, e3, e1 + e2, e1 +

e3, e2 + e3}, where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

4.4 Conjecture 4.6 for 4 Colours

Recall, by the diameter of a colour c, written diamc, we mean the maximal

distance between vertices sharing the same component of G[c]. In the remaining

part of the chapter, for a given 4-colouring χ:E(Kn) → 4, we say that χ satisfies

Conjecture 4.6 with (constant) K if there are sets A1, A2, A3 whose union is [n]

and colours c1, c2, c3 such that each Kn[Ai, ci] is connected and of diameter at

most K. Thus, our goal can be phrased as: there is an absolute constant K such

that every 4-colouring χ of E(Kn) satisfies Conjecture 4.6 with K.

We begin the proof of the main result by observing that essentially we may

assume that at least two colours have arbitrarily large diameters. We argue by

modifying the colouring slightly.

Lemma 4.19. Suppose χ is a 4-colouring of E(Kn) such that three colours have

diameters bounded by N1. Then χ satisfies Conjecture 4.6 with max{N1, 30}.

Proof. Write G = Kn, and observe that if a point does not receive all 4 colours

at its edges, we are immediately done. Let χ be the given colouring of the edges,

and let colours 1, 2 and 3 have diameter bounded by N1. We begin by modifying

the colouring slightly. Let xy be any edge coloured by colour 4. If x and y share

the same component in G[c] for some c ∈ {1, 2, 3}, change the colour of xy to the

colour c (if there is more than one choice, pick any). Note that such a modifica-

tion does not change the monochromatic components, except possibly shrinking

the components for the colour 4. Let χ′ stand for the modified colouring.
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Observe that the diameter of colour 4 in χ′ is also bounded. Begin by listing

all the components for colours i ∈ {1, 2, 3} as C
(i)
1 , C

(i)
2 , C

(i)
3 , . . . . For x ∈ N3,

consider the sets Cx = Cx1,x2,x3 = C
(1)
x1 ∩ C

(2)
x2 ∩ C

(3)
x3 . Let X be the set of all

x such that Cx ̸= ∅. If G(χ′)[4] (where the superscript indicates the relevant

colouring) has an induced path v1, v2, . . . , vr, then if xi ∈ N3 is defined to be

such that vi ∈ Cxi
, in fact x1, x2, . . . , xr becomes an induced path in G3. But

Lemma 4.13 implies that r ≤ 30. Hence, the 4-diameter in the colouring χ′ is at

most 30.

Applying Theorem 4.17 for the colouring χ′, gives three monochromatic

components that cover the vertex set, let these be G(χ′)[A1, c1], G
(χ′)[A2, c2],

G(χ′)[A3, c3], where the superscript indicates the relevant colouring. Using the

same sets and colours, but returning to the original colouring, we have that

G(χ)[A1, c1], G
(χ)[A2, c2], G

(χ)[A3, c3] are all still connected, as 1-, 2- and 3-com-

ponents are the same in χ and χ′, while there can only be more 4-coloured

edges in the colouring χ. Also, 1-, 2- and 3-diameters are bounded by N1, and

4-diameters of sets may only decrease when returning to colouring χ′, so the

lemma follows.

Let us introduce some additional notions. Let P ⊂ N2
0 be a set, and let

L:P → P(n) \ {∅} be a function with the property that {L(A):A ∈ P} form

a partition of [n] and there a two colours c3, c4
2such that whenever A,B ∈ P

and |A1 −B1|, |A2 −B2|≥ 2, then all edges between the sets L(A) and L(B) are

coloured with c3 and c4 only. We call L a c3, c4-layer mapping and we refer to

P as the layer index set. Further, we call a subset S ⊂ P a k-distant set if for

every two distinct points A,B ∈ S we have |A1 −B1|, |A2 −B2|≥ k.

Let us briefly motivate this notion. Suppose that Kn[c1] and Kn[c2] are both

connected. Fix a vertex x0 and let P = {(dc1(x0, v), dc2(x0, v)): v ∈ [n]} ⊂
N2

0. Let L(A): = {v ∈ [n]: (dc1(x0, v), dc2(x0, v)) = A} for all A ∈ P (this also

motivates the choice of the letter L, we think of L(A) as a layer). Then, if

x ∈ L(A), y ∈ L(B) for A,B ∈ P with |A1 − B1|≥ 2, |A2 − B2|≥ 2, by triangle

inequality, we cannot have dc1(x, y) ≤ 1 nor dc2(x, y) ≤ 1, so xy takes either the

colour c3 or the colour c4. As we shall see, we may have more freedom in the

2This choice of indices was chosen on purpose – we shall first use colours c1, c2 to define P

and L, and the remaining colours will be c3 and c4.
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definition of P and L if there is more than one component in a single colour.

We now explore these notions in some detail, before using them to obtain

some structural results on the 4-colourings that (for the moment) possibly do

not satisfy Conjecture 4.6.

Lemma 4.20. Let χ be a 4-colouring, L a c3, c4-layer mapping with layer index

set P , and suppose that {A,B,C} ⊂ P is a 3-distant set. Write G = Kn. Then

the following hold.

(1) For some colour c ∈ {c3, c4} we have G[L(A) ∪ L(B) ∪ L(C), c] connected
and of diameter at most 20.

(2) If additionally for c′ such that {c, c′} = {c3, c4} and some distinct A′, B′ ∈
{A,B,C} we have G[L(A′) ∪ L(B′), c′] contained in a subgraph H ⊂ G[c′]

that is connected and of diameter at most N3, then the given colouring

satisfies Conjecture 4.6 with max{40, N3 + 20}.

Proof of Lemma 4.20. (1): Observe that all edges between L(A), L(B), L(C)

are of colours c3 and c4. This is a complete tripartite graph and by Lemma 4.11

w.l.o.g. L(A) ∪ L(B) ∪ L(C) is c3-connected and of c3-diameter at most 20.

(2): W.l.o.g. A′ = A,B′ = B. Pick any D ∈ P . Note that since A,B,C are

3-distant, D is 2-distant from at least one of A,B,C (otherwise, by pigeonhole

principle, for someA′, B′ amongA,B,C and some index i, we have |A′
i−Di|, |B′

i−
Di|≤ 1, so |A′

i − B′
i|≤ 2, which is impossible). Let E ∈ {A,B,C} be such that

D,E are 2-distant. Thus, all the edges between L(D) and L(E) are of colours

c3 and c4, so Lemma 4.10 applies to L(D) ∪ L(E).
Let P ′ ⊂ P be the set of all D ∈ P such that Lemma 4.10 gives that

either L(D) ∪ L(E) is c-connected and of c-diameter at most 10, or the second

conclusion of that lemma holds. Hence, every vertex x in L(D) for some D ∈ P ′

is on c-distance at most 10 to a vertex in L(A) ∪ L(B) ∪ L(C), which itself has

c-diameter at most 20. Hence, L(A)∪L(B)∪L(C)∪(∪D∈P ′L(D)) is c-connected

and of c-diameter at most 40.

For all other D ∈ P \ P ′, Lemma 4.10 applied to L(D)∪L(E) for a relevant

E implies that L(D)∪L(E) is c′-connected and of diameter at most 10. Let P ′′

be the set of D ∈ P \ P ′ for which E ∈ {A,B}, and let P ′′′ = P \ (P ′ ∪ P ′′)
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(for which therefore E = C). Hence, H ∪ (∪D∈P ′′L(D)) is c′-connected and of

c′-diameter at most N3+20, and finally L(C)∪(∪D∈P ′′′L(D)) is also c′-connected

and of c′-diameter at most 20. Hence, taking

G[L(A) ∪ L(B) ∪ L(C) ∪ (∪D∈P ′L(D)), c],

H ∪G[(∪D∈P ′′L(D)), c′], and

G[L(C) ∪ (∪D∈P ′′′L(D)), c′],

proves the lemma.

Lemma 4.21. Suppose that χ is a 4-colouring of E(Kn) and that L is a c3, c4-

layer mapping for some colours c3, c4 ∈ [4] with a 3-distant set of size at least 4.

Then c satisfies Conjecture 4.6 with constant 160.

Proof. Write G = Kn. Suppose that some A,B,C,D ∈ P are 3-distant. All

edges between L(A) ∪ L(B) ∪ L(C) ∪ L(D) are of colours c3 and c4 only, so

by Lemma 4.11 w.l.o.g. G[L(A) ∪ L(B) ∪ L(C) ∪ L(D), c3] is connected and

of diameter at most 60. Pick any E ∈ P . If E has difference at most 1 in

absolute value in some coordinate from at least three points among A,B,C,D,

by pigeonhole princple, there are A′, B′ among these four and coordinate i such

that |A′
i − Ei|, |B′

i − Ei|≤ 1 so |A′
i − B′

i|≤ 2, which is impossible. Hence, E

is 2-distant from at least two points A′(E), B′(E) among A,B,C,D. Hence,

A′(E), B′(E), E is a 2-distant set, so edges between L(A′(E)), L(B′(E)) and

L(E) are of colours c3 and c4 only. By Lemma 4.11, for some colour c(E) ∈
{c3, c4} we have G[L(A′(E))∪L(B′(E))∪L(E), c(E)] connected and of diameter

at most 20. We split P as follows: P ′ ⊂ P is the set of all E ∈ P such that

c(E) = c3, and for each pair π of A,B,C,D we define Pπ as the set of all E ∈ P

such that {A′(E), B′(E)} = π and c(E) = c4. We now look at the set of all pairs

π for which Pπ ̸= ∅.

Case 1: there are π1, π2 such that Pπ1 and Pπ2 are non-empty and

π1 ∩ π2 ̸= ∅. W.l.o.g. π1 = {A,B}, π2 = {A,C}. For every π = {A′, B′} we

already have G[L(A′) ∪ L(B′) ∪ (∪E∈PπL(E)), c4] connected and of diameter at

most 40. Hence, G[L(A)∪L(B)∪L(C)∪ (∪E∈Pπ1∪Pπ2
L(E)), c4] is also connected

and of diameter at most 80. But, any other pair π must intersect A,B,C, so we

have

G[∪π ((∪F∈πL(F )) ∪ (∪E∈PπL(E))) , c4]
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connected and of diameter at most 160, where ∪π ranges over all pairs. Taking

additionally

G[L(A) ∪ L(B) ∪ L(C) ∪ L(D) ∪ (∪E∈P ′L(E)), c3]

proves the claim.

Case 2: all pairs π such that Pπ ̸= ∅ are disjoint. There are at most 2 such

pairs. Thus, if we take

G[(∪F∈πL(F )) ∪ (∪E∈PπL(E)), c4]

for such pairs π (these are connected and of diameter at most 40), and

G[L(A) ∪ L(B) ∪ L(C) ∪ L(D) ∪ (∪E∈P ′L(E)), c3],

the claim follows.

Lemma 4.22. Suppose that χ is a 4-colouring of E(Kn) and that L is a c3, c4-

layer mapping for some colours c3, c4 ∈ [4] with a 7-distant set of size at least 3.

Suppose additionally that {Ai:A ∈ P} takes at least 28 values for each i = 1, 2.

Then χ satisfies Conjecture 4.6 with constant 160.

Proof. Let {A,B,C} be a 7-distant set. Pick any other D ∈ P . If D is 3-distant

from each of A,B,C, we obtain a 3-distant set of size 4, so by Lemma 4.21 we

are done. Hence, for every D ∈ P we have E ∈ {A,B,C} such that |Ei−Di|≤ 2

for some i. (Note that this is the main contribution to the constant 160 in the

statement of the main result.)

Since {A,B,C} is a 7-distant set, by Lemma 4.20, we have w.l.o.g. G[L(A)∪
L(B) ∪ L(C), c3] connected and of diameter at most 20. We now derive some

properties of L(D) for points D ∈ P be such that |Di−Ai|, |Di−Bi|, |Di−Ci|≥ 3

for some i ∈ {1, 2}. (Note that such points exist by assumptions.)

Let D be such a point and let j be such that {i, j} = {1, 2}. Since the set

{A,B,C} is 7-distant, there are distinct E1, E2 ∈ {A,B,C} such that |Dj −
(E1)j|, |Dj − (E2)j|≥ 3. Thus, {D,E1, E2} is also a 3-distant set. Applying

Lemma 4.20 to {D,E1, E2} implies that G[L(D)∪L(E1)∪L(E2), c] is connected

and of diameter at most 20, for some c ∈ {c3, c4}. However, if c = c4, G[L(E1)∪
L(E2), c4] is contained in a subgraph of G[c4] which is connected and of diameter
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at most 20, so Lemma 4.20 (2) applies once again and the claim follows. Hence,

we must have that G[L(D)∪L(E1)∪L(E2), c3] is connected and of diameter at

most 20. In particular, whenever D ∈ P satisfies |Di−Ai|, |Di−Bi|, |Di−Ci|≥ 3

for some i ∈ {1, 2}, then every point in L(D) is on c3-distance at most 20 from

L(A) ∪ L(B) ∪ L(C).

By assumptions, {A1:A ∈ P} takes at least 28 values. Hence, we can find

X ∈ P such that |X1−A1|, |X1−B1|, |X1−C1|≥ 5. Similarly, there is Y ∈ P such

that |Y2−A2|, |Y2−B2|, |Y2−C2|≥ 5. W.l.o.g |X2−A2|≤ 2. If |Y1−A1|≤ 2, then

X,Y,B,C form a 3-distant set of size 4, and once again the claim follows from

Lemma 4.21. Hence, w.l.o.g. |Y1−B1|≤ 2. By the work above, we also have that

every point in L(X)∪L(Y ) is on c3-distance at most 20 from L(A)∪L(B)∪L(C).
Note also that X,Y are 3-distant.

It remains to analyse D ∈ P such that for both i = 1, 2 there is an E ∈
{A,B,C} such that |Ei−Di|≤ 2. We show that in all but one case on the choice

of sets E, we in fact have L(D) on bounded c3-distance to L(A)∪L(B)∪L(C).
If we have an E ∈ {A,B,C} such that both |E1 − D1|≤ 2 and |E2 − D2|≤ 2

hold, then taking E ′, E ′′ such that {E,E ′, E ′′} = {A,B,C}, we have D,E ′, E ′′

3-distant, so Lemma 4.20 once again implies that every vertex in L(D) is on

c3-distance at most 20 from L(A) ∪ L(B) ∪ L(C) (or we are done by the second

part of Lemma 4.20).

We distinguish the following cases.

• If |D1 − A1|≤ 2, |D2 − B2|≤ 2, then D,X, Y form a 3-distant set. Let us

check this. We already have X,Y 2-distant. By triangle inequality, we

obtain |X1 −D1|≥ |X1 −A1|−|A1 −D1|≥ 3, |Y1 −D1|≥ |B1 −A1|−|B1 −
Y1|−|D1 − A1|≥ 3, |D2 − X2|≥ |B2 − A2|−|B2 − D2|−|X2 − A2|≥ 3 and

|Y2 −D2|≥ |Y2 −B2|−|B2 −D2|≥ 3.

We also know that L(X) ∪ L(Y ) is contained in a subgraph H ⊂ G[c3]

that is connected and of diameter at most 20, so applying Lemma 4.20

implies that we are done, unless G[L(D) ∪ L(X) ∪ L(Y ), c3] is connected

and of diameter at most 20. Hence L(D) is on c3-distance at most 40 from

L(A) ∪ L(B) ∪ L(C).

• If |D1 −C1|≤ 2, |D2 −B2|≤ 2, then the same argument we had in the case

117



above proves that L(D) is on c3-distance at most 40 from L(A) ∪ L(B) ∪
L(C).

• If |D1 −A1|≤ 2, |D2 −C2|≤ 2, then the same argument we had in the case

above proves that L(D) is on c3-distance at most 40 from L(A) ∪ L(B) ∪
L(C).

Finally, we define P1, P2, P3 ⊂ P as

P1 = {D ∈ P : |D1 −B1|, |D2 − A2|≤ 2}

P2 = {D ∈ P : |D1 − C1|, |D2 − A2|≤ 2}

P3 = {D ∈ P : |D1 −B1|, |D2 − C2|≤ 2}

which are disjoint and if D ∈ P \ (P1 ∪ P2 ∪ P3) we know that L(D) is on

c3-distance at most 40 from L(A) ∪ L(B) ∪ L(C). Let also Li = ∪D∈Pi
L(D).

Hence, since for D ∈ P1 we have |D1−C1|, |D2−C2|≥ 2, all edges between L(D)

and L(C) are coloured using c3 and c4, we actually have all edges between L1

and L(C) coloured using only these two colours. Applying Lemma 4.10 we have

G[L1∪L(C), c] connected and of diameter at most 10 for some c ∈ {c3, c4}, or L1

is on c3-distance 1 from L(A)∪L(B)∪L(C). Similarly, all edges between L2 and

Y , and all edges between L3 and X only take the colours c3 and c4. Observe that

if D ∈ P2, D
′ ∈ P3 then |D1−D′

1|≥ |C1−B1|−|C1−D1|−|D′
1−B1|≥ 3. Similarly,

|D2 − D′
2|≥ |A2 − C2|−|A2 − D2|−|D′

2 − C2|≥ 3, so all edges between L2 and

L3 are only of colours c3 and c4. Apply Lemma 4.10 to L2 and L(Y ), implying

that either G[L2∪L(Y ), c4] is connected and of diameter at most 10, or L2 is on

c3-distance at most 30 from L(A)∪L(B)∪L(C). Similarly, apply Lemma 4.10 to

L3 and L(X), implying that either G[L3∪L(X), c4] is connected and of diameter

at most 10, or L3 is on c3-distance at most 30 from L(A)∪L(B)∪L(C). Finally,
let V = {v ∈ [n]: dc3(v, L(A) ∪ L(B) ∪ L(C)) ≤ 40}, which is c3-connected and

of c3-diameter at most 100. We distinguish the following cases.

• L2, L3 ⊂ V . In this case, we can take V and G[L1 ∪ L(C), c] if necessary
(otherwise L1 ⊂ V ).

• L2 ̸⊂ V, L3 ⊂ V . Thus, G[L2 ∪ L(Y ), c4] is connected and of diameter at

most 10, so taking G[L2∪L(Y ), c4] and V , and additionally G[L1∪L(C), c]
if necessary, we are done.
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• L2 ⊂ V, L3 ̸⊂ V . Thus, G[L3 ∪ L(X), c4] is connected and of diameter at

most 10, so taking G[L3∪L(X), c4] and V , and additionally G[L1∪L(C), c]
if necessary, we are done.

• L2, L3 ̸⊂ V. In this case, we have G[L2 ∪ L(Y ), c4] and G[L3 ∪ L(X), c4]

connected and of diameter at most 10. Apply Lemma 4.10 to L2 and L3.

If L2 and L3 are on c4-distance at most 10, we may take G[L2 ∪ L3 ∪
L(X) ∪ L(Y ), c4], V and G[L1 ∪ L(C), c] if necessary. Otherwise, we have

G[L2 ∪ L3, c3] is connected and of diameter at most 10. In this case, take

G[L2 ∪ L3, c3], V and G[L1 ∪ L(C), c] if necessary.

This completes the proof of the lemma.

Let us now briefly discuss a way of defining c3, c4-layer mappings. Pick two

colours c1, c2 ∈ [4], and take c3, c4 to be the remaining two colours. List all the

vertices as v1, v2, . . . , vn. To each vertex, we shall assign two nonnegative inte-

gers, D1(vi) and D2(vi), initially marked as undefined. We apply the following

procedure.

Step 1 Pick the smallest index i such that D1(vi) or D2(vi) is undefined. If there

is no such i, terminate the procedure.

Step 2 For j = 1, 2, if Dj(vi) is undefined, pick an arbitrary value for it.

Step 3 For j = 1, 2, if Dj(vi) was undefined before the second step, for all vertices

u in the same cj-component of vi set Dj(u): = dcj(vi, u) +Dj(vi). Return

to Step 1.

Upon the completion of the procedure, set P = {(D1(v), D2(v)): v ∈ [n]} and

L:P → P(n) as L(x, y): = {v ∈ [n]: (D1(v), D2(v)) = (x, y)}.

Claim. The mapping L above is well-defined and is a c3, c4-layer mapping.

Proof. Observe that each time we pick vi whose one or two values are to be

defined, we end up defining D1 on one c1-component or D2 on one c2-component

or both. Hence, for every vertex v, the values D1(v), D2(v) change precisely

once from undefined to a nonnegative integer value. Thus, (D1(v), D2(v)) are
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well-defined and take values in N2
0, so P and L are well-defined and L(A) forms

a partition of [n] as A ranges over P . Finally, consider an edge xy coloured

by c1. Let D1(x) be defined with vi chosen in Step 2 (possibly x = vi). Since

xy is of colour c1, these are in the same c1-component, and hence D1(x) =

dc1(vi, x) +D1(vi) and D1(y) = dc1(vi, y) +D1(vi). Therefore,

|D1(x)−D1(y)| = |(dc1(vi, x) +D1(vi))− (dc1(vi, y) +D1(vi))|

= |dc1(vi, x)− dc1(vi, y)|

≤ dc1(x, y) = 1

hence, if χ(xy) = c1, then |D1(x) − D1(y)|≤ 1. Similarly, we get the corre-

sponding statement for the colour c2. It follows that if A,B ∈ P are such that

|A1 − B1|, |A2 − B2|≥ 2, then if x ∈ L(A), y ∈ L(B), we have (D1(x), D2(x)) =

A, (D1(y), D2(y)) = B, so xy is coloured by c3 or c4, as desired.

4.4.1 Monochromatically connected case

Proposition 4.23. Suppose that χ is a 4-colouring of E(Kn) such that every

colour induces a connected subgraph of Kn. Then χ satisfies Conjecture 4.6 with

constant 160.

Proof. Suppose contrary, in particular every colour has diameter greater than

160. Our main goal in the proof is to find a pair of vertices x′, y′ with a control

over their 1-distance and 2-distance. We need both distances sufficiently large so

that we can make a use of distant sets in 3, 4-layer mappings, and also bounded

by a constant so that if a vertex is on small 1-distance from x′, it is also on small

1-distance from y′ and vice-versa. More precisely,

Lemma 4.24. Suppose that there are vertices x′, y′ such that d1(x
′, y′) ∈ {6,

7, . . . , 50}, d2(x′, y′) ∈ {10, 11, . . . , 20}. Then we obtain a contradiction.

Proof. Pick any point z ̸= x′, y′. Apply the procedure for defining 3, 4-layer

mapping starting from x′. If we obtain a 7-distant set of size at least 3, we

obtain a contradiction with Lemma 4.22. Hence, the distances corresponding to
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x′, y′, z cannot give such a set, so we must have one of

d1(x
′, z) ≤ 6, or,

|d1(x′, y′)− d1(x
′, z)| ≤ 6, or,

d2(x
′, z) ≤ 6, or,

|d2(x′, z)− d2(x
′, y)| ≤ 6.

In particular, we must have d1(x
′, z) ≤ 56 or d2(x

′, z) ≤ 26. Recalling the

definition of monochromatic balls, B1(x, 56) and B2(x, 26) cover all the vertices,

giving a contradiction.

Claim. There are x, y such that d1(x, y) ∈ {25, 26, 27} and d2(x, y) ≥ 40.

Proof of the claim. Suppose contrary, for every x, y such that d1(x, y) ∈ {25,
26, 27}, we must have d2(x, y) ≤ 39. Pick any y1, y2 ∈ [n] such that χ(y1y2) =

1. Since the 1-diameter is greater than 160, we can find x ∈ [n] such that

d1(x, y1) = 26. By triangle inequality, we also have d1(x, y2) ∈ {25, 26, 27}.
Hence, d2(x, y1), d2(x, y2) ≤ 39, from which we conclude that whenever an edge

y1y2 is coloured by 1, then d2(y1, y2) ≤ 78. Hence, taking any x ∈ [n] the balls

B2(x, 78), B3(x, 1), B4(x, 1)

cover the vertex set. However, these have diameter less than 160, which is a

contradiction.

Take x, y given by the claim above. Since the subgraph G[2] is connected,

there is a minimal 2-path x = z0, z1, . . . , zr, zr+1 = y between x and y, with

r ≥ 39. Look at the vertices z10, z20, . . . , z10k with k such that 10 ≤ r−10k < 20.

Consider x, y, z10i for some 1 ≤ i ≤ k and check whether we can define 3, 4-layer

mapping so that these three points become a 7-distant set. Apply the procedure

for defining 3, 4-layers mapping, starting from x, i.e. we want to see whether

(0, 0), (d1(x, y), d2(x, y)) and (d1(x, z10i), d2(x, z10i)) are 7-distant. If they are

7-distant, Lemma 4.22 gives us a contradiction. Since

d1(x, y) ≥ 25, d2(x, y) ≥ 39

10 ≤ d2(x, z10i) = 10i ≤ 10k < d2(x, y)− 6
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we must have either d1(x, z10i) ≤ 6 or |d1(x, z10i) − d1(x, y)|≤ 6 (implying

d1(x, z10i) ∈ {19, 20, . . . , 33}). Similarly, if we start from y instead of x in our

procedure, we see that either d1(y, z10i) ≤ 6 or |d1(y, z10i)− d1(x, y)|≤ 6 (imply-

ing d1(y, z10i) ∈ {19, 20, . . . , 33}) must hold.

Observe that for the vertex z10 we must have d1(x, z10) ≤ 6. Otherwise, we

would have 19 ≤ d1(x, z10) ≤ 33 and d2(x, z10) = 10, resulting in a contradiction

by Lemma 4.24 (applied to the pair x, z10). For every z10i we must have either

the first inequality (d1(x, z10i) ≤ 6) or the second (19 ≤ d1(x, z10i) ≤ 33), and we

have that the first vertex among these, namely z10, satisfies the first inequality.

Suppose that there was an index i such that z10(i+1) obeys the second inequality,

and pick the smallest such i. Then, by the triangle inequality, we would have

13 ≤ d1(z10(i+1), x)− d1(x, z10i) ≤ d1(z10i, z10(i+1))

≤ d1(z10(i+1), x) + d1(x, z10i) ≤ 39

and d2(z10i, z10(i+1)) = 10, so Lemma 4.24 applies now to the pair z10i, z10(i+1)

and gives a contradiction. Hence, for all i ≤ k we must have the first inequality

for z10i. But then z10k and y satisfy the conditions of Lemma 4.24, giving the

final contradiction, since 10 ≤ d2(y, z10k) < 20 and

19 ≤ d1(y, x)− d1(x, z10k) ≤ d1(y, z10k) ≤ d1(y, x) + d1(x, z10k) ≤ 33.

This completes the proof.

4.4.2 Intersecting monochromatic components

Proposition 4.25. Suppose that χ:E(Kn) → [4] is a 4-colouring with the prop-

erty that, whenever C and C ′ are monochromatic components of different colours,

and one of them has diameter at least 30 (in the relevant colour), then C and

C ′ intersect. Then χ satisfies Conjecture 4.6 with constant 160.

Proof. Suppose contrary, we have a colouring χ that satisfies the assumptions

but for which the conclusion fails. By Lemma 4.19, we know that at least

two colours have monochromatic diameters greater than 160. Let C1 be such

a component for colour c1, and let C2 be such a component for colour c2, with

c1 ̸= c2. Further, by Proposition 4.23 we have a colour c′ (which might equal

one of c1, c2) with at least two components, w.l.o.g. c1 ̸= c′.
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First, we find a pair of vertices x, y with the property that 10 ≤ dc1(x, y) ≤ 40

and x, y are in different c′-components. We do this as follows. If there are a

couple of vertices x1, x2 with dc1(x1, x2) < 10 that are in different c′-components,

then, since c1-diameter of C1 is large, we can find y ∈ C1 with dc1(x1, y) = 25.

Hence, 15 ≤ dc1(x2, y) ≤ 35, and y is in different c′-component from one of

x1, x2, yielding the desired pair. Otherwise, we have that all pairs of vertices

x, y ∈ C1 with dc1(x, y) ≤ 30 also share the same c′-component. But then, we

must have the whole c1-component C1 contained in one c′-component, making

it unable to intersect other c′-components, which is impossible. Hence, we have

x, y in different c′-components, with 10 ≤ dc1(x, y) ≤ 40.

Pick any vertex z outside Bc1(x, 50). Let c′′, c′′′ be the two colours different

from c1, c
′. We now apply our procedure for defining c′′, c′′′-layers mapping with

vertices listed as x, y, z, . . . . Note that |D1(x)−D1(y)|, |D1(x)−D1(z)|, |D1(y)−
D1(z)|≥ 10 (recall the D1, D2 notation from the procedure). Hence, we get a

7-distant set, unless dc′(x, z) ≤ 6 or dc′(y, z) ≤ 6. Therefore, Bc1(x, 50), Bc′(x, 6)

and Bc′(y, 6) cover the vertex set and we get a contradiction.

4.4.3 Final steps

In the final part of the proof, we show how to reduce the general case to the

case of intersecting monochromatic components.

Theorem 4.26. Conjecture 4.6 holds for 4 colours and we may take 160 for the

diameter bounds.

Proof. Let χ be the given 4-colouring of E(Kn). Our goal is to apply Proposi-

tion 4.25. We start with an observation.

Observation 4.27. Suppose that C is a c-component, which is disjoint from a

c′-component C ′ with c′ ̸= c. Then for every pair of vertices x, y ∈ C we have

dc(x, y) ≤ 6 or dc′(x, y) ≤ 6, or the colouring satisfies Conjecture 4.6 with the

constant 160.

Proof of Observation 4.27. Pick x, y ∈ C with dc(x, y) ≥ 7 and take arbitrary

z ∈ C ′. Apply our procedure for generating c3, c4-layers mapping to the list

x, y, z, . . . , with c3, c4 chosen to be the two colours different from c, c′. Since

123



z is in different c- and c′-components from x, y, these three vertices result in a

7-distant set, unless dc′(x, y) ≤ 6, as desired.

Proof of Observation 4.27. Pick x, y ∈ C with dc(x, y) ≥ 7 and take arbitrary

z ∈ C ′. Apply our procedure for generating c3, c4-layers mapping to the list

x, y, z, . . . , with c3, c4 chosen to be the two colours different from c, c′. Since

z is in different c- and c′-components from x, y, these three vertices result in a

7-distant set, unless dc′(x, y) ≤ 6, as desired.

Corollary 4.28. Suppose that we have a c-component C, which is disjoint from

a c′-component C ′ with c′ ̸= c and has c-diameter at least 30. Then the colouring

χ satisfies Conjecture 4.6 with the constant 160.

Proof. By Observation 4.27 we are either done, or any two vertices x, y ∈ C

with dc(x, y) > 6 satisfy dc′(x, y) ≤ 6. Furthermore, given any two vertices

x, y ∈ C, since the c-diameter of C is at least 30, we can find z ∈ C such

that dc(x, z), dc(y, z) ≥ 7, so by triangle inequality dc′(x, y) ≤ 12 holds for all

x, y ∈ C.

Now, take an arbitrary vertex v ∈ C, let c′′, c′′′ be the two remaining colours,

and consider the sets

Bc′(v, 12), Bc′′(v, 1), Bc′′′(v, 1).

Given any u ∈ [n], if vu is coloured by any of c′, c′′ or c′′′, it is already in the sets

above. On the other hand, if uv is of colour c, then v ∈ C so dc′(u, v) ≤ 10, thus

u ∈ B(c′)(v, 10). Thus, these sets cover the vertex sets and have monochromatic

diameters at most 24, so we are done.

Finally, we are in the position to apply Proposition 4.25 which finishes the

proof of the theorem.

4.5 Concluding Remarks

Apart from the main conjectures 4.1 (and its equivalent 4.8) and 4.6, here

we pose further questions. Recall the auxiliary results appearing in Section 4.2.

In that section we first discussed Lemmas 4.10 and 4.11, which were variants
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Figure 4.1: An example of 3-colouring of Kn with a matching of size 3 removed

that cannot be covered by two monochromatic components.

of the main conjectures with different underlying graph instead of Kn. Recall

that Lovasz-Ryser conjecture is also about different underlying graphs. Another

natural question would be the following.

Question 4.29. Let G be a graph, and let k be fixed. Suppose that χ:E(G) → [k]

is a k-colouring of the edges of G. For which G is it always possible to find k−1

monochromatically connected sets that cover the vertices of G? What bounds on

their diameter can we take?

Observe already that for 3 colours, the situation becomes much more compli-

cated than that for 2 colours, where complete multipartite graphs behaved well.

Consider the following example.

Pick n+6 vertices labeled as v1, v2, . . . , v6 and u1, u2, . . . , un. Define the graph

G to be the complete graph on these vertices from which 3 edges v1v2, v3v4 and

v5v6 are removed. Define the colouring χ:E(G) → [3] as follows.

• Edges of colour 1 are v1v3, v3v5, v1v5, v4v6 and v1ui, v3ui, v5ui for all i.

• Edges of colour 2 are v2v4, v2v5, v4v5, v1v6 and v2ui, v4ui for all i.

• Edges of colour 3 are v2v3, v2v6, v3v6, v1v4 and v6ui for all i.

• Edges of the form uiuj are coloured arbitrarily.

It is easy to check that this colouring has no covering of vertices by two
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monochromatic components. Is this essentially the only way the conjecture

might fail for such a graph?

Question 4.30. Let G = Kn \{e1, e2, e3} be the complete graph with a matching

of size three omitted. Suppose that χ:E(G) → [3] is a 3-colouring of the edges

such that no two monochromatic components cover G. Is such a colouring iso-

morphic to an example similar to the one above? What about K2n with a perfect

matching removed?

Finally, recall that the one of the main contributions in the final bound in

Theorem 4.7 came from Lemma 4.13 and that in general the Ramsey approach

of Lemma 4.12 would give much worse value. It would be interesting to study

the right bounds for this problem as well.

Question 4.31. For fixed l, what is the maximal size of a set of vertices S of

Gl such that Gl[S] is a path? What about other families of graphs of bounded

degree? In particular, for fixed l and d, what is the maximal size of a set of

vertices S of Gl such that Gl[S] is a connected graph whose degrees are bounded

by d?

126



5 Decomposing the Complete r-Graph

The work in this chapter is done in collaboration with Imre Leader and Ta

Sheng Tan.

5.1 Introduction

The edge set of Kn, the complete graph on n vertices, can be partitioned into

n−1 complete bipartite subgraphs: this may be done in many ways, for example

by taking n − 1 stars centred at different vertices. Graham and Pollak [21, 22]

proved that the number n− 1 cannot be decreased. Several other proofs of this

result have been found, by Tverberg [53], Peck [42], and Vishwanathan [55, 56].

Generalising this to hypergraphs, for n ≥ r ≥ 1, let fr(n) be the minimum

number of complete r-partite r-graphs needed to partition the edge set of K
(r)
n ,

the complete r-uniform hypergraph on n vertices (i.e., the collection of all r-sets

from an n-set). Thus the Graham-Pollak theorem asserts that f2(n) = n − 1.

For r ≥ 3, an easy upper bound of
(
n−⌈r/2⌉
⌊r/2⌋

)
may be obtained by generalising the

star example above. Indeed, having ordered the vertices, consider the collection

of r-sets whose 2nd, 4th, . . . , (2⌊r/2⌋)th vertices are fixed. This forms a complete

r-partite r-graph, and the collection of all
(
n−⌈r/2⌉
⌊r/2⌋

)
such is a partition of K

(r)
n .

(There are many other constructions achieving the exact same value; see, for

example Alon’s recursive construction in [4].)

Alon [4] showed that f3(n) = n− 2. More generally, for each fixed r ≥ 1, he

showed that

2(
2⌊r/2⌋
⌊r/2⌋

)(1 + o(1))

(
n

⌊r/2⌋

)
≤ fr(n) ≤ (1− o(1))

(
n

⌊r/2⌋

)
,

where the upper bound is from the construction above.

The best known lower bound for fr(n) was obtained by Cioabǎ, Küngden and
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Verstraëte [12], who showed that f2k(n) ≥
2(n−1

k )
(2kk )

. For upper bounds for fr(n),

the above construction is not sharp in general. Cioabǎ and Tait [13] showed that

f6(8) = 9 <
(
8−3
3

)
, and used this to give an improvement in a lower-order term,

showing that f2k(n) ≤
(
n−k
k

)
− 2

⌊
n
16

⌋ (⌊n
2
⌋−k+3

k−3

)
for any k ≥ 3. (We mention

briefly that any improvement of f4(n) for any n will further improve the above

upper bound. Indeed, one can check that f4(7) = 9 <
(
7−2
2

)
, and this will imply

that fr(n) ≤
(
n−⌊r/2⌋
⌊r/2⌋

)
− cn⌊r/2⌋−1 for some positive constant c. But note that,

again, this is only an improvement to a lower-order term.)

Despite these improvements, the asymptotic bounds of Alon have not been

improved. Perhaps the most interesting question was whether the asymptotic

upper bound is the correct estimate.

Our aim here is to show that the asymptotic upper bound is not correct for

each even r ≥ 4. In particular, we will show that

f4(n) ≤
14

15
(1 + o(1))

(
n

2

)
,

and obtain the same improvement of 14
15

for each even r ≥ 4.

A key to our approach will be to consider a related question: what is the

minimum number of (set-theoretic) products of complete bipartite graphs, that

is, sets of the form E(Ka,b) × E(Kc,d), needed to partition E(Kn) × E(Kn)?

There is an obvious guess, namely that we take the product of the complete bi-

partite graphs in the partitions of both Kns. This gives a partition using (n−1)2

products of complete bipartite graphs. But can we improve this? Writing g(n)

for the minimum value, it will turn out that, unlike for f4, any improvement in

the value of g(n) for one n gives an asymptotic improvement for g as well. In

this sense, this means that g is a ‘better’ function to investigate than f4.

The plan of the chapter is as follows. In Section 5.2, we show how the func-

tion g is related to f4, and give some related discussions. Then in Section 5.3,

we investigate the simplest product of complete graphs: we attempt to partition

the product set E(K3)×E(Kn) into products of complete bipartite graphs. Al-

though Section 5.3 is not strictly needed for our final bounds, it does provide

several ideas and motivation for later work. In Section 5.4, we prove our main

result on g and from this we deduce bounds on f4. Finally, in Section 5.5, we
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mention some remarks and open problems.

We use standard graph and hypergraph language throughout the chapter.

For an r-uniform hypergraph H, let fr(H) be the minimum number of com-

plete r-partite r-uniform hypergraphs needed to partition the edge set of H. So

fr

(
K

(r)
n

)
is just fr(n). A minimal decomposition of an r-graph H is a partition

of the edge set of H into fr(H) complete r-partite r-graphs. A block is a (set-

theoretic) product of the edge sets of two complete bipartite graphs. For graphs

G and H, let g(G,H) be the minimum number of blocks needed to partition the

set E(G)× E(H). Thus g(n) = g(Kn, Kn). Similarly, a minimal decomposition

of E(G)× E(H) is a partition of the set into g(G,H) blocks.

5.2 Products of complete bipartite graphs

We start by showing how g is related to f4.

Proposition 5.1. Let α > 0 be a constant. If g(n) ≤ αn2 for all n, then

f4(n) ≤ α(1 + o(1))n
2

2
.

Proof. We will show that

f4(n) ≤ α

(
n2

2

)
+ Cn log n (5.1)

for some sufficiently large C. This is clearly true for n ≤ 4. So assume n > 4

and the inequality (5.1) holds for 1, 2, . . . , n− 1. We will consider the case when

n is even; the case when n is odd is similar.

In order to decompose the edge set ofK
(4)
n , we can split the n vertices into two

equal parts, say V
(
K

(4)
n

)
= A ∪ B, where |A|= |B|= n/2. The sets of 4-edges

{e : e ⊂ A} and {e : e ⊂ B} can each be decomposed into f4(n/2) complete 4-

partite 4-graphs; the sets of 4-edges {e : |e∩A|= 3} and {e : |e∩B|= 3} can each

be decomposed into f3(n/2) complete 4-partite 4-graphs; while the remaining set

of 4-edges {e : |e ∩ A|= |e ∩ B|= 2} can be decomposed into g(n/2) complete

4-partite 4-graphs. So by the assumption of g(n) and the induction hypothesis,
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we have

f4(n) ≤ 2f4(n/2) + g(n/2) + 2f3(n/2)

≤ 2

(
α

(
n2

8

)
+
Cn

2
log
(n
2

))
+ α

(n
2

)2
+ 2

(n
2
− 2
)

≤ α

(
n2

2

)
+ Cn log n.

In the introduction to this chapter, we mentioned that any improvement in

the upper bound of f4(n) from the easy upper bound of
(
n−2
2

)
, for one fixed n,

will lead to an improvement for all (greater) values of n, but not an asymptotic

improvement. However, very helpfully, this is not the case for g. Indeed, any

improvement to g(n) for one particular n leads to an asymptotic improvement.

This is the content of the following simple proposition.

Proposition 5.2. Suppose g(Ka, Kb) < (a− 1)(b− 1) for some a and b. Then

g(n) ≤ βn2 for all n, for some constant β < 1.

Proof. Suppose g(Ka, Kb) = c < (a − 1)(b − 1) for some fixed a and b. Then,

setting α = c
(a−1)(b−1)

, we will show that

g(K1+(a−1)i, K1+(b−1)j) ≤ α((a− 1)i)((b− 1)j) = cij

for any i, j ≥ 1. This will then imply that g(1+ (a− 1)(b− 1)k) ≤ α((a− 1)(b−
1)k)2 for any k ≥ 1, and hence

g(n) ≤ αn2 + Cn

for some constant C.

We proceed by induction on i. We will show the base case of g(Ka, K1+(b−1)j) ≤
cj by induction on j. The case j = 1 is true by assumption. So fix j > 1 and by

induction, we have g(Ka, K1+(b−1)(j−1)) ≤ c(j − 1).

Let G = Kb be a subgraph of K1+(b−1)j. Note that K1+(b−1)j − G (i.e., the

graph K1+(b−1)j with the edges of G removed) is a blow-up of K1+(b−1)(j−1) by re-

placing one of its vertices with an empty graph on b vertices. So g(Ka, K1+(b−1)j−
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G) = g(Ka, K1+(b−1)(j−1)) ≤ c(j − 1), implying

g(Ka, K1+(b−1)j) ≤ g(Ka, G) + g(Ka, (K1+(b−1)j −G))

≤ g(Ka, Kb) + c(j − 1)

≤ cj.

Now fix i > 1 and assume the theorem is true for i− 1. That is,

g(K1+(a−1)(i−1), K1+(b−1)j) ≤ c(i− 1)j

for all j ≥ 1. To decompose E(K1+(a−1)i) × E(K1+(b−1)j) for any fixed j, we

first let H = Ka and note that K1+(a−1)i − H is a blow-up of K1+(a−1)(i−1) by

replacing one of its vertices with an empty graph on a vertices. Therefore,

g(K1+(a−1)i, K1+(b−1)j) ≤ g(H,K1+(b−1)j) + g((K1+(a−1)i −H), K1+(b−1)j)

≤ g(Ka, K1+(b−1)j) + g(K1+(a−1)(i−1), K1+(b−1)j)

≤ cj + c(i− 1)j

(by the base case and induction hypothesis)

= cij.

This completes the proof of the proposition.

From Proposition 5.1 and Proposition 5.2, in order to improve the asymptotic

upper bound on f4(n), it is enough to find a and b such that g(Ka, Kb) <

(a− 1)(b− 1).

The rest of this section is a digression (and so could be omitted if the reader

wishes). The question of whether or not g(n) = (n − 1)2 has the flavour of a

‘product’ question. Indeed, it is an example of the following general question.

Suppose we have a set X and a family F of some subsets of X, and we write

c(X,F) for the minimum number of sets in F needed to partition X. Is it true

that c(X×Y,F×G) = c(X,F)c(Y,G), where F×G = {F ×G : F ∈ F , G ∈ G}?
This is certainly not always true. Indeed, for a simple example, let X =

{1, 2, . . . , 7} and F = {A ⊂ X : |A|= 1 or 4}. Clearly, c(X,F) = 4. But

X ×X can be partitioned into four 3 by 4 rectangles and a single point, giving

c(X ×X,F × F) ≤ 13.

However, there are a few cases where such a product theorem is known. For
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example, Alon, Bohman, Holzman, and Kleitman [5] proved that if X is a finite

set of size at least 2, then any partition of Xn into proper boxes must consist of

at least 2n boxes. Here, a box is a subset of Xn of the form B1 ×B2 × . . .×Bn,

where each Bi is a subset of X. A box is proper if Bi is a proper subset of X for

every i. Note that this corresponds to a product theorem where F is the family

of all proper subsets of X. (There are also some related results by Ahlswede and

Cai in [2, 3].)

Unfortunately, we have not been able to prove any product theorem that

might relate to our problem about g(n). Indeed, it seems difficult to extend the

result of Alon, Bohman, Holzman, and Kleitman at all. For example, here are

two closely related problems that we cannot solve.

A box is odd if its size is odd. Let X be a finite set such that |X| is odd. We

can partition Xn into 3n odd proper boxes - can we do better?

Question 5.3. Let X be a finite set such that |X| is odd. Must any partition of

Xn into odd proper boxes consist of at least 3n boxes?

We do not even see how to answer this question when |X|= 5.

A collection of proper boxes B(1), B(2), . . . , B(m) of Xn is said to form a

uniform cover of Xn if every point of Xn is covered the same number of times.

Question 5.4. Let X be such that |X|≥ 2. Suppose B(1), B(2), . . . , B(m) forms

a uniform cover of Xn. Must we have m ≥ 2n?

5.3 Decomposing E(K3)× E(Kn)

In this section, we investigate g(K3, Kn). As we know, we can decompose

E(K3) × E(Kn) using 2(n − 1) blocks, and the question is whether we can im-

prove this.

It turns out that the Graham-Pollak theorem actually gives some restriction

on how small g(K3, Kn) can be. To be more precise, we will need a weighted

version of the Graham-Pollak theorem. For the sake of completeness, we will

include a proof here, although we stress that this is just a rewriting of the usual

proof of the Graham-Pollak theorem.

Given a graph G and a real number α, we write α · G for the weighted
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graph where each edge of G is given a weight of α. A collection of subgraphs

G1, G2, . . . , Gm of Kn is a weighted decomposition of Kn if there exists real num-

bers α1, α2, . . . , αm such that for each edge e of Kn we have
∑
i:e∈Gi

αi = 1. Note

that the coefficients αi are allowed to be negative.

Theorem 5.5. The minimum number of complete bipartite graphs needed to

form a weighted decomposition of Kn is n− 1.

Proof. Let the vertex set of Kn be V = {1, 2, . . . , n} and associate each vertex

i with a real variable xi. Let G be a complete bipartite subgraph of Kn with

vertex classes X and Y . Then we can define Q(G) = L(X) · L(Y ), where

L(A) =
∑

i∈A xi for any subset A ⊂ V .

Suppose the bipartite graphs Gk, 1 ≤ k ≤ q with vertex classes Xk and Yk

form a weighted decomposition of Kn. Then we must have

∑
i<j

xixj =

q∑
k=1

αkL(Xk)L(Yk)

for some real α1, α2, . . . , αq. Rewriting the left-hand-side of the above equation,

we have (
n∑

i=1

xi

)2

−
n∑

i=1

x2i = 2

q∑
k=1

αkL(Xk)L(Yk).

It follows that the linear subspace of Rn determined by the q+1 linear equations∑n
i=1 xi = 0 and L(Xi) = 0, 1 ≤ i ≤ q, must be the zero subspace. Hence

q + 1 ≥ n.

Proposition 5.6. For n ≥ 2 we have

9

5
(n− 1) ≤ g(K3, Kn) ≤ 2(n− 1).

Proof. The upper bound has been explained already. For the lower bound,

suppose the blocks H1, H2, . . . , Hq form a decomposition of E(K3) × E(Kn).

Then for each edge e ∈ E(Kn), restricting the decomposition to the subset

E(K3)× e, one of the following happens: either the three elements of E(K3)× e

decompose into three different Hi, or else two of the sets are in the same Hi for

some i and the third set is in Hj for some j ̸= i.
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Let G0 be the subgraph of Kn spanned by the set of e such that the first of

these happens, and G1, G2, G3 be the subgraphs of Kn spanned by the set of e

for each of the three possible ways for the second case to happen, respectively.

Thus in total we have

q ≥ f2(G1) + f2(G2) + f2(G3) + f2(G0 ∪G1) + f2(G0 ∪G2) + f2(G0 ∪G3). (5.2)

Now, since G0, G1, G2, G2 form a partition of the edge set of Kn, we must

have

f2(Gi) + f2(Gj) + f2(G0 ∪Gk) ≥ n− 1 (5.3)

for any {i, j, k} = {1, 2, 3}. Next, note that 1 · (G0∪Gi), 1 · (G0∪Gj), (−1) · (G0∪
Gk), 2 ·Gk form a weighted decomposition of Kn for any {i, j, k} = {1, 2, 3}, so
by Theorem 5.5, we must have

f2(G0 ∪G1) + f2(G0 ∪G2) + f2(G0 ∪G3) + f2(Gi) ≥ n− 1 (5.4)

for any i = 1, 2, 3.

Let x = 1
3
(f2(G1) + f2(G2) + f2(G3)) and y = 1

3
(f2(G0 ∪ G1)+ f2(G0 ∪

G2) + f2(G0 ∪ G3)). Summing over different {i, j, k} for inequality (5.3), we

get 2x + y ≥ n − 1; while summing over different i for inequality (5.4), we

get x + 3y ≥ n − 1. This implies that x + y ≥ 3
5
(n − 1), and together with

inequality (5.2), we conclude that

q ≥ 3x+ 3y,

i.e. q ≥ 9

5
(n− 1).

Note that for any partition of Kn into G0, G1, G2, G3, we do obtain that

g(K3, Kn) is at most the right-hand-side of (5.2).

We believe that the only restriction on g(K3, Kn) should be the restriction

coming from the Graham-Pollak theorem, namely that g(K3, Kn) ≥ 9
5
(n − 1).

However, we have been unable to find any decomposition of E(K3)×E(Kn) into

fewer than 2(n− 1) blocks.

Question 5.7. Does there exist a constant α < 2 such that g(K3, Kn) ≤ (α +

o(1))n? In particular, can we take α = 9
5
?
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5.4 Decomposing E(K4)× E(Kn)

The aim of this section is to find some a, b in which E(Ka) × E(Kb) can be

partitioned into fewer than (a − 1)(b − 1) blocks. In the previous section, we

looked at decompositions of E(K3)×E(Kn) by considering all the four possible

ways to decompose E(K3) into complete bipartite graphs - this induced four

subgraphs that partitioned the edge set of Kn.

Now, those decompositions of K3 involved three ‘large’ complete bipartite

subgraphs (namely, the copies of K1,2), which between them form a 2-cover of

K3 (each edge of K3 is in exactly two of them). However, this is in a sense

‘wasteful’, as by the Graham-Pollak theorem, we might expect to find a uniform

cover by three ‘large’ complete bipartite subgraphs of K4, rather than K3.

This suggests that we should look at E(K4) × E(Kn) instead of E(K3) ×
E(Kn). It also suggests that, in each E(K4)× e, we do not allow any decompo-

sition of K4, but just four decompositions of K4, three of which involve a ‘large’

complete bipartite subgraph and the fourth of which consists of single edges.

More precisely, the first three decompositions of K4 that we allow here are such

that each consists of a 4-cycle and two independent edges. The three pairs of

independent edges from these decompositions in turn form another decomposi-

tion of K4 (into six complete bipartite graphs, each of which is a single edge).

Let C1, C2, C3 be the three different 4-cycles of K4 and let G0, G1, G2, G3 be

the subgraphs of Kn (as in Proposition 5.6) whose edge sets partition the edge

set of Kn. Then the sets E(C1)×E(G1), E(C2)×E(G2), E(C3)×E(G3), E(K4−
C1)×E(G0 ∪G1), E(K4 −C2)×E(G0 ∪G2), E(K4 −C3)×E(G0 ∪G3) form a

partition of E(K4)× E(Kn). So E(K4)× E(Kn) can be decomposed into

f2(G1) + f2(G2) + f2(G3) + 2f2(G0 ∪G1) + 2f2(G0 ∪G2) + 2f2(G0 ∪G3)

blocks.

By the same argument as in Proposition 5.6, we have the following.

Proposition 5.8. For n ≥ 2, we have

12

5
(n− 1) ≤ g(K4, Kn) ≤ 3(n− 1).

Again, it seems plausible that the only constraint on g(K4, Kn) is the one coming

from the Graham-Pollak theorem.
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Conjecture 5.9. g(K4, Kn) =
12
5
(1 + o(1))n.

While we are unable to resolve this conjecture, we are able to find an example

with g(K4, Kn) < 3(n−1). We start by observing that G0∪G1, G0∪G2, G0∪G3

form an odd cover of Kn (each edge of Kn appears an odd number of times).

Now, it is known (see, e.g., [44]) that K8 has an odd cover with four complete

bipartite graphs. Indeed, the four K3,3s with vertex classes V1 = {1, 3, 5} ∪
{2, 4, 6}, V2 = {1, 4, 7} ∪ {2, 3, 8}, V3 = {2, 5, 7} ∪ {1, 6, 8} and V4 = {3, 6, 7} ∪
{4, 5, 8} respectively form an odd cover of K8. If we break the symmetry by

deleting two vertices (vertices 6 and 8) from this odd cover of K8, we obtain

an odd cover of K6 by four complete bipartite graphs, two of which are now

disjoint. The union of these two disjoint complete bipartite graphs, together with

the other two complete bipartite graphs, will be our G0 ∪G1, G0 ∪G2, G0 ∪G3.

Remarkably, this does give rise to a decomposition of E(K4)×E(K6) into fewer

than 15 blocks.

Proposition 5.10. The set E(K4) × E(K6) can be decomposed into 14 blocks.

In other words, g(K4, K6) ≤ 14 < (4− 1)(6− 1).

Proof. Let G0, G1, G2, G3 be graphs that form a decomposition of K6, defined

as follows:

E(G0) = {12, 34},

E(G0 ∪G1) = {ij : i ∈ {1, 3, 5}, j ∈ {2, 4}},

E(G0 ∪G2) = {ij : i ∈ {1, 4, 6}, j ∈ {2, 3}},

E(G0 ∪G3) = {ij : i ∈ {3, 6}, j ∈ {4, 5}} ∪ {12, 15, 16}.

By construction, we have f2(G0∪G1) = f2(G0∪G2) = 1, and f2(G0∪G3) = 2,

and a quick check shows that f2(G1) = f2(G2) = f2(G3) = 2. So from the

discussion above we have

g(K4, K6) ≤
3∑

i=1

(f2(Gi) + 2f2(G0 ∪Gi)) = 14.

Combining Proposition 5.1, Proposition 5.2 and Proposition 5.10, we obtain

our main result.

Theorem 5.11. f4(n) ≤ 14
15
(1 + o(1))

(
n
2

)
.
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5.5 Remarks and open problems

Proposition 5.10 (together with Proposition 5.2) implies that g(n) ≤ 14
15
(1 +

o(1))n2. We do not believe 14
15

is the correct constant, but we are not able to

improve it. What about a lower bound of g(n)? From Proposition 5.1, we know

that if g(n) = αn2(1 + o(1)), then we have f4(n) ≤ α(1 + o(1))
(
n
2

)
. So we must

have α ≥ 1
3
from Alon’s result on the lower bound of f4(n).

Here, we are able to give a small improvement, namely α ≥ 1
2
. For this,

we will need a result by Reznick, Tiwari, and West [45] on decomposing tensor

products of graphs into bipartite graphs. Recall that the tensor product G ∗H
of two graphs G and H has vertex set {(u, v) : u ∈ V (G), v ∈ V (H)} with

(u1, v1) ∼ (u2, v2) if and only if u1 ∼ u2 in G and v1 ∼ v2 in H.

Theorem 5.12 ([45]). The minimum number of complete bipartite graphs needed

to partition the edge set of Kn ∗Kn is (n− 1)2 + 1.

Proposition 5.13. For n ≥ 2, we have g(n) ≥
⌈
(n−1)2+1

2

⌉
.

Proof. Suppose we can decompose E(Kn) × E(Kn) into q blocks. For each of

such blocks (say the parts from the left Kn are X1, X2 and the parts from the

right Kn are Y1, Y2), we construct two complete bipartite graphs G1 and G2 as

follows. The vertex classes of G1 are {(x, y) : x ∈ X1, y ∈ Y1} and {(x, y) : x ∈
X2, y ∈ Y2}; while the vertex classes of G2 are {(x, y) : x ∈ X1, y ∈ Y2} and

{(x, y) : x ∈ X2, y ∈ Y1}.
Observe that these 2q complete bipartite graphs partition the edge set of the

tensor product Kn ∗Kn. So by Theorem 5.12, we must have

q ≥
⌈
(n− 1)2 + 1

2

⌉
.

In general, for any fixed k, can we improve the upper bound of (k−1)(n−1)

on g(Kk, Kn) in a manner similar to what we have considered for k = 3 and

k = 4? It seems that perhaps there is no Kk having a ‘better’ allowed sets

of decompositions than the four allowed decompositions of K4 that we used in

Section 5.4. If this is correct, perhaps 4
5
is the right constant even for g(n).
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Question 5.14. Is it true that g(n) = 4
5
(1 + o(1))n2?

Finally, let us turn our attention to the function fr for r > 4. For fixed r ≥ 1,

let αr be the smallest α such that fr(n) ≤ α(1 + o(1))
(

n
⌊r/2⌋

)
. Thus the initial

construction gives αr ≤ 1 for all r, while Theorem 5.11 says that α4 ≤ 14
15
. This

implies that αr ≤ 14
15

for all even r.

Theorem 5.15. For each fixed k ≥ 2, we have

f2k(n) ≤
14

15
(1 + o(1))

(
n

k

)
.

Proof. We use induction on k. By Theorem 5.11, the result is true for the base

case k = 2. For larger k, the result is an easy consequence of the following

inequality:

f2k+2(n) ≤ f2k(n− 2) + f2k(n− 3) + . . .+ f2k(2k).

This inequality is obtained by ordering the n vertices and observing that the set

of (2k + 2)-edges whose second vertex is i, for any fixed i ∈ {2, 3, . . . , n − 2k},
may be decomposed into f2k(n−i) complete (2k+2)-partite (2k+2)-graphs.

We do not see how to obtain a bound below 1 for αr for r odd. But actually

we would expect the following to be true.

Conjecture 5.16. We have αr → 0 as r → ∞.

To prove this, it would be sufficient to show that α5 < 1. Indeed, suppose

f5(n) ≤ (α + o(1))
(
n
2

)
for some α < 1. Let r = 6k − 1 and order the n vertices.

We can decompose the complete r-graph on n vertices by considering the set

of r-edges whose 6th, 12th, . . . , 6(k− 1)th are i1, i2, . . . , ik−1 respectively, where

i1 ≥ 6 and ik−1 ≤ n − 5 and ij − ij−1 ≥ 6 for 2 ≤ j ≤ k − 1. For each such

fixed i1, i2, . . . , ik−1, these r-edges can be decomposed into f5(i1 − 1)f5(i2 − i1 −
1) . . . f5(ik−1 − ik−2 − 1)f5(n− ik−1) complete r-partite r-graphs. Summing over

all possible choices of i1, i2, . . . , ik−1, we deduce that f6k−1(n) ≤ (αk+o(1))
(

n
3k−1

)
.

Annoyingly, we do not see how to use any of our arguments about f4 for f5.

Question 5.17. Is α5 < 1? In other words, do we have f5(n) ≤ (α + o(1))
(
n
2

)
for some α < 1?
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6 Points in Almost General Position

6.1 Introduction

A set of points in the plane is said to be in general position if it has no 3

collinear points, and in almost general position if there are no 4 collinear points.

Let α(n) be the maximum k such that any set of n points in the plane in almost

general position has k points in general position. In [15], Erdős asked for an

improvement of the (easy) bounds
√
2n− 1 ≤ α(n) ≤ n (see equation (13) in the

paper). This was done by Füredi [17], who proved Ω(
√
n log n) ≤ α(n) ≤ o(n).

In [11] Cardinal, Tóth and Wood considered the problem in R3. Firstly, let

us generalize the notion of general position. A set of points in Rd is said to be

in general position if there are no d + 1 points on the same hyperplane, and

in almost general position if there are no d + 2 points on the same hyperplane.

Let α(n, d) stand for the maximum integer k such that all sets of n points in

Rd in almost general position contain a subset of k points in general position.

Cardinal, Tóth and Wood proved that α(n, 3) = o(n) holds. They noted that

for a fixed d ≥ 4, only α(n, d) ≤ Cn is known, for a constant C ∈ (0, 1), and

they asked whether α(n, d) = o(n). The goal of this chapter is to answer their

question in all dimensions. In particular we prove the following.

Theorem 6.1. For a fixed integer d ≥ 2, we have α(n, d) = o(n).

In fact, we are able to get better bounds for certain dimensions. This is the

content of the next theorem.

Theorem 6.2. Suppose that d,m ∈ N satisfy 2m+1 − 1 ≤ d ≤ 3 · 2m − 3. Let

N ≥ 1. Then

α(2N , d) ≤
(
25

N

)1/2m+1

2N .
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It is worth noting the lower bound α(n, d) = Ωd((n log n)
1/d) due to Cardinal,

Tóth and Wood ([11]), but we do not try to improve their bound in this chapter.

In [17] Füredi used the density Hales-Jewett theorem ([18], [14]) to establish

α(n) = α(n, 2) = o(n). Here we reproduce his argument. By the density Hales-

Jewett theorem, for a given ϵ > 0, there is a positive integer N such that all

subsets of [3]N of density ϵ contain a combinatorial line. Map the set [3]N to R2

using a generic linear map f to obtain a set X = f([3]N) ⊆ R2. By the choice of

f , collinear points in X correspond to collinear points in [3]N , and f restricted

to [3]N is injective. Therefore, X has no 4 points on a line, and so is in almost

general position, but if S ⊆ X has size at least ϵ|X|, the set f−1(S) ⊆ [3]N has

density at least ϵ in [3]N . Therefore, f−1(S) has a line, hence S = f(f−1(S)) has

3 collinear points. Since ϵ > 0 was arbitrary, this proves that α(n, 2) = o(n).

If one tries to generalize this argument to higher dimensions, by mapping

[m]N to Rd, then there will be md−1 cohyperplanar points, and we must have

md−1 = d + 1 to get almost general position. But the only positive integers

that have this property are (m, d) ∈ {(3, 2), (2, 3)}. Taking m = 2, d = 3 gives

α(n, 3) = o(n), as observed by Cardinal, Tóth andWood ([11]). For other choices

of (m, d) we have too many cohyperplanar points as md−1 > d+ 1. Overcoming

this obstacle is our main goal.

Notation. Throughout this chapter, we write [k] for the set {1, 2, . . . , k}. By

a d-cube of edge length k we mean a set of the form {v0 + λ1v1 + λ2v2 + · · · +
λdvd:λ1, λ2, . . . , λd ∈ {0, 1, 2, . . . , k}}, where v1, v2, . . . , vd are (not necessarily

independent) vectors in a real vector space. A d-dimensional combinatorial sub-

space of [N ]k is a set that consists of all x ∈ [N ]k such that xi = ai when

i ∈ I0, and xi does not change when i ranges over Ij, for j = 1, . . . , d, where

I0, I1 . . . , Id are some fixed sets that partition [k], I1, I2, . . . , Id are non-empty and

ai for i ∈ I0 are some fixed elements of [N ]. Given vectors v0, v1, . . . , vr ∈ Rd, we

say that they are affinely dependent if there are λ0, λ1, . . . , λr ∈ R, not all zero,
but adding up to zero, such that

∑r
i=0 λivi = 0. Finally, for a real vector spaces

Rn we use the usual inner product ⟨x, y⟩ given by
∑n

i=1 xiyi, where xi and yi are

coordinates of x and y with respect to the standard basis.
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6.1.1 Organization of the chapter

Section 6.2 is devoted to the motivation of the arguments of this chapter and

to the explanation of the approach taken in the proofs of the main results. In

Section 6.3, we introduce the key notion for this chapter, F-incident sets, where

F is an arbitrary family of maps from RN to Rd. Roughly speaking, these are

the sets that stay cohyperplanar under all maps in F . In the same section, we

prove Proposition 6.5, which provides us with an incidence removal function, a

single function which makes all the non-F -incident sets non-cohyperplanar.

In Section 6.4, we focus on the study of FN,d,m-incident sets, where FN,d,m

is a family of maps from RN to Rd resembling polynomials of mth degree. In

particular, Lemma 6.7 shows that combinatorial subspaces and lines of a d-

cube give rise to spanFN,d,m-incident sets. The rest of the section is devoted

to deriving a characterization of FN,d,m-incident sets in terms of vectors given

by products of coordinates. The proof of α(n, d) = od(n) is the result of work

carried out in Section 6.2. That section also contains Lemma 6.11 which is the

main tool used in the analysis of FN,d,m-incident sets. Finally, in Section 6.6, we

improve the bounds for certain dimensions, using Lemma 6.16 in the analysis of

FN,d,m-incident sets.

6.2 Motivation and the outline of the proof

Recall that the main obstacle to generalizing Füredi’s argument to the higher

dimensions is that (d− 1)-cubes have too many cohyperplanar points. A (seem-

ingly) possible way to get around this issue is to modify the initial set [m]N

to a subset X, which does not have too many incidences, and yet some form

of the Hales-Jewett theorem may still be applied to X. The desired set would

once again be the image of X under a generic linear map from RN → Rd. It

is tempting to try to remove certain points from each (d− 1)-cube inside [m]N ,

so that precisely d + 1 out of the original md−1 points remain. However, this is

impossible for sufficiently large N , as the set X ⊆ [m]N gives a 2-colouring of

[m]N (a point is blue if it is in X, red otherwise), and thus the Hales–Jewett

theorem provides us with a monochromatic (d − 1)-cube. Therefore, such an

approach at least needs further modifications, if it can be made to work at all.
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Having abandoned the first idea, it is natural to try to map [m]N under a

map f which is more general than linear maps. Previously we used a generic

linear map. In other words, this is a map f with the property that the only

sets of size d + 1 whose image under f is cohyperplanar in Rd are precisely the

affinely dependent subsets of [m]N of size d+ 1. This leads us to the key notion

of this chapter, namely that of F-incident sets, which we now define. Let F be

a family of functions from RN to Rd (we shall use F instead of just the linear

maps). We say that a set S ⊆ RN is F-incident if the multiset f(S) is affinely

dependent for all f ∈ F . Crucially, like in the case of linear maps, we can a find

a ‘generic’ map f ∈ spanF , such that if f(S) is affinely dependent then S is

F -incident. This is the content of Proposition 6.5. We refer to such a map as

an ‘incidence removal function’.

Once we have constructed an incidence removal function, the next aim is to

study F -incident sets for suitable F . Our goal now is essentially the following:

we want that each dense subset of [m]N contains an F -incident set of size d+ 1

(which gives cohyperplanar sets with d+1 elements), but at the same time, that

the image of [m]N under an incidence removal function does not contain d + 2

cohyperplanar points. An easy way to fulfil the second requirement is to make

sure that F -incident sets of size d + 1 cannot have intersection of size d. On

the other hand, as in the case of linear maps, we use the density Hales-Jewett

theorem to show that dense subsets contain the desired F -incident sets, thus we

want that the combinatorial subspaces are (spanF)-incident (note that here we

need a stronger property of being (spanF)-incident instead of just F -incident,

as the incidence removal function belongs to a bigger family spanF).

To give an idea of how we choose the family of functions F making the com-

binatorial lines spanF -incident, observe the following identities that hold for

arbitrary a, b:

1 · 1 + (−3) · 1 + 3 · 1 + (−1) · 1 = 0,

1 · a + (−3) · (a+ b) + 3 · (a+ 2b) + (−1) · (a+ 3b) = 0,

1 · a2 + (−3) · (a+ b)2 + 3 · (a+ 2b)2 + (−1) · (a+ 3b)2 = 0.

What is crucial here is that we have the same coefficients appearing in the

three linear combinations above. Hence, if one looks at a function f :RN → R3
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of the form

(6.1)f(x) =


(⟨x, v1⟩+ c1)

2

(⟨x, v2⟩+ c2)
2

(⟨x, v3⟩+ c3)
2


for some v1, v2, v3 ∈ RN and reals c1, c2, c3, then f(x), f(x+y), f(x+2y), f(x+3y)

are necessarily coplanar, as

1 · f(x) + (−3) · f(x+ y) + 3 · f(x+ 2y) + (−1) · f(x+ 3y) = 0

and the sum of coefficients is zero. Moreover, if g is any linear combination of

functions of the form described above, then g(x), g(x + y), g(x + 2y), g(x + 3y)

are coplanar, owing to the fact that the same coefficients appear in the identities

above.

In the case of d = 2, we used only linear maps and we had that the image of

[3]N to the plane under a generic linear map is the desired set. In that case, the

combinatorial lines in [3]N gave us collinear sets of points in the plane. Mov-

ing to the functions constructed from the polynomials of degree 2, the image

of [4]N under a ‘generic degree 2 function’ to R3 has cohyperplanar sets of 4

points that are also images of combinatorial lines. After some analysis of the

F -incident sets for F given by equation (6.1), we are able to show that those

sets have intersection of size at most 1, provided the size of sets is at most 4.

The motivation for this step comes from the heuristics that we expect that our

non-trivial F -incident sets are precisely the relevant combinatorial subspaces (in

this case the lines) and as such, they cannot have large intersection (in case of

lines, they cannot share more than one point). This was the second requirement

that we had, completing a sketch of the proof that α(n, 3) = o(n). This naturally

extends to larger values of d.

Using different identities, we are able to get better bounds on α(n, d). For

example, the fact that x2 + (x + a + b)2 + (x + a + c)2 + (x + b + c)2 =

(x + a)2 + (x + b)2 + (x + c)2 + (x + a + b + c)2 holds for all x, a, b, c, en-

ables us to use 3-dimensional combinatorial subspaces of {0, 1}N as the sources

of cohyperplanar sets. Generalizing this identity to higher degrees, we can use

the higher-dimensional combinatorial subspaces as well. The better bounds on

α(n, d) when these subspaces are used come from the better bounds for density
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Hales-Jewett theorem [14] in the case of {0, 1}N (the generalized Sperner’s the-

orem).

When it comes to the analysis of F -incident sets, let us first define pre-

cisely the families of functions that we shall consider in this chapter. For

given N, d,m ∈ N we define the family FN,d,m of functions f :RN → Rd of

the form fi(x) = (⟨x, ui⟩ + ci)
l for i = 1, 2, . . . , d, for any u1, u2, . . . , ud ∈ RN ,

c1, c2, . . . , cd ∈ R and 1 ≤ l ≤ m. The bulk of this chapter consists of studying

the FN,d,m-incident sets.

6.2.1 Analysis and properties of FN,d,m-incident sets

The first important claim regarding the FN,d,m-incident sets is the characteri-

zation given by Proposition 6.9, which we explain here. To simplify the notation,

we introduce the following notion. The terminology (≤ m)-function to S stands

for any function φ:A→ S, where A has size at most m. Given a vector x ∈ RN

and a (≤ m)-function φ to [N ], we define φ(x) =
∏

a∈A xφ(a). Proposition 6.9

tells us that {x0, x1, . . . , xr} for r ≤ d is FN,d,m-incident if and only if the vectors
φ1(x0)

φ2(x0)
...

φr(x0)

 ,


φ1(x1)

φ2(x1)
...

φr(x1)

 , . . . ,


φ1(xr)

φ2(xr)
...

φr(xr)


are affinely dependent for all (≤ m)-functions φ1, φ2, . . . , φr. Then, in order

to prove that our FN,d,m-incident sets cannot have large intersections, we use

Lemmas 6.11 and 6.16. First we state Lemma 6.11 to illustrate its contrast to

Proposition 6.9.

Lemma 6.3. (Lemma 6.11) Let m, r,N ∈ N. Suppose that y1, y2, . . . , yr ∈ RN

are vectors such that rank{y1, y2, . . . , yr} + m − 1 ≥ r. Suppose further that

y1, y2, . . . , yr are distinct and have non-zero coordinates. Then we may find (≤
m)-functions φ1, φ2, . . . , φr for which the vectors

φ1(y1)

φ2(y1)
...

φr(y1)

 ,


φ1(y2)

φ2(y2)
...

φr(y2)

 , . . . ,


φ1(yr)

φ2(yr)
...

φr(yr)


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are linearly independent.

The conclusions of Lemma 6.11 and Proposition 6.9 are almost exactly op-

posite. We only need to take care to pass from affine dependence to linear

dependence (which is easy as a set {v1, v2, . . . , vr} is linearly dependent if and

only if {0, v1, v2, . . . , vr} is affinely dependent). Hence, we use these two re-

sults along with some combinatorial arguments to deduce structural information

about FN,d,m-incident sets, and in particular to show that such sets exhibit be-

haviour similar to combinatorial subspaces, as expected.

We now state Lemma 6.16, another crucial result in the study of FN,d,m-

incidence. Note that it has a more combinatorial flavour than Lemma 6.11.

Lemma 6.4. (Lemma 6.16) Letm, k ∈ N. Given any distinct sets X1, X2, . . . , Xr ∈
N(<ω), we can find sets S1, S2, . . . , Sr ⊆ N(≤m) such that the matrix

I =


1S1⊆X1 1S1⊆X2 . . . 1S1⊆Xr

1S2⊆X1 1S2⊆X2 . . . 1S2⊆Xr

...
...

. . .
...

1Sr⊆X1 1Sr⊆X2 . . . 1Sr⊆Xr


has dimker I = 0 if r < 2m+1, and dimker I ≤ 1 if r < 3 · 2m. Here 1A⊆B takes

value 1 if A is a subset of B, and zero otherwise.

The subset relation here is actually quite natural. This comes from con-

sidering the FN,d,m-incident subsets of {0, 1}N . As we have seen above, when

analysing FN,d,m-incidence, we are interested in the values of φ(x) for x ∈ {0, 1}N

and (≤ m)-function φ to [N ]. If we set S = Imφ, then φ(x) =
∏

s∈S xs = 1S⊆X ,

where X = {i:xi = 1}.

Finally, we note that studying the algebraic properties of such matrices may

be of separate interest.

6.3 Definition and basic properties of F-incidences

Throughout this section, F will stand for a family of maps from RN to Rd.

Given such a family of functions F , our goal is to understand the non-trivial
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affinely dependent sets of points in the images of f ∈ F .

Recall that we say that points s1, s2, . . . , sk ∈ Rd (not necessarily distinct) are

affinely dependent if there are λ1, . . . , λk ∈ R not all zero such that
∑k

i=1 λi = 0

and
∑k

i=1 λisi = 0. A k-tuple S = (s1, s2, . . . , sk) of points in RN is said to be

F -incident if for all f ∈ F we have f(s1), f(s2), . . . , f(sk) affinely dependent. A

set S = {s1, s2, . . . , sk} of points in RN is F -incident if a corresponding k-tuple

(s1, s2, . . . , sk) is. Note that the order does not play a role in this definition, nor

is the order of points important at any point in this chapter. The only reason

why we use k-tuples is the possibility that some of f(si) might overlap. (This

issue could also be resolved using multisets.) Further, S is minimal F -incident

if it is F -incident and no proper subset of S is F -incident.

Proposition 6.5 (Incidence removal function). Let X ⊆ RN be a finite set and

let F be a family of functions from RN to Rd. Then there is f ∈ spanF with

the property that

if {s1, s2, . . . , sk} is not F-incident, then f(s1), f(s2), . . . , f(sk)
(†)

are affinely independent.

Furthermore, if F separates the points of X (i.e. for distinct x, y ∈ X there is

f ∈ F such that f(x) ̸= f(y)), then there is f ∈ spanF which is injective on X,

with the property (†).

The proof of the proposition is based on simple linear algebra and some

easy facts regarding the vanishing of polynomials. It can be skipped at the first

reading, the reader should only be aware of the existence of the incidence removal

function and its properties.

Proof. Throughout this proof, for a function f and a set S = {s1, s2, . . . , sk}, we
regard f(S) as the multiset of elements f(s1), . . . , f(sk). So, if we say that f(S)

is affinely dependent, we mean f(s1), f(s2), . . . , f(sk) are affinely dependent.

We start by establishing the existence of a map f with property (†). The

second part of the proposition will follow from a simple argument later. Let

T1, T2, . . . , Tm be the list of all subsets of X which are not F -incident. Thus,

for each index i we have a function fi ∈ F such that fi(Ti) is affinely inde-

pendent. We shall inductively construct functions Fi ∈ spanF such that all of
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Fi(T1), Fi(T2), . . . , Fi(Ti) are affinely independent. Start by taking F1 = f1 for

the case i = 1.

Suppose that we have i ≥ 1 and a function Fi ∈ spanF such that each of

Fi(T1), Fi(T2), . . . , Fi(Ti) is affinely independent. Assume that i < m, other-

wise we are done. Also, if Fi(Ti+1) is already affinely independent, simply take

Fi+1 = Fi. Hence, w.l.o.g. Fi(Ti+1) is affinely dependent. We shall construct

Fi+1 as a linear combination Fi + λfi+1, where λ > 0 is a sufficiently small real,

chosen so that it does not introduce new dependencies.

Let u1, u2, . . . , uk ∈ RN . Let F (λ) = Fi + λfi+1 and suppose that F (0)(u1),

F (0)(u2), . . . , F
(0)(uk) are affinely independent. Then F (0)(u2) − F (0)(u1), . . . ,

F (0)(uk)− F (0)(u1) are linearly independent.

Lemma 6.6. Suppose that v1, . . . , vl ∈ Rd are linearly independent. Then, we

can find I ⊆ [d] of size l such that v1, . . . , vl are still linearly independent when

restricted to coordinates in I.

Proof. Look at the d× l matrix A = (v1v2 . . . vl). Since v1, v2, . . . , vl are linearly

independent, the column rank of A is l. But the column rank is the same as

the row rank, so we can find l linearly independent rows with indices r1, . . . , rl.

Take I = {r1, . . . , rl} and let A′ be the matrix A restricted to rows in I. Then,

the row rank of A′ is l, so its column rank is l, as desired.

By Lemma 6.6 we can find a set of coordinates I of size k − 1 such that

F (0)(u2) − F (0)(u1), F
(0)(u3) − F (0)(u1), . . . , F

(0)(uk) − F (0)(u1) are linearly in-

dependent after restriction to I. We restrict our attention to these coordinates

only. Then we can define

p(λ) = det(F (λ)(u2)− F (λ)(u1) . . . F
(λ)(uk)− F (λ)(u1)),

which is a polynomial in λ. Since p(0) ̸= 0, by continuity we have δ > 0 such

that if |λ|< δ then p(λ) ̸= 0. Therefore, F (λ)(u1), F
(λ)(u2), . . . , F

(λ)(uk) are

affinely independent if |λ|< δ. Note that we can now remove the restriction to

coordinates of I, as this will not affect the affine independence.

We can apply this argument to all T1, . . . , Ti, to get δ > 0 such that if |λ|< δ

then (Fi + λfi+1)(Tj) is affinely independent for all j = 1, . . . , i.

Now suppose that the choice Fi + λfi+1 does not work for us as Fi+1. Then,
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we must have (Fi + λfi+1)(Ti+1) is affinely dependent for all |λ|< δ. Thus if

λ > δ−1 then (λFi + fi+1)(Ti+1) is affinely dependent. List the elements of Ti+1

as t1, t2, . . . , tr. Now, apply Lemma 6.6 to fi+1(Ti+1) to get a set of coordinates

of size r − 1, on which this set is still affinely independent, and use a similar

polynomial to the one we had before, this time

q(λ) = det((λFi + fi+1)(t2 − t1) . . . (λFi + fi+1)(tr − t1)).

Then q(0) ̸= 0, but q(λ) = 0 if λ > δ−1 which is a contradiction, and thus the

first part of the proposition is proved.

For the last part, if F separates the points of X, observe that there are no

two-element sets which are F -incident. Hence, whenever x, y ∈ X are distinct,

their images f(x) and f(y) are affinely independent by the first part, so f is

injective, as desired.

6.4 Families of higher-degree maps and the resulting

incident sets

Throughout the rest of the chapter we will focus on the family FN,d,m of func-

tions f :RN → Rd of the form fi(x) = (⟨x, ui⟩ + ci)
l for i = 1, 2, . . . , d, for any

u1, u2, . . . , ud ∈ RN , c1, c2, . . . , cd ∈ R and 1 ≤ l ≤ m.

We start by giving some examples of non-trivial spanFN,d,m-incident sets.

The proofs are based on algebraic identities, which were described in the intro-

duction. For the case of lines, we use the rank-nullity theorem to prove that there

is an identity we are looking for, and in the case of combinatorial subspaces, we

prove the identity explicitly.

Lemma 6.7. (Examples of non-trivial spanFN,d,m-incident sets.)

(i) (Lines.) For x, y ∈ RN , the (m + 2)-tuple (x + iy: i = 0, 1, . . . ,m + 1) is

spanFN,d,m-incident.

(ii) (Combinatorial subspaces.) For x0, x1, . . . , xm+1 ∈ RN , the 2m+1-tuple

(x0 +
∑

i∈I xi: I ⊆ [m+ 1]) is spanFN,d,m-incident.
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Proof. Lines. We show that there are λ0, . . . , λm+1, not all zero, such that for

all f ∈ FN,d,m we have
∑m+1

i=0 λif(x+ iy) = 0 and
∑m+1

i=0 λi = 0. Then, the same

linear combination shows that f(x), f(x + y), . . . , f(x + (m + 1)y) are affinely

dependent for f ∈ spanFN,d,m. Before we proceed with the proof, observe that

if y = 0 our line becomes degenerate and the (m + 2)-tuple we consider is

immediately FN,d,m-incident. Thus, we assume that y ̸= 0.

Thus, we want a non-trivial sequence λi adding up to zero, such that for all

u ∈ RN , c ∈ R, l ∈ [m] we have

m+1∑
i =0

λi (⟨x+ iy, u⟩+ c)l = 0.

Expanding this expression using the binomial theorem and treating it as a poly-

nomial in c, it becomes equivalent to

m+1∑
i =0

λi⟨x+ iy, u⟩l = 0

for all u ∈ R and l = 0, 1, . . . ,m. Expanding further, this is equivalent to

l∑
k =0

(
l

k

)
⟨x, u⟩l−k⟨y, u⟩k

(
m+1∑
i=0

λii
k

)
= 0

for all u ∈ R and l = 0, 1, . . . ,m. Hence, if λ0, . . . , λm+1 satisfy

m+1∑
i =0

λii
l = 0

for all l = 0, 1, . . . ,m, we are done. But by the rank-nullity theorem (‘more vari-

ables than equations’), we must have a non-trivial solution to these equations,

giving us the desired λi.

Combinatorial subspaces. As in the case of lines, we show that there are co-

efficients λI , for set-valued indices I ⊆ [m + 1] (including the I = ∅), not all

zero, but adding up to zero, such that
∑

I⊆[m+1] λIf(x0 +
∑

i∈I xi) = 0, for all

f ∈ FN,d,m, which suffices to prove the claim in the full generality. In this case,

we can actually set λI = (−1)|I|.

It is enough to show that for any u ∈ RN , c ∈ R, l ∈ [m] we have (in these
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sums, I = ∅ is included)

∑
I ⊆[m+1]

(−1)|I|

(
⟨x0 +

∑
i∈I

xi, u⟩+ c

)l

= 0.

But writing a0 = ⟨x0, u⟩ + c, ai = ⟨xi, u⟩ for i = 1, . . . ,m + 1, we see that it is

sufficient to show ∑
I ⊆[m+1]

(−1)|I|

(
a0 +

∑
i∈I

ai

)l

= 0

for all a0, a1, . . . , am+1 ∈ R, l ∈ [m+ 1]. This is the content of the next lemma.

Lemma 6.8. Let l,m ∈ N, l ≤ m and a0, a1, . . . , am+1 ∈ R. Then

∑
I ⊆[m+1]

(−1)|I|

(
a0 +

∑
i∈I

ai

)l

= 0.

Proof of Lemma 6.8. Note that

∑
I ⊆[m+1]

(−1)|I|

(
a0 +

∑
i∈I

ai

)l

=
l∑

k=0

(
l

k

)
al−k
0

 ∑
I⊆[m+1]

(−1)|I|

(∑
i∈I

ai

)k


thus we only need to consider the case a0 = 0. Proving the lemma in this case

would tell us that ∑
I⊆[m+1]

(−1)|I|

(∑
i∈I

ai

)k

= 0

holds for all k, so the whole expression with arbitrary a0 above would vanish.

Consider the expression

∑
I ⊆[m+1]

(−1)|I|

(∑
i∈I

ai

)l

as a polynomial of degree l in a1, . . . , am+1. The coefficient of ad11 a
d2
2 . . . a

dm+1

m+1 is(
l

d1, d2, . . . , dm+1

) ∑
S ⊆I⊆[m+1]

(−1)|I|,

where S is the set of indices i such that di > 0. Since |S| ≤ m, the sum∑
S⊆I⊆[m+1](−1)|I| is zero, which finishes the proof.
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Applying Lemma 6.8 completes the proof.

Before coming to a key proposition which describes the FN,d,m-incident sets,

we introduce a couple of pieces of notation. If φ is a function from a set of

size at most m to a set X, we say that φ is a (≤ m)-function to X. Given a

(≤ m)-function φ:A → [N ] and x ∈ RN , we write φ(x) =
∏

a∈A xφ(a). Here we

allow an ‘empty’ function, i.e. a function φ from an empty set to [N ], defined

by φ(x) = 1, for all x ∈ RN .

Proposition 6.9. Let r, d,m,N ∈ N, suppose r ≤ d and let X = {x0, x1, . . . , xr}
be a subset of RN . The following are equivalent.

(i) X is FN,d,m-incident.

(ii) Given any (≤ m)-functions φ1, φ2, . . . , φr to [N ], the vectors
φ1(x0)

φ2(x0)
...

φr(x0)

 ,


φ1(x1)

φ2(x1)
...

φr(x1)

 , . . . ,


φ1(xr)

φ2(xr)
...

φr(xr)


are affinely dependent.

The proof of the proposition is a straightforward algebraic manipulation,

mostly based on the fact that if a polynomial over the reals vanishes everywhere,

then its coefficients are zero. The reader may consider skipping the proof in the

first reading.

Proof. Start from the definition, (i) is equivalent to the vectors
(⟨x0, u1⟩+ c1)

l

(⟨x0, u2⟩+ c2)
l

...

(⟨x0, ud⟩+ cd)
l

 ,


(⟨x1, u1⟩+ c1)

l

(⟨x1, u2⟩+ c2)
l

...

(⟨x1, ud⟩+ cd)
l

 , . . . ,


(⟨xr, u1⟩+ c1)

l

(⟨xr, u2⟩+ c2)
l

...

(⟨xr, ud⟩+ cd)
l


being affinely dependent for any choice of parameters c1, c2, . . . , cd ∈ R, u1,
u2, . . . , ud ∈ RN and 1 ≤ l ≤ m. In particular, as r ≤ d, this is further
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equivalent to vectors


(⟨x1, u1⟩+ c1)

l − (⟨x0, u1⟩+ c1)
l

(⟨x1, u2⟩+ c2)
l − (⟨x0, u2⟩+ c2)

l

...

(⟨x1, ur⟩+ cr)
l − (⟨x0, ur⟩+ cr)

l

 ,


(⟨x2, u1⟩+ c1)

l − (⟨x0, u1⟩+ c1)
l

(⟨x2, u2⟩+ c2)
l − (⟨x0, u2⟩+ c2)

l

...

(⟨x2, ur⟩+ cr)
l − (⟨x0, ur⟩+ cr)

l

 , . . . ,


(⟨xr, u1⟩+ c1)

l − (⟨x0, u1⟩+ c1)
l

(⟨xr, u2⟩+ c2)
l − (⟨x0, u2⟩+ c2)

l

...

(⟨xr, ur⟩+ cr)
l − (⟨x0, ur⟩+ cr)

l



being linearly dependent for all the choices of parameters. Hence, taking deter-

minant, (i) is the same as

det
(
(⟨xi, uj⟩+ cj)

l − (⟨x0, uj⟩+ cj)
l
)
= 0

for any choice of u1, . . . , ur, c1, . . . , cr, l. Expanding using binomial theorem, and

writing Sr for the symmetric group on [r], we obtain

0 =
∑
π∈Sr

sgn(π)
r∏

i=1

(
(⟨xπ(i), ui⟩+ ci)

l − (⟨x0, ui⟩+ ci)
l
)

=
∑
π∈Sr

sgn(π)
r∏

i=1

(
l∑

k=0

cki

(
l

k

)(
⟨xπ(i), ui⟩l−k − ⟨x0, ui⟩l−k

))
=

∑
0≤k1,k2,...,kr≤l

ck11 c
k2
2 . . . ckrr

r∏
i=1

(
l

ki

)(∑
π∈Sr

sgn(π)
r∏

i=1

(
⟨xπ(i), ui⟩l−ki − ⟨x0, ui⟩l−ki

))

However, this holds for any choice of c1, c2, . . . , cr ∈ R, so, when the expres-

sion above is viewed as a polynomial in variables c1, c2, . . . , cr, we conclude that

all its coefficients are zero. In other words, (i) is equivalent to the following. For
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any 0 ≤ k1, k2, . . . , kr ≤ m, and any u1, u2, . . . , ur ∈ RN we have

0 =
∑
π∈Sr

sgn(π)
r∏

i=1

(
⟨xπ(i), ui⟩ki − ⟨x0, ui⟩ki

)
=
∑
π∈Sr

sgn(π)
r∏

i=1

( N∑
j=1

xπ(i)juij

)ki

−

(
N∑
j=1

x0juij

)ki


=
∑
π∈Sr

sgn(π)
r∏

i=1

 ∑
φi:[ki]→[N ]

(
ki∏
j=1

xπ(i)φi(j)uiφi(j) −
ki∏
j=1

x0φi(j)uiφi(j)

)
=
∑
π∈Sr

sgn(π)
r∏

i=1

 ∑
φi:[ki]→[N ]

(
ki∏
j=1

uiφi(j)

)(
ki∏
j=1

xπ(i)φi(j) −
ki∏
j=1

x0φi(j)

)
=

∑
φ1:[k1]→[N ],...,φr:[kr]→[N ]

(
r∏

i=1

ki∏
j=1

uiφi(j)

)
(∑

π∈Sr

sgn(π)
r∏

i=1

(
ki∏
j=1

xπ(i)φi(j) −
ki∏
j=1

x0φi(j)

))

=
∑

φ1:[k1]→[N ],...,φr:[kr]→[N ]

(
r∏

i=1

φi(ui)

)(∑
π∈Sr

sgn(π)
r∏

i=1

(φi(xπ(i))− φi(x0))

)

Now, look at the expression above as a polynomial in variables uij. Observe

that if φ1, φ2, . . . , φr, ψ1, ψ2, . . . , ψr are such that
∏r

i=1 φi(ui) =
∏r

i=1 ψi(ui) as

formal expressions, then we must have

∑
π∈Sr

sgn(π)
r∏

i=1

(φi(xπ(i))− φi(x0)) =
∑
π∈Sr

sgn(π)
r∏

i=1

(ψi(xπ(i))− ψi(x0))

as well. This tells us that the coefficients of our polynomial are positive integer

multiples of
∑

π∈Sr
sgn(π)

∏r
i=1(φi(xπ(i))− φi(x0)). Once again, the polynomial

over R vanishes everywhere if and only if its coefficients are zero, so we deduce

that (i) holds if and only if for all (≤ m)-functions φ1, φ2, . . . , φr to [N ], we have

0 =
∑
π∈Sr

sgn(π)
r∏

i=1

(φi(xπ(i))− φi(x0))

= det
1≤i,j≤r

(φi(xj)− φi(x0))
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which says precisely that the vectors
φ1(x1)− φ1(x0)

φ2(x1)− φ2(x0)
...

φr(x1)− φr(x0)

 ,


φ1(x2)− φ1(x0)

φ2(x2)− φ2(x0)
...

φr(x2)− φr(x0)

 , . . . ,


φ1(xr)− φ1(x0)

φ2(xr)− φ2(x0)
...

φr(xr)− φr(x0)


are linearly dependent, which is equivalent to (ii), as desired.

Proposition 6.10. Let r, d,m,N ∈ N be given and suppose that r ≤ d holds.

Suppose also that the set {x0, x1, . . . , xr} ⊆ RN is FN,d,m-incident. Then, given

any affine map α:RN → RN and any (≤ m)-functions φ1, φ2, . . . , φr to [N ], the

vectors 
φ1(α(x0))

φ2(α(x0))
...

φr(α(x0))

 ,


φ1(α(x1))

φ2(α(x1))
...

φr(α(x1))

 , . . . ,


φ1(α(xr))

φ2(α(xr))
...

φr(α(xr))


are affinely dependent.

On the other hand, if the set {x0, x1, . . . , xr} ⊆ RN is not FN,d,m-incident,

then, given any affine isomorphism α:RN → RN , we may find (≤ m)-functions

φ1, φ2, . . . , φr to [N ], so that the vectors
φ1(α(x0))

φ2(α(x0))
...

φr(α(x0))

 ,


φ1(α(x1))

φ2(α(x1))
...

φr(α(x1))

 , . . . ,


φ1(α(xr))

φ2(α(xr))
...

φr(α(xr))


are affinely independent.

Proof. Suppose that an affine map α:RN → RN is given. We may write it in

the form α(x) = Ax + v for an N × N matrix A and a vector v ∈ RN . Given

vectors u1, u2, . . . , ur ∈ RN , constants c1, c2, . . . , cr ∈ R and 1 ≤ l ≤ m, we have

(⟨α(x), ui⟩+ ci)
l = (⟨Ax+ v, ui⟩+ ci)

l = (⟨x,ATu⟩+ (⟨v, ui⟩+ ci))
l.

But then, since x0, x1, . . . , xr are FN,d,m-incident, it follows that so are α(x0),

α(x1), . . . , α(xr). Apply Proposition 6.9 to α(x0), α(x1), . . . , α(xr), from which
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the first claim in the proposition follows.

For the second part, observe that if α(x0), α(x1), . . . , α(xr) are FN,d,m-incident,

then by the previous arguments, so are x0 = α−1(α(x0)), x1 = α−1(α(x1)), . . . ,

xr = α−1(α(xr)). Therefore, the points α(x0), α(x1), . . . , α(xr) are not FN,d,m-

incident. Proposition 6.9 applies, and gives the desired (≤ m)-functions.

6.5 Proof of α(n, d) = od(n)

Lemma 6.11. Let m, r,N ∈ N. Suppose that y1, y2, . . . , yr ∈ RN are some

vectors with the property that rank{y1, y2, . . . , yr}+m− 1 ≥ r. Suppose further

that y1, y2, . . . , yr are distinct and have non-zero coordinates. Then we may find

(≤ m)-functions φ1, φ2, . . . , φr for which the vectors
φ1(y1)

φ2(y1)
...

φr(y1)

 ,


φ1(y2)

φ2(y2)
...

φr(y2)

 , . . . ,


φ1(yr)

φ2(yr)
...

φr(yr)


are linearly independent.

Proof. We prove the lemma by induction, first on m, then on r. Observe that in

the case when m = 1, for a (≤ m)-function φ, the resulting function φ(x) is just

evaluation of x at a chosen coordinate. Hence, for m = 1 we are actually asked

to find a set of coordinates I of size r, such that yi are still linearly independent

when restricted to I. Applying Lemma 6.6 proves the claim in this case.

Suppose now that the claim holds for some m′ ≥ 1. Write m = m′ + 1.

For fixed m, we prove the lemma by induction on r ≥ 1. If r = 1, then, take

φ: [1] → [N ], given by φ(1) = 1, so the vector φ(y1) = (y1)1 is non-zero.

Suppose that the claim holds for some r ≥ 1, and that {y1, y2, . . . , yr+1}
satisfy the assumptions of the lemma.

Case 1. yr+1 /∈ span{y1, y2, . . . , yr}. Then r + 1 ≤ rank{y1, y2, . . . , yr+1}+m−
1 = rank{y1, y2, . . . , yr} + m, hence rank{y1, y2, . . . , yr} + m − 1 ≥ r. By the
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induction hypothesis, we have (≤ m)-functions φ1, φ2, . . . , φr such that
φ1(y1)

φ2(y1)
...

φr(y1)

 ,


φ1(y2)

φ2(y2)
...

φr(y2)

 , . . . ,


φ1(yr)

φ2(yr)
...

φr(yr)


are linearly independent. Hence, there are unique scalars λ1, λ2, . . . , λr ∈ R such

that φi(yr+1) =
∑r

j=1 λjφi(yj) holds for all i = 1, . . . , r. But, the vector yr+1

is not in the span{y1, . . . , yr}, and so yr+1 ̸=
∑r

j=1 λjyj. Hence, we can pick

φr+1: [1] → [N ] to be φ(1) = c, where c is the coordinate such that (yr+1)c ̸=∑r
j=1 λj(yj)c, finishing the proof in this case.

Case 2. yr+1 ∈ span{y1, y2, . . . , yr}. Then r + 1 ≤ rank{y1, y2, . . . , yr+1}+m−
1 = rank{y1, y2, . . . , yr}+m− 1, so

r ≤ rank{y1, y2, . . . , yr}+m− 2.

By the induction hypothesis, we have (≤ m− 1)-functions φ1, . . . , φr for which
φ1(y1)

φ2(y1)
...

φr(y1)

 ,


φ1(y2)

φ2(y2)
...

φr(y2)

 , . . . ,


φ1(yr)

φ2(yr)
...

φr(yr)


are linearly independent. As before, there are unique scalars λ1, λ2, . . . , λr ∈ R
such that φi(yr+1) =

∑r
j=1 λjφi(yj) holds for all i = 1, . . . , r.

We try to take φr+1 to be some φi with an additional element in the domain,

mapped to c ∈ [N ]. If this works, we are done. Otherwise, for all i = 1, . . . , r and

c ∈ [N ], we have φi(yr+1)(yr+1)c =
∑r

j=1 λjφi(yj)(yj)c. Since the coordinates are

non-zero, we get

φi(yr+1) =
r∑

j=1

(λj · (yj)c/(yr+1)c)φi(yj).

But, by uniqueness of λj, we must have λj · (yj)c/(yr+1)c = λj for all j, c. If

some λj ̸= 0, then for all c we get (yj)c/(yr+1)c = 1, i.e. yr+1 = yj which is a

contradiction, as our vectors are distinct. Otherwise, all the coefficients λj are 0,

so φ1(yr+1) = 0, but coordinates of yr+1 are non-zero, resulting in a contradiction

once again.
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The next result is a corollary of the algebraic lemma we have just proved. It

is consistent with the intuition we described in the introduction. There we said

that we expected lines in [m+1]N to be the sources of the non-trivial FN,m+1,m-

incident sets. In other words, a FN,m+1,m-incident set is either of size larger than

m+ 2, and thus its image must be affinely dependent (by looking at dimension

of the target space), or the set is on a line.

Corollary 6.12. Suppose that S ⊆ RN is FN,m+1,m-incident. Then, |S| ≥ m+2

and if |S| = m+ 2, then S is a subset of a line.

Proof. If |S| ≥ m + 3, we are done. Suppose now that |S| ≤ m + 2. Let

s0, s1, . . . , sm+1 be the elements of S. We can find an affine isomorphism α:RN →
RN such that α(s0) = 0, and yi = α(si), for i = 1, 2, . . . ,m+ 1, are distinct and

have non-zero coordinates. By Proposition 6.10 (note that we may apply it

because |S|−1 ≤ m + 1, and m + 1 is the dimension of the target space), the

vectors 
φ1(y1)

φ2(y1)
...

φm+1(y1)

 ,


φ1(y2)

φ2(y2)
...

φm+1(y2)

 , . . . ,


φ1(ym+1)

φ2(ym+1)
...

φm+1(ym+1)


are linearly dependent, for any choice of (≤ m)-functions φ1, φ2, . . . , φm+1 to

[N ]. Thus, Lemma 6.11 would give us contradiction, unless

rank{y1, y2, . . . , ym+1}+m− 1 ≤ m.

So rank{y1, y2, . . . , ym+1} ≤ 1, and as y1 ̸= 0, there are scalars λ1, . . . , λm+1

such that yi = λiy1 holds for all i = 1, . . . ,m + 1. But, since α is an affine

isomorphism, the points s0 = α−1(0), s1 = α−1(y1), . . . , sm+1 = α−1(ym+1) are

on a line, as desired.

Theorem 6.13. For d, n ∈ N, d ≥ 2, we have α(n, d) = od(n).

Proof. For notational consistency with previous results, we set m = d − 1. Let

ϵ > 0 be arbitrary and let N be sufficiently large so that ϵ-density Hales-Jewett

theorem holds for the combinatorial lines in [m + 2]N . Let X = [m + 2]N , and

let f be the function given by Proposition 6.5 applied to X and FN,m+1,m. Since
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FN,m+1,m separates the points of X, we may assume that f is injective on X.

Finally, let Y = f(X) ⊆ Rm+1. We claim that Y has no more than m+2 points

in a hyperplane, and that all subsets of Y of size at least ϵ|Y | have a hyperplane

containing m+ 2 points.

There are no more than m + 2 points of Y on a hyperplane. Look at a hyper-

plane H and suppose that Y has m+ 3 points y1, . . . , ym+3 inside H. Look at a

maximal affinely independent subset of y1, . . . , ym+3, w.l.o.g. this is y1, y2, . . . , yr

for some r. Since H is m-dimensional affine subspace, we have r ≤ m + 1. So

S1 = {y1, y2, . . . , yr, ym+2} is affinely dependent, and has size at most m + 2.

Then, by the definition of f and Proposition 6.5, T1 = f−1(S1) is FN,m+1,m-

incident. Since f is a bijection from X onto its image, T1 has size at most m+2,

so by Corollary 6.12, T1 is a subset of a line, and |T1|= m + 2 and r = m + 1.

Applying the same arguments to S2 = {y1, . . . , yr, ym+3} and T2 = f−1(S2), we

have that T2 is also a subset of a line and has size m+2 and also |T1∩T2|= m+1.

But, as T1, T2 ⊆ [m + 2]N , this is impossible and we have a contradiction, so Y

has no more than m+ 2 points on a hyperplane.

Dense subsets of Y are not in general position. Let S ⊆ Y have size at least ϵ|Y |.
Then T = f−1(S) has a combinatorial line L by the density Hales-Jewett theo-

rem. Hence, f(L) ⊆ S and S has m+ 2 points that lie on the same hyperplane,

by Lemma 6.7. This finishes the proof.

6.6 Better bounds for certain dimensions

In this section, we provide better bounds on α(n, d) for certain dimensions

d. The key difference in this approach is the use of a more efficient version of

density Hales-Jewett theorem, which we now state.

Theorem 6.14 (Generalized Sperner’s Theorem, [14], Theorem 2.3). Let A
be a collection of subsets of [n] that contains no d-dimensional combinatorial

subspace. Then the size of A is at most (25/n)1/2
d
2n.

Here, we consider the points in {0, 1}N ⊆ RN , which we also interpret as

subsets of [N ]. Observe that, given an (≤ m)-function φ to [N ], with image

S ⊆ [N ] and a point x ∈ {0, 1}N corresponding to X ⊆ [N ] (by setting X: =
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{i ∈ [N ]:xi = 1}), we have

f(x) = 1S⊆X ,

where, for a general property P , the value of 1P is 1, when P holds, and zero

otherwise. Hence, we can reinterpret Proposition 6.10 in the language of sets

as follows. Suppose that ∅, X1, X2, . . . , Xr correspond to r + 1 points in {0, 1}N

which are not FN,d,m-incident (so the first point is 0). Then, there are sets

S1, S2, . . . , Sr ⊆ [N ] of size at most m, for which the vectors
1S1⊆∅

1S2⊆∅
...

1Sr⊆∅

 ,


1S1⊆X1

1S2⊆X1

...

1Sr⊆X1

 ,


1S1⊆X2

1S2⊆X2

...

1Sr⊆X2

 , . . . ,


1S1⊆Xr

1S2⊆Xr

...

1Sr⊆Xr


are affinely independent. If all the sets Si are non-empty, then the vectors

1S1⊆X1

1S2⊆X1

...

1Sr⊆X1

 ,


1S1⊆X2

1S2⊆X2

...

1Sr⊆X2

 , . . . ,


1S1⊆Xr

1S2⊆Xr

...

1Sr⊆Xr


are linearly independent. Now we show that actually no set Si is empty. Other-

wise, w.l.o.g. S1 = S2 = · · · = Sk = ∅ and the others are non-empty, so after sub-

tracting the vector (1S1⊆∅1S2⊆∅ . . .1Sr⊆∅)
T from each vector (1S1⊆Xi

1S2⊆Xi
. . .

1Sr⊆Xi
)T with i ≥ 1, we obtain that

0

0
...

0

1Sk+1⊆X1

...

1Sr⊆X1


,



0

0
...

0

1Sk+1⊆X2

...

1Sr⊆X2


, . . . ,



0

0
...

0

1Sk+1⊆Xr

...

1Sr⊆Xr


are linearly independent, which is not possible (when viewed as a matrix, the

row rank is less than r). We sum up this discussion as the following observation.
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Observation 6.15. Suppose that the sets ∅, X1, X2, . . . , Xr ⊆ [N ] correspond

to r + 1 points that are not FN,d,m-incident. Then, there are non-empty sets

S1, S2, . . . , Sr ⊆ N of size at most m such that the vectors
1S1⊆X1

1S2⊆X1

...

1Sr⊆X1

 ,


1S1⊆X2

1S2⊆X2

...

1Sr⊆X2

 , . . . ,


1S1⊆Xr

1S2⊆Xr

...

1Sr⊆Xr


are linearly independent.

Viewing these vectors together as an r × r matrix, we have found that the

nullity of this matrix is related to the notion of FN,d,m-incidence. This motivates

the study of the nullity of such matrices in general. Before stating the lemma

which contains some basic results regarding this problem, we introduce some

notation.

Given sets A1, A2, . . . , Ar, B1, B2, . . . , Bs ∈ N(<ω), we write

I(A1, A2, . . . , Ar;B1, B2, . . . , Bs)

for the s× r matrix with entries Iij = 1Bi⊆Aj
. Further, we define

K(A1, A2, . . . , Ar;B1, B2, . . . , Bs)

for the kernel of I and

n(A1, A2, . . . , Ar;B1, B2, . . . , Bs)

for the nullity of I. Also, if A,B are finite sequences of finite sets, of lengths

r and s, we write I(A,B) = I(A1, A2, . . . , Ar;B1, B2, . . . , Bs), and similarly we

define K(A,B), n(A,B).

Lemma 6.16. Let m, k ∈ N. Given any distinct sets X1, X2, . . . , Xr ∈ N(<ω),

we can find sets S1, S2, . . . , Sr ⊆ N(≤m) which enjoy the following property.

(i) n(X1, X2, . . . , Xr;S1, S2, . . . , Sr) = 0, provided r < 2m+1.

(ii) n(X1, X2, . . . , Xr;S1, S2, . . . , Sr) ≤ 1, provided r < 3 · 2m.
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We prove the lemma by induction and (ideas related to) compressions, and

in fact use the part (i) in order to deduce the part (ii). As it will be stressed

in the proof, there is a subtlety in proving n(X1, X2, . . . , Xr;S1, S2, . . . , Sr) ≤ 1.

Namely, the naive application of induction could only give n(X1, X2, . . . , Xr;

S1, S2, . . . , Sr) ≤ 2, and we actually use the first part of the lemma to obtain the

required saving of 1 on the right hand side.

Proof. Part (i). We prove the claim by induction on
∑r

i=1|Xi|. If this is zero,

then we have r = 1 and X1 = ∅, so just take S1 = ∅.

Suppose that the lemma holds for smaller values of
∑r

i=1|Xi|. Let x ∈ N
be any element that is contained in at least one of the sets Xi. Denote by

{Y1, Y2, . . . , Yu} the collection of sets given by {Xi \ {x}: i = 1, . . . , r}, and

further let {Z1, . . . , Zv} be the set {Xi:x /∈ Xi, Xi ∪ {x} = Xj for some j}.
Thus v ≤ u and u+ v = r. By the induction hypothesis, there are relevant sets

S1, . . . , Su ∈ N(≤m) for Y1, . . . , Yu. Also, since v ≤ r/2 < 2m, we have relevant

sets S ′
u+1, . . . S

′
r ∈ N(≤m−1) for Z1, Z2, . . . , Zv, and note that w.l.o.g. none of

S1, S2, . . . , Su, S
′
u+1, . . . , S

′
r contains x. Set Su+i = S ′

u+i∪{x} for all i = 1, . . . , v.

We claim that the sets S1, S2, . . . , Sr have the desired property. So far, we know

that for all i, |Si|≤ m holds.

Let (λ1λ2 . . . λr)
T be an element of the kernel K(X,S). We can rewrite this

as
∑

j:Si⊆Xj
λj = 0 for all i = 1, 2, . . . , r. Define µi =

∑
j:Yi=Xj\{x} λj, for each

i = 1, . . . , u. Then, recalling that x /∈ Si for i ≤ u, we have
∑

j:Si⊆Yj
µj =∑

j:Si⊆Xl
λl = 0 for all i = 1, 2, . . . , u. Since n(Y1, Y2, . . . , Yu;S1, S2, . . . , Su) = 0,

we infer µj = 0 for all j. Returning to the definition of µi, we have that whenever

j is such that x ∈ Xj, but Xj \ {x} is not any of the sets Xl, then there is i such

that λj = µi, so λj must vanish.

Hence, for i > u, we have that x ∈ Si and
∑

j λj1Si⊆Xj
= 0, when the sum

is taken over all j such that x ∈ Xj, but Xj \ {x} is not any of the sets Xl. Set

νi = −λj for Zi = Xj, which by previous work is the same as νi = λl for l such

that Xl \ {x} = Zi and x ∈ Xl. Therefore, for i > u, we have∑
j:S′

i⊆Zj

νj =
∑

j:Si⊆Zj∪{x}

νj =
∑

j:Si⊆Xj

λj = 0

with no additional restrictions on j apart those written in the sums. Hence, the
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vector (ν1ν2 . . . νv)
T must lie inside K(Z1, Z2, . . . , Zv;S

′
u+1, S

′
u+2, . . . , S

′
r). But

thus kernel is trivial, so all νi = 0. Finally, this implies that λi = 0 holds for the

remaining i, as desired.

Part (ii). We follow similar steps as in the previous part. However, we have

to be slightly careful, since the previous argument unchanged would give us

that K(X1, X2, . . . , Xr;S1, S2, . . . , Sr) is essentially a sum of kernels of similar

matrices for Y1, Y2, . . . , Yu and Zu+1, Zu+2, . . . , Zr. This way, we could be 1 di-

mension short of the desired goal, as this argument only allows us to deduce

n(X1, X2, . . . , Xr;S1, S2, . . . , Sr) ≤ 2, so we have to be more efficient. In order

to overcome this issue, we shall apply the part (i) of the lemma.

We prove the claim by induction on
∑r

i=1|Xi|. If this is zero, then we have

r = 1 and X1 = ∅, so just take S1 = ∅.
Suppose that the lemma holds for smaller values of

∑r
i=1|Xi|. Let x ∈ N

be any element that is contained in at least one of the sets Xi. Denote by

{Y1, Y2, . . . , Yu} the collection of sets given by {Xi \ {x}: i = 1, . . . , r}, and fur-

ther let {Z1, . . . , Zv} be the set {Xi:x /∈ Xi, Xi ∪ {x} = Xj for some j}. Thus

v ≤ u and u + v = r. Pick the sets S1, S2, . . . , Su ∈ N(≤m) such that U =

K(Y1, Y2, . . . , Yu;S1, S2, . . . , Su) is of minimum dimension. Further, pick the sets

S ′
u+1, S

′
u+2, . . . , S

′
r ∈ N(≤m−1) such that V = K(Z1, Z2, . . . , Zv;S

′
u+1, S

′
u+2, . . . , S

′
r)

is of minimum dimension. W.l.o.g. we may assume that x /∈ Si, S
′
j. Finally, set

Su+i = S ′
u+i ∪ {x} for i = 1, . . . , v. All Si have size at most m.

By the induction hypothesis, we have dimU ≤ 1 and, since v ≤ r/2 < 3·2m−1,

we also have dimV ≤ 1. However, we can make a saving of one dimension as

promised. Suppose that dimU = dimV = 1. Then, by the part (i), since U, V

are of the minimum possible dimension, we must have u ≥ 2m+1 and v ≥ 2m,

which is a contradiction as u+v = r < 3 ·2m. Therefore, dimU+dimV ≤ 1. We

shall now finish the proof by similar arguments as in the previous case, however

we need to treat the cases when dimU = 1 and dimV = 1 separately.

We may reorder X1, X2, . . . , Xr, if necessary, to have Yi = Xi \ {x}, for i =
1, 2, . . . , u, and Zi = Xu+i \ {x} with x ∈ Xu+i for i = 1, 2, . . . , v. Furthermore,

we may also assume that Zi = Xu−v+i with x /∈ Xu−v+i for i = 1, 2, . . . , v. Now

proceed as in the part (i), with the argument modified to deal with the possibly
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non-trivial kernels. Suppose that λ1, . . . , λr ∈ R are such that
∑

j:Si⊆Xj
λj = 0

for all i = 1, 2, . . . , r. Define µi =
∑

j:Yi=Xj\{x} λj, for each i = 1, . . . , u, thus

µi =

 λi if i ≤ u− v

λi + λi+v if u− v < i ≤ u

Then we have
∑

j:Si⊆Yj
µj = 0 for all i = 1, 2, . . . , u. This thus gives µ ∈ U .

Next, set νi = λj for Zi = Xj, i.e. νi = λu+i for i = 1, 2, . . . , v. We have (note

the restriction on the index j ∈ [u− v] in some of the sums)

(6.2)

0 =
∑

j:Si⊆Xj

λj

=
∑

j:S′
i∪{x}⊆Zj∪{x}

νj +
∑

j∈[u−v]:Si⊆Xj

λj

=
∑

j:S′
i⊆Zj

νj +
∑

j∈[u−v]:Si⊆Xj

λj

for all i = u+1, . . . , r. Note also that we can express λi in terms of µi and νi as

follows

(6.3)λi =


µi if i ≤ u− v

µi − νi+v−u if u− v < i ≤ u

νi−u if u < i

Case 1. dimU = 0, dimV = 1.

As U = {0}, we must have all µj = 0. Therefore, λj = 0 for j ≤ u− v, which

implies that ∑
j:S′

i⊆Zj

νj = 0

for all i = 1, 2, . . . , u. Therefore, ν ∈ V . Using the expressions (6.3), we see

that we can express any given λ ∈ K(X1, X2, . . . , Xr; S1, S2, . . . , Sr) as a sum

of vectors in two subspaces of Rr, isomorphic to U and V , so K(X1, X2, . . . , Xr;

S1, S2, . . . , Sr) is a subset of at most 1-dimensional subspace, as desired.

Case 2. dimV = 0, dimU = 1.

Now, the scalars µj might be non-trivial. On the other hand, due to the

equation (6.2) we have ∑
j:S′

i⊆Zj

νj = −
∑

j∈[u−v]:Si⊆Xj

λj,
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which, combined with the fact that V = {0}, implies that νj are uniquely deter-

mined by the choice of µj. Finally, relationships in (6.3) show once again that

λj lies in an (at most) 1-dimensional subspace, as desired.

The following corollary is just a modification of the lemma in the case when

all the sets are non-empty. The need for this additional technicality comes from

Observation 6.15.

Corollary 6.17. Let m, k ∈ N. Given any distinct non-empty sets X1, X2, . . . ,

Xr ∈ N(<ω), we can find non-empty sets S1, S2, . . . , Sr ⊆ N(≤m) which enjoy the

following property.

(i) n(X1, X2, . . . , Xr;S1, S2, . . . , Sr) = 0, provided r < 2m+1 − 1.

(ii) n(X1, X2, . . . , Xr;S1, S2, . . . , Sr) ≤ 1, provided r < 3 · 2m − 1.

Proof. In both cases, we apply Lemma 6.16 to distinct sets ∅, X1, X2, . . . , Xr to

find sets S0, S1, . . . , Sr of size at most m such that

n(∅, X1, X2, . . . , Xr;S0, S1, S2, . . . , Sr) ≤ q,

where q = 0 if r < 2m+1 − 1, and q = 1 if r < 3 · 2m − 1. We now show that,

starting from

n(∅, X1, X2, . . . , Xr;S0, S1, S2, . . . , Sr) ≤ q,

we can reorder the sets Si so that

n(X1, X2, . . . , Xr;S1, S2, . . . , Sr) ≤ q,

which finishes the proof.

Let I be the matrix I(∅, X1, X2, . . . , Xr;S0, S1, S2, . . . , Sr). By the rank-

nullity theorem, the rank of I (which is also the column rank) is at least r +

1 − q. If all the sets Si are non-empty, then the first column of I is zero.

Removing the first row from I, we get a matrix with the column rank also

≥ r + 1 − q, thus having the row rank also ≥ r + 1 − q. Remove the first row,

the remaining matrix is I(X1, X2, . . . , Xr;S1, S2, . . . , Sr) and it has the row rank

at least r − q. Thus its rank is at least r − q, so by the rank-nullity theorem,

n(X1, X2, . . . , Xr;S1, S2, . . . , Sr) ≤ q, as desired.
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On the other hand, if S0 = ∅ (after reordering if necessary), remove the first

row from I, to get a matrix with the row rank at least r − q, and whose first

column is zero. But removing the first column does not change the column rank,

and we end up with the matrix I(X1, X2, . . . , Xr; S1, S2, . . . , Sr) of the column

rank ≥ r − q, which by the rank-nullity theorem gives

n(X1, X2, . . . , Xr;S1, S2, . . . , Sr) ≤ q,

as desired.

The next corollary is tailored to the analysis of the FN,d,m-incident sets (see

Corollary 6.20).

Corollary 6.18. Suppose that X1, X2, . . . , Xr ∈ N(<ω) are distinct, t ≤ r and

S1, S2, . . . , St ∈ N(<ω) satisfy

n(X1, X2, . . . , Xt;S1, S2, . . . , St) = 0.

Provided r < 3 · 2m, we can find sets St+1, St+2, . . . , Sr ∈ N(≤m) such that

n(X1, X2, . . . , Xr;S1, S2, . . . , Sr) ≤ 1.

If r < 3 · 2m − 1 and the sets Xi are non-empty, then additionally, the sets

St+1, St+2, . . . , Sr can be chosen to be non-empty.

Proof. Apply the part (ii) of Lemma 6.16, to get sets T1, T2, . . . , Tr ∈ N(≤m)

such that

n(X1, X2, . . . , Xr;T1, T2, . . . , Tr) ≤ 1,

or Corollary 6.17 to make the sets Ti non-empty, provided r < 3 · 2m − 1 holds

and the sets Xi are non-empty. Look at the (t+ r)× r matrix I(X1, X2, . . . , Xr;

S1, S2, . . . , St, T1, T2, . . . , Tr). We shall remove t rows from those corresponding

to T1, T2, . . . , Tr to get the desired matrix. The following row-removal lemma

does this for us.

Lemma 6.19. Suppose that A is an (r + t) × r matrix with the first t rows

linearly independent and t ≤ r. Then we can remove t rows from the last r rows

of A, so that the kernel of A is not affected.
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Proof. If I ⊆ [r + t], let AI stand for the matrix formed from the rows of A

with indices in I. Starting from the set I = [r + s], we shall iteratively remove

elements greater than t from I, so that at each step we have kerAI = kerA.

Suppose that we have I ⊆ [r+ t] with [t] ⊆ I, but |I|> r, such that kerAI =

kerA holds. If we can pick an element x ∈ I \ [t], so that kerAI\{x} = kerAI ,

we are done. Otherwise, no such x works. Observe that if a row vT of AI is a

linear combination of the other rows, then it can be removed from AI . To spell

it out, write vTi for ith row of A and suppose that vTi =
∑

j∈I\{i} λjv
T
j . Then, if

µ ∈ kerAI\{i}, we have µ · vTi =
∑

j∈I\{i} λjµ · vTj = 0. So kerAI\{x} = kerAI .

Thus, the vectors vT1 , . . . , v
T
t are linearly independent, and vi /∈ span{vj:

j ∈ I \ {i}} for i ∈ I \ [t]. But, then, |I| > r and the rows of I are linearly

independent vectors of the dimension r, which is a contradiction. Hence, we can

proceed, until we reach |I| = r, as desired.

The matrix

I(X1, X2, . . . , Xr;S1, S2, . . . , St, T1, T2, . . . , Tr)

satisfies the conditions of the lemma since n(X1, X2, . . . , Xt; S1, S2, . . . , St) =

0. By applying the lemma, we can pick St+1, St+2, . . . , Sr among the sets in

T1, T2, . . . , Tr so that

n(X1, X2, . . . , Xr;S1, S2, . . . , Sr)

=n(X1, X2, . . . , Xr;S1, S2, . . . , St, T1, T2, . . . , Tr)

≤n(X1, X2, . . . , Xr;T1, T2, . . . , Tr)

≤ 1.

Similarly to Corollary 6.12, the next corollary is consistent with the somewhat

vague idea that the combinatorial subspaces are the source of the non-trivial

FN,d,m-incident sets. In particular, we show that the FN,d,m-incident sets behave

like the combinatorial subspaces when it comes to taking unions – the size of a

union of two FN,d,m-incident sets of size 2m+1 is at least 3 · 2m.

Corollary 6.20. Let d,m ∈ N be given.
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(i) If T ⊆ {0, 1}N is FN,d,m-incident, then |T |≥ min{d+ 2, 2m+1}.

(ii) If T1, T2 ⊆ {0, 1}N are distinct, of size at most d + 1 and minimal (w.r.t.

inclusion) FN,d,m-incident, then |T1 ∪ T2|≥ 3 · 2m.

Proof. Part (i). Suppose that T = {x0, x1, x2, . . . , xr} ⊆ {0, 1}N is FN,d,m-

incident and that r < 2m+1 − 1, d + 1. Note that, for a fixed set A, the map

X 7→ X∆A, induces a reflection α:RN → RN (with the natural correspondence

between sets and points in {0, 1}N). In particular, taking A to be the set of non-

zero coordinates of x0, we have an affine isomorphism α that preserves the cube

{0, 1}N and sends x0 to zero. Let Xi ⊆ [N ] be the set corresponding to α(xi),

i.e. the set of indices j such that α(xi)j = 1. As r < 2m+1 − 1, Corollary 6.17

yields non-empty sets S1, S2, . . . , Sr ⊆ [N ] of size at most m, such that

n(X1, X2, . . . , Xr;S1, S2, . . . , Sr) = 0.

Choosing (≤ m)-functions φ1, φ2, . . . , φr with images S1, S2, . . . , Sr respectively,

we obtain that the vectors
0

0
...

0

 ,


φ1(α(x1))

φ2(α(x1))
...

φr(α(x1))

 ,


φ1(α(x2))

φ2(α(x2))
...

φr(α(x2))

 , . . . ,


φ1(α(xr))

φ2(α(xr))
...

φr(α(xr))


are affinely independent. But, as r ≤ d, Proposition 6.10 applies to T , affine

map α and functions φ1, φ2, . . . , φr, which tells us that these vectors are affinely

dependent, which is a contradiction. Thus |T |= r + 1 ≥ min{2m+1, d + 2} as

desired.

Part (ii). If T1, T2 are disjoint, then by part (i), |T1∪T2|≥ 2m+2, so we are done.

Thus, assume that some t0 belongs to both sets. Pick an affine isomorphism

α:RN → RN which sends t0 to zero and preserves the cube {0, 1}N (given by a

suitable reflection). Let X1, X2, . . . , Xt be the sets that correspond to the non-

zero points of α(T1 ∩ T2). Next, let Xt+1, . . . , Xt+r1 be the sets that correspond

to points in α(T1 \T2) and let Xt+r1+1, . . . , Xt+r1+r2 be the sets corresponding to

points of α(T2 \T1). If |T1∪T2|≥ 3 ·2m, we are done. Otherwise 1+ t+ r1+ r2 =

|T1 ∪ T2|< 3 · 2m.
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Since they are minimal and distinct, T1, T2 cannot contain one another. So

T1∩T2 is a proper subset of T1 and hence it is not FN,d,m-incident. Therefore, by

Observation 6.15, we can find non-empty sets S1, S2, . . . , St ∈ N(≤m) such that

n(X1, X2, . . . , Xt;S1, S2, . . . , St) = 0.

Applying Corollary 6.18 (as r + t1 + t2 < 3 · 2m − 1), we obtain non-empty sets

St+1, . . . , St+r1+r2 ∈ N(≤m) such that

n(X1, X2, . . . , Xr+t1+t2 , S1, S2, . . . , Sr+t1+t2) ≤ 1.

Now, take any (≤ m)-functions φ1, . . . , φt+r1+r2 to [N ] with images S1, S2, . . . ,

St+r1+r2 , and let xi ∈ T1 ∪ T2 be the point such that the set Xi corresponds to

α(xi). Write yi for the vector (yi)j = φj(xi), j = 1, 2, . . . , t+ r1 + r2. Thus,

y1, y2, . . . , yt are linearly independent and the rank of y1, y2, . . . , yt+r1+r2 is at

least t + r1 + r2 − 1. Since |T1|≤ d + 1, we can apply Proposition 6.10 to T1,

map α and functions f1, . . . , ft+r1 . Note that since the sets Si are non-empty,

we have fi(0) = 0 for all i. Thus, vectors y1, y2, . . . , yt+r1 have rank at most

t+ r1 − 1. Similarly, the rank of the vectors y1, y2, . . . , yt, yt+r1+1, . . . , yt+r1+r2 is

at most t+ r2 − 1.

To obtain a contradiction, look at

U = span{y1, y2, . . . , yt+r1},

V = span{y1, y2, . . . , yt, yt+r1+1, yt+r1+2, . . . , yt+r1+r2},

W = span{y1, y2, . . . , yt+r1+r2}, and

Z = span{y1, y2, . . . , yt}.

Thus, dimZ = t, dimU ≤ t+ r1−1, dimV ≤ t+ r2−1, dimW ≥ t+ r1+ r2−1,

Z ⊆ U, V ⊆ W and W = U + V . Therefore W/Z = U/Z + V/Z. Finally,

r1 + r2 − 1 ≤ dimW − dimZ = dimW/Z

≤ dimU/Z + dimV/Z ≤ r1 − 1 + r2 − 1 = r1 + r2 − 2,

which is a contradiction.

Theorem 6.21. Suppose that d,m ∈ N satisfy 2m+1 − 1 ≤ d ≤ 3 · 2m − 3. Let

N ≥ 1. Then

α(2N , d) ≤
(
25

N

)1/2m+1

· 2N .
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Proof. Let X = {0, 1}N ⊆ RN . Applying Proposition 6.5, we obtain a function

f ∈ spanFN,d,m, which is a bijection onto its image when restricted to X and

such that if S ⊆ f(X) is affinely dependent then f−1(S) is FN,d,m-incident. Let

Y = f(X). Note that |Y |= 2N , since f is injective on X. We claim that the

set Y has no more than d+1 points on the same hyperplane, but all sufficiently

large subsets of Y have d+ 1 cohyperplanar points.

No more than d + 1 points on a hyperplane. Suppose that we have a cohyper-

planar set S = {s1, s2, . . . , sd+2} ⊆ Y . Pick a maximal affinely independent

subset S ′ ⊆ S. W.l.o.g. S ′ = {s1, . . . , sr}, for some r. As S ′ is a subset of a

hyperplane, we have r ≤ d. Look at S ′
1 = S ′ ∪ {sd+1}. By the choice of S ′, the

set S ′
1 is not affinely independent. By the choice of f , the preimage f−1(S ′

1) is

FN,d,m-incident. Find a subset T1 of f−1(S ′
1) which is minimal FN,d,m-incident,

and arbitrary point p in T1. We also have S ′
2 = S \ {p} affinely dependent, as it

is a subset of a hyperplane of size at d+1. By the choice of f , f−1(S ′
2) is FN,d,m-

incident, and has a minimal FN,d,m-incident subset T2. Note that p ∈ T1 \ T2, so
T1, T2 are distinct, and |T1|, |T2|≤ d+ 1. The part (ii) of Corollary 6.20 applies

to give d+ 2 = |S|≥ |T1 ∪ T2|≥ 3 · 2m > d+ 2, which is a contradiction.

Dense subsets are not in general position. Let T ⊆ Y be a set of size at

least
(
25
N

)1/2m+1

2N . Then, by Theorem 6.14, f−1(T ) contains an (m + 1)-

dimensional combinatorial subspace. Applying Lemma 6.7, we have that the

points of T = f(f−1(T )) are affinely dependent. Adding any d+1−2m+1 points

to the set T proves the claim.

6.7 Conclusion

Even though there are now some non-trivial lower bounds on α(n, d) ([11]),

the gap between the lower and the upper bounds is still very large. Of course,

the main question still is to determine the α(n, d). Regarding the current lower

bounds on α(n, 2), both in [17] and in [11], we note that their proofs are based

on some relatively general probabilistic estimates of the independence number

of hypergraphs. However, these approaches used very little of the structure of

the given sets of points. In fact, possible algebraic properties of such sets have

not been exploited. For example, if X is a set of points with no more than 3 on
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a line, but with no dense set in general position, we can expect that plenty of

pairs of points in X have a unique third point in X on the line spanned by the

pair. This gives rise to an algebraic operation: given two points x1, x2 of X, set

x1 ∗ x2 to be the third point of X on their line, if such a point exists. Of course,

there is an issue of how to define x1 ∗ x2 for all pairs, but at least for plenty of

pairs it can be defined. Hopefully, if X is a set for which the value α(|X|, 2) is
attained, we could deduce some properties of the operation ∗.

Returning to the estimates for α(n, d), the current situation with the upper

bounds is that we have infinitely many d, for which α(n, d)/n = O(1/logβdn)

for some βd > 0, while for infinitely many other d, the bounds for α(n, d)/n

currently come from the general density Hales–Jewett theorem, and are roughly

comparable to the inverse of the Ackermann function. It is most certainly far

from truth that α(n, d)/n is close to either of these estimates for any d. However,

it would already be interesting to understand the relationship between the values

of α(n, d) for consecutive dimensions d.

Question 6.22. What is the relationship between α(n, d) and α(n, d+ 1)?

Finally, one of the key tools in this chapter were the algebraic lemmas 6.11

and 6.16. It could be of interest to study further how the quantities like n(X1,

X2, . . . , Xr; S1, S2, . . . , Sr) depend on the structure of the sequences X1, . . . , Xr

and S1, . . . , Sr.
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7 Small Sets with Large Difference Sets

7.1 Introduction

The problem of comparing different expressions involving the same subset A

of an abelian group G (e.g. A + A and A − A) is one of the central topics in

additive combinatorics. For example, one of the starting points in the study of

this field is the Plünnecke-Ruzsa inequality that bounds |kA − lA| in terms of

|A| and |A+ A|.

Theorem 7.1 (Plünnecke-Ruzsa inequality [43], [47]). Let A be a subset of an

abelian group. Then, for any k, l ≥ 1 we have

|kA− lA||A|k+l−1≤ |A+ A|k+l.

To illustrate the difficulties in determining the right bounds for such inequal-

ities, we note that even for the comparison of |A + A| and |A − A| the right

exponents are not known. In fact, the best known lower bounds for |A + A| in
terms of |A− A| have not changed for more than 40 years.

Theorem 7.2 (Freiman, Pigaev [16], Ruzsa [49]). Let A be a subset of an abelian

group. Then |A− A|3/4≤ |A+ A|.

In the opposite direction, the best known lower bound is given by the follow-

ing result.

Theorem 7.3 (Hennecart, Robert, Yudin [28]). There exist arbitrarily large sets

A ⊂ Z such that |A+A|≤ |A−A|α+o(1), where α: = log(2)/log(1+
√
2) ≈ 0.7864.

In 1973, Haight [26] found for each k and ϵ > 0, an integer q and a set

A ⊂ Zq such that A−A = Zq and |kA|≤ ϵq. Recently, Ruzsa [48] gave a similar

construction, and observed that Haight’s work even gives a constant αk > 0 for
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each k with the property that there are arbitrarily large q with sets A ⊂ Zq such

that A−A = Zq and |kA|≤ q1−αk . The ideas in both constructions are relatively

similar, but Ruzsa’s argument is considerably more concise.

In [41], Nathanson applied Ruzsa’s method to construct sets A ⊂ R with A−
A = R, but kA small, for rings R that are more general than Zq. In the same pa-

per, he posed the following question. Given a polynomial F (x1, x2, . . . , xn) with

coefficients in Z, and a set A ⊂ ZN , write F (A) = {F (a1, a2, . . . , an): a1, . . . , an ∈
A}. His question can be stated as: given two polynomials F,G over Z and ϵ > 0,

does there exist arbitrarily large N and a set A ⊂ ZN such that F (A) = ZN ,

but |G(A)|< ϵN?1

Let us now state the main result of this chapter, which answers the first

interesting cases of Nathanson’s question. Once again we recall the notation

A2 + kA = {a1a2 + b1 + b2 + · · ·+ bk : a1, a2, b1, . . . , bk ∈ A},

and more generally,

lA2+kA = {a1a2+· · ·+a2l−1a2l+b1+b2+· · ·+bk : a1, a2, . . . , a2l, b1, . . . , bk ∈ A}.

Theorem 7.4. Given k ∈ N0 and any ϵ > 0, there is a natural number q and a

set A ⊂ Zq such that

A− A = Zq, but |A2 + kA|≤ ϵq.

In fact we prove rather more.

Theorem 7.5. For l ∈ {1, 2, 3}, any k ∈ N0 and any ϵ > 0, there is a natural

number q and a set A ⊂ Zq such that

A− A = Zq, but |lA2 + kA|< ϵq.

Moreover, we can take q to be a product of distinct primes, and we can take the

smallest prime dividing q to be arbitrarily large.

1Actually, Nathanson poses this question for more general rings R, but for R = Z, the
formulation we give here is a natural one.
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We shall discuss each of the cases l = 1, 2, 3 separately. Note also an in-

teresting phenomenon in the opposite direction. Namely, if we are not allowed

freedom in the choice of the modulus, a statement like the theorem above can-

not hold. The reason is that, by a result of Glibichuk and Rudnev (Lemma 1

in [19]) whenever A ⊂ Fp for a prime p, is a set of size at least |A|> √
p, then

10A2 = Fp (and A−A = Fp certainly implies |A|> √
p). Hence, unlike the linear

case, already for quadratic expressions we have strong obstructions.

In fact, this problem is comparable in spirit to the sum-product phenomenon,

which can be stated as the following notable theorem.

Theorem 7.6 (Bourgain, Katz, Tao [10], Sum-product estimate.). Let δ > 0 be

given. Then there is ϵ > 0 such that whenever A ⊂ Zq for a prime q satisfies

qδ < |A|< q1−δ,

then one has

max{|A2|, |2A|} ≥ |A|1+ϵ.

Remarkably, this was further generalized to arbitrary modulus q.

Theorem 7.7 (Bourgain [9], Sum-product estimate for composite moduli).

Given q, q′ such that q′|q, write πq′ for the natural projection from Zq → Zq′.

Let δ > 0 be given. We then have ϵ, η > 0 such that the following holds.

Whenever A ⊂ Zq satisfies

|A|≤ q1−δ

and,

|πq′(A)|≥ q′
δ
for all q′|q, with q′ ≥ qη,

then

max{|A2|, |2A|} ≥ |A|1+ϵ.

Hence, the sum-product phenomenon still holds even in general residue rings

of integers. Given the similarity with our problem, it could be that the result

of Glibichuk and Rudnev stated above holds in the more general setting as well.

(Note that if A−A = Zq, then A satisfies the technical condition in Theorem 7.7.)

Conjecture 7.8. There is l such that whenever A ⊂ Zq and A− A = Zq, then

we have lA2 + lA = Zq.
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7.2 Overview of the Construction

We begin the work in this chapter by reviewing Ruzsa’s construction and

generalizing its main ideas slightly to the context of polynomial expressions in

A. As it turns out, to be able to construct a set A such that A − A = Zq, but

|lA2+kA|= o(q), it will suffice to consider expressions which are sums of terms of

the form αi(xi)+cxi, (αi(xi)+cxi)(αi(xi)+c
′xi) and (αi(xi)+cxi)(αj(xj)+c

′xj),

with c, c′ ∈ {0, 1} and then to choose the maps so that the number of values

attained by each expression is small. For example, one of the expressions that we

have to consider already for the case l = 1 is α1(x1)α2(x2)+α1(x1)+x1+α(x3).

This discussion takes place in Section 7.3 and the rest of the chapter is devoted

to constructions of maps for various expressions.

In Section 7.4, we construct sets A such that A − A = Zq but A2 + kA is

small. In this construction, we come to a basic version of one of the main ideas,

which we call the identification of coordinates. Very roughly, if q is a product of

distinct prime p1p2 . . . pn, using approximate homomorphisms between Zpi and

Zpj , we can essentially treat Zq as a vector space of dimension n. Then, although

we might not ensure that each coordinate attains few values, we can ensure that

their sum attains few values.

In Section 7.5, we construct sets A such that A − A = Zq but 2A2 + kA

is small. There, we improve our results for the expression that involve a sin-

gle variable using a variant of Weyl’s equidistribution theorem for polynomials.

Using this result, the identification of coordinates is developed further and we

conclude this section with the strongest form of the identification of coordinates.

The final part of the construction, finding sets A with 3A2+kA small, is car-

ried out in Section 7.6. There, we also touch upon some limitations of our usual

approach and therefore develop different ideas to treat some of the remaining

expressions. Namely, for certain choices of coefficients, in the expression

(α(x) + c1x)(β(y) + c2y) + (α(x) + c3x)(β(y) + c4y) + (α(x) + c5x)(γ(z) + c6z)

the identification of coordinates cannot work. For this expression, we give a

different, probabilistic argument, which is a form of dependent random choice.

The final section is devoted to some open problems and questions that natu-
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rally arise, including the motivation for some of these. We have tried to organize

our proof so that the methods used naturally develop from the case A2 + kA

to the case 3A2 + kA, highlighting the new difficulties that arise and why the

earlier arguments are not powerful enough for the later expressions.

7.3 Overview of Ruzsa's argument and Initial Steps

We now briefly discuss Ruzsa’s construction of sets A ⊂ Zq such that A−A =

Zq, but |kA|= o(q). His ideas will be important for the later constructions given

in this chapter.

Let us first analyse the requirement that A−A = Zq. Given any x ∈ Zq, we

thus have y ∈ A such that y+ x ∈ A. If we write φ(x) for such a y, this yields a

map φ : Zq → Zq with the property that all φ(x) and φ(x) + x are contained in

A. Removing all other elements from A does not change the equality A−A = Zq,

and it can only make kA smaller, so Ruzsa’s starting point is to consider a set

A of the form

{φ(x) : x ∈ Zq} ∪ {φ(x) + x : x ∈ Zq},

where φ is map from Zq to itself. We shall do the same here as well, and

throughout the chapter we will devote ourselves to finding suitable modulus q

and maps on Zq.

Thus, we have to understand how to find a suitable q and a map φ which

then give rise to the desired set A. Let us now examine the elements of kA.

These are sums a1+ a2+ · · ·+ ak, where ai ∈ A. But each element of A is either

φ(x) or φ(x) + x for some x ∈ Zq. Hence, elements of kA are of the form∑
i∈I

φ(xi) +
∑
i/∈I

(φ(xi) + xi)

for a subset I ⊂ [k] and x1, x2, . . . , xk. Immediately we see that the number

of different expressions here is bounded in terms of k (in fact, it equals 2k).

Further, we consider which of the xi are equal, grouping the corresponding terms

φ(xi) and φ(xi) + xi together, and renaming the variables along the path to

y1, y2, . . . , ys. Hence, every element of kA is of the form

(7.1)
s∑

i =1

(aiφ(yi) + biyi),
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where s ≤ k, k ≥ ai ≥ bi ≥ 0 and all y1, . . . , ys are different. Once again,

treating yi as formal variables, the number of expressions we wrote is bounded

in terms of k. The plan now is to make sure that each such expression attains a

small number of values, so that in total only at most ϵq values attained.

Ruzsa’s main idea in the construction is the separation of functions, which

we now discuss. In all these expressions we have the same map φ occurring.

However, we can turn the problem of constructing a single function φ that works

for all expressions into a much easier problem of constructing a function for each

expression separately. We first list all the expressions of the form (7.1), sorted

in the ascending order by the number of variables appearing. Thus, our list

start from expressions of the form aφ(y) + b. Next, we split q as a product

of coprime numbers q = q1q2 . . . qr, with one qi for each expression so that by

Chinese Remainder Theorem we have Zq = Zq1 ⊕ Zq2 ⊕ . . .⊕ Zqr .

We promise that however we choose an expression and values of yi, we get

at least one zero coordinate (which need not depend on the expression) and we

call this ZCP (Zero Coordinate Promise). If ith expression has only one variable

appearing, thus it is of the form aφ(y)+by, we can easily ensure ZCP by setting

the ith component of the function as φi(y) = −ba−1yi. Now, take any expression

s∑
i=1

(aiφ(yi) + biyi),

and assume that for every such expression with fewer than s variables ZCP

holds. Let q′ be the product of qi for the expressions with fewer than s variables.

Note that, if we are given y1, y2, . . . , ys, and if any two among them have the

same value in Zq′ , by induction hypothesis, ZCP already holds. Hence, we

may assume not only that y1, y2, . . . , ys are different, but that they are different

modulo q′. Write y′i for the residue of yi mod q′. Then, looking at jth coordinate,

we have to define φj such that

s∑
i=1

(aiφj(y
′
i, (yi)j) + bi(yi)j)

equals zero for all choices of y1, . . . , ys such that y′i are different. But, we can

rewriting φj(y
′
i, (yi)j) as φj,y′i

((yi)j) already tells us that we are actually looking

for a new function for each variable! Hence, our goal is to find s functions
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φj,y′1
, . . . φj,y′s such that the expression is once again zero. But linear maps once

again work.

We start our own work by slightly generalizing Ruzsa’s idea to the polynomial

setting. In what follows, by an i-degree term we think of a product of i terms of

the from αj(xj) or (αj(xj)+xj), the only rule being that indices of the map and

the the variable to which it is applied (and the variable which is possibly added)

coincide. For example, (α1(x1)+x1)α2(x2)
2 and α1(x1)(α2(x2)+x2)(α3(x3)+x3)

are both 3-degree terms, but α1(x2)α2(x3)α3(x1) is not, since the indices are not

valid.

Proposition 7.9. Let k be given, and let a1, a2, . . . , ak ∈ N. Suppose that for

every ϵ > 0 and every formal expression E in functions αi and variables xi of

the form

sum of ak of k-degree terms+ sum of ak−1 of (k − 1)-degree terms+ . . .

+ sum of a1 of 1-degree terms,

we can find a modulus q, which is a product of arbitrarily large distinct primes,

and functions θi : Zq → Zq, so that the E takes at most ϵq values in Zq, when

the functions θi are substituted in E. Then, for every ϵ > 0, there is a modulus

Q, product of arbitrarily large distinct primes, and a set A ⊂ ZQ such that

A− A = ZQ and

|akAk + ak−1A
k−1 + · · ·+ a1A|≤ ϵQ.

Proof. We proceed as in the Ruzsa’s construction (except that we do not insist

on only having zero value in a coordinate, as a small number of values suffices).

As before, we sort the expressions by the number of variables appearing, and

process them in groups of those having the same number of a variables. We now

turn to details.

Let N = a1 + a2 + · · · + ak. Let E1, E2, . . . , Er be all the expressions in

variables y1, y2, . . . , yN of the following form. Each expression is a sum of ak

terms, each being a product of k short terms φ(yi) or φ(yi)+yi, followed by ak−1

terms which are products of k − 1 short terms, etc. with a final contribution of

a1 terms, each being φ(yi) or φ(yi) + yi. As in the discussion before, these are

all expressions that naturally arise from akA
k + · · · + a1A, when A is defined
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as {φ(x):x ∈ ZQ} ∪ {φ(x) + x:x ∈ ZQ}. Comparing these expressions with

the expressions in the assumptions of this proposition, we have that here only a

single formal function appears, while in the other expressions we have a separate

function for each variable. Let m0 = 0,m1,m2, . . . ,mN = r be indices such that

ifmi < j ≤ mi+1, then the number of different variables among (yt)
N
t=1 appearing

in the expression Ej is exactly i+ 1.

Fix an increasing sequence 0 < ϵ1 < ϵ2 < · · · < ϵN = ϵ. We inductively

construct moduli Q1, Q2, . . . , QN and functions φi : Qi → Qi such that for every

i ≤ N we have that union of all images of expressions E1, E2, . . . , Emi
(that is,

all expressions having at most i variables) takes at most ϵiQi values (when φi is

substituted in the expressions).

Base case: i = 1. By the assumption, for every expression Ei that has only

one variable, we have moduli qi with arbitrarily large distinct prime factors,

and a map θ
(1)
i , such that Ei takes only at most ϵ1qi/m1 values. Thus, w.l.o.g.

q1, q2, . . . , qm1 are all coprime, with distinct arbitrarily large prime factors. We

set Q1 = q1q2 . . . qm1 and identify ZQ1 with Zq1 ⊕Zq2 ⊕ . . .⊕Zqm1
, and we define

φ1 coordinate-wise as φ1,i(x) := θ
(1)
i (xi), where xi is i-th coordinate of x. Note

that union of all values attained by these m1 expressions with this definition of

Q1 and φ1 has size bounded by

m1∑
i=1

|ImEi|≤
m1∑
i=1

ϵ1qi
m1

Q1

qi
= ϵ1Q1,

as desired. (Here we write ImEi for the resulting image of the expression Ei,

and we have a trivial bound for it; the expression may only take at most ϵ1qi/m1

values on the ith coordinate.)

Inductive step. Suppose now that we have found φs : ZQs → ZQs such that

in total all expressions with at most s variables have a small image Vs, i.e.

only at most ϵsQs values are attained. We shall construct Qs+1 as a product

QsRms+1Rms+2 . . . Rms+1 , where Ri is an auxiliary modulus for the expression

Ei, with the property that either Ei takes one of the small number of values on

ZQs or a value in another small set in ZRi
. Here we use Ruzsa’s separation of

functions idea.

Fix an expression Ei with exactly s+ 1 variables. If we take values of these
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variables restricted to ZQs , and it happens so that at least two such values

coincide, then using the map φs the value of the expression Ei (also restricted

to ZQs) is actually a value of one of the expressions we already considered,

with at most s variables, so it lies in the small set Vs. Hence, we only need

to consider the choices of y1, y2, . . . , ys+1 (w.l.o.g. these are the variables that

appear) which differ in ZQs . We split the expression Ei further into cases on yi

mod Qs, thus into further L ≤ Qs+1
s cases. Pick an arbitrary choice C of s + 1

distinct values in Qs. Look back at Ei and change every appearance of φ(yt)

by αt(yt). By assumptions, we have a choice of an integer rC with arbitrarily

large distinct prime factors and maps θ
(C)
t such that the modified Ei takes only

at most (ϵs+1− ϵs)rC/((ms+1−ms)Q
s+1
s ) values in ZrC . Finally, define Ri as the

product of all these rC , and (φs+1)i(x) as follows: for every C, take (φs+1)i(x)

at the coordinate corresponding to rC to be zero if x modulo ZQs is not in C,

otherwise, if it is the j-th residue, set (φs+1)i(x) := θ
(C)
j (x′), where x′ is the

coordinate of x corresponding to rC . It remains to check the size of images.

For every expression and every choice of values of y1, y2, . . . , yN , we either end

up in As×ZRms+1 ×ZRms+2 × . . .×ZRms+1
, which has size at most ϵsQs+1, or one

of the coordinates is in a fixed subset of ZRt of size at most (ϵs+1−ϵs)Rt/(ms+1−
ms). Summing everything together, the image has at most ϵs+1Qs+1 values as

desired.

The rest of the chapter is therefore devoted to finding moduli q and maps

αi:Zq → Zq under which the expressions like (α1(x1)+x1)(α2(x2)+x2)+α3(x3)
2

do not take too many values. Along the way, we also discuss related problems

and questions.

Notation. Throughout the chapter, Greek letters α, β and γ will be used for the

maps appearing in the expressions. The following functions will be frequently

used in our construction. For a prime p, we use the standard projection ho-

momorphism πp:Z → Zp, which sends integer x to x + pZ. Next, we define

ιp:Zp → Z by sending x ∈ Zp to the integer ιp(x) ∈ {0, 1, . . . , p − 1} ⊂ Z
such that πp ◦ ιp(x) = x. For two primes p and q, we also define the map

modp,q:Zp → Zq given by modp,q = πq ◦ ιp. Finally, in any abelian group Z,

and functions f, g:S → G, from a set S to Z, we write f
M
= g to mean that
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{f(s) − g(s): s ∈ S} is a set of size at most M . In particular, f
O(1)
= g means

that {f(s)− g(s): s ∈ S} has a bounded size as S grows.

7.4 Sets A with small A2 + kA

The main result of this section is the case l = 1 of Theorem 7.5.

Theorem 7.10. For any k ∈ N0 and any ϵ > 0, there is a natural number q,

which is a product of distinct, arbitrarily large primes, and a set A ⊂ Zq such

that A− A = Zq, while |A2 + kA|< ϵq.

Proof. We start from Proposition 7.9. To be able to construct A ⊂ Zq with full

difference set, but small A2 + kA, we need to handle the expressions that are

sums of the quadratic part which is a product of two terms of the form αi(xi)+xi

or αi(xi), and a linear part which is itself a sum of k summands, each being of

the form αi(xi) + xi or αi(xi). Note that for the terms in the linear part whose

variables do not appear in the quadratic part, we can define the corresponding

maps αi to be affine so that the variables involved cancel out. Therefore, w.l.o.g.

we only consider expressions whose all variables already appear in the quadratic

part. Note also that for the quadratic part we have two cases: either only

one variable, w.l.o.g. x1, appears, or exactly two variables, w.l.o.g. x1 and x2,

appear. We treat these cases separately.

Case 1: only one variable in the quadratic part. Thus, our goal now is to

show that if we are given a quadratic expression featuring only one variable, we

can find a modulus and function, so that the expression takes a small number of

values. In fact, here we do more and prove the claim for expressions of arbitrary

degree.

Lemma 7.11. Let d ∈ N be given, and let p > d be a prime. Then, given any

maps c0, c1, . . . , cd:Zp → Zp and any set F ⊂ Zp of size less than p/d, we can

find another map α:Zp → Zp such that the expression

cd(x)α(x)
d + . . . c1(x)α(x) + c0(x)

does not take a value in F for any x that has at least one of c1(x), c2(x), . . . ,

cd(x) non-zero.
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Proof. Suppose that for some x, for every choice of v = α(x) we have cd(x)v
d +

. . . c1(x)v + c0(x) ∈ F . By the pigeonhole principle, some value f ∈ F is hit at

least d+ 1 times. Thus, the polynomial (in v)

cd(x)v
d + . . . c1(x)v + c0(x)− f

has at least d+1 zeros, making it a zero polynomial. Hence c1(x), c2(x), . . . , cd(x)

are simultaneously zero, proving the lemma.

Corollary 7.12. Let E be an arbitrary Z-linear combination of terms of the

form α(x)ixj, where at least one of such terms with i > 0 appears. Given any

ϵ > 0, we can find a modulus q, which is a product of distinct arbitrarily large

primes, and a map α:Zq → Zq such that under α the expression E takes at most

ϵq values in Zq.

Proof. Rewrite E by grouping together a Z-linear combination of xj that appear

next to each α(x)i. Thus, we can write E as α(x)dfd(x)+ · · ·+α(x)f1(x)+f0(x),
where each fi(x) is a polynomial in x over Z, and at least one of f1, f2, . . . , fd is

not a zero polynomial. LetD = maxdeg fi. Pick distinct arbitrarily large primes

p1, p2, . . . , pt, all w.l.o.g. larger than 2d(D+1) and absolute values of coefficients

of f1, f2, . . . , fd (so that non-zero polynomials do not become zero modulo pi).

By Lemma 7.11, we may find a map αi:Zpi → Zpi for each i such that the image

of E has size at most (1−1/d)pi+1, when the variable x ranges over values such

that polynomials f1, f2, . . . , fd are not simultaneously zero. But there are at most

D values of x such that f1(x) = · · · = fd(x) = 0, so we conclude that modulo

each pi, the expression E may take at most (1− 1/d)pi +D + 1 ≤ (1− 1/2d)pi

values. Finally, set q = p1p2 . . . pt and take α:Zq → Zq to be α = (α1, α2, . . . , αt),

where we as usual identify Zq with Zp1 ⊕ Zp2 ⊕ . . .⊕ Zpt . Hence, modulo q, the

expression takes at most (1 − 1/2d)tq values. Taking t large enough so that

(1− 1/2d)t < ϵ proves the corollary.

The case 1 now follows by applying Corollary 7.12.

Case 2: the quadratic part has two variables. The quadratic part must

look like a product of two terms, each being either αi(xi) + xi or αi(xi). By

suitably renaming the variables, and adding xi to αi(xi) if necessary, w.l.o.g. we
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only need to consider the case when the quadratic part is α1(x1)α2(x2), and the

whole expression is

α1(x1)α2(x2) + L1(x1) + L2(x2)

where each Li(xi) is a Z-linear combination of αi(xi) and xi. Note also that if

Li(xi) is nonzero, then αi(xi) appears with a nonzero coefficient.

We have come to an important point, and one of the key ideas, which we

now explain. We have to construct q and maps α1, α2:Zq → Zq such that

α1(x1)α2(x2)+L1(x1)+L2(x2) takes o(q) values. Suppose for a moment that the

linear terms Li are both zero. Then, we have an easy way to make α1(x1)α2(x2)

constant, by setting one of the αi to be zero. However, such an approach cannot

work in the case when L1, L2 are not zero, as it would force one of the Li to

be an affine map, which is surjective. As a way to overcome this, we can use

both α1 = 0 and α2 = 0 to get additional freedom. Thus, we set q = q1q2,

where q1, q2 are coprime products of distinct primes, identify Zq with Zq1 ⊕ Zq2 ,

and set α1 to be zero on the first coordinate, and α2 to be zero on the second

coordinate. Hence if L1(x1) = λ1α1(x1) + µ1x1 and L2(x2) = λ2α2(x2) + µ2x2,

then the expression becomes

(7.2)(µ1(x1)1 + λ2(α2)1(x2) + µ2(x2)1, λ1(α1)2(x1) + µ1(x1)2 + µ2(x2)2) .

We now want to find (α1)2 and (α2)1 so that the expression (7.2) does not take

too many values in Zq1 ⊕Zq2 . Suppose for a moment that instead of coprime q1

and q2 we actually had q1 = q2. Then, we could have simply taken

(α1)2(x1) := −λ−1
1 µ1((x1)1 + (x1)2)

and

(α2)1(x2) := −λ−1
2 µ2((x2)1 + (x2)2),

which ensures that every value taken by the expression is of the form (v,−v)
and hence it is in small subset {(x, y) : x+ y = 0} of Zq1 ⊕Zq1 . It turns out that

we can use the same approach even if q1 ̸= q2. We shall refer to this idea as the

identification of coordinates, which will appear at other places in this chapter

as well. The following proposition and its proof formalize this discussion. We

slightly change the notation to make the reading easier.
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Proposition 7.13. (Basic identification of coordinates.) Let λ0, λ1, λ2, µ1, µ2 ∈
Z be given and let p ≤ q be primes greater than |λ1|, |λ2|. Suppose that if λ1 = 0

then µ1 = 0 and if λ2 = 0 then µ2 = 0. Then we have α, β:Zp ⊕ Zq → Zp ⊕ Zq

such that

f : (x, y) 7→ λ0α(x)β(y) + λ1α(x) + µ1x+ λ2β(y) + µ2y

takes at most O(q) values, when x, y range over all pairs of values in Zp ⊕ Zq.

Recall the definition of map ιp as the natural embedding of Zp into Z, the
natural projection πp:Z → Zp, and finally, the composition modp,q:Zp → Zq,

given by modp,q = πq ◦ ιp. Before proceeding with the proof, it is useful to note

some easy properties of the maps ιp and modp,q.

Lemma 7.14. Let p, p′, p1, p2, p3 be primes. Then

(1) Given z ∈ Z, we have p|ιp(πp(z))− z. Also, ιp(πp(z)) ≤ z, when z ≥ 0.

(2) Given x, y ∈ Zp, we have ιp(x) + ιp(y)− ιp(x+ y) ∈ {0, p}.

(3) Given x, y ∈ Zp, we have

modp,p′(x) + modp,p′(y)−modp,p′(x+ y) ∈ {0, πp′(p)} ⊂ Zp′ .

(4) Provided that p3 < (t+ 1)p2, we have

modp2,p1 ◦modp3,p2(x)−modp3,p1(x)

∈ {−tπp1(p2),−(t− 1)πp1(p2), . . . , 0} ⊂ Zp1 .

Proof. (1) Applying πp, we have πp(ιp(πp(z))− z) = πp ◦ ιp(πp(z))− πp(z) = 0,

thus p|ιp(πp(z))− z. If z ≥ 0, then ιp(πp(z))− z ≤ p− 1, so the claim follows.

(2) Let x′ = ιp(x), y
′ = ιp(y) ∈ Z. Note that πp(x

′ + y′) = x + y and x′ + y′ ∈
{0, 1, . . . , 2p − 2}. From definition, πp(ιp(x + y)) = x + y and ιp(x + y) ∈
{0, 1, . . . , p− 1}. Hence, if we set v = ιp(x) + ιp(y)− ιp(x+ y), we have p|v and

v ∈ {−(p− 1),−(p− 2), . . . , 2p− 2}, so v ∈ {0, p}.

(3) The statement follows by applying πp′ to ιp(x) + ιp(y)− ιp(x + y) ∈ {0, p},
noting that πp′ is an additive homomorphism and recalling that modp,p′ = πp′◦ιp.
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(4) From the definition, we have

modp2,p1 ◦modp3,p2(x)−modp3,p1(x)

=πp1(ιp2(πp2(ιp3(x))))− πp1(ιp3(x))

= πp1(ιp2(πp2(ιp3(x)))− ιp3(x)).

Write v = ιp2(πp2(ιp3(x)))− ιp3(x). Using the previous work, we know that p2|v,
v ≥ −(p3 − 1) and v ≤ 0, since ιp3(x) ≥ 0. So v ∈ {−tp2,−(t− 1)p2, . . . , 0}, and
the claim follows after applying πp1 .

Proof of Proposition 7.13. Observe immediately that if λ0 = 0, we can ensure

that λ1α(x) + µ1x = 0 and λ2β(y) + µ2y = 0, proving the claim. Therefore, we

may assume λ0 ̸= 0, w.l.o.g. λ0 = 1. If µ1 = µ2 = 0 holds, then the function

becomes f : (x, y) 7→ α(x)β(y) + λ1α(x) + λ2β(y), which can be made zero, by

choosing zero maps for α and β. If exactly one of µ1, µ2 vanishes, µ1 = 0 say,

then we can pick β to ensure that λ2β(y) + µ2y = 0, and set α(x) = 0 to get

f = 0. From now on, assume that λ1, λ2, µ1, µ2 ̸= 0.

Set α1(x) = 0 and β2(y) = 0. This makes α(x)β(y) = 0 for all choices of x, y.

It remains to pick α2(x), β1(y) so that (µ1x1 + λ2β1(y) + µ2y1, λ1α2(x) + µ1x2 +

µ2y2) takes a small number of values.

Set β1(y) = −λ−1
2 (µ1modq,p(y2) + µ2y1) and α2(x) = −λ−1

1 (µ2modp,q(x1) +

µ1x2). Hence f becomes

f(x, y) = (µ1(x1 −modq,p(y2)), µ2(y2 −modp,q(x1))).

Let Φ:Zp ⊕ Zq → Z be given by Φ(u, v) = ιp(µ
−1
1 u) + ιq(µ

−1
2 v), noting that

µ1, µ2 ̸= 0. Then,

Φ(f(x, y)) = ιp(x1 −modq,p(y2)) + ιq(y2 −modp,q(x1)).

Fixing the set S = {−p, 0, p}+ {−q, 0, q}, from Lemma 7.14 we have

ιp(x1 −modq,p(y2)) + ιq(y2 −modp,q(x1))

∈ ιp(x1)− ιp(modq,p(y2)) + ιq(y2)− ιq(modp,q(x1)) + S

or, under our notation introduced earlier,

Φ(f(x, y))
O(1)
= ιp(x1)− ιp(modq,p(y2)) + ιq(y2)− ιq(modp,q(x1))

=ιp(x1)− ιq(πq(ιp(x1))) + ιq(y2)− ιp(πp(ιq(y2)))

186



Lemma 7.14 also implies that ιp(πp(v))
O( q

p
)

= v and ιq(πq(v))
O(1)
= v, when |v|=

O(q), from which we conclude that

Φ(f(x, y))
O( q

p
)

= ιp(x1)− ιp(x1) + ιq(y2)− ιq(y2) = 0,

so the image of the function f is a subset of a preimage of Φ of a set of size O(1).

Fibres of Φ are of size at most p, so the claim follows.

Applying Proposition 7.13 finishes the proof of Theorem 7.10.

7.4.1 Using affine maps in the case of two variables

In this subsection, we further discuss some quadratic expressions involving

two variables. A natural map we can try is an affine map x 7→ ax + b, for

constants a, b. However, if we look at expression α(x)β(y)+α(x)+x+β(y)+ y,

which was among the ones necessary to discuss in the proof of Theorem 7.10,

it is easy to see that choosing affine maps from Zq to Zq for α and β yields full

image, for every q. In the following discussion, we ask ourselves the question

when we can use such maps to get a small image of the function defined by the

expression.

As we shall see later, in the construction of A with small 2A2 + kA, one of

the expressions we shall consider has quadratic part of the form α1(x1)α2(x2) +

(α1(x1) + c1x1)(α2(x2) + c2x2), with c1, c2 ̸= 0. It turns out that in this case

the affine maps can be used as desired maps. We discuss these maps before the

construction of A with small 2A2 + kA, so that we can focus better on the new

ideas needed for that case.

Lemma 7.15. (Affine maps solution.) Let ν1, ν2 ̸= 0 and λ1, λ2, µ1, µ2 be inte-

gers. Then, for any prime p greater than absolute values of all the given integers,

we can find affine maps α, β:Zp → Zp such that

α(x)β(y) + (α(x) + ν1x)(β(y) + ν2y) + λ1α(x) + µ1x+ λ2β(y) + µ2y

is constant.
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Proof. Let α(x) := ax + b and β(y) := cy + d, with a, b, c, d to be determined.

With this choice of maps, the expression above becomes

(ac+ (a+ ν1)(c+ ν2))xy + (2ad+ dν1 + λ1a+ µ1)x

+(2bc+ bν2 + λ2c+ µ2)y + (2bd+ λ1b+ λ2d).

Hence, we need to make sure that

2ac+ ν2a+ ν1c+ ν1ν2 = 0,

2ad+ ν1d+ λ1a+ µ1 = 0,

2bc+ ν2b+ λ2c+ µ2 = 0.

This is equivalent to

b = −(λ2c+ µ2)/(2c+ ν2),

a = −(ν1c+ ν1ν2)/(2c+ ν2),

d = (µ1(2c+ ν2)− λ1ν1(c+ ν2)) /(ν1ν2) .

Hence, we can pick a, b, c, d so that affine maps make our expression equal to

constant if and only if ν1, ν2 are non-zero.

7.5 Sets A with small 2A2 + kA

This section is devoted to the proof of the case l = 2 of Theorem 7.5.

Theorem 7.16. For any k ∈ N0 and any ϵ > 0, there is a natural number q,

which is a product of distinct, arbitrarily large primes, and a set A ⊂ Zq such

that A− A = Zq, while |2A2 + kA|< ϵq.

Proof. The approach here is similar to the one in the proof of Theorem 7.10,

however the expressions that arise in this case are more complicated and require

new ideas. Once again, the proof is based on Proposition 7.9. As before, we split

all expressions in their quadratic and linear parts, and we may assume that if a

variable appears at all in an expression, it must appear in the quadratic part.

Next, we consider all the possible cases for the quadratic part, and explain how to

make the image of the expression small in each case separately. They are listed

sorted by the support size and then by structure. We also have the freedom
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of renaming the variables. Again, we change the notation slightly; instead of

x1, x2, x3, x4 and α1, α2, α3, α4 we use x, y, z, w and α, β, γ, δ respectively. The

possible cases, w.l.o.g. are (all the ci are in {0, 1})

1. Support of size 1.

(a) The non-linear part must look like (α(x)+ c1x)(α(x)+ c2x)+ (α(x)+

c3x)(α(x) + c4x).

2. Support of size 2. We have a few possibilities here.

(a) (α(x) + c1x)(α(x) + c2x) + (α(x) + c3x)(β(y) + c4y)

(b) (α(x) + c1x)(β(y) + c2y) + (α(x) + c3x)(β(y) + c4y)

(c) (α(x) + c1x)(α(x) + c2x) + (β(y) + c3y)(β(y) + c4y)

3. Support of size 3. We have a couple of possibilities here.

(a) (α(x) + c1x)(α(x) + c2x) + (β(y) + c3y)(γ(z) + c4z)

(b) (α(x) + c1x)(β(y) + c2y) + (α(x) + c3x)(γ(z) + c4z)

4. Support of size 4.

(a) The non-linear part must look like (α(x)+ c1x)(β(y)+ c2y)+ (γ(z)+

c3z)(δ(w) + c4w).

We discuss each of these case separately. However, we use a different order than

stated above and deal with easier cases first.

Case 1(a). This is immediate from Corollary 7.12.

Case 2(b). If c1 = c3 or c2 = c4, modifying α(x) by adding a suitable multiple

λx to it, and modifying β(y) accordingly, we may assume that the quadratic

expression is exactly 2α(x)β(y), which we have already done in Proposition 7.13

(notice that the condition on coefficients in that proposition is satisfied). Hence,

w.l.o.g. c1 ̸= c3 and c2 ̸= c4. Then, (after a suitable modification of αi by affine

maps to make c1 = c2 = 0, c3, c4 ̸= 0), we can apply Lemma 7.15, to finish the

proof in this case.

Case 2(c). The whole expression in this case is of the form f1(x)+f2(y), where

f1 is a polynomial of degree at most 2 in x and α(x) and f2 is a polynomial of

degree at most 2 in y and β(y). Note that we cannot use our arguments about

single variable expressions here, as we would only get two sets S1, S2 ⊂ Zq of
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size o(q) such that fi always takes values in Si, so we would only know that

the whole expression takes values in S1 + S2 which could easily be the whole

set of residues. Instead, we recall that the polynomials always attain a small

value. This is the content of the next lemma, which is a well-known consequence

of Weyl’s inequality on exponential sums. Similar results appear in [20], we

include a proof for completeness.

Lemma 7.17. Let d be fixed. Then there is an absolute constant Cd such that

the following holds. Let p be a prime, and let ad, ad−1, . . . , a0 ∈ Zp be given,

with ad non-zero. Then the polynomial adx
d + · · · + a1x + a0 attains a value in

{−Cdp
1−2−d

, . . . , Cdp
1−2−d}.

Write ep(t) for the function exp(2πit/p). The proof uses discrete Fourier

transforms of functions f :Zp → C, which we define as f̂ :Zp → C with f̂(r) =∑
x∈Zp

f(x)ep(−rx). We refer readers to [20] for more details.

Proof. Write f(x) for the polynomial adx
d+ · · ·+ a1x+ a0. We begin by stating

(a special case of) Weyl’s inequality.

Theorem 7.18 (Weyl’s inequality, Lemma 2.4 in [54]). For every ϵ > 0, and

d ∈ N, there is a constant Cϵ,d such that for all primes p∣∣∣∣∣∣
∑
x∈Zp

ep(g(x))

∣∣∣∣∣∣ ≤ Cϵ,dp
1+ϵ−21−d

holds for every polynomial g ∈ Zp[X] of degree d.

Write F (x) for the number of times the polynomial f attains the value x.

Hence, by Weyl’s inequality, there is a constant C, independent of p such that

|F̂ (r)|≤ Cp1−2−d
for r ̸= 0, and F̂ (0) = p. Let I be the interval {−k,−k +

1, . . . , k}. Suppose that f attains no value in {−2k,−2k + 1, . . . , 2k}. We have∑
x

F (x)I ∗ I(x) = 0.

Applying Parseval’s formula and noting that Î(r) ∈ R, we get that

0 =
∑
r

F̂ (r)Î(r)2 = F̂ (0)Î(0)2 +
∑
r ̸=0

F̂ (r)Î(r)2 = p(2k + 1)2 +
∑
r ̸=0

F̂ (r)Î(r)2.
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Thus,

p(2k + 1)2 ≤
∑
r ̸=0

|F̂ (r)|Î(r)2 ≤
(
max
r ̸=0

|F̂ (r)|
)∑

s

Î(s)2 ≤ Cp1−2−d

p(2k + 1).

From this we conclude that 2k + 1 ≤ Cp1−2−d
, as desired.

Write N for Cdp
1−2−d

. Now, consider f1(x) as a polynomial in α(x) for

every fixed x. The lemma guarantees that we can define α(x) so that f1(x) ∈
{−N,−N + 1, . . . , N}. Similarly, for every y, we can pick β(y) so that f2(y) ∈
{−N,−N + 1, . . . , N}, hence we always have f1(x) + f2(y) ∈ {−2N,−2N +

1, . . . , 2N}, as desired.

Case 3(a). We shall take q of the form q1q2q3, where q1, q2, q3 are coprime, and

each qi is a product of distinct arbitrarily large primes. As always, we identify

Zq
∼= Zq1 ⊕ Zq2 ⊕ Zq3 , and we aim to use the identification of coordinates idea.

Thus, we set α1(x) := −c1x1, α2(x) := −c2x2, so that (α(x)+c1x)(α(x)+c2x) has
second and third coordinates equal to zero. We also set β1(y) := −c3y1, β3(y) :=
−c3y3 and γ2(z) := −c4z2, γ3(z) := −c4z3. Note that we still have freedom of

choice for α3, β2, γ1. Let the linear part of the expression be d1α(x) + d2x +

d3β(y) + d4y + d5γ(z) + d6z, where the coefficients di have the property that

d2i ̸= 0 implies d2i−1 ̸= 0 (since the linear part comes from N-linear combination

of α(x) and α(x) + x, etc.). The expression becomes(
(−d1c1 + d2)x1 + (−d3c3 + d4)y1 + d5γ1(z) + d6z1,

(−d1c2 + d2)x2 + d3β2(y) + d4y2 + (−c4d5 + d6)z2,

(α3(x) + c1x3)(α3(x) + c2x3)

+ d1α3(x) + d2x3 + (−d3c3 + d4)y3 + (−d5c4 + d6)z3

)
.

We combine the identification of coordinates idea with the fact that polyno-

mials have relatively dense sets of values in the next proposition.

Proposition 7.19 (Strong version of the identification of coordinates). Fix

n, d ∈ N. Then there are constants ϵ, C > 0 such that the following holds.

Let d1, d2, . . . , dn ∈ N all be at most d. Let 2pn > p1 ≥ p2 ≥ . . . ≥ pn be

primes. Write r = p1p2 . . . pn. Next, let fi,j:Zr → Zpj be arbitrary maps for

every 1 ≤ i, j ≤ n. Let for every 1 ≤ i ≤ n, ci ∈ Z×
pi
. Finally, let gi,j:Zr → Zpi
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be also arbitrary functions for every 1 ≤ i ≤ n, 1 ≤ j ≤ di − 1. Then, we can

find maps αi:Zr → Zpi such that the expression(
f1,1(x1) + f2,1(x2) + · · ·+ fn,1(xn) + c1α1(x1)

d1

+ g1,d1−1(x1)α1(x1)
d1−1 + · · ·+ g1,1(x1)α1(x1),

f1,2(x1) + f2,2(x2) + · · ·+ fn,2(xn) + c2α2(x2)
d2

+ g2,d2−1(x2)α2(x2)
d2−1 + · · ·+ g2,1(x2)α2(x2),

...

f1,n(x1) + f2,n(x2) + · · ·+ fn,n(xn) + cnαn(xn)
dn

+ gn,dn−1(xn)αn(xn)
dn−1 + · · ·+ gn,1(xn)αn(xn)

)
takes at most Cp−ϵ

n p1p2 . . . pn values as x1, x2, . . . , xn range over all values in Zr.

Throughout the chapter, we will use the prime number theorem (Theorem

12.2 on the page 304 and equation (12.27) on the page 305 in [29]) without

explicitly mentioning it.

Proof. Write q for pn (in fact any prime close to p1, p2, . . . , pn would work).

The main idea is to pick α1, . . . , αn so that every value (v1, v2, . . . , vn) attained

by the expression satisfies
∑n

i=1 mod pi,q(vi) ∈ S, for a small subset S ⊂ Zq.

Partitioning Zp1 ⊕Zp2 ⊕ . . .⊕Zpn into cosets of {0}× . . .×{0}×Zpn , we see the

set of values of the expression can take only at most |S| values on each coset,

and thus a small number of values in total.

We use Lemma 7.17 in order to define αi. Recall that the lemma gives

C ′, ϵ > 0 such that every non-constant polynomial of degree at most d in Zpi

for any i, takes a value in {0, 1, . . . , C ′q1−ϵ} (modify the constant coefficient if

necessary). For every i, we define αi as follows. We apply the lemma for every

fixed xi ∈ Zp1 ⊕ Zp2 ⊕ . . .⊕ Zpn to the polynomial

cit
di +

di−1∑
j=1

gi,j(xi)t
j +

n∑
j=1

modpj ,pi(fi,j(xi)).

Hence, we can pick t, such that this expression takes value in {0, 1, . . . , C ′q1−ϵ} ⊂
Zpi . We set αi(xi) := t. Therefore, we have defined αi:Zp1⊕Zp2⊕. . .⊕Zpn → Zpi ,
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so that

modpi,q

(
ciαi(xi)

di +

di−1∑
j=1

gi,j(xi)αi(xi)
j +

n∑
j=1

modpj ,pi(fi,j(xi))

)
∈ S ⊂ Zq,

where S = modpi,q({0, 1, . . . , C ′q1−ϵ}) = {0, 1, . . . , C ′q1−ϵ}. To finish the proof,

we apply Lemma 7.14.

Note that we have

n∑
i=1

modpi,q

(
n∑

j=1

fj,i(xj) + ciαi(xi)
di +

di−1∑
j=1

gi,j(xi)αi(xi)
j

)
On(1)
=

n∑
i=1

(
n∑

j=1

modpi,q(fj,i(xj)) + modpi,q(ciαi(xi)
di) +

di−1∑
j=1

modpi,q(gi,j(xi)αi(xi)
j)

)
On(1)
=

(
n∑

i=1

n∑
j=1

modpj ,q ◦modpi,pj(fj,i(xj))

)

+

(
n∑

i=1

(
modpi,q(ciαi(xi)

di) +

di−1∑
j=1

modpi,q(gi,j(xi)αi(xi)
j)

))

=

(
n∑

i=1

n∑
j=1

modpi,q ◦modpj ,pi(fi,j(xi))

)

+

(
n∑

i=1

(
modpi,q(ciαi(xi)

di) +

di−1∑
j=1

modpi,q(gi,j(xi)αi(xi)
j)

))

=
n∑

i=1

modpi,q

(
modpj ,pi(fi,j(xi)) + ciαi(xi)

di +

di−1∑
j=1

gi,j(xi)αi(xi)
j

)
∈ nS

(7.3)

We conclude that values (v1, v2, . . . , vn) attained by the expression with the maps

αi defined as above satisfy

n∑
i=1

modpi,q(vi) ∈ nS + T,

for a set T of size at most On(1). Since nS = {0, 1, . . . , nC ′q1−ϵ} ⊂ Zq, the

expression takes at most On,d(p1p2 . . . pn−1p
1−ϵ
n ) values, as desired.

The case 3(a) now follows from a straightforward application of Proposi-

tion 7.19.
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We deal with the remaining cases in a similar fashion.

Case 2(a). Let the linear part of the expression be λ1α(x)+µ1x+λ2β(y)+µ2y.

We shall take q = q1q2, for coprime q1 and q2, with Zq
∼= Zq1 ⊕ Zq2 . We set

α1(x) := −c3x1 and β2(y) := −c4y2. It remains to choose α2:Zq1 ⊕ Zq2 → Zq2

and β1:Zq1 ⊕ Zq2 → Zq1 so that the expression

(
(c1 − c3)(c2 − c3)x

2
1 − c3λ1x1 + µ1x1 + λ2β1(y) + µ2y1,

(α2(x) + c1x2)(α2(x) + c2x2) + λ1α2(x) + µ1x2 − c4λ2y2 + µ2y2

)
=
(
(c1 − c3)(c2 − c3)x

2
1 + (µ1 − c3λ1)x1 + µ2y1 + λ2β1(y),

c1c2x
2
2 + µ1x2 + (µ2 − c4λ2)y2 + α2(x)

2 + ((c1 + c2)x2 + λ1)α2(x)
)

takes small number of values. But, recalling that λ2 = 0 implies µ2 = 0, this

follows directly from Proposition 7.19, and we may take q1, q2 to be prime.

Case 3(b). Let the linear part of the expression be λ1α(x) + µ1x + λ2β(y) +

µ2y+λ3γ(z)+µ3z. We shall take q = q1q2q3, for coprime q1, q2 and q3, with Zq
∼=

Zq1 ⊕Zq2 ⊕Zq3 . We set α1(x) := −c1x1, α2(x) := −c3x2, β2(y) := −c2y2, β3(y) :=
−c2y3, γ1(z) := −c4z1 and γ3(z) := −c4z3. It remains to choose α3:Zq1 ⊕ Zq2 ⊕
Zq3 → Zq3 , β1:Zq1 ⊕ Zq2 ⊕ Zq3 → Zq1 and γ2:Zq1 ⊕ Zq2 ⊕ Zq3 → Zq2 so that the

expression

(
(−c1λ1 + µ1)x1 + λ2β1(y) + µ2y1 + (−c4λ3 + µ3)z1,

(−c3λ1 + µ1)x2 + (−c2λ2 + µ2)y2 + λ3γ2(z) + µ3z2,

λ1α3(x) + µ1x3 + (−c2λ2 + µ2)y3 + (−c4λ3 + µ3)z3

)

takes small number of values. Once again, recalling that λi = 0 implies µi = 0,

this follows directly from Proposition 7.19, and we may take q1, q2 and q3 to be

prime.

Case 4(a). Let the linear part of the expression be λ1α(x) + µ1x + λ2β(y) +

µ2y + λ3γ(z) + µ3z + λ4δ(w) + µ4w. We shall take q = q1q2q3q4, for coprime
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q1, q2, q3 and q4, with Zq
∼= Zq1 ⊕ Zq2 ⊕ Zq3 ⊕ Zq4 . We set

β1(y): = −c2y1, γ1(z) : = −c3z1, δ1(w): = −c4w1,

α2(x): = −c1x2, γ2(z): = −c3z2, δ2(w): = −c4w2,

α3(x): = −c1x3, β3(y): = −c2y3, δ3(w): = −c4w3,

α4(x): = −c1x4, β4(y) : = −c2y4, γ4(z): = −c3z4.

We use Proposition 7.19 to find α1, β2, γ3, δ4 so that the expression

(λ1α1(x) + µ1x1 + (−c2λ2 + µ2)y1 + (−c3λ3 + µ3)z1 + (−c4λ4 + µ4)w1,

(−c1λ1 + µ1)x2 + λ2β2(y) + µ2y2 + (−c3λ3 + µ3)z2 + (−c4λ4 + µ4)w2,

(−c1λ1 + µ1)x3 + (−c2λ2 + µ2)y3 + λ3γ3(z) + µ3z3 + (−c4λ4 + µ4)w3,

(−c1λ1 + µ1)x4 + (−c2λ2 + µ2)y4 + (−c3λ3 + µ3)z4 + λ4δ4(w) + µ4w4)

takes small number of values. This completes the proof of Theorem 7.16.

7.5.1 Further discussion of the identification of coordinates

idea

As we have seen in the proof of Theorem 7.16, Proposition 7.19 was used in

a very similar fashion for several cases of expressions. The goal of this short

subsection is to take this approach further and see what expressions can be

handled using this idea.

We temporarily return to the notation of xi for the variables and αi for the

maps. The value of xi at coordinate c is denoted by xi,c. Observe that when we

use Proposition 7.19, we have to pick some of the maps αi,c to cancel out the

mixed quadratic terms like α1,c(x1)(α2,c(x2)+x2,c). In the proof of Theorem 7.16

in the last few cases, given an expression, we used a different coordinate c for

every variable xi, and we picked αj,c for j ̸= i, so that the mixed quadratic terms

disappear. Our goal now is to put all these ideas together in a single proposition.

First, we need to set up some useful definitions.

Fix an expression E in variables x1, x2, . . . , xn. Define a graph GE on vertices

{x1, x2, . . . , xn} by adding an edge xixj for every term of the form (αi(xi) +

cxi)(αj(xj) + dxj) with i ̸= j, with multiple edges allowed (so xixj appears the

same number of times the relevant terms occur in E).
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Proposition 7.20. (Acyclic version of the identification of the coordinates.)

Let E be a quadratic expression such that GE has no cycles (in particular, no

repeated edges). Then there is an absolute constant ϵ > 0 such that the following

holds. We can find q, a product of distinct, arbitrarily large primes, and maps

α1, . . . , αn:Zq → Zq such that E takes at most O(q1−ϵ) values.

Proof. As promised, we will take q = q1q2 . . . qn, with qi coprime products of dis-

tinct primes, suitably chosen. As always, view Zq as the direct sum Zq1⊕. . .⊕Zqn .

Let c ∈ [n] be an arbitrary coordinate. We start from xc and traverse the graph

GE. (If GE is disconnected, pick arbitrary vertices in all other components to

start the traversal from. For each such starting vertex xi, i ̸= c, set αi,c = 0.)

Since the graph is acyclic, we reach every variable at most once, and we visit

every edge. When we move along the edge xixj, from xi to xj, that means

that there is a term (αi(xi) + axi)(αj(xj) + bxj) in the expression, and we set

αj,c(xj): = −bxj,c, to make the term vanish. Since this is the first time we reach

xj, there are no issues with defining αj,c.

After this procedure, we have defined αi,j for i ̸= j, so that for every coor-

dinate c, the expression Ec no longer has mixed quadratic terms. We still have

the freedom of choosing αc,c, so we now may apply Proposition 7.19 to finish the

proof.

As we shall see later, depending on the structure of the graph GE, it is not

always possible to choose some of the maps αi,c so that the mixed quadratic

terms vanish, so there is no obvious way to make Proposition 7.20 more general.

7.6 Sets A with small 3A2 + kA

In this section we prove the final case of the main theorem.

Theorem 7.21. For any k ∈ N0 and any ϵ > 0, there is a natural number q,

which is a product of distinct, arbitrarily large primes, and a set A ⊂ Zq such

that A− A = Zq, while |3A2 + kA|< ϵq.

Proof. We proceed like in the proofs of Theorems 7.10 and 7.16, except that

the details become once again more complicated and the ideas we developed so

far, culminating in Proposition 7.20, do not suffice. As usual, the proof is based
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on Proposition 7.9. We split all expressions in their quadratic and linear parts,

and we may assume that if a variable appears at all in an expression, it must

appear in the quadratic part. In the first part of the discussion of the possible

expressions, we use the notation xi for variables and αi for maps, as there can be

up to 6 variables involved. Later, we again switch to x, y, z and α, β, γ notation.

Firstly, by Corollary 7.12, we only need to consider expressions with at least

two variables. Next, we use Proposition 7.20 to treat the expressions with at

least 4 variables. We look at the graph GE. Note that if we have an isolated

vertex xi in GE, since xi appears in the quadratic part, we must have term of the

form (αi(xi) + c1xi)(αi(xi) + c2xi) in E. Hence, the number of isolated vertices

vis plus the number of edges e is at most 3, which is the number of quadratic

terms in E.

Expression E with exactly 6 variables. We look at GE. It is a graph on 6

vertices, with vis + e ≤ 3. Hence, it is a perfect matching, which is acyclic, so

Proposition 7.20 applies.

Expression E with exactly 5 variables. Looking at GE, which is a graph

on 5 vertices with vis + e ≤ 3, we see that at most one vertex can have degree

greater than 1. The graph GE is acyclic, so Proposition 7.20 applies.

Expression E with exactly 4 variables. Once again, we analyse GE. It is

a graph on 4 vertices with vis + e ≤ 3. The only way to get a cycle is if the

graph has a double edge x1x2 and an edge x3x4 (after a suitable renaming of

variables). Thus, the quadratic part of E is of the form

(α1(x1) + c1x1)(α2(x2) + c2x2)

+ (α1(x1) + c′1x1)(α2(x2) + c′2x2)

+ (α3(x3) + c3x3)(α4(x4) + c4x4),

where c1, c2, c
′
1, c

′
2, c3, c4 ∈ {0, 1}. If c1 = c′1 or c2 = c′2, we can rewrite the

quadratic part as a linear combination of only two quadratic terms, so that the

graph GE becomes a matching, and therefore acyclic. Thus, assume that c1 ̸= c′1

and c2 ̸= c′2. But, using the affine maps solution from Lemma 7.15 we can

cancel all the terms in E that involve x1 and x2. Then, w.l.o.g. E becomes an
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expression with quadratic term

(α3(x3) + c3x3)(α4(x4) + c4x4)

which we have already done using the basic version of the identification of coor-

dinates idea in Lemma 7.13.

Hence, we may assume that the expression E has either two or three vari-

ables. We treat these cases separately. From now on, we use the notation x, y, z

for the variables and α, β, γ for maps.

7.6.1 E has two variables x and y

Observe that if there is at most one mixed quadratic term (α(x)+c1x)(β(y)+

c2y) in the quadratic part, then once again Proposition 7.20 applies. Hence, we

may assume that there are at least two such terms in E. Suppose now that there

all three quadratic terms are of this form, hence the quadratic part is

(α(x) + c1x)(β(y) + c2y) + (α(x) + c3x)(β(y) + c4y) + (α(x) + c5x)(β(y) + c6y),

where c1, c2, . . . , c6 ∈ {0, 1}. This constraint on the coefficients is crucial. By

pigeonhole principle, there are at least two equal coefficients among c1, c3, c5,

w.l.o.g. c1 = c3. The quadratic part of E may be written as

(α(x) + c1x)(2β(y) + (c2 + c4)y) + (α(x) + c5x)(β(y) + c6y),

which we treat using Lemma 7.13 if this factorizes further, or using Lemma 7.15

otherwise.

It remains to treat the case when there are exactly two mixed terms, so the

quadratic part is w.l.o.g.

(α(x) + c1x)(α(x) + c2x) + (α(x) + c3x)(β(y) + c4y) + (α(x) + c5x)(β(y) + c6y).

However, we can no longer use the affine maps to cancel out quadratic terms to

modify the expression and then apply Proposition 7.20. Instead, we have to use

a different argument, which unfortunately gives significantly worse bounds.

Lemma 7.22. Let E be a quadratic expression with quadratic part of the form

n1α(x)
2 + α(x)(n2x+ n3β(y) + n4y) + x(n5x+ n6β(y) + n7y),
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with n1, n2, . . . , n7 ∈ Z and n1, n3 ̸= 0. Then, for every sufficiently large prime

p, we can find α, β:Zp → Zp such that the expression does not attain every value

in Zp.

Immediately, we have the following corollary.

Corollary 7.23. Let E be a quadratic expression with quadratic part of the form

n1α(x)
2 + α(x)(n2x+ n3β(y) + n4y) + x(n5x+ n6β(y) + n7y),

with n1, n2, . . . , n7 ∈ Z and n1, n3 ̸= 0. Let ϵ > 0. Then, there is q, prod-

uct of distinct, arbitrarily large primes, and maps α, β:Zq → Zq such that the

expression attains at most ϵq values.

Proof. Let N be the bound in Lemma 7.22 such that for all primes p > N we

have α(p), β(p):Zp → Zp such that the expression evades one value, i.e. all values

are confined to a set Sp of size p− 1. If we now take q = p1p2 . . . pn, a product of

distinct primes greater than N , then, once again identifying Zq
∼= Zp1⊕ . . .⊕Zpn ,

and defining α, β:Zq → Zq coordinatewise using α(pi), β(pi), we have that the

expression in Zq attains values in Sp1 × Sp2 × . . .× Spn . Hence, it takes at most

(p1 − 1) . . . (pn − 1) values. A standard calculation reveals that for n sufficiently

large, the number of values becomes o(q). (The p that appears in the sums and

products below ranges over primes only.) Indeed,

∏
N<p<M

p− 1

p
= exp

( ∑
N<p<M

log

(
1− 1

p

))
= exp

( ∑
N<p<M

−1

p
+O

(
1

p2

))

= O

(
exp

(
−

∑
N<p<M

1

p

))
→ 0

as M → ∞, since
∑

p
1
p
= ∞.

Proof of Lemma 7.22. Let λ1α(x)+µ1x+λ2β(y)+µ2y be the linear part of the

expression. The proof is based on a dependent random choice argument. We

will define α:Zp → Zp essentially by setting each α(y) uniformly independently

at random (for technical reasons, for every x we will forbid one value in Zp). Our

aim is to define β accordingly so that the expression evades zero value. Hence,
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for every y, we want to find β(y) such that there is no x with

β(y)(n3α(x) + n6x+ λ2)

+α(x)(n1α(x) + n2x+ n4y + λ1)

+n5x
2 + n7xy + µ1x+ µ2y = 0.

(7.4)

In other words, provided n3α(x) +n6x+ λ2 ̸= 0 always, we want a value of β(y)

such that

β(y) ̸= − 1

n3α(x) + n6x+ λ2

(
y(n4α(x) + n7x+ µ2)

+α(x)(n1α(x) + n2x+ λ1) + n5x
2 + µ1x

)
,

(7.5)

for all x ∈ Zp. Hence, this becomes the requirement that for every fixed y, the

set

Sy: =
{
− 1

n3α(x) + n6x+ λ2

(
y(n4α(x) + n7x+ µ2)

+α(x)(n1α(x) + n2x+ λ1) + n5x
2 + µ1x

)
:x ∈ Zp

}
is not the whole set Zp. We now define α:Zp → Zp by setting each α(x) inde-

pendently to be a uniform random variable on Zp \ {−n6x+λ2

n3
} (which is fine, as

n3 ̸= 0).

Let By be the event that the set Sy is the whole Zp, i.e. for every v there is

x such that

0 =v (n3α(x) + n6x+ λ2)

+
(
y(n4α(x) + n7x+ µ2) + α(x)(n1α(x) + n2x+ λ1) + n5x

2 + µ1x
)
.

(7.6)

Suppose that By occurs. We cannot use the same x for two values of v, so

by counting, for every v, we have exactly one x = x(v) such that (7.6) holds.

Suppose that we already know this permutation x(v) = π(v). The equation is

further equivalent to

n1α(π(v))
2+α(π(v))(n2π(v) + n4y + n3v + λ1) + n5π(v)

2 + n6π(v)v

+n7π(v)y + µ1π(v) + yµ2 + vλ2 = 0.

Hence, for every v, we know that α(π(v)) must take one of the two values

depending only on v, since n1 ̸= 0. So, given π, there are at most 2p choices for
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α. Hence, the probability of By is P(By) ≤ p! 2p/(p− 1)p. By Stirling’s formula,

P(By) = O

(
√
p

(
2

e

)p)
.

By the union bound, the probability P(∪yBy) = o(1), so there is a choice of α

such that for all y we have Sy ̸= Zp. For such α, we can define β so that the

expression does not attain every value, proving the lemma.

Returning to our main argument, the case when the quadratic part is of the

form

(α(x) + c1x)(α(x) + c2x) + (α(x) + c3x)(β(y) + c4y) + (α(x) + c5x)(β(y) + c6y).

follows directly from Corollary 7.23, since n1 = 1, n3 = 2.

7.6.2 E has three variables

Finally, we address the case when the quadratic part of E has exactly three

variables. Once again, we only need to consider the situation when GE has a

cycle. We know that GE is a graph on three vertices, with vis + e ≤ 3. The only

such graphs that have cycles are xy, xy (a repeated edge and an isolated vertex),

xy, xy, xz (a repeated edge and an additional edge) and xy, yz, zx (a cycle of

length 3).

GE is a repeated edge. In this case, the quadratic part of the expression is

w.l.o.g.

(α(x) + c1x)(β(y) + c2y) + (α(x) + c3x)(β(y) + c4y) + (γ(z) + c5z)(γ(z) + c6z).

If c1 = c3 or c2 = c4, we can further factorize the expression and apply Proposi-

tion 7.20, to finish the proof. Thus assume that c1 ̸= c3 and c2 ̸= c4.

Let the linear part of the expression be λ1α(x)+µ1x+λ2β(y)+µ2y+λ3γ(z)+

µ3z. Fix a prime p, and apply Lemma 7.15 to the expression

(α(x)+c1x)(β(y)+c2y)+(α(x)+c3x)(β(y)+c4y)+λ1α(x)+µ1x+λ2β(y)+µ2y

to make it constant. Hence, it remains to pick γ:Zp → Zp so that the expression

(γ(z) + c5z)(γ(z) + c6z) + λ3γ(z) + µ3z
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attains a small number of values, which we can ensure if we apply Lemma 7.17

for each z to the polynomial γ(z)2+(c5z+c6z+λ3)γ(z)+c5c6z
2+µ3z. Provided

p is large enough, γ(z) can be chosen so that the value of the polynomial is small.

This completes the proof in this case.

GE is a 3-cycle. In this case, the quadratic part of E has three mixed terms,

one for each pair of variables among x, y, z. More precisely, it is

(α(x) + c1x)(β(y) + c2y) + (β(y) + c3y)(γ(z) + c4z) + (γ(z) + c5z)(α(x) + c6x),

where c1, . . . , c6 ∈ {0, 1}. Let the linear part be

λ1α(x) + µ1x+ λ2β(y) + µ2y + λ3γ(z) + µ3z.

First, assume that no further factorization is possible, i.e. c1 ̸= c6, c2 ̸= c3

and c4 ̸= c5. We set α(x) = −c1x + d1, β(y) = −c3y + d2, γ(z) = −c5z + d3, so

that the expression becomes

d1((c2 − c3)y + d2) + d2((c4 − c5)z + d3) + d3((c6 − c1)x+ d1)

+ (µ1 − c1λ1)x+ (µ2 − c3λ2)y + (µ3 − c5λ3)z + (λ1d1 + λ2d2 + λ3d3).

Rearranging further, we obtain

x(d3(c6 − c1) + µ1 − c1λ1) + y(d1(c2 − c3) + µ2 − c3λ2)

+ z(d2(c4 − c5) + µ3 − c5λ3) + (λ1d1 + λ2d2 + λ3d3 + d1d2 + d2d3 + d3d1).

Setting d1 = µ2−c3λ2

c3−c2
, d2 = µ3−c5λ3

c5−c4
and d3 = µ1−c1λ1

c1−c6
, the expression becomes

constant.

Now, suppose that w.l.o.g. c1 = c6. Assume for now that (c3−c2)(c4−c5) = 0,

we will address the case when this product does not vanish later. The expression

becomes

(α(x)+c1x)(β(y) + c2y + γ(z) + c5z) + (β(y) + c3y)(γ(z) + c4z)

+λ1α(x) + µ1x+ λ2β(y) + µ2y + λ3γ(z) + µ3z.

We use the identification of coordinates approach. We will take q = p1p2p3,

where p1 < p2 < p3 < 2p1 are arbitrarily large primes. Identify Zq
∼= Zp1 ⊕Zp2 ⊕

Zp3 . Our first step is to set

α1(x) = −c1x1, β1(y) = −c3y1 + 1− λ3, α2(x) = −c1x2, γ2(z) = −c4z2 + 1− λ2.
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This way, the quadratic terms vanish in the first two coordinates, and we still

have freedom of choosing β2, γ1 to cancel the linear terms in y, z. We want to

do the same for α3, so we set β3(y) = −c2y3 + 1 − λ1, γ3(z) = −c5z3. However,

with such a choice, the third coordinate of the expression is

(1− λ1)(α3(x) + c1x3) + ((c3 − c2)y3 + 1− λ1)((c4 − c5)z3) + λ1α3(x) + µ1x3

+ y3(µ2 − λ2c2) + z3(µ3 − λ3c5) + λ2(1− λ1)

=α3(x) + ((1− λ1)c1 + µ1)x3 + (c3 − c2)(c4 − c5)y3z3 + (µ2 − λ2c2)y3

+ (µ3 − λ3c5 + (1− λ1)(c4 − c5))z3 + λ2(1− λ1).

Since (c3 − c2)(c4 − c5) = 0, the expression becomes

(
(µ1 − c1λ1)x1 + (µ2 − c3λ2)y1 + γ1(z) + (µ3 + (1− λ3)c4)z1 + λ2(1− λ3),

(µ1 − c1λ1)x2 + β2(y) + (µ2 + c3(1− λ2))y2 + (µ3 − c4λ3)z2 + λ3(1− λ2),

α3(x) + ((1− λ1)c1 + µ1)x3 + (µ2 − λ2c2)y3

+ (µ3 − λ3c5 + 1− λ1)z3 + λ2(1− λ1)
)
.

We may now apply the identification of coordinates idea, using Proposi-

tion 7.19, to finish the proof in this case.

Now assume that (c3 − c2)(c4 − c5) ̸= 0. We shall take q = p1p2p3p4p5 and

use the additional fourth and fifth coordinates to cancel out the y3z3 term. Also,

using the prime number theorem, we can find arbitrarily large primes such that

p1 < · · · < p5 < p1 + O(log pi). In the work below it will be essential that all

the primes are close in value (although it will not be important to have them

this close). Writing E also for the resulting map defined by α, β, γ and the

expression, our aim is to show that

5∑
i=1

modpi,p3(Ei)

takes few values in Zp3 .

We use the same choices of α1, α2, β1, β3, γ2, γ3 as in the case when (c3 −
c2)(c4 − c5) = 0. Next, we set α4(x) = −c1x4, β4(y) = −modp3,p4(y3) −
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c3y4, γ4(y) = modp3,p4(z3)− c4z4. Observe that

modp4,p3 ((β4(y) + c3y4)(γ4(y) + c4z4)) + modp3,p3(y3z3)

= modp4,p3(−modp3,p4(y3)modp3,p4(z3)) + y3z3

=πp3 ◦ ιp4(−πp4 ◦ ιp3(y3)πp4 ◦ ιp3(z3)) + y3z3

Let y3 = ιp3(y3) and z3 = ιp3(z3). Hence y3, z3 ∈ {0, 1, . . . , p3−1} are integers

such that πp3(y3) = y3 and πp3(z3) = z3 hold. We also have

ιp4(−πp4 ◦ ιp3(y3)πp4 ◦ ιp3(z3)) = ιp4(−πp4(y3)πp4(z3)) = ιp4(πp4(−y3z3)).

But ιp4(πp4(−y3z3)) is an integer w ∈ {0, 1, . . . , p4 − 1} such that πp4(w) =

πp4(−y3z3), thus w = −y3z3 + p4t, for t = ⌈y3 z3
p4

⌉. Therefore, with this choice of

t we have

modp4,p3((β4(y) + c3y4)(γ4(y) + c4z4)) + modp3,p3(y3z3)

=πp3 ◦ ιp4(−πp4 ◦ ιp3(y3)πp4 ◦ ιp3(z3)) + y3z3

=πp3(−y3z3 + p4t) + πp3(y3)πp3(z3)

=πp3(p4t) = πp3((p4 − p3)t)

Proceeding further, we use the fifth coordinate to approximate (p4 − p3)t.

To this end, write M = ⌊√p4⌋, y3 = uM + u′, z3 = vM + v′, where u′, v′ ∈
{0, 1, . . . ,M − 1}, u, v = O(M). Observe that uv is a good approximation to t

|t− uv| =
∣∣∣∣⌈y3z3p4

⌉ − uv

∣∣∣∣ ≤ 1 +

∣∣∣∣y3z3 − p4uv

p4

∣∣∣∣
= 1 +

∣∣∣∣(uM + u′)(vM + v′)− p4uv

p4

∣∣∣∣
≤1 +

∣∣∣∣u′vM + uv′M + u′v′

p4

∣∣∣∣+ ∣∣∣∣uv(p4 −M2)

p4

∣∣∣∣ ≤ C1
√
p4

for some absolute constant C1, since u, v, u
′, v′,M, |p4 −M2|= O(

√
p4). There-

fore, we set α5 = −c1x5, β5(y) = −πp5(u)− c3y5, γ5(z) = πp5(v(p4 − p3))− c4z5.

Note that β5, γ5 are well defined, as u depends on y only, and v depends on z

only. With β5 and γ5 so defined we have

modp5,p3((β5(y) + c3y5)(γ5(z) + c4z5)) + πp3(t(p4 − p3))

=πp3(ιp5(−πp5(u)πp5(v(p4 − p3))) + t(p4 − p3))

=πp3(ιp5(πp5(−uv(p4 − p3))) + t(p4 − p3))
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We also have that ιp5(πp5(−uv(p4 − p3))) is an integer s ∈ {0, 1, . . . , p5 − 1}
such that πp5(s) = πp5(−uv(p4 − p3)), thus s = −uv(p4 − p3) + p5t

′, where

t′ = ⌈uv(p4−p3)
p5

⌉ ≤ C2 log p3, for an absolute constant C2. Therefore,

modp5,p3((β5(y) + c3y5)(γ5(z) + c4z5)) + πp3(t(p4 − p3))

=πp3(ιp5(πp5(−uv(p4 − p3))) + t(p4 − p3))

=πp3(−uv(p4 − p3) + p5t
′ + t(p4 − p3))

=πp3((t− uv)(p4 − p3) + p5t
′)

Summing up the work done so far we conclude that

modp3,p3(y3z3) + modp4,p3(β4(y) + c3y4)(γ4(y) + c4z4))

+ modp5,p3((β5(y) + c3y5)(γ5(z) + c4z5))

=y3z3 +modp4,p3(−modp3,p4(y3)modp3,p4(z3))

+ modp5,p3(πp5(−uv(p4 − p3))) ∈ S1,

where S1 ⊂ Zp3 is the set defined by {πp3(a(p4 − p3) + p5b): a, b ∈ Z, |a|≤
C1

√
p4, |b|≤ C2 log p3}. In particular |S1|= O(

√
p3 log

2 p3). Finally, we put ev-

erything together, using Lemma 7.14. Recall the definitions (the maps β4, γ4 and

γ5 below are slightly modified to cancel the term (c3 − c2)(c4 − c5)y3z3 instead

of just y3z3)

α1(x) = −c1x1, β1(y) = −c3y1 + 1− λ3,

α2(x) = −c1x2, γ2(z) = −c4z2 + 1− λ2,

β3(y) = −c2y3 + 1− λ1, γ3(z) = −c5z3,

α4(x) = −c1x4, β4(y) = −(c3 − c2)modp3,p4(y3)− c3y4,

γ4(y) = (c4 − c5)modp3,p4(z3)− c4z4,

α5 = −c1x5, β5(y) = −πp5(u)− c3y5,

γ5(z) = πp5(v(p4 − p3)(c3 − c2)(c4 − c5))− c4z5.

Thus,
∑5

i=1modpi,p3(Ei) equals

=
5∑

i=1

modpi,p3

(
(αi(x) + c1xi)(βi(y) + c2yi + γi(z) + c5zi)

+ (βi(y) + c3yi)(γi(z) + c4zi)

+ λ1αi(x) + µ1xi + λ2βi(y) + µ2yi + λ3γi(z) + µ3zi

)
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=modp1,p3

(
γ1(z) + (µ1 − c1λ1)x1 + (µ2 − c3λ2)y1

+ (µ3 + c4(1− λ3))z1 + λ2(1− λ3)
)

+modp2,p3

(
β2(y) + (µ1 − c1λ1)x2 + (µ2 + c3(1− λ2))y2

+ (µ3 − c4λ3)z2 + λ3(1− λ2)
)

+ α3(x) + y3z3(c3 − c2)(c4 − c5) + x3(c1(1− λ1) + µ1) + (µ2 − λ2c2)y3

+ ((1− λ1)(c4 − c5)− c5λ3 + µ3)z3 + λ2(1− λ1)

+ modp4,p3

(
− (c3 − c2)(c4 − c5)modp3,p4(y3)modp3,p4(z3)

+ (µ1 − λ1c1)x4 − (c3 − c2)λ2modp3,p4(y3)

+ (µ2 − c3λ2)y4 + (c4 − c5)λ3modp3,p4(z3) + (µ3 − λ3c4)z4

)
+modp5,p3

(
− πp5(u)πp5(v(p4 − p3)(c3 − c2)(c4 − c5))

+ (µ1 − λ1c1)x5 − λ2πp5(u) + (µ2 − λ2c3)y5

+ λ3πp5(v(p4 − p3)(c3 − c2)(c4 − c5)) + (µ5 − λ3c4)z5

)
O(1)
= πp3

(
ιp3(α3(x)) + (µ1 − c1λ1)ιp1(x1) + (µ1 − c1λ1)ιp2(x2)

+ (c1(1− λ1) + µ1)ιp3(x3) + (µ1 − λ1c1)ιp4(x4) + (µ1 − λ1c1)ιp5(x5)

+ ιp2(β2(y)) + (µ2 − c3λ2)ιp1(y1) + (µ2 + c3(1− λ2))ιp2(y2)

+ (µ2 − λ2c2)ιp3(y3)− (c3 − c2)λ2ιp4(modp3,p4(y3))

+ (µ2 − c3λ2)ιp4(y4)− λ2ιp5(πp5(u)) + (µ2 − λ2c3)ιp5(y5)

+ ιp1(γ1(z)) + (µ3 + c4(1− λ3))ιp1(z1) + (µ3 − c4λ3)ιp2(z2)

+ ((1− λ1)(c4 − c5)− c5λ3 + µ3)ιp3(z3) + (c4 − c5)λ3ιp4(modp3,p4(z3))

+ (µ3 − λ3c4)ιp4(z4) + λ3ιp5(πp5(v(p4 − p3)(c3 − c2)(c4 − c5)))

+ (µ5 − λ3c4)ιp5(z5)
)

+ (c3 − c2)(c4 − c5)
(
y3z3 −modp4,p3(modp3,p4(y3)modp3,p4(z3))

−modp5,p3(πp5(uv(p4 − p3)))
)
.

Finally, we set α3, β2, γ1 to cancel the linear x, y, z terms respectively:

α3(x) = −πp3((µ1 − c1λ1)ιp1(x1) + (µ1 − c1λ1)ιp2(x2)

+ (c1(1− λ1) + µ1)ιp3(x3) + (µ1 − λ1c1)ιp4(x4) + (µ1 − λ1c1)ιp5(x5))
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β2(y) = −πp2((µ2 − c3λ2)ιp1(y1) + (µ2 + c3(1− λ2))ιp2(y2)

+ (µ2 − λ2c2)ιp3(y3)− (c3 − c2)λ2ιp4(modp3,p4(y3))

+ (µ2 − c3λ2)ιp4(y4)− λ2ιp5(πp5(u)) + (µ2 − λ2c3)ιp5(y5)))

γ1(z) = −πp1((µ3 + c4(1− λ3))ιp1(z1) + (µ3 − c4λ3)ιp2(z2)

+ ((1− λ1)(c4 − c5)− c5λ3 + µ3)ιp3(z3) + (c4 − c5)λ3ιp4(modp3,p4(z3))

+ (µ3 − λ3c4)ιp4(z4) + λ3ιp5(πp5(v(p4 − p3)(c3 − c2)(c4 − c5)))

+ (µ5 − λ3c4)ιp5(z5)))

With this choice of α, β, γ we have

5∑
i=1

modpi,p3(Ei)
O(1)
= (c3 − c2)(c4 − c5)

(
y3z3

−modp4,p3(modp3,p4(y3)modp3,p4(z3))−modp5,p3(πp5(uv(p4 − p3)))
)

which takes small number of values.

GE is has a repeated edge and another single edge. In this case, the

quadratic part of the expression is w.l.o.g.

(α(x) + c1x)(β(y) + c2y) + (α(x) + c3x)(β(y) + c4y) + (α(x) + c5x)(γ(z) + c6z).

If c1 = c3 or c2 = c4, we can further factorize the expression and apply

Proposition 7.20, to finish the proof. Thus assume that c1 ̸= c3 and c2 ̸= c4.

Since all ci ∈ {0, 1}, we must have c5 ∈ {c1, c3}, so w.l.o.g. c5 = c1.

We now discuss a limitation of the usual approach based on the identification

of coordinates idea. Basically, we always try to cancel out the quadratic terms

by taking some of the αi, βi, γi to be affine, while we use the rest to cancel out

the linear terms in xi, yi, zi. Let us try the same strategy here. Temporarily we

work in Zp ⊕Zp ⊕ . . .⊕Zp to ignore the difficulties that arise from moving from

one modulus to another one. For technical reasons, we use a slightly unusual

indexing of n+2 coordinates by −1, 0, . . . , n. Start by using the coordinate -1 to

get a free γ−1 which is later used to cancel the linear terms involving z. Thus, we

set α−1(x) = −c1x−1 and β−1(y) = −c4y−1. Similarly, try to use the coordinate

0 to get a free β0 map. Rewriting the expression as

β(y)(2α(x)+(c1+c3)x)+y((c2+c4)α(x)+(c1c2+c3c4)x)+(α(x)+c5x)(γ(z)+c6z),
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we see that we need to set α0(x) = − c1+c3
2
x0 + C, for a constant C and γ0(z) =

−c6z0. The issue is that we get a term x0y0 with a non-zero coefficient. The

natural thing to do now is to try to cancel somehow this term. During this

digression, we forget about the linear terms (in any case, we can cancel them by

remaining free αi, βi, γi).

The most natural thing is to set γi(z) = −c6zi for i = 1, 2, . . . , n (as further

mixed quadratic terms involving z seem even harder to cancel). Hence, the

question is whether we can find linear maps α1, . . . , αn, β1, . . . , βn, each a linear

combination of x0, x1, . . . , xn or y0, y1, . . . , yn such that (w.l.o.g. c1 = c2 = 0 and

c3 = c4 = 1)
n∑

i=1

αi(x)βi(x) + (αi(x) + xi)(βi(y) + yi) = 0. (7.7)

Write αi(x) =
∑n

j=0Aijxj and βi(y) =
∑n

j=0Bijyj. Let δij equal 1 if i = j and

zero otherwise. Expanding the (7.7) we obtain

n∑
i=1

((
n∑

j=0

Aijxj

)(
n∑

k=0

Bikyk

)
+

(
n∑

j=0

(Aij + δij)xj

)(
n∑

k=0

(Bik + δik)yk

))

=
n∑

j=0

n∑
k=0

(
n∑

i=1

2AijBik + Aijδik + δijBik + δijδik

)
xjyk.

(7.8)

Hence, we require that for every j, k ∈ {0, 1, . . . , n}, which are not both

zero, we have
∑n

i=1 2AijBik + Aijδik + δijBik + δijδik = 0, while for j = k = 0

this expression is non-zero (to cancel the initial x0y0 term). We now define two

(n+1)×(n+1) matrices P,Q, with entries indexed by {0, 1 . . . , n}×{0, 1, . . . , n},
by setting Pji = Aij when i ≥ 1 and Pj0 = 0, and Qik = Bik if i ≥ 1 and Q0k = 0.

Let I ′ be the matrix of all zeros except I ′ii = 1 for i ≥ 1, and let J be the matrix

consisting of zeros only, except J00 = 1. We rewrite (7.8) as a matrix equation

2PQ+ PI ′ +QI ′ + I ′ = λJ

for some non-zero λ. However, this is the same as

(2P + I ′)(2Q+ I ′) = 2λJ − I ′.
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But comparing ranks we have

rank(2λJ − I ′) = rank((2P + I ′)(2Q+ I ′)) ≤ rank(2P + I ′)

≤n < n+ 1 = rank(2λJ − I ′)

which is a contradiction. Hence, this case requires a different approach.

Finally, we construct the desired maps for this expression. By adding linear

terms to α, β, γ, we may assume that the expression is

α(x)β(y) + (α(x) + c1x)(β(y) + c2y) + α(x)γ(z)

+λ1α(x) + µ1x+ λ2β(y) + µ2y + λ3γ(z) + µ3z
(7.9)

for some coefficients c1, c2 ∈ {−1, 1}, λ1, λ2, λ3 ∈ N0, µ1, µ2, µ3 ∈ Z. Let us

begin by observing that in most cases there is a rather simple solution, which

strangely we could not generalize to work for all choices of coefficients. Try

setting α(x) = A, β(y) = −c2y + B, for some constants A,B and suppose we

work in Zq, where q is a product of distinct, arbitrarily large primes (so that all

the coefficients and related expressions are coprime with q). With these choices,

the expression (7.9) becomes

A(−c2y +B) + (A+ c1x)B + Aγ(z) + λ1A+ µ1x+ λ2(−c2y +B)

+ µ2y + λ3γ(z) + µ3z

=y(−c2A− c2λ2 + µ2) + x(c1B + µ1) + γ(z)(A+ λ3)

+ µ3z + (2AB + λ1A+ λ2B).

Further, set B = −µ1c1, (recall that c1, c2 ∈ {−1, 1} so c−1
1 = c1, c

−1
2 = c2) so

that the coefficient of x above vanishes. We try to pick A such that coefficient

of y also becomes zero, setting A = c2µ2 − λ2. If A + λ3 ̸= 0, then we can pick

γ3 to cancel the z term, and the expression actually becomes constant.

Otherwise, assume that c2µ2 − λ2 + λ3 = 0. The following proposition solves

the problem of making the image of expressions that satisfy this relationship

miss at least some values. The complete result which says that the image can

be made small is then a consequence of a simple number-theoretic calculation.

Proposition 7.24. Let c1, c2, λ1, λ2, λ3, µ1, µ2, µ3 ∈ Z be some fixed coefficients,

such that c1, c2 ∈ {−1, 1} and c2µ2 − λ2 + λ3 − c2 ̸= 0. Then, for all sufficiently

large primes p, q, obeying q < p < 2q, we may find maps α, β, γ:Zpq → Zpq such

that the expression (7.9) misses at least p− q values.
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Proof. As always, Zpq is viewed as Zp ⊕ Zq. In the first coordinate, we set

α1(x) = c2µ2 − λ2 − c2, β1(y) = −c2y− µ1c1, γ1(z) =
−µ3z+δ1(z)+D
c2µ2+λ3−λ2−c2

, with δ1(z) to

be chosen and a constant D. After a suitable choice of D, the first coordinate

of the expression becomes y1 − δ1(z).

On the other hand, we shall use the second coordinate to evade some of the

values. To this end, we generalize Lemma 7.22, with a similar proof.

Lemma 7.25. Let S be a set, and q a prime. Let f :S → Zq be any map, and

let c1, c2, λ1, λ2, µ1, µ2 ∈ Z be any coefficients. Then, provided |S|q2 · q!< (q−1)q

we may pick α, βs:Zq → Zq for all s ∈ S, such that

α(x)βs(y)+(α(x)+c1x)(βs(y)+c2y)+λ1α(x)+µ1x+λ2βs(y)+µ2y+f(s) (7.10)

never takes value zero.

Proof of Lemma 7.25. We proceed similarly as in the proof of Lemma 7.22, start-

ing by defining each α(x) independently, uniformly at random in Zq\{−2−1(c1x+

λ2)}, with this single value omitted for technical reasons.

For each y and s ∈ S, we want to pick βs(y), so that (7.10) does not vanish

for any x. Let Ey,s be the event that we cannot do this, i.e. that, having fixed

y, s for every value β, we can find x such that

α(x)β + (α(x) + c1x)(β + c2y) + λ1α(x) + µ1x+ λ2β + µ2y + f(s). (7.11)

If Ey,s occurs, observe that (7.11) cannot hold for distinct β1, β2 with the

same choice of x, since this equation can be rewritten as

β(2α(x) + c1x+ λ2) + y(c2α(x) + c1c2x+ µ2) + λ1α(x) + µ1x+ f(s)

and by the choice of α, the coefficient of β is never zero. Hence, if π:Zq → Zq is

the map that sends each β to the corresponding value of x for which the (7.11)

vanishes, we must have π injective, which is thus a bijection.

Suppose furthermore that we know π as well. Note that in this case we can

almost determine α. Indeed, for all β we have

0 =β(2α(π(β)) + c1π(β) + λ2) + y(c2α(π(β)) + c1c2π(β) + µ2)

+ λ1α(π(β)) + µ1π(β) + f(s)

=α(π(β))(2β + yc2 + λ1) + β(c1π(β) + λ2) + y(c1c2π(β) + µ2) + µ1π(β) + f(s)
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Substituting β = π−1(β′), we obtain

α(β′)(2π−1(β′)+yc2+λ1)+π
−1(β′)(c1β

′+λ2)+y(c1c2β
′+µ2)+µ1β

′+f(s) = 0

for all β′ ∈ Zq, so α(β
′) is uniquely determined for all β′ such that 2π−1(β′) +

yc2 + λ1 ̸= 0, i.e. for q− 1 values. So there are at most q ways to pick α, and in

conclusion, the probability of Ey,s is P(Ey,s) ≤ q · q! /(q − 1)q. Finally, we have

P(∪y,sEy,s) ≤
∑
y,s

P(Ey,s) ≤ |S|q2 q!

(q − 1)q
< 1,

so it is possible to choose α for which all other maps can be defined so that

(7.10) never vanishes.

Set γ2 = 0. Let y1 = ιp(y1), t = ιq(µ3z2) ∈ Z. We define δ1(z) = πp(t), so

the first coordinate becomes πp(y1 − t). We set f :Zp → Zq, by f(y1) = πq(y1).

Apply Lemma 7.25 to Zq, S = Zp, and the expression

α2(x2)β2,y1(y2) + (α2(x2) + c1x2)(β2,y1(y2) + c2y2)

+λ1α2(x2) + µ1x2 + λ2β2,y1(y2) + µ2y2 + f(y1)

to define α2, β2,y1 :Zq → Zq to make it non-zero always. Note that we may apply

the lemma since pq2q!< (q−1)q, whenever q < p < 2q, for sufficiently large q. We

define β2(y) as β2,y1(y2). Finally, we show that values (πp(r),−πq(r)) ∈ Zp ⊕ Zq

are not attained for r ∈ {0, 1, . . . , p− q − 1}.

Suppose that r ∈ {0, 1, . . . , p− q− 1} and suppose that the expression takes

value (πp(r),−πq(r)). Thus, the first coordinate gives πp(y1 − t) = πp(r), so p

divides y1 − t − r, so either y1 ≤ t + r − p, y1 = t + r, or y1 ≥ t + r + p. But,

y1 ∈ {0, 1, . . . , p − 1}, t ∈ {0, 1, . . . , q − 1} and r ∈ {0, 1, . . . , p − q − 1}, so we

must have y1 = t+ r.

Next, let v stand for the value of

α2(x2)β2,y1(y2)+(α2(x2) + c1x2)(β2,y1(y2) + c2y2)

+λ1α2(x2) + µ1x2 + λ2β2,y1(y2) + µ2y2.

By the definition of α2, β2,y1 , we always have v + f(y1) ̸= 0. If the second

coordinate equals −πq(r), then we have 0 = v+µ3z2+πq(r) = v+πq(t)+πq(r) =

v + πq(t+ r) = v + πq(y1) = v + f(y1), which is impossible.
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Corollary 7.26. Let c1, c2, λ1, λ2, λ3, µ1, µ2, µ3 ∈ Z be some fixed coefficients,

such that c1, c2 ∈ {−1, 1} and c2µ2 − λ2 + λ3 − c2 ̸= 0. Let ϵ > 0 be any small

real. Then, we can find q, a product of arbitrarily large distinct primes and maps

α, β, γ:Zq → Zq such that the expression (7.9) takes at most ϵq values in Zq.

Proof. We proceed as follows. Look at all the primes 2k < q1 < q2 < · · · < qm <

(1 + 1
3
)2k and (1 + 2

3
)2k < p1 < p2 < · · · < pn < 2k+1. For k sufficiently large,

by the prime number theorem, n,m ≥ Ω(2k/k). For k sufficiently large, pairs of

primes pi, qi satisfy the conditions of Proposition 7.24, which we apply to obtain

αi, βi, γi:Zpiqi → Zpiqi so that the expression (7.9) misses at least pi − qi values

in Zpiqi . In other words, the expression (7.9) takes at most (1− 1
10pi

)piqi values

in Zpiqi . Let Pk = {p1, p2, . . . , pmin{m,n}}, and let Qk be the product of all piqi.

Viewing ZQk
as a direct sum of Zpiqi , we can therefore define α, β, γ:ZQk

→
ZQk

coordinatewise using αi, βi, γi, so that the expression (7.9) attains at most∏
p∈Pk

(1− 1
10p

)Qk ≤ exp(− c
k
)Qk values in ZQk

, for some positive constant c.

Finally, taking ZQk
⊕ ZQk+1

⊕ . . . ⊕ ZQN
, and using the maps α, β, γ on

each ZQi
separately, makes the expression (7.9) take at most

∏N
i=k exp(−

c
i
) =

exp(−c
∑N

i=k
1
i
) proportion of values in ZQk

⊕ ZQk+1
⊕ . . .⊕ ZQN

, which goes to

zero as N goes to infinity, as desired.

This finishes the proof of Theorem 7.21.

7.7 Concluding remarks

We conclude the chapter with some problems and several questions related to

the ingredients used in our construction. Firstly, the main question here is still

the following.

Question 7.27. Suppose that A ⊂ Zq has A−A = Zq and let ak, ak−1, . . . , a1 ∈
N. How small can akA

k + ak−1A
k−1 + · · ·+ a1A be? What is the answer when q

is square-free/product of O(1) primes/prime? When can we get a power saving,

i.e. |akAk + ak−1A
k−1 + · · ·+ a1A|≤ q1−ϵ?

The next natural question is about the number of values attained by expres-

sions.
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Question 7.28. Let k ∈ N be given. We consider expressions in variables

x1, x2, . . . , xk and maps α1(x1), α2(x2), . . . , αk(xk). Let E be any N-linear com-

bination of products of terms of the form αi(xi) or αi(xi) + xi. Is there a choice

of a q ∈ N and maps αi:Zq → Zq such that E attains only o(q) values in Zq?

Is there a choice for which we have a power-saving, i.e. E attains only O(q1−ϵ)

values? What if q is square-free/product of O(1) primes/prime?

We remark that in our construction, there was a power-saving choice for most

of the expressions. In fact, the only ones for which our arguments do not lead

to a power-saving are

α(x)2+α(x)β(y) + (α(x) + x)(β(y) + y)

+λ1α(x) + µ1x+ λ2β(y) + µ2y + λ3γ(z) + µ3z

and

α(x)γ(z)+α(x)β(y) + (α(x) + x)(β(y) + y)

+λ1α(x) + µ1x+ λ2β(y) + µ2y + λ3γ(z) + µ3z,

(for a specific choice of λi, µi).

Returning once again to the identification of coordinates idea, it turns out

that Proposition 7.13 is nearly optimal for some expressions, provided p and q

are close. Namely, consider expression E = α′(x)β′(y) + (α′(x) + x) + (β′(y) +

y) + 1. Putting α(x) = α′(x) + 1, β(y) = β′(y) + 1, the expression becomes

E = α(x)β(y) + x+ y.

Observation 7.29. Let p and q be distinct primes. Given any maps α, β:Zpq →
Zpq, the expression α(x)β(y) + x+ y attains at least Ω(min{p, q}) values in Zpq.

Proof. We begin by observing that if α(x) is not invertible for some choice of x,

viewing Zpq as Zp ⊕ Zq, for some coordinate c ∈ {1, 2}, we have Ec = xc + yc.

Letting yc vary, we obtain at least min{p, q} values.

Therefore, assume that all α(x) are invertible in Zpq
∼= Zp ⊕ Zq. Fix some

x. Consider all values v1, v2, . . . , vr of E(x, y), (where E(x, y) is evaluation of

the expression for the given choice of x, y), as y ranges over Zpq. We may

assume r ≤ 1
10
min{p, q}, otherwise we are done. Hence, we obtain a partition

Y1 ∪ Y2 ∪ . . .∪ Yr = Zpq, where E(x, y) = vi if y ∈ Yi. Call a pair y1, y2 invertible
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if y1 − y2 is invertible in Zpq. Observe that in each set Yi, there are at least

max{|Yi|(|Yi|−p − q + 1)/2, 0} invertible pairs. However, if E(x, y1) = E(x, y2)

for an invertible pair y1, y2, then α(x)β(y1)+y1 = α(x)β(y2)+y2, so β(y1)−β(y2)
is invertible, and α(x) = y1−y2

β(y2)−β(y1)
. Thus, for every invertible pair y1, y2 there

is a value w(y1, y2) such that E(x, y1) = E(x, y2) implies α(x) = w(y1, y2).

For a fixed w, take x such that α(x) = w, and consider the partition Y1 ∪
. . . ∪ Yr = Zpq as above. Firstly, take R to be the set of indices i such that

|Yi|≥ 2(p+ q). Thus,
∑

i/∈R|Yi|< r · 2(p+ q) ≤ 1
5
min{p, q}(p+ q) ≤ 2

5
pq. Hence,∑

i∈R|Yi|>
3
5
pq. Therefore, we obtain that the number of invertible pairs {y1, y2}

that have value w(y1, y2) = α(x) = w is at least

r∑
i=1

max{|Yi|(|Yi|−p− q + 1)/2, 0} ≥
∑
i∈R

|Yi|(|Yi|−p− q + 1)/2

≥
∑
i∈R

|Yi|(p+ q)/2 ≥ 3

10
pq(p+ q).

If α attains at most 2(p+q) values, we simply consider E(x, y) for fixed y. The

expression then attains at least pq/2(p+ q) values, thus the claim follows, so we

may assume that α attains more than 2(p+ q) values. But then, for every value

w of α, we have at least 3
10
pq(p+ q) invertible pairs {y1, y2} with w(y1, y2) = w,

so the total number of invertible pairs is at least 3
10
pq(p + q) · 2(p + q) > p2q2,

which is a contradiction.

It could be interesting to better understand the minimum image size for

this expression. Furthermore, recall that in the case of prime modulus, our

understanding of the right size of image is much weaker. In fact, the argu-

ments we provided can merely prove that maps α and β can be chosen so

that this expression is not surjective (just apply Lemma 7.25 to the expres-

sion α(x)β(y) + (α(x) + x) + (β(y) + y) + 1 which we saw is equivalent to the

expression discussed).

Let us temporarily change the variables to u and v, so we consider the ex-

pression α(u)β(v) + u + v (we keep x and y for their traditional meaning of

coordinates in the plane). For the lower bounds on the image size, all we can say

follows from a finite field version of Szemerédi-Trotter theorem. This was first
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proved by Bourgain, Katz and Tao [10]. We state the version of Stevens and de

Zeeuw [50], with state-of-the-art bounds.

Theorem 7.30 (Finite fields Szemerédi-Trotter theorem [50]). Let L be a set

of p lines and let P be a set of p points in the plane Zp × Zp. Then there are at

most O(p22/15) point-line incidences.

Given maps α and β we may define set of lines L =
{
{y = −α(u)x−u}:u ∈

Zp

}
and a set of points P = {(β(v), v)}. Then, our expression takes value c

if and only if there is an incidence between lines in L and points in P − (0, c)

(the set of points gets translated by (0,−c)). Let f :Zp → N0 be the number of

incidences between these two sets for the given c. We then have

p2 = |P||L|=
∑
c

f(c).

Theorem 7.30 bounds the maximum such a function can attain from above by

O(p22/15). Thus, the support of this function must have size at least Ω(p8/15),

which is very far from the upper bounds. Hence, we pose the following question.

Question 7.31. Let α, β:Zp → Zp be maps and p prime. What is the smallest

number of values that the expression α(x)β(y) + x+ y must attain?

We expect that the answer is p1−o(1) and we would not be surprised even if

the set of non-values had size po(1).

Finally, we pose the question of improving the bounds in Lemma 7.11.

Question 7.32. Suppose that c1, c2, . . . , cd are never simultaneously zero. How

large a set F in Lemma 7.11 can we take?
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1979), 933–938.

[50] S. Stevens and F. de Zeeuw, An improved point-line incidence bound over

arbitrary fields, Bull. London Math. Soc. 49 (2017), 842–858.

[51] J.D.Jr. Stein, A systematic generalization procedure for fixed-point theorems,

Rocky Mountain J. Math. 30 (2000), 735–754.

[52] Zs. Tuza, On special cases of Ryser’s Conjecture. Manuscript.

[53] H. Tverberg, On the decomposition of Kn into complete bipartite graphs, J.

Graph Theory 6 (1982), 493–494.

[54] R.C. Vaughan, The Hardy-Littlewood Method (2nd ed.), Cambridge Tracts

in Mathematics 125, Cambridge University Press, 1997, p. 11.

[55] S. Vishwanathan, A polynomial space proof of the Graham-Pollak theorem,

J. Combin. Theory Ser. A 115 (2008), 674–676.

[56] S. Vishwanathan, A counting proof of the Graham-Pollak Theorem, Discrete

Math. 313 (2013), 765–766.

221


