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TOPICS IN METRIC GEOMETRY, COMBINATORIAL GEOMETRY,

EXTREMAL COMBINATORICS AND ADDITIVE COMBINATORICS
LUKA MILICEVIC

ABSTRACT

In this thesis, we consider several combinatorial topics, belonging to the areas

appearing in the thesis title.

Given a non-empty complete metric space (X, d), a family of n continuous
maps fi, fo, ..., fn: X = X is a contractive family if there exists A < 1 such that
for any z,y € X we have d(f;(x), fi(y)) < Ad(z,y) for some i. In the first part

of the thesis, we

(i) construct a compact metric space (X, d) with a contractive family {f, g},

such that no word in f, g has a fixed point, and

(ii) show that if {f, g, h} is a contractive family such that f, g, h commute and
A < 10723, then they have a common fixed point.

The proofs of these two statements are combinatorial in nature. For (i), we
introduce a new concept of a diameter space, leading us naturally to a combi-
natorial problem about constructing certain sets of words. The result (ii) has a
Ramsey-theoretic flavour, and is based on studying the local and global structure

of a related metric space on N3. These answer questions of Austin and Stein.

In the second part, we prove that given any 4-colouring of the edges of K,
we can find sets X,Y,Z and colours z,y, z (not necessarily distinct) such that
XUYUZ = V(K,), and each of K,[X, z|, K,[Y,y] and K,[Z, 2] has diame-
ter bounded by 160 (where Kx[X,x] denotes the edges in X that have colour
x). This theorem is motivated by the work on commuting contractive families,
where the analogous statement for 3 colours played a crucial role, and by the
Lovasz-Ryser conjecture. The proof is in the spirit of structural graph theory.
The key point is the fact that the diameters are bounded. This strengthens a
result of Gyarfds, who proved the same but with no diameter bounds (i.e. just

with the sets being connected).



Recall that a set of points in R? is in general position if no d + 1 lie on a
common hyperplane. Similarly, we say that a set of points in R? is in almost
general position if no d + 2 lie on a common hyperplane. In the third part, we
answer a question of Fiiredi, by showing that, for each d, there are sets of n
points in almost general position in R? whose subsets in general position have
size at most o(n). The proof is based on algebraically studying to what extent
polynomial maps preserve cohyperplanarity, and an application of the density

version of the Hales—Jewett theorem.

In the fourth part, we answer a question of Nathanson in additive combina-
torics about sums, differences and products of sets in Zy (the integers modulo
N). For all ¢ > 0 and k € N, we construct a subset A C Zy for some N, such
that |A% + kA|< eN, while A — A =Zy. (Here A— A= {a; —ay : aj,a, € A}
and A% + kA = {ajag +d} + ay+ -+ -+ a}, : ay,aq,d},dh, ..., a}, € A}.) We also
prove some extensions of this result. Among other ingredients, the proof also

includes an application of a quantitative equidistribution result for polynomials.

In the final part, we consider the Graham-Pollak problem for hypergraphs.
Let f.(n) be the minimum number of complete r-partite r-graphs needed to
partition the edge set of the complete r-uniform hypergraph on n vertices. We
disprove a conjecture that fi(n) > (1 4 o(1))(3;), by showing that fi(n) <
(1 +0(1))(3). The proof is based on the relationship between this problem
and a problem about decomposing products of complete graphs, and under-
standing how the Graham-Pollak theorem (for graphs) affects what can happen

here.
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1 INTRODUCTION

This dissertation is divided into three parts, the first comprising Chapters 2
and 3, the second consisiting of Chapers 4 and 5 and the third having Chapters 6
and 7. Chapters 2 and 3 are devoted to a problem in metric geometry. Chapter 4
deals with a problem in graph theory that naturally arises in Chapter 3, while
Chapter 5 we study a problem in extremal combinatorics. Chapter 6 of this thesis
is about a result in combinatorial geometry. In Chapter 7, we consider some
topics in additive combinatorics. The results in this thesis are my own work,
except for Chapter 5, which was done in collaboration with Imre Leader and Ta
Sheng Tan. The remainder of this introductory chapter is a brief discussion of

the problems and results presented in this thesis.

1.1 METRIC GEOMETRY

In the first part of the thesis we consider a couple of problems in metric ge-

ometry.

Let (X, d) be a (non-empty) complete metric space. Given n functions fi,
fo,., [n: X — X, and a real number A € (0,1), we call {f1, fo,..., [} a
A-contractive family if for every pair of points xz,y in X there is ¢ such that
d(fi(x), fi(y)) < Ad(z,y). Further, we say that {fi, fo,..., fu} is a contractive
family if it is a A\-contractive family for some A € (0,1). In particular, when f is
a function on X and {f} is a contractive family we say that f is a contraction.
Recall the well-known theorem of Banach [8] which says that any contraction on
a complete metric space has a unique fixed point.

An operator on X is a continuous map from space to itself. In [51], Stein
conjectured the following generalisation of the theorem of Banach:

Let {f1, fa, ..., fn} be a A\-contractive family of operators on a complete met-

1



ric space. Then some composition of fi, fo,..., f, (i.e. some word in fi,..., f,)
has a fixed point.

In [7], Austin constructed a counterexample to this statement.

Theorem 1.1 (Austin [7]). There is a complete metric space (X,d) with a con-
tractive family of operators {f, g}, such that no word in f,g has a fived point.

Furthermore, Austin asked if this is possible in a compact space.

Question 1.2 (Austin [7]). Does every contractive family of operators on a

compact space have a composition with a fixed point?

Our first result is that even with the additional assumption of compactness,

there still need not be a fixed point.

Theorem. There is a compact metric space (X,d) with a contractive family of

operators { f,g}, such that no word in f,g has a fized point.

We remark that our construction provides the counterexample for any given
Ae(0,1).

This work appears in [36].

In [7], Austin additionally showed that if n = 2 and f; and f; commute the
conjecture of Stein will hold.
With this in mind, we say that {fi, fa, ..., fu} is commuting if every f; and

fj commute.

Theorem 1.3 (Austin [7]). Suppose that {f, g} is a commuting contractive fam-
ily of operators on a complete metric space. Then f and g have a common fixed

point.

Let us mention another result in this direction, which was proved by Arvan-
itakis in [6] and by Merryfield and Stein in [35].

Theorem I.4 (Arvanitakis [6], Merryfield, Stein [35], Generalized Banach Con-
traction Theorem). Let f be a function from a complete metric space to itself,

such that {f, f%,..., f"} is a contractive family. Then [ has a fized point.

2



Note that there is no assumption of continuity in the statement of The-
orem [.4. We also remark that Merryfield, Rothschild and Stein proved this
theorem for the case of operators in [34]. Furthermore, Austin raised a question
which is a version of Stein’s conjecture, and generalizes these two theorems in

the context of operators.

Conjecture 1.5 (Austin [7]). Suppose that {f1, fa, ..., fu} is a commuting con-
tractive family of operators on a complete metric space. Then fi, fo,..., fn have

a common fixed point.
Our second result proves the case n = 3, provided A is sufficiently small.

Theorem 1.6. Let (X, d) be a complete metric space and let {f1, f2, f3} be a
commuting \-contractive family of operators on X, for a given X € (0,10723).

Then fi1, fo, f3 have a common fixed point.

This work appears in [37].

1.2 GRAPH THEORY

The second part of the thesis is about problems in graph theory.

1.2.1 COVERING COMPLETE GRAPHS BY MONOCHROMATICALLY
BOUNDED SETS

Given a graph G, whose edges are coloured with a colouring x: F(G) —
C' (where adjacent edges are allowed to use the same colour), given a set of
vertices A, and a colour ¢ € C, we write G[A, | for the subgraph induced
by A and the colour ¢, namely the graph on the vertex set A and the edges
{zy:z,y € A, x(zy) = ¢}. In particular, when A = V(G), we write G[c] instead
of G[V(G), ¢]. Finally, we also use the usual notion of the induced subgraph G|[A]
which is the graph on the vertex set A with edges {zy:z,y € A, zy € E(G)}.
We usually write [n] = {1,2,...,n} for the vertex set of K.

Our starting point is the following conjecture of Gyérfas.

Conjecture 1.7 (Gyarfas [23], [25]). Let k be fized. Given any colouring of the
edges of K, in k colours, we can find sets Ay, Ay, ..., Ap_1 whose union is [n],

and colours ¢y, ¢, ..., cx—1 such that K,|[A;, ¢;] is connected for each i € [k — 1].

3



This is an important special case of the well-known Lovasz-Ryser conjecture,

which we now state.

Conjecture 1.8 (Lovasz-Ryser conjecture [33], [27]). Let G be a graph, whose
mazximum independent set has size o(G). Then, whenever E(G) is k-coloured,

we can cover G by at most (k — 1)a(G) monochromatic components.

Conjectures 1.7 and 1.8 have attracted a great deal of attention. When it
comes to the Lovéasz-Ryser conjecture, we should note the result of Aharoni
([1]), who proved the case of k = 3. For k > 4, the conjecture is still open. The
special case of complete graphs was proved by Gyérfas ([24]) for k < 4, and by
Tuza ([52]) for k = 5. For k > 5, the conjecture is open.

Let us also mention some results similar in the spirit to Conjecture I.7. In [46],
inspired by questions of Gyérfas ([23]), Ruszinké showed that every k-colouring
of edges of K,, has a monochromatic component of order at least n/(k — 1) and
of diameter at most 5. This was improved by Letzter ([32]), who showed that in
fact there are monochromatic triple stars of order at least n/(k — 1). For more

results and questions along these lines, we refer the reader to surveys of Gyarfas
([23], [25]).

In a completely different direction, recall Theorem 1.6 about contraction map-
pings on metric spaces. Some of the ingredients in the proof of Theorem 1.6 were
the following simple lemmas. Note that next lemma is in fact a classical obser-

vation due to Erdos and Rado.

Lemma. Suppose that the edges of K, are coloured in two colours. Then we

may find a colour ¢ such that K,|c| is connected and of diameter at most 3.

Lemma. Suppose that the edges of K, are coloured in three colours. Then
we may find colours cy,cq, (not necessarily distinct), and sets Ay, Ay such that
Ay U Ay = [n], with K,[A1, 1], K,|As, o] are each connected and of diameter at

most 8.

A common generalization of these statements and a strengthening of Conjec-

ture 1.7 is conjectured in Section 3.9.

Conjecture 1.9. For every k, there is an absolute constant C} such that the

following holds. Given any colouring of the edges of K, in k colours, we can
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find sets Ay, As, ..., Ax_1 whose union is [n], and colours cy,cq, ..., Cr_1 Such
that K,[A;, ¢;] is connected and of diameter at most Cy, for each i € [k — 1].

The main result in this chapter of thesis is
Theorem. Conjecture 1.9 holds for 4 colours, and one may take Cy = 160.

The work of this chapter appears in [38].

1.2.2 DECOMPOSING THE COMPLETE 7-GRAPH

The work we now describe is the content of Chapter 5 and is done in collab-

oration with Imre Leader and Ta Sheng Tan.

The edge set of K,,, the complete graph on n vertices, can be partitioned into
n—1 complete bipartite subgraphs: this may be done in many ways, for example
by taking n — 1 stars centred at different vertices. Graham and Pollak [21, 22]
proved that the number n — 1 cannot be decreased. Several other proofs of this
result have been found, by Tverberg [53], Peck [42], and Vishwanathan [55, 56].

Generalising this to hypergraphs, for n > r > 1, let f.(n) be the minimum
number of complete r-partite r-graphs needed to partition the edge set of K,(f),
the complete r-uniform hypergraph on n vertices (i.e., the collection of all r-sets
from an n-set). Thus the Graham-Pollak theorem asserts that fy(n) =n — 1.
For r > 3, an easy upper bound of (”IT[/TQ/JQ]) may be obtained by generalising the
star example above. Indeed, having ordered the vertices, consider the collection
of r-sets whose 2", 4™ . (2]r/2])™ vertices are fixed. This forms a complete

r-partite r-graph, and the collection of all ("*W 21) such is a partition of K.

lr/2]
(There are many other constructions achieving the exact same value; see, for
example Alon’s recursive construction in [4].)
Alon [4] showed that f3(n) =n — 2. More generally, for each fixed r > 1, he

showed that

o0y ) < 5 < 0= )

lr/2]
where the upper bound is from the construction above.

The best known lower bound for f,(n) was obtained by Cioaba, Kiingden and
Verstraéte [12], who showed that for(n) > 2" ) For upper bounds for f,.(n),

(%)




the above construction is not sharp in general. Cioaba and Tait [13] showed that
f6(8) =9 < (8;3), and used this to give an improvement in a lower-order term,
showing that for(n) < (";k) -2 L%J (L%};’;H) for any £ > 3. (We mention
briefly that any improvement of fy(n) for any n will further improve the above
upper bound. Indeed, one can check that f,(7) =9 < (752), and this will imply
that f.(n) < ("I};ﬁj) — enl"2171 for some positive constant c. But note that,
again, this is only an improvement to a lower-order term.)

Despite these improvements, the asymptotic bounds of Alon have not been
improved. Perhaps the most interesting question was whether the asymptotic
upper bound is the correct estimate.

The main result of the last part of thesis is that the asymptotic upper bound

is not correct for each even r > 4. In particular, we will show that

o) < 1501+ o) (3 ).

and obtain the same improvement of % for each even r > 4.

The work of this chapter appears in [31].

1.3 COMBINATORICS ON ALGEBRAIC STRUCTURES

In the final part of the thesis we consider a problem in combinatorial geometry

and a problem in additive combinatorics.

1.3.1 COMBINATORIAL GEOMETRY

A set of points in the plane is said to be in general position if it has no 3
collinear points, and in almost general position if there are no 4 collinear points.
Let a(n) be the maximum k such that any set of n points in the plane in almost
general position has k points in general position. In [15], Erdés asked for an
improvement of the (easy) bounds v/2n — 1 < a(n) < n (see equation (13) in the
paper). This was done by Fiiredi [17], who proved Q(v/nlogn) < a(n) < o(n).

In [11] Cardinal, Téth and Wood considered the problem in R3. Firstly, let
us generalize the notion of general position. A set of points in R? is said to

be in general position if there are no d 4+ 1 points on the same hyperplane, and



in almost general position if there are no d + 2 points on the same hyperplane.
Let a(n,d) stand for the maximum integer k& such that all sets of n points in
R? in almost general position contain a subset of k points in general position.
Cardinal, Téth and Wood proved that «(n,3) = o(n) holds. They noted that
for a fixed d > 4, only a(n,d) < Cn is known, for a constant C' € (0,1), and
they asked whether a(n,d) = o(n). The goal of the fourth part of thesis is to

answer their question in all dimensions. In particular, we prove the following.
Theorem. For a fized integer d > 2, we have a(n,d) = o(n).

In fact, we are able to get better bounds for certain dimensions. This is the

content of the next theorem.

Theorem. Suppose that d,m € N satisfy 2"t —1<d <3-2™—3. Let N > 1.

Then g
a2V d) < (%) 2",

It is worth noting the lower bound a(n, d) = Q4((nlogn)*/?) due to Cardinal,
Té6th and Wood ([11]), but we do not try to improve their bound here.

In [17] Fiiredi used the density Hales-Jewett theorem ([18], [14]) to establish
a(n) = a(n,2) = o(n). Here we reproduce his argument. By the density Hales-
Jewett theorem, for a given € > 0, there is a positive integer N such that all
subsets of [3]" of density € contain a combinatorial line. Map the set [3]" to R?
using a generic linear map f to obtain a set X = f([3]") C R2. By the choice of
f, collinear points in X correspond to collinear points in [3]V, and f restricted
to [3]"V is injective. Therefore, X has no 4 points on a line, and so is in almost
general position, but if S C X has size at least €| X]|, the set f~1(S) C [3]" has
density at least € in [3]Y. Therefore, f~!(S) has a line, hence S = f(f~*(S5)) has
3 collinear points. Since € > 0 was arbitrary, this proves that a(n,2) = o(n).

If one tries to generalize this argument to higher dimensions, by mapping
[m]™¥ to R? then there will be m?~! cohyperplanar points, and we must have
mé=! = d + 1 to get almost general position. But the only positive integers
that have this property are (m,d) € {(3,2),(2,3)}. Taking m = 2,d = 3 gives
a(n,3) = o(n), as observed by Cardinal, Téth and Wood ([11]). For other choices

of (m,d) we have too many cohyperplanar points as m?~t > d + 1. Overcoming
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this obstacle is the main goal of our work.

The work of this chapter appears in [39)].

1.3.2 ADDITIVE COMBINATORICS

The problem of comparing different expressions involving the same subset A
of an abelian group G (e.g. A+ A and A — A) is one of the central topics in
additive combinatorics. For example, one of the starting points in the study of
this field is the Pliinnecke-Ruzsa inequality that bounds |kA — [A| in terms of
|A| and |A + A].

Theorem 1.10 (Pliilnnecke-Ruzsa inequality [43], [47]). Let A be a subset of an
abelian group. Then, for any k,l > 1 we have

kA — LA||A[FH1< | A + AR

To illustrate the difficulties in determining the right bounds for such inequal-
ities, we note that even for the comparison of |A + A| and |A — A] the right
exponents are not known. In fact, the best known lower bounds for |A + A| in

terms of |A — A| have not changed for more than 40 years.

Theorem I1.11 (Freiman, Pigaev [16], Ruzsa [49]). Let A be a subset of an
abelian group. Then |A — AP/4< |A + Al

In the opposite direction, the best known lower bound is given by the follow-

ing result.

Theorem 1.12 (Hennecart, Robert, Yudin, [28]). There exist arbitrarily large
sets A C Z such that |A + A|< |A — A|*ro0) | where a: = log(2) /log(1 + v/2) ~
0.7864.

In 1973, Haight [26] found for each k and ¢ > 0, an integer ¢ and a set
A C Z, such that A — A =7Z, and |kA|< eq. Recently, Ruzsa [48] gave a similar
construction, and observed that Haight’s work even gives a constant ay > 0 for
each k with the property that there are arbitrarily large ¢ with sets A C Z, such
that A— A = Z, and |kA|< ¢' . The ideas in both constructions are relatively

similar, but Ruzsa’s argument is considerably more concise.
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In [41], Nathanson applied Ruzsa’s method to construct sets A C R with
A — A = R, but kA small, for rings R that are more general than Z,. In the
same paper, he posed the following more general question. Given a polyno-
mial F'(z1,x9,...,2,) with coefficients in Z, and a set A C Zy, write F(A) =
{F(ai1,as,...,ay):a1,...,a, € A}. His question can be stated as: given two
polynomials F, G over Z and € > 0, does there exist arbitrarily large NV and a
set A C Zy such that F(A) = Zy, but |G(A)|< eN?!

Let us now state the main result of the fourth part of the thesis, which an-
swers the first interesting cases of Nathanson’s question. Once again we recall

the notation
A%+ kA ={ajag +a +ay+ -+ a1 ay,a,d),. .. a, € A,
and more generally,
IA2 4+ kA = {ayay+- - -+ag_1ag+a, +dy+--+a) :ar, ay, . .., ay,d), ... a), € A}.

Theorem. Given k € Ny and any € > 0, there is a natural number q and a set
A C Zg such that
A—A=17, but|A’>+EkA|< €.

In fact we prove rather more.

Theorem. For l € {1,2,3}, any k € Ny and any € > 0, there is a natural
number q and a set A C Z, such that

A—A=17, but|lA*+ kA|< eq.

Moreover, we can take q to be a product of distinct primes, and we can take the

smallest prime dividing q to be arbitrarily large.

We shall discuss each of the cases [ = 1,2,3 separately. Note also an in-
teresting phenomenon in the opposite direction. Namely, if we are not allowed
freedom in the choice of the modulus, a statement like the theorem above cannot
hold. The reason is that, by the result of Glibichuk and Rudnev (Lemma 1 in

! Actually, Nathanson poses this question for more general rings R, but for R = Z, the

formulation we give here is a natural one.



[19]) whenever A C F), for a prime p, is a set of size at least |A|> ,/p, then
10A? =F, (and A— A = F,, certainly implies |A|> /p). Hence, unlike the linear

case, already for quadratic expressions we have strong obstructions.

The work of this chapter appears in [40].
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Part 1

Contractive Families






1.1 INTRODUCTION

Let (X,d) be a (non-empty) complete metric space. Given n functions fi,
fo,-o, fu: X — X, and a real number A € (0,1), we call {fi, fo,..., fn} a
A-contractive family if for every pair of points z,y in X there is ¢ such that
d(fi(z), fi(y)) < AMd(z,y). Further, we say that {fi, fa,..., fu} is a contractive
family if it is a A-contractive family for some A € (0,1). In particular, when f is
a function on X and {f} is a contractive family we say that f is a contraction.
Recall the well-known theorem of Banach [8] which says that any contraction on
a complete metric space has a unique fixed point.

An operator on X is a continuous map from space to itself. In [51], Stein

conjectured the following generalisation of the theorem of Banach:

Let {f1, fo,..., fn} be a A-contractive family on a complete metric space.
Then some composition of fi, fo,..., f, (i.e. some word in fi,..., f,) has a
fixed point.

In [7], Austin constructed a very nice counterexample to this statement.

Theorem 1.1 (Austin [7]). There is a complete metric space (X,d) with a

contractive family of operators { f, g}, such that no word in f, g has a fized point.
Furthermore, Austin asked if this is possible in a compact space.

Question 1.2 (Austin [7]). Does every contractive family of operators on a

compact space have a composition with a fixed point?

Our first result in this part of the thesis is that even with the additional

assumption of compactness, there still need not be a fixed point.

Theorem 1.3. There is a compact metric space (X, d) with a contractive family

of operators {f, g}, such that no word in f,g has a fixed point.

We remark that our construction provides the counterexample for any given
Ae (0,1).

Remarkably, Austin also showed that if n = 2 and f; and f, commute, the

conjecture of Stein will hold.
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With this in mind, we say that {fi, fa,..., fu} is commuting if every f; and

f; commute.

Theorem 1.4 (Austin [7]). Suppose that {f, g} is a commuting contractive fam-
ily of operators on a complete metric space. Then f and g have a common fixed

point.

Let us mention another very elegant result in this direction, which was proved
by Arvanitakis in [6] and by Merryfield and Stein in [35].

Theorem 1.5 (Arvanitakis [6], Merryfield, Stein [35], Generalized Banach Con-
traction Theorem). Let f be a function from a complete metric space to itself,

such that {f, f%,..., f"} is a contractive family. Then f has a fized point.

Note that there is no assumption of continuity in the statement of Theo-
rem 1.5. We also remark that Merryfield, Rothschild and Stein proved this
theorem for the case of operators in [34]. Furthermore, Austin raised the follow-
ing fascinating question which is a version of Stein’s conjecture, and generalizes

these two theorems in the context of operators.

Conjecture 1.6 (Austin [7]). Suppose that {f1, f2, ..., fa} is a commuting con-
tractive family of operators on a complete metric space. Then f1, fa,..., fn have

a common fized point.

Let us now state the second result that we establish in this part of the thesis,

which proves the case n = 3 and A sufficiently small:

Theorem 1.7. Let (X, d) be a complete metric space and let {f1, f2, f3} be a
commuting \-contractive family of operators on X, for a given X € (0,1072%).

Then fi, fo, f3 have a common fixed point.

We remark that such a fixed point is necessarily unique.
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2  CONTRACTIVE FAMILIES ON COMPACT SPACES

This chapter is devoted to the proof of Theorem 1.3, where we construct a
compact metric space (X, d) with a contractive family of operators {f, g}, such

that no word in f, g has a fixed point.

2.1 OUTLINE OF THE CONSTRUCTION OF THE

COUNTEREXAMPLE

We begin by providing some motivation for our steps. Suppose that (X, d), f, g
satisfy the conclusion of Theorem 1.3. Given any set S of points in our space,
since X is compact, we know that S is bounded. Let D be its diameter. Then,
it is not hard to show that the diameter of one of f(5) or ¢g(S) is at most 4\D.
To see this, pick any point z in S and consider set Sy = {y € S : Md(x,y) >
d(f(z), f(y))} and let S, = S\ Sy. If Sy = S, we are done, so suppose that
Sy # 0. If we can find y € Sy such that \d(y, z) > d(f(y), f(z)) for all z € S,
then, by looking at distance from f(y), the diameter of f(S) does not exceed
4XD. On the other hand, if there is no such y, then each point of g(Sf) is on
distance at most AD from some point in ¢g(S,) which is on distance at most AD
from g(z), so g(S5) has diameter at most 4\D.

This simple observation leads us to the idea that instead of considering dis-
tances between each pair of points in the wanted space, thinking about diameters
of sets should be much more convenient in our problem. With this in mind, we
develop the notion of ‘diameter spaces’, which will play a key role throughout
our construction. Due to their importance in our work, we include a proper

definition.

Definition. Let X be a non-empty set. Given a collection D of subsets of X,

we call (X, D) a diametrisable space provided the following conditions are met.
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(i) Given z,y € X, thereis U € D with z,y € U.
(i) HU,VeDand UNV £, then UUV € D.

We refer to elements of X as points and elements of D as diametrisable sets.
Further, if a function diam: D — R is such that whenever U,V € D intersect,
the inequality

diam(U) + diam(V') > diam(U U V)

holds, we call diam the diameter and (X, D, diam) a diameter space. We refer

to this inequality as the triangle inequality for the diameter spaces.

In a very natural way, one can use a diameter space to induce a pseudometric
on the underlying space, by simply finding the infimum of diameters of all the
diametrisable sets containing any two given (distinct) points. Furthermore, by
imposing suitable conditions on the diametrisable sets, one can get nice proper-
ties to hold for the pseudometric space.

In order to proceed further, we must first specify the underlying set. Hence,
let us look for the space that should, in some vague sense, be the minimal coun-
terexample. One of the possible ways to approach this issue is to fix a point xg,
and then examine what other points we can obtain. It is not hard to see that
completion of the set of all images that one can get by applying f and g to zg
is itself a compact metric space, and that f, g form a A-contractive map on this
subspace of X as well. Now, starting from zg we must include all the points
described, and we can actually map all these points that are obtained using f, g
from z( to finite words over a two-letter alphabet (this is a bijection if no two
results of distinct compositions of f,g applied to xy coincide). Therefore, our
construction will start from an underlying set X of all finite words over {a, b},
with the obvious functions f and g, each of which adds one of the characters a
and b to the beginning of the word that is given as input. Then, provided we
have a metric on X, we will take its completion, and hope that the metric space
that we get, along with f and g, satisfies all the properties of Theorem 1.3. This
is where diameter spaces come in play. We will introduce properties of a collec-
tion D of diametrisable sets on X, that will guarantee that the completion of the
induced pseudometric space, along with f and g, (which are the concatenation

functions described), is the desired counterexample. Being a relatively long list,
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we refer the reader to Corollary 2.9 to get an idea of what conditions we impose
on D. The collection D will in fact be a sequence of subsets of X, denoted by
So, 51,92, .. ..

2.2 INDUCING A COUNTEREXAMPLE FROM A DIAMETER

SPACE

2.2.1 DIAMETER SPACES AND THEIR CONNECTION WITH METRIC SPACES

In this subsection we show how one can obtain a pseudometric space from
diameter spaces. The following proposition tells us how to induce pseudometric

on the underlying set.

Proposition 2.1. Let (X,D,diam) be a diameter space. Define a function
d: X? = R by d(x,y) = inf diam(U) when z and y are distinct, where infimum
is taken over all diametrisable sets that contain points x and y, and d(x,y) = 0

otherwise. Then d is well-defined and (X, d) is a pseudometric space.

Proof. Firstly, suppose we are given two distinct points x and y. Then the set
S of all values that diameter of a diametrisable set containing x,y can take, is
non-empty and bounded from below by 0, so inf S exists, and d is well-defined.

To prove that d is a pseudometric, we just need to show that the triangle
inequality holds, since d(z,z) = 0 holds for all points = and d is symmetric by
construction. Let z,y,z € X. If any of these points are equal, we are done.
Otherwise, given ¢ > 0 we can find sets U,V € D such that z,y € U, y,z € V,
d(z,y) < diamU < d(x,y) +€/2,d(y,z) < diamV < d(y,z) + €/2. But U and
V intersect, hence U UV is also a diametrisable set, and further diam(U U V') <
diam(U) +diam(V') < d(z,y) +d(y, 2) +¢€, so d(x, z) < d(x,y) +d(y, z) + €. But
this holds for any positive €, proving the triangle inequality, and therefore the

proposition follows. Il

The pseudometric that we constructed from a given diameter space will be
referred to as the induced pseudometric by diam.
Note that given any metric space (X, d) we can construct a diameter space

(X, D,diam) by taking diametrisable sets to be the finite subsets of X, and the

17



diameter function diam to have the usual meaning, that is for any U € D, we
set diam(U) to be maxd(x,y) where maximum is taken over all pairs of points
in U. Then, the metric d coincides with the pseudometric induced by diam. In

this way, we can view any metric space as a diameter space at the same time.

2.2.2 REQUIRED PROPERTIES OF THE DIAMETER SPACE

In the previous subsection we saw how to obtain a pseudometric space from
a diameter space. To construct a counterexample to the conjecture, we will use
that procedure, but as the proposition only guaranties that we get a pseudomet-
ric space, we need to add additional properties of a diameter space to ensure
that we reach our goal. First of all, we work with specific underlying set X and
the diameter function which are consistent with the nature (or more precisely
the geometry) of the problem. As noted before, we are essentially considering
compositions of functions applied to an element of the given metric space satis-
fying the assumptions of the conjecture, and therefore we will work with points
of X being finite words over the alphabet consisting of two letters ¥ = {a, b},
including the empty word. Before we proceed further, let us introduce some

notation.

Notation. If u,v are two words of X, we write uv for the word obtained by
writing first v then v. Say that u is a prefiz or an initial segment of v, if there is
another word w with v = ww, and if this holds write u < v. The length of a word
u, denoted by [(u), is the number of letters in u. Characters are considered to
be words of length one simultaneously as being characters. When S is a subset
of X and u € X, we write uS = {us : s € S} and Su = {su: s € S}. Given
a positive integer n and word u, write u™ for uw ... u, where u appears n times.
The empty word is denoted by (. Finally, we occasionally allow infinite words
in our arguments (although these are not elements of X'), and write u*> to stand
for the infinite word obtained by writing consecutive copies of u infinitely many

times.

We will take our functions f,g: X — X to be given by f(u) = au and
g(u) = bu for all words u € X. Then every word is actually equal to the result

of applying the corresponding composition of functions to the empty word. On
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the other hand, having in mind the contraction property of the family of the
functions that we want to hold, we take D to be a sequence of subsets of X,
namely D = {Sp, S1,9,...} and set diam(S;) = A* for some fixed A € (0, 1).
Now, we just need to specify what needs to hold for D so that we get a coun-
terexample.

Let us start with ensuring that (X, D, diam) is a diameter space. We accom-

plish this by requiring the following property.

A1 For any non-negative integers i < j, if S; NS; # 0, then S; C ;. Also,
So=X.

If this property holds, then we see that given any two intersecting diametrisable
sets S; and S;, we have S; US; = S; or S; US; = §;. Therefore, (X,D) is
a diametrisable space and the triangle inequality holds for diam, thus this is

indeed a diameter space.

Consider now (X, d), where d is the pseudometric induced by diam. To make

d non-degenerate, we introduce another property.
A2 Each point belongs to only finitely many diametrisable sets.

If A2 holds, since diam is always positive, and the infimum defining d(z, y)
for z # y is actually minimum taken over finitely many positive values, we get

that d is non-degenerate, and thus a metric.!

As far as the compactness is concerned, the fact that we can obtain a compact
space from a totally bounded one by taking its completion is what motivates our

following step. Hence, another condition is introduced.

A3 For any positive integer IV, there are integers i1, o, . . ., i, greater than N,
such that X \ (S;, US;, U...UJS,,) is finite.

Proposition 2.2. Provided D satisfies A1-A8, the completion (X,d) of the

metric space induced by (X, D, diam) is compact.

Proof. By the comments above, we just need to show that (X,d) is totally
bounded. Let ¢ > 0 be given, and choose N for which AV < ¢/2 holds. By

Tt is easy to see that this is in fact an ultra metric.
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A3, there are iy,1s,...,i, > N for which the union of S;,, 5,,,...,95;, covers all
but finitely many points, denoted by y1,¥a, ..., ¥n. Then, each S;, is contained
in By, (¢€) for some z;, € S;,, and y, € By, (€), so X is covered by finitely many

open balls of radius ¢, and so the metric space is totally-bounded. Il

Say that a Cauchy sequence (x,),>1 is proper if there is no N with zy =
Tny1 = .... The three conditions described so far give us a nice characterisation

of the proper Cauchy sequences in (X, d), whose elements lie in X.

Proposition 2.3. Suppose that D satisfies properties A1-A 8. Then a sequence
of points in X is proper Cauchy with respect to the induced metric if and only if
for any given positive integer M there is m > M such that S, contains all but

finitely many points of the sequence.

Proof. Only if direction. Let (x,),>1 be a proper Cauchy sequence in X and
let a positive integer M be given. Take a positive € < AM. Then, as the given
sequence is Cauchy, we have N such that m,n > N implies d(x,, x,,) < €.

Now fix any m > N and let I = {i > M : In > N,z,,x,, € S;}. By
the definition of d, we know that this set is nonempty, therefore has a minimal
element 4g. If n > N then d(z,,7,) < ¢ < AM, so there is j > M with z,,, x,,
both belonging to S;. But z,, € S;, so S;,,S; intersect and by the choice of g
and property Al we have z, € S; C S;,, so almost all points of the sequence

are contained in S;;.

If direction. Given € > 0 take M such that AM < e. Then there is m > M with
S, containing almost all points in the sequence, and the distance between two
points in S, is at most A1 < ¢, so the sequence is Cauchy. If it was not a
proper one, the point which is equal to almost all of its members would belong

to infinitely many of the sets .S; which is impossible by A2. O]

Proposition 2.4. Under the same assumptions as in the previous proposition,

no proper Cauchy sequence in (X,d) converges to a point in X.

Proof. Suppose that a point x € X is a limit of a proper Cauchy sequence
(z,) in X. First of all, if 7, € X \ X, substitute x,, by a point y € X such
that d(z,,y) < id(z,,z). The newly obtained sequence now lies in X, and is

still proper Cauchy, with unchanged limit. As z € X belongs to S; for only
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finitely many ¢, we have B,(\") N X = {z}, for sufficiently large n, which is a

contradiction. O

Lemma 2.5. Let (X,d) be the metric space considered so far. Suppose F is a
function on X that preserves Cauchy sequences, that is given Cauchy sequence
(Tn)n>1, the sequence of images (F(xy,))n>1 is Cauchy as well. Then, extension
of F to the completion of the space given by F(x) = lim, o F(x,), where (x,)

is any Cauchy sequence in X tending to x in X \ X, is continuous.

Proof. Firstly, we should prove that such an extension of F'is well-defined. Take
arbitrary z € X \ X, and thus since X is completion of x, there must be Cauchy
sequence in X whose limit is z. But the image of this sequence under F'is Cauchy
as well, so it has limit in X, so we just need to show its uniqueness. Therefore,
suppose that (x,),>1 and (y,)n,>1 are two sequences in X tending to x. Merging
these two sequence into (t,),>1, where to,—1 = @y, ta, = yn, implies that (¢,),>1
is Cauchy, hence (F'(t,))n>1 is also Cauchy, so (F(z,))n>1 and (F(y,))n>1 have
the same limit, as required.

Secondly, we should prove that F is continuous in X. Let (z,),>1 be sequence
tending to some z € X. If z € X, then sequence is eventually constant and equal
to x, hence (F(x,))n>1 trivially tends to F(z). Otherwise, x ¢ X, so consider
new sequence (t,),>1 given as follows. If z,, € X, set t,, = x,,, and if this does not
hold, there is Cauchy sequence (Y, )m>1 in X whose limit is x,,. By assumption,
(F'(Ym))m>1 is Cauchy in X, and as we have shown previously, it tends to F'(z,,).
Hence, for sufficiently large m, we have that d(z,, ym), d(F(z,), F(ym)) < 1/n,
so set t, = ym,. Thus, as for all n we have d(z,,t,) < 1/n, we have that (¢,),>1 is
Cauchy in X and tends to z, so its image under F' is Cauchy sequence with limit
F(x), but d(F(z,), F(t,)) < 1/n holds for all n, thus lim,,_,., F(x,) = F(z), as
required, implying continuity of F. O]

This lemma suggests the fourth property of the diametrisable sets.

A4 1fi; <iy < ... areindices such that S;, D S;, D ..., then, given any N, we
can find n,,n, > N for which S,,, contains all but finitely many elements
of aS;,, for some m, and S, contains all but finitely many elements of bS;,

for some p.
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Proposition 2.6. If D satisfies A1-A4, then f,g : X — X, defined before
and then extended as in the previous lemma are continuous with respect to the

induced metric.

Proof. We will show the claim for f, proof for g follows the same lines. We only
need to show that f preserves Cauchy sequences in X, in fact, it is sufficient
to prove that if (x,),>1 is proper Cauchy, then (f(z,)),>1 is Cauchy. Thus,
suppose we are given a proper Cauchy sequence (x,),>1 in X, so there are
indices i1 > 1,4y > 2,... (without loss of generality i; < iy < ...) such that
S;, covers all but finitely many elements of the sequence for every k. Due to
intersections and A1l we have S;; D S;, D .... Let € > 0 be given and take N
which satisfies AV < €. Further, by A4 there is n > N and some m for which
S, contains all but finitely many elements of a5; . Exploiting the fact that
almost all elements of (f(z,)),>1 are contained in aS;, yields that there is M
such that k,1 > M implies f(x), f(z;) € S,. Hence d(zy,7;) < A < € holds
when £, > M, as required. ]

Next property is defined in order to make {f, g} a contractive family.

A5 For any ¢ € {0,1,2,...}, there are j > ¢ and a character ¢ € {a,b}, such
that CSZ' C Sj.

Proposition 2.7. If D satisfies A1-A5, then f,qg form a \-contractive family
in (X,d).

Proof. Let us consider first z,y € X. Taking the largest possible n for which
x,y € S,, by A5 we have m > n such that without loss of generality aS,, C S,,,
thus d(f(z), f(y)) = d(az,ay) < X™ < X+ X" = M\d(z,y), as wanted. (If we had
character b instead, we would get contraction when applying g.)

In the general case, when z,y € X, we can find two sequences in X, (Tn)n>1
tending to x, and (y,)n>1 tending to y (if one of these is already in X, then take

trivial sequence). Then, by the previous case, one of f, g contracts infinitely

many pairs (x,,¥,), f say. Let indices of those pairs be i; < iy < .... Then,
Ad(z,y) = Mmoo d(,,, Yi,, ) 2 oo d(f (23,), f(yi,)) = d(f(x), f(y)), since
f is continuous, as required. 0
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Proposition 2.8. Suppose that a function F, which is a word in f and g, has a
fized point. Let w be the nonempty word which corresponds to F, i.e. F(z) = wx
for all x. Then there are infinitely many v such that there is u; in S; with wu;

also being a member of S;.

Proof. Suppose F' fixes u. Then u ¢ X, so take (x,),>1 in X converging to w.
Hence (wz,,),>1 converges to u = F/(u) as well, so merging these two sequences
together, we get a Cauchy sequence, and the result follows from Proposition 2.3.

O

Based on this proposition, we now introduce the final property of the di-
ametrisable sets that we want to hold. The following corollary does this and

sums up our work so far.

Corollary 2.9. Let A € (0,1). Consider a collection D of diametrisable subsets
of X that obeys:

A1 The set Sy is the whole of X and given any nonnegative integers i < j,

A2 Any point in X belongs to only finitely many diametrisable sets.

A3 For any positive integer N, there are integers iy, is, . .., 1, greater than N
such that X \ (S;; U S, U...US; ) is finite.

A4 Ifiy <iy < ... areindices such that S;;, D S;, D ... then, given any N, we
can find ng,ny > N for which S,, contains all but finitely many elements
of aS;
bS;, for some p.

for some m, and S,, contains all but finitely many elements of

m

A5 For any i € {0,1,2,...}, there is j > i such that ¢S; C S; for some
character ¢ € {a,b}.

A6 Given a nonempty word w in X there are only finitely many diametrisable

sets S; with u; € S; for which wu; € S;.

Then, with constructions described above, (X, d) is a compact metric space with
continuous functions f,g: X — X that form a A-contractive family, but no word

m f and g has a fized point.
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2.3 CHOOSING THE DIAMETRISABLE SETS

Our main task now is to find a collection of diametrisable sets D which has
the properties A1-A6. The obvious candidates for the subsets in the desired
collection are W, = wX, where w is any word in X. Immediately, we observe
that these, ordered by length of w, then by alphabetical order (so that Sy =
Wy, S1 = W,,...) satisfy all the properties we demand except for A6. Hence,
we will use these as the pillar of our construction, however, to make A6 hold,
we need to modify these slightly. The issue with the sets described is that given
any nonempty word w € X, we allow W, to contain all the initial segments of
w™. With this in mind, we say that a nonempty word w in X is forbidden if
there is another finite word u such that w is a prefix of u* and l(w) > I(u)?.

Otherwise, say that w is available. For example, (), a, abab are available, while

ababa is forbidden.
Proposition 2.10. Given a word w € X, either aw or bw is available.

Proof. If w = (), aw is available. Suppose [(w) > 1 and that the claim is false, so
aw is an initial segment of w(® for some non-empty wy, bw is an initial segment
of ws® for some non-empty wy and [(w) > I(w;)?, [(wy)?. We can permute w,
cyclically to v; so that avy® = w}® holds, and we can correspondingly trans-
form wy to vy. Observe that the last character of v; is a and of vy is b. This
way, w becomes a prefix of v for i = 1,2. But l(w) > I(v1)?, I(v2)?, hence
I(w) > I(v1)l(vs) and so v = ! by comparing them as initial segments of
w. However, this implies equality of the last characters of v; and vy, which is

impossible. The claim now follows. O]
In the same spirit, we prove the following statement.
Proposition 2.11. Given a word w € X, either wa or wb is available.

Proof. Suppose, on the contrary contrary, both are forbidden. Let t;, %5 be words
such that wa < #5°, wb < t5°, l(wa) > I(t1)?, I(wb) > I(t3)*. Observe that both
tll(m and t;(tl) are prefixes of w, so being of the same length, they coincide. But,
then ¢9° = t3°, which is a contradiction, as otherwise wa # wb would be two

prefixes of the same length of this infinite word. ]
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Corollary 2.12. Let w be a non-empty word. Let u be an initial segment of

oo

w™, and suppose l(u) > l(w)?. Take character s such that v = us is not a prefix

of w>®. Then v is available.

Say that a word w is minimal if it is non-empty and given non-empty u for

which 4> = w* we have [(w) < l(u).

Proposition 2.13. A non-empty word w is not minimal if and only if there is

word u such that w = u”, for some k > 2.

Proof. If w = u* with k& > 1 then I(w) > I(u) and w™ = u>, therefore w is
not minimal. Suppose now that we have non-empty w, for which there exists
u such that u>® = w™, but {(u) < l(w). Write d = ged(l(u),l(w)), so l(u) =
qd, l(w) = pd, for some positive integers p, ¢, in particular p > 2. Further u? =
wd = V1Vs ... Vpg, Where vy, vo,...,v,, are of length d. Considering successive
copies of u we have that v;;, = v;, when ¢ < pg — ¢ and similarly by looking at
copies of w we have v;y, = v; when ¢ < pg —p. So v; = Vpys = =+ = Up(g—1)+i

for i € [p], (where for a positive integer N, [IN] denotes the set {1,2,..., N}).

Observe that vy = v9g = -+ = vp, and as p and ¢ are coprime ¢, 2q, ..., pq take
all possible values modulo p hence v; = vy = - -+ = v,,, allowing us to conclude
w=7v},p>1 Il

Having established these results about the words, we are ready to choose the

diametrisable subsets D of X. Consider the following subsets.

For all available words w, including (), we include W, in D. We refer to these
as the W-type sets, i.e say that S; is of W-type if S; = W, for some available

w.

For all minimal words w, all integers p,r such that p € {2' : i € Ny} and
0<r<p-—1,weset Ay,, = {u € X : u initial segment of w™,l(u) € {r+ip:
i € N}, i(u) > I(w)?}. Call these sets the A-type sets.

Finally, for each minimal word w and k € N, we define B, ;, which we refer
to as the B-type sets. For these, we need additional notation.

First of all, for each k € N we define an infinite arithmetic progression I,. We
set Iy =N, Iy = I} \{min I; } = N\ {1}. For each integer m > 2, if k is an integer
such that 2™ —1 <k <2m 4 2m~1 — 2 we set I, = {s+i-2™"1:i € Ny} where
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s = min I%HM_Q, when k is odd; if k is even, then put I, = {s+7-2™"1:i € Ny}

where s = min I%Hm_Q +2m=2_ On the other hand, if k is an integer such that
2m 4 2m=l 1 <k < 2mFl — 2 then we set I, = I _gm—1 \ {min Iy_om-1}.

Note that, given a minimal word w and n € N, by Corollary 2.12 we get a
unique word w,, such that: w, is of the form v,s, where v, < w* and s, is
a character, w, is available, and [(w,) = l(w)? + n. At last, we define B, =
Uielk Wwi-

Thus, we set
D ={W, :w € X,w is available}
U{Aypriw € X,p,7 € Z,w is minimal,p € {217 € Ng},0 <r <p— 1}
U{Buyx :w € X,k € N,w is minimal}.
To illustrate the definition of B-type sets, we list a couple of examples.
Iy = {4,8,12,16,... 1,
Ba7 = Waaaab Y Waaaaaaaas Y Waaaaaaaaaaaab Y - - -
I = {9,13,17,21,...},
Bia,13 = Whabababababaa Y Whaabababababababaa Y Whaabababababababababaa U - - - -

Let us make a few easy remarks about D. Fix a minimal word w. Then we
have By1 = W \ (Aw10U {w!™}). Also, if m > 2 is an integer, and k is an
odd integer that satisfies 2™ —1 < k < 2" +2m~1 —2 then I;€2;1+2m_2 =L, Ulp. .

Furthermore, if Iy, N Iy, # () then I, C I}, or vice-versa.

For any U € D, observe that there is a unique word in U of the shortest
length, which we will denote by o(U).
Let us now establish a few claims about the structure of D, which will be

exploited in the rest of the proof.

Proposition 2.14. IfU # V are two diametrisable sets and they intersect, then
one is contained in the other. Furthermore, if they are not identical, then UAV
1s infinite.
Proof. We are going through possible types of U and V.
Case 1. U and V are W-type sets.
Suppose U = W,,,,V = W,,, without loss of generality [(w;) < l(wy).
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Case 2.

Case 3.

Case 4.

Case 5.

If wy is not initial segment of ws, then U and V' do not intersect, so we
must have W,,, D W,,, thatisU D V. If U # V, then w; # w,, and hence
Wis C (U\V), where s is character for which wy s is not prefix of w,. We

will use this case for showing the other ones.

U and V are A-type sets.

Suppose U = Ay, pr.ry V' = Auwypore, Where wy, wy are some minimal
words, and py, pe, r1, 9 are suitable integers. There is word w € U NV so
w is initial segment of w$® and ws°, while [(w) > I(w)?, I(wg)?, from which
we deduce that wll(wQ) = wé(wl), being the initial segment of w of length
[(wy)l(wsy). Therefore w® = w3 and due to minimality w; = wy. Now,
due to definition of A-type sets for fixed minimal word, we get U C V or

vice versa and infinite symmetric difference.

U is a A-type set, V is a B-type set.

Let w € UNV. This makes w a prefix of some t*°, where ¢ is minimal and
[(t)? < l(w), as U = Ay, p, v being suitable integers. Also w € W, C V,
some available v, so as v is an initial segment of w, hence t>°, we have
I(v) < 1(t)?, since v is available. But then U C Ay 19 C Wuwy C W, C V,
which proves the first claim.

On the other hand U has no available words, but V' has infinitely many

of these, which gives the second part.

U is a A-type set, V is a W-type.

Same proof as in the Case 3.

U and V are B-type sets.

Suppose U = By, 1,V = By, k,, for some minimal words wy, wy and
positive integers ki, ke. Let w € UNYV, thus w € W,, C By, and
w € W,, C By,k- By Case 1, without loss of generality, W,, C W,,
holds.

If v; = vy, letting u; be v; without the last character, gives us prefix of
w0 € [2], and I(w)?, [(w2)* < I(uy), so as before w® = ws® and due to
minimality w; = wy. So U C V or V C U, due to construction of B-type

sets for a fixed minimal word, and also the second part of the claim follows.
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Case 6.

On the other hand, if vy # vy, then vy < uy, u; being vy after omitting
the last character, as before. Further we have that u; is a prefix of w{®, so
vy i too, but vy is available, hence [(v9) < I(w;)?, hence U C W,, C V.

For the second part of the claim, consider any other W-type set con-

tained in V, distinct form W,,.

U is a B-type set, V' is a W-type set.

Let V = W,, some available word v, and w e UNV,sow € W, C U.
It W, c W,, then V.C U, so we are done, and second part follows as in
previous case. Otherwise, by Case 1, W, C W,, so v # u and v < w.
We have U = B, ), some minimal ¢ and integer k, so v < t* and available
so l(v) < I(t)?, hence U C W, = V. Also, (W, \U) D Wuw \ Bi1 =
Agq U {t®} which is infinite. O

Proposition 2.15. If U is any of the diametrisable sets, then there are unique
Vi, Vo (up to ordering) which are proper subsets of U in D, such that Vi UVy has

almost all elements of U.

Proof. Firstly, let us show the existence of such sets. Of course, we go through

the possible types of set U. The only non-trivial case, that is the one that does

not directly follow from construction of D is the third one.

Case 1.

Case 2.

Case 3.

U is of A-type.
Say U = Ay pr, some minimal w and integers p, . Then, we can take
Vi= Aw,2p,rv Vo= Aw,2p,p+r'

U is of B-type.
Say U = B, , some minimal w and integer k. Then, by construction,
we have either B, = By, U By, some two integers £y, kg, or By, =

By k+1 U W, some available v, giving us the needed sets V7, V5.

U is of W-type.

Suppose U = W, for some available w. If both wa and wb are available,
we can take Vi = W, and Vo = W,.

Otherwise, ws is not available for some character s. Therefore, there is

a word ¢ such that ws is prefix of >, and I(t)? < l(ws) = I(w) + 1. But
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w is also a prefix of > and available so (t)? > l(w) so I(w) = I(t)?, i. e.
w = t'®),

The next thing to do is to establish the minimality of ¢. Let u be
any word such that [(u) < [(f) and t* = wu*>. Then, as before ws is
an initial segment of u™ and I(u)? < I(ws) = I(w) + 1, so by the same
arguments we get [(w) = [(u)?, thus I(u) = I(t), as wanted. But then
Wy = A1 U By U{w}, proving the existence part of the claim.

Suppose now that U’ is any set strictly contained in U. Then, by Proposi-
tion 2.14, U\ U’ is infinite, so U’ cannot contain both Vi, V,. Also, from the same
proposition we get that V; and V5 are disjoint, as otherwise, one must contain
the other and thus be equal to U. So, U’ intersects at precisely one of Vi, V5,
since all diametrisable sets are infinite. W.l.o.g. U’ intersects V;. If V; C U’,
then U’ \ Vj is infinite, and thus intersects V5, which is impossible. Hence, by
Proposition 2.14, U" C V;. So, if we had any other V/, VJ with the property in
assumption, we would have V] C V; and Vj C V3, reordering if necessary, (we
cannot have both sets included in the same V;), so unless these are both equali-
ties VU VL \ (V/UVY) would be infinite, yielding a contradiction, and concluding
the proof. Il

Corollary 2.16. If U is a diametrisable set with proper diametrisable subsets
Vi, Vo, U’, such that U \ (V1 U V3) is finite, then Vi, Vs are disjoint and one of

them contains U’.

Proposition 2.17. Given word w, there are only finitely many diametrisable

sets containing it.

Proof. 1f w € W, for some u, then u is prefix of w, hence there are only finitely
many such sets containing w.

If we Ay, then, [(w) > p,l(t), so there are only finitely many choices for
t,p, .

Finally, suppose w € Byj. Length of w must be greater than [(¢)?, which
gives us finitely many choices for minimal word ¢. Fix t. Recalling the definition
of B-type sets, we have By = Ujer, Wiy, where [(w;) = I(t)? +i. But if m is a
nonnegative integer, then min I, > m for £k > 2™ — 1. Thus, for such k, we get

[(c(Bk)) = U(t)* +m, so w € By, for only finitely many k, as desired. O
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W

w, W,

Agto B, Ap1g By,1

Aupg Aga1 W, D2 Apao Apa, Wi, DBy

Adao Astz Apar Agas Wae  Waw  Bas Bua  Avao Apas Avar Apas Wia Wi, Bz Bua

Figure 2.1: Structure of the collection of diametrisable sets

These claims serve us to better understand the structure of D. In particular,
we can view D as a binary tree whose nodes are the diametrisable sets, the root
is Wy and given a set U € D, its children Vj, V5 are given by Corollary 2.16.
What is not clear, however, is that the tree so defined actually contains all the
diametrisable sets. But, given any such a set U € D, we have either U =
Wy or U is contained in one of the children of the root, by Corollary 2.16.
Proceeding further in this fashion, either we reach U, or we get an infinite
collection of diametrisable sets all containing U. But, that implies that if we
do not reach U, its elements belong to infinitely many members of D, which
contradicts Proposition 2.17. Hence this binary tree has precisely D for its set
of nodes. Moreover, to say that a diametrisable set U; is a subset of another
such set U, is equivalent to having U, as an ancestor of U; in this binary tree.
To depict what has just been discussed, we include Figure 2.1 which shows the

first few layers of tree. We refer to this tree as 7.

2.4 ORDERING D

In order to finish constructing the counterexample, we must make D well-
ordered, so that then we know which diametrisable set is which S,,. Defining
such an order, and proving that it is in fact what we need, is the purpose of this

section.
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Consider the relation < on D, given as follows: if U # V', we say U < V if
any of these holds:

01 i(o(U)) <l(a(V)),
02 I(o(U)) = I(o(V)) and U SV,

03 [(o(U)) =l(c(V)), none is contained in the other and we have that either
U is of A-type, but V is not, or U is of B-type and V is of W-type,

04 [(o(U)) = l(c(V)), none is contained in the other, they are of the same
type and o(U) is alphabetically before than o (V).

Proposition 2.18. If U <V by O2, then either:
(i) both U and V' are A-type, or,

(i) both U and V are B-type, or,

(iii) U is B-type, V is W-type.

Proof. Regard D as a binary tree 7 that was described in the final remarks of
the previous section. Then, U D V tells us that U is an ancestor of V', and as
U <V by 02, we have 0(U) = o(V). Thus, the shortest word must be the
same for all sets on the path from U to V in 7. Now, we analyze the splits,
i.e. given a node, what its children are. Returning back to the choice of the
diametrisable sets, we see that A-type sets always split into two A-type sets,
and B-type sets split into B and W-type sets. We conclude that the claim is
true if, when W-type set splits into an A-type and a B-type set, the shortest
word of the parent is not in any of the children. But, suppose that we have such
a situation, a set T' = W,,, whose children are A;;( and B;;. From the proof
of Case 6 of Proposition 2.14, recall that w = #®. But then w ¢ A1 and
w ¢ By, as desired. O

Proposition 2.19. Relation < on the chosen sets is a total order. Furthermore,

the collection of chosen sets is well ordered under <.

Proof. 1f U,V are two distinct sets among the chosen ones, we want that pre-

cisely one of U <V, V < U is true.
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Suppose neither of these holds. Hence o(U) = (V). But then their inter-
section is non-empty, hence one is contained in the other, so U < V or vice versa
by O2.

Now, assume that both hold. Therefore, I[(o(U)) = I(o(V)), none is con-
tained in the other (otherwise we have U C V and V C U, thus U = V), they
are of the same type, and further o(U) = o(V'). But as before, these must in-
tersect, leading us to a contradiction.

Having proved the trichotomy, we now move to establishing transitivity of
the relation. Suppose we have three chosen sets U, V,T such that U < V < T,
from which U # V, V # T follows. Further, we cannot have T" = U as this
would imply U < V' < U. Hence, we can assume that all three sets are distinct.
If O1 holds for U < V or V < T, then it also holds for U,T. So, assume this is

not true. Then we have the following cases:

Case 1. U <V by 02,V < T by O2.
Then U 2V 2 T,s0U < T by O2 as well.

Case 2. U <V by 02,V < T by O3.
By Proposition 2.18, we see that (as V' cannot be of W-type), U and V
are of same type. As V C U and V ¢ T, then U ¢ T, so either T' C U
and U < T by O2, or U < T by O3.

Case 3. U <V by 02,V < T by O4.
As above, we get U ¢ T. If T' C U then T > U. Hence, assume that
T ¢ U. Suppose that U is B-type and V is W-type, thus U < T by O3.
Otherwise, by Proposition 2.18 U and V have the same type, hence so does
T, and o(U) = o(V) (because of inclusion) so U < T by O4.

Case 4. U <V by O3,V < T by O2.
If T"> U, then U C V, which is impossible, so U ¢ T. If T' C U, we are
done, otherwise from Proposition 2.18 we obtain U < T by O3.

Case 5. U <V by O3,V < T by O3.
Thus U is of A-type, V is of B-type, T is of W-type. By Proposition 2.18,
we conclude that U ¢ T, T'¢ U, so U < T by O3.
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Case 6. U <V by O3,V < T by O4.
By Proposition 2.18, U ¢ T, so either T' C U giving U < T by O2, or
none is contained in the other and U < T" by O3.

Case 7. U <V by 04, V < T by O2.

Having U as a subset of T implies U C V which is impossible. SoU ¢ T
and if T C U, then U < T by O2. Otherwise, unless U and T are of the
same type, we have U < T by O3, due to Proposition 2.18. Finally, from
inclusion we deduce o(7T) = o(U) and thus U < T by O4.

Case 8. U <V by O4, V <T by O3.
It U C T, by Proposition 2.18, we reach a contradiction. Hence U D T,
so U < T by O2, or U <T by O3 otherwise.

Case 9. U <V by O4, V <T by O4.
If T2 U or vice versa, we have o(7') = ¢(U) which is impossible. As
all three sets are of same type, we get U < T by O4.

Finally, given a subset P of D, consider its subset P’ of those sets U € P
such that {(o(U)) = min{l(c(V)) : V € P}. This is finite by Proposition 2.17,
hence we can find the minimal element of P’ with respect to <, which is smaller

than any member of P\ P’ by O1, making D well-ordered under <. [

Hence, as D is countable, we can take Sy = minD and for k& > 1, S;1 =
min(D \ {50, S1,...,5}). Observe that for any given U € D there are only
finitely many words of length at most [(c(U)). Proposition 2.17 then tells us
that there are only finitely many V' € D such that [(o(V)) < I(¢(U)). Hence,
there are only finitely many V' € D such that V' < U, so U = Sj, for some k € N.
Therefore, {Sy, S1,52,...} = D. Note also that Sy = X = Wy because Wy is

the only set whose shortest word has zero length.

2.4.1 PROOF THAT D SATISFIES THE REQUIRED PROPERTIES

All that is left is to show that Sy, Si,... satisfy A1l - A6. Having done the
most of the work already, the proofs of the following claims will either be rather

short or the obvious case-examination.
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Proposition 2.20. (S,),>0 satisfy A1.

Proof. Let S;, S; be such that ¢ < j and they intersect. Thus, S; < S}, [(c(5;)) <
l(0(S;)) and also S; C S; or S; D S;, by Proposition 2.14. But if S; C S,
then we must have I(0(S;)) = {(0(S;)) and hence S; < S; by O2, which is a
contradiction. Also Sy = X. Il

Proposition 2.21. (S,),>0 satisfy A2.
Note that this is Proposition 2.17, but we include it here for completeness.
Proposition 2.22. (S,,),>0 satisfy A3.

Proof. Let N be given. By Corollary 2.16, given S;, we can find 5j, S, disjoint
subsets of S;, which cover all but finitely many elements of S;, therefore ¢ < 7, k
by O1 or O2. So, we can start with Sy, and perform such splits until we are
left with sets Sy, Sma, - - - s Sy, With mq, ma, ..., my > N, which cover almost

all elements of X, as in each split we lose only finitely many elements. [
Proposition 2.23. (S,,).>0 satisfy A4.

Proof. Suppose that S;; D S;, D ... for some i; < iy < .... As usual, we

consider different cases.

Case 1. There is set of A-type among these.
Let S;, be such a set. As A-type set splits into A-type sets, we have that
whenn >k, S;, = Ay, r,, some minimal word w, and integers p,,, r,, and
Pni1 > Pn, SO in fact p,1 > 2p,, as these are powers of 2. In particular,
we deduce that for sufficiently large n, p, > nl(w) and thus w" is prefix of
all words in \S;, implying S;, C Wy,». By Proposition 2.10, one of aw™, bw™
is available, w.l.o.g. the former is true, hence aS;, C Wyyun = Sj,, some j,.
Consider the cyclic permutation u of w such that sw = us, s being the
last character of w. Let v be a word such that v>*° = u* and [(u) > [(v).
But then for the cyclic permutation ¢ of v such that for character s’ we have
't = s, we have 't = v™® = sw™, so l(u) = I(t) > l(w) = l(v), proving
the minimality of v. If s = a, we would have that aw™ is not available
as it would be initial segment of u*, but I(u) = [(w). Hence s = b, and
bS;, C Ay p,r = Sj,, where r = r, + 1, unless r,, = p, — 1 and then r = 0,
jn suitable index. As j, tends to infinity as n does, A4 holds in this case.
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Case 2.

Case 3.

There are no A-type sets, but there are infinitely many of W-type.

Denote W-type sets among these by W,,, 2 Wy, 2 .... As w; is prefix
of w;yq, for all i, these define an infinite word w whose initial segments
the words w; are. By Proposition 2.10, w.l.o.g. aw; is available infinitely
often, so we can take I/Vawi1 for suitable i; < iy < ..., to establish a part
of the claim.

Similarly, if there are infinitely many initial segments of bw available,
choosing these and their corresponding W-type sets establishes the claim.
Suppose contrary, i. e. there is m such that prefixes of bw of length
greater or equal to m are all forbidden. Denote by w, initial segment of
bw of length n, and let ¢, be the shortest word such that [(¢,)? < I(u,)
and w,, is initial segment of ¢2°. Now, suppose there is no n > m such that
[(tne1) > U(t,), hence U(ty,) > U(tyme1) > ..., s0 bw = t2°, some n. But this
means that w; are forbidden from some point, resulting in a contradiction.
So, there must be such an n > m, pick the smallest possible. Hence u,, 1
is not the initial segment of ¢.°, but w,, is both initial segment of ¢;° and
0oy, Further, I(uy,) > 1(t,)?, {(th41)? so as before, t2° = 1%, but u,4q is

prefix of the latter, but not former, giving us a contradiction.

Almost all sets are of B-type.

Given S;, = By, let s be the last character of w, so sw!®) is forbidden.
Let u be the cyclic permutation of w such that sw = us, and so u is minimal
as well, by arguments in Case 1 of this proof. Then, sB,; = B,; or
sBy k= By \ W, for suitable index [ and word v, so take S;, = B,,;. Let &’
be the character not equal to s and u be o(B,, ;) without the last character.
Then as su is forbidden, so s'u is available and s'B,,, C Wy, = S;,. As

Jn tends to infinity as n does, we are done. O]

Proposition 2.24. (S,,),>o satisfy A5.

Proof. Let S, be given. If it is of A or W-type, S, C Wys,), so choose a

character s such that so(S,) is available and hence sS,, C Wyys,) and S, <
Wia(s,), since 1(0(Sy)) < U(6(Wsg(s,)))- If Sn is of B-type, then let u be the

shortest word in .5, after erasing the last character, so S,, C W, and once again

choose s € {a, b} for which su is available, hence sS,, C W,. If W, intersects
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W.,, it must be its subset and u prefix of su, but then v = s, so su is forbidden,

as l(u

) > 1. So Wy, and W, are disjoint, hence Wy, and S,, are also. Combining

this with [(0(S,)) = l(6(Ws,) and comparing the types gives S, < Wy,, by

03.

]

Proposition 2.25. (S,,),>0 satisfy A6.

Proof. Let w # () be given. We will divide the proof into three cases, each

showing the claim for particular set type.

Case 1.

Case 2.

Case 3.

Suppose for some word u we have v, wu € S,, = A;,,, where ¢ is minimal.
Hence I(u) > I(t)?. Suppose further I(w) < I(t). So w is an initial segment
of u, as u is an initial segment of wu. But then, w? is also an initial segment
of u, etc. up to w'® as I(u) > I(t)> > l(w)l(t). Hence ™) = w!® but
t is minimal so I(w) > I(¢). Hence we have only finitely many choices for
A-type Sy, as l[(w) > [(t) and p < I(w) must hold.

If S, is of W-type, say W, we have u, wu € W, v available. As there are
only finitely many v such that [(v) < [(w), w.lo.g. I(v) > [(w). We have
u = vry, some word ;. Hence woury € W, so wv € W,. But then wv = vry,
some rp, 80 v = wuvy, for some vy, as l(w) < I(v), and wwv; = wWvyry
implies wv; = v17ry. We can iterate this until v = whvy, l(vy) < I[(w). But
WU = UpTki1, some rxy1, making v an initial segment of w*, but it is
available hence [(v) < I(w)?, therefore we have finitely many choices for
Sy of W-type.

Finally, suppose S, is B-type, and u, wu € .S,,. Then we have two available
words wyS1, waSe, Where s1, sy are characters, wq, ws prefixes of t>°, some
minimal word ¢, u € Wy s, wu € Wi, l(wy),l(we) > I(t)?. So u =
w1817, WU = WaSaT9 holds for some words 7y, rs.

Suppose [(w) < [(t). Let wu’ be the initial segment of wu of length
I(t)? thus it is a prefix of w,, and hence of t>°. Thus wt'®~! is a prefix of
t® . Hence, w*t"©=F is a prefix of #!® for all k € [I(¢)]. In particular, w'®
is prefix of #®, thus w!® = %) implying w> = ¢, but t is minimal,
sow = t* some a > 1, s0o w =t as [(w) < [(t). Now we have wu =

Wy SoTey = Ww181T1 = twiS17r1, which differ from ¢*° for the first time at s;
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and so, hence wy = tw;. However, due to construction of B-type sets and
the fact that the common difference of arithmetic progression I} is at least
k/4, there are only finitely many k for which B, ; have such Wy, ;s W,s,
as subsets.

Now, suppose [(w) > I(t). If the claim is to be false, we can assume
without loss of generality, that for infinitely many k& we have some u € B,
and wu € By too. Hence we can assume that there are wy,w, prefixes
of t*°, with some characters s, so, such that wysy, wosy are available, u €
Wprsy, Wi € Wi, Wi, wy arbitrarily long, thus say [(wy),l(ws) > I(w)?.
So u = w111, WU = WwySer for some words rq, ro, thus wu = wwys1r; =
wysyTy. Hence (W) is a prefix of wy as I(w;) > I(w)? > I()?, and similarly
wt' =1 ig initial segment of ww; so both are prefixes of wu hence t1*) is

w)=1 which is then prefix of w22

a prefix of wt! , etc. and a prefix of
W™ so w® = t>° and due to minimality w = t*, some k > 2. Hence
WaSary = wu = tFwys1ry so the character where wu first differs from ¢
is at the same time at s; and s,, hence wy = t*w; = ww,, implying
[(wg) = l(wy) + [(w), but as previously explained, this can occur just for

finitely many B, j, which proves the claim. O]

Having proved the desired properties of our collection of sets, we are ready

to conclude:

Theorem 2.26. Given \ € (0,1), there is a compact (pseudo-)metric space
(X,d) on which we have continuous functions f,g : X — X such that given
z,y € X either d(f(x), f(y)) < Md(z,y) or d(g(x),9(y)) < Md(z,y) holds, but

no word in f,g has a fized point.
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3 CoMMUTING CONTRACTIVE FAMILIES

This chapter contains the proof of Theorem 1.7, which we recall here.

Theorem. Let (X, d) be a complete metric space and let {f1, f2, f3} be a com-
muting \-contractive family of operators on X, for a given X € (0,10723). Then

f1, f2, f3 have a common fized point.

3.1 MAIN GOAL, NOTATION AND DEFINITIONS

In this section, we provide the notation and definitions that will be used
extensively throughout the proof of Theorem 1.7. We write Ny for the set of
nonnegative integers and recall that for a positive integer N, [N] stands for the
set {1,2,...,N}.

When a is an ordered triple of nonnegative integers and = € X, we define
a(x) = fi* o f3? o f33(x). Since our functions commute, we have a(b(z)) =
(a+b)(z), for a,b € N}.

Pick an arbitrary point py of our space X, and define a new pseudometric
space (abusing the notation slightly) G(py) = (N3, d), where d(a, b) = d(a(po), b(po)),
when a, b, are ordered triples of non-negative integers. Therefore, we will actu-
ally work on an integer grid instead. Define e; to be triple with 1 at position
1, and zeros elsewhere. We now derive a few basic observations culminating in
a proposition that implies Theorem 1.7 and whose proof will therefore occupy

most of this chapter.

Proposition 3.1. Let (X,d) be a complete metric space and X\ € (0,10723)
giwen, with fi, fa, f3 : X — X which form a commuting \-contractive family.

Then for some t, f; has a fixed point.

Proposition 3.2. Proposition 3.1 implies Theorem 1.7.
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Proof. Without loss of generality, we have a fixed point x of f;. Thus, define X;
to be the set of all fixed points of f;. It is a closed subspace of X, hence complete.
Further, s € S; implies f1(fi(s)) = fi(fi(s)) = fi(s), so fi(s) € Si, hence the
other two functions preserve S;, and form a A-contractive family themselves, so
f2 has a fixed point in Sy, and repeat the same argument once more to obtain a

common fixed point. Il

Proposition 3.3. Let (N3, d) be a pseudometric space and A € (0,10723). Sup-
pose that given any a,b € N}, there is i € [3] such that Ad(a,b) > d(a+e;,b+e;).
Then there is a Cauchy sequence (T,)n>1 in this space, such that x,41 — x,, is

always an element of {ey, ea, e3}.

Proposition 3.4. Proposition 3.3 implies Theorem 1.7.

Proof. Tt suffices to show that Proposition 3.3 implies Proposition 3.1. Let (X, d)
be a metric space as in Proposition 3.1, along with three functions acting on
it. Pick an arbitrary point py € X, and consider pseudometric space G(py)
defined before. By Proposition 3.3, we have a Cauchy sequence (x,),>1, with
the property above. So, (x,(po)) is Cauchy in X. Without loss of generality, we
have that z, and z,,, differ by e; infinitely often, say for (x,,)i>1, Tn,41 = Tn,+€1
holds. As X is complete, z,(po) converges to some x. Hence z,,(py) converges

to x, and so does fi(x,,(po)), but fi is continuous, thus, fi(z) = x. O

Therefore, it suffices to prove Proposition 3.3. The following definitions aim
to capture some of the structure of the integer grid relevant to our proof.

Let z be a point in the grid. Define p(x) to be the maximum of the distances
d(z,x + e1),d(z,x + e3),d(x,z + e3). As we shall see in the following section,
p will be of fundamental importance. Given x in the grid, we define N(z) =
{z + e1,x + eg,x + e3} and refer to this set as the neighbourhood of x.

Let S be a subset of the grid. Given k € [3], we say that S is a k-way set, if
for all s € S, precisely k elements of N(s) are in S. We denote the unique 3-way
set starting from = by (z)3 = {z + k : k € N3}
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3.2 OVERVIEW OF THE PROOF OF PROPOSITION 3.3

The proof of Proposition 3.3 will occupy the most of the remaining part of
this chapter. To elucidate the proof, we will structure it in a few parts. The
short first section will explain our strategy in the proof along with some of the
basic ideas. The second part will be about k-way sets and how they interact
with each other. Afterwards, we shall be dealing with local structure, namely
we shall show existence or non-existence of certain finite sets of points, and our
main means to this end will be the k-way sets. Finally, after we have clarified the
local structure sufficiently well, we will be able to obtain the final contradiction.

Let us now be more precise and elaborate on these parts of the proof.

First of all, we shall establish a few basic facts about p, most importantly
p = inf p(z) > 0, where = ranges over all points. The proof of this statement
is based on a lemma that says d(z,y) < (p(z) + p(y))/(1 — A). The fact that
i > 0 will be the pillar of the proof, and the mentioned lemma will be used
quite frequently. The basic idea which is introduced in this part of the proof
is to create sets of points by contracting with some previously chosen ones (by
contracting a pair x,y we mean choosing suitable function f in our family such
that d(f(z), f(y)) < Ad(x,y)). By doing so, we will be able to construct k-ways
sets of bounded diameter.

After that, we shall prove a few propositions about the k-way sets. For ex-
ample, if we have 3-way set of bounded diameter then it contains 2-way subset of
much smaller diameter, in a precise sense discussed afterwards. At first glance,
it seems that we have lost a dimension by doing this, however, we shall also show
that if we have 2-way set of sufficiently small diameter, we can obtain 3-way set
of small diameter as well. So, for example, given K and provided A is small
enough, we cannot have 3-way sets of diameter Ku, and we cannot have 2-way
sets of diameter AK p inside every 3-set. From that point on, we shall combine
the results and approaches of these two parts in the proof. Most of the claims
that we establish later will either show that certain finite configuration (by which
we mean finite set of points with suitable distances between) exists or do not
exist, and we do so by supposing contrary, contracting the new points with the

given ones and finding suitable k-way sets, which give us a contradiction.
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Figure 3.1: Examples of diagrams

As a basic example of this method, we note that each point x induces a 1-
way set of diameter at most 2p(z)/(1 — A), and importantly, such a set exists
in every 3-way set. With a greater number of suitable points we are able to
induce bounded k-way sets for larger k. Using the facts established, we prove
the existence or non-existence of specific finite sets. Gradually, we learn more
about the local structure of the grid. For example, for some constant C' (in-
dependent of \) we have y with p(y) < Cu,d(y + e1,y + e2) < ACp, provided
A is small enough. Similarly, we shall establish that there is no point y with
p(y) < Cpu,diam N(y) < ACp, for suitable A\, C'. Such points will be used at a
few places in the later part of the proof and in the final argument to reach the
contradiction.

Let us now introduce the (somewhat vague) notion of a diagram of a point z.
A diagram for = contains the information about the contractions in {z} U N(x).
Diagrams will be shown as figures, and usually the dashed lines will imply that
the corresponding edge is a result of a contraction. In the Figure 3.1 we give ex-
amples of two diagrams!, the left one, denoted by A, tells us among others that
x+e1,x+ ey are contracted by 1 (i.e. d(x+2e,z+e1+es) < Ad(x+eq,x+es)).
The claims established so far allow us to have a very restricted number of pos-
sibilities for diagrams, and one of the possible strategies will then be to classify
the diagrams, see how they fit together and establish the existence of a 1-way
Cauchy sequence. The most important claim that we use for rejecting diagrams
is the following proposition. (Here C} = 49158.) Let us now introduce the

(somewhat vague) notion of a diagram of a point z. A diagram for x contains

'In other figures we shall not explicitly name the points on the diagram itself, however, the

coordinate axes will always be the same.
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the information about the contractions in {z} U N(x). Diagrams will be shown
as figures, and usually the dashed lines will imply that the corresponding edge is
result of a contraction. In the Figure 3.1 we give an example of two diagrams?,
the left one, denoted by A, tells us among others that x+e;, x4+ e, are contracted
by 1 (i.e. d(x +2e,x+ e +e3) < Ad(x+ ey, x4+ e3)). The claims established so
far allow us to have a very restricted number of possibilities for diagrams, and
one of the possible strategies will then be to classify the diagrams, see how they
fit together and establish the existence of a 1-way Cauchy sequence. The most
important claim that we use for rejecting diagrams is the following proposition.

(Here C = 49158.)

Proposition 3.5. Given K > 1, suppose we have xq, x1, T2, x3 such that diam{x;+
e; 4,5 € [3], 1 # j} < AKp. Furthermore, suppose p(zo) < Kp and that
d(zo,z;) < Kp fori e [3]. Let {a,b,c} = [3].

Provided A < 1/(820C1K), whenever there is a point v which satisfies d(x +
o, T+ ep) < AKp and d(z,x0) < Kpu, then we have d(x + e, v+ e.) < 16AK pu.

The final part of the proof is based on the following proposition.

Proposition 3.6. Fix arbitrary xo with p(zg) < 2u. Given K > 1, when
i € [3], define S;(K,x0) = {y : d(zo,y) < Ku,d(y,y +¢;) < Ku}. Provided
1 > 10\KCY, in every (z)s there is t such that d(t,z¢) < 3Ku, but for some i
we have S7Zt when s € S;(K, o).

Using the point ¢, whose existence is provided, we shall discuss the cases on
d(t+ ey, t+ ey) being large or small. Both cases help us to reject many diagrams
and then to establish the contradiction in a straightforward manner.

To sum up, the basic principle here is that contractions ensure that we get
specific finite sets. On the other hand, certain finite sets empower contractions
further, allowing us to construct k-way sets of small diameter. Therefore, if we
are to establish a contradiction, we can expect a dichotomy; either we get finite
sets that imply global structure that is easy to work with, or we do not have

such sets, and we impose strong restrictions on the local structure of the grid.

2In other figures we shall not denote the points on the diagram itself, however, the coordi-

nate axes will always be the same.

43



We are now ready to start the proof of Proposition 3.3. The proof will run

for the most of the chapter, ending in Section 3.7.

Proof of Proposition 3.3. Suppose contrary, there is no 1-way Cauchy sequence
in the given pseudometric space on N3. This condition will, as we shall see, imply
a lot about the structure of the space, and we will start by getting more familiar
with the function p, which will, as it was already remarked, play a fundamental

role.

3.3 BASIC FINITE CONTRACTIVE CONFIGURATIONS

ARGUMENTS AND PROPERTIES OF p

In this section we establish some properties of p, together with some claims

which will come in handy at several places throughout the proof.

Lemma 3.7 ((Furthest neighbour inequality - FNI)). Given x,y in the grid we
have d(x,y) < (p(z) + p(y))/(1 = A).

Proof. Let i be such that \d(z,y) > d(z+e;, y+e;), which we denote from now on
by x A y, and say that i contracts® x,y. Using the triangle inequality a few times
vields d(z,y) < d(z,x+e;)+d(x+e;, y+e;)+dy+e,y) < Mz, y)+p(x)+p(y),
which implies the result. O

Similarly to z -~ y, we write # /Ay to mean that d(x + e,y +e;) > Ad(zx,y).

Lemma 3.8. Let x,y be any two points in the grid. Then we can find a 1-way
subset S, such that y € S and given € > 0 we have d(s,x) < ﬁp(m) + € for all
but finitely many s € S.

Proof. Consider the sequence (z,,),>o defined inductively by z¢ = y and for any
k >0, we set xx1 = xp + €; when ¢ contracts z and x;. By induction on k, we
prove that d(z,z;) < \d(z,y) + p(x)/(1 = N).

Case k = 0 is clear as p(zg) > 0. If the claim holds for some k and z; -~ z,
then by the triangle inequality we have d(xy1, ) < d(Tg41, v+e€;)+d(x+e;,x) <
Ad(k, 2)+p(x0) < NHd(2, 5)+ Ap(w0) /(1= N)+pl0) < NeHd(z, )+ plzo)/ (1

3We also say x,y is contracted by i, or x,y is contracted in the direction e;.
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A), as desired.

Now, take n sufficiently large so that p(zo)/(1—\)+A"d(z,y) < 5 p(0) +e€.
Hence d(zy,z) < 5p(20) + € for all k > n, so choose (zy)k>0 as the desired
set. [

Proposition 3.9. Given any = in the grid, we have p(x) > 0.

Proof. Suppose contrary, p(xz) = 0 for some x. Then Lemma 3.8 immediately

gives a 1-way Cauchy sequence, which is a contradiction. Il

Proposition 3.10. The infimum inf{p(x) : x € N3} is positive.

This result is one the of crucial structural properties for the rest of the proof,
and having it in mind, we will try either to find small p, or use the structure
implied to get a Cauchy sequence, which will yield a contradiction. To prove
this statement, we use Lemma 3.8, the difference being that we now contract

with many different points of small p instead of just one.

Proof. Suppose contrary, hence we get (y,)n>1 such that p(y,) < 1/n. As p is
always positive, we can assume that all elements of the sequence are distinct.
We define a 1-way sequence (xy)g>o as follows: start from arbitrary zo and
contract with y; as in the proof of Lemma 3.8 until we get a point xp, with
d(xk,,y1) < 2p(y1)/(1—X) (such a point exists by Lemma 3.8). Now, start from
xy, and contract with yo until we reach xy, with d(zg,, y2) < 2p(y2)/(1 —X). We
insist that k;.1 > k; for all possible 7, so that, proceeding in this way, one defines
the whole sequence. Recalling the estimates in the proof of Lemma 3.8, we see
that for k; < j < kipq we have d(xj,y41) < d(g;, Yis1) + p(Yis1)/(1 — A) <
d(zk,, yi) + d(Yi, yis1) + p(Yix1)/(1 — X). So by FNI, we see that d(x;,y;41) <
(Bp(yi) + 2p(yis1)) /(1 = ) < ﬁ Hence, if we are given any other x;; with
ki < j' < kit1, by the triangle inequality and FNI we see that d(x;,x;) <
&(1 /i+1/i"), which is enough to show that the constructed sequence is 1-way
Cauchy. m

We will denote inf p, where the infimum is taken over the whole grid, by pu.

The proposition we have just proved gives p > 0.
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3.4 PROPERTIES OF AND RELATIONSHIP BETWEEN k-WAY

SETS

The following propositions are about the nature of k-way sets. These both con-
firm their importance for the problem and are useful at various places throughout

the proof.

Proposition 3.11. If {(«)3 is a 3-way set of diameter D, then it contains a

2-way subset of diameter not greater than A\C1D, where C; = 49158.

Proof. The proof will be a consequence of Proposition 3.12 and Lemma 3.14,

each requiring its own auxiliary lemma. Let us start by establishing

Proposition 3.12. If the conclusion of Proposition 3.11 does not hold, then
gwen x,y € (a)s and distinct i,j € (3], there is z € (o)s with d(x, z+e;) > 2AD
and d(y, z +e;) > 2\D.

The purpose of this proposition is to provide us with a finite set of points
which will then be used to induce a 2-way set of the wanted diameter, by con-
tractions. To prove this claim, we examine two cases on the distance between x

and y, one being d(x,y) > 5AD and the other being d(z,y) < 5AD.

Proof of Proposition 3.12. As noted above, we look at the two cases on d(x,y).

Case 1. Suppose d(x,y) > 5AD. We actually obtain a slightly more general
conclusion in this case; if d(x,y) > 5AD and we cannot find a desired point z,
then we get a 3-way subset T' of («)3 of diameter not greater than 4\D.
Suppose there is no such z, hence for all z € ()3 either d(z, z + e;) < 2D
or d(y,z + e2) < 2AD is true. We can colour all points ¢ in this 3-way set
by c(t) = 1if d(t,x) < 2AD, by c(t) = 2 if d(t,y) < 2AD, and c(t) = 3
otherwise. This is well-defined as the triangle inequality prevents the first two
conditions from holding simultaneously. Thus, for any z either ¢(z +¢e;) = 1 or
c(z+ez) = 2. Also given any two points z, ¢ in the grid such that ¢ A z, and whose
neighbours take only colours 1 and 2, it cannot be that c¢(z + ¢;) # c(t + ¢;),
as otherwise, wlo.g. c(t+e€;) = 1,c(z +e;) = 2. Then we get d(z,y) <
d(z,t+e;)+d(t+ej,z+e;)+d(z+ej,y) < 5D, which is a contradiction. Thus

for any such z and ¢, there is an 7 such that c(t + ¢;) = c(z + €;).
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The following auxiliary lemma tells us that all such colourings are essentially

trivial. (Note that we are still in the Case 1 of the proof of Proposition 3.12.)

Lemma 3.13. Let ¢: ()3 — [3] be a colouring such that
(i) given z € (B)3 either c(z+e1) =1 or c(z + e2) = 2,

(ii) given z,t € (B)3 such that neighbours of z,t take only colours 1 and 2, then
c(z+e;) =c(t+¢;) for some i.

Then there is a 3-way subset of (B)3 which is either entirely coloured by 1 or

entirely coloured by 2.

Proof of Lemma 3.13. We denote the coordinates by superscripts. Given non-
negative integers a > B b > Y + B2 denote L(a,b) = {z € N3 : 208 =
a,z" + 2 = b}. Hence such a line must be coloured as c(b — s, B2,a) =
Lie(b— By — 1,0+ 1,a) = 1,...¢c(t + e — e3) = 1,¢(t) arbitrary, c(t + es —
e1) = 2,...,¢(B1,b — Bi,a) = 2, for some point ¢t. If all z in L(a,b), with
20 > M 43,2 > B2 4+ 3 are coloured by 1, say that L(a,b) is I-line.
Similarly, if these are coloured by 2, call it a 2-line, and otherwise 1,2-line.
Observe that if £(a,b) is 1,2-line for a > & and b > Y + B3 4+ 10, then

L(a+1,b—1) is not 1,2-line, for otherwise we have

o (B b—pM a), (BV4+1,0—3M~1,a), (D, b—BY —~1,a+1) are coloured
by 1,

o (b—p2, 52 a), (b—BH—1,32+1,a), (b—B%—1,3% a+1) are coloured
by 2,

which is impossible by the second property of the colouring.

Suppose we have a 1,2-line £(a,b) for a > 8 b > g1 + 33 1 20. Then
L(a+1,b—1) and L(a — 1,0+ 1) are either 1- or 2-lines. But as above we can
exhibit z’, 3 such that ' + e, 2’ 4+ e,y + e3 are of colour 1 while 3/ + e,y +
o, ' + e3 are of 2, or we can find 2’,vy" for which 2’ + ey, 2’ + ey, 2’ + e3 have
c=1,and y + e1,y + €3,y + e3 are coloured by 2. So, there can be no such
1,2-lines. Further, by the same arguments we see that L(a,s — a) for fixed s
must all be 1-lines or all 2-lines, for a > B3+ 1, and that in fact only one of these

possibilities can occur, hence we are done. Il
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Applying Lemma 3.13 immediately yields the Case 1 of the proof.

Case 2. Assume that d(z,y) < 5AD, and suppose contrary. Then, in particular,
for any z, we have d(z,z +e;) < 7TAD or d(z,z + e2) < 7TAD. Further, we must
have z such that d(x,z + €;,),d(z,z + €;,) > 10AD holds for some distinct
i1,19 € [3]. Take such a z, and without loss of generality i1 = 2,i5 = 3. So d(z +
e1,x) < 7TAD. Hence d(z + (—1,1,1),z) < 7AD and contracting z, z + (—1,0, 1)
gives d(z 4+ (—1,0,2),x2) > 9A\D. Now contract z,z + (—1,1,0) to get d(z,z +
(—1,2,0)) > 9AD. However, this is a contradiction, as both z + (—1,1,0) + e;

and z + (—1,1,0) + ey are too far from z.

Having settled both cases on the distance d(z,y), the proposition is proved.
O

If there is € (a)3 such that for some 2’ € ()3 and for all points y € (2')35 we
have d(z,y) < 5AD, we are done. Hence, we can assume that for all z, 2" € (a)3
there is y € (2')3 which violates the above distance condition.

Take now an arbitrary zp € (a)3. Due to the observation we have just made,
we know that for any i € [3] there is an z; # xo such that d(x; + €;, xo + €;) >
5AD. To be on the safe side, assume that the neighbourhoods of xq, z1, 22, 3
are all disjoint. Now, by Proposition 3.12, given ¢ # j in [3], we can find
x;; € (a)3 such that d(z;; + e;,x0 + €;) > 2AD,d(x;; + ej,x; +¢€;) > 2AD.
Now, let y be any element of the 3-way set generated by a. Take ¢ which
contracts g, y, implying d(z¢ + €;,y + ¢;) < AD. Hence, by triangle inequality
d(xz; + e,y +¢e;) > AD, so z;,y must be contracted by some j # i. Using the
triangle inequality once more, we get d(x; j+e€;,y+e;) > AD and by construction
d(z;; +e,y+e) > d(z;+e,x0+e) —d(xo+ e,y + e;) > AD, therefore for
k1,7, dly + ek, xij +er) < AD. We are now ready to conclude that there is
finite set of points P such that whenever y € (a)3 is given, for each i € [3] there
is a point p € P with d(p,y + ;) < AD. Here P consists of N(z),z; + e; and
x; j + ey for suitable induces i # j # k # i. In particular, |P|= 15.

Lemma 3.14. Suppose we are given a 3-way set (B)3 = UX_| A; of diameter C,
where diameters of sets A; are not greater than \rC'. Then there is constant Ky, ,
(i.e. does not depend on X or C') such that ()3 has a two-way subset of diameter
at most Ky ,AC'. Further, we can take K1, =1, Ko, = 2r + 8, Kj11, = Ky o711
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for all r and k > 2.

Proof of Lemma 3.14. We prove the lemma by induction on k. When k = 1,
there is nothing to prove, and K, = r. Suppose k = 2.

Before we proceed, we need to establish

Lemma 3.15. Consider a 3-colouring of edges of complete graph G whose vertex
set consists of positive integers, namely ¢ : {{a,b} : a # b,a,b € N} — [3]. Then
we can find sets A, B whose union is N, while for some colours ca, cg, we have
diam,, G[A], diam,., G[B] < 8. (Here diam,, means diameter of the subgraph
induced by the colour c¢q.) Furthermore, we can assume that A and B intersect

when ¢, # ¢p.

Proof of Lemma 3.15. Let = be any vertex. Define A; = {a : ¢(a,z) = i}, for
i € [3], the monochromatic neighbourhood of colour ¢ of z. We shall start by
looking at sets A;. If these are not sufficient to complete the proof, we shall look
at similar candidates for A, B until we find the right pair of sets. The following
simple fact will play a key role: if X,Y intersect and diam. G[X], diam. G[Y] are
both finite, then diam, G[X UY] < diam, G[X] + diam, G[Y].

Firstly, if any of the sets A; is empty, then taking A; U{z} and A, U {z} for
the other two indices j, k proves the lemma. Otherwise, we may assume that all
A; are non-empty. The next idea is to try to ‘absorb’ all the vertices into two of
the sets A;. To be more precise, let B; ; = {a; € A; : Va; € A;,c(a;,a;) # j} for
distinct 4, j € [3]. Then,

for all distinct 4,7 (which is what we meant by ‘absorbing vertices’ above).
Observe that if {i,j,k} = [3] and B,; and Bjj are disjoint, then A; \ Bj;
and A; \ Bjj cover the whole A; so we can take ¢4 = i,cp = k and A =
{z} UA, U(A;\ Bj;),B={x}UA,U(A;\ Bji). Hence, we may assume that
B;; and Bj, intersect, and that in particular these are non-empty.

Observe also that for {i,j,k} = [3], if we are given a; € B; ;,a; € Bj; then
c(a;,a;) # 1,7 so c(a;,a;) = k. This implies diamy G[B; ; U B;;] < 2. We shall
exploit this fact to finish the proof.
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Now pick arbitrary as € Bs; N Bsa. If ¢(ay,a3) = 3 for some a; € By, then
diams(B12U By UAsU{x}) < 5 and diam; (A3 U(As\ Beg)U{x}) < 4, so we are
done. The same arguments works for a3 and B 1, allowing us to assume that no
edge between B sUB5 ; and ag is coloured by 3. Therefore, since a3 € B3 1M Bs 9,

we have ¢(Bi9,a3) = 2 and ¢(Ba1,a3) = 1.

Recall that previously we tried to absorb the vertices of A; to Ay to have a
set of bounded diameter in colour 2, but this failed for the set B;,. Now, we
have ¢(Bj2,a3) = 2, so we can once again try the same idea, by looking for an
edge of colour 2 between as and A; \ B (vertices of which are joined by an
edge of colour 2 to a vertex in Ajy).

Suppose that c(ai,a3) = 2 for some a; € Ay \ Byo. Then diamy(A; U Ay U
{z}U{as}) <8, and taking A3 U{z} for the other set, proves the lemma. Anal-

ogously, the lemma is proved if ¢(as, az) = 1 for some ay € Ay \ By ;.

Finally, since a3 € B3 N Bsa, we may assume that ¢(A; \ Bia,a3) = 3 and
C(AQ \ B271, (13) = 3. ObSGI‘ViIlg that diamg(BLg U BQJ) S 2 and dlamg(N \ BLQ \
By 1) <4, completes the proof. O

We refer to diam, as the monochromatic diameter for c.

Consider the complete graph on (f)s; along with a edge 3-colouring ¢, such
that :L’C(xfg)y. Due to Lemma 3.15, we have sets Bj, By whose union is ()3,
and their monochromatic diameters for some colours are at most 8, that is,
by the triangle inequality diam(B; + e;,) < 8AC,diam(By + €;,) < 8AC' for
some i1,179. If i1 = i5 we are done, hence we can assume these are different,
and in fact without loss of generality i1 = 1,15 = 2. If Ay, Ay intersect, then
diameter of union is not greater than 2rAC', proving the claim. Therefore, we
shall consider only the situation when these are disjoint. Similarly, if By + e;
intersects both Ay, Ay, by triangle inequality, diam (5); < (2r+8)\C, so without
loss of generality B; + e; C A;. Depending on which of the two sets contains

By + e, we distinguish the following cases.

Case 1. A; D By + es.
We now claim that A; has a 2-way subset, whose diameter is then
bounded by the diameter of Ay, which suffices to prove the claim. Suppose
a € Ay. Then a € B; for some 7, hence a + e; or a + e5 is in A;. If both
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are, there is nothing left to prove. Otherwise, the other point must be in
Ay, say a + e, € Aj,a+ ey € Ay, Suppose a + e3 € Ay as well. Then
a+ey—ey,a+es—e; € By, thusa+ (—1,2,0),a+ (—1,1,1) € Ay, hence
contracting a, a —ej +es gives that d(A;, As) < AC. Otherwise a+e3 € Aq,

hence we are done.

Case 2. Ay D By + es.

Colour point by ¢ if it belongs to A;. Such a colouring satisfies the
hypothesis of Lemma 3.13 since given a point y, either y + e; is coloured
by 1, or y + es is coloured by 2, and the second condition is also satisfied,
(or after contraction we get d(A;, A3) < AC' so done). Hence, we have a

colouring that is essentially trivial, proving the claim.

Suppose the claim holds for some k > 2, and we have k 4 1 sets. As before,
we can assume that these are disjoint and thus define colouring ¢, such that y €
Ac(y)- Further, we can assume that d(A;, A;) > AC for distinct 7, 7. Moreover, we
have A;N (B + (1,1,1))3 # 0, as otherwise we are done by considering 5+ (1,1, 1)
instead of .

Let z € (B)3. Define signature of z as o(z) = (c(z + 1), c(z + €2), c(z + e3)).
By the discussion above, given ¢ € [k + 1],1 € [3] we have a point z such that
o(2)V =i. Also, whenever z,2’ are two points in our 3-way set, we must have
o(2)® = o(2')® for some 4, for otherwise we violate the condition on the distance
between the sets A;.

Let (a,b,c) be a signature. Suppose there was another signature (p,d,e),
where b # d, ¢ # e, which implies p = a. Since k + 1 > 3, there are signatures
(91,h1,71), (g2, ha, J2), where gq,¢g2,a are distinct. Then (hy,71) = (ha,J2) €
{(b,e),(d,c)}, without loss of generality these are (b,e). Hence, for any z we
have o(2)® = b or 0(2)® = e. Now, define a new colouring ¢ of (3)s, if a
point p was coloured by b set ¢/(p) = 1, if it was coloured by e set /(p) = 2
otherwise ¢/(p) = 3. Recalling the previous observations, we see that ¢ satisfies
the necessary assumptions in Lemma 3.13, and apply it (formally change the
coordinates first) to finish the proof.

Otherwise, any two signatures must coincide at at least two coordinates.
In particular, the only possible ones are (-,b,¢),(a,-,c),(a,b,-), where instead

of a dot we can have any member of [k + 1|. If a # b, ¢, we have that o(z +
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(1,0,—1)) = (a,b,a) and o(z+(1,—1,0)) = (a,a,c). Thus o(z+(2, -1, 1))@ =
o(z +(2,-1,-1))® = a, which is impossible. Similarly b € {a,c},c € {a,b}

hence a = b = ¢, and so A, is a two-way set with the wanted diameter. O]

By Lemma 3.14, there is a 2-way set T" with diam 7" < Ky59AD. Setting s =
3, we have K51 = Kiy0s-1 = K13,22571 == K2,213571 =21.346 = 49158,

as wanted. O

We say that a set of points of the grid @) is a quarter-plane if there are distinct
Q1,19 € [3] such that @ = {t + ae;, + be;, : a,b € Ny}, for some point ¢.

Proposition 3.16. Suppose A < 1/4 and there is a 2-way set S of diameter D.
Provided my = inf,es p(s) > (2+ N\)D, S contains a quarter-plane subset Q).

Proof. Without loss of generality, we can assume that S has a point p such
that S C (p)s, and all points s of S except p have a unique point s’ such that
s € N(s'). This is because we can always pick such subset of S, and it suffices
to prove the statement in such a situation. We say that such a k-way set is

spreading (from p).

Case 1. For all i € [3], there is x with 2 + ¢; not in S.

Let z,y € S be points such that x +e;,y+¢e; € S, for 7, j distinct. Take
k so that {7, 7, k} = [3]. Then if « A y, by the triangle inequality we have
my < d(x,x+e;) <d(x,y)+d(y,y+e;)+d(y+e;, x+e;) < (24+A)D, which
is a contradiction. Similarly we drop the possibility of z /z\y happening,
hence x/k\y. Hence, if we define A; = {s € S: s =1t + ¢ for some t € S},
these are all of diameter < 2\D.

Suppose A; and A, are disjoint. Consider = such that  +e3 ¢ S. If
T+ e +ey €8, it is both in Aq, Ay, which is impossible. Hence, we have
that x +e; +e3,x +ex +e3 € S, thus = + e3 + €1 + ey is not in S, so we
can repeat the argument, to get all the x 4+ (1,0,n) and = 4 (0,1,n) in S.
Now, by triangle inequality, we must have = + (1,0,n) Ao+ (0,1,n),z +
(1,0,n) >z + (0,1,n + 1), for all non-negative n, so (z + (1,0,n)),s; is
Cauchy, which is contradiction. Thus A;, A, intersect, and similarly A;

and A, intersect As, therefore, take T' to be union of these, which is thus
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2-way (as every point of S belongs to some A;, except the starting one),
and has diam 7T < 4AD.

Case 2. Suppose that there is ¢ such that for any xz € S, x + ¢; isin S.

Without loss of generality, we assume ¢ = 3. Pick any zy in S and set
a = (10)®. Thus, starting at zo we can form the sequence (z,),>o such
that {x,+1} = SN {z, + e1,x, + e2}. Suppose we have z,y among these
such that x+ey,y+es € S. Hence, z+(1,0,n),z+(0,0,n),y+(0,1,n),y+
(0,0,n) belong to S for all nonnegative n, thus z+ (0,1,n),y+(1,0,n) are
never elements of S. Now, contracting pairs x + (0,0,7n),y + (0,0,n) and
z+(0,0,n+ 1),y 4+ (0,0,n) gives 1-way Cauchy sequence as in the Case

1. If there are no such z,y then we have that S contains a quarter-plane.

Therefore, if we ever get into Case 2, we are done. Hence, let S; = S, then by
Case 1, we have a 2-way S subset of Sy, which we can assume to be spreading,
by the same arguments as those for the set S. It also satisfies the necessary
hypothesis of this claim, so we can apply the Case 1 once more to obtain 2-way
set S3 C Sy. Proceeding in the same manner, we obtain a sequence of spreading
2-way sets S1 D Sy D ..., whose diameters tend to zero, so just pick a point in
each of them, and then find a 1-way Cauchy sequence containing these to reach

a contradiction. ]

Proposition 3.17. Let {iy,is,i3} = [3]. Suppose we have a quarter-plane S =
{a + me;; +ney, : myn € Ny}, of diameter D, and let R = infgp. Provided
A< 1/3 and D(1 — X\?) < (1 —4)\)R, there is a S-way set of diameter at most
255D + L2 R).

Proof. Without loss of generality i3 = 1. Observe that for any point s € S we
must have p(s) = d(s, s+ e;1). The reason for this is that both s + ey, s +e3 € S
and so d(s,s + e2),d(s,s + e3) < diam S = D, but max{d(s,s + e1),d(s,s +
e),d(s,s+e3)} =p(s) > R > D.

Let x,, € S be a point with p(x,) < (14+1/n)R <2R. As A < 1/2, we must
have x, /an + e;. Furthermore, suppose i # 1 contracts y, x,, + e;, for some
point y in S. Thus z, + ¢; € S and so p(z, + ¢;) = d(x, + €;,x, + €1 + €;).
Then, by triangle inequality, we have p(x, + ¢;) = d(z, + e, z, + €1 + €;) <
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d(xp+e, y+e;)+dy+e, x,t+er+e;) < Ay, z,+e1)+D < AN2R+(1+M)D < R,
therefore it must be y -~ z,, +e1. Hence p(y) < d(y, 2,,) +d(, Tn + 2€1) + d(z +
2e1,y+e1) < D+ R(1+1/n)(1+ X))+ XD + R(1+ 1/n)), for all n, hence
p(y) < D1+ X))+ R(1+2)) < 2R.

Now we claim that for all y € S, and all £k > 1, we have y /l\y + key, which
we prove by induction on k. For & = 1, we are done as otherwise there is y with
p(y) <2AR < R.

Suppose the claim holds for some k£ > 1. Then for any y and | < k + 1
we have d(y,y +le1) < d(y,y + e1) +d(y + e1,y +ler) < p(y) + Ad(y,y + (I —
Dep) < oo < p(y)(X+ A+ -+ X7 < p(y)/(1 = N). Also, d(y,y + le;) >
d(y,y +e1) —d(y + e,y +ler) > ply) — Ad(y,y + (I = Der) > p(y) R As
A < 1 — 2\ we have that 1 always contracts y,y + (k + 1)e;. In particular
PR < dly,y +ker) < p(y)/(1=N).

Fix any z € S. Now, suppose  ~vy + ke; for some i # 1. Then R%
ply+e) T < dly+ei,yt+eitke) < d(y+e,z+e)+A\d(z,y)+d(y, y+ke))
D(1+X) +Ap(y)/(1 = A) < (1+A)D + R, which is a contradiction. Hence,
by looking at distance from x + e1, we see that diam{a + (a,b,¢) : a > 2,b,¢ >
0} <2X(D+ D1+ N)/(1—=X)+ R(1+2X)/(1 = \)), as required. O

<
<

In order to make the calculations throughout the proof easier, we use the

following corollary instead.

Corollary 3.18. Suppose we have a 2-way set S of diameter D, and R =
infses p(s). Provided A < 1/9 and R > (2+\)D, there is a 3-way set of diameter
at most 6AR.

Proof. Firstly, apply Proposition 3.16 to find a quarter-plane inside the given 2-
way set. Since R(1—4)\) > R/(2+A) > D > (1-A?)D and X < 1/3, we can apply
Proposition 3.17, to obtain a 3-way set of diameter at most 2A\(2;D + 12 R).
An easy calculation shows that this expression is smaller than A\(5D + 3R) <
6AR. O

Recall that we defined p = inf, p(z), where = ranges over the whole grid.

Recall also that > 0 by Proposition 3.10.
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Proposition 3.19. Given K, provided 1 > (2+ AN)AKCY, all 3-way sets of have

diameter greater than K.

Proof. The proposition is trivial when K < 1, so assume K > 1 and in particular
A < 1/9. Suppose contrary, let T' be a 3-way set of diameter D < Kpu. By
Proposition 3.11, we know that there is a 2-way set S C T, with diam S <
AC1 K p. Therefore by Corollary 3.18, as A\C1 Kp < /(2 + A), we have a 3-way

set of diameter not greater than 6 AK y < u, resulting in a contradiction. O]

Proposition 3.20. Given K, provided A < 1/9,1/(3K), all 2-way sets have
diameter greater than \K .

Proof. Suppose contrary, pick a 2-way set Sy of diameter at most AK . Since
KAu(2 4+ A) < p, we have a 3-way set 77 with r; = diam T} by Corollary 3.18.
Now take a 2-way subset S; C T} with diam S; < KA, so we have 3-way set 15
of diameter not greater than ro = 6Ar;. Repeating this argument, for all £ > 1
we find 3-way set Ty, with diameter bounded by 7, where rp.1 = 6Ary. But,

then we must have r, < p for some k, resulting in a contradiction. O]

Note that the only way for a 2-way subset not to have elements in every

((n,n,n))s is to be contained in a union of finitely many quarter-planes.

3.5 FINITE CONTRACTIVE STRUCTURES

Recall the proofs of Proposition 3.11 and Lemma 3.8. There we fixed a finite
set S of points, and then contracted various points with points in S to obtain
k-way sets. We pursue this approach further in the following few claims. In this

section, we also show that we cannot have certain configurations of points.

Proposition 3.21. Suppose we have K > 1 and that A < 1/(24K) holds. Then
we cannot have a point xq in the grid with p(xo) < Kp such that N(xg) =
{x1, 29, 23}, where x1, 29, x5 satisfy diam (N (zo) U{z; +e€;: 4,7 € [3],i # j}) <
AK .

When using this proposition (in order to obtain a contradiction in the proofs
to follow), we say that we are applying Proposition 3.21 to (zg; x1, 22, x3) with

constant K.
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Proof. Suppose we do have points described in the assumptions. By Lemma 3.8,
in each 3-way set we have a point ¢ such that d(t,z9) < 2Ku. Consider the
contractions of ¢ with xg, x1, 22, x3; our main aim is to obtain a 2-way set of a
small diameter and then use Proposition 3.20 to yield a contradiction.

Observe that from the assumptions of the proposition, for any {3, j, k} = [3],
we have max{d(x;, z; + €;), d(z;, x; + €;),d(x;, x; + ep)) } = p(a;) > p > AKp >
max{d(z;, z;+e;),d(z;, x;+ex)}. Thus for alli € [3], p(z;) = d(x;, z;+e;) holds.
Suppose first that t ~a; for all i € [3]. Take 7 so that t ~xo. Then plx;) =
d(zi,x; + e;) < d(xg,x0 + €;) + d(xg + et +e;) +d(t + e, 2 +€;) < AKp+
Ad(zo,t) + Ad(z;,t) < 6AKp < p, which is impossible.

Thus, there are distinct i, € [3] with t/J\xz If j was to contract ¢, z;, we
get p(z;) = d(z;,x;+e;) < d(xj, ;i +ej)+d(z; +ej,t+e;)+dt+e;,x;+e5) <
MK+ Ad(z,t) + Md(t,x;) < TAKp < p, which is impossible. Therefore, for
some k # j, we have t/’f\xj. In particular, d(t + e;,x1 + e2) < d(t + e;,x; +
e;) +d(x; +ej, 1 + ex) < Ad(t,x;) + AKp < 4AKp, and in a similar fashion
d(t + ex, x1 + e2) < 4XNKp. Furthermore by the triangle inequality, both ¢ + e;
and t + e are on the distance at most Ky + 4\Ku < 2Ku from zg, so the
same arguments we used for ¢ can be applied to these points as well. Hence, we
obtain a bounded 2-way set of diameter at most 4K u. But, considering all the
points of the 2-way set except t and their distance from x; + es, this is actually
a 2-way set of diameter at most SAK pu, and we have such a set in every 3-way
subset of the grid. Now, apply Proposition 3.20 to obtain a contradiction, since
A<1/(24K) and K > 1. O

Proposition 3.22. Given K > 1, provided A < 1/(78K),1/(13C}), there is no
x such that p(x) < Kp, but p(xz +e;) > TKu for all i € [3].

Sometimes we refer to a pair of points a, b in the grid as the edge a, b, and by
the length of the edge a,b we mean d(a,b). The points a and b are the endpoints
of the edge a,b.

Proof. Suppose there was such an x. Consider the contractions of x 4 ¢;,z + ¢;
for i # j and suppose that two such pairs are contracted by the same k. Thus
diam{z + ey + e1,x + e + €2, + e + ez} < AAKpu. Now, contract x,z + e, to
get p(x +er) < (24 5N Ku < 3K p, giving us contradiction. So, the pairs de-
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Figure 3.2: Case 1

scribed above must be contracted in different directions. Further, we can make
a distinction between the short edges of the form a,a + ¢; and the long edges?
a+e;,a+e;, where a is any point of the grid and ¢, j are distinct integers in [3].
For every such long edge we have a unique short orthogonal edge a,a+ e where
{i,j,k} = [3]. We can observe that if we have a short edge and a long edge in
{z} U N(x) which are not orthogonal, but both contracted by some i, we must
have another such pair, contracted by some j # 7. One can show this by looking
at the short edge e which is orthogonal to the long one in a given pair of edges
contracted by i.

If we write [3] = {i, j, k}, then j contracts one long edge, and so does k. But
now consider the described orthogonal short edge e. It cannot be contracted by
i, for otherwise p(z + ¢;) is too small. Thus, it gives us another desired pair.
Having shown this, we have two cases, the first where there are at least two such
pairs (i.e. non-orthogonal short and long edge contracted in the same direction),

and the second without such pairs.

Case 1. There are at least two such pairs.

In Figure 3.2, we show the possibilities for contractions. The edges shown
as dashed lines have length at most 3K A\u. Here we actually consider possible
contractions and then apply triangle inequalities. This way, we obtain very few
possible diagrams. We only list the possible configurations up to rotation or re-
flection, as the same arguments still carry through. In the diagram A, by short
edge contractions we see that we get p(x+e¢;) < 3K p for some i, which gives the
claim. Dotted lines with letter D will be called the D-lines. On the other hand,

4Note, words ‘short’ and ‘long’ have nothing to do with the length of an edge previously
defined. Instead, they simply describe how these edges look like in the figures used in the

proofs.
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Figure 3.3: Case 2

in the diagrams B, C and D, we claim that we are either done or the dotted lines
with letter D are of length at most 9AKpu. Once this is established, we have
p(x + e;) < 3Kp for some i, resulting in a contradiction.

For each i € [3], let z; € N(x) be such that z; + e; is not an endpoint of long
edge shown as dashed line. By Lemma 3.8, in each 3-way set we have a point ¢
with d(z,t) < 2p(x)/(1 — A) < 3Kpu. Observe that from the diagrams we have
d(z;, x; +e;) < (24 6X)Ku whenever ¢ # j. Further, we cannot have z; At for
all 7, otherwise we get a contradiction by considering contraction x EN (e €;
is an endpoint of a edge shown as a D-line, and x + e; 4 ¢; is the other endpoint,
we have v +e; = xy, hence d(x+e;+e;, x+¢;) < ANd(x+ej,t)+d(t,x)) < TAKp,
which is impossible. Thus, = + e; is not on a D-line edge, which gives p(z;) =
d(zj,z;+e;) <d(zj,z)+dz,z+e;) +dx+e;,t+e)+dt+ej,z;+e) <
(2+ TN Kp.

Previous arguments imply that we must have i # 5 with z; A'zf, and hence
T 7j’\t (otherwise p(x;) < (2+ 14X\)Kp), so, given such a t, we get t +e,,t + ey,
a # b on distance at most 13AKp from 1 + e; and on distance not greater than
3K pu from z, by the triangle inequality. Hence, in every (z); we get a 2-way
subset of diameter not greater than A26 Ky, yielding a contradiction, due to
A\ < =2 and Proposition 3.20. Hence, edges shown as D-lines satisfy the wanted

78K
length condition.

Case 2. There are no such pairs.
The possible cases up to rotation or reflection are shown in Figure 3.3, where
the short edges shown as dashed lines are of length at most AKu, while the

long ones shown as dashed lines are of the length at most 2AKpu. As above,

the diagram E gives p(z + ¢;) < 3Kp immediately. On the other hand, if we
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get diagram F or G, we can consider points shown as black squares and empty
circles. We call a point black if it is a black square and white if it is shown as
an empty circle. In the course of the proof, we shall colour more points in black
and white. Let r be the minimal length of dotted edges in Figure 3.3, and »’ the
maximal. Then we have ' < r + 2Kpu + 6AKpu. Furthermore, given i € [3] we
have TKu < p(x +e;) <r’ <r+3Kpu, sor >4Kpu.

Consider t such that d(z,t) < 2r. Let j contract x + e;,t, so we have
d(t+ej, x) < d(t+ej, x+e;+e;)+d(x+e;+ej, x+e;)+d(x+e;, ) < Ad(t, x+e;)+
plr+e;)+p(x) < ANd(t, x)+d(z, x+e;))+r'+Kp < 22+ AK p4-r+2K p+6AK p+
Kp < (1420)r+ (3480 Kp < (142A42582)r < 27 since A < 1/16. Similarly if
j contracts z, t we have d(t+e;, x) < d(t+e;, x+e;)+d(x+e;, ) < 2 r+Kp < 2r,
as well. Further, observe that if ¢+e; is the result of a scontraction as before, then
we have a point a € N(x)U{z+e;+e; :4,j € [3]} with d(t+ej,a) < AN2r+Kpu).
Restrict our attention to the black (shown as black squares) and white (shown
as empty circles) points shown in Figure 3.3. We have diam{white points} <
6AK u, diam{black points} < (2 + 2A\)Ku and distance from any white to any
black point is at least r— Ky —4 K pu. Take a point ¢ on distance at most 2r from
x (note that by Lemma 3.8 such a point exists in every 3-way set). Consider
contractions with {z} U N (z) and suppose that t+e;, w and t +e;, b are results of
these operations, where w is a white and g is a black point. Then, using the trian-
gle inequality, we establish r — Kpu—4 K < d(w,b) < d(w,t+¢€;)+d(t+e;,b) <
2\(2r + Kpu), which is a contradiction. For any given i € [3] let x; stand for
the point of N(x) such that d(z;, x; + ¢;) < AKpu, thus N(z) = {x1, 22, z3}. Let
t -~ z. Then take j € 3] distinct from i. We see that z;+e; is white, while z +¢;
is black, hence i does not contract ¢, ;. Let k # i contract ¢, x; and let [ be such
that {4, ,{} = [3]. If k = j then similarly we see that z; A ¢, while in the other
case k = [ and x; £ Hence, in conjunction with the previous arguments, we
obtain a 3-way set of diameter at most 4r.

Furthermore, recall that given pairs ¢ 4 ¢;,p and t + e;, ¢, which are results
of contracting ¢ with = or a point in N(z), we must have p and ¢ of the same
colour. As each of t + ey, + ey and t + e3 is a result of such a contraction, we
can extend the 2-colouring of the points in the diagrams F and G to all points of

(x)3, namely ¢ : (z)3 — {black, white}, with point t+e; being coloured by black,
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if p described above is black in the original colouring, and white otherwise.

Now, the distance between any black point and any white point in the ex-
tended colouring is at least r— K u—4 K u—2A(2r+Kp) = (1—4X\)r— (146 K 0.
Recall Proposition 3.11, which guarantees the existence of a 2-way set S C ()3
of diameter at most 4\Cr from which we infer that S is monochromatic, since
ANCir < (1 —4N)r — (1 + 6\ Kp.

Case 2.1. S is black.

Consider any ¢t € ()3 which has two black neighbours t + e;,,t + ¢;,, where
i1 # iz. Then, letting i3 be the third direction, that is [3] = {iy, 42,43}, we have
t * 2, since the points of N(z,) \ {zi, + €;,} are white. Hence, for any ¢ € S,
we have that N(t) is black. Furthermore, from the same arguments we see that
t A for all i € [3]. Now, if ¢ is in S, and without loss of generality so are
t 4 e1,t + ey, then N(t + e1), N(t + e2) are black, so at least two elements of
N(t + e3) are black too, implying that N (¢ + e3) is black. But, now looking at ¢
gives t A x3 and similarly, looking at t + ey, ¢+ e, t + e3 tells us that 3 contracts
points t + e1,t + ey, t 4+ e3 with xs.

Let s be the distance from such a t to x. Then, for all i € [3], we have a black
point p in {z}UN (z), which is contracted with ¢ by 4, so that p+e; is black as well.
Now, by the triangle inequality, we get d(x,t+¢;) < d(x,p)+d(p,p+e;)+d(p+
ei t+e;) < d(x,p)+d(p,p+e;)+Ad(p,t) < Ad(t,z)+(1+N)d(x, p)+d(p, p+e;) <
As + (24 A)(Kp). As in the proof of Lemma 3.8, we see that there is t € S,
such that d(t,z) < 3K u. From the estimates we have just made, we can see that
d(t + e;,x) < 3Kp for all i € [3]. Without loss of generality ¢, + ey, + ey € S.
Recalling that this implies d(t + es, x3), d(t + e3 + €;, x3) < 3NK 1 where i takes
all the values in [3], shows that p(t + e3) < 6AK p, which is a contradiction.

Case 2.2. S is white.

If t € S, after contracting ¢, z, we see that the single point in N(¢) \ S must
be black. Hence, by Proposition 3.18, we must have a 3-way set inside (z)3 of
diameter at most 6Ar, since (1 —4X)r — (14+6A)Kp > (1 —4X)r — (14+6A\)r/4 >
2r/3 > (24 A)AACqr, since A < 1/(13Cy). But, such a set has at least one black
point, so it must have black points only, and we have a contradiction as in Case
2.1. [
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Figure 3.4: Possible distances in the proof of Proposition 3.23

Proposition 3.23. Given K > 1, provided A < 1/(41KCY), there is no x with
p(x) < Kp and diam N (z) < AK .

Proof. Suppose we have such an z. We start by observing that two pairs of
the form x + e;, x + e; cannot be contracted by the same k. Otherwise, since
diam N(z) < MKy, after an application of the triangle inequality, we also have
N(z + e,) < 2X2K . Let ¢ be such that z -~z + ;. Then d(z + eg, x + 2¢;) <
d(x+eg, x+e)+d(x+ep, x+ep+e)+d(x+epter, x+2e;) < diam N(z)+Nd(x, 2+
ex) +diam N(z+ep,) < AKpu+AKp+2 2Kp < 4\K . But then, for any s € [3],
we have d(z+ey, z+egp+es) < d(z+ey, v+ep+eg)+diam N(z+ey) < 6AKp < p,
implying that p(x + ex) < p, which is impossible.

Thus, all three pairs of the form x + e;,x + e; are contracted in different

directions, hence we can distinguish the following cases (up to symmetry).

Case 1. The results of contractions are shown as dashed lines in the Figure 3.4,
diagram marked by A. It is not hard to see that after contracting pairs x, x + ¢;,

we get p(x + e;) < p for some j, giving us contradiction.

Case 2. The results of contractions are shown as dashed lines in Figure 3.4,
diagram marked by B. By considering the contractions of pairs =,z + ¢;, we
either get p(z + e;) < p for some j, or diagrams B.1, B.2 in figure 3.4, where
dashed lines edges now indicate lengths at most 3AK u.

Case 3. The results of contractions are shown as dashed lines in Figure 3.4,
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diagram marked by C. By considering the contractions of pairs z,z + e;, we
either get p(r + ¢;) < p for some j, or diagrams C.1, C.2 in Figure 3.4, where
now dashed line implies length at most 3AK .

We now examine more closely diagrams B.1, B.2, C.1 and C.2. Firstly, we
will use Proposition 3.21 to reject B.1 and C.1. In these two diagrams, for each
i € [3], we can find a unique z; € N(x) such that p(x;) = d(z;, z; +€;). Then we
have diam(N (z) U{z; +e; 14,7 € [3],1 # j}) < 1I5AKp. Also p(x) < Kp, hence
we can apply Proposition 3.21 to (z;x1,xe, z3) with constant 15K to obtain a
contradiction, since A < 1/(360K).

Observe that in diagrams B.2 and C.2 we can denote N(z) = {x1, 22, 23} so
that d(z;, z;4+€;) < 3AKu. By Proposition 3.22, we have that p(z;) < (7T+7\)Kp
holds for all 7 € [3], as A < 1/(78K),1/(13C}). Now, start from a point ¢ with
d(t,z) < 2p(z)/(1 —A) < 2Kp/(1 — ) < 10K p, which exists by Lemma 3.8.
Take any p € {z} U N(z) and contract with ¢. If ¢t ~p, then d(t + e;,x) <
d(t+e;,pte;)+d(p+e;,p)+d(p,x) < Ad(t,p)+d(p+e;,p)+d(p, ) < Nd(t,z)+
d(z,p)) +d(p+ei,p)+dp,x) < NOKp+ (7T+7TNKp+ (1 4+ XN Kp < 10K .

Contract such a point ¢ with x by some i. Write [3] = {4, j, k} and consider the
contraction of ¢,z;. It is not ¢ that contracts this couple of points, as otherwise
p(z;) < p. If it is j, then we can see that zx A t, and if it is &, then 2p At
Hence, all the points of N(t) are on distance at most 10K from z, so we can
repeat the argument to obtain a bounded 3-way set of diameter at most 20K p.

However, we get a contradiction by Proposition 3.19, since 1 > 41K C . O]

Proposition 3.24. Giwen K > 1, suppose we have xg,x1,%o,x3 such that
diam{z; +e; : 4,5 € [3],i # j} < AKp. Furthermore, suppose p(zo) < Kp
and that d(zo, z;) < Kp for i € [3]. Let {a,b,c} = [3].

Provided A < 1/(820C1K), whenever there is a point x which satisfies d(x +
€a, T+ ep) < AKp and d(x,xo) < Kp, then we have d(x + ec, x4+ €.) < 16AK p.

Note that this is Proposition 3.5 in the overview of the proof. When using
this proposition, we say that we are applying Proposition 3.24 to (zo; x1, ©9, x3; x)

with constant K.

Proof. Suppose contrary. Without loss of generality, we may assume a = 1,b =
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2,c = 3. Let us first establish d(x,z +e1),d(x,x + e3) < 3Kpu. As d(x +e3, x5+
e3) > 16AK p, we must have 1 or 2 contracting x, z3. Similarly, we cannot have
ZL';)\ZL'() and x /3\373 simultaneously. If :L‘/gxxo then we have xg /i\xg for some
i € [2], and recall that x A 25 some j € 2], so d(z,x+e1) < d(x,x0)+d(xo, xo+
e;) +d(xo + e, x5 +e) +dxs+e,xs+e;)+das+ej,x+e)+dx+ej,z+
e1) < Kp+ Kp+ AKp + AKp + 20 Kp + AKp < 3Kp and in the same way
we get d(z,2 + e3) < 3Ku. On the other hand if z -~ zq for i € [2] we get
d(z,x +e;) < d(z,x0) + d(xg, 20 + €;) + d(xo + €5, +¢;) +d(z + e,z +e5) <
Kpu+ Kp+ AKp+ AKp < 3K for any j € [2].

Similarly, let us observe that diam{x1, e, z3} U{z; +e;:4,5 € [3],i # j} <
5K . We see that this certainly holds in the case that there are distinct i, j € [3]
with z ES z;, as then d(x;, x;+e;) < d(x;, xo)+d(xo, vo+e;)+d(xo+e;, vi+e;) <
(24+ A\) K, and the claim about the given diameter follows. Hence, suppose that
for all i € [3] the contractions are 2o -~ z;. Then we cannot have zo -~ z, so
suppose that xg A 7 and also that z /k\xg, where j, k € [2]. Now, we can apply
the triangle inequality to see d(x3+ey, x3) < d(zs+ex, x+ep) +d(r+eg, x+e€;)+
d(z+ej,z0+e€;)+d(xo+e;,x0) +d(xo, x3) <2AKp+AKp+AKp+Kp+Kp =
(2 +4X)Kp, so once again we have the desired bound on the given diameter.

Now, by Lemma 3.8, in every 3-way set we have a point ¢ with d(t, zy) <
7K u. Suppose that for some distinct 4, j € [3] we have t A z; and t -~ zj. Then
d(z;+e;, xiter) < d(x;+e,t+e)+d(t+e, x;+e)+d(xj+e, v, +e,) < 1TAKp
for any k # i. Hence diam N(x;) < 17TAKpu. However, contract xg,x; to see
that p(x;) < (2 + 18\)Kpu < 17Kpu. But we can apply Proposition 3.23, as
A < (17-41KC)), to obtain a contradiction. Hence, we cannot have z; At and
X At

Suppose that for every such t we have distinct 4, j € [3] with A x;. Then, by
the previous observation, we see that ¢ X x;, for some k # i. Hence d(t+e;, ) <
d(t+ei,xj+e)+d(xj+e,x;)+d(x;,xg) <8ANKp+6Ku < 7Kpu and similarly
for t + e;. So, we can apply the same arguments to the newly obtained points
and proceeding in this manner we construct a bounded 2-way set. However, the
points that we construct after ¢ are on distance at most 9AK p from x1+-e2, hence,
we get a 2-way set of diameter at most 18 A\Ku. This is a contradiction with

Proposition 3.20, as we have such a point ¢ in every 3-way set and A < 1/(54K).
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Figure 3.5: Possible contractions in the proof of existence of auxiliary point

With this in mind, we see that in every 3-way set, there is a point ¢ with
d(z,t) < 7K but for all i € [3] we have ¢ -~ z;. Contract such a ¢ with z. It
cannot be by 3, as then d(x + e3, x5+ e3) < 16AK 11, so without loss of generality
we have z ~ t. But then for any j € {2, 3} and k € [2] that contracts z and z3 we
obtain d(x;+e1,x1+e;) < d(z1+er,t+e)+d(t+er, x+e)+d(x+er, x+ex)+
d(z+eg, x3+er) +d(xs+ep,x1+e€j) <SAKpu+8AKpu+AKpu+2 K+ Kp =
20\K i, giving diam N(z1) < 20AKpu and as before p(x1) < 20K pu. Applying
Proposition 3.23 establishes the final contradiction, as A < 1/(820C, K). O

3.6 EXISTENCE OF CERTAIN FINITE CONFIGURATIONS

Our next aim is to show that, provided A is sufficiently small, certain finite
configurations must exist. Recalling Proposition 3.23, which is a non-existence
result, we see that we are approaching the final contradiction in the proof of

Proposition 3.3.

Proposition 3.25. Provided A < 1/(5-10'%), there is a point x such that p(z) <
Cop and diam{x,x + e;,x + e;} < ACou for some distinct i,j € [3]. Here
Cs = 100000.

Proof. Suppose contrary. The first part of the proof will be to establish the
existence of an auxiliary point y with p(y) < 15u and d(y, y+e;) < 192\, d(y+
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e;,y +er) < 4\p for some {i,7,k} = [3]. Pick any ¢ with p(t) < 2u and con-
sider contractions {t} U N(t). As before, up to symmetry, we have diagrams A,
B and C in Figure 3.5 as the possibilities for contractions of pairs of the form
t+ e, t+ ey, since no two such long edges can be contracted by the same 7. If an
edge is a dashed line in Figure 3.5, then it is the result of a contraction of some
pair of points in {¢t} U N(x). Dotted lines with letter P indicate that bounds on
the lengths of those edges are results of applying Proposition 3.24.

Case 1. Suppose that we have diagram A. We see that we have diagrams A.1 and
A.2 up to symmetry or otherwise some p(z) is too small. However, diagram A.1
is impossible since p(t+e1) < Cop and diam{t+eq,t+e;+eq,t+e1+ex} < ACopu,
which does not exist by the assumption. Hence, it is diagram A.2 that must oc-

cur, so we have y with p(y) < (4+6A\)u, d(y, y+e3) < 2Au, d(y+eq, y+ez) < 4Ap.

Case 2. Suppose that we have diagram B. As above, we can distinguish diagrams
B.1, B.2, B.3, up to symmetry. First of all, if we have diagram B.3, we can apply
Proposition 3.22 to ¢, as A < 1/(13-C4),1/(78 - 2), to obtain p(t + ¢;) < 14y for
some ¢. Using this, we see that we have p(y+e3) < 15u, d(y+es+ey, y+es+es) <
AAp, d(y + es, y + 2e3) < 2Ap, as desired.

Consider now diagrams B.1 and B.2. We can denote N(t) = {t1,ts,t3} so
that 1 + es, t; + e3 is a result of a contraction in N(¢) and so on. Observe that
diam{t; +e; : 4,7 € [3],i # 7} < 12Ap and that p(t) < 2u, and in diagram B.1
d(t+ey,t+e3) < 8\u, while in diagram B.2 d(t+e1,t4e2) < 10Au, we can apply
Proposition 3.24, as A < (9840C"), to (t;t1, ta, t3; 1) with constant 12 to see that
d(t+eq, ta+e3) < 12:16Apu = 192\p in diagram B.1 and d(t+es, t3+e3) < 192\ p.
Hence, t+ e, in diagram B.1 and ¢+ e3 in the diagram B.2 are the desired points.

Case 3. As in the previous case, we are able to reach the same conclusion using

the similar arguments.

To sum up, without loss of generality, we can assume that there is gy, with
p(yo) < 15p, d(yo + €1, yo + €2) < 4\ and d(yo, yo + e3) < 192 Au. We shall now

use this point to obtain a contradiction.

Let K = 20000, and consider now those points which satisfy p(y) < Kpu, d(y+
e, y+e;) < AKp and d(y,y+exr) < AKp for some {i, j, k} = [3]. We know that
Yo is one such point. Contract first the pairs inside N(y), that is, the long edges.
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Figure 3.6: Possible contractions in the neighbourhood of an auxiliary point

As a few times before, it is not hard to see that for i = 1,5 = 2,k = 3 we can
only have diagrams A, B, C and D in Figure 3.6 (if an edge is shown as dashed
line, that implies that it is a result of a contraction) and diagrams symmetric to
these for different values of i, j, k. However, we can immediately reject diagram
A, for if a point y has diagram A, by contracting the short edges, we either ob-
tain a point t € N(y) with p(¢) < 3Kp and diam{¢,t +e;, t+e;} < 3AKp, or we
get a point t € N(y) with p(y) < 4 \Kpu < p, both resulting in a contradiction.
Furthermore, if we are given a diagram B, then we can immediately apply Propo-
sition 3.24 to (y;y+ es, y + €2,y + e1;y) with constant 6K, as A\ < 1/(4920C, K),
which gives d(y+e3,y+e1+e3) < 96AK . Then we must have y 2 y+ e, hence
ply+er) < (1+97TNKp < (K+1)p,diam{y+ei,y+e;+e,y+er+ea} <HAKp
giving a contradiction once more.

Therefore, we must end up with either diagram C or D. Also observe that
Y+ e /’iy + e; must then hold for any y that satisfies the properties stated
above. Furthermore we must have d(y + e, y + 2e;) < 96AK i, as we can apply
Proposition 3.24 to (y; 1, y2, ys; y), where {y1, 2, y3} = N(y) with constant 6 K.
From this, we can conclude that neither y X y+e; nor y S y+e; can occur. Also
we cannot have y -~y + e; and y -~y + e; simultaneously, as then p(y +€;) < p,
and similarly cannot have both y /J\y + e; and y A y + e;. Hence, contracting

the short edges implies that in fact we can only have diagrams C.1, C.2, D.1 or
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D.2.

Observe that we can actually only have either C.1 and D.1, or C.2 and D.2
appearing. This is because if we had y; with its diagram among C.1 and D.1,
and a point y, with a diagram among C.2 and D.2; we could first find the unique
e;, € such that d(yy+e;, y1+e;+er) < MKp and d(ya+e;, ya+ej+er) = p(y2+e¢; ).
Now, apply Proposition 3.24 to (y1;v1 +€;, y1 + €k, Y1 + €3; Y2 +€;) with constant
6K, where k € [2] distinct from ¢, to obtain p(y2+e€;) = d(y2 +e€j,y2+¢€; +e€1) <
d(y2 + ej,y2) + d(yo, y1) + d(yr, y1 +e;) +d(yr + e,y + e +e1) +d(yr + e +
e1,y2 +ej+e) < Kp+2Kp/(1—X) + Kp+ AKp+ 96 AKp < 5Ky, while
diam{ys + €;, y2 +€; + €2, Y2 + €; + 3} < 3AKp, which is a contradiction. Thus,
we shall consider the cases depending on the allowed pair of diagrams among

these four.

Case 1. We can only have diagrams C.1 and D.1.

Suppose that we had y with p(y) < Kp/10, d(y+e;, y+e;) < AKp/10,d(y, y+
er) < AK /10, for some {i,j,k} = [3] that gave us diagram C.1 after contrac-
tions in {y}UN (y). Without loss of generality, takei = 1,j = 2 and k = 3. Then,
by Proposition 3.22 and the triangle inequality, we get p(y+e1), p(y+e2) < Kp.
In conjunction with d(y+ej+e1,y+e;+es),d(y+exs+es,y+estez) < AKu/b
and d(y+ey,y+er+er), dy+es,y+eat+er) < AKpu/10, we see that y+eq, y+eo
are points whose neighbourhoods contracting gives one of the diagrams consid-
ered, in particular y + e; + e g\y + e+ e3 and y + ey + 62/1\@/ + es + e3.
But contract y + e; + ey with y, this gives p(y + e; + e2) < Ku/5 < Kpu and
diam N(y + e; + e2) < N*Kpu < AKp which is a contradiction with Proposi-
tion 3.23, since A < 1/(41C1 K).

Hence, as long as y satisfies p(y) < Kp/10, d(y+e;, y+e;) < AKp/10, d(y, y+
er) < MK /10, for some {i, j, k} = [3] it must have diagram D.1. Start from yj.
Then we have d(yo + €3 + €1, Yo + €3 + €2) < N2 K, d(yo + €3, 90 + 2e3) < N2 K p.
Now, apply Proposition 3.22 to y see that p(yo + e3) < 8p(yo). Therefore, con-
tractions around gy, + e3 give us diagram D.1. But, contract yo + e1,yo + €1 + €3

to obtain p(yo + €1 +e3) < por p(yo + €1) < p.

Case 2. We can only have diagrams C.2 and D.2.
Start from y, and define y, = yo + nes for all n > 1. By induction on n
we claim that p(y,) < 16, d(y, + €1, Yn + €2) < A" d(y, + €1, Yns1 +€1) <
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(45 4+ 8n) A"y, d(ypn + €9, Yni1 + €2) < (45 + 8n)AN" i, d(yn, yn + €3) < 2000\ p.

For n = 0 the claim holds, since yo has diagram C.2 or D.2. Suppose
the claim holds for some n > 0. Then it must have diagram C.2 or D.2,
SO Y + €1 Y + €a, giving d(Yni1 + €1,Ynt1 + €2) < Ad(Yn + 1,40 + €3) <
4\ We can apply Proposition 3.24 to (yo;%0 + €2,%0 + €1,% + €3;Yn)
or (yo;yo + €1,Y0 + €2,y0 + €3;y,) (depending on the diagram of yy) and to
(Yo; Yo + €2, %0 + €1, Y0 + €3, Ynt1) OF (Yo; Yo + €1, Y0 + €2, Yo + €3; Ynt1) With con-
stant 60, so we get d(yo + €3,Yn + €3),d(Yo + €3,Yns1 + €3) < 960Au, thus
A(Ynt1, Ynt1 + €3) < 2000A2. S0 p(Yni1) < (1 4+ 3X)p(yn) < 17p, SO Ypia has
diagram C.2 or D.2.

If the diagrams of y, and y,.1 are distinct, then y, + e; /‘?’\ynﬂ + e; and
Yn + €2 f3\yn+1 + €9, so the inequalities for d(y,.+1 + €1, Ynio + €1) and d(y,1 +
€9, Ynt2 + €3) follow. Otherwise, vy, + e A Yni1 + €2 and y, + €9 A Ynt1 T €1,
SO d(Yns1 + €1, Ynt2 +€1) < d(Yns1 + €1, Yny1 + €2) + d(Yni1 + €2, Yni2 + 1) <
ANP2 4+ Nd(Yn +e2, Ynt+e1) +d(ynter, Yns1+e1)) < 8NT2u+ N (45+8n) A"t =
(45 + 8(n + 1))A\""2y. The inequality for d(yn.1 + €9, Ynso + €2) is proved in the
same spirit.

Finally, by the triangle inequality we get d(yo+e1, yni1+e1) < d(yo+e1, y1+
er)+d(yr +ea, 1 +e1) +dyr +er,ya+ea) + -+ d(yn + €1, Yni1 +e1) < 50Au.
Also d(yo, Yn+1) < d(yo, yo+e3) +d(yo + €3, Yn +e€3) < 192\ + 960 A = 1152\ 4.
Combining these conclusions further implies p(y,+1) < 164, as desired. Having
established this claim, we can see that (y, + €1)n>0 is a 1-way Cauchy sequence,

which is the final contradiction in this proof. O

Proposition 3.26. Set C3 = 24-10'°,C3, = 19-10° and let i, j € [3] be distinct.
If A < 1/(7380C1C3,1), there is x such that p(x) < Csp;d(x+e;, v +e;) < ACsp.

Proof. The proof will be a consequence of a few lemmas, the last one being
Lemma 3.32. It suffices to prove the claim for ¢« = 1,7 = 2. Suppose contrary,
there is no such a point. Consider those y which satisfy p(y) < Csip and
d(y + es,y +e;) < AC5pu. For such a point y say that it is C1-good, and more
generally use this definition for arbitrary constant instead of C'5;. We already
know that such a y exists by Proposition 3.25. We list the possible diagrams

of contractions in {y} U N(y) for such a point, these are given in Figure 3.6 for
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Figure 3.7: Possible diagrams in the proof of Proposition 3.26

i = 1. If an edge is shown as a dashed line, then it is a result of a contraction.
Furthermore, with dotted lines with letter P we mark edges whose bound on
length will be the result of applying Proposition 3.24. It is not hard to show
that these are the only possible diagrams, but for the sake of completeness we
include the full proof in Section 3.8 devoted to the contraction diagrams, which
in particular provides an explanation for Figure 3.6. The symmetric diagrams
to these for the case i = 2 are denoted by A’, B’, etc.

Our aim is to reject diagrams one by one. We shall start by discarding
diagram A, and this method will then be used for the others. As we shall see, we
can first apply the propositions proved so far to discard many diagrams in the
presence of the given one, and then the remaining ones can be fitted together so

that we obtain a 1-way Cauchy sequence.

Lemma 3.27. Set C35 = 31-10%. There is no Cs5-good y such that contractions
giwe diagram A or A’ fory.

Proof of Lemma 3.27. Suppose contrary, we do have such a point y, and without
loss of generality d(y + e1,y + e3) < ACsou. Firstly, suppose that there was
another point z that is C51-good, but whose diagram is among D, D’, E, E', F,
F’. By FNI we have d(y, z) < (C32+C31)p/(1—A) < 2C5 1. Then, for a suitable
choice {z1, 22, 23} = N(z), we can apply Proposition 3.24 to (z; 21, 22, 23;y + €1)
with constant 6C5; to get d(zs, 23 +e3) < d(z3,2) +d(z,y) +d(y,y +e1 +e3) +
dly+e1+es, 23 +e3) < Csap+ 2050+ (1 4+ XN)Csop + 96AC5 10 < 4C5 1 4.
Hence, p(z3) < 4C5 1, except when the diagram is D or D’, so we must apply
Proposition 3.22 to z first, so obtain p(z3) < 10C5 1. Also, d(z3 + €1, 23+ €2) <
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2XC5 141, but such a point z cannot exist by the assumptions.

Now, take an arbitrary (C31/3)-good point z with diagram A. Consider the
point z+e3. We have p(z+e3) < (2+3X\)p(2),d(z+es+e1,z2+e3+e3) < 2Ap(2)
so z+eg is C31-good, so its diagram is one of A, B or C (it cannot be among the
symmetric to these ones as then p(z+e3) < u). If it was B, then contracting the
pair z + e1, 2 + e3 + e would give immediate contradiction, for we would obtain
one of p(z+e1) < Cs1p, p(2+e2) < por p(z+ex+ez) < p. Similarly, it cannot
be C, since contracting the same pair of points would give the contradiction once
again as it would yield p(z + e2) < p or p(z + 2e3) < u. Therefore, whenever we
have a (Cs51/3)-good point z with diagram A, then z + e3 is C51-good and has
the same diagram.

Now, start from the y given, and define y,, = y+nes, for n > 0. We shall now
show that (yn)n>0 is a Cauchy sequence and hence obtain a contradiction. By
induction on n we claim d(yn, yn + €1) < N'Cs2p, d(Yn + €1, Yns1) < AN"T1C350,
p(yn) < (2 4+ 10X)C5 9 and diagram of y,, is A. This is clearly true for n = 0.

Suppose that the claim holds for n > 0. Note d(vo,Yn+1) < d(yo,y1) +
d(y1,y2) + -+ dYn +Ynt1) < Csap+2X0Cs 004+ 2X2Capp1 4+ - - < (143X)Cs o1
The fact that y, has the diagram A and is in fact C5;/3-good implies that
Ynt1 1s Cs1-good and itself has diagram A. Further, yn}\yn + e; and y, +
e1 fg\yn + e3. This is then sufficient to obtain the next two inequalities. Also
d(yo + €2,Ynt1) < Csop + 3C52u/(1 — A) < 5C5ou. Hence, we must have
Yo + €2~ Yp1, for otherwise p(yo + 1) < por p(y1) < p. So d(yo, Yn+1 + €2) <
d(Yo, yo +2e2) + Ad(yo + €2, Yn+1) < Cs o+ ACs3 200+ 5AC5 o0, from which we can
infer p(Yns1) = d(Ynt1, Yns1 + €2) < d(Yns1,v0) + d(Yo, Yo + €2) + d(yo + €2, Yo +
2e3) + d(yo + 2€2, Ynt1 + €2) < (24 10A\)Cs 2, as claimed.

From this we immediately get that (y,),>0 is a Cauchy sequence. O

Lemma 3.28. Set Cs3 = 1029-10°. There is no Cs 3-good point y with diagram
EorFE.

Proof of Lemma 3.28. Suppose contrary, without loss of generality d(y + e,y +
e3) < ACssu. Firstly, suppose there was a Cjo-good point z with d(z + ey, z +
e3) < AC59p and diagram among B, C, D. Take p = z + e, for diagrams B, D,
p = z+ e3 for C, and apply Proposition 3.24 with constant 3C5 4 (for d(p,y) <
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3C524 and for such a constant the other necessary assumptions also hold) to
(y;y+es,y—+es,y+eq;p) to obtain a contradiction at y+ ey, as it has d(y+e; +
€1,y +e1+ex) <2033 p and p(y +e1) = d(y + e,y +e1+e3) < d(y +en,y) +
dly,z) +d(z,p+e1)+dp+e,y+es+er) <Cssu+ (Csz+ Csa)p/(1—X)+
20591 + 480C539 < Cs1p. Hence, any such a C2-good point z can only have
diagram E or F.

Now, return to the point y and define y,, = y + nes, for all n > 0. We show
that (yn)n>0 is a Cauchy sequence. By induction on n we show that d(y,+e1, yn+
e3) < N30, d(yn + €3,Yns1 + e3) < (3 4+ 2n)A" 153 and p(y,) < 3Cs3p.
Case n = 0 is clear.

Suppose the claim holds for some n > 0. Firstly, v, is C39-good, so it has
diagram E or F, so in particular d(y,1 + €1, Yny1 + €3) < Ad(yn + €1,Yn +
e3) < A" (O3 3u. Applying the triangle inequality gives d(yn41 + €3,y0 + €3) <
d(Yni1+e3,ynt+e3)+--+dyr+es, yo+es) < (5+2n) A" O 3u+. .. 3NC3 30 <
3AC330/(1 = 2X). Further, since d(yo, Ynt1) < d(Yo,Yn) + d(Yns Yn+1) < (p(yo) +
p(Yn)) /(1 —X) + p(yn) < 8C5 3 apply Proposition 3.24 to (y;y + es,y + €2,y +
e1;Yn+1) with constant 8Cs5 3 which gives d(y1, Yni2) < 128\C53u. Therefore,
P(Yns1) < 3C53p, in particular is C o-good, hence its diagram can also only be
E or F. If y, and ¥y, have the same diagram, then contract y,, + e1, Y11 + €3,
otherwise vy, + e3, yn1+1 +e€3. These must be contracted by 2, so using the triangle
inequality gives in the former case d(yn11 + €3, Ynto + €3) < d(Ynt1 + €3, Ynt1 +
e1) + d(Yns1 + €1, Ynia + €3) < AN 20530 + Ad(Yn + €1, Yns1 +€3) < N 2C5 30+
Md(Yn+er, yntes) +d(Yn+es, Yny1+es)) < 20205 30+ Ad(yn +€3, Yny1 +es) <
(5 4+ 2n)A" 205 3 as desired. In the latter case we are immediately done.

Furthermore this claim implies that (y,, +e1),>0 is a Cauchy sequence, so we

obtain a contradiction. O

Lemma 3.29. Set Cs4 = 147 - 10°. There is no Cs 4-good point y with diagram
ForF’

Proof of Lemma 3.29. Suppose contrary, there is such a point y and without loss
of generality we may assume d(y + €1,y + e3) < AC3 4/

Suppose that we have a point z that is 3C5 4-good with diagram F and that
d(z + e1, 2z + e3) < 3A\Cs4p, and that z + es being C5 3-good has diagram B, C
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or D. If it was B, we would immediately obtain a contradiction by contracting
z + ey, 2 + 2e9, and if it was C, contracting z + e1, 2z + es + e3, would once
again end the proof, both giving a point p with p(p) < u, so suppose that it
was D. Apply Proposition 3.24 to (z;z + e1,2 + €2,z + €3; 2 + €3 + e3) and to
(2524 €1, 2+ €2, 2 + e3; 2+ 2e5) with constant 12C5 4. Now z + e; is 7C5 4-good,
so it has diagram among B’, C’, D’, F’. However diam{z + e; + ey, 2 + 2¢; +
€, 2+ €1+ €2+ e3} < ANCs 4, so it must in fact be F’. Apply Proposition 3.24
to (z;2+e1, 2+ea, 2+e3; 2+e; +e3) with constant 12C5 4. Thus z+e3 A Z+2es.
Write r = d(z+e3, 2+ 2e3), so we see that FNI implies r — p(2) < d(z, z+2e3) <
A(r 4+ p(2))/(1 = A), but r > Csp and p(z) < 3C5 4u give contradiction.

Hence, whenever z is a 3C5 4-good point with diagram F, z 4 es is U3 3-good
and has the same diagram. Now (y + nes),>o is Cauchy by the arguments from

the proof of Lemma 3.28, since there we allow both E and F as diagrams. [

Lemma 3.30. Set C35 = 21-10°. There is no Cs5-good point y with diagram
Dor D’

Proof of Lemma 3.30. Suppose contrary, there is such a point y and without loss
of generality we may assume d(y + e,y + e3) < ACs5pu.

Consider a point 3C5 5-good point z with the diagram D and d(z+e1, z+e3) <
A3C3 5. Since z 4 e; is U3 4-good, it can only have diagram B, C or D. If it was
not D, contract z+ ey, 2+ e +e3 for the sake of contradiction, namely, if it was B
we would get p(z+4e3) < por p(z+2e;) < Csp, but d(z+2e;+e€1, 2+2e1+€2) <
2AC5 51 and if it was C, we would obtain p(z + e; + e3) < p or p(z + 2e1) < p.
Hence, whenever 2z has the given properties, z 4+ e; has diagram D.

Return to y, and consider the sequence y,, = y+ney, for n > 0. By induction
on n, we show that p(y,) < 3Cs 50, d(Yn, Yn+e3) < A"Cs s and d(yn+e3, Yni1) <
A'"1C5 sp. The claim is clearly true for n = 0.

Suppose that the claim holds for some n > 0. Then y, is 3C35-good so
it has diagram D. Hence, ynfl\yn + ez and yu11 /l\yn + e3, which establishes
two of the necessary inequalities. Also, by the triangle inequality d(yn+1,y0) <
Cssi0 + 2ACs51/(1 — N), so we can apply Proposition 3.24 to (yo; yo + €2, yo +
€1, Yo + e3; Yn+1) with constant 6C5 5 to get d(yn+1 + €2, Y0 + €1 + e2) < 96Cs 51,
in particular p(yn+1) < 3C55u, as desired.
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It follows that (y,)n>0 is a Cauchy sequence. O

Lemma 3.31. Set C35 = 3-10°. There is no Csg-good point y with diagram C
or C".

Proof of Lemma 3.31. Suppose contrary, there is such a point y and without loss
of generality we may assume d(y + €1,y + e3) < AC3 /.

Firstly, suppose that we have a 3C5 g-good point z such that d(z+ey, z+e3) <
3ACs6p, and z + e; has diagram B. We shall obtain a contradiction by con-
sidering contractions in such a situation. First of all we can observe that
z+e;3 A z+ej+es. Note that d(z+2eq, z+2e1+e3) > Cspu, so d(z+e3, 2+ 2e3) >
d(z+2ey, z42e1+e3) —d(z+es, z+2e1) —d(z+2e3, z+2e1+e3) > Cypu—24NC 6.

Case 1. Suppose that z + e3 A+ 2es.

We see that z+es +e3, 2+ 2e3 is not contracted by 1, and from FNI, we must
have p(z+2e3) > (1—=N)d(z, z+2e3)—p(2) > (1=N)d(z+e3, z+2e3)—(2—N)p(2),
thus z+e5+4e3, 2+ 2e3 is neither contracted by 3, hence z+es+e3 A z+2e3. Now
suppose that z+2e, A z+e1+ey. Then d(z+es, 2+2e3) < d(z+e3, 2+e2+2€3)+
d(z+ey+2e3, z+es+e3)+d(z+ea+es, z+2e3) sod(z+es, z+2e3)(1—N) < 3p(z)
which is impossible.

Therefore we must have z + 2es g +e;+ey and 2+ 2¢; LA + 2e4, otherwise
p(z + €1 + e2) < p. Finally, contract z 4 2e;with z + 2e3 to get p(z + 2¢e1) < p
or p(z + 2e3) < p.

Case 2. Suppose that z + e3 A+ 2es.

By FNI applied to z,z + 2e3 we see that p(z 4+ 2e3) > (1 — A\)d(z + e3, 2 +
2e3) — (2 — A\)p(2), hence p(z + 2e3) = d(z + 2e3,z + €3 + 2e3) > (1 — N)d(z +
es, z+2e3) — (2—A)p(z). So we have z+ 2e; A z4ey+es. Also z -+ 2ey /2\Z—|-63,

from which we see that z + 2e, > 2 + 2eq, giving a contradiction.

Thus, whenever we have a point z as described, we must have z + e; with
diagram C as well. Now, set y,, = y+ne; for n > 0. By induction on n we prove
that d(yn, Yn + €3) < N'Cs6t, d(Yn + €3, Yns1) < A" C5 60, p(yn) < 3C3 61 and
yn has diagram C. This is clear for n = 0.

Suppose the claim holds for some n > 0, so y, must have diagram C, from
which the first two inequalities follow. Observe that d(y,+1,%) < p(yo) +
20p(yo) /(1 — A) and d(yo + €2, yo + €2 + e3) > Csp, SO Ypi1 A Yo + €. Therefore
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P(Ynt1) < 3p(yo) < 3C56M, which gives the rest of the claim, as y,11 = yn + €1
must have diagram C, by the previous conclusions.

Hence (yn)n>0 is a 1-way Cauchy sequence, which is a contradiction. O]

Lemma 3.32. Set C37 = 10°. There is no Cs7-good point y with diagram B or
B’

Proof of Lemma 3.32. Suppose contrary, there is such a point y and without loss
of generality we may assume d(y + e1,y + e3) < ACs 7u.

Consider a 6C5 7-good point z, which has d(z + e1, z + e3) < 6AC5 71, which
therefore must have diagram B. We have p(z + e3) < (2 4+ 3\)p(2),d(z + e2 +
e,z + ea + e3) < 2Ap(z), s0 z + ey is C36-good so has diagram B’. Observe
that z + e3>z + ey + €3 as d(z + (1,0,1),z + (1,1,1)) > R — 4Xp(z) and
d(z+(0,1,1),24(0,2,1)) > Csu—2Ap(z), where R = d(z+eq, z+e1+e3) > Cspu.
Also z+e; A 2+ ez since z has diagram B. Similarly, since z+ ey has diagram B’,
we must have z+2e5 -~ z4e3+e3. Furthermore p(z+ey+e3) < (243X\)p(z+¢2) <
(2 4+ 30)2p(2),d(z +e1 +ex+ e,z + e + e+ e3) < 2Mp(z + e2) < BAp(2),
so 2z 4+ e; + ey is C36-good, hence itself has diagram B, from which we infer
24 (0,1,1) A 2+ (1,1,1).

Suppose that z + e + e3 Aitet es, so have d(z+ (1,0,2),z+ (0,1,2)) <
A R+3p(z)) and d(2+(1,0,2), 24+(0,0,2)) < A(R+6p(2)). Thus d(z+(1,0,1), 2+
(1,0,2)) < A(R+8p(2)), hence z 2. 2 + 2es, which implies d(z + 2e3,z + 3e3) >
R(1 —X) —3p(2), s0 z + e + e5~z + 2e3 (if 2+ e + €3~z + 2e3, then
p(z + 2e1 + e2) < ) giving d(z + (2,0,1),z + (1,0,1)) < AR+ 10p(2)). Also
z+(1,1,0) BN 24(2,0,0) and z+2e; A z+2e5, but then contracting z+2eq, z42e3,
results in contradiction.

Thus z+(1,0,1) ~ z+ (0,1, 1), as otherwise R(1—\) < 2C5 741, which is not
possible. From the fact that z has the diagram B, we have z Azt e1. Also, we
must have z+e; &~ z+e1 +e5. As d(z+ei1+es3,z+2e1+e3) > (1-AN)R—TAp(2),
we cannot have z + e; A z 4 2e1. Suppose that z + e; N z + 2eq, then contract-
ing z + 2ey, 2 + e; and z + 2ey, 2 + 2e; (both must be in the direction e3) gives
d(z + e1 + es, 2 + 2e; + e3) < 6Ap(z), which is a contradiction.

We conclude that z ~ z + e, z + 61/1\2 +e; + e and z + 61/2\2 + 2eq,

for such a z. By symmetry, when d(z + e, z + e3) < 6AC5 74 holds instead of
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d(z + e1,z + e3) < 6ACs57u, then we must have z Az + e9, 2+ €9 N +e1 + e

andz+62/1\z~|—262.

Return now to the point y and consider the sequence given as yy, = y, when
k is even set yri1 = y + ez, otherwise yx 1 = y + e;. By induction on k we
obtain p(y) < 3Cs7s, d(Ye, Yrsa) < BNEELCs o, d(ye, y + e3) < NCsqp;
and for even k we have d(yg, yp + €1) < 3)\’“0377/@ and for odd k£ we have
d(Yr, Yx + €2) < 3N Cy7p.

When k = 0, the claim clearly holds. Suppose that the claim is true for
all values less than or equal to some even £ > 0. We shall argue when k
is even, the same argument works in the opposite situation. By the trian-
gle inequality, we have d(yo,y;) < 3(1§\+1\X2)03 7p for even i < k 4+ 2 and
d(yr,y;) < BA%C&W for the odd ¢« < k + 2. In particular, as y
is C36-good, it has diagram B, so p(yk+1) = d(Ykt1, Ukr2) < d(Yks1,y1) +
p(Yo) + d(Yo, yr+2) < 3(1 + )\)%Cs 7+ Cszp < 5Cs 700 and d(yp1 +
€2, Yk+1 + €3) < 2Ap(yr) < 10AC37p. Then yiiy is 10C57-good, so it must
have diagram B’. From the contractions implied by this diagram described pre-
viously, we get that d(yus1, yer1 + €3) < AHCy 7. Moreover, yp 1~ Yep1 + €2,
Yr+11€2 A Yp+1+e1+ex and yip1+eo ~ Yrt1+2e. Therefore d(yrp1+e2, Yrts) <
d(Yr+1+ €2, Y1 +2€2) + d(Yrgr +2€2, Yr1 +2e2 4+ €1) +d(Yrg1 +2e2 4 €1, Yra3) <
Ad(Yrt1 + €2, Yrr3) + (L+AN)d(Yrs1 + €2, Ypr1 +2€2) < Ad(Yr1 + €2, Yrrs) + A1+
AN (Y1, Yps1 + €2). Hence d(ypi1, Yprs) < %d(yk_t'_l,yk_i,_l + eg), proving the
claim.

We infer that yo, yo +e1, Y1, y1 + €1, Y2, . .. is a 1-way Cauchy sequence, which

is a contradiction. O

But Proposition 3.25 provides us with a Cj7-good point, which however

cannot exist because of the lemmas we have shown in the course of this proof. [

3.7 FINAL CONTRADICTION

In the rest of the proof of Proposition 3.3, an important role will be played
by the sets S;(K,z¢) = {y : d(xo,y) < Ku,d(y,y + e;) < Ku}, defined for any
point zg, constant K and i € [3]. Given any point ¢, the set S;(K,xg) serves to

give approximate versions of contractions of xy and ¢ in the direction i, in the
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following sense. If ¢ -~y for some y € S;(K,xo), then we have

d(xo,t +e;) < d(wo,y) +d(y,y +e;) +dy +eit +e;) < Kp+ Kp+ Md(y,t)
< 2K p+ Md(y, zo) + d(zo,t)) < (2+ N Kp + Ad(xo, t).

Using this idea, unless ¢ never contracts with S;(K, o) in the direction i for
some 7, we can get 3-way sets of small diameter, as we shall see in the proof of
the next proposition.

An additional benefit of using these sets is that they usually do not con-
sist of xo only (note xg € S;(K,x) if p(xrg) < Ku), and that for example,
under certain circumstances, we can find a point y with the property that
Y,y + es € S3(K,xp). Such points will play an important role in the proofs
of Propositions 3.35 and 3.36, which, when combined with the following propo-

sition, are used to deduce the key result in this chapter.

Recall that x /Ay means that d(z + e;,y + ¢;) > Ad(x,y).

Proposition 3.33. Fiz arbitrary xo with p(xg) < 2u. Given K > 2, when
i € (3], define S;(K,xg) = {y : d(zo,y) < Ku,d(y,y +e;) < Ku}. Provided
1> 2XKC1(2+A)?/(1 = )), in every (2) there is t such that d(t,zo) < 33K,

but for some i € [3], we have t7zs for all s € S;(K,x).

Proof. First of all, we have xy € S1(K, z0), S2(K, x0), S3(K, xy), making these
non-empty, as Kpu > p(xo) > d(zo,z9 + ¢;) for all i € [3]. Suppose contrary
to our statement, there is z without any ¢ described above. Since f“‘K o>
p(z0)/(1 — A), we know that there is y € (2)3 such that d(zo,y) < 23 Kpu, by
Lemma 3.8. Then we have s; € S)(K, x) such that s; —~y. Hence d(y+ey, o) <
d(y 4+ e1, 81+ e1) +d(s1 + e1,81) + d(s1,20) < Nd(y,zo) + d(xo,51)) + 2Kp <
)\(%K,{L—FK[L) +2Kpu = %Ku. Similarly, we get the same result for y+es, y+
e3, and so we have constructed a 3-way set of diameter not greater Q%K 1, but
there are no such sets since 1 > 2AKC(2 + A)?/(1 — \) by Proposition 3.19,

giving a contradiction. O]

Similarly as before, we use tighter constraints on A. Here we use A < 1/10
implies 222 < 3 and (24 A)?/(1 — ) < 5. Note that the following statement is

Proposmon 3.6 described in the overview of the proof.
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Corollary 3.34. Fiz arbitrary xg with p(xg) < 2p. Given K > 2, when i € [3],
define S;(K,xo) = {y : d(zo,y) < Kp,d(y,y + ¢;) < Ku}. Provided 1 >
LOAKCY, in every (z)s there is t such that d(t,xo) < 3Kpu, but for some i we
have 871/\t when s € S;(K, o).

Based on this, we shall reach the final contradiction in the proof of Proposi-
tion 3.3. To do this, we consider the possible cases on the d(t + e;, t + ;) where
{i,j,k} = [3] and t is a point given by Corollary 3.34. Namely, suppose that
d(t+ ej,t + e;) is small enough, and in fact j = 1,k = 2,7 = 3. Then whenever
we have a point y with y € S3(K, x¢) and if d(y+ e,y + e2) is small we also have
diam{y—+ey, y+es, t+eq, t+es} small as well. On the other hand, if d(t+eq,t+e5)
is large, and y1,y2 € S3(K, xo) with d(y1 + e1,y1 + €2), d(y2 + €1, y2 + e2) small,
but d(y1 + €1,y + €1) large, we also have pairs t,y; and ¢, y, contracted by the
different values in {1,2}. Of course, we need to specify what we mean by small

and large in this context, and this is done in the following two propositions.
Proposition 3.35. Let Cy = 16C5. Fix xy with p(xg) < 2u. Let {i,7,k} = [3].
Given K, provided A < 1/(44C5+6Cy+ K),1/(34440C,C3), we have d(t+e;,t+
ex) > KAy, when t is such that d(t,xo) < 3Cyu and s /~t when s € S;(Cy, xo).
Proposition 3.36. Let C5 = 1000Cs. Fiz xo with p(xo) < 2u. Let{i, j, k} = [3].
Provided A < 1/(8200000C,C}3), we have d(t + e;,t + e) < 10C5 A, when t is
such that d(t,zo) < 3Csu and s 72’\15 when s € S;(Cs, o).

Once we have shown these propositions, we just need to take A small enough
so that they both hold.

Let us now prove a lemma that classifies the relevant possible diagrams we

will need in the incoming arguments.

Lemma 3.37. Let K > 1 and A < 1/(4920KCy). Suppose that we have a point
y with p(y) < Kp and d(y + e1,y + e2) < AKpu. Then y must have one of the

diagrams shown in Figure 3.7 (up to symmetry).

Proof of Lemma 3.37. Contracting the long edges in N(y) U {y} can only, up
to symmetry, give us diagrams A, B, C and D, as described in the first part of
Section 3.8, with the requirement 1/(164KC}) > A. Observe that in diagrams B,
C and D, we can apply Proposition 3.24 to (y;y+es,y+es, y+e;y+er), (yv;y+

77



A S Al e A2 e
> e 7

Figure 3.8: Possible diagrams for p(y) < Kp,d(y + e1,y + e2) < AKpu.

es,y + e,y +es;y+e3) and (y;y + e,y + €2,y + e3;y + e3) respectively with
constant 6K, as long as A < 1/(4920KC}). Further, by contracting the short
edges, we can only obtain diagrams A.1, A.2, B.1, etc. shown in Figure 3.7, up
to symmetry, as otherwise we obtain a point p € {y} U N(y) with p(p) < p. O

Proof of Proposition 3.35. We prove the claim for ¢ = 3,7 = 2,k = 1, the
other cases follow from symmetry. Suppose contrary, for some K and A <
1/(44C5 + 6Cy + K), 1/(34440C1C3), we have tg such that d(tg + eq,to + e3) <
KA, d(tg, xo) < 3Cyu and 3734750 whenever s € S3(Cy, o), where xq is a point
with p(xo) < 2pu.

Consider points y with p(y) < 7Csu, d(y + e1,y + e2) < TAC3u. Existence of
such points is granted by Proposition 3.26. Apply Lemma 3.37 to y. We shall
now discard some of the diagrams by contractions with .

Suppose that y had the diagram A.1. By FNI d(y, z) < (7TC5+2)u/(1—-X) <
8C5u, and so y,y + e € S3(Cy, x9). Hence y,ty and y + e3, tp would be con-
tracted by 1 or 2. However, from this we see that if y + e3 fl\to we would get
ply+e)=dly+e,y+es+e) <dy+eyto+e)+dto+e,y+es+e) <
d(y+er,y+es)+Ad(to,y)+d(to+er, tot+es)+A(d(to, y)+d(y, y+es)) < TACsu+
BAC i+ Ad (o, y) +AK 1+ 3ACyp+Ad(xg, y) + TAC3u < AM(30C3+6C,+ K)p < .
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On the other hand if y + e3 A to, we would get p(y+es) < d(y+es+ea, y+es)+
dly+es+es,y+es+er) <dly+es+es,to+es)+d(to+es,y+es)+ 14NCsu <
Ad(to, zo) +d(zo, y)+d(y, y+es))+d(y+er, y+ez) +d(to+er, to+ez) +Ad(y, to) +
14MC5 < 3ACyp+8ACspu+TAC3 1+ TACspu + AK 1+ 3ACy o+ 8ACspp + 14X Cs 0 <
A(44C5 + 6Cy + K)p < pu.

Similarly, if it was A.2 instead of A.1, we would have y, y+e; € S5(Cl4, x¢) and
so contracting these two points with ¢, would give p(y +e) = d(y+ea+e1,y+
e2) < d(y+er+es,y+2er)+Ad(y+er,to) +d(y+er,y+ex)+Ad(y, to) + AKp <
A(14C; + 15C5 + 3C, + 8C5 + 3Cy + K)p < p.

Now consider diagrams C.2 and D.2. We have y,y + e3 € S3(Cy, x0) so
contracting these points with ¢; must be by 1 or 2, so we immediately get
p(y +e1) < AN44C5 4+ 6Cy + K)p < p.

Therefore, we can only have diagrams B.1, C.1, D.1 and the diagram sym-
metric to B.1, which we shall refer to as B.2. Suppose now that y with p(y) <
TCsp, d(y+er,y+ez) < TAC3u had diagram C.1 or D.1. Also, assume p(y+e3) <
703, d(y+es+er, y+es+es) < ACspu, thus y+ e itself has one of the mentioned
diagrams. Suppose that it had diagram B.1 or B.2. Without loss of generality,
it was B.1, the other case is symmetric to this one.

Suppose y has diagram C.1. Then given any point z with d(z,y) < 2p(y),
suppose d(y+ey, z4e1), d(y+ea, z+e3) > 5Ap(y). Then z >y and so y+e; ~ z,
y+es Az However, we can apply Proposition 3.24 to (y;y+ea, y+e1,y+es; y+
2e3) with constant 42C3, to see that diam N(z) < 800AC3u, so after contracting
y, z we obtain p(z) < 12C3u and applying Proposition 3.23 gives the contradic-
tion, provided A < 1/(32800C,C}3). So whenever d(z,y) < 2p(y), we must have
dy +e1,z+e1) < 5\p(y) or d(y + e2,z + e2) < 5Ap(y). But contract z with
Yy + e in the former case and with y + e in the latter to see that for some choice
of distinct 4, j € [3] we must have d(z+e;,y+e1),d(z+e;,y+e1) < 20Ap(y), so
d(z + ei,y),d(z + €ej,y) < 2p(y), thus we can repeat these arguments to points
Z + e,z + €. Doing so, we obtain a 2-way set of diameter at most 280ACp
by considering the distance from y + ey, if the point z is dropped out. But, by
Lemma 3.8, we get such a 2-way set in every 3-way set, which is a contradiction
by Proposition 3.20, since A < 1/(840C3). We argue similarly, if y has diagram
D.1.
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We conclude that if y is as described and has diagram C.1 or D.1, then
y + e3 also has diagram among these two. Now, start from a point yy with
d(yo+er1,yo+e2) < 3ACspu, p(yo) < 3C3u and diagram C.1 or D.1, provided such
a point exists. Define the sequence y, = yo + nes, for all n > 0. Our aim is to
show that this is Cauchy. By induction on n we show that p(y,) < 7Csu, d(y, +
€1, Ynr1ter), d(Ynteo, Yns1+es) < (n+3)ANLCsu, d(yn+er, ynt+ez) < 3C3A"
and y, has either diagram C.1 or diagram D.1, which is true for n = 0.

Suppose the claim holds for all m not greater than some n > 0. By Proposi-
tion 3.24 applied to (yo; p1, P2, P3; Yn) With constant 18C5 with suitable {p1, p2, p3}
N(yo) we get d(y1, Yni1) < 288\Cspu, so we infer that p(yni1) < d(Yna1, Yni1 +
1) + d(Yns1 + €1, Ynt1 + €2) < d(Yni1,y1) + d(y1, yo + e2) + d(yo + €2, 41 + €2) +
d(yr + e2,y2 + €2) + -+ + d(yn + €2, Yns1 + €2) < 7C3p and y, + €; Ay + e
S0 d(Yni1 + €1, Yns1 + €2) < 3A"T2(C5 therefore, y,,,1 must itself have diagram
C.1 or D.1. If y, and y,.1 have the same diagram, then we can see that
Ynt+e1 A Ynsr1+e2 and Y, 1+e€; A Yn—+e2, which is sufficient to establish the claim,
as we obtain d(Y+1+e1, Ynt2 +e1) < d(Yn+1+ €1, Ynra +€2) +d(Ynt2 + €2, Ynto +
e1) < Md(Yn+e1, Yns1+€1) +d(Ynt1+ €1, Yni1 +€2)) + Ad(Yns1 + €1, Yns1 +e2) <
A (Yp+e1, Yns1+e2) F6A"B3C3u < (n+3)A"P2C3u+N"2Csu < (n+4)A"2Csp.
Likewise, we get the bound on d(y,+1 + €2, Ynio + €2). If the diagrams are differ-
ent, it must be the case that y, + e A Yn+1 + €1 and y, + e A Yn+1 1 €2, once

again proving the claim.

Hence, if y is a point such that p(y) < 3Csu,d(y + e1,y + e2) < 3ACspu,
then it can only have diagram B.1 or B.2. In the light of this, pick yo with
p(yo) < Csp, d(yo + €1, Yo + €2) < AC3pu, whose existence is provided by Propo-
sition 3.26, so it has diagram B.1, without loss of generality. Set y; = yo + €1
and so have diam{y,y1 +e1,y1 +e2} < 3Ap(yo) for the diagram for yo. Also, by
Proposition 3.24 applied to (yo; yo + €3, Yo + €2, Yo + €1; y1) with constant 6C5 we
get p(y1) < 3C3u, so y; has diagram B.1 or B.2. If it is B.1 define y, to be y; +ey,
otherwise y; + €. We similarly proceed to define a sequence (y)r>0. As long as
yi is defined and has one of these diagrams, define y;,1 = yr+e1 when g, has dia-
gram B.1, and set y;1 = yx+e2 if it has diagram B.2. We now claim by induction
on k that yy, is defined, p(yx) < 3C3u and diam{yy, yp +e1, yp +e2} < 3(3N)*Cspu.
This is clear for k = 0.
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Suppose the claim holds for some £ > 0. Then we have that y; has B.1 or B.2
for its diagram. Suppose it is the former, we argue in the same way for the other
option. Firstly, yxi1 is defined. Then, from contractions implied by the dia-
gram B.1, we get diam{ygi1, Ypr1 + €1, Yri1 +e2} < 3Adiam{yx, yx + €1, yr + €2}
Finally, as d(yo,yr) < (p(yo) + p(yr))/(1 — X) < 5Csu, we may apply Propo-
sition 3.24 to (yo;yo + €3,%0 + €2,%0 + €1;yrr1) With constant 6C5 to obtain
P(Yk+1) = A(Yrr1, Yrr1 +€3) < d(Yrs1, Y0) +d(Yo, Yo +e3) +d(yo +e3, Yrg1 +e3) <
A(Yr+1,Ye) + A(Yr Yr—1) + - + d(y1, v0) + p(yo) + 96AC3p < INCpe/(1 — 3N) +
2C5 + 96 A\C3u < 3C53u, which proves the claim.

This brings us to the conclusion that (yx)g>o is a 1-way Cauchy sequence,

providing us with a contradiction. O

Proof of Proposition 3.36. During the course of our argument, we shall prove a
few auxiliary lemmas, the last one being Lemma 3.41, allowing us to conclude the
proof. It suffices to prove the claim for ¢ = 3,7 = 2,k = 1. Suppose contrary,
there is to with d(ty + eq,to + e2) > 10ACspu, d(ty,z9) < 3Csu and whenever

s € C3(Cs, xp), we must have either s /Lto or sgxto.

Set C51 = 100C5 and consider the points y with p(y) < Cs1p,d(y + €1,y +
es) < AC51p. Note that such a point exists by Proposition 3.26. The possible
diagrams of contractions are shown in Figure 3.9, and the arguments to justify
these are provided in Section 3.8. These are precisely the same diagrams as in
the previous proposition. Using d(ty + ey, to + e2) > 10A\Csp, we reject most of
these.

B.1 Suppose that y as above has diagram B.1. First of all, as A < 1/(4920C,C5 1),
apply Proposition 3.24 to (y;y + e3,y + €2,y + e1;y) with constant 6C’ 4
to see that in particular y,y + e,y + e,y + ez are all in Cs(zo, C5), as
d(y, wo) < (Cs51+2)u/(1 = A), p(y) < Csap, dy,y +es) < Csap, d(y +
e,y +er +e3) < (24 96N)Cs1p,d(y + e2,y + e2 + e3) < AC51p and
d(y+es,y +2e3) < (2+3X)Cs 14t
If to ~ v, then contract £y, y-+es to get p(y+er) < 6A(Cs1+C5)u < o when
to ~y+es or d(to+er, to+es) < d(to+er,y+er) +d(y+er,y+es+eo)+
d(y+es+es, to+es) < A(3Cs51+43C5)u+3ACs 110+ (3C51+3C5) 1 < 10ACs

otherwise, both of which are not allowed.
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Figure 3.9: Possible diagrams of points p with d(p +e1,p+ea) < AC51p1, p(p) <
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Suppose that y as above has diagram C.1. Then d(y,y+e3) < Cs1p, d(y+
er,y+ei+es), dy+es, y+eates) < 3NCsap, d(y+es, y+2e3) < 96AC5 4.
Also d(y,z0) < (Cs1+2)u/(1—=X), p(y) < Cs 1, 80 y,y+e1,y+es,y+es €
S3(xo,C5). Without loss of generality yfl\to. But if y + 62/1\t07 then
p(y+e) =dy+er,y+er+e) <Ay, to) + Md(y + e2,tp) < 6A(Cs1 +
Cs)u < p. However, y + 62/2\250 is impossible as well, for that implies
d(to+e1,to+e2) < d(to+er,y+er)+d(y+er,y+2es)+d(y+2es, to+ez) <
6A(Cs.1 + Cs)+ TACs.1 < 10ACs2.

Assume that y as above has diagram C.2. First of all apply Proposition 3.22
to y (we have A < 1/(78C5.1)) to see that d(y+e1,y+e1+es),d(y+e2,y+
ea+e3) <905 . Also d(y+es, y+2e3) < ACsap, p(y) < Cs1p, d(y, xo) <
(Cs14+2)n/(L—=N),s0y,y+e1,y+es,y+es € Ss(xg, Cs). Without loss of
generality y ~to. If y + e, —~to then ply+e) <dy+e,y+2e)+dy+
2e1,y+e1 +e2) < A(d(y,to) +d(y +e1,to)) +2AC5100 < 6MN(Cs1 + Cs)pu +
2M\C5 1 < p. So, we must have y+e; A to, but this also yields contradiction
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as d(to+eq, tot+ez) < d(to+er,y+er)+d(y+er, y+yi+es)+d(y+er+eq, to+
62) S /\d(y,to)—i—)\C’mu—i—)\d(y%—el, to) S 6>\(C5+O5’1)/L+>\O5’1/L < 10)\05,&

D.1 Let y have diagram D.1. Then d(y,y + e3) < Csip,d(y + e1,y + €1 +
es3),d(y + ea,y + ea 4+ e3) < 3NCs1p,d(y + e3,y + 2e3) < 96AC51pu. Also
d(y,z0) < (Cs51+2)u/(1 = A), p(y) < Csap, so y,y+en,y+egy+es €
S3(xg, Cs). Without loss of generality y A to. If to ~y+ey, then ply+er) =
d(y + e,y +2e1) < d(y + er,to +e1) +d(to + e1,y + 2e1) < A(d(y, to) +
d(to,y +e1)) < 6A(C5+ Cs1) < p. On the other hand ¢, A y + e; implies
d(to +e1,to+e2) < d(to+en,y+er) +dy+en,y+er+er) +dy+e +
e, to + €2) < AN(6C5 + 7Cs1)pn < 10ACsp. Thus, y cannot have diagram
D.1.

D.2 Suppose that y as above has diagram D.2. First of all apply Proposi-
tion 3.22 to y to see that d(y+e1, y+e1+es), d(y+ez, y+ea+es) < 9Cs 1 p.
Also d(y+es, y+2e3) < AC51p, p(y) < Csap, d(y, o) < (C514+2)p/(1-X),
S0 ¥,y + €1,y + e,y + es € S3(xg,Cs). Without loss of generality y A to.
Now contract y + eq, tg. If these are contracted by 1, then p(y + 1) <
d(y+er,y+er+er)+d(y+er+ex, y+er+es) < AN6C5+8Cs1)p < p, which
is a contradiction. Therefore tg BN y + eo, which gives d(tg + e1,to + €2) <
d(to+er,y+er)+d(y+er,y+2es)+d(y+2eq, to+ez) < AN6C5+8Cs 1)1 <
10ACs .

Thus, we are only left with diagrams A.1 and A.2. Let A.1’ and A.2’ be the
diagrams symmetric to these, obtained by swapping the roles of e; and e,. Let
y once again be the same point as before. We distinguish the possibilities for

contractions with ¢g.

A.1 If y has diagram A.1, then y, y+e1, y+e3 € S3(xg, Cs), and it is easy to see
that tg, y and ¢y, y + e, are contracted in the same direction, while ¢y, y + e3
is contracted in the other. Similarly, we obtain the possible contractions

with ¢y for diagram A.1".

A.2 If y has diagram A.2, we have all the points in {y} UN (y) being members of
S3(xg, C5), and pairs ty, y and g, y + e; must be contracted in the different
directions (otherwise p(y+e3) < p). Same holds for the pairs y+ ey, to and

83



y—+es, to. From this we see that ¢ A Y, to A y+es, to EN y+e1. Analogously,

we classify the contractions for A.2’.

Lemma 3.38. Let K < Cs;. There is no sequence (yx)rer for suitable index set

I C Ny, with the following properties:
1. yo is defined, has p(yo) < K/(2+ 6A),d(yo + €1, y0 + €2) < AK/(2+ A,

2. If yx is defined, and satisfies p(yx) < Ku,d(yo + e1,y0 + €2) < AKpu, then
Yy has diagram A.1 or A.1°, and we define yr1 = yi + €;, with i = 1 when

diagram of yp is A.1 and i = 2 otherwise.

Proof of Lemma 3.38. By induction on k, we claim that y; is defined and diam{y, yx+
e1, yp + 2} < (BN)FKu/(2 + 6X). This trivially holds for k = 0. Also, without
loss of generality yo has diagram A.1.

Suppose that the claim holds for all & not greater than k, where &k > 0.
Observe that d(yo, yx) < d(yo,y1) + d(y1,y2) + ... d(yp—1,yx) < (L + 3N+ -+ +
BN DK u/(2+6)) < ml{u. Now, contract yp+es, y. It is contracted
neither by 1 nor by 2, since we either get p(yo+e1) < por p(yo+e2) < p. Hence
Yk A Yo + €3, 50 d(yx + e3, yo + €3) < d(yx + €3, yo + 2e3) + d(yo + 23,90 + €3) <
v Kp < 2\Kp. Finally, we establish p(y) < (2 + 60K /(2 + 6)) =
K, which combined with d(yx + €1, yx + €2) < AK i gives that y itself has dia-
gram A.1 or A.1’. Hence ygy is defined, and diam{yxi1, Y1 + €1, Y1 + €2} <
3Adiam{yk, yx + €1, yx + €2}, as desired.

However, this shows that (yx)r>0 is a 1-way Cauchy sequence, which is not

allowed. Therefore, we reach a contradiction, and the end of the proof. O

Corollary 3.39. There ezists a point y with p(y) < 3Csu,d(y + e1,y + e3) <
3ACsp with diagram A.2 or A.2°.

Proof of Corollary 3.39. Suppose contrary, and let yo be a point with p(yy) <
Csp, d(yo + €1, Y0 + €2) < ACspu, given by Proposition 3.26. We shall now define
a sequence (y) inductively, as long as we can. The starting point g, is as above.
Given yy, provided it satisfies p(yxr) < 3C3u, d(yr + €1,y + €2) < 3ACsp, define
Yri1 to be yp + e; when gy, has diagram A.1 and y + es if y; has diagram A.1’,
(note that by assumption these two are the only permitted diagrams). But this
gives a contradiction by Lemma 3.38 with K = 3C5. ]
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Corollary 3.40. We have d(to + ey, to + e2) > 5Csp.

Proof of Corollary 3.40. Suppose contrary. In order to reach a contradiction, we
shall obtain a Cauchy sequence as in the previous proof. Consider a point y with
p(y) < 36Csu,d(y + e1,y + e2) < 36AC5u. Assume that this point has diagram
A.2. Recall that we have tg /Ly + e, g /Q\y‘ This gives p(y + e1) < C51p0 and
from contractions of {y} U N(y) we get that d(y +e1 +e1,y +e1 +e2) < ACs1p
holds as well, so y + e; has one of the four diagrams considered so far. However,
we immediately see that it is not possible for y 4+ e; to have diagram A.2, for
to~y +er.

Suppose that y+e; had diagram A.2’. Firstly, suppose that y+e; A y+estes.
Then contract y, y+2es3. If it is by 3, we have p(y+2e3) < p, otherwise we obtain
p(y +e3) < p. Hence y + e; A Yy + €2 + e3. This further implies y + e; A Y+ 2eo
(or otherwise p(y+2e1) < p). However y+2ey € Ss(x0, C5), so contract y+ea, to
to get a contradiction.

Suppose now that y has diagram A.1 and p(y) < 17C3u,d(y + e1,y + e2) <
17TACspu. If y+e; has diagram A.2, then y+ e A to,y+e1+es A to, y+2eq EN to.
But y has diagram A.1, so ty contracts with y+e1, y in the same direction, thus in
ez, and ty, y+ ez in the other, i.e. e;. However, then diam Ny (z+2e;) < 10AC5p,
which is in contradiction with Proposition 3.23 used with constant 10C5 after
contracting vy, y + 2e;.

Assume that y + e; has diagram A.2’. Thus ¢, EN y+eq,to A Yy + e + ez and
to /iy + e; 4+ es. As y has diagram A.1, we have tg /l\y and % /iy + e3. But, as
d(ty + e1,to + e2) < 5Csu, we have y + e; + ey 100C5-good, so by the previous
discussion y + €1 + ey can only have diagram A.1 or A.1" (as y+e; is 36C5-good).
If y + e, + ey has diagram A.1 then ¢, /I\y +e1+ex+es, 80 p(y+ep) < p, sowe
may assume y + e; + e; has diagram A.1’; which implies ¢, A y+ep+ e+ es.
Look at pairs y +2e1,y 4+ 2e; +e3 and y + 2e; + ea, y + 2e1 + e3, both have length
at most 6C53u, so cannot be contracted by 2, as otherwise d(ty + €1,y + €2) <
10C5u. Suppose that at least one of these pairs is contracted by 1. Then apply
Proposition 3.24 to (y;y + 3e1,y + 2e1,y + e1;y + e2) with constant 10C}5 (since
A < 1/(8200C1C5)), to see that p(y + 3e3) < p. Hence, the two considered pairs
are contracted by 3. But, contract y + es, y + 2e; + e3 to get p(y +2e; +e3) < p
or d(tg + e1,to + e2) < 200\Csu giving p(y + e3) < p.
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Now, start from y; with p(y)) < Csu,d(y, + e1,yy + €2) < ACsu, given
by Proposition 3.26. If y{ has diagram A.1 or A.1” set yo = ¥, otherwise set
Yo = Yy +e1 if the diagram is A.2, and yo = y; + €9 if the diagram is A.2’. Hence,
yo satisfies p(yo) < 6Csu, d(yo+ €1, yo + €2) < 6ACsu, and defining a sequence as

in Lemma 3.38, gives a contradiction for K = 17C3 by the discussion above. []

Lemma 3.41. Suppose that y,,ys are two points with p(y1), p(y2) < Csp. Then
d(y1 + e3, Yo + e3) < 40\Csp.

Proof of Lemma 3.41. Recall that we have a point yo with p(yo) < 6Csu, d(yo +
e1, Yo+ez) < 6ACsu, with diagram A.2 or A.2’°) given by Corollary 3.39. Without
loss of generality it is A.2.

Let z be any point with p(z) < Csu. We shall prove d(yo + €3,z + e3) <
20\C5p, which is clearly sufficient. Note that we have d(z,zo) < (C3+2)u/(1—
A) < Csp,d(z,to) < d(z,z0) + d(xo, to) < (C3+2)pu/(1—N) +3C5u < 4C5u, and
similarly d(yo, z) < 4Csp and yg, z € S3(z0, Cs).

Assume ¢t A 2. Recall that to /Q\yo. If yq /Lz, then d(to + e1,to + €2)
d(to+er,z+e1) +d(z+er,yo+e1) +dyo +er,yo +e2) +d(yo + ez, to + €2)
MCspu+ A7C5/(1 = X) + 6AC3u 4+ 4XCsu < 5C3u < d(tg + €1, to + e2), which is a
contradiction. Similarly we discard the case yq A z, as then d(tg + e1,tg + €2) <
d(to+er,z+e1)+d(z+er, z+es)+d(z+ e, y0+e2) +d(yo+ea, to+e2) < 5C3pu.
Therefore, 1o -~ 2, s0 d(yo + €3, 2 + €3) < ATCsp/(1 — A) < 8ACs.

Thus, we must have zﬁ\to. But we cannot have neither yo + e A 2 nor
Yo + €1 A z, for otherwise we obtain d(ty + eq,to + e2) < d(to + e1,yo + 2e1) +
d(yo + 2€1,2 + e3) + d(z + ea,to + €2) < Ad(to,yo + €1) + d(yo + 2e1,y0 + €1 +
es) + Ad(y + e1,2) + 2p(2) + Md(z,ty) < 5C5u. Hence, we get yo + €1 22, s0
d(yo+es,z+e3) < Ad(yo+e1,2) +d(yo+e1 +es,yo + e3) < 1ANCspu+ 6ACsp =
20\Csp, as desired. O

<
<

We are now ready to establish the final contradiction. By Proposition 3.26, we
have points 1, x9, x3 with whenever {i, 7, k} = (3], we have p(z;) < Csp, d(z; +
e;, x; + ex) < ACsu. First of all, 1,29, 23 all belong to Si(zg,Cs), since
and tg g\xj. Then, by the triangle inequality and FNI, d(tg + e1,t9 + €2) <
d(to+er,x;+e)+d(x;+er,x;) +d(x;, xj) +d(xj, x;+es) +d(x;+ea, to+e2) <

d(zo,z;) < (Cs + 2)u/(1 — A). Suppose that for some i,j we have to — z;
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Figure 3.10: All possible contraction diagrams

Ad(to, 70) + (o, 2) + p(:) + (p(:) + () /(1 = ) + pla) + A(d(z, 70) +
d(xo,t0)) < ABCsp + (p(xo) + p(2:))/(1 = A)) + Cspp+ 205/ (1 — A) + Csp +
M(p(z;) + p(z0))/(1 — X) + 3Cs5p) < 5C3u, which is not possible, hence ¢
contracts with xy,xs, 3 in the same direction, e; without loss of generality.
But also Lemma 3.41 gives diam{z; + e3, 25 + e3,x3 + €3} < 40AC3pu, and
diam{zy + ey, 29 + €1, 23 + €1} < 8ACs5u so diam N(zq) < 9ACsp, which is a

contradiction due to Proposition 3.23. O]

Combine Corollary 3.34 with Propositions 3.35 and 3.36 to obtain a contra-
diction. n
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3.8 DiscussioON OF THE POSSIBLE CONTRACTION DIAGRAMS

In this section we discuss the possible diagrams for contractions in the later
part of the proof of Proposition 3.3. In this discussion we assume that the propo-

sitions preceding Proposition 3.25 all hold.

Let us start with a point x with p(x) < Kpu, for some K > 1. Consider first
the contractions of the long edges, that is those of the form x + ¢;, x + ¢;, where
i,7 are distinct elements of [3]. If two such edges are contracted in the same
direction, say k, then diam N(z + e;) < 4AKpu. Furthermore, we can contract
T, T + e, to get p(xr) < (24 5A) K p, which is a contradiction due to Proposi-
tion 3.23, provided A < 1/(164C,K), which we shall assume is the case. Thus,
all three long edges must be contracted in different directions.

Contract now the short edges, i.e. those edges of the form z, x + ¢;, for some
i € [3]. Given such an edge, there is a unique long edge x + €;, x + e, such that
{i,j,k} = [3]. We say that these edges are orthogonal. Suppose that a short edge
x + e; is not contracted in the same direction as its orthogonal long edge. Then
x+e; must be contracted in the same direction ¢; as z+e¢;, z+¢;, for some j # i.
Let k be such that {7, j, k} = [3]. Then z + e, cannot be contracted in the same
direction as x + e;, as otherwise p(z +¢;) < 3A\Kp < u, which is impossible. So,
x + ey, is contracted in the same direction as one of its nonorthogonal long edges.
Hence diam{zx+e;, v +¢e,+e€;, x+e +e; }, diam{x+e,, v +e,+ep, v+e,+e,} <
3Ap(z) holds for some m,n € [3] where m # [ and n # k. From this we can
conclude that contractions in {x} U N(x) can only give the diagrams shown in
Figure 3.8. There, an edge shown as dashed line implies that its length is at
most 3Ap(z).

3.8.1 DIAGRAMS IN THE PROOF OF PROPOSITION 3.26

As in the proof of Proposition 3.26 we consider a point y with d(y + e1,y +
e3) < ACsp and p(y) < Csqp, i.e. we set previously considered K to be Cs
instead, and so assume A < 1/(164C,C5 ;). Consider the possible diagrams of
contractions of edges in {y} U N(y). Recall that our assumption is that there is
no point x with p(z) < Csp and d(x + ey, x4 e3) < AC3u. We now describe how
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to reject all diagrams except 2, 4, 6, 11, 15 and 23.

1

10

12

13

14

16

17

18

19

20

Immediately we get p(y + e3) < 4AC51u < p.
We have p(y + e1) < 4XCs1p < p.

Similarly to previous ones p(y + e1) < TAC5 1 1.
We get p(y + e3) < 4ANCs1p0 < p.

Have p(y + €3) < (2+ 3N Cs1p,d(y + €2 + €1,y + e2 + €2) < 3XC34, but

we assume that there are no such points.

Diameter of N(y) is at most 7TAC5 14 and p(y) < Cs1p so apply Proposi-
tion 3.23, provided A < 1/(287C,C}.,).

Diameter of N(y) is at most 10AC5 11 and p(y) < Cs 1 so apply Proposi-
tion 323, provided A< 1/(410010371)

We apply Proposition 3.24 to (y;y + e,y + €1,y + e3;y) with constant
9C5.1, s0 p(y + e2) < 144X\Cs 140 < p, as long as A < 1/(7380C1C54).

Use Proposition 3.22 to get p(y + e1) < (11 4+ 9N)C51u and d(y + ey +
e1,y + 1+ e3) <3031, as A < 1/(936C5 ;). This is a contradiction as
Cg > 120371.

Apply Proposition 3.24 to (y;y + €3,y + €2,y + e1;y) with constant 9C 4
to get p(y + e2) < 144\C5 1. Here we need A < 1/(7380C1C51).

As 14.

As for 13, get p(y +e2) < (11 4+9X)C5 0 and d(y + e +e1,y + €2+ €2) <
3)\0371,u.

Apply Proposition 3.24 to (y;y + €1,y + €3,y + e2;y) with constant 9C5 4
to get p(y + e2) < 144XC51 0 < p.

Apply Proposition 3.24 to (y;y + e1,y + €3,y + e2;y + e3) with constant
9C51 to get p(y+ea) < (24 6N)Cs1p,d(y+ex+er,y+ea+es) < 3NCsqp.

As 18.
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21

22

24

Use Proposition 3.22 to get p(y+e3) < (94+3X)Cs1p and d(y +es+e1,y+
€3 + 62) S 3)\03,1[1, as A < 1/(7803’1)

Have diam N(y) < 7TAKu which is in contradiction with Proposition 3.23,
when A < 1/(287C,Cj,4).

Apply Proposition 3.24 to (y;y + e1,y + €2,y + e3;y + e3) with constant
6C5.1 to get p(y + ea) < 96AC5 1 p.

Therefore, we obtain that for the y given above, provided A < 1/(7380C,C}3 1),

we can only have diagrams 2, 4, 6, 11, 15 and 23. However, in all of these

diagrams we can classify contractions more precisely.

2

11

15

23

Observe that we cannot have y + e A yory+ e A y as the first one of
these gives p(y + e2) < 10AC5 1 < u, while the latter implies p(y + e1) <
10Cs 0 < p. Hence y + e /I\y. Similarly, we must have ny\y + es,
otherwise we get a point p with p(p) < 10AC5 1 < p.

As in 2, if we do not have y A y+ e and y A y + ez, we obtain a point p
with p(p) < 10ACs10 < p.

As in 2, if we do not have y/?\y + eo and yfl\y + e3, we obtain a point p
with p(p) < 10ACs 10 < p.

If y/:}\y + e3, then p(y + e3) < 10ACs3u < p. On the other hand, if
y A y—+es, then diam N(y) < 8AC51pand p(y) < Cs1p which is impossible
by Proposition 3.23, if A < 1/(328C,C5,). Thus, y}\y + e3, and in the
same fashion y A y + eo. Furthermore, apply Proposition 3.24 to (y;y +
es, Yy + €1,y + e3;y) with constant 6p(y)/u to get d(y + e2,y + €1 + e2) <
96Ap(y).-

As in 11, we obtain y A y+e; and y }\y + e3. Apply Proposition 3.24 to
(y;y+es,y+ez,y+er;y) with constant 6p(y)/p to get d(y+ ez, y+2e2) <
96Ap(y)-

As in 11, we obtain y A y+e; and y /Ly + e3. Apply Proposition 3.24 to
(y;y+e1,y+ez,y+es;y) with constant 6p(y)/p to get d(y+e2,y+2e2) <
96p(y)-
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3.9 CONCLUDING REMARKS

We now return to the (refuted) conjecture of Stein which stated that every
contractive family had a common fixed point. Recall that Austin showed that
the conjecture fails in general, but that it holds for families consisting of two
commuting functions. Let us recollect once again the main results of this part
of the thesis. These are Theorems 1.3 and 1.7, both extending Austin’s results,

and having rather contrasting conclusions.

Firstly, Theorem 1.3 tells us that, even with a strong topological restriction
imposed on the underlying metric space X, we may still find a contractive family
of two functions such that no composition has a fixed point. Therefore, trying to
find a strengthening of Stein’s conjecture that involves a topological condition
on X is likely doomed to failure. On the other hand, Theorem 1.7 tells us
that A\-contractive families of three commuting functions have a common fixed
point (when A is small enough). Recall also the remarkable Generalized Banach’s
Contraction theorem (Theorem 1.5), which states that contractive families of the
form {f, f2,..., f*} always have a common fixed point. These two theorems give
evidence that Austin’s conjecture, stating that commuting contractive families
necessarily have a common fixed point, should be true. In fact, an algebraic
condition on functions in the considered family like the one in Austin’s conjecture
naturally defines the geometry of our problem. Namely, if the family is F =
{f1,..., fn} and we pick arbitrary point xy € X and consider compositions of

length k applied to xg, i.e. the set

Sk = {f“ Ofi2 o... Ofik(lfo)lil,ig,...,ik - [TZ]},

then the size of Sy is directly related to the algebraic properties of F. In par-
ticular, if the family is commuting, then |Sy|< n*, while in the general case,
when there are no additional assumptions on F, it may well be the case that
|Sk|> exp(§2(k)). In other words, Sy grows polynomially when F is commuting,
rather than exponentially, and this should be very helpful for finding fixed points.

The rest of this section is devoted to the analysis of some aspects of the proof

of Theorem 1.7 and we conclude the chapter with some questions and conjectures.
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Recall that the starting point of our proof was to change our viewpoint by
moving from the original space X with a A-contractive family to a pseudometric
space (N3, d), with the property that for any a,b € N3 there is some ¢ € [3] such
that d(a + e;, b+ ¢;) < Ad(a,b). Motivated by Austin’s conjecture, we formulate

the following one.

Conjecture 3.42. Let n be a positive integer and X a real with 0 < \ < 1.
Suppose that (N§, d) is an n-dimensional A-contractive grid, i.e. a pseudometric
space with the property that given x,y € Ni we have some i € [n] with d(z +
e,y +e;) < M(z,y). Then there is a I-way Cauchy sequence (Zy,)m>1, i.e.

(Tm)m>1 is Cauchy and xp1 — Ty € {€1,€2,...,6€,} holds for all m.

Recall 1 = inf p(x), where x ranges over all points in the grid and set pi, =
limy_,o0 infrea, p(x), where Ay is the n-way set generated by (k. k,..., k). We
say that a pseudometric space is a contractive grid if it is nm-dimensional \-
contractive grid, for some 0 < A < 1 and a positive integer n. Remember that u
plays a very important role in our proof, since p = 0 immediately gives rise to a

1-way Cauchy sequence (this is the content of Proposition 3.10).
Question 3.43. Can p > 0 occur in a contractive grid?
Question 3.44. Can o, = 00 occur in a contractive grid?

Even though Theorem 1.7 looks like an analytical statement, our proof is of
a combinatorial nature, with the flavour of Ramsey theory. We remark that the
proof of Generalized Banach Theorem (Theorem 1.5) in fact rests on Ramsey’s
Theorem. We suspect that the complete proof of Conjecture 3.42 should be

based on a similar approach.

It might be interesting to examine some arguments used in the proof of
Theorem 1.7 further, and we pose the following questions and conjectures. First,
recall Proposition 3.11 and Corollary 3.18. The former states that a bounded
3-way set contains a bounded 2-way set of considerably smaller diameter, while
the latter tells us that a 2-way set of small diameter induces a 3-way set of

diameter which is not much larger.
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Question 3.45. Does an n-way set of bounded diameter necessarily contain an
n — l-way set of much smaller diameter? In general, what is the relationship

between the k-way sets and the k + 1-way sets in higher dimensional grids?

Finally, recall that Lemma 3.15 about colourings of edges of K, in three
colours played an important role in the proof. We conjecture the following

generalization to be true.

Conjecture 3.46. For each k > 2 there is a positive constant Cy with the
following property. Given a k-colouring of the edges of K,, we can find sets of
vertices Ay, As, ..., Ap_1 which cover the vertex set, and colours ¢y, ca, ..., C_1 €
[k], such that diam,., G[A;] < Cy holds for all i € [k — 1].
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Part 11

Graph Theory






4  COVERING COMPLETE GRAPHS BY

MONOCHROMATICALLY BOUNDED SETS

4.1 INTRODUCTION

Given a graph G, whose edges are coloured with a colouring x: E(G) —
C' (where adjacent edges are allowed to use the same colour), given a set of
vertices A, and a colour ¢ € C, we write G[A, | for the subgraph induced
by A and the colour ¢, namely the graph on the vertex set A and the edges
{zy:z,y € A, x(zy) = c¢}. In particular, when A = V(G), we write G[c| instead
of G[V(G), ¢]. Finally, we also use the usual notion of the induced subgraph G|[A]
which is the graph on the vertex set A with edges {zy:z,y € A,zy € E(G)}.
We usually write [n] = {1,2,...,n} for the vertex set of K.

Our starting point is the following conjecture of Gyérfas.

Conjecture 4.1 (Gyarfas [23], [25]). Let k be fized. Given any colouring of the
edges of K, in k colours, we can find sets Ay, Ay, ..., Ax_1 whose union is [n],

and colours ¢y, ¢a, ..., cx—1 such that K,[A;, ¢;] is connected for each i € [k — 1].

This is an important special case of the well-known Lovasz-Ryser conjecture,

which we now state.

Conjecture 4.2 (Lovasz-Ryser conjecture [33], [27]). Let G be a graph, whose
mazimum independent set has size a(G). Then, whenever E(G) is k-coloured,

we can cover G by at most (k — 1)a(G) monochromatic components.

Conjectures 4.1 and 4.2 have attracted a great deal of attention. When it
comes to the Lovész-Ryser conjecture, we should note the result of Aharoni ([1]),

who proved the case of k = 3. For k > 4, the conjecture is still open. The special
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case of complete graphs was proved by Gyarfas ([24]) for £ < 4, and by Tuza
([52]) for k = 5. For k > 5, the conjecture is open.

Let us also mention some results similar in the spirit to Conjecture 4.6.
In [46], inspired by questions of Gyarfas ([23]), Ruszinké showed that every
k-colouring of edges of K, has a monochromatic component of order at least
n/(k — 1) and of diameter at most 5. This was improved by Letzter ([32]),
who showed that in fact there are monochromatic triple stars of order at least
n/(k —1). For more results and questions along these lines, we refer the reader
to surveys of Gyarfas ([23], [25]).

In a completely different direction, relating to contraction mappings on metric
spaces, we recall Theorem 1.7, that was proved in Chapter 3. (We mention in
passing that this chapter is self-contained, and in particular no knowledge of

chapter 3 is assumed.)

Theorem 4.3 (Theorem 1.7). Let (X,d) be a complete metric space and let
{f1, f2, f3} be a commuting \-contractive family of operators on X, for a given
A€ (0,10723). Then fi, f2, f3 have a common fized point.

Some of the ingredients in the proof of Theorem 1.7 were the following simple
lemmas. Note that Lemma 4.4 is in fact a classical observation due to Erdds
and Rado.

Lemma 4.4. Suppose that the edges of K, are coloured in two colours. Then

we may find a colour ¢ such that K,|c| is connected and of diameter at most 3.

Lemma 4.5. Suppose that the edges of K, are coloured in three colours. Then
we may find colours ¢y, cq, (not necessarily distinct), and sets Ay, Ay such that
Ay U Ay = [n], with K,[A1, 1], Ku[Aa, co] are each connected and of diameter at

most 8.

Recall also that a common generalization of these statements and a strength-

ening of Conjecture 4.1 was conjectured in Section 3.9.

Conjecture 4.6 (Conjecture 3.46). For every k, there is an absolute constant
Cy such that the following holds. Given any colouring of the edges of K, in

k colours, we can find sets Ay, Aa, ..., Ax—1 whose union is [n], and colours
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C1,C2y ..., Ch—1 Such that K,[A;, ¢;] is connected and of diameter at most Cy, for
each i € [k —1].

The main result of this chapter is

Theorem 4.7. Conjecture 4.6 holds for 4 colours, and one may take Cy = 160.

4.1.1 AN OUTLINE OF THE PROOF

We begin the proof by establishing the weaker Conjecture 4.1 for the case of
4 colours. Although this was proved by Gyérfds in [24], the reasons for giving
a proof here are twofold. Firstly, we actually give a different reformulation of
Conjecture 4.1 that has a more geometric flavour. The proof given here and the
reformulation we consider emphasize the importance of the graph Gy, defined
as the tensor product! of k copies of K,,, to Conjecture 4.1. Another reason for
giving this proof is to make the chapter self-contained.

We also need some auxiliary results about colourings with 2 or 3 colours, like
Lemmas 4.4 and 4.5 mentioned above. In particular, we generalize the case of 2
colours to complete multipartite graphs. Another auxiliary result we use is the

fact that G essentially cannot have large very sparse graphs.

The main tool in our proof is the notion of cs3, cs-layer mappings, where cs, ¢4
are two colours. For P C N2, this is a mapping L: P — P(n), (where [n] is the
vertex set of our graph), with the property that

(i) sets L(A) partition [n] as A ranges over P, and

(ii) for A, B € P with |A; — By|,|As — B2|> 2, we have all edges between L(A)

and L(B) coloured using only c3, ¢4.

This is a generalization of the idea that if we fix a vertex xy and we assign
A® = (d,, (xg,7),de,(70,2)) € N2 to each vertex x, where d,,, d,, are distances
in colours ¢y, ¢, (which are the remaining two colours), then if A® AW satisfy
|A§x) — A§y)|, |A§’C) — Aéy)|2 2, the edge xy cannot be coloured by ¢; or cs.
Given a subset P’ of the domain P, we say that it is k-distant if for all distinct

'Recall that the tensor product of graphs G and H is the graph on the vertex set V(G) x
V(H) with edges of the form (u,u’), (v,v") for all pairs of edges (u,v) in G and (v/,v") in H.
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A, B € P" we have |A; — By|,|As — Bs|> k. Once we have all this terminology

set up, we begin building up structure in our graph, essentially as follows:

Step 1. We prove that if a c3, cy-layer mapping has a 3-distant set of size at least

4, then Theorem 4.7 holds.

Step 2. We continue the analysis of distant sets, and prove essentially that if a

3, cy-layer mapping has a 6-distant set of size at least 3, then Theorem 4.7
holds.

Step 3. We prove Theorem 4.7 when every colour induces a connected subgraph.

Step 4. We prove Theorem 4.7 when any two monochromatic components of dif-

ferent colours intersect.

Step 5. We put everything together to finish the proof.

Organization of the chapter. In the next subsection, we briefly discuss a
reformulation of Conjecture 4.1. In Section 4.2, we collect some auxiliary results,
including results on 2-colourings of edges of complete multipartite graphs and
the results on sparse subgraphs of GGy and independent sets in GG3. In Section 4.3,
we prove Conjecture 4.1 for 4 colours, reproving a result of Gyarfas. The proof
of Theorem 4.7 is given in Section 4.4, with subsections splitting the proof into
the steps described above. Finally, we end the chapter with some concluding

remarks in Section 4.5.

4.1.2 ANOTHER VERSION OF CONJECTURE 4.1

For each | € N, define the graph G; with vertex set N} by putting an edge
between any two sequences that differ at every coordinate. Equivalently, G is
the tensor product of [ copies of Ky, (the complete graph on the vertex set Np).

We formulate the following conjecture.

Conjecture 4.8. Given a finite set of vertices of X C N}, we can find | sets
X1,...,X; C X that cover X and each X; is either contained in a hyperplane of

the form {x; = ¢} or G|[X;] is connected.
This conjecture is actually equivalent to Conjecture 4.1.
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Proposition 4.9. Conjectures 4.1 and 4.8 are equivalent for k =1+ 1.

Proof. Conjecture 4.1 implies Conjecture 4.8. Let X C N} be a finite set. Let
n = |X| and define an (I + 1)-colouring x: EF(K,,) — [l + 1] by setting x(zy) = 1,
where ¢ is the smallest coordinate index such that x; = y;; otherwise, when x
and y differ in all coordinates, set x(xy) = [ + 1. If Conjecture 4.1 holds, we
may find sets Aj, Ag, ..., A; that cover [n], and colours ¢, ¢y, ..., ¢ such that
K, [A;, ¢;] are all connected. Fix now any i, and let B C X be the set of vertices
corresponding to A;. If ¢; < [, then for any z,y € B, there is a sequence of
vertices z1, 29, ...,2m € B such that x; = (21); = (22)i = -+ = (Zm)i = Yi, SO
x; = y;. Hence, B is subset of the plane {x; = v} for some value v. Otherwise,
if ¢ = [+ 1, that means that the edges of K, [A;, ¢;] correspond to edges of G[B],

so G[B] is connected, as desired.

Congecture 4.8 implies Conjecture 4.1. Let x: E(K,) — [k] be any k-colouring

of the edges of K,. For every colour ¢, look at components Cfc), e Cffc) of
K, [c]. For each choice of 1, xs, ..., xx_1 with z, € [n.] for ¢ € [k — 1], we define

Cm - Cx1,x2

components, one for each colour except k. Let X C N*~! be the set of all

77777 oh = ﬂce[k_uC'g(ci), which is the intersection of monochromatic
(k — 1)-tuples z for which C, is non-empty. If Conjecture 4.8 holds, then we
can find Ay, As, ..., Ax_1 that cover X such that each A; is either contained in
a hyperplane, or induces a connected subgraph of Gy_;. If A; C {x. = v}, then
the corresponding intersection C), is a subset of % for each z € A;. On the
other hand, if Gy_;[A;] is connected, then taking any adjacent z,y € Gp_1[A],
we have that z. # y. for all ¢ € [k — 1]. Hence all the edges of between C, and
C, are coloured by k. Hence, all the sets C, for x € A; are subset of the same

component of K,[k]. This completes the proof of the proposition. O]

4.2 AUXILIARY RESULTS

As suggested by its title, this section is devoted to deriving some auxiliary
results. Firstly we extend Lemma 4.4 to complete multipartite graphs. The case
of bipartite graphs is slightly different from the general case of more than 2 parts,
and is stated separately. We also introduce additional notation. Given a colour ¢

and vertices x, y we write d.(x, y) for the distance between x and y in G[c]. If they
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are not in the same c-component, we write d.(z,y) = co. In particular, d.(z,y) <
oo means that x, y are in the same component of G[c]|. Further, we write B.(z,r)
for the c-ball of radius r around x, defined as B.(x,r) = {y:d.(z,y) < r}, where
c is a colour, x is a vertex, and r is a nonnegative integer. For any graph G,
throughout the chapter, the diameter of G, written diam G, is the supremum of
all finite distances between two vertices of G. Thus, diam G = oo only happens
when G has arbitrarily long induced paths (as we focus on the finite graphs
in this chapter, this will not occur). For a colour ¢ and a set of vertices A,
the c-diameter of A, written diam, A, is the diameter of G[A,c]. We use the
standard notation for complete multipartite graphs, so K, »,... ., stands for the
graph with r vertex classes, of sizes ni,ns...,n,, and all edges between different

classes are present in the graph.

Lemma 4.10. Suppose that the edges of G = K, ,, are coloured in two colours.
Then, one of the following holds:

(i) either there is a colour ¢, such that G[c| is connected and of diameter at

most 10, or

(ii) there are partitions [ny] = AyUBy and [ny] = Ay U By such that all edges in
A1 x AU B X By are of one colour, and all the edges in A1 x BoU By X Ay

are of the other colour.

Proof. Let x be the given colouring. We start by observing the following. If there
are two vertices vy, vy such that for colour ¢; the inequality 6 < d., (vi,v2) <
oo holds, then for every vertex w such that y(uv;) = ¢;, we must also have
de,(u,v1) < 3, where co # ¢ is the other colour. Indeed, let v; = wy, wy, wy, ...,
w, = vy be a minimal c¢;-path from v, to v9. Hence r > 6, the vertices w; with

the same parity of index belong to the same vertex class of G = K,,, ,, and the

1,12
edges viws = wows, wswg, weu € E(G) are all of colour ¢y (otherwise, we get a
contradiction to the fact that d., (w;, v9) = r — i), implying that d.,(vy,u) < 3.
Now, suppose that a c¢;-component C'; has diameter at least 7. The observa-
tion above tells us that if a vertex y is adjacent to z, and d.,(x1,y) > 1, then
x(x1,y) = 1, 80 de,(x1,y) < 3. Hence, every vertex y adjacent to x; in G, satis-
fies d,(z1,y) < 3. Similarly, any vertex y adjacent to x5 satisfies d.,(x2,y) < 3.

But, x1, 2y are in different vertex classes (as their ¢;-distance is odd), so their
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neighbourhoods cover the whole vertex set, and zix, is an edge as well, from
which we conclude that G[es] is connected and of diameter at most 9. Thus, if
any monochromatic component has diameter at least 7, the lemma follows, so
assume that this does not occur.

Now we need to understand the monochromatic components. From the work
above, it suffices to find monochromatic components of the desired structure, as
the diameter is automatically bounded by 6. Suppose that there are at least 3
ci-components, X7 U X, Y] UYs, Z1 U Zy with X4, Y7, Z; subsets of one class of
Ky, n, and Xy, Y5, Z5 subsets of the other. Let u,v € X; UY; U Z; be arbitrary
vertices. Then we can find w € X, UY5U Zs in different ¢;-component from u, v.
Hence, x(uw) = x(wv) = ¢, s0 d,(u,v) < 2. Therefore, both vertex classes of
G are co-connected and consequently the whole graph is co-connected.

Finally, assume that each colour has exactly 2 monochromatic components.
Let [n1] = A; U By, [ng] = Ay U By be such that A; U Ay, By U By are the ¢;-
components. Hence, A; N By = Ay N By, = ), and all edges in A; x B, and
By x Ay are of colour ¢y. Thus, sets A; U By and By U Ay are cp-connected and
cover the vertices of GG, so they must be the 2 co-components. Thus, all edges in

A; X Ay and B; x By must be coloured by ¢y, proving the lemma. O

Lemma 4.11. Let r > 3, and suppose that G = Ky, pn,...n, 1S a complete 7-
partite graph. Suppose that the edges of G are 2-coloured. Then, there is a
colour ¢ such that G|c| is connected and of diameter at most C,., where we can
take C3 = 20, and C, = 60 for r > 3.

Proof. Assume first that » = 3. Let A, B,C be the vertex classes. We shall
use Lemma 4.10 throughout this part of the proof, applying it to every pair of
vertex classes. We distinguish three cases, motivated by the possible outcomes
of Lemma 4.10 (these cases are not identically the possible results of applying

the lemma, but they do resemble the conclusion of the lemma).

Observation. Suppose that D, E, F' is a permutation of A, B, C' and that DUFE
is contained in a ¢;-component of diameter at most Ny, and for each colour, DUF
splits into two monochromatic components, all of diameter at most Ny. Then,
Gc1] is connected and of diameter at most Ny + 2N5.

Case 1. Suppose that D, E, F'is a permutation of A, B, C', and that Lemma
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4.10 gives different outcomes when applied to pairs D, E and D, F. Then, by
Observation, there is a colour ¢ such that GJc] is connected and of diameter at
most 14. (We took N; = 10 and Ny = 2.)

Case 2. Suppose that D, E, F is a permutation of A, B, C', and that Lemma
4.10 gives a single monochromatic component for each of pairs D, E and D, F'.
If we use the same colour ¢ for both pairs, then G[c] is connected and of diameter
at most 20. Otherwise, let DUFE be c¢i-connected, and let DUF be co-connected,
with ¢; # co. Apply Lemma 4.10 to E, F'. If it results in a single monochromatic
component, it must be of colour ¢; or ¢z, so once again G[c| has diameter at most
20 for some c. Finally, if E'UF splits in two pairs of monochromatic components,
by Observation G|[c] has diameter at most 14, for some c.

Case 3. Lemma 4.10 gives the second outcome for each pair of vertex classes.
Look at the complete bipartite graphs G[A U B] and G[A U C]. Then, we have
partitions A = A1 U Ay = A{ U AL, B = By U By and C = C} U C; such that all
edges (A1 X B1) U (As x By) U (A} x C1) U (A} x Cy) receive colour ¢p, while the
edges (A; X By) U (As x By) U (A} x Cy) U (A} x C) take the other colour c,.
If {Ay, Ao} # {A], AL}, then we must have that some A; intersects both A, A,
or vice-versa. In particular, since any two vertices z,y in the same set among
Ay, Ay, AL, AL obey d,, (z,y) < 2, this means that for any two vertices x,y € A,
we have d,, (z,y) < 6. Now, every point in BUC' in on ¢;-distance at most 1 from
a vertex in A, so G|c¢y] is connected and of diameter at most 8. Hence, we may
assume that 4;UA; and A]UA) are the same partitions of A, and similarly for B
and C, we get the same partition for both pairs of vertex classes involving each
of Band C. Let A=A, UA,, B= B;UB,, C = C;UC5 be these partitions, so
the colouring is constant on each product A; x B;, A; x C;, B; x C;, 1,7 € {1, 2}.
Renaming B;, C;, we may also assume that A; x By, Ay x By, Ay x C1, Ay x Cy
all receive colour ¢;. Thus A; X By, Ay X By, A1 X Cy, Ay x C all receive colour
co. But looking at the colour ¢ of By x Cy, we see that G[c| is connected and of

diameter at most 5. This finishes the proof of the case r = 3, and we may take
C5 = 20.

Now suppose that r > 3. Let V;,V5,...,V, be the vertex classes. Fix the
vertex class V., and look at the 2-colouring x’ of the edges of K,_; defined as

follows: whenever 7,5 € [r — 1] are distinct, then applying the case r = 3 of
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this lemma that we have just proved to the subgraph induced by V; UV; UV,
we get a colour ¢ such that G[V; UV; UV,,c| has diameter at most 20; we set
X'(ij) = ¢. By Lemma 4.4, we have a colour ¢ such that K,_[c| is of diameter
at most 3 for the colouring x’. Returning to our original graph, we claim that
G|c] has diameter at most 60. Suppose that x,y are any two vertices of G. If
any of these points lies in V,., or if they lie in the same V;, then we can pick i, j
such that y € V;UV; UV, and x'(ij) = c. Hence, by the definition of ', we
actually have d.(x,y) < 20 in G. Now, assume that x,y lie in different vertex
classes and outside of V,. Let z € V;,y € V;. Under the colouring x’ of K,_4
we have that d.(ij) < 3, so we have a sequence i; = i,1s,...,is = j, with s < 4,
such that x'(iyia) = -+ = X/(is—19s) = ¢. For each t between 1 and s, pick
a representative z; € V;,, with = z1,y = x,. Then, d.(z;—1,2;) < 20, so
d.(z,y) = de(z1,25) < 60, as desired. O

4.2.1 INDUCED SUBGRAPHS OF (5]

Recall that G is the graph on N/, with edges between pairs of points whose all
coordinates differ. In this subsection we prove a few properties of such graphs,
particularly focusing on (G5. We begin with a general statement, which will be

reproved for specific cases with stronger conclusions.

Lemma 4.12. If S is a set of vertices in G, and the maximal degree of G[S] is

at most d, then the number of non-isolated vertices of G[S] is at most Oy 4(1).

Proof. By Ramsey’s theorem we have an integer N such that whenever F(Ky)
is coloured using 2! — 1 colours, there is a monochromatic K;,;. Let S’ be the
set of non-isolated vertices in S. We show that |S’|< (d* + d + 1)N. Suppose
contrary, since the maximal degree is at most d, we have a subset S” C S of
size |S”|> N such that sets s U N(s) are disjoint for all s € S” (simply pick a
maximal such subset, their second neighbourhoods must cover the whole S’). In
particular, S” is an independent set in Gy, so for every pair of vertices x,y € S,
the set I(x,y) = {i € [l]: z; = y;} is non-empty. Thus, I: E(Kg) — P(I)\ {0} is
2! — 1 colouring of the edges of a complete graph Kg» on the vertex set S”. By
Ramsey’s theorem, there is a monochromatic clique on subset 7" C S” of size at

least [ + 1, whose edges are coloured by some set Iy # (). Take a vertex t € T,
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and since t is not isolated and the neighbourhoods of vertices in S” are disjoint,
we can find x € S’ such that tx is an edge, but ¢'x is not for other ¢’ € T'. Hence,
x; # t; for all 7 € [I] and for distinct ¢',¢” € T we have t; = t if and only if i € 1.
Thus, x; # t; for all ' € T and i € Iy. But, 2t’ is not an edge for t' € T\ {t},
so we always have i € [I] \ Iy such that x; = t;. But, for each i € Iy, the values
of t} are distinct for each ¢’ € T. Hence, for each i, there is at most one vertex
t' € T\ {t} such that x; = t;. Therefore |T|—1 < |[[]\ Io|< -1, so |T|< I,

which is a contradiction. O

We may somewhat improve on the bound in the proof of the lemma above
by observing that for colour Iy we only need a clique of size [ — |Iy|+2. Thus,
instead of Ramsey number

R(I+11+1,...,1+1),

/'

2l—1

we could use
R(l+2 - |[1|7l +2 - |]2|’ s 7l+2 - |‘[21—1|)7

where I; are the non-empty sets of [/]. But, even for paths in G3, which we shall
use later, taking | = 3,d = 2, we get the final bound of TR(2,3,3,3,4,4,4),
where 7 comes from d? 4 d + 1 factor we lose when moving from S’ to S”. We

now improve this bound.

Lemma 4.13. If S is a set of vertices of G3 such that G3[S| is a path, then
15]< 30.

Proof. Let S = {s1,s2,...,8.} be such that sq, $s,...,s, is an induced path in

(73, so the only edges are s;s;.1.

Case 1. For all ¢ € {4,5,...,10}, s; coincides with one of s; or s, in at least
two coordinates.

Since s1s5 is an edge, s; and sy have all three coordinates different. Thus,
for i € {4,5,...,10}, we have (s;). € {(s1)e, (s2)} for all coordinates c¢. Hence,

there are only at most 6 possible choices of s; (as s; # s1,82), sor < 9.

Case 2. There is ip € {4,5,...,10} with at most one common coordinate
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with each of s1,s9. Since s15;,,525;, are not edges, w.l.o.g. we have s; =
(1, 22,23), 50 = (Y1, Y2,¥3), Sip. = (21,92, 23), where z; # y;, 23 ¢ {23, y3}-
Consider any point s;, for j > ig + 2. It is not adjacent to any of sy, s, ;.
If (sj)1 = x1 and (s;)2 # yo, then (s;)3 = ys. Similarly, if (s;); # x; and
(sj)2 = yo, then (s;)3 = x3. Also, if (s;)1 # 1, (Sj)2 # Yo, then s; = (y1, 22, 23).
Hence, for j > ig + 2, the point s; is on one of the lines

('Ih Y2, ')7 (xlu ) y3)7 ('7 9271’3) or it is the pOth (yb T, 23)7

where (a, b, -) stands for the line {(a, b, z): z arbitrary}, etc. Note that a point on
(21,2, ) is not adjacent to any point on (-, 49, x3), and the same holds for lines
(z1,Y2,-) and (z1,-,y3). Hence, along out path, a point on the line (xy,-,y3) is
followed either by a point on (-,ys,x3) or the point (y1,x2, 23) (the latter may
happen only once). In any case, if |S|> 30, then among s;,12, Sio13, - - - , Sig+205

we must get a contiguous sequence sj, S;i1,- .., ;47 of points

Sy 8542, Sj+4, Sj+6 € (1, ‘7y3)75j+17Sj+3;5j+575j+7 € (-, y2,x3).

Finally, we look at A = s;, B = s;42,C = sj15,D = sj;7. These four points
form an independent set, but A # B gives Ay # Bs, so one of Ay # yo, By # o
holds, and similarly, one of C} # x1, D1 # x1 holds as well. Choosing a point
among A, B and a point among C', D for which equality does not hold gives an

edge, which is impossible. O]

Finally, we study independent sets in G3. Note that Lemma 4.12 in this case
does not tell us anything about the structure of such sets. When we refer to
line or planes, we always think of very specific cases, namely the lines are the
sets of the form {z:z; = a,x; = b} and the planes are {z:z; = a}. Similarly,
collinearity and coplanarity of points have a stronger meaning than the usual

one, and imply that points lie on a common line or plane defined as above.

Lemma 4.14. Let S be a set of vertices in Gsz. If every two points of S are
collinear, then S is a subset of a line. If every three points of S are coplanar,

then S is a subset of a plane.

Proof. We first deal with the collinear case. Take any pair of points, x,y € 5,
w.l.o.g. they coincide in the first two coordinates. Take third point z € S. If 2
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does not share the values of the first 2 coordinates with x and y, then we must

have x3 = z3 = y3, which is impossible. As z was arbitrary, we are done.

Suppose now that we have all triples coplanar. W.l.o.g. we have a non-
collinear pair x,y, which only coincide in the first coordinate. Then all other

points may only be in the plane {p:p; = z1}. ]

Lemma 4.15. (Structure of the independent sets of size 4.) Given an indepen-
dent set I of Gz of size 4, (at least) one of the following alternatives holds

(S1) I is coplanar,
(‘5'2) I= {(CL, bv C)? (CLI, b,7 C), (a’lv b7 C,)v (CL, bla C,)}7 where a 7& (l/; b 7& V' and c 7& le

(S8) up to permutation of coordinates I = {(a,b,c), (a,b,c), (a,V,z), (a',b,x)},
where a # a’;b £ b and ¢ # .

Proof. Suppose that I = {A, B,C, D} is not a subset of any plane. We distin-

guish between two cases.

Case 1. There are no collinear pairs in 1.

Let A = (a,b,c). But AB is not an edge and not collinear so A and B differ
in precisely two coordinates. Thus, w.l.o.g. B = (d/,V/,c) where a # a' and
b#b. If C3 also equals ¢, then we must have C3 = (a”,b", ¢) with a” different
from a,a’ and 0" from b,b’. However, looking at D, we cannot have D3 = ¢ as
otherwise I C {z3 = ¢}, so D must differ at all three coordinates from one of
the points A, B, C, making them joined by an edge, which is impossible. Thus
C3 =, with ¢ # ¢. Since AC and BC' are not edges, C' € {(a,, ), (a’,b,)}.
The same argument works for D, so D3 = ¢ # ¢, and D € {(a,V, "), (d',b,")}.
However, if ¢ # ¢”, then C, D are either collinear or adjacent in (i3, which are
both impossible. Hence ¢ = ¢, and {C, D} = {(a, V', ), (d’,b,)}, as desired.

Case 2. W.l.o.g. A and B are collinear.

Let A = (a,b,¢), B = (a,b,) with ¢ # ¢’. Since {z1 = a} does not contain
the whole set I, we have w.l.o.g. C1 = a’ # a. If Cy # b, then AC or BC' is an
edge, which is impossible. Therefore, Cy = b. Hence Dy = V' # b, and by similar
argument Dy = a. Finally C'D is not an edge, so their third coordinate must be

the same, proving the lemma. Il
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Lemma 4.16. (Structure of the independent sets of size 5.) Given an indepen-
dent set I of Gs of size 5, (at least) one of the following alternatives holds

(i) I is coplanar,
(ii) I is a subset of a union of three lines, all sharing the same point.

Proof. List the vertices of I as x1, x9, T3, x4, x5. W.l.0.g. x1, 29, x5 are not copla-
nar. By the previous lemma, {x1, 29, x3, 2;} for i = 4,5 may have structure S2
or S3. But if both structures are S2, then we must have that in both quadru-
ples, at each coordinate, each value appears precisely two times. This implies
xry = x5. Hence, w.lo.g. {1, 9,23, 24} has structure S3. Therefore, assume

w.l.o.g. that
1 =(1,0,0), 29 = (0,1,0),23 = (0,0,1), 24 = (0,0,¢)

for some ¢ # 1 (which corresponds to the choice a = 0,a' =1,6=0,0 = 1,2 =
0,c = 1 in the previous lemma, swapping the roles of ¢ and ¢ if necessary).
Looking at {z1,xq,x3, x5}, if it had S2 for its structure, we would get x5 =
(1,1,1), which is adjacent to x4, and thus impossible. Hence {x1, z9, x3, x5} also
has structure S3. Permuting the coordinates only permutes x, s, 3, and does

not change the number of zeros in z5. Thus, w.l.o.g.

{(1,0,0),(0,1,0),(0,0,1), x5} = {x1, x2, T3, 25}
={(d,e, f),(d,e, f'),(d',e,9),(d, €', 9)},

for some d # d',e # €', f # f'. But in the first coordinate, only zero can appear
three times, so d = 0. Similarly, e = 0, so z5 € (0,0, ), after a permutation of
coordinates. Thus x5 has at least 2 zeros, so our independent set [ is a subset

of the union of lines passing through the point (0,0, 0), as required. O

4.3 CONJECTURE 4.1 FOR 4 COLOURS

In this short section we reprove a result of Gyarfas.

Theorem 4.17. (Gydrfas) Conjecture 4.1 for 4 colours and Conjecture 4.8 for

G5 are true.
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Proof. By the equivalence of conjectures, it suffices to prove Conjecture 4.8 for
G3. Let X be the given finite set of vertices in GGi3. Assume that G3[X] has at
least 4 components, otherwise we are done immediately. By a representatives
set we mean any set of vertices that contains at most one vertex from each
component of X. A complete representatives set is a representatives set that

intersects every component of X.

Observation 4.18. If there are three collinear points, each in different com-
ponent, then X can be covered by two planes. In particular, if two planes do
not suffice, then among every three points in different components, there is a

non-collinear pair.

Proof. W.l.o.g. these are points (0,0,1),(0,0,2),(0,0,3). Then, unless X C
{z1 = 0} U{z2 = 0}, we have a point of the form (a, b, ¢) with a, b both non-zero,
so it is a neighbour of at least two of the points we started with, contradicting
the fact that they belong to different components. For the second part, recall

that if every pair in a triple is collinear, then the whole triple lies on a line. [

By the observation above, every representatives set of size at least 3 has a non-
collinear pair. Suppose firstly that every complete representatives set is a subset
of a plane. Pick a complete representatives set {x1,z,..., 2.}, with z; € C;,
where C; are the components. W.l.o.g. x1, 5 is a noncollinear pair, therefore, it
determines a plane 7, forcing components Cs, Cy, . .., C, to be entirely contained
in this plane. Hence, we may cover the whole set X by components C and Cj,
and the plane 7. Therefore, we may assume that we have a representatives set

of size three which does not lie in any plane.

Case 1. X has more than 4 components.

Let x1, x4, 3 be a representatives set, x; € C;, which is not coplanar. Then,
for any choice of yy, ..., y., such that {z1, xe, 23,94, ..., ¥y, } is a complete repre-
sentatives set, we have 3 lines that meet in a single point, that contain all these
points. Observe that this structure is determined entirely by x1, x2, 3. Indeed,
since these three points are not coplanar, they cannot coincide in any coordinate.
However, since there are at least 5 components, x1, x2, x3 extend to an indepen-
dent set of size 5, which must be a subset of three lines sharing a point p. But we

can identify p, since p; must be the value that occurs precisely two times among
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(x1):, (x2);, (x3);, and hence the lines are [y = px1,ls = pxe,l3 = prs. Thus, the
union of lines [y, ls, l3 contains whole components Cy, ..., C, and z; € [;. By the
Observation above, each [; has representatives from at most two components.
Hence, the common point p of the lines [, [, [3 cannot belong to X, as otherwise
some line [; would have three components meeting it. W.l.o.g. 5, [3 intersect two
components, and /; may intersect 1 or 2. Then, picking any y € l; in a different
component than that of o and any z € I3 with a component different from that
of z3, using the argument above applied to {xy,y, z} instead of {x1,xo, 23}, we
deduce that Cy; C [y, C35 C l3. Thus, we actually have singleton components
Cs,C5, ..., C,. Finally, any point in C'; must be either in the plane of [y, 3 or

on the line [, so we can cover by two planes.

Case 2. X has precisely 4 components and there exists a coplanar complete
representatives set.

Let 1, x9, 23,24 be a complete representatives set, with z; € C;. W.lo.g.
we have x; = (a;,b;,0). As a few times before, we do not have a collinear triple
among these 4 points, so each of the sequences (a;)}_; and (b;)i; has the prop-
erty that a value may appear at most twice in the sequence.

Suppose for a moment that each of these two sequences has at most one value
that appears twice. Write v for the value that appears two times in (a;), if it
exists, and let v be the corresponding value for (b;). If we take a point y outside
the plane (+,-,0), then the number of appearances of y; in (a;) and yo in (b;)
combined is at least three. So, either y; is the unique doubly-appearing value u
for a; or is y, = v, so the three planes (u,-,-), (-,v,-) and (-,-,0) cover X.

Now, assume that w.l.o.g. has two doubly-appearing values, i.e. a; = ay =
u # ag = ay = v. If y is outside the plane (-, -,0), then if y; # u, one of the pairs
1Y, roy must be an edge, so x3y and x4y are not edges, so we must have y; = v.
Similarly, if y is outside the plane (-, -,0) and y; # v, then y; = u. Hence, for all

points y € X, we have y; € {u,v} or y3 = 0, and three planes cover once again.

Case 3. X has precisely 4 components, but no complete representatives set is
coplanar.

Thus, by Lemma 4.15, every complete representatives set has either S2 or S3
as its structure. Observe that if S2 is always the structure, then all the compo-

nents are singleton, and we are done by taking a plane to cover two vertices. So,
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there is a representatives set with structure S3. Take such a representatives set
x1,%2,a,b, wlo.g. 3 =(1,0,0), 29 = (2,0,0). Take any y that shares the com-
ponent with a, and any z that shares the component with . Then, x1,zs,y, 2
is also a complete representatives set, so it is not coplanar. But, as zi,zs are
collinear, it may not have structure S2, so the structure must be S3, which
forces y; = z;. Hence, we can cover X by components of z and y and the plane

(aq,-,-). This completes the proof. O

Note that the theorem is sharp; we can take X = {0,eq,e2,e3,€1 + €3,€1 +
es, s + eg}, where e; = (1,0,0),e2 = (0,1,0),e3 = (0,0, 1).

4.4 CONJECTURE 4.6 FOR 4 COLOURS

Recall, by the diameter of a colour ¢, written diam., we mean the maximal
distance between vertices sharing the same component of G[c]. In the remaining
part of the chapter, for a given 4-colouring x: F (K, ) — 4, we say that x satisfies
Congecture 4.6 with (constant) K if there are sets Ay, Ay, A3 whose union is [n]
and colours ¢y, ¢a, c3 such that each K,[A;, ¢;] is connected and of diameter at
most K. Thus, our goal can be phrased as: there is an absolute constant K such
that every 4-colouring y of E(K,) satisfies Conjecture 4.6 with K.

We begin the proof of the main result by observing that essentially we may
assume that at least two colours have arbitrarily large diameters. We argue by

modifying the colouring slightly.

Lemma 4.19. Suppose x is a 4-colouring of E(K,,) such that three colours have
diameters bounded by Ny. Then x satisfies Conjecture 4.6 with max{Ny,30}.

Proof. Write G = K,,, and observe that if a point does not receive all 4 colours
at its edges, we are immediately done. Let x be the given colouring of the edges,
and let colours 1, 2 and 3 have diameter bounded by N;. We begin by modifying
the colouring slightly. Let xy be any edge coloured by colour 4. If x and y share
the same component in G|c] for some ¢ € {1,2, 3}, change the colour of xy to the
colour ¢ (if there is more than one choice, pick any). Note that such a modifica-
tion does not change the monochromatic components, except possibly shrinking

the components for the colour 4. Let x’ stand for the modified colouring.
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Observe that the diameter of colour 4 in x’ is also bounded. Begin by listing
all the components for colours i € {1,2,3} as Cfi),Céi),C’éi), .... For z € N3,
consider the sets C, = Cy, 2p0s = S) N C'g) N C’g). Let X be the set of all
x such that C, # 0. If GX)[4] (where the superscript indicates the relevant
colouring) has an induced path vy, vs, ..., v,, then if z; € N3 is defined to be
such that v; € C,,, in fact x1,29,...,2, becomes an induced path in G3. But
Lemma 4.13 implies that » < 30. Hence, the 4-diameter in the colouring y’ is at
most 30.

Applying Theorem 4.17 for the colouring y’, gives three monochromatic
components that cover the vertex set, let these be GX)[A}, ¢;], GX)[Ay, ¢y,
GO [ A3, cs], where the superscript indicates the relevant colouring. Using the
same sets and colours, but returning to the original colouring, we have that
GW[Ay, ¢1], GY[Ay, cp], GX[A3, 3] are all still connected, as 1-, 2- and 3-com-
ponents are the same in y and x’, while there can only be more 4-coloured
edges in the colouring y. Also, 1-, 2- and 3-diameters are bounded by Nj, and
4-diameters of sets may only decrease when returning to colouring x’, so the

lemma follows. [

Let us introduce some additional notions. Let P C NZ be a set, and let
L: P — P(n) \ {0} be a function with the property that {L(A): A € P} form
a partition of [n] and there a two colours cs, ¢4 %such that whenever A, B € P
and |A; — By|,|As — By|> 2, then all edges between the sets L(A) and L(B) are
coloured with c3 and ¢4 only. We call L a c3, cy-layer mapping and we refer to
P as the layer index set. Further, we call a subset S C P a k-distant set if for
every two distinct points A, B € S we have |A; — By|, |As — Ba|> k.

Let us briefly motivate this notion. Suppose that K,[c;] and K,[c;] are both
connected. Fix a vertex xy and let P = {(d., (%o, v),de,(x0,v)):v € [n]} C
NZ. Let L(A):= {v € [n]: (d., (70, v),de,(x0,v)) = A} for all A € P (this also
motivates the choice of the letter L, we think of L(A) as a layer). Then, if
r € L(A),y € L(B) for A, B € P with |A; — B1|> 2,|A2 — By|> 2, by triangle
inequality, we cannot have d., (z,y) <1 nor d.,(z,y) < 1, so xy takes either the

colour c3 or the colour ¢4. As we shall see, we may have more freedom in the

2This choice of indices was chosen on purpose — we shall first use colours ¢;, ¢5 to define P

and L, and the remaining colours will be c3 and c¢y.
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definition of P and L if there is more than one component in a single colour.
We now explore these notions in some detail, before using them to obtain
some structural results on the 4-colourings that (for the moment) possibly do

not satisfy Conjecture 4.6.

Lemma 4.20. Let x be a 4-colouring, L a c3, cy-layer mapping with layer index
set P, and suppose that {A, B,C} C P is a 3-distant set. Write G = K,,. Then
the following hold.

(1) For some colour ¢ € {c3,cq} we have G[L(A) U L(B) U L(C), c| connected

and of diameter at most 20.

(2) If additionally for ¢ such that {c,d} = {c3,c4} and some distinct A, B’ €
{A, B,C} we have G[L(A") U L(B'), (] contained in a subgraph H C G[c]
that is connected and of diameter at most N3, then the given colouring
satisfies Conjecture 4.6 with max{40, N3 + 20}.

Proof of Lemma 4.20. (1): Observe that all edges between L(A), L(B), L(C)
are of colours c3 and ¢4. This is a complete tripartite graph and by Lemma 4.11
w.lo.g. L(A)U L(B)U L(C) is cz-connected and of cz-diameter at most 20.

(2): Wlo.g. A/ = A, B" = B. Pick any D € P. Note that since A, B,C are
3-distant, D is 2-distant from at least one of A, B, C' (otherwise, by pigeonhole
principle, for some A’; B" among A, B, C and some index ¢, we have |A,—D;|, | Bi—
D;|< 1, so |AL — B{|< 2, which is impossible). Let E € {A, B,C} be such that
D, E are 2-distant. Thus, all the edges between L(D) and L(E) are of colours
c3 and ¢4, so Lemma 4.10 applies to L(D) U L(E).

Let P/ C P be the set of all D € P such that Lemma 4.10 gives that
either L(D) U L(FE) is c-connected and of c-diameter at most 10, or the second
conclusion of that lemma holds. Hence, every vertex x in L(D) for some D € P’
is on c-distance at most 10 to a vertex in L(A) U L(B) U L(C), which itself has
c-diameter at most 20. Hence, L(A)UL(B)UL(C)U(Upep L(D)) is c-connected
and of c-diameter at most 40.

For all other D € P\ P’, Lemma 4.10 applied to L(D) U L(E) for a relevant
E implies that L(D) U L(FE) is ¢-connected and of diameter at most 10. Let P”
be the set of D € P\ P’ for which E € {A, B}, and let P = P\ (P’ U P")
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(for which therefore £ = C'). Hence, H U (UpeprL(D)) is ¢’-connected and of
d-diameter at most N3+20, and finally L(C)U(Upepn L(D)) is also ¢-connected

and of ¢’-diameter at most 20. Hence, taking
G[L(A)U L(B) U L(C) U (Upep L(D)), ¢,
H U G[(UpeprL(D)), (], and
G[L(C) U (UDGPN/L(D)), C/],
proves the lemma. O

Lemma 4.21. Suppose that x is a 4-colouring of E(K,) and that L is a c3,c4-
layer mapping for some colours cg, cy € [4] with a 3-distant set of size at least 4.

Then c satisfies Conjecture 4.6 with constant 160.

Proof. Write G = K,,. Suppose that some A, B,C, D € P are 3-distant. All
edges between L(A) U L(B) U L(C) U L(D) are of colours ¢z and ¢4 only, so
by Lemma 4.11 w.lo.g. G[L(A) U L(B) U L(C) U L(D), c3] is connected and
of diameter at most 60. Pick any £ € P. If E has difference at most 1 in
absolute value in some coordinate from at least three points among A, B,C, D,
by pigeonhole princple, there are A’, B" among these four and coordinate i such
that |A] — E;|,|B; — Ei|< 1 so |A] — B{|< 2, which is impossible. Hence, £
is 2-distant from at least two points A'(F), B'(F) among A, B,C,D. Hence,
A(FE),B'(E), E is a 2-distant set, so edges between L(A'(F)),L(B'(E)) and
L(FE) are of colours ¢3 and ¢4 only. By Lemma 4.11, for some colour ¢(FE) €
{es, ¢4} we have G[L(A'(E))UL(B'(E))UL(E), ¢(E)] connected and of diameter
at most 20. We split P as follows: P’ C P is the set of all F € P such that
¢(FE) = c3, and for each pair 7 of A, B, C, D we define P, as the set of all ¥ € P
such that {A'(F), B'(F)} = m and ¢(F) = ¢4. We now look at the set of all pairs
7 for which P, # ().

Case 1: there are m,m such that P, and P,, are non-empty and
m Ny # 0. Wlo.g. m = {A, B}, m = {A,C}. For every 1 = {A', B’} we
already have G[L(A") U L(B') U (Ugep, L(E)), ¢4] connected and of diameter at
most 40. Hence, G[L(A)UL(B)U L(C)U(Ugep,,up,, L(E)), c4] is also connected
and of diameter at most 80. But, any other pair m must intersect A, B, C, so we

have
GlUr (Urer L(F)) U (Ugep, L(E))) , c4]
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connected and of diameter at most 160, where U, ranges over all pairs. Taking

additionally
G[L(A)U L(B) U L(C) U L(D) U (Ugep L(E)), 5]

proves the claim.

Case 2: all pairs 7 such that P, # () are disjoint. There are at most 2 such

pairs. Thus, if we take
Gl(UperL(F)) U (Upep, L(E)), c4]
for such pairs 7 (these are connected and of diameter at most 40), and
GIL(A) U L(B) U L(C) U L(D) U (Ugep L(E)), cs],
the claim follows. O

Lemma 4.22. Suppose that x is a 4-colouring of E(K,) and that L is a c3,c4-
layer mapping for some colours cs, ¢y € [4] with a 7-distant set of size at least 3.
Suppose additionally that {A;: A € P} takes at least 28 values for each i = 1,2.
Then x satisfies Conjecture 4.6 with constant 160.

Proof. Let {A, B,C'} be a 7-distant set. Pick any other D € P. If D is 3-distant
from each of A, B,C, we obtain a 3-distant set of size 4, so by Lemma 4.21 we
are done. Hence, for every D € P we have E € {A, B, C'} such that |E; — D;|< 2
for some 7. (Note that this is the main contribution to the constant 160 in the
statement of the main result.)

Since {A, B, C} is a 7-distant set, by Lemma 4.20, we have w.l.o.g. G[L(A)U
L(B) U L(C), c3] connected and of diameter at most 20. We now derive some
properties of L(D) for points D € P be such that |D;—A,|, |D;—B;|, |D;—C;|> 3
for some i € {1,2}. (Note that such points exist by assumptions.)

Let D be such a point and let j be such that {i,j} = {1,2}. Since the set
{A, B,C} is T-distant, there are distinct Ey, Ey € {A, B,C} such that |D; —
(Eh)jl,|Dj — (E2)j|> 3. Thus, {D, Ey, E>} is also a 3-distant set. Applying
Lemma 4.20 to {D, E1, E5} implies that G[L(D)U L(E})U L(Es), ] is connected
and of diameter at most 20, for some ¢ € {c3, cs}. However, if ¢ = ¢4, G[L(E;) U

L(E,), c4] is contained in a subgraph of G|c,] which is connected and of diameter
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at most 20, so Lemma 4.20 (2) applies once again and the claim follows. Hence,
we must have that G[L(D) U L(Ey) U L(Es), c3] is connected and of diameter at
most 20. In particular, whenever D € P satisfies |D; — A,|, |D; — By|, |D; —C;|> 3
for some i € {1,2}, then every point in L(D) is on c3-distance at most 20 from
L(A)U L(B)U L(C).

By assumptions, {A;: A € P} takes at least 28 values. Hence, we can find
X € P such that | X;—A4|,| X1 —By],| X1 —C1|> 5. Similarly, thereis Y € P such
that |Yo — As|, [Yo— Bsl, [Ya— C3|> 5. W.lo.g | Xo— As|< 2. If |Y] — A< 2, then
X,Y, B,C form a 3-distant set of size 4, and once again the claim follows from
Lemma 4.21. Hence, w.l.o.g. |Y; — B;1|< 2. By the work above, we also have that
every point in L(X)UL(Y") is on ¢s-distance at most 20 from L(A)UL(B)UL(C).
Note also that X,Y are 3-distant.

It remains to analyse D € P such that for both ¢ = 1,2 there is an E €
{A, B, C} such that |E; — D;|< 2. We show that in all but one case on the choice
of sets E, we in fact have L(D) on bounded c3-distance to L(A) U L(B) U L(C).
If we have an E € {A, B,C} such that both |E; — D{|< 2 and |Ey — Ds|< 2
hold, then taking E’, E” such that {E, E', E"} = {A, B,C}, we have D, E', E"
3-distant, so Lemma 4.20 once again implies that every vertex in L(D) is on
cs-distance at most 20 from L(A) U L(B) U L(C) (or we are done by the second
part of Lemma 4.20).

We distinguish the following cases.

o If |[D; — Ay|< 2,|Dy — B|< 2, then D, XY form a 3-distant set. Let us
check this. We already have X,Y 2-distant. By triangle inequality, we
obtain |X; — D1|> | X7 — A1|—|A1 — D1|> 3, |Y1 — D{|> | By — Ay|—|B1 —
Yi|—|D1 — A1|> 3, |Dy — Xs|> | By — Ag|—|By — Dy|—|Xs — Ay|> 3 and
Yy — Dy |> Yo — By|—|By — Do|> 3.

We also know that L(X)U L(Y) is contained in a subgraph H C GJc3]
that is connected and of diameter at most 20, so applying Lemma 4.20
implies that we are done, unless G[L(D) U L(X) U L(Y'), ¢3] is connected
and of diameter at most 20. Hence L(D) is on c3-distance at most 40 from
L(A)U L(B)U L(C).

o If |D; — C1|< 2,|Dy — Bs|< 2, then the same argument we had in the case
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above proves that L(D) is on cs-distance at most 40 from L(A)U L(B) U
L(C).

o If |[Dy — Ay|< 2, |Dy — Cs|< 2, then the same argument we had in the case
above proves that L(D) is on cs-distance at most 40 from L(A) U L(B) U
L(C).

Finally, we define P, P,, P3 C P as

Plz{DGP|D1—Bll,‘D2—A2’§2}
P2:{DEPZ|D1—01|,|D2—A2‘§2}
P3:{DEP:|D1_Bl|,|D2_OQ|§2}

which are disjoint and if D € P\ (P, U P, U P;) we know that L(D) is on
cs-distance at most 40 from L(A) U L(B) U L(C). Let also L; = Upep, L(D).
Hence, since for D € P; we have |D; —C}|, | Dy — Cy|> 2, all edges between L(D)
and L(C) are coloured using c3 and ¢4, we actually have all edges between L,
and L(C') coloured using only these two colours. Applying Lemma 4.10 we have
G[L1UL(C), ¢] connected and of diameter at most 10 for some ¢ € {c3, ¢4}, or L4
is on cz-distance 1 from L(A)UL(B)UL(C). Similarly, all edges between L, and
Y, and all edges between L3 and X only take the colours c3 and ¢4. Observe that
if D € P,, D' € P;then |Dy—D|> |Cy—By|—|Cy—D;|—|D}—Bi|> 3. Similarly,
|Dy — Dy|> |Ay — Co|—|Ag — Do|—| Db — Cq]> 3, so all edges between Ly and
L3 are only of colours ¢ and ¢4. Apply Lemma 4.10 to Ly and L(Y), implying
that either G[Ly U L(Y'), ¢4] is connected and of diameter at most 10, or Ly is on
cs-distance at most 30 from L(A)UL(B)UL(C). Similarly, apply Lemma 4.10 to
Ls and L(X), implying that either G[L3U L(X), ¢4] is connected and of diameter
at most 10, or Ls is on c3-distance at most 30 from L(A)UL(B)UL(C). Finally,
let V.= {v € [n]:d.,(v, L(A) U L(B) U L(C)) < 40}, which is c3-connected and

of cs-diameter at most 100. We distinguish the following cases.

e [y, L3 C V. In this case, we can take V and G[L; U L(C), ] if necessary
(otherwise Ly C V).

o Ly ¢ V,Ly C V. Thus, G[Ly U L(Y), c4] is connected and of diameter at
most 10, so taking G[LsUL(Y), ¢4] and V, and additionally G[L;UL(C), ]

if necessary, we are done.
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o [y, CV Ly ¢ V. Thus, G[L3 U L(X), ¢4 is connected and of diameter at
most 10, so taking G[LsUL(X), c4] and V', and additionally G[L,UL(C), ]

if necessary, we are done.

o Ly, L3 ¢ V. In this case, we have G[Ls U L(Y'), ¢4] and G[L3 U L(X), c4]
connected and of diameter at most 10. Apply Lemma 4.10 to Ly and Ls.
If Ly and L are on cy-distance at most 10, we may take G[Ls U L3 U
L(X)UL(Y),c4], V and G[Ly U L(C), ¢] if necessary. Otherwise, we have
G[Ls U Lg, c3] is connected and of diameter at most 10. In this case, take
G[La U L3, c3], V and G[L; U L(C), ] if necessary.

This completes the proof of the lemma. n

Let us now briefly discuss a way of defining c3, ¢4-layer mappings. Pick two
colours ¢y, co € [4], and take c3, ¢y to be the remaining two colours. List all the
vertices as vy, vs,...,V,. 10 each vertex, we shall assign two nonnegative inte-
gers, Di(v;) and Ds(v;), initially marked as undefined. We apply the following

procedure.

Step 1 Pick the smallest index i such that D;(v;) or Da(v;) is undefined. If there

is no such i, terminate the procedure.
Step 2 For j = 1,2, if D;(v;) is undefined, pick an arbitrary value for it.

Step 3 For j = 1,2, if D;(v;) was undefined before the second step, for all vertices
u in the same cj-component of v; set Dj(u): = d,(vi, u) + D;(v;). Return
to Step 1.

Upon the completion of the procedure, set P = {(D;(v), Da(v)):v € [n]} and
L: P — P(n) as L(z,y):= {v € [n]: (D1(v), D2(v)) = (x,y)}.
Claim. The mapping L above is well-defined and is a c3, ¢4-layer mapping.

Proof. Observe that each time we pick v; whose one or two values are to be
defined, we end up defining D; on one ¢;-component or Dy on one ca-component
or both. Hence, for every vertex v, the values D;(v), Ds(v) change precisely

once from undefined to a nonnegative integer value. Thus, (D;(v), Ds(v)) are
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well-defined and take values in N2, so P and L are well-defined and L(A) forms
a partition of [n] as A ranges over P. Finally, consider an edge xy coloured
by ¢;. Let Di(z) be defined with v; chosen in Step 2 (possibly z = v;). Since
xy is of colour ¢, these are in the same ci;-component, and hence Di(z) =
de, (v, ) + Di(v;) and Dy(y) = d., (vi,y) + D1(v;). Therefore,

|Di(z) — Di(y)| = [(de, (vi, ) + D1(vi)) — (dey (vi,y) + Di(vy))]
= |dc1(viax) - dc1(vi7y)|
< dc1 (Jf,y) =1

hence, if x(zy) = ¢, then |Di(z) — Di(y)|< 1. Similarly, we get the corre-
sponding statement for the colour cy. It follows that if A, B € P are such that
|Ay — By|,|As — Bo|> 2, then if x € L(A),y € L(B), we have (Dy(x), Dy(z)) =
A, (D1(y), Da2(y)) = B, so xy is coloured by cg or ¢4, as desired. O

4.4.1 MONOCHROMATICALLY CONNECTED CASE

Proposition 4.23. Suppose that x is a 4-colouring of E(K,) such that every
colour induces a connected subgraph of K,,. Then x satisfies Conjecture 4.6 with

constant 160.

Proof. Suppose contrary, in particular every colour has diameter greater than
160. Our main goal in the proof is to find a pair of vertices z’, 1y’ with a control
over their 1-distance and 2-distance. We need both distances sufficiently large so
that we can make a use of distant sets in 3, 4-layer mappings, and also bounded
by a constant so that if a vertex is on small 1-distance from 2/, it is also on small

1-distance from y’ and vice-versa. More precisely,

Lemma 4.24. Suppose that there are vertices x',y' such that di(«',y) € {6,
7,..., 50}, do(2,y') € {10,11,...,20}. Then we obtain a contradiction.

Proof. Pick any point z # x’,y’. Apply the procedure for defining 3, 4-layer
mapping starting from 2’. If we obtain a 7-distant set of size at least 3, we

obtain a contradiction with Lemma 4.22. Hence, the distances corresponding to
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x',y', z cannot give such a set, so we must have one of

di(z',z) <6, or,
|di(2',y) — dy (2, 2)| <6, or,
ds(2',2) <6, or,

|da(2, 2) — da (', y)] < 6.

In particular, we must have dy(2',z) < 56 or dq(2',z) < 26. Recalling the
definition of monochromatic balls, By(x, 56) and Bs(z,26) cover all the vertices,

giving a contradiction. O]
Claim. There are =,y such that d;(z,y) € {25,26,27} and da(z,y) > 40.

Proof of the claim. Suppose contrary, for every z,y such that di(x,y) € {25,
26, 27}, we must have dy(z,y) < 39. Pick any vy, 92 € [n] such that x(yi1y2) =
1. Since the 1-diameter is greater than 160, we can find € [n] such that
di(z,y;) = 26. By triangle inequality, we also have d(x,ys) € {25,26,27}.
Hence, ds(x,y1), do(z,y2) < 39, from which we conclude that whenever an edge

y1y2 is coloured by 1, then ds(y1,y2) < 78. Hence, taking any = € [n] the balls
BZ(':E’ 78)7 B3($a 1)7 B4(ZL', 1)

cover the vertex set. However, these have diameter less than 160, which is a

contradiction. O

Take x,y given by the claim above. Since the subgraph G[2] is connected,
there is a minimal 2-path x = zy,21,...,2,, 2,41 = y between z and y, with
r > 39. Look at the vertices z1g, 220, . . . , 210 With £ such that 10 < r—10k < 20.
Consider x, y, z19; for some 1 < ¢ < k and check whether we can define 3, 4-layer
mapping so that these three points become a 7-distant set. Apply the procedure
for defining 3, 4-layers mapping, starting from z, i.e. we want to see whether
(0,0), (di(z,y),ds(z,y)) and (di(x, z10i), d2(x, z10;)) are 7T-distant. If they are

7-distant, Lemma 4.22 gives us a contradiction. Since

dl(xay) Z 257d2(1’,y) Z 39
10 < dQ(.ﬁL’,ZlOZ’) =10: < 10k < dg(ﬂ?,y) —6
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we must have either di(x,z10;) < 6 or |di(z,z10:) — di(z,y)|< 6 (implying
di(z, z10:) € {19,20,...,33}). Similarly, if we start from y instead of z in our
procedure, we see that either d;(y, z10;) < 6 or |dyi(y, z10i) — di(z,y)|< 6 (imply-
ing di(y, z10:) € {19,20,...,33}) must hold.

Observe that for the vertex z1p we must have d;(x, z19) < 6. Otherwise, we
would have 19 < d;(x, z19) < 33 and dy(x, z10) = 10, resulting in a contradiction
by Lemma 4.24 (applied to the pair x, z19). For every zjp; we must have either
the first inequality (d;(z, z10;) < 6) or the second (19 < d;(x, z19;) < 33), and we
have that the first vertex among these, namely 2o, satisfies the first inequality.
Suppose that there was an index 7 such that z19;41) obeys the second inequality,

and pick the smallest such i. Then, by the triangle inequality, we would have

13 < d1(210(i+1),x) - d1($, 2101') < d1(210i, Z10(z‘+1))
< di(z106i11), ) + di (7, 210:) < 39

and dy (2104, 210(+1)) = 10, so Lemma 4.24 applies now to the pair z10;, 210(i+1)
and gives a contradiction. Hence, for all i < k we must have the first inequality
for z19;. But then z19; and y satisfy the conditions of Lemma 4.24, giving the

final contradiction, since 10 < dy(y, z105) < 20 and
19 < di(y, x) — di(z, 2101) < di(y, z10k) < di(y, ) + di(x, 210k) < 33.

This completes the proof. Il

4.4.2 INTERSECTING MONOCHROMATIC COMPONENTS

Proposition 4.25. Suppose that x: E(K,) — [4] is a 4-colouring with the prop-
erty that, whenever C and C" are monochromatic components of different colours,
and one of them has diameter at least 30 (in the relevant colour), then C' and

C'" intersect. Then x satisfies Conjecture 4.6 with constant 160.

Proof. Suppose contrary, we have a colouring x that satisfies the assumptions
but for which the conclusion fails. By Lemma 4.19, we know that at least
two colours have monochromatic diameters greater than 160. Let Cy be such
a component for colour ¢;, and let Cy be such a component for colour ¢y, with
¢1 # co. Further, by Proposition 4.23 we have a colour ¢ (which might equal

one of ¢1, ¢y) with at least two components, w.l.o.g. ¢; # ¢.
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First, we find a pair of vertices z, y with the property that 10 < d,, (z,y) < 40
and z,y are in different ¢’-components. We do this as follows. If there are a
couple of vertices x1, 5 with d,, (z1,x2) < 10 that are in different ¢’-components,
then, since ¢;-diameter of C} is large, we can find y € C) with d., (z1,y) = 25.
Hence, 15 < d. (z2,y) < 35, and y is in different ¢’-component from one of
X1, x9, vielding the desired pair. Otherwise, we have that all pairs of vertices
z,y € Cy with d., (z,y) < 30 also share the same ¢’-component. But then, we
must have the whole ¢;-component C; contained in one ¢’-component, making
it unable to intersect other ¢’-components, which is impossible. Hence, we have
z,y in different ¢-components, with 10 < d., (x,y) < 40.

Pick any vertex z outside B.,(x,50). Let ¢, ¢” be the two colours different
from ¢y, . We now apply our procedure for defining ¢, ¢”’-layers mapping with
vertices listed as z,y, z,.... Note that |Dy(x) — D;(y)|, |D1(x) — D1(2)|, | D1(y) —
Dy (2)|> 10 (recall the Dy, Dy notation from the procedure). Hence, we get a
7-distant set, unless d(x, z) < 6 or dv(y, 2) < 6. Therefore, B, (z,50), B (z,6)

and B (y,6) cover the vertex set and we get a contradiction. Il

4.4.3 FINAL STEPS

In the final part of the proof, we show how to reduce the general case to the

case of intersecting monochromatic components.

Theorem 4.26. Conjecture 4.6 holds for 4 colours and we may take 160 for the

diameter bounds.

Proof. Let x be the given 4-colouring of E(K,,). Our goal is to apply Proposi-

tion 4.25. We start with an observation.

Observation 4.27. Suppose that C' is a c-component, which is disjoint from a
' -component C" with ¢ # c. Then for every pair of vertices x,y € C' we have
d.(z,y) < 6 or du(x,y) < 6, or the colouring satisfies Conjecture 4.6 with the
constant 160.

Proof of Observation 4.27. Pick x,y € C with d.(x,y) > 7 and take arbitrary
z € C'. Apply our procedure for generating cs, cy-layers mapping to the list

x,Y,7%,..., with ¢3, ¢4 chosen to be the two colours different from ¢, . Since
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z is in different ¢- and ¢’-components from x,y, these three vertices result in a

7-distant set, unless du(z,y) < 6, as desired. O

Proof of Observation 4.27. Pick z,y € C with d.(x,y) > 7 and take arbitrary
z € C'. Apply our procedure for generating cs, ¢s-layers mapping to the list
x,Y,%,..., with ¢3,¢4 chosen to be the two colours different from ¢, . Since
z is in different ¢- and ¢’-components from x,y, these three vertices result in a

7-distant set, unless du(z,y) < 6, as desired. ]

Corollary 4.28. Suppose that we have a c-component C, which is disjoint from
a ' -component C" with ¢ # ¢ and has c-diameter at least 30. Then the colouring

X satisfies Conjecture 4.6 with the constant 160.

Proof. By Observation 4.27 we are either done, or any two vertices z,y € C
with d.(z,y) > 6 satisfy du(z,y) < 6. Furthermore, given any two vertices
x,y € C, since the c-diameter of C' is at least 30, we can find z € C such
that d.(z, z),d.(y,z) > 7, so by triangle inequality d.(z,y) < 12 holds for all
x,y € C.

Now, take an arbitrary vertex v € C, let ¢, ¢” be the two remaining colours,

and consider the sets
Bc/(U, 12), Bcu (’U, 1), BC/// (U, 1)

Given any u € [n], if vu is coloured by any of ¢, ¢’ or ¢”, it is already in the sets
above. On the other hand, if uv is of colour ¢, then v € C so dy(u,v) < 10, thus
u € B (v,10). Thus, these sets cover the vertex sets and have monochromatic

diameters at most 24, so we are done. Il

Finally, we are in the position to apply Proposition 4.25 which finishes the
proof of the theorem. O

4.5 CONCLUDING REMARKS

Apart from the main conjectures 4.1 (and its equivalent 4.8) and 4.6, here
we pose further questions. Recall the auxiliary results appearing in Section 4.2.

In that section we first discussed Lemmas 4.10 and 4.11, which were variants
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Figure 4.1: An example of 3-colouring of K,, with a matching of size 3 removed

that cannot be covered by two monochromatic components.

of the main conjectures with different underlying graph instead of K,. Recall
that Lovasz-Ryser conjecture is also about different underlying graphs. Another

natural question would be the following.

Question 4.29. Let G be a graph, and let k be fized. Suppose that x: E(G) — [k]
is a k-colouring of the edges of G. For which G is it always possible to find k—1
monochromatically connected sets that cover the vertices of G? What bounds on

their diameter can we take?

Observe already that for 3 colours, the situation becomes much more compli-
cated than that for 2 colours, where complete multipartite graphs behaved well.

Consider the following example.

Pick n+6 vertices labeled as vy, vo, . .., vg and uy, us, . . ., u,. Define the graph
G to be the complete graph on these vertices from which 3 edges v,vq, v3v4 and

vsvg are removed. Define the colouring x: E(G) — [3] as follows.

e Edges of colour 1 are vyv3, v3vs, V105, V4Ug and vyu;, v3u;, vsu; for all 7.
e Edges of colour 2 are vyuy, vovs, v4v5, V1Vg and vou;, vau; for all 7.
e Edges of colour 3 are vyvs, vovg, V306, V104 and vgu; for all 7.

e Edges of the form w;u; are coloured arbitrarily.
It is easy to check that this colouring has no covering of vertices by two
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monochromatic components. Is this essentially the only way the conjecture

might fail for such a graph?

Question 4.30. Let G = K, \ {e1, ea, €3} be the complete graph with a matching
of size three omitted. Suppose that x: E(G) — [3] is a 3-colouring of the edges
such that no two monochromatic components cover G. Is such a colouring iso-
morphic to an example similar to the one above? What about Ko, with a perfect

matching removed?

Finally, recall that the one of the main contributions in the final bound in
Theorem 4.7 came from Lemma 4.13 and that in general the Ramsey approach
of Lemma 4.12 would give much worse value. It would be interesting to study

the right bounds for this problem as well.

Question 4.31. For fixed [, what is the mazimal size of a set of vertices S of
G such that Gi[S] is a path? What about other families of graphs of bounded
degree? In particular, for fized | and d, what is the mazximal size of a set of

vertices S of G| such that G[S] is a connected graph whose degrees are bounded
by d?
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5 DECOMPOSING THE COMPLETE r-GRAPH

The work in this chapter is done in collaboration with Imre Leader and Ta
Sheng Tan.

5.1 INTRODUCTION

The edge set of K,,, the complete graph on n vertices, can be partitioned into
n—1 complete bipartite subgraphs: this may be done in many ways, for example
by taking n — 1 stars centred at different vertices. Graham and Pollak [21, 22]
proved that the number n — 1 cannot be decreased. Several other proofs of this
result have been found, by Tverberg [53], Peck [42], and Vishwanathan [55, 56].

Generalising this to hypergraphs, for n > r > 1, let f,.(n) be the minimum
number of complete r-partite r-graphs needed to partition the edge set of K,(f),
the complete r-uniform hypergraph on n vertices (i.e., the collection of all r-sets
from an n-set). Thus the Graham-Pollak theorem asserts that fy(n) = n — 1.
For r > 3, an easy upper bound of ("IT[;Q/Jﬂ) may be obtained by generalising the
star example above. Indeed, having ordered the vertices, consider the collection
of r-sets whose 24, 4t (2|r/2])™ vertices are fixed. This forms a complete
r-partite r-graph, and the collection of all ("Ir%qﬂ) such is a partition of Kr(f).
(There are many other constructions achieving the exact same value; see, for
example Alon’s recursive construction in [4].)

Alon [4] showed that f3(n) =n — 2. More generally, for each fixed r > 1, he

showed that

a0 (1) < 0 < =Dy )

where the upper bound is from the construction above.

The best known lower bound for f,(n) was obtained by Cioaba, Kiingden and
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Verstraéte [12], who showed that for(n) > 2({;—’;1) For upper bounds for f,.(n),
the above construction is not sharp in general. Cioabd and Tait [13] showed that
f6(8) =9 < (8?)’), and used this to give an improvement in a lower-order term,
showing that for(n) < (";k) - 2| (L%{;??’) for any k£ > 3. (We mention
briefly that any improvement of f;(n) for any n will further improve the above
upper bound. Indeed, one can check that f4(7) =9 < (7;2), and this will imply
that f.(n) < (”ITL;’Q/ fJ) — cenl/21=1 for some positive constant c¢. But note that,
again, this is only an improvement to a lower-order term.)

Despite these improvements, the asymptotic bounds of Alon have not been
improved. Perhaps the most interesting question was whether the asymptotic

upper bound is the correct estimate.

Our aim here is to show that the asymptotic upper bound is not correct for

each even r > 4. In particular, we will show that

o) < 30140 (5)

and obtain the same improvement of 1—; for each even r > 4.

A key to our approach will be to consider a related question: what is the
minimum number of (set-theoretic) products of complete bipartite graphs, that
is, sets of the form E(K,;) x E(K.q4), needed to partition E(K,,) x E(K,)?
There is an obvious guess, namely that we take the product of the complete bi-
partite graphs in the partitions of both K,s. This gives a partition using (n—1)?
products of complete bipartite graphs. But can we improve this? Writing g(n)
for the minimum value, it will turn out that, unlike for f;, any improvement in
the value of g(n) for one n gives an asymptotic improvement for g as well. In

this sense, this means that g is a ‘better’ function to investigate than f;.

The plan of the chapter is as follows. In Section 5.2, we show how the func-
tion g is related to fy, and give some related discussions. Then in Section 5.3,
we investigate the simplest product of complete graphs: we attempt to partition
the product set F(K3) x E(K,) into products of complete bipartite graphs. Al-
though Section 5.3 is not strictly needed for our final bounds, it does provide
several ideas and motivation for later work. In Section 5.4, we prove our main

result on g and from this we deduce bounds on f;. Finally, in Section 5.5, we
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mention some remarks and open problems.

We use standard graph and hypergraph language throughout the chapter.
For an r-uniform hypergraph H, let f.(H) be the minimum number of com-
plete r-partite r-uniform hypergraphs needed to partition the edge set of H. So
fr (K,(f)) is just f.(n). A minimal decomposition of an r-graph H is a partition
of the edge set of H into f,(H) complete r-partite r-graphs. A block is a (set-
theoretic) product of the edge sets of two complete bipartite graphs. For graphs
G and H, let g(G, H) be the minimum number of blocks needed to partition the
set E(G) x E(H). Thus g(n) = g(K,, K,). Similarly, a minimal decomposition
of E(G) x E(H) is a partition of the set into g(G, H) blocks.

5.2 PRODUCTS OF COMPLETE BIPARTITE GRAPHS

We start by showing how g is related to f;.

Proposition 5.1. Let o > 0 be a constant. If g(n) < an? for all n, then

2

fa(n) < a(1+o0(1))2.

Proof. We will show that

2

faln) < a <%) +Cnlogn (5.1)

for some sufficiently large C'. This is clearly true for n < 4. So assume n > 4
and the inequality (5.1) holds for 1,2,...,n— 1. We will consider the case when

n is even; the case when n is odd is similar.

)

In order to decompose the edge set of K. ,(L4 , we can split the n vertices into two

equal parts, say V <K7(L4)) = AU B, where |A|= |B|= n/2. The sets of 4-edges
{e:e C A} and {e : e C B} can each be decomposed into fs(n/2) complete 4-
partite 4-graphs; the sets of 4-edges {e : [eNA|= 3} and {e : |[eN B|= 3} can each
be decomposed into f3(n/2) complete 4-partite 4-graphs; while the remaining set
of 4-edges {e : |e N A|= |e N B|= 2} can be decomposed into g(n/2) complete
4-partite 4-graphs. So by the assumption of g(n) and the induction hypothesis,
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we have

fa(n) <2f4(n/2) + g(n/2) + 2f5(n/2)
<(o(2) 4 (D) ) 239

n2
< (7> + Cnlogn.

]

In the introduction to this chapter, we mentioned that any improvement in
the upper bound of f4(n) from the easy upper bound of (";2), for one fixed n,
will lead to an improvement for all (greater) values of n, but not an asymptotic
improvement. However, very helpfully, this is not the case for g. Indeed, any
improvement to g(n) for one particular n leads to an asymptotic improvement.

This is the content of the following simple proposition.

Proposition 5.2. Suppose g(K,, K;) < (a —1)(b— 1) for some a and b. Then
g(n) < Bn? for all n, for some constant 3 < 1.

Proof. Suppose g(K,, Kp) = ¢ < (a — 1)(b — 1) for some fixed a and b. Then,

c

who-n Ve will show that

setting oo =

(K 1y a—1yis Kivp-1);) < a(a—=1)i)((b—1)j) = cij

for any 4, j > 1. This will then imply that g(1+(a—1)(b—1)k) < a((a—1)(b—
1)k)? for any k > 1, and hence

g(n) <an®*+Cn

for some constant C'.

We proceed by induction on i. We will show the base case of g(K,, K143-1);) <
¢j by induction on j. The case 7 = 1 is true by assumption. So fix 7 > 1 and by
induction, we have g(Kq, Ki1p-1)-1)) < ¢(j — 1).

Let G = K, be a subgraph of Ki;_1);. Note that Ky 4-1); — G (ie., the
graph K —1); with the edges of GG removed) is a blow-up of Ky —1)(j—1) by re-

placing one of its vertices with an empty graph on b vertices. So g(Kq, K14 p—1);—
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G) = 9(Ka, K14 p-1y(-1)) < ¢(j — 1), implying

9(Ka, Kip-1);) < 9(Ka, G) + g(Ka, (K11 -1); — G))
S g<Kaa Kb) + C(] - 1)

< cj.

Now fix 2 > 1 and assume the theorem is true for ¢ — 1. That is,

9(K1+(a71)(i71), K1+(b71)j) < C(i - 1)j

for all j > 1. To decompose E(Kiy(a-1)) X E(Ki@p-1);) for any fixed j, we
first let H = K, and note that Ky, (,—1); — H is a blow-up of K4 —1)i-1) by

replacing one of its vertices with an empty graph on a vertices. Therefore,

9K @i K1) < 9(H, Kippoyy) + 9(Kip-ni = H), Kipo)
< 9(Ka, Kiyo-1)5) + 9(Kipa-1)-1), Kit-1)5)
<cjteli—1)j
(by the base case and induction hypothesis)
= ct].
This completes the proof of the proposition. O

From Proposition 5.1 and Proposition 5.2, in order to improve the asymptotic
upper bound on fy(n), it is enough to find a and b such that g(K,, K;) <
(a—1)(b—1).

The rest of this section is a digression (and so could be omitted if the reader
wishes). The question of whether or not g(n) = (n — 1)? has the flavour of a
‘product’ question. Indeed, it is an example of the following general question.
Suppose we have a set X and a family F of some subsets of X, and we write
¢(X, F) for the minimum number of sets in F needed to partition X. Is it true
that ¢«(X XY, FxG) = ¢(X, F)c(Y,G), where FxG ={FxG: F e F,GeG}?

This is certainly not always true. Indeed, for a simple example, let X =
{1,2,...,7} and F = {A C X : |A|= 1or4}. Clearly, ¢(X,F) = 4. But
X x X can be partitioned into four 3 by 4 rectangles and a single point, giving
(X x X, FxF)<13.

However, there are a few cases where such a product theorem is known. For
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example, Alon, Bohman, Holzman, and Kleitman [5] proved that if X is a finite
set of size at least 2, then any partition of X™ into proper boxes must consist of
at least 2™ boxes. Here, a box is a subset of X™ of the form B; x By X ... X B,
where each B; is a subset of X. A box is proper if B; is a proper subset of X for
every i. Note that this corresponds to a product theorem where F is the family
of all proper subsets of X. (There are also some related results by Ahlswede and
Cai in [2, 3].)

Unfortunately, we have not been able to prove any product theorem that
might relate to our problem about g(n). Indeed, it seems difficult to extend the
result of Alon, Bohman, Holzman, and Kleitman at all. For example, here are
two closely related problems that we cannot solve.

A box is odd if its size is odd. Let X be a finite set such that | X| is odd. We

can partition X™ into 3" odd proper boxes - can we do better?

Question 5.3. Let X be a finite set such that | X| is odd. Must any partition of

X" into odd proper boxes consist of at least 3" boxes?

We do not even see how to answer this question when | X|= 5.
A collection of proper boxes BM B® . B of X" is said to form a

uniform cover of X™ if every point of X is covered the same number of times.

Question 5.4. Let X be such that | X|> 2. Suppose BY, B® ... B™ forms

a uniform cover of X"™. Must we have m > 2"?

5.3 DEcCOMPOSING F(K3) x E(K,)

In this section, we investigate g(K3, K,). As we know, we can decompose
E(K3) x E(K,) using 2(n — 1) blocks, and the question is whether we can im-
prove this.

It turns out that the Graham-Pollak theorem actually gives some restriction
on how small g(K3, K,) can be. To be more precise, we will need a weighted
version of the Graham-Pollak theorem. For the sake of completeness, we will
include a proof here, although we stress that this is just a rewriting of the usual

proof of the Graham-Pollak theorem.

Given a graph G and a real number «, we write o - G for the weighted
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graph where each edge of GG is given a weight of a. A collection of subgraphs

G1,Gs, ..., Gy, of K, is a weighted decomposition of K, if there exists real num-
bers aq, s, ..., a,, such that for each edge e of K,, we have Z a; = 1. Note
i:e€G;

that the coefficients «; are allowed to be negative.

Theorem 5.5. The minimum number of complete bipartite graphs needed to

form a weighted decomposition of K, isn — 1.

Proof. Let the vertex set of K, be V= {1,2,...,n} and associate each vertex
¢ with a real variable z;. Let G be a complete bipartite subgraph of K, with
vertex classes X and Y. Then we can define Q(G) = L(X) - L(Y), where
L(A) =), 4 x; for any subset A C V.

Suppose the bipartite graphs G, 1 < k < ¢ with vertex classes X} and Y}

form a weighted decomposition of K,,. Then we must have

q
> wiwy =Y oL(X)L(Y:)
i<j k=1

for some real ay, g, . . ., ay. Rewriting the left-hand-side of the above equation,

we have

(Z ) 3 =23 L (XL

i=1 k=1

It follows that the linear subspace of R"” determined by the ¢+ 1 linear equations
Yorix = 0and L(X;) = 0,1 < i < ¢, must be the zero subspace. Hence
qg+1>n. ]

Proposition 5.6. For n > 2 we have

§<n S 1) < g(Ky, K) < 2(n — 1),

Proof. The upper bound has been explained already. For the lower bound,
suppose the blocks Hy, Hs, ..., H, form a decomposition of E(Kj3) x E(K,).
Then for each edge e € E(K,), restricting the decomposition to the subset
E(K3) x e, one of the following happens: either the three elements of F(K3) x e
decompose into three different H;, or else two of the sets are in the same H; for

some ¢ and the third set is in H; for some j # 1.
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Let Gg be the subgraph of K, spanned by the set of e such that the first of
these happens, and G, Gy, G3 be the subgraphs of K, spanned by the set of e
for each of the three possible ways for the second case to happen, respectively.

Thus in total we have
q > f2(G1) + fo(Ga) + f2(G3) + fo(Go U Gr) + fo(Go U Ga) + fo(Go U Gs). (5.2)

Now, since Gg, G1, Gy, Gy form a partition of the edge set of K,,, we must

have

f2(Gi) + f2(Gy) + fa(GoUGR) > —1 (5.3)

for any {7, j, k} = {1, 2,3}. Next, note that 1- (GoUG;),1-(GoUG;),(—1)-(GpU
Gy),2 - Gy, form a weighted decomposition of K, for any {i,7,k} = {1,2,3}, so

by Theorem 5.5, we must have
f2(G() U Gl) + fQ(G() U Gg) + f2(G() U Gg) + fQ(GZ) Z n—1 (54)

for any i = 1,2, 3.

Let 2 = 3 (fo(G1) + f2(G2) + f2(G3)) and y = (f2(Go U Gy)+ fa(Go U
G2) + f2(Go U G3)). Summing over different {i,j, k} for inequality (5.3), we
get 2z +y > n — 1; while summing over different i for inequality (5.4), we
get © + 3y > n — 1. This implies that z +y > 2(n — 1), and together with
inequality (5.2), we conclude that

q > 3r + 3y,
9
Le QZE(”—D

]

Note that for any partition of K, into Gg, Gy, Gs,G3, we do obtain that
g9(K3, K,) is at most the right-hand-side of (5.2).

We believe that the only restriction on g(Kj, K,,) should be the restriction
coming from the Graham-Pollak theorem, namely that g(Kj, K,,) > 2(n — 1).
However, we have been unable to find any decomposition of E(Kj3) x E(K,,) into

fewer than 2(n — 1) blocks.

Question 5.7. Does there exist a constant a < 2 such that (K3, K,,) < (o +

- _ 9
o(1))n? In particular, can we take o = ¢ ¢
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5.4 DEcoOMPOSING F(K,) x E(K,)

The aim of this section is to find some a,b in which E(K,) x E(K}) can be
partitioned into fewer than (a — 1)(b — 1) blocks. In the previous section, we
looked at decompositions of E(K3) x E(K,) by considering all the four possible
ways to decompose F(K3) into complete bipartite graphs - this induced four
subgraphs that partitioned the edge set of K.

Now, those decompositions of K3 involved three ‘large’ complete bipartite
subgraphs (namely, the copies of K ), which between them form a 2-cover of
K3 (each edge of K3 is in exactly two of them). However, this is in a sense
‘wasteful’, as by the Graham-Pollak theorem, we might expect to find a uniform
cover by three ‘large’ complete bipartite subgraphs of Ky, rather than Kj.

This suggests that we should look at F(K,) x E(K,) instead of E(K3) X
E(K,). It also suggests that, in each E(K,) X e, we do not allow any decompo-
sition of Ky, but just four decompositions of Ky, three of which involve a ‘large’
complete bipartite subgraph and the fourth of which consists of single edges.
More precisely, the first three decompositions of K4 that we allow here are such
that each consists of a 4-cycle and two independent edges. The three pairs of
independent edges from these decompositions in turn form another decomposi-
tion of K (into six complete bipartite graphs, each of which is a single edge).

Let C1, Cs, C3 be the three different 4-cycles of Ky and let G, G1, Gy, G5 be
the subgraphs of K, (as in Proposition 5.6) whose edge sets partition the edge
set of K,,. Then the sets E(C1) x E(Gy), E(Cs) X E(Gs), E(C3) x E(G3), E(K4—
Ch) x E(GoUGH),E(Ky—C3) x E(GoUG3), E(Ky — C3) x E(GyU G3) form a
partition of F(Ky) x E(K,). So E(K,) x E(K,) can be decomposed into

J2(Gh) + fo(Ga) + fa(Gs) +2f2(Go U Gr) + 2f2(Go U Ga2) + 2f2(Go U Gs)

blocks.

By the same argument as in Proposition 5.6, we have the following.

Proposition 5.8. Forn > 2, we have

%(n —1) < g(Ky, Kp) <3(n—1).

Again, it seems plausible that the only constraint on g( Ky, K,,) is the one coming

from the Graham-Pollak theorem.
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Conjecture 5.9. g(Ky, K,,) = 2(1+ o(1))n.

While we are unable to resolve this conjecture, we are able to find an example
with g(K4, K,,) < 3(n—1). We start by observing that Go UG, GoUG4, GoUG3
form an odd cover of K, (each edge of K, appears an odd number of times).
Now, it is known (see, e.g., [44]) that Ky has an odd cover with four complete
bipartite graphs. Indeed, the four Kj3s with vertex classes Vi = {1,3,5} U
{2,4,6}, Vo = {1,4,7} U{2,3,8}, V53 = {2,5,7} U{1,6,8} and V, = {3,6,7} U
{4,5, 8} respectively form an odd cover of Kg. If we break the symmetry by
deleting two vertices (vertices 6 and 8) from this odd cover of Kjg, we obtain
an odd cover of Ky by four complete bipartite graphs, two of which are now
disjoint. The union of these two disjoint complete bipartite graphs, together with
the other two complete bipartite graphs, will be our Gy U Gy, Gy U Gy, Go U G3.
Remarkably, this does give rise to a decomposition of F(K,4) x E(Kg) into fewer
than 15 blocks.

Proposition 5.10. The set E(K,) x E(Kg) can be decomposed into 14 blocks.
In other words, g(Ky, K¢) <14 < (4 —1)(6 —1).

Proof. Let G, G1, G2, G35 be graphs that form a decomposition of Kg, defined

as follows:

(
(GoUGY) = {ij :i € {1,3,5},j € {2,4}},
E(GoUGy) ={ij :i€{1,4,6},j € {2,3}},
E(GoUGs) ={ij:1€{3,6},7 € {4,5}} U{12,15,16}.
By construction, we have fo(GoUGT) = fo(GoUGs) = 1, and fo(GoUG3) = 2,
and a quick check shows that fo(G1) = f2(Ge) = fo G ) = 2. So from the

discussion above we have

9(Ky4, Ke¢) <) (f2(Gi) +2/(Go U Gy)) = 14,

=1

]

Combining Proposition 5.1, Proposition 5.2 and Proposition 5.10, we obtain

our main result.

Theorem 5.11. f4(n) < 12(1+0(1))(}).
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5.5 REMARKS AND OPEN PROBLEMS

Proposition 5.10 (together with Proposition 5.2) implies that g(n) < (1 +
o(1))n®. We do not believe 1+ is the correct constant, but we are not able to
improve it. What about a lower bound of g(n)? From Proposition 5.1, we know
that if g(n) = an®(1 + o(1)), then we have fi(n) < a1+ 0(1))(}). So we must
have o > & from Alon’s result on the lower bound of fi(n).

Here, we are able to give a small improvement, namely o > % For this,
we will need a result by Reznick, Tiwari, and West [45] on decomposing tensor
products of graphs into bipartite graphs. Recall that the tensor product G « H
of two graphs G and H has vertex set {(u,v) : u € V(G),v € V(H)} with

(u1,v1) ~ (ug,v9) if and only if u; ~ uy in G and v; ~ vy in H.

Theorem 5.12 ([45]). The minimum number of complete bipartite graphs needed
to partition the edge set of K, x K,, is (n —1)* + 1.

Proposition 5.13. Forn > 2, we have g(n) > [—(”_12)%“1—“

Proof. Suppose we can decompose E(K,) x E(K,) into ¢ blocks. For each of
such blocks (say the parts from the left K, are X, X5 and the parts from the
right K, are Y7,Y3), we construct two complete bipartite graphs G; and Go as
follows. The vertex classes of Gy are {(x,y) : x € X1,y € Y1} and {(z,y) : © €
X,y € Ya}; while the vertex classes of Gy are {(z,y) : * € X1,y € Yo} and
{(z,y) :z € Xo,y € V1}.

Observe that these 2q complete bipartite graphs partition the edge set of the
tensor product K, * K,. So by Theorem 5.12, we must have

> [(n—12)2+1]

]

In general, for any fixed k, can we improve the upper bound of (k—1)(n—1)
on g(Ky, K,) in a manner similar to what we have considered for k& = 3 and
k = 47 Tt seems that perhaps there is no Kj having a ‘better’ allowed sets
of decompositions than the four allowed decompositions of K4 that we used in

Section 5.4. If this is correct, perhaps % is the right constant even for g(n).
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Question 5.14. Is it true that g(n) = £(1 4 o(1))n*?

Finally, let us turn our attention to the function f, for » > 4. For fixed r > 1,
let a, be the smallest a such that f.(n) < o(1l + 0(1))(”7%). Thus the initial
construction gives a, < 1 for all r, while Theorem 5.11 says that ay < %. This

implies that a, < % for all even r.

Theorem 5.15. For each fized k > 2, we have

for(n) < %(1 +o(1)) <Z)

Proof. We use induction on k. By Theorem 5.11, the result is true for the base
case k = 2. For larger k, the result is an easy consequence of the following

inequality:
forr2(n) < for(n —2) + for(n —3) + ... + for(2k).

This inequality is obtained by ordering the n vertices and observing that the set
of (2k + 2)-edges whose second vertex is ¢, for any fixed ¢ € {2,3,...,n — 2k},
may be decomposed into for(n—i) complete (2k+2)-partite (2k+2)-graphs. [

We do not see how to obtain a bound below 1 for «,. for r odd. But actually

we would expect the following to be true.
Conjecture 5.16. We have o, — 0 as r — oo.

To prove this, it would be sufficient to show that as < 1. Indeed, suppose
fs(n) < (a+0(1))(5) for some o < 1. Let 7 = 6k — 1 and order the n vertices.
We can decompose the complete r-graph on n vertices by considering the set
of r-edges whose 6th, 12th, ..., 6(k — 1)th are iy, s, ..., i1 respectively, where
17 > 6 and i1 < n—>5and i; —i;.4 > 6 for 2 < 57 < k — 1. For each such
fixed 41,149, . ..,4x_1, these r-edges can be decomposed into fs5(iy — 1) f5(ia — i1 —
1) ... fs(ig—1 —ig—2 — 1) fs(n — ix_1) complete r-partite r-graphs. Summing over
all possible choices of 41, 4s, . . . , ix_1, we deduce that fo,_1(n) < (a*+0(1)) (5" ,)-

Annoyingly, we do not see how to use any of our arguments about f; for fs.

Question 5.17. Is a5 < 17 In other words, do we have f5(n) < (a+ o(1))(3)

for some a < 17
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6 PoOINTS IN ALMOST GENERAL POSITION

6.1 INTRODUCTION

A set of points in the plane is said to be in general position if it has no 3
collinear points, and in almost general position if there are no 4 collinear points.
Let a(n) be the maximum k such that any set of n points in the plane in almost
general position has k points in general position. In [15], Erdés asked for an
improvement of the (easy) bounds v/2n — 1 < a(n) < n (see equation (13) in the
paper). This was done by Fiiredi [17], who proved Q(yv/nlogn) < a(n) < o(n).

In [11] Cardinal, T6th and Wood considered the problem in R3. Firstly, let
us generalize the notion of general position. A set of points in R? is said to be
in general position if there are no d + 1 points on the same hyperplane, and
in almost general position if there are no d + 2 points on the same hyperplane.
Let a(n,d) stand for the maximum integer k£ such that all sets of n points in
R? in almost general position contain a subset of k points in general position.
Cardinal, Téth and Wood proved that a(n,3) = o(n) holds. They noted that
for a fixed d > 4, only a(n,d) < Cn is known, for a constant C' € (0, 1), and
they asked whether a(n,d) = o(n). The goal of this chapter is to answer their

question in all dimensions. In particular we prove the following.
Theorem 6.1. For a fized integer d > 2, we have a(n,d) = o(n).

In fact, we are able to get better bounds for certain dimensions. This is the

content of the next theorem.

Theorem 6.2. Suppose that d,m € N satisfy 2™ —1 < d < 3-2™ — 3. Let

N > 1. Then
25\ />
a2V, d) < (W) 2V,
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It is worth noting the lower bound a(n, d) = Q4((nlogn)'/?) due to Cardinal,
Téth and Wood ([11]), but we do not try to improve their bound in this chapter.

In [17] Fiiredi used the density Hales-Jewett theorem ([18], [14]) to establish
a(n) = a(n,2) = o(n). Here we reproduce his argument. By the density Hales-
Jewett theorem, for a given € > 0, there is a positive integer N such that all
subsets of [3]" of density € contain a combinatorial line. Map the set [3]" to R?
using a generic linear map f to obtain a set X = f([3]") C R2. By the choice of
f, collinear points in X correspond to collinear points in [3]", and f restricted
to [3]"V is injective. Therefore, X has no 4 points on a line, and so is in almost
general position, but if S C X has size at least ¢|X|, the set f~!(S) C [3]" has
density at least € in [3]V. Therefore, f~!(S) has a line, hence S = f(f~*(S)) has
3 collinear points. Since € > 0 was arbitrary, this proves that a(n,2) = o(n).

If one tries to generalize this argument to higher dimensions, by mapping
[m]Y to R? then there will be m?~! cohyperplanar points, and we must have
mé=! = d 4 1 to get almost general position. But the only positive integers
that have this property are (m,d) € {(3,2),(2,3)}. Taking m = 2,d = 3 gives
a(n,3) = o(n), as observed by Cardinal, T6th and Wood ([11]). For other choices
of (m,d) we have too many cohyperplanar points as m4~! > d + 1. Overcoming

this obstacle is our main goal.

Notation. Throughout this chapter, we write [k] for the set {1,2,...,k}. By
a d-cube of edge length k we mean a set of the form {vy + Ajvq + Agvg + -+ +
AU A1, Ao,y Ag € {0,1,2,... k}}, where vy, vq,...,04 are (not necessarily
independent) vectors in a real vector space. A d-dimensional combinatorial sub-

space of [N]* is a set that consists of all x € [N]* such that z; = a; when

t € Iy, and z; does not change when 7 ranges over I;, for j = 1,...,d, where
Iy, Iy ..., I; are some fixed sets that partition [k], I}, I, . . ., I; are non-empty and
a; for i € Iy are some fixed elements of [N]. Given vectors vg, vy, ..., v, € R% we

say that they are affinely dependent if there are A\g, A1, ..., A\, € R, not all zero,
but adding up to zero, such that _;_ A\;v; = 0. Finally, for a real vector spaces
R™ we use the usual inner product (x,y) given by > " | z;y;, where z; and y; are

coordinates of x and y with respect to the standard basis.
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6.1.1 ORGANIZATION OF THE CHAPTER

Section 6.2 is devoted to the motivation of the arguments of this chapter and
to the explanation of the approach taken in the proofs of the main results. In
Section 6.3, we introduce the key notion for this chapter, F-incident sets, where
F is an arbitrary family of maps from RY to R?. Roughly speaking, these are
the sets that stay cohyperplanar under all maps in /. In the same section, we
prove Proposition 6.5, which provides us with an incidence removal function, a
single function which makes all the non-F-incident sets non-cohyperplanar.

In Section 6.4, we focus on the study of Fn 4m,-incident sets, where Fy 4,
is a family of maps from RY to R? resembling polynomials of m'" degree. In
particular, Lemma 6.7 shows that combinatorial subspaces and lines of a d-
cube give rise to span Fy g ,,-incident sets. The rest of the section is devoted
to deriving a characterization of Fy 4,,-incident sets in terms of vectors given
by products of coordinates. The proof of a(n,d) = o4(n) is the result of work
carried out in Section 6.2. That section also contains Lemma 6.11 which is the
main tool used in the analysis of Fy g.,-incident sets. Finally, in Section 6.6, we
improve the bounds for certain dimensions, using Lemma 6.16 in the analysis of

FN.am-incident sets.

6.2 MOTIVATION AND THE OUTLINE OF THE PROOF

Recall that the main obstacle to generalizing Firedi’s argument to the higher
dimensions is that (d — 1)-cubes have too many cohyperplanar points. A (seem-
ingly) possible way to get around this issue is to modify the initial set [m]
to a subset X, which does not have too many incidences, and yet some form
of the Hales-Jewett theorem may still be applied to X. The desired set would
once again be the image of X under a generic linear map from RY — R?. Tt
is tempting to try to remove certain points from each (d — 1)-cube inside [m]",
so that precisely d + 1 out of the original m?~! points remain. However, this is
impossible for sufficiently large N, as the set X C [m]" gives a 2-colouring of

N (a point is blue if it is in X, red otherwise), and thus the Hales—Jewett

[m]
theorem provides us with a monochromatic (d — 1)-cube. Therefore, such an

approach at least needs further modifications, if it can be made to work at all.
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Having abandoned the first idea, it is natural to try to map [m]" under a
map [ which is more general than linear maps. Previously we used a generic
linear map. In other words, this is a map f with the property that the only
sets of size d + 1 whose image under f is cohyperplanar in R? are precisely the
affinely dependent subsets of [m]" of size d + 1. This leads us to the key notion
of this chapter, namely that of F-incident sets, which we now define. Let F be
a family of functions from RY to R? (we shall use F instead of just the linear
maps). We say that a set S C RY is F-incident if the multiset f(S) is affinely
dependent for all f € F. Crucially, like in the case of linear maps, we can a find
a ‘generic’ map f € spanF, such that if f(S) is affinely dependent then S is
F-incident. This is the content of Proposition 6.5. We refer to such a map as

an ‘incidence removal function’.

Once we have constructed an incidence removal function, the next aim is to
study F-incident sets for suitable F. Our goal now is essentially the following:
we want that each dense subset of [m]" contains an F-incident set of size d + 1
(which gives cohyperplanar sets with d+ 1 elements), but at the same time, that
the image of [m]™ under an incidence removal function does not contain d + 2
cohyperplanar points. An easy way to fulfil the second requirement is to make
sure that F-incident sets of size d + 1 cannot have intersection of size d. On
the other hand, as in the case of linear maps, we use the density Hales-Jewett
theorem to show that dense subsets contain the desired F-incident sets, thus we
want that the combinatorial subspaces are (span JF)-incident (note that here we
need a stronger property of being (span F)-incident instead of just F-incident,

as the incidence removal function belongs to a bigger family span JF).

To give an idea of how we choose the family of functions F making the com-
binatorial lines span F-incident, observe the following identities that hold for

arbitrary a, b:

1-1 +(=-3)-1 +3-1 +(-1)-1 =0,
1-a +(-3)-(a+b) +3-(a+20) +(-1)-(a+3b) =0,
1-a> +(=3)-(a+b)?* +3-(a+2b)> +(-1)-(a+3b)* =0.

What is crucial here is that we have the same coefficients appearing in the

three linear combinations above. Hence, if one looks at a function f:RY — R?
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of the form
((z,v1) + ¢1)?

fl@) =] ((z,v2) + c2)? (6.1)
((z,v3) + c3)?

for some vy, v2, v3 € RY and reals ¢y, ¢y, c3, then f(z), f(z+y), f(z+2y), f(x+3y)

are necessarily coplanar, as
1 f(z)+(=3) fz+y)+3- fle+2y) + (1) f(z+3y) =0

and the sum of coefficients is zero. Moreover, if g is any linear combination of
functions of the form described above, then g(z), g(z + v), g(x + 2y), g(x + 3y)
are coplanar, owing to the fact that the same coefficients appear in the identities

above.

In the case of d = 2, we used only linear maps and we had that the image of
[3]" to the plane under a generic linear map is the desired set. In that case, the
combinatorial lines in [3]¥ gave us collinear sets of points in the plane. Mov-
ing to the functions constructed from the polynomials of degree 2, the image
of [4]Y under a ‘generic degree 2 function’ to R?® has cohyperplanar sets of 4
points that are also images of combinatorial lines. After some analysis of the
F-incident sets for F given by equation (6.1), we are able to show that those
sets have intersection of size at most 1, provided the size of sets is at most 4.
The motivation for this step comes from the heuristics that we expect that our
non-trivial F-incident sets are precisely the relevant combinatorial subspaces (in
this case the lines) and as such, they cannot have large intersection (in case of
lines, they cannot share more than one point). This was the second requirement
that we had, completing a sketch of the proof that a(n,3) = o(n). This naturally

extends to larger values of d.

Using different identities, we are able to get better bounds on «a(n,d). For
example, the fact that 2> + (z +a +b)?* + (x +a+c)* + (x + b+ ¢)* =
(x+a)*+ (z+b*+(x+c)?+ (xr+a+ b+ c)* holds for all x,a,b,c, en-
ables us to use 3-dimensional combinatorial subspaces of {0,1}" as the sources
of cohyperplanar sets. Generalizing this identity to higher degrees, we can use
the higher-dimensional combinatorial subspaces as well. The better bounds on

a(n,d) when these subspaces are used come from the better bounds for density
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Hales-Jewett theorem [14] in the case of {0,1}" (the generalized Sperner’s the-

orem).

When it comes to the analysis of F-incident sets, let us first define pre-
cisely the families of functions that we shall consider in this chapter. For
given N,d,m € N we define the family Fpng4,, of functions f RN — R? of
the form f;(z) = ({(z,w;) + ¢;)! for i = 1,2,...,d, for any ui, us,...,ug € RY,
€1,C9,...,cq € Rand 1 < < m. The bulk of this chapter consists of studying

the Fy qm-incident sets.

6.2.1 ANALYSIS AND PROPERTIES OF Jfy g ,,-INCIDENT SETS

The first important claim regarding the Fy 4,,-incident sets is the characteri-
zation given by Proposition 6.9, which we explain here. To simplify the notation,
we introduce the following notion. The terminology (< m)-function to S stands
for any function ¢: A — S, where A has size at most m. Given a vector x € RY

and a (< m)-function ¢ to [N], we define ¢(x) = [],c4 Tp@). Proposition 6.9

tells us that {zg, z1,...,2,} for r < dis Fi 4m-incident if and only if the vectors
¢1(x0) p1(21) e1(2r)
pa(T0) p2(71) pa(z)
Pr (-770} or(11) or (1)

are affinely dependent for all (< m)-functions ¢1, s, ..., .. Then, in order
to prove that our Fy g4 n,,-incident sets cannot have large intersections, we use
Lemmas 6.11 and 6.16. First we state Lemma 6.11 to illustrate its contrast to

Proposition 6.9.

Lemma 6.3. (Lemma 6.11) Let m,r, N € N. Suppose that yi,ys,...,y, € RY
are vectors such that rank{y,,ye,...,y.} + m — 1 > r. Suppose further that

Y1, Y2, - - -, Yp are distinct and have non-zero coordinates. Then we may find (<
m)-functions @1, o, ..., for which the vectors

e1(y1) v1(y2) e1(yr)

©2(y1) ©2(y2) ©2(yr)

er(yr) ) \er(y2) r(yr)
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are linearly independent.

The conclusions of Lemma 6.11 and Proposition 6.9 are almost exactly op-
posite. We only need to take care to pass from affine dependence to linear
dependence (which is easy as a set {v1,vs,...,v,} is linearly dependent if and
only if {0,v1,v,...,v,.} is affinely dependent). Hence, we use these two re-
sults along with some combinatorial arguments to deduce structural information
about Fy q.,-incident sets, and in particular to show that such sets exhibit be-

haviour similar to combinatorial subspaces, as expected.

We now state Lemma 6.16, another crucial result in the study of Fy g.m,-

incidence. Note that it has a more combinatorial flavour than Lemma 6.11.

Lemma 6.4. (Lemma 6.16) Let m, k € N. Given any distinct sets X1, Xo,..., X, €
N9 we can find sets Sy, Ss, ..., S, € NE™ such that the matriz

Isicx, lsicx, -+ lscx,
7 Ls,exy, lsyex, -0 Lsyex,
Is,cx, ls,cx, -+ lscx,

has dimker I = 0 if r < 2™ and dimker I < 1 if r < 3-2™. Here Lacp takes

value 1 if A is a subset of B, and zero otherwise.

The subset relation here is actually quite natural. This comes from con-
sidering the Fy g n,-incident subsets of {0,1}". As we have seen above, when
analysing Fy q4,-incidence, we are interested in the values of ¢(z) for z € {0, 1}V
and (< m)-function ¢ to [N]. If we set S = Im ¢, then p(x) = [[,cq zs = Lscx,
where X = {i:x; = 1}.

Finally, we note that studying the algebraic properties of such matrices may
be of separate interest.
6.3 DEFINITION AND BASIC PROPERTIES OF F-INCIDENCES

Throughout this section, F will stand for a family of maps from RY to R%

Given such a family of functions F, our goal is to understand the non-trivial
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affinely dependent sets of points in the images of f € F.

Recall that we say that points s, so, . . ., sp € R? (not necessarily distinct) are
affinely dependent if there are A1, ..., Ay € R not all zero such that Zle Ai=0
and Zle N\isi = 0. A k-tuple S = (s1, 89, ..., 5;) of points in RY is said to be
F-incident if for all f € F we have f(s1), f(s2),..., f(sx) affinely dependent. A
set S = {s1,5,...,5:} of points in RY is F-incident if a corresponding k-tuple
(s1,89,...,5k) is. Note that the order does not play a role in this definition, nor
is the order of points important at any point in this chapter. The only reason
why we use k-tuples is the possibility that some of f(s;) might overlap. (This
issue could also be resolved using multisets.) Further, S is minimal F-incident

if it is F-incident and no proper subset of S is F-incident.

Proposition 6.5 (Incidence removal function). Let X C RY be a finite set and
let F be a family of functions from RN to RY. Then there is f € spanF with
the property that

if {s1,82,...,Sk} is not F-incident, then f(s1), f(s2),..., f(sk)
are affinely independent.

(t)

Furthermore, if F separates the points of X (i.e. for distinct x,y € X there is
f € F such that f(x) # f(y)), then there is f € spanF which is injective on X,
with the property (t).

The proof of the proposition is based on simple linear algebra and some
easy facts regarding the vanishing of polynomials. It can be skipped at the first
reading, the reader should only be aware of the existence of the incidence removal

function and its properties.

Proof. Throughout this proof, for a function f and a set S = {s1, sa,..., Sk}, we
regard f(S) as the multiset of elements f(s1),..., f(sx). So, if we say that f(5)
is affinely dependent, we mean f(s1), f(s2),..., f(sk) are affinely dependent.
We start by establishing the existence of a map f with property (f). The
second part of the proposition will follow from a simple argument later. Let
11,715, ...,T,, be the list of all subsets of X which are not F-incident. Thus,
for each index i we have a function f; € F such that f;(T;) is affinely inde-
pendent. We shall inductively construct functions F; € span F such that all of
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F,(Th), Fi(Ty), ..., F;(T;) are affinely independent. Start by taking F; = f; for
the case 1 = 1.

Suppose that we have ¢ > 1 and a function F; € span F such that each of
F,(Th), Fi(Ty), ..., F;(T;) is affinely independent. Assume that ¢ < m, other-
wise we are done. Also, if F;(T;;1) is already affinely independent, simply take
F;y1 = F;. Hence, w.lo.g. F;(T;;1) is affinely dependent. We shall construct
F;.1 as a linear combination F; 4+ Af;11, where A > 0 is a sufficiently small real,
chosen so that it does not introduce new dependencies.

Let uy,ug,...,ux € RY. Let FN = F; + \fiy; and suppose that F© (u,),
FO (uy), ..., FO(u,) are affinely independent. Then F© (uy) — FO(uy),. ..,
FO(u;,) — FO(u,) are linearly independent.

Lemma 6.6. Suppose that vy,...,v; € R? are linearly independent. Then, we
can find I C [d] of size l such that vy, ..., v, are still linearly independent when

restricted to coordinates in I.

Proof. Look at the d x | matrix A = (v1vs...v;). Since vy, vs, ..., v, are linearly
independent, the column rank of A is [. But the column rank is the same as
the row rank, so we can find [ linearly independent rows with indices ry,..., ;.
Take I = {ry,...,r} and let A’ be the matrix A restricted to rows in I. Then,

the row rank of A’ is [, so its column rank is [, as desired. O]

By Lemma 6.6 we can find a set of coordinates I of size & — 1 such that
FO (uy) — FO(uy), FO(ug) — FO(uy),..., FO(uy) — FO(u,) are linearly in-
dependent after restriction to I. We restrict our attention to these coordinates

only. Then we can define
p(\) = det(FM (uy) — FM(uy) ... FM () — FM(wy)),

which is a polynomial in A. Since p(0) # 0, by continuity we have 6 > 0 such
that if |A\|< & then p(\) # 0. Therefore, FM(uy), FM(uy),..., FM(uy) are
affinely independent if |A|< §. Note that we can now remove the restriction to
coordinates of I, as this will not affect the affine independence.

We can apply this argument to all 71, ..., T}, to get § > 0 such that if |A\|< §
then (F; + Afit1)(7}) is affinely independent for all j =1,... 1.

Now suppose that the choice F; + Af;11 does not work for us as Fj;;. Then,
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we must have (F; + Af;11)(T;41) is affinely dependent for all A< §. Thus if
A > 61 then (AF; + fi11)(Ti41) is affinely dependent. List the elements of Tj 4
as ty,to,...,t.. Now, apply Lemma 6.6 to f;+1(7;41) to get a set of coordinates
of size r — 1, on which this set is still affinely independent, and use a similar

polynomial to the one we had before, this time

q(A) = det((AF; + fiz1)(t2 — t1) ... (A + fisa) (6 — 1))

Then ¢(0) # 0, but g(A\) = 0 if A > §~! which is a contradiction, and thus the

first part of the proposition is proved.

For the last part, if F separates the points of X, observe that there are no
two-element sets which are F-incident. Hence, whenever x,y € X are distinct,
their images f(x) and f(y) are affinely independent by the first part, so f is

injective, as desired. O]

6.4 FAMILIES OF HIGHER-DEGREE MAPS AND THE RESULTING

INCIDENT SETS

Throughout the rest of the chapter we will focus on the family Fy 4, of func-
tions f:RY — R? of the form f;(z) = ({(x,u;) + ¢;)! for i = 1,2,...,d, for any

U, U, .. ug ERY ¢ c0,...,cqg€Rand 1 <1 <m.

We start by giving some examples of non-trivial span Fy g4 ,,-incident sets.
The proofs are based on algebraic identities, which were described in the intro-
duction. For the case of lines, we use the rank-nullity theorem to prove that there
is an identity we are looking for, and in the case of combinatorial subspaces, we

prove the identity explicitly.
Lemma 6.7. (Ezamples of non-trivial span Fy q4m-incident sets.)

(i) (Lines.) For x,y € RN the (m + 2)-tuple (z + iy:i = 0,1,...,m + 1) is

span F . q.m-itncident.

(ii) (Combinatorial subspaces.) For xo,xy,...,0me1 € RN, the 2™ tuple

(w0 + Y e it I C [m+ 1)) ids span Fi gm-incident.
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Proof. Lines. We show that there are Ay, ..., \,,11, not all zero, such that for
all f € Fy.am we have 7N f(z 4-4y) = 0 and 3270\ = 0. Then, the same
linear combination shows that f(z), f(x +vy),..., f(x + (m + 1)y) are affinely
dependent for f € span Fy q,,. Before we proceed with the proof, observe that
if y = 0 our line becomes degenerate and the (m + 2)-tuple we consider is

immediately Fy 4m,-incident. Thus, we assume that y # 0.

Thus, we want a non-trivial sequence \; adding up to zero, such that for all

u € RN, ceR,l € [m] we have

m+1

Z)\i((x+iy,u> +¢) =0.

=0

Expanding this expression using the binomial theorem and treating it as a poly-

nomial in ¢, it becomes equivalent to

m+1
D il tiyu) =0

1 =0

forallu € Rand [ =0,1,...,m. Expanding further, this is equivalent to

go (,i) (,u)™ y, w)* (Tg )\zk> —0

forallu € Rand [ =0,1,...,m. Hence, if Ag,..., A\, 1 satisfy

m—+1
> N =0
i =0
foralll =0,1,...,m, we are done. But by the rank-nullity theorem (‘more vari-

ables than equations’), we must have a non-trivial solution to these equations,

giving us the desired \;.

Combinatorial subspaces. As in the case of lines, we show that there are co-
efficients \;, for set-valued indices I C [m + 1] (including the I = ), not all
zero, but adding up to zero, such that ZIQ[erl] Arf(xo + ;i) = 0, for all
f € Fn.am, which suffices to prove the claim in the full generality. In this case,
we can actually set A; = (—1)1].

It is enough to show that for any u € RV ¢ € R,l € [m] we have (in these
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sums, I = () is included)

Z (—1)H! ((xg—i-in,u)—i-c) =0.

I Clm+1] icl

But writing ag = (xg,u) + ¢,a; = (z;,u) for i = 1,...,m + 1, we see that it is
sufficient to show

> (= <a0 + ZaZ)l =0

I Clm+1] iel
for all ag,aq,...,ami1 € Rl € [m+ 1]. This is the content of the next lemma.
Lemma 6.8. Let I,m € N,I <m and ag,ay,...,a,+1 € R. Then

!
> (- ( +2 ) =0
I Clm+1] iel
Proof of Lemma 6.8. Note that
1 Lo k
DI RS o7 IS SUA TS (D SREHLN oty
I Clm+1] iel k=0 IC[m+1] icl

thus we only need to consider the case ag = 0. Proving the lemma in this case
would tell us that i
> (= (Z ai) —0
IC[m+1] iel
holds for all k, so the whole expression with arbitrary ay, above would vanish.

Consider the expression

> o (Sa)

I Cm+1] il
as a polynomial of degree [ in a1, ..., ams1. The coefficient of af*ad . .. a:;’ff is
(i) X
dl,dg,...,dm—l—l S CIC[m+1]

where S is the set of indices ¢ such that d; > 0. Since |S| < m, the sum
> scrcpmin (=D is zero, which finishes the proof. O
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Applying Lemma 6.8 completes the proof. [

Before coming to a key proposition which describes the Fy q.,-incident sets,
we introduce a couple of pieces of notation. If ¢ is a function from a set of
size at most m to a set X, we say that ¢ is a (< m)-function to X. Given a
(< m)-function ¢: A — [N] and 2 € R, we write ¢(2) = [[,c 4 Zp(a). Here we
allow an ‘empty’ function, i.e. a function ¢ from an empty set to [N], defined
by o(z) =1, for all z € RY.

Proposition 6.9. Let r,d,m, N € N, suppose r < d and let X = {xg,x1,...,2,}

be a subset of RN . The following are equivalent.
(i) X is Fnam-incident.

(ii) Given any (< m)-functions 1, @2, ..., @, to [N], the vectors

©1(x0) e1(21) e1(xr)
©a(z0) pa(71) - w2 ()
Spr(xo) @r(ml) (Pr(xr)

are affinely dependent.

The proof of the proposition is a straightforward algebraic manipulation,
mostly based on the fact that if a polynomial over the reals vanishes everywhere,
then its coefficients are zero. The reader may consider skipping the proof in the

first reading.

Proof. Start from the definition, (i) is equivalent to the vectors

(o, u1) + 1) (@1, u1) + 1)’ ((2r, wr) 1)

({0, ug) + c2)" (@1, ug) + c2)' ({2, ug) + ca)!

({0, ua) + ca)’ ({z1, uq) + ca)’ ({zr, ua) + ca)’
being affinely dependent for any choice of parameters cq,co,...,cqg € R, uq,
Ugy ..., ug € RV and 1 < | < m. In particular, as r < d, this is further
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equivalent to vectors

({1, u1) + 1)t = ((wo, ur) + 1)’ ({2, u1) + 1) = ((xo,ur) + 1)’
({1, u2) + €2)" = ({20, u2) + 2)" ({2, u2) + ¢2)" — ({0, uz) + ¢2)'

({1, ur) + Cr‘)l — ((wo, ur) + Cr)l ({2, ur) + Cr)l — ({wo, up) + Cr)l

({2, u1) + 1) — ({xo, u1) + c1)!
((zr, ug) + c2)' = ({0, uz) + c2)"

(<xra ur> + cr)l - (<:150, ur> + Cr)l

being linearly dependent for all the choices of parameters. Hence, taking deter-

minant, (i) is the same as
det (((LZ'Z,U]> -+ Cj)l — (<3§'0, Uj> + Cj)l) =0

for any choice of uy, ..., u,,c1,...,c., . Expanding using binomial theorem, and

writing S, for the symmetric group on [r], we obtain

0= Z sgn(m) H (((wﬂ(i), u;) + ci)t — ((wo, ui) + Ci)l)

- S]] (z (1) o~ o uz->l-'f>)

_ k1 k2 ko
= E cles? ..

0<k1,k2;....kr <l

I1 (4 ) (35 st TT i~ o)

i=1 weSy i=1

However, this holds for any choice of ¢{, ¢y, ..., ¢, € R, so, when the expres-
sion above is viewed as a polynomial in variables ¢y, cs, ..., ¢, we conclude that

all its coefficients are zero. In other words, (i) is equivalent to the following. For
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any 0 < ki, ko, ..., k. <m, and any uy, us, ..., u, € RY we have

r

0= Z sgn(m) H (<ZL’7T(Z-), uz>’fz — (o, uz>k1)

TESy i=1
N ki N ki
= Z sgn H (Z ZBﬂ(i)jUij) — <Z .fl?()juij)
TESy i=1 j=1 j=1
r k; k;
= Z sgn(m) H Z (H L (i)pi(5) Wi (5) — onsoz'(j)uiw(j)>
TES, i=1 \ pi:[ks]—[N] \j=1 j=1
r k;
- Z sgn(m) H Z (H Wi, (j ) <H Tr(i)ps(j H Lo )
TESy =1 \ p;:[k;]=[N] \j=1

= > (H ﬁ “wj))

p1:lk1]=[N],...,or:[kr]=[N] \i=1 j=1
(Z sgn(m H (H Tr(i)pu(i H L0 ))
WEST =1 =1

= > (H %(ui)> (Z sgn(m) H(%(%(n) - %‘(fo)))

p1:lk1]=[N],...,or:[kr] = [N] TESy

Now, look at the expression above as a polynomial in variables u;;. Observe
that if @1, P25 - -5 Py 77/)1, 77[}27 e ,@Z)r are such that H;:l gpl(uz) = H::l ¢Z(uz) as

formal expressions, then we must have

T

Z Sgn(ﬂ') H(Qpi(xn(z) 901 xO Z sgn H wz(% ) - wl(x()»

7T€ST ﬂ'eSr

as well. This tells us that the coefficients of our polynomial are positive integer
multiples of >° o sgn(m) [T:_; (wi(2x@) — @i(20)). Once again, the polynomial
over R vanishes everywhere if and only if its coefficients are zero, so we deduce

that (i) holds if and only if for all (< m)-functions @1, @a, ..., ¢, to [IN], we have

0= sgu(r) H(%(%@) — ¢i(%0))

TI'GST

= det (tpi(ifj) — ¢i(z0))

1<ij<r
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which says precisely that the vectors

p1(21) — p1(0) p1(x2) — 1 (o) p1(zr) — p1(xo)
p2(21) — P2(20) pa(22) — P2(zo) p2(2r) — @2(z0)
@r(T1) — @r(0) ©r(w2) — or(20) er(Tr) — ¢r(w0)
are linearly dependent, which is equivalent to (ii), as desired. O

Proposition 6.10. Let r,d,m, N € N be given and suppose that r < d holds.
Suppose also that the set {xg,x1,...,2,} CRY is Fyam-incident. Then, given

any affine map c: RN — RY and any (< m)-functions o1, @, ..., o, to [N], the

vectors
p1(a(wo)) p1(a(z1)) p1(a(zr))
p2(a(wo)) p2(a(1)) o pa(a(x,))
r(a(z)) or(a(z1)) er(a(zr))

are affinely dependent.
On the other hand, if the set {xg,x1,..., 2.} C RY is not Fy gm-incident,
then, given any affine isomorphism a: RN — RY  we may find (< m)-functions

01,92, -, pr to [N], so that the vectors

p1(v(z0)) p1(a(z1)) e1(a(zy))
pa(a(o)) pa(a(1)) o pa(a(zy))
er(a(zo)) er(a(z1)) er(a(zy))

are affinely independent.

Proof. Suppose that an affine map a:RY — R is given. We may write it in
the form a(x) = Az + v for an N x N matrix A and a vector v € RY. Given

vectors uy, Us, . .., u, € RV, constants ¢, cs,...,c, € Rand 1 <1 < m, we have
(@), ws) + ;) = ((Ax +v,w) + ¢)' = ((z, ATu) + ((v,w5) + ).

But then, since xg,z1,...,z, are Fy am-incident, it follows that so are a(z),

a(xy),..., a(z,). Apply Proposition 6.9 to a(x), a(x1),...,a(z,), from which
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the first claim in the proposition follows.

For the second part, observe that if a(zo), a(z1), . . ., a(z,) are Fy gm-incident,
then by the previous arguments, so are ro = a ' (a(xg)), 1 = a H(a(zy)),. ..,
z, = a”*(a(z,)). Therefore, the points a(xg), a(z1),...,a(z,) are not Fy gm-

incident. Proposition 6.9 applies, and gives the desired (< m)-functions. Il

6.5 PROOF OF «(n,d) = o4(n)

Lemma 6.11. Let m,r,N € N. Suppose that yi,va,...,y, € RY are some
vectors with the property that rank{yy, ya,...,y.} + m —1 > r. Suppose further
that y1,ys, ..., Yy, are distinct and have non-zero coordinates. Then we may find

(< m)-functions @1, s, ..., . for which the vectors

©1(y1) ©1(y2) ©1(yr)
©a(y1) ©2(y2) _ ©2(yr)
er(y1) ©r(Y2) ©r(Yr)

are linearly independent.

Proof. We prove the lemma by induction, first on m, then on r. Observe that in
the case when m = 1, for a (< m)-function ¢, the resulting function ¢(z) is just
evaluation of x at a chosen coordinate. Hence, for m = 1 we are actually asked
to find a set of coordinates I of size r, such that y; are still linearly independent

when restricted to I. Applying Lemma 6.6 proves the claim in this case.

Suppose now that the claim holds for some m’ > 1. Write m = m’ + 1.
For fixed m, we prove the lemma by induction on » > 1. If r = 1, then, take

©:[1] = [N], given by (1) = 1, so the vector ¢(y1) = (y1)1 is non-zero.

Suppose that the claim holds for some r > 1, and that {y1,y2,...,¥r+1}

satisfy the assumptions of the lemma.

Case 1. y,.1 ¢ span{yy, Yo, ..., yr}. Then r+ 1 < rank{y,y2,...,Yrr1} +m —
1 = rank{y1,¥y2, ...,y } + m, hence rank{y;,ys,...,y,} + m —1 > r. By the
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induction hypothesis, we have (< m)-functions ¢1, s, . .., ¢, such that

() ) [ e1(y2) e1(yr)
©2(y1) P2(y2) ©2(yr)
er(y1) er(y2) er(yr)
are linearly independent. Hence, there are unique scalars A\j, Ao, ..., A\, € R such

that ¢i(yr41) = D 5_; Ajpi(y;) holds for all 4 = 1,... 7. But, the vector y, 1
is not in the span{y,...,v.}, and so y, 41 # Z;Zl A;y;. Hence, we can pick
©ri1: [1] = [N] to be p(1) = ¢, where ¢ is the coordinate such that (y,11). #

> _j=1 Ai(Yj)e, finishing the proof in this case.

Case 2. y,.1 € span{yi, Y2, ..., yr}. Then r+ 1 < rank{y;, vy, ..., Yrs1} +m —
1 =rank{yi,y2,..., -} +m—1, so
r < rank{yi,y2, ...,y } +m — 2.

By the induction hypothesis, we have (< m — 1)-functions ¢, . .., ¢, for which

() ) [ e1(y2) e1(yr)
©2(y1) P2(y2) ©2(yr)
er(y1) er(y2) er(yr)
are linearly independent. As before, there are unique scalars A, Ag,..., A\, € R

such that ¢;(y,11) = Y5 \jgi(y;) holds for all i =1,... 7.

We try to take ¢, 11 to be some ¢; with an additional element in the domain,
mapped to ¢ € [N]. If this works, we are done. Otherwise, foralli =1,...,r and
¢ € [N], we have ©;(yr+1)(Yri1)e = D51 Ajwi(y;)(yj)e- Since the coordinates are

non-zero, we get

T

filyrin) = Y N+ W)e/ (Wri1)e) 2i(;).

j=1
But, by uniqueness of \;, we must have \; - (y;)c/(yr4+1)c = A; for all j,e. If
some \; # 0, then for all ¢ we get (y;)c/(Yr+1)e = 1, ie. Y41 = y; which is a
contradiction, as our vectors are distinct. Otherwise, all the coefficients A; are 0,
s0 ¢1(yr+1) = 0, but coordinates of y,.41 are non-zero, resulting in a contradiction

once again. O
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The next result is a corollary of the algebraic lemma we have just proved. It
is consistent with the intuition we described in the introduction. There we said
that we expected lines in [m + 1]V to be the sources of the non-trivial Fy 4 1.m-
incident sets. In other words, a Fn m1,m-incident set is either of size larger than
m + 2, and thus its image must be affinely dependent (by looking at dimension

of the target space), or the set is on a line.

Corollary 6.12. Suppose that S C RY is Fy ny1.m-incident. Then, |S| > m+2
and if |S| =m + 2, then S is a subset of a line.

Proof. If |S| > m + 3, we are done. Suppose now that |[S| < m + 2. Let
50,51, - . -, Sm41 be the elements of S. We can find an affine isomorphism a: RY —
RY such that a(sg) = 0, and y; = a(s;), for i = 1,2,...,m + 1, are distinct and
have non-zero coordinates. By Proposition 6.10 (note that we may apply it

because |S|—1 < m + 1, and m + 1 is the dimension of the target space), the

vectors
p1(y1) ©1(y2) ©1(Ym-+1)
©2(y1) ©2(y2) ©2(Ym+1)
Prmr1(y1) Pm+1(y2) Prt1(Ym+1)
are linearly dependent, for any choice of (< m)-functions @1, @a, ..., @me1 to

[N]. Thus, Lemma 6.11 would give us contradiction, unless

rank{ylay27 s 7ym+1} +m—1<m.

So rank{yi, Yo, .-, Ymr1} < 1, and as y; # 0, there are scalars Ai, ..., Ayt
such that y; = A\jy1 holds for all ¢+ = 1,...,m + 1. But, since « is an affine
isomorphism, the points s = a=1(0), s1 = @™ (y1), ..., Smi1 = @ (Ymy1) are

on a line, as desired. Il
Theorem 6.13. Ford,n € N, d > 2, we have a(n,d) = o4(n).

Proof. For notational consistency with previous results, we set m = d — 1. Let
¢ > 0 be arbitrary and let N be sufficiently large so that e-density Hales-Jewett
theorem holds for the combinatorial lines in [m + 2]V, Let X = [m + 2]V, and

let f be the function given by Proposition 6.5 applied to X and Fn y41,m. Since
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FNm+1,m separates the points of X, we may assume that f is injective on X.
Finally, let Y = f(X) C R™"!. We claim that Y has no more than m + 2 points
in a hyperplane, and that all subsets of Y of size at least €|Y'| have a hyperplane

containing m + 2 points.

There are no more than m + 2 points of Y on a hyperplane. Look at a hyper-
plane H and suppose that Y has m + 3 points y1, ..., ymis inside H. Look at a
maximal affinely independent subset of 4y, ..., ymis, w.l.o.g. thisis yi,vya,...,y,
for some r. Since H is m-dimensional affine subspace, we have r < m + 1. So
S1 = {v1,Y2,- - Yr, Ymia} is affinely dependent, and has size at most m + 2.
Then, by the definition of f and Proposition 6.5, T1 = f~1(S1) is Fnmi1m-
incident. Since f is a bijection from X onto its image, 7} has size at most m + 2,
so by Corollary 6.12, T} is a subset of a line, and |T1|=m + 2 and r = m + 1.
Applying the same arguments to So = {y1,...,¥r, Ymsz} and To = f71(Sy), we
have that 75 is also a subset of a line and has size m+2 and also |[T3NTy|= m+1.
But, as 11, Ty C [m + 2]", this is impossible and we have a contradiction, so Y’

has no more than m + 2 points on a hyperplane.

Dense subsets of Y are not in general position. Let S C'Y have size at least €|Y].
Then T = f~'(S) has a combinatorial line L by the density Hales-Jewett theo-
rem. Hence, f(L) C S and S has m + 2 points that lie on the same hyperplane,
by Lemma 6.7. This finishes the proof. O

6.6 BETTER BOUNDS FOR CERTAIN DIMENSIONS

In this section, we provide better bounds on «(n,d) for certain dimensions
d. The key difference in this approach is the use of a more efficient version of

density Hales-Jewett theorem, which we now state.

Theorem 6.14 (Generalized Sperner’s Theorem, [14], Theorem 2.3). Let A
be a collection of subsets of [n] that contains no d-dimensional combinatorial
subspace. Then, the size of A is at most (25/n)"/2"2".

Here, we consider the points in {0,1} C R¥  which we also interpret as
subsets of [N]. Observe that, given an (< m)-function ¢ to [N], with image
S C [N] and a point x € {0,1}" corresponding to X C [N] (by setting X: =
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{i € [N]: x; = 1}), we have
f(x) = lscx,

where, for a general property P, the value of 1p is 1, when P holds, and zero
otherwise. Hence, we can reinterpret Proposition 6.10 in the language of sets
as follows. Suppose that ), X, X, ..., X, correspond to 7 + 1 points in {0, 1}V

which are not Fy gm,-incident (so the first point is 0). Then, there are sets

S1,S9,...,S. C [N] of size at most m, for which the vectors
L co Tscxy I cx, Is cx,
Ls,cp Tsycxy Tsycx, Ls,cx,
b) b) AR )
Ls,.co Is.cx, Is,cx, Ls,cx,

are affinely independent. If all the sets S; are non-empty, then the vectors

Tscx, Tscx, Ig cx,
Ls,ex, Ls,cx, Ls,cx,
, e
Is.cx, Is,cx, Ls,.cx,

are linearly independent. Now we show that actually no set S; is empty. Other-
wise, w.l.o.g. S; = S5 = --- = 5, = () and the others are non-empty, so after sub-
tracting the vector (Lg,cgls,cp---Ls,cp)” from each vector (1g,cx;ls,cx;---

Is,.cx,)” with i > 1, we obtain that

0
0 , 0 _— 0
15k+1§X1 ]]‘Sk+ng2 :H'Sk+1gxr
Ls,cx, Is,cx, Ls,cx,

are linearly independent, which is not possible (when viewed as a matrix, the

row rank is less than r). We sum up this discussion as the following observation.
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Observation 6.15. Suppose that the sets ), X1, Xa, ..., X, C [N] correspond
to r + 1 points that are not Fn gm-incident. Then, there are non-empty sets

S1,99,...,5, €N of size at most m such that the vectors

ﬂSlQXl I]‘SngZ ]lsngr
Lsycx, Ls,cx, Ts,cx,
Ls,cx, Ls,cx, Is.cx,

are linearly independent.

Viewing these vectors together as an r x r matrix, we have found that the
nullity of this matrix is related to the notion of Fy 4,,-incidence. This motivates
the study of the nullity of such matrices in general. Before stating the lemma
which contains some basic results regarding this problem, we introduce some
notation.

Given sets Ay, As, ..., A,, By, Bs, ..., By € N(<¥) we write

I(Ay, Ay, ..., Ar; By, By, ..., By)

for the s X r matrix with entries I;; = 1p,c4,. Further, we define
K(Ay, Ay, ... A By, By, ..., By)

for the kernel of I and
n(Ay, Ag, ..., A By, By, ..., By)

for the nullity of I. Also, if A, B are finite sequences of finite sets, of lengths
r and s, we write I(A, B) = I(Ay, A, ..., A;; By, Bs, ..., By), and similarly we
define K (A, B),n(A, B).

Lemma 6.16. Let m,k € N. Given any distinct sets X1, Xo, ..., X, € N(<)
we can find sets S1,Ss, ..., S, C NE™) which enjoy the following property.

(i) n(Xy, Xo,...,X,;51,89,...,S,) =0, provided r < 2™+,
(i) n(Xy, Xo, ..., X,;51,5,...,5,) <1, provided r < 3 -2™.
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We prove the lemma by induction and (ideas related to) compressions, and
in fact use the part (i) in order to deduce the part (ii). As it will be stressed
in the proof, there is a subtlety in proving n(Xy, Xs, ..., X,;51,5,...,5,) < 1.
Namely, the naive application of induction could only give n(X;, Xo,..., X,;
S1,S9,...,8,) < 2, and we actually use the first part of the lemma to obtain the
required saving of 1 on the right hand side.

Proof. Part (i). We prove the claim by induction on ;| X;|. If this is zero,
then we have r = 1 and X; = (), so just take S; = 0.

Suppose that the lemma holds for smaller values of >"._|X;|. Let z € N
be any element that is contained in at least one of the sets X;. Denote by
{Y1,Ys,...,Y,} the collection of sets given by {X; \ {z}:i = 1,...,r}, and
further let {Zy,...,Z,} be the set {X;:z ¢ X;, X; U{z} = X, for some j}.
Thus v < w and v+ v = r. By the induction hypothesis, there are relevant sets
Si,..., S, € NE™ for Yi,...,Y,. Also, since v < /2 < 2™, we have relevant
sets S, 1,...5. € N&m=U for 7, Z,,...,Z,, and note that w.l.o.g. none of
S1,82, ... SusSiyq, - -, Sl contains x. Set Syq; =S5, U{x} foralli=1,... v.
We claim that the sets S7, 59, ..., S, have the desired property. So far, we know
that for all ¢, |\S;|< m holds.

Let (A{A2...A\.)T be an element of the kernel K(X,S). We can rewrite this
as ijsing Aj =0foralli=1,2,...,r. Define p;, = Zj:Yi:X]-\{x} A;, for each
i = 1,...,u. Then, recalling that = ¢ S; for i < u, we have Zj5sing i =
Zj:SiQXz A =0foralli=1,2,...,u. Since n(Y7,Ys,...,Yy;51,5,...,5,) =0,
we infer p; = 0 for all j. Returning to the definition of 11;, we have that whenever
j is such that = € X, but X; \ {z} is not any of the sets X, then there is ¢ such
that \; = p;, so \; must vanish.

Hence, for i > u, we have that z € S; and ) ; A\;1s,cx; = 0, when the sum
is taken over all j such that z € X, but X; \ {«} is not any of the sets X;. Set
v; = =, for Z; = X, which by previous work is the same as v; = A; for [ such
that X; \ {z} = Z; and = € X;. Therefore, for ¢ > u, we have

Zuj: Z vj = Z)\j:()

J:8iCZ; J:SiCZ;u{z} J:SiCX;

with no additional restrictions on j apart those written in the sums. Hence, the
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vector (vvs...1v,,)" must lie inside K(Zy,Zs, ..., Zy; Shy1,Shio,---,S0). But
thus kernel is trivial, so all v; = 0. Finally, this implies that A; = 0 holds for the

remaining 4, as desired.

Part (11). We follow similar steps as in the previous part. However, we have
to be slightly careful, since the previous argument unchanged would give us
that K(Xi, Xa,...,X,;S51,59,...,S,) is essentially a sum of kernels of similar
matrices for Y1,Ys, ..., Y, and Z,11, Zyso, ..., Z.. This way, we could be 1 di-
mension short of the desired goal, as this argument only allows us to deduce
n(Xy, Xo, ..., X;;51,5,,...,5,) <2, so we have to be more efficient. In order

to overcome this issue, we shall apply the part (i) of the lemma.

We prove the claim by induction on »"._ |X;|. If this is zero, then we have
r=1and X; =0, so just take S; = 0.

Suppose that the lemma holds for smaller values of >";_ |X;|. Let z € N
be any element that is contained in at least one of the sets X;. Denote by
{Y1,Ys,...,Y,} the collection of sets given by {X;\ {z}:i =1,...,r}, and fur-
ther let {Zy,...,Z,} be the set {X;:z ¢ X;, X; U {x} = X for some j}. Thus
v < wand u+v = r. Pick the sets Sy, Ss,...,S, € NE™ guch that U =
K(Y1,Ys, ..., Yy; 51,52, ...,5,) is of minimum dimension. Further, pick the sets

S oy S e NEmUguch that V = K(Z1, Zay - oy Zo3 Stqy Shigs - SL)
is of minimum dimension. W.Lo.g. we may assume that x ¢ S;, S7. Finally, set

Suti = S, ;U{x} fori=1,...,v. All S; have size at most m.

By the induction hypothesis, we have dim U < 1 and, since v < r/2 < 3-2m71,
we also have dimV < 1. However, we can make a saving of one dimension as
promised. Suppose that dimU = dim V' = 1. Then, by the part (i), since U,V
are of the minimum possible dimension, we must have v > 2™*! and v > 2™,
which is a contradiction as u+v = r < 3-2™. Therefore, dim U +dim V' < 1. We
shall now finish the proof by similar arguments as in the previous case, however

we need to treat the cases when dimU = 1 and dim V' = 1 separately.

We may reorder Xy, Xo, ..., X,, if necessary, to have ¥; = X; \ {z}, for i =
1,2,...,u, and Z; = Xy \ {z} with z € X,y; for i = 1,2,...,v. Furthermore,
we may also assume that Z; = X, _,; with x ¢ X, _,; fori=1,2,...,v. Now

proceed as in the part (i), with the argument modified to deal with the possibly
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non-trivial kernels. Suppose that A\,..., A, € R are such that Zj:Sing Aj =0
for all i =1,2,...,r. Define y; = Zj:Yi:Xj\{z} Aj, for each i =1,..., u, thus
Ao fe<u—w
i =
Ai+ Ay, fu—v<i<u
Then we have ijsing p; = 0 for all ¢ = 1,2,...,u. This thus gives p € U.
Next, set v; = \j for Z; = X, ie. v; = Ay for i =1,2,...,v. We have (note

the restriction on the index j € [u — v] in some of the sums)

O:Z)\]

J:SiC X
= >t > (6.2)
7:S]U{x}CZ;u{z} jeu—v]:8;CX;
DI S
J:SiCZ; jelu—v]:8;CX;
forall i =wu+1,...,r. Note also that we can express \; in terms of y; and v; as
follows
i ife<wu—w
Ai = i — Vigoy—u fu—v<i<u (6.3)

Vi—u ifu<i

Case 1. dimU = 0,dimV = 1.
As U = {0}, we must have all y1; = 0. Therefore, A\; = 0 for j < u— v, which

Z I/j:O

j:SiCZ;

implies that

for all ¢ = 1,2,...,u. Therefore, v € V. Using the expressions (6.3), we see
that we can express any given A € K (X, Xs,...,X,; S1,5,,...,5,) as a sum
of vectors in two subspaces of R", isomorphic to U and V', so K(X1, Xs, ..., X,;

S1,S9,...,5.) is a subset of at most 1-dimensional subspace, as desired.

Case 2. dimV =0,dimU = 1.
Now, the scalars p1; might be non-trivial. On the other hand, due to the

equation (6.2) we have

dovi=— > N

j:Sl’ng jE[u—’U]:Sing
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which, combined with the fact that V' = {0}, implies that v; are uniquely deter-
mined by the choice of y;. Finally, relationships in (6.3) show once again that

A; lies in an (at most) 1-dimensional subspace, as desired. O

The following corollary is just a modification of the lemma in the case when
all the sets are non-empty. The need for this additional technicality comes from
Observation 6.15.

Corollary 6.17. Let m,k € N. Given any distinct non-empty sets X1, Xo, ...,
X, € N9 we can find non-empty sets S1, S, ..., S, € NE™) which enjoy the
following property.

(i) n(Xy, Xo, ..., X,;51,8,...,5,) =0, provided r < 2™t — 1.
(il)) n(Xy1, Xo, ..., X, 51,99, ...,5,) <1, provided r < 3-2™ — 1.

Proof. In both cases, we apply Lemma 6.16 to distinct sets 0, X;, X, ..., X, to
find sets Sy, S1,..., S, of size at most m such that

n(®7X17X27 s 7XT; 507517 527 ceey ST) S q,

where ¢ = 0 if r < 27" — 1, and ¢ = 1 if r < 3-2™ — 1. We now show that,
starting from

n(@,Xl,XQ, e ,XT;SO,Sl,SQ, .. -vSr) S q,

we can reorder the sets S; so that
n(X17X27 s 7XT; Slv 527 ceey ST) S q,

which finishes the proof.

Let I be the matrix I(0, X1, Xs, ..., X,;So,51,59,...,5,). By the rank-
nullity theorem, the rank of I (which is also the column rank) is at least r +
1 —¢q. If all the sets S; are non-empty, then the first column of I is zero.
Removing the first row from I, we get a matrix with the column rank also
> r+ 1 — g, thus having the row rank also > r + 1 — ¢q. Remove the first row,
the remaining matrix is I(Xy, Xo, ..., X,; 51,59, ...,S,) and it has the row rank
at least r — ¢q. Thus its rank is at least » — ¢, so by the rank-nullity theorem,
n(Xy, Xo, ..., X,; 81,99, ...,5,) < g, as desired.
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On the other hand, if Sy = () (after reordering if necessary), remove the first
row from I, to get a matrix with the row rank at least » — ¢, and whose first
column is zero. But removing the first column does not change the column rank,
and we end up with the matrix [(Xy, Xo,..., X,; 51,5,...,5;) of the column
rank > r — ¢, which by the rank-nullity theorem gives

n(X17X27 s JXT; Sla SQv ey S’I“) S q,
as desired. O

The next corollary is tailored to the analysis of the Fy 4,-incident sets (see
Corollary 6.20).

Corollary 6.18. Suppose that X1, Xo,..., X, € N are distinct, t < r and
51,8y, ..., S, € N satisfy

n(Xl,XQ, . ,Xt; Sla 52, ey St) = 0.
Provided v < 3-2™, we can find sets Sii1, Sita, ..., Sp € N such that
n(Xl,Xg, c. ,XT; Sl, Sz, . ,ST> < 1.

If r < 3-2™ —1 and the sets X; are non-empty, then additionally, the sets

Sti1, Sta2, ..., 5, can be chosen to be non-empty.

Proof. Apply the part (ii) of Lemma 6.16, to get sets 11,Ty,..., T, € N(E™
such that
n(Xl,X2, ce ,XT;ThTQ, Ce ,TT) S 1,

or Corollary 6.17 to make the sets T; non-empty, provided r < 3 - 2™ — 1 holds
and the sets X; are non-empty. Look at the (¢ +r) x r matrix (X, Xo, ..., X;;
S1,89,...,8, Th, Ty, ..., T,). We shall remove ¢ rows from those corresponding
to Ty, 75, ..., T, to get the desired matrix. The following row-removal lemma

does this for us.

Lemma 6.19. Suppose that A is an (r + t) x r matriz with the first t rows
linearly independent and t < r. Then we can remove t rows from the last r rows

of A, so that the kernel of A is not affected.
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Proof. If I C [r +t], let A stand for the matrix formed from the rows of A
with indices in /. Starting from the set I = [r + s|, we shall iteratively remove
elements greater than t from I, so that at each step we have ker A; = ker A.
Suppose that we have I C [r+t] with [¢t] C I, but |I|> r, such that ker A; =
ker A holds. If we can pick an element z € I\ [t], so that ker Ap () = ker Ay,
we are done. Otherwise, no such = works. Observe that if a row v’ of A; is a
linear combination of the other rows, then it can be removed from A;. To spell
it out, write vl for i'" row of A and suppose that v} = D ien i Ajvf . Then, if
1t € ker Ap iy, we have - v =37, p\ iy Ajie - v] = 0. So ker Ap g5y = ker Ap.
Thus, the vectors vf,...,v] are linearly independent, and v; ¢ span{v;:
j € I'\{i}} for ¢« € I\ [t]. But, then, |I| > r and the rows of I are linearly

independent vectors of the dimension r, which is a contradiction. Hence, we can

proceed, until we reach |I| = r, as desired. O

The matrix
[(Xl,XQ,...,XT;Sl,SQ,...,St,Tl,TQ,...,Tr)

satisfies the conditions of the lemma since n(X;, Xo,..., Xy S1,52,...,5;) =
0. By applying the lemma, we can pick S;i1,Sii9,...,S5, among the sets in
11, T, ..., T, so that

n(X17X27 ce 7XT; S17327 cee 757‘)

n(XlaXZ; s 7X7‘;Sl7827 cee 7StaT1aT27 s 7T1")
n(X17X27 s 7X7“;T17T27 s 7T7“)

1

IA

IA

]

Similarly to Corollary 6.12, the next corollary is consistent with the somewhat
vague idea that the combinatorial subspaces are the source of the non-trivial
Fn.am-incident sets. In particular, we show that the Fy 4 ,,-incident sets behave
like the combinatorial subspaces when it comes to taking unions — the size of a

union of two Fy 4,,-incident sets of size 2m+l g at least 3 - 2.
Corollary 6.20. Let d,m € N be given.

168



(i) If T C{0,1}" is Fxam-incident, then |T|> min{d + 2,2™+1}.

(i1) If Ty, Ty C {0,1}Y are distinct, of size at most d + 1 and minimal (w.r.t.
inclusion) Fy am-incident, then |Ty U Ty|> 3 - 2™,

Proof. Part (i). Suppose that T = {xg,x1,29,..., 2.} C {0,1}" is Fnam-
incident and that r < 2™ — 1,d + 1. Note that, for a fixed set A, the map
X +— XAA, induces a reflection a: RY — RY (with the natural correspondence
between sets and points in {0, 1}YY). In particular, taking A to be the set of non-
zero coordinates of xg, we have an affine isomorphism « that preserves the cube
{0,1}" and sends xq to zero. Let X; C [N] be the set corresponding to a(z;),
i.e. the set of indices j such that a(z;); = 1. As r < 2™t — 1, Corollary 6.17
yields non-empty sets S, So, ..., S, C [N] of size at most m, such that

n(Xl,Xg,...,X,,;SI,SQ,..,,ST) =0.

Choosing (< m)-functions ¢1, s, . .., @, with images S, S, . .., S, respectively,

we obtain that the vectors

p1(a(r1)) p1(a(r2)) e1(a(zy))
pa(a(r1)) pa(a(r2)) ' pa(a(wy))
0 or(a(z1)) or(a(x2)) er(a(z,))

are affinely independent. But, as r < d, Proposition 6.10 applies to 7', affine
map « and functions ¢y, s, ..., ., which tells us that these vectors are affinely
dependent, which is a contradiction. Thus |[T|= r + 1 > min{2™*! d + 2} as

desired.

Part (). 1f Ty, Ty are disjoint, then by part (i), |73 UT|> 2™%2, so we are done.
Thus, assume that some ty belongs to both sets. Pick an affine isomorphism
a:RY — RY which sends ¢, to zero and preserves the cube {0,1}" (given by a
suitable reflection). Let X7, X5, ..., X; be the sets that correspond to the non-
zero points of a(Ty NTy). Next, let Xyyq,..., Xy, be the sets that correspond
to points in (77 \ T») and let Xy 11, ..., Xiirr 1rp be the sets corresponding to
points of a(Ty\T1). If |T UT|> 3-2™, we are done. Otherwise 1 +t+7 419 =
T, UTy|< 3-2m.
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Since they are minimal and distinct, 77,75 cannot contain one another. So
Ty NT; is a proper subset of 77 and hence it is not Fy g ,-incident. Therefore, by
Observation 6.15, we can find non-empty sets Sy, s, ..., S; € N(=™) such that

Tl(Xl,XQ,...,Xt;ShSQ,...,St) =0.

Applying Corollary 6.18 (as r +t; +t2 < 3-2™ — 1), we obtain non-empty sets
St+17 ey St—‘r'rl-i-rz € N(Sm) such that

n(Xla X27 cee 7X7”+t1+t27 Sla 527 ceey ST‘+t1+t2) S 1.

Now, take any (< m)-functions @1, ..., Prir+r, to [N] with images Sy, So,. ..,
Stiri4+re, and let z; € T1 U T, be the point such that the set X; corresponds to
a(z;). Write y; for the vector (v;); = ¢j(x;), j = 1,2,...,t + 11 +re. Thus,
Y1,Y2, - ..,y are linearly independent and the rank of y1, ya,. .., Yiir 4ry 1S at

least ¢t + 11 + 79 — 1. Since |T1|< d + 1, we can apply Proposition 6.10 to T3,

map « and functions fi,..., firr,. Note that since the sets S; are non-empty,
we have f;(0) = 0 for all <. Thus, vectors yi,ys, ..., Yirr, have rank at most
t 4+ r; — 1. Similarly, the rank of the vectors y1, ya, .-, Yts Yetry 41y - - « s Yttry+ry 19

at most ¢t + ry — 1.

To obtain a contradiction, look at
U = span{ys, ya, - - - Ye1r J
Vo= span{yi, Y2, - s Yty Yerri+1s Yerri+25 - - - s Yebri+ra |
W = span{y1, Y2, - - -, Ytrr 4ry |, and
Z = span{y1, Yo, .- -, Yt }-
Thus, dm Z =t, dimU <t+r;—1,dimV <t+ro—1, dmW >t+r;+ry—1,
ZCUVCWand W =U+V. Therefore W/Z =U/Z + V/Z. Finally,
ri+ry—1<dmW —dimZ = dimW/Z
<dmU/Z+dimV/Z <ri—1+rg—1=1r +19— 2,
which is a contradiction. O

Theorem 6.21. Suppose that d,m € N satisfy 2" —1<d <3-2™ — 3. Let

N >1. Then
25 1/2m+1
a2V, d) < (N) 2N,
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Proof. Let X = {0,1}¥ C R". Applying Proposition 6.5, we obtain a function
f € span Fn 4., which is a bijection onto its image when restricted to X and
such that if S C f(X) is affinely dependent then f~!(S) is Fy 4m-incident. Let
Y = f(X). Note that |[Y|= 2V since f is injective on X. We claim that the
set Y has no more than d + 1 points on the same hyperplane, but all sufficiently
large subsets of Y have d + 1 cohyperplanar points.

No more than d + 1 points on a hyperplane. Suppose that we have a cohyper-
planar set S = {s1,52,...,84+2} C Y. Pick a maximal affinely independent
subset S" C S. W.lo.g. S = {s1,...,s,}, for some r. As S’ is a subset of a
hyperplane, we have r < d. Look at S} = 5" U {sqy1}. By the choice of S’; the
set 57 is not affinely independent. By the choice of f, the preimage f~'(S}) is
Fn.am-incident. Find a subset Ty of f~!(S]) which is minimal Fy 4,,-incident,
and arbitrary point p in 7}. We also have S, = S\ {p} affinely dependent, as it
is a subset of a hyperplane of size at d+ 1. By the choice of f, f~1(S5) is Fn.d.m-
incident, and has a minimal Fy 4 ,,-incident subset T». Note that p € T \ T, so
Ty, T, are distinct, and |11, |T2|< d 4+ 1. The part (ii) of Corollary 6.20 applies
to give d +2 = |S|> |T1 UT3|> 3 - 2™ > d + 2, which is a contradiction.

Dense subsets are not in general position. Let T C Y be a set of size at
m+1

least (%)1/2 TN, Then, by Theorem 6.14, f~'(T) contains an (m + 1)-

dimensional combinatorial subspace. Applying Lemma 6.7, we have that the

points of T = f(f~1(T)) are affinely dependent. Adding any d+ 1 —2™"! points

to the set 1" proves the claim. Il

6.7 CONCLUSION

Even though there are now some non-trivial lower bounds on a(n,d) ([11]),
the gap between the lower and the upper bounds is still very large. Of course,
the main question still is to determine the a(n,d). Regarding the current lower
bounds on «(n,2), both in [17] and in [11], we note that their proofs are based
on some relatively general probabilistic estimates of the independence number
of hypergraphs. However, these approaches used very little of the structure of
the given sets of points. In fact, possible algebraic properties of such sets have

not been exploited. For example, if X is a set of points with no more than 3 on
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a line, but with no dense set in general position, we can expect that plenty of
pairs of points in X have a unique third point in X on the line spanned by the
pair. This gives rise to an algebraic operation: given two points x1, s of X set
21 * x9 to be the third point of X on their line, if such a point exists. Of course,
there is an issue of how to define x; * x5 for all pairs, but at least for plenty of
pairs it can be defined. Hopefully, if X is a set for which the value «(]|X|,2) is

attained, we could deduce some properties of the operation .

Returning to the estimates for a(n, d), the current situation with the upper
bounds is that we have infinitely many d, for which a(n,d)/n = O(1/log?n)
for some ; > 0, while for infinitely many other d, the bounds for a(n,d)/n
currently come from the general density Hales-Jewett theorem, and are roughly
comparable to the inverse of the Ackermann function. It is most certainly far
from truth that a(n, d)/n is close to either of these estimates for any d. However,
it would already be interesting to understand the relationship between the values

of a(n,d) for consecutive dimensions d.
Question 6.22. What is the relationship between a(n,d) and a(n,d+1)?

Finally, one of the key tools in this chapter were the algebraic lemmas 6.11
and 6.16. It could be of interest to study further how the quantities like n(Xj,
Xo, ..., X;; 51,59, ...,5,) depend on the structure of the sequences X, ..., X,
and Sy, ...,S;.
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7 SMALL SETS WITH LARGE DIFFERENCE SETS

7.1 INTRODUCTION

The problem of comparing different expressions involving the same subset A
of an abelian group G (e.g. A+ A and A — A) is one of the central topics in
additive combinatorics. For example, one of the starting points in the study of
this field is the Pliinnecke-Ruzsa inequality that bounds |[kA — [A] in terms of
|A| and |A + Al.

Theorem 7.1 (Pliinnecke-Ruzsa inequality [43], [47]). Let A be a subset of an
abelian group. Then, for any k,1 > 1 we have

kA — LA||A[H1< A 4+ A+

To illustrate the difficulties in determining the right bounds for such inequal-
ities, we note that even for the comparison of |A + A| and |A — A the right
exponents are not known. In fact, the best known lower bounds for |A 4+ A in

terms of |A — A| have not changed for more than 40 years.

Theorem 7.2 (Freiman, Pigaev [16], Ruzsa [49]). Let A be a subset of an abelian
group. Then |A — AP/A<|A+ Al

In the opposite direction, the best known lower bound is given by the follow-

ing result.

Theorem 7.3 (Hennecart, Robert, Yudin [28]). There exist arbitrarily large sets
A C Z such that |A+A|< |A— A]*+T°W) where a: = log(2) /log(1++/2) ~ 0.7864.

In 1973, Haight [26] found for each k and e¢ > 0, an integer ¢ and a set
A C Z; such that A— A =Z, and |kA|< eq. Recently, Ruzsa [48] gave a similar

construction, and observed that Haight’s work even gives a constant «a; > 0 for
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each k with the property that there are arbitrarily large ¢ with sets A C Z, such
that A— A = Z, and |kA|< ¢' . The ideas in both constructions are relatively

similar, but Ruzsa’s argument is considerably more concise.

In [41], Nathanson applied Ruzsa’s method to construct sets A C R with A—
A = R, but kA small, for rings R that are more general than Z,. In the same pa-
per, he posed the following question. Given a polynomial F(x1,zs, ..., x,) with
coefficients in Z, and a set A C Zy, write F(A) = {F(ay,as,...,a,):a1,...,a, €
A}. His question can be stated as: given two polynomials F, G over Z and € > 0,
does there exist arbitrarily large N and a set A C Zy such that F(A) = Zy,
but |G(A)|< eN?!

Let us now state the main result of this chapter, which answers the first

interesting cases of Nathanson’s question. Once again we recall the notation
A%+ kA ={ajay + by +by+ -+ byiay,asby,... b, € A},

and more generally,

IA? + kA = {arag+- - -+ay_1a9+bi+by+--+bpay, as, ... an,by, ... b € A}

Theorem 7.4. Given k € Ny and any € > 0, there is a natural number q and a
set A C Zy such that

A—A=17, but|A’>+EkA|< €.
In fact we prove rather more.

Theorem 7.5. Forl € {1,2,3}, any k € Ny and any € > 0, there is a natural
number q and a set A C Zy such that

A—A=17, but|lA* + kA|< .

Moreover, we can take q to be a product of distinct primes, and we can take the

smallest prime dividing q to be arbitrarily large.

! Actually, Nathanson poses this question for more general rings R, but for R = Z, the

formulation we give here is a natural one.
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We shall discuss each of the cases | = 1,2,3 separately. Note also an in-
teresting phenomenon in the opposite direction. Namely, if we are not allowed
freedom in the choice of the modulus, a statement like the theorem above can-
not hold. The reason is that, by a result of Glibichuk and Rudnev (Lemma 1
in [19]) whenever A C [, for a prime p, is a set of size at least |A[> ,/p, then
10A%? =F, (and A— A = F, certainly implies |A|> ,/p). Hence, unlike the linear
case, already for quadratic expressions we have strong obstructions.

In fact, this problem is comparable in spirit to the sum-product phenomenon,

which can be stated as the following notable theorem.

Theorem 7.6 (Bourgain, Katz, Tao [10], Sum-product estimate.). Let § > 0 be
given. Then there is € > 0 such that whenever A C Z, for a prime q satisfies

¢ <|Al< ¢,

then one has
max{|A®|, |2A[} > |A]"*".

Remarkably, this was further generalized to arbitrary modulus q.

Theorem 7.7 (Bourgain [9], Sum-product estimate for composite moduli).
Given q,q" such that ¢'|q, write Ty for the natural projection from Z, — Zg .

Let 6 > 0 be given. We then have e,n > 0 such that the following holds.
Whenever A C Z, satisfies

A< ¢'
and,
7y (A)|= ¢° for all d|q, with ¢ > q",
then
max{|A?[, [24]} > |A]'T*.

Hence, the sum-product phenomenon still holds even in general residue rings
of integers. Given the similarity with our problem, it could be that the result
of Glibichuk and Rudnev stated above holds in the more general setting as well.
(Note that if A—A = Z,, then A satisfies the technical condition in Theorem 7.7.)

Conjecture 7.8. There is | such that whenever A C Zy, and A — A = Z, then
we have [A* + 1A =17,.
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7.2 OVERVIEW OF THE CONSTRUCTION

We begin the work in this chapter by reviewing Ruzsa’s construction and
generalizing its main ideas slightly to the context of polynomial expressions in
A. As it turns out, to be able to construct a set A such that A — A = Z,, but
[lA%+kA|= o(q), it will suffice to consider expressions which are sums of terms of
the form oy (x;)+cx;, (ay(x;)+cx;)(ou(x;)+z;) and (oy(x;) +cx;) (o (x;) +xj),
with ¢, € {0,1} and then to choose the maps so that the number of values
attained by each expression is small. For example, one of the expressions that we
have to consider already for the case [ = 1 is aq(z1)az(x2) + a1 (x1) + 1 + az3).
This discussion takes place in Section 7.3 and the rest of the chapter is devoted

to constructions of maps for various expressions.

In Section 7.4, we construct sets A such that A — A = Z, but A? + kA is
small. In this construction, we come to a basic version of one of the main ideas,
which we call the identification of coordinates. Very roughly, if ¢ is a product of
distinct prime pips ... p,, using approximate homomorphisms between Z,, and
Zy,;, we can essentially treat Z, as a vector space of dimension n. Then, although
we might not ensure that each coordinate attains few values, we can ensure that

their sum attains few values.

In Section 7.5, we construct sets A such that A — A = Z, but 242 + kA
is small. There, we improve our results for the expression that involve a sin-
gle variable using a variant of Weyl’s equidistribution theorem for polynomials.
Using this result, the identification of coordinates is developed further and we

conclude this section with the strongest form of the identification of coordinates.

The final part of the construction, finding sets A with 3424 kA small, is car-
ried out in Section 7.6. There, we also touch upon some limitations of our usual
approach and therefore develop different ideas to treat some of the remaining

expressions. Namely, for certain choices of coefficients, in the expression

(@) + e1x)(B(Y) + c2y) + (@) + e32)(B(y) + cay) + (a(z) + c52)(1(2) + c62)

the identification of coordinates cannot work. For this expression, we give a

different, probabilistic argument, which is a form of dependent random choice.

The final section is devoted to some open problems and questions that natu-
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rally arise, including the motivation for some of these. We have tried to organize
our proof so that the methods used naturally develop from the case A? + kA
to the case 3A% + kA, highlighting the new difficulties that arise and why the

earlier arguments are not powerful enough for the later expressions.

7.3 OVERVIEW OF RUZSA’S ARGUMENT AND INITIAL STEPS

We now briefly discuss Ruzsa’s construction of sets A C Z, such that A—A =
Zq, but |[kA|= o(q). His ideas will be important for the later constructions given
in this chapter.

Let us first analyse the requirement that A — A = Z,. Given any = € Z,, we
thus have y € A such that y +z € A. If we write ¢(x) for such a y, this yields a
map ¢ : Z, — Z, with the property that all ¢(z) and ¢(z) + z are contained in
A. Removing all other elements from A does not change the equality A—A = Z,,
and it can only make kA smaller, so Ruzsa’s starting point is to consider a set
A of the form

{p() 2z € Z;} U{p(z) +x:2 € Z,},
where ¢ is map from Z, to itself. We shall do the same here as well, and

throughout the chapter we will devote ourselves to finding suitable modulus ¢

and maps on Zj,.

Thus, we have to understand how to find a suitable ¢ and a map ¢ which
then give rise to the desired set A. Let us now examine the elements of kA.
These are sums a; + as + - - - + ag, where a; € A. But each element of A is either
@(x) or p(x) + x for some x € Z,. Hence, elements of kA are of the form

D o) + Y (plw:) + )

iel i¢l
for a subset I C [k] and x1,xs,...,z;. Immediately we see that the number
of different expressions here is bounded in terms of k (in fact, it equals 2%).
Further, we consider which of the x; are equal, grouping the corresponding terms
o(x;) and (z;) + x; together, and renaming the variables along the path to

Y1, Y2, - - -, Ys. Hence, every element of kA is of the form

s

Z(aiSO(yi) + biyi), (7.1)

=1
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where s < k, k > a; > b, > 0 and all y,...,ys are different. Once again,
treating y; as formal variables, the number of expressions we wrote is bounded
in terms of k. The plan now is to make sure that each such expression attains a

small number of values, so that in total only at most eq values attained.

Ruzsa’s main idea in the construction is the separation of functions, which
we now discuss. In all these expressions we have the same map ¢ occurring.
However, we can turn the problem of constructing a single function ¢ that works
for all expressions into a much easier problem of constructing a function for each
expression separately. We first list all the expressions of the form (7.1), sorted
in the ascending order by the number of variables appearing. Thus, our list
start from expressions of the form agp(y) + b. Next, we split ¢ as a product
of coprime numbers ¢ = ¢1¢> . ..q,, with one ¢; for each expression so that by
Chinese Remainder Theorem we have Z, = Zy, © Zgy, © ... D Zy,.

We promise that however we choose an expression and values of y;, we get
at least one zero coordinate (which need not depend on the expression) and we
call this ZCP (Zero Coordinate Promise). If i*® expression has only one variable
appearing, thus it is of the form ay(y)+ by, we can easily ensure ZCP by setting
the i component of the function as ¢;(y) = —ba~ly;. Now, take any expression

S

Z(ai@(yi) +biyi),

i=1
and assume that for every such expression with fewer than s variables ZCP
holds. Let ¢’ be the product of ¢; for the expressions with fewer than s variables.
Note that, if we are given y1,¥s,...,ys, and if any two among them have the
same value in Zgy, by induction hypothesis, ZCP already holds. Hence, we
may assume not only that yi, s, ..., ys are different, but that they are different
modulo ¢’. Write y, for the residue of y; mod ¢’. Then, looking at ;' coordinate,
we have to define ¢; such that

S

> (aip; (W) (wi);) + bilwi))

i=1
equals zero for all choices of yi,...,ys such that y. are different. But, we can
rewriting ¢;(y;, (4i);) as @, ((vi);) already tells us that we are actually looking

for a new function for each variable! Hence, our goal is to find s functions
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Piyis - Piy, sSuch that the expression is once again zero. But linear maps once

again work.

We start our own work by slightly generalizing Ruzsa’s idea to the polynomial
setting. In what follows, by an i-degree term we think of a product of ¢ terms of
the from «a;(z;) or (a;(z;) + x;), the only rule being that indices of the map and
the the variable to which it is applied (and the variable which is possibly added)
coincide. For example, (a(x1)+21)as(22)? and aq(21) (aa(22) +22) (az(z3) +23)
are both 3-degree terms, but a;(z3)as(x3)as(x1) is not, since the indices are not

valid.

Proposition 7.9. Let k be given, and let ai,as,...,a;, € N. Suppose that for
every € > 0 and every formal expression E in functions a; and variables x; of
the form

sum of ay of k-degree terms + sum of ay_1 of (k — 1)-degree terms+ ...

+ sum of ay of 1-degree terms,

we can find a modulus q, which is a product of arbitrarily large distinct primes,
and functions 0; : Zqy — Zg, so that the E takes at most eq values in Z,, when
the functions 0; are substituted in E. Then, for every e > 0, there is a modulus
Q, product of arbitrarily large distinct primes, and a set A C Zg such that
A—-A=7Z¢g and

lagAF + ap_ AP 4 A< €Q.

Proof. We proceed as in the Ruzsa’s construction (except that we do not insist
on only having zero value in a coordinate, as a small number of values suffices).
As before, we sort the expressions by the number of variables appearing, and
process them in groups of those having the same number of a variables. We now

turn to details.

Let N = ay 4+ as + -+ ap. Let Ey, Es, ..., E,. be all the expressions in
variables yy,ys,...,yn of the following form. Fach expression is a sum of a;
terms, each being a product of k short terms ¢(y;) or ¢(y;) + y;, followed by a1
terms which are products of £ — 1 short terms, etc. with a final contribution of
a; terms, each being ¢(y;) or ¢(y;) + y;- As in the discussion before, these are

all expressions that naturally arise from a,A* + --- + a; A, when A is defined
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as {p(x):x € Zo} U{p(x) +2x:x € Zg}. Comparing these expressions with
the expressions in the assumptions of this proposition, we have that here only a
single formal function appears, while in the other expressions we have a separate
function for each variable. Let mg = 0, m1, ma, ..., my = r be indices such that
if m; < j < m;1, then the number of different variables among (y;)~.; appearing

in the expression Fj; is exactly ¢ + 1.

Fix an increasing sequence 0 < ¢; < €3 < --- < ey = €. We inductively
construct moduli @1, Qo, ..., @y and functions ¢; : Q; — @); such that for every
i < N we have that union of all images of expressions Ej, Es, ..., E,,. (that is,

all expressions having at most ¢ variables) takes at most ¢;Q); values (when ¢; is

substituted in the expressions).

Base case: ¢ = 1. By the assumption, for every expression F; that has only
one variable, we have moduli ¢; with arbitrarily large distinct prime factors,
and a map 01(1), such that E; takes only at most €,¢;/m; values. Thus, w.l.o.g.
1,92, ---,qm, are all coprime, with distinct arbitrarily large prime factors. We
set Q1= q1G2 - - - gm, and identify Zq, with Z,, ©Z,, & ... D Z,,, , and we define
@1 coordinate-wise as ¢ () := 951)(331-), where z; is ¢-th coordinate of x. Note
that union of all values attained by these m; expressions with this definition of

()1 and ¢, has size bounded by

mi m1 c Q
Z|ImEi]§ Z 2l _ e1Q1,
i=1 i=1 t

as desired. (Here we write Im E; for the resulting image of the expression E;,
and we have a trivial bound for it; the expression may only take at most €;q;/my

values on the i coordinate.)

Inductive step. Suppose now that we have found ¢, : Zg, — Z¢, such that
in total all expressions with at most s variables have a small image Vj, i.e.
only at most €,Q)s values are attained. We shall construct ()51 as a product
QsRm, 1R 2. .. Ry, where R; is an auxiliary modulus for the expression
E;, with the property that either E; takes one of the small number of values on
Zg, or a value in another small set in Zg,. Here we use Ruzsa’s separation of
functions idea.

Fix an expression E; with exactly s + 1 variables. If we take values of these
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variables restricted to Zg,, and it happens so that at least two such values
coincide, then using the map ¢, the value of the expression E; (also restricted
to Zg,) is actually a value of one of the expressions we already considered,
with at most s variables, so it lies in the small set V;. Hence, we only need
to consider the choices of y1,9s,...,yss1 (w.l.o.g. these are the variables that
appear) which differ in Z¢,. We split the expression E; further into cases on y;
mod @, thus into further L < Q™! cases. Pick an arbitrary choice C' of s + 1
distinct values in Q;. Look back at E; and change every appearance of ¢(y;)
by a;(y;). By assumptions, we have a choice of an integer r¢ with arbitrarily
large distinct prime factors and maps Qt(c) such that the modified F; takes only
at most (€511 — €5)7c/((Msr1 —ms)QST) values in Z, . Finally, define R; as the
product of all these r¢, and (ps41)i(z) as follows: for every C, take (psi1):(2)
at the coordinate corresponding to r¢ to be zero if  modulo Zg, is not in C,
otherwise, if it is the j-th residue, set (¢si1)i(x) := QJ(.C)(x’), where 2’ is the
coordinate of x corresponding to r¢. It remains to check the size of images.
For every expression and every choice of values of yy, s, . . ., yn, we either end
up in A X Zg,, o\ X LRy, 4o X - .- X LR, , which has size at most €;Qs11, or one
of the coordinates is in a fixed subset of Zg, of size at most (€511 —€5) Ry /(mgy1 —
ms). Summing everything together, the image has at most €,,1Qs11 values as
desired. O

The rest of the chapter is therefore devoted to finding moduli ¢ and maps
;: Zy — Zy under which the expressions like (o (z1) 4 21) (a(x2) +22) + a3 (x3)?
do not take too many values. Along the way, we also discuss related problems

and questions.

Notation. Throughout the chapter, Greek letters «, § and v will be used for the
maps appearing in the expressions. The following functions will be frequently
used in our construction. For a prime p, we use the standard projection ho-
momorphism 7,:Z — Z,, which sends integer z to x + pZ. Next, we define
tp:Z, — Z by sending x € Z, to the integer ,(x) € {0,1,...,p — 1} C Z
such that 7, o ¢,(z) = x. For two primes p and ¢, we also define the map
mod,, ,: Z, — Z4 given by mod,, = m,; o ¢,. Finally, in any abelian group Z,

and functions f,g: 5 — G, from a set S to Z, we write f M g to mean that
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{f(s) — g(s):s € S} is a set of size at most M. In particular, f oL g means

that {f(s) — g(s):s € S} has a bounded size as S grows.

7.4 SETS A WITH SMALL A%+ kA

The main result of this section is the case [ = 1 of Theorem 7.5.

Theorem 7.10. For any k € Ny and any € > 0, there is a natural number q,
which is a product of distinct, arbitrarily large primes, and a set A C Z, such

that A — A = 7Z,, while |A? + kA|< eq.

Proof. We start from Proposition 7.9. To be able to construct A C Z, with full
difference set, but small A% + kA, we need to handle the expressions that are
sums of the quadratic part which is a product of two terms of the form o (z;) +x;
or a;(x;), and a linear part which is itself a sum of k£ summands, each being of
the form o;(z;) + z; or a;(x;). Note that for the terms in the linear part whose
variables do not appear in the quadratic part, we can define the corresponding
maps «; to be affine so that the variables involved cancel out. Therefore, w.l.0.g.
we only consider expressions whose all variables already appear in the quadratic
part. Note also that for the quadratic part we have two cases: either only
one variable, w.l.o.g. x, appears, or exactly two variables, w.l.o.g. x; and x5,

appear. We treat these cases separately.

Case 1: only one variable in the quadratic part. Thus, our goal now is to
show that if we are given a quadratic expression featuring only one variable, we
can find a modulus and function, so that the expression takes a small number of
values. In fact, here we do more and prove the claim for expressions of arbitrary

degree.

Lemma 7.11. Let d € N be given, and let p > d be a prime. Then, given any
maps co, C1, - .., Cq: Ly — Z, and any set F' C Z, of size less than p/d, we can

find another map o Z,, — Z, such that the expression
ca(r)a(x) + ... cr(z)a(z) + co(w)

does not take a value in F for any x that has at least one of c1(x), co(x),. ..,

cq(x) non-zero.
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Proof. Suppose that for some z, for every choice of v = a(z) we have cy(x)v? +
...c1(z)v + co(x) € F. By the pigeonhole principle, some value f € F' is hit at
least d + 1 times. Thus, the polynomial (in v)

ca(x)v? + .. cr(x)v + co(x) — f

has at least d+1 zeros, making it a zero polynomial. Hence ¢;(z), co(x), ..., cq(2)

are simultaneously zero, proving the lemma. O]

Corollary 7.12. Let E be an arbitrary Z-linear combination of terms of the
form a(x)'z?, where at least one of such terms with i > 0 appears. Given any
e > 0, we can find a modulus q, which is a product of distinct arbitrarily large
primes, and a map o: Ly — Zq such that under o the expression E takes at most

€q values in Zy.

Proof. Rewrite E by grouping together a Z-linear combination of 27 that appear
next to each a(z)’. Thus, we can write F as a(z)?fy(x)+- - +a(z) f1(z)+ fo(x),
where each f;(z) is a polynomial in x over Z, and at least one of fi, fo,..., f4 is
not a zero polynomial. Let D = max deg f;. Pick distinct arbitrarily large primes
P1, D2, - - -, Dty all w.lo.g. larger than 2d(D+ 1) and absolute values of coefficients
of fi, fa,..., fa (so that non-zero polynomials do not become zero modulo p;).
By Lemma 7.11, we may find a map «;: Z,, — Z,, for each ¢ such that the image
of E has size at most (1—1/d)p; + 1, when the variable x ranges over values such
that polynomials fi, fo, ..., f4 are not simultaneously zero. But there are at most
D values of x such that fi(z) = --- = fq(x) = 0, so we conclude that modulo
each p;, the expression £ may take at most (1 —1/d)p; + D+ 1 < (1 —1/2d)p;
values. Finally, set ¢ = pips...py and take a: Z, — Z,tobe a = (v, g, ..., o),
where we as usual identity Z, with Z,, ® Z,, © ... ® Z,,. Hence, modulo ¢, the
expression takes at most (1 — 1/2d)'q values. Taking ¢ large enough so that
(1 —1/2d)" < € proves the corollary. O

The case 1 now follows by applying Corollary 7.12.

Case 2: the quadratic part has two variables. The quadratic part must
look like a product of two terms, each being either «;(z;) + z; or «;(z;). By

suitably renaming the variables, and adding z; to a;(z;) if necessary, w.l.o.g. we
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only need to consider the case when the quadratic part is aq(x1)as(x2), and the

whole expression is

ay(z1)ag(xs) + Li(z1) + Lao(z2)

where each L;(z;) is a Z-linear combination of «;(z;) and x;. Note also that if

L;(x;) is nonzero, then «;(x;) appears with a nonzero coefficient.

We have come to an important point, and one of the key ideas, which we
now explain. We have to construct ¢ and maps oy, as:Z, — Z, such that
aq(z1)ag(xe) 4+ Ly (1) + Lo(z2) takes o(q) values. Suppose for a moment that the
linear terms L; are both zero. Then, we have an easy way to make oy (z1)as(z2)
constant, by setting one of the a; to be zero. However, such an approach cannot
work in the case when Ly, L, are not zero, as it would force one of the L; to
be an affine map, which is surjective. As a way to overcome this, we can use
both a; = 0 and oy = 0 to get additional freedom. Thus, we set ¢ = q1q2,
where ¢, g2 are coprime products of distinct primes, identify Z, with Z,, ® Z,,,
and set a; to be zero on the first coordinate, and as to be zero on the second
coordinate. Hence if Li(x1) = AMaq(x1) + pary and Lo(xg) = Aoas(xs) + pows,

then the expression becomes

(1 (1)1 + Ae(az)1(z2) + p2(w2)1, Ar(an)2(21) + pa(w1)2 + pa(22)2) - (7.2)

We now want to find (ay)2 and (a2); so that the expression (7.2) does not take
too many values in Z,, ® Z,,. Suppose for a moment that instead of coprime ¢;

and ¢o we actually had ¢ = ¢o. Then, we could have simply taken

(ar)2(z1) == =27 (1)1 + (21)2)

and

(a)1(za) == =23 pa((w2)1 + (22)2),

which ensures that every value taken by the expression is of the form (v, —v)
and hence it is in small subset {(z,y) : v +y = 0} of Z,, ®Z,,. It turns out that
we can use the same approach even if ¢; # ¢o. We shall refer to this idea as the
identification of coordinates, which will appear at other places in this chapter
as well. The following proposition and its proof formalize this discussion. We

slightly change the notation to make the reading easier.
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Proposition 7.13. (Basic identification of coordinates.) Let \g, A1, Ao, i, fto €
Z be given and let p < q be primes greater than |\1|, |A2|. Suppose that if \y =0
then p1n = 0 and if Ay = 0 then py = 0. Then we have o, B: 2y, & Ly — Ly O Z,
such that

fi(@,y) = Moa(z)B(y) + Ma(z) + r + AeB(y) + pay

takes at most O(q) values, when x,y range over all pairs of values in Z, ® Z,.

Recall the definition of map ¢, as the natural embedding of Z, into Z, the
natural projection m,:Z — Z,, and finally, the composition mod, ,: Z, — Z,,
given by mod,, , = m,; o ¢,. Before proceeding with the proof, it is useful to note

some easy properties of the maps ¢, and mod,,.

Lemma 7.14. Let p,p’, p1, p2, p3 be primes. Then
(1) Given z € Z, we have pliy(m,(2)) — z. Also, 1,(m,(2)) < z, when z > 0.
(2) Given x,y € Z,, we have 1,(x) + 1,(y) — t,(xz +y) € {0,p}.
(3) Given x,y € Z,, we have

mod, (x) + mod, , (y) — mod, y(z +y) € {0, 7, (p)} C Zy.

(4) Provided that p3 < (t + 1)ps, we have

InOdP%pl © InOdps,m (I) - InOdps,m (I)

€ {_tﬂpl (p2)7 _<t - 1)7T;D1 (p2)7 s 70} - Zp1'

Proof. (1) Applying m,, we have my(ip(p(2)) — 2) = T 0 1y(mp(2)) — Tp(2) = 0,
thus pliy(my(2)) — 2. If 2 > 0, then ¢,(m,(2)) — 2 < p — 1, so the claim follows.
(2) Let ' = v,(z),y" = 1,(y) € Z. Note that my(z' +¢') =z +yand 2’ +y' €
{0,1,...,2p — 2}. From definition, m,(¢,(z + y)) = = +y and ,(z + y) €
{0,1,...,p—1}. Hence, if we set v = 1,(x) + t,(y) — tp(z + y), we have p|v and
ve{-(p—1),—(p—2),...,2p—2},s0v € {0,p}.

(3) The statement follows by applying 7, to t,(z) + t,(y) — tp(z +y) € {0, p},

noting that 7, is an additive homomorphism and recalling that mod,, ,; = myo¢,.
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(4) From the definition, we have

mod,, ,, 0 mod,, ,, () — mod,, ,, (z)
= Ty (1o (T (15 (7)) = 7y (5 (7))
= Ty (o (T (1 (7)) = 15 (7).
Write v = 1, (7, (t45 (7)) — tps (). Using the previous work, we know that ps|v,
v > —(ps—1)and v <0, since ¢y, () > 0. So v € {—tpy, —(t —1)pa,...,0}, and
the claim follows after applying m, . O]

Proof of Proposition 7.13. Observe immediately that if A\g = 0, we can ensure
that A\ja(z) + e = 0 and A\y5(y) + pey = 0, proving the claim. Therefore, we
may assume \g # 0, w.l.o.g. \g = 1. If 3 = puy = 0 holds, then the function
becomes f:(x,y) — a(z)B(y) + Ma(x) + A26(y), which can be made zero, by
choosing zero maps for av and 3. If exactly one of uy, po vanishes, p; = 0 say,
then we can pick f to ensure that \yf5(y) + uoy = 0, and set a(x) = 0 to get
f =0. From now on, assume that A\, Ao, pi1, o # 0.

Set a(x) = 0 and 55(y) = 0. This makes a(x)5(y) = 0 for all choices of z,y.
It remains to pick as(w), B1(y) so that (p121 + AeBi(y) + payr, Aroa(w) + pizs +

H2yo) takes a small number of values.

Set 51(y) = —)\Q_l(ul mod, ,(y2) + f12y1) and as(z) = —)\1_1<,U2 mod,, ,(x1) +

(1x2). Hence f becomes

f(@,y) = (pa(z1 —modg p(y2)), p2(y2 — mody4(1))).
Let ®:Z, ® Z, — 7 be given by ®(u,v) = 1,(u; 'u) + 1,(y'v), noting that
pa, p2 7 0. Then,
O(f(z,y)) = tp(x1 — modg,(y2)) + tq(y2 — mod,q(21)).
Fixing the set S = {—p,0,p} + {—¢, 0, ¢}, from Lemma 7.14 we have
(1 — m0dg (12)) + 193 — MO (1))

€ tp(w1) — tp(modyp(y2)) + t4(y2) — tg(mod, 4(21)) + S

or, under our notation introduced earlier,

B(f(2,y)) iy(1) = tp(modyy (1)) + t(y2) — tg(mod, 4(z1))

=1p(71) = tq(Tg(1p(71))) + tq(y2) — tp(Tp(1q(¥2)))
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o v, when |v|=

15
s

Lemma 7.14 also implies that ¢,(m,(v)) v and t4(my(v))

O(q), from which we conclude that

O(f(z,9) = @) = (@) + t4(y) = 4(y2) = 0,

so the image of the function f is a subset of a preimage of ® of a set of size O(1).

Fibres of ® are of size at most p, so the claim follows. n

Applying Proposition 7.13 finishes the proof of Theorem 7.10. O

7.4.1 USING AFFINE MAPS IN THE CASE OF TWO VARIABLES

In this subsection, we further discuss some quadratic expressions involving
two variables. A natural map we can try is an affine map z — ax + b, for
constants a, b. However, if we look at expression a(x)S3(y) + a(x) +z + B(y) +y,
which was among the ones necessary to discuss in the proof of Theorem 7.10,
it is easy to see that choosing affine maps from Z, to Z, for ac and 3 yields full
image, for every ¢. In the following discussion, we ask ourselves the question
when we can use such maps to get a small image of the function defined by the

expression.

As we shall see later, in the construction of A with small 242 + kA, one of
the expressions we shall consider has quadratic part of the form a(z1)as(x2) +
(o1 (1) + c121)(ag(x2) + cax2), with ¢1,c0 # 0. It turns out that in this case
the affine maps can be used as desired maps. We discuss these maps before the
construction of A with small 242 4+ kA, so that we can focus better on the new

ideas needed for that case.

Lemma 7.15. (Affine maps solution.) Let vy,v5 # 0 and Ay, \a, i1, p2 be inte-
gers. Then, for any prime p greater than absolute values of all the given integers,

we can find affine maps o, B: Z,, — Z, such that

a(x)B(y) + (a(x) + 112)(B(y) + voy) + Ma(x) + mx + AaB(y) + poy
18 constant.
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Proof. Let a(x) := ax + b and S(y) := cy + d, with a,b,c,d to be determined.

With this choice of maps, the expression above becomes

(ac+ (a+ v1)(c+ wo))zy + (2ad + dvy + Ma + )z
+(2bc + by + Aoc + p2)y 4 (2bd + Aib + Aod).

Hence, we need to make sure that

2ac + voa + vic+ v = 0,
2ad + vid + Ma + py =0,
2bc + vob + Aac + o = 0.

This is equivalent to

b= —(Aac+ pa)/(2¢ + 1),
a = —(vic+ )/ (2c + 1),
d = (p1(2c + o) — Mvi(c+ 1)) [(1h1s) .

Hence, we can pick a, b, c,d so that affine maps make our expression equal to

constant if and only if v, v, are non-zero. O

7.5 SETS A WITH SMALL 242 + kA

This section is devoted to the proof of the case [ = 2 of Theorem 7.5.

Theorem 7.16. For any k € Ny and any € > 0, there is a natural number q,

which is a product of distinct, arbitrarily large primes, and a set A C Z, such
that A — A = Z,, while |2A* + kA|< eq.

Proof. The approach here is similar to the one in the proof of Theorem 7.10,
however the expressions that arise in this case are more complicated and require
new ideas. Once again, the proof is based on Proposition 7.9. As before, we split
all expressions in their quadratic and linear parts, and we may assume that if a
variable appears at all in an expression, it must appear in the quadratic part.
Next, we consider all the possible cases for the quadratic part, and explain how to
make the image of the expression small in each case separately. They are listed

sorted by the support size and then by structure. We also have the freedom
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of renaming the variables. Again, we change the notation slightly; instead of
x1,To, X3, T4 and oy, ag, a3, a4 we use x,y,z,w and «, 3,7, respectively. The

possible cases, w.l.o.g. are (all the ¢; are in {0,1})

1. Support of size 1.
(a) The non-linear part must look like (a(z) 4 c1z)(a(x) 4 cox) + (a(x) +
csx) (o) + cu).

2. Support of size 2. We have a few possibilities here.

(a) (a(z) + crz)(a(z) + eox) + (@) + cs2)(B(Y) + cay)
(b) (a(z) + 12)(B(y) + cay) + (a(@) + 52)(B(y) + cay)
(©) (a(z) + ax)(a(z) + cor) + (By) + c3y)(B(y) + cay)

3. Support of size 3. We have a couple of possibilities here.

(a) (a(z) + crz)(a(z) + co) + (By) + esy)(7(2) + ca2)
(b) (a(z) + a1z)(B(y) + cay) + (a(x) + c57)(7(2) + 42)

4. Support of size 4.

(a) The non-linear part must look like (a(x) + c12)(B(y) + cay) + (v(2) +
c32)(0(w) + cqw).

We discuss each of these case separately. However, we use a different order than

stated above and deal with easier cases first.
Case 1(a). This is immediate from Corollary 7.12.

Case 2(b). If ¢; = ¢3 or ¢y = ¢4, modifying «a(z) by adding a suitable multiple
Az to it, and modifying B(y) accordingly, we may assume that the quadratic
expression is exactly 2a(z)B(y), which we have already done in Proposition 7.13
(notice that the condition on coefficients in that proposition is satisfied). Hence,
w.lo.g. ¢; # c3 and ¢y # ¢4. Then, (after a suitable modification of «; by affine
maps to make ¢; = co = 0, ¢3,¢4 # 0), we can apply Lemma 7.15, to finish the

proof in this case.

Case 2(c). The whole expression in this case is of the form f;(z)+ fa(y), where
f1 is a polynomial of degree at most 2 in z and «(x) and f; is a polynomial of
degree at most 2 in y and f(y). Note that we cannot use our arguments about

single variable expressions here, as we would only get two sets 51,5, C Z, of
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size o(q) such that f; always takes values in S;, so we would only know that
the whole expression takes values in S; + S5 which could easily be the whole
set of residues. Instead, we recall that the polynomials always attain a small
value. This is the content of the next lemma, which is a well-known consequence
of Weyl’s inequality on exponential sums. Similar results appear in [20], we

include a proof for completeness.

Lemma 7.17. Let d be fized. Then there is an absolute constant Cy such that
the following holds. Let p be a prime, and let aq,aq—1,...,a0 € Z, be given,

with ag non-zero. Then the polynomial agx® + - -+ + a1z + ag attains a value in
{—Cap' 27" .. Cpt 27"

Write e,(t) for the function exp(2wit/p). The proof uses discrete Fourier
transforms of functions f:7Z, — C, which we define as f : 2y, — C with f (r) =
> ez, J(@)ep(—ra). We refer readers to [20] for more details.

Proof. Write f(z) for the polynomial agz®+ - - - + a7 +ag. We begin by stating
(a special case of) Weyl’s inequality.

Theorem 7.18 (Weyl’s inequality, Lemma 2.4 in [54]). For every ¢ > 0, and
d € N, there is a constant C 4 such that for all primes p

> eplg@)] < Coap™t "
TELyp
holds for every polynomial g € Z,[X] of degree d.

Write F'(x) for the number of times the polynomial f attains the value x.
Hence, by Weyl’s inequality, there is a constant C, independent of p such that
|F(r)|< Cp=2" for r # 0, and F(0) = p. Let I be the interval {—k, —k +
1,...,k}. Suppose that f attains no value in {—2k, —2k + 1,...,2k}. We have

> F(a)I«I(x) =0.
Applying Parseval’s formula and noting that I(r) € R, we get that

0= F(r)i(r)? = EO)10?+ F@)(r)? =p2k+ 1)+ F@r)i(r)

40 r#0
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Thus,

plak+ 1 < SIFI0) < (maxl )] ) S 1097 < O 2k + 1),
r#0 s

From this we conclude that 2k +1 < C’plfz_d, as desired. O]

Write N for Cyp'~2™". Now, consider fi(z) as a polynomial in a(z) for
every fixed x. The lemma guarantees that we can define a(z) so that fi(x) €
{—=N,—N +1,...,N}. Similarly, for every y, we can pick §(y) so that fo(y) €
{=N,—N +1,..., N}, hence we always have fi(z) + fo(y) € {—2N,—2N +
1,...,2N}, as desired.

Case 3(a). We shall take ¢ of the form ¢;¢2q3, where ¢1, g2, g3 are coprime, and
each ¢; is a product of distinct arbitrarily large primes. As always, we identify

Ly = Ly, ® Ly, ® ZLgy, and we aim to use the identification of coordinates idea.

Thus, we set oy () := —c121, ao(2) := —cox2, so that (a(x)+c1z)(a(x)+cox) has
second and third coordinates equal to zero. We also set 51(y) := —c3y1, f3(y) =
—c3ys and Yo(2) = —c429,73(2) = —caz3. Note that we still have freedom of

choice for ag, 32,71. Let the linear part of the expression be dya(z) + dox +
d3f(y) + dyy + dsy(z) + dgz, where the coefficients d; have the property that
dy; # 0 implies do; 1 # 0 (since the linear part comes from N-linear combination

of a(z) and a(z) + x, etc.). The expression becomes

((—d101 + do)x1 + (—dzcs + da)yr + ds71(2) + de2,
(—=dyco + da)xy + dsfBa(y) + days + (—cads + dg) 22,
(a3(z) + c1x3) (as(x) + cox3)
+ dias(x) + doy + (—dacs + da)ys + (—dsea + d6)23)~

We combine the identification of coordinates idea with the fact that polyno-

mials have relatively dense sets of values in the next proposition.

Proposition 7.19 (Strong version of the identification of coordinates). Fizx
n,d € N. Then there are constants ¢,C' > 0 such that the following holds.
Let dy,ds,...,d, € N all be at most d. Let 2p, > p1 > py > ... > p, be
primes. Write v = pipy...pn. Next, let f;;:Z, — Z,, be arbitrary maps for
every 1 <i,j < n. Let for every 1 <1 <mn, ¢; € Z,,. Finally, let g; ;: Z, — Ly,
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be also arbitrary functions for every 1 < i < n,1 < j <d; — 1. Then, we can

find maps o;: Z, — 7y, such that the expression

(Fral@n) + foal@s) + -+ fua(an) + cran (o)™
+ gray 1 (@) ar ()T 4 g () (1),

fra(@:) + fap(@a) + - 4 faa(@n) + coog(9)®
+ Go.a 1 (T2) o (w9) BT 4 - 4 go 1 (22)aa (),

fl,n(-rl) + f?,n(x2) +---+ fn,n(xn) + Cnan(-rn)dn

F gt () ()7 g () ()
takes at most Cp, “p1ps ... Dpn values as xy, xo, ..., 2, range over all values in Z,.

Throughout the chapter, we will use the prime number theorem (Theorem
12.2 on the page 304 and equation (12.27) on the page 305 in [29]) without

explicitly mentioning it.

Proof. Write ¢ for p, (in fact any prime close to pi,ps,...,p, would work).
The main idea is to pick aq, ..., q, so that every value (vq,vs,...,v,) attained
by the expression satisfies Y., mod ,,.(v;) € S, for a small subset S C Z,.
Partitioning Z,, ®Z,, & ...® Z,, into cosets of {0} x ... x {0} x Z,, , we see the
set of values of the expression can take only at most |S| values on each coset,

and thus a small number of values in total.

We use Lemma 7.17 in order to define «;. Recall that the lemma gives
C’,e > 0 such that every non-constant polynomial of degree at most d in Z,,
for any 4, takes a value in {0,1,...,C"¢'~} (modify the constant coefficient if
necessary). For every i, we define «; as follows. We apply the lemma for every
fixed x; € Zp, ® Zy, © ... © Zp, to the polynomial

di—1 n
et + Z gi (Tt + Z mod,, , (fi; (i)

Jj=1 Jj=1

Hence, we can pick ¢, such that this expression takes value in {0, 1,...,C"¢'~¢} C
Z,,. We set a;(x;) := t. Therefore, we have defined «;: Z,,, Z,,®. . . BL,, — Zy,,
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so that

d;—1 n
IIlOdpi’q (CiOéi(g;i)di + Z gi’j(CL’Z‘)Oéi(J;i)J =+ Zmodpﬁpi(fm(xi))) €S C Zq,

=1 j=1
where S = mod,, ,({0,1,...,C"¢"~}) = {0,1,...,C"¢"~¢}. To finish the proof,
we apply Lemma 7.14.

Note that we have
n n d;—1
> mod,, , (Z fiilw) + ciai(@)™ + > gi; (xi)oéi(mz‘)]>
i=1 j=1 j=1

n n d;—1
On(1) ) .
= Z ( mody, o(fj:(;)) + mOdm,q@iO‘i(mi)dl) + Z mody, 4(gi, (%)%(%)]))

i=1 \j=1 j=1

0u) (N~ 1
S (Z modpquomodpi,pj(fj,z‘(xj))>

i=1 j=1

+ (Z (modpi,q(ciai(xi)di) + Z_: mOdpi7q(gi,j(ZUi)Oéi(xi)j)))

i=1 j=1

= (i i mod,, , omody, ,, (fi; (%)))

i=1 j=1

+ (Z (modpi,q(ciai(xi)di) + 2_: mOdpi,q(gi,j(l'z‘)CYi(l'i)j)>>

i=1 j=1

n -
_ Z mod,, , (modpj,pi(fi,j(xi)) + cio ()% + Z 9i,j («Ti)ai(l’i)j) ensS

i=1 j=1

(7.3)

We conclude that values (v, vo, . .., v,) attained by the expression with the maps

a; defined as above satisfy
Z mod,, ,(v;) € nS + T,
i=1

for a set T of size at most O,(1). Since nS = {0,1,...,nC"¢'~} C Z,, the

expression takes at most O, 4(p1p2 - .- pn,lpi_e) values, as desired. O

The case 3(a) now follows from a straightforward application of Proposi-
tion 7.19.
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We deal with the remaining cases in a similar fashion.

Case 2(a). Let the linear part of the expression be A\ja(z) + 1z + Ao B(y) + p2y.
We shall take ¢ = ¢i1go, for coprime ¢; and ¢, with Z, = Z, ® Z,,. We set
ai(x) == —czzy and fa(y) == —cayo. It remains to choose ag:Zy, & Zy, — Zy,

and B1:Zg, ® Ly, — Zg, so that the expression

((01 — c3)(ea — e3)a} — csMiwt 4z + AaBi(y) + payn,
(qa(z) + c129)(a2(x) + com2) + Ara(w) + p22 — cadays + #2y2>
= ((Cl —c3)(cy — 03)95% + (1 — esA) 1 + pays + A2B1(y),

01021‘3 + H1T2 + (MQ - C4)\2)y2 + (12(1‘)2 + ((Cl + 02)1‘2 + )\1)042(ZL')>

takes small number of values. But, recalling that Ay = 0 implies ps = 0, this

follows directly from Proposition 7.19, and we may take ¢;, g2 to be prime.

Case 3(b). Let the linear part of the expression be A\ja(x) + iz + A2f(y) +
pay+ A3y (z) + pzz. We shall take ¢ = ¢1¢ags, for coprime ¢y, g2 and g3, with Z, =
Lgy ®ZLgy B Ly, We set () .= —c101, ao(T) := —c322, B2(y) = —cayo, B3(y) =
—coy3,71(2) = —cyz1 and 3(z) := —cq23. It remains to choose ag: Zy, & Zy, @
Lgy — Ly, P1:Lg, © Ly ® Lgy — Lg, and vyo: Ly, © Ly, © Ly, — Zg, so that the

expression

<(_C1>\1 + p1)z1 + Xaof1(y) + poyn + (—cads + ps) 21,
(—csh + p1)@e + (—c2de + p2)y2 + Asy2(2) + p32e,

A (@) + s + (—cado + pi2)ys + (—cads + MS)Z?,)

takes small number of values. Once again, recalling that A\; = 0 implies y; = 0,
this follows directly from Proposition 7.19, and we may take ¢, g2 and g3 to be

prime.

Case 4(a). Let the linear part of the expression be \ja(z) + iz + M SB(y) +
oy + A3y (2) + sz + Ad(w) + pgw. We shall take ¢ = ¢1¢2q3q4, for coprime
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41, 92,93 and qq, with Z, = Z,, ® Zg, ® Lgy ® Zq,. We set

Bi(y): = —coyr, M(2):=—czz1, Gi(w): = —cqwy,
az(x):= —c1r2,  Ye(2):= —c3z0, da(w):= —cqws,
az(z):= —c1x3,  B3(y):= —cays, d3(w):= —cyqws,
ay(x):= —c1zy,  Ba(y):= —coya,  ya(2):= —c3z

We use Proposition 7.19 to find aq, 82,73, 04 so that the expression

(Arar (@) + pawr + (—codo + p2)y1 + (—c3As + p3)z1 + (—cadg + pg)wr,
(—e1h + pn)x2 + ABa(y) + paye + (—caAs + pi3)z0 + (—cada + pa)wo,
(—c1As + p1)m3 + (—cada + p2)ys + A3y3(2) + pazs + (—cada + pa)ws,
(—c1 A1 + pa) g + (—cada + p2)ys + (—csds + pg)za + Aads(w) + pawy)

takes small number of values. This completes the proof of Theorem 7.16. ]

7.5.1 FURTHER DISCUSSION OF THE IDENTIFICATION OF COORDINATES

IDEA

As we have seen in the proof of Theorem 7.16, Proposition 7.19 was used in
a very similar fashion for several cases of expressions. The goal of this short
subsection is to take this approach further and see what expressions can be

handled using this idea.

We temporarily return to the notation of x; for the variables and «; for the
maps. The value of z; at coordinate c is denoted by z; .. Observe that when we
use Proposition 7.19, we have to pick some of the maps «; . to cancel out the
mixed quadratic terms like ay o(21)(@2,c(72) +22,.). In the proof of Theorem 7.16
in the last few cases, given an expression, we used a different coordinate ¢ for
every variable z;, and we picked «; . for j # 7, so that the mixed quadratic terms
disappear. Our goal now is to put all these ideas together in a single proposition.

First, we need to set up some useful definitions.

Fix an expression F in variables x1, xs, ..., x,. Define a graph Gg on vertices
{z1,%2,...,2,} by adding an edge x;z; for every term of the form (a;(z;) +
cx;)(oj(x;) + dxj) with ¢ # j, with multiple edges allowed (so z;x; appears the

same number of times the relevant terms occur in F).
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Proposition 7.20. (Acyclic version of the identification of the coordinates.)
Let E be a quadratic expression such that Gg has no cycles (in particular, no
repeated edges). Then there is an absolute constant € > 0 such that the following
holds. We can find q, a product of distinct, arbitrarily large primes, and maps

1y ..oy Ly — Ly such that E takes at most O(q' ™) values.

Proof. As promised, we will take ¢ = ¢1¢> . . . ¢,,, with ¢; coprime products of dis-
tinct primes, suitably chosen. As always, view Z, as the direct sum Z,, ®. . .®Z,.
Let ¢ € [n] be an arbitrary coordinate. We start from x. and traverse the graph
Gg. (If Gg is disconnected, pick arbitrary vertices in all other components to
start the traversal from. For each such starting vertex x;, ¢ # ¢, set a; . = 0.)
Since the graph is acyclic, we reach every variable at most once, and we visit
every edge. When we move along the edge x;x;, from z; to z;, that means
that there is a term (o;(x;) + ax;)(a;(x;) + bx;) in the expression, and we set
ajc(xj):= —bx;., to make the term vanish. Since this is the first time we reach
xj, there are no issues with defining o ..

After this procedure, we have defined «; ; for ¢ # j, so that for every coor-
dinate ¢, the expression F, no longer has mixed quadratic terms. We still have
the freedom of choosing a. ., so we now may apply Proposition 7.19 to finish the

proof. Il

As we shall see later, depending on the structure of the graph Gg, it is not
always possible to choose some of the maps ;. so that the mixed quadratic

terms vanish, so there is no obvious way to make Proposition 7.20 more general.

7.6 SETS A WITH SMALL 342 + kA

In this section we prove the final case of the main theorem.

Theorem 7.21. For any k € Ny and any € > 0, there is a natural number q,
which is a product of distinct, arbitrarily large primes, and a set A C Z, such
that A — A = 7Z,, while |3A* + kA|< eq.

Proof. We proceed like in the proofs of Theorems 7.10 and 7.16, except that
the details become once again more complicated and the ideas we developed so

far, culminating in Proposition 7.20, do not suffice. As usual, the proof is based
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on Proposition 7.9. We split all expressions in their quadratic and linear parts,
and we may assume that if a variable appears at all in an expression, it must
appear in the quadratic part. In the first part of the discussion of the possible
expressions, we use the notation z; for variables and «; for maps, as there can be

up to 6 variables involved. Later, we again switch to x,y, z and «, 3,y notation.

Firstly, by Corollary 7.12, we only need to consider expressions with at least
two variables. Next, we use Proposition 7.20 to treat the expressions with at
least 4 variables. We look at the graph G'g. Note that if we have an isolated
vertex x; in G g, since x; appears in the quadratic part, we must have term of the
form (a;(x;) + 1) (ey(x;) 4+ cax;) in E. Hence, the number of isolated vertices
v;s plus the number of edges e is at most 3, which is the number of quadratic

terms in F.

Expression E with exactly 6 variables. We look at Gg. It is a graph on 6
vertices, with v;s + e < 3. Hence, it is a perfect matching, which is acyclic, so

Proposition 7.20 applies.

Expression F with exactly 5 variables. Looking at G, which is a graph
on 5 vertices with v;s + e < 3, we see that at most one vertex can have degree

greater than 1. The graph G is acyclic, so Proposition 7.20 applies.

Expression F with exactly 4 variables. Once again, we analyse Gg. It is
a graph on 4 vertices with v;s + e < 3. The only way to get a cycle is if the
graph has a double edge z1z5 and an edge w3z, (after a suitable renaming of

variables). Thus, the quadratic part of E is of the form

(o1 (1) + c121) (aa(x2) + coma)
+ (ay (1) + o) (aa(xe) + dyas)
+ (Olg(fﬂg) + 031‘3)(@4(ZE4) + 64334)7

where ¢y, ¢, ¢, ¢y, c3,¢4 € {0,1}. If ¢; = ¢} or ¢y = ¢, we can rewrite the
quadratic part as a linear combination of only two quadratic terms, so that the
graph G'g becomes a matching, and therefore acyclic. Thus, assume that ¢; # ¢}
and ¢y # ¢,. But, using the affine maps solution from Lemma 7.15 we can

cancel all the terms in F that involve x; and x,. Then, w.l.o.g. E becomes an
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expression with quadratic term

(Oég(l’g) -+ Cgl’g)(a4($4) -+ 04374)

which we have already done using the basic version of the identification of coor-

dinates idea in Lemma 7.13.

Hence, we may assume that the expression F has either two or three vari-
ables. We treat these cases separately. From now on, we use the notation z,y, 2

for the variables and «, 5,y for maps.

7.6.1 [ HAS TWO VARIABLES  AND ¥y

Observe that if there is at most one mixed quadratic term (a(x)+c12)(8(y) +
coy) in the quadratic part, then once again Proposition 7.20 applies. Hence, we
may assume that there are at least two such terms in E. Suppose now that there

all three quadratic terms are of this form, hence the quadratic part is

() + 1) (B(y) + c2y) + (a(2) + e32)(B(Y) + cay) + (a(2) + 52)(B(y) + o),

where ¢, ¢, ...,¢6 € {0,1}. This constraint on the coefficients is crucial. By
pigeonhole principle, there are at least two equal coefficients among cy, c3, ¢s,

w.l.o.g. ¢; = c3. The quadratic part of £ may be written as

(@) + 1) (28(y) + (c2 + ca)y) + (alx) + cs2)(B(y) + coy),

which we treat using Lemma 7.13 if this factorizes further, or using Lemma 7.15

otherwise.

It remains to treat the case when there are exactly two mixed terms, so the

quadratic part is w.l.o.g.

() + crz) () + cow) + (@) + e32)(B(y) + cay) + (a(2) + e52) (B(Y) + coy)-

However, we can no longer use the affine maps to cancel out quadratic terms to
modify the expression and then apply Proposition 7.20. Instead, we have to use

a different argument, which unfortunately gives significantly worse bounds.

Lemma 7.22. Let E be a quadratic expression with quadratic part of the form
ma(x)? + a(z)(ner + nsB(y) + nay) + x(nsz + n6By) + n7y),
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with ny,na,...,ny € Z and ny,n3 # 0. Then, for every sufficiently large prime
p, we can find o, 8: Zy, — 7y, such that the expression does not attain every value

in L.
Immediately, we have the following corollary.

Corollary 7.23. Let E be a quadratic expression with quadratic part of the form

nio(z)? + a(x)(nex + nsf(y) + nay) + x(nse 4+ neB(y) + nry),

with ny,no,...,ny € Z and ny,n3 # 0. Let ¢ > 0. Then, there is q, prod-
uct of distinct, arbitrarily large primes, and maps «, 3: Ly — Zq such that the

expression attains at most eq values.

Proof. Let N be the bound in Lemma 7.22 such that for all primes p > N we
have a®, @) 2, — 7, such that the expression evades one value, i.e. all values
are confined to a set S, of size p — 1. If we now take ¢ = p1ps ... pn, a product of
distinct primes greater than N, then, once again identifying Z, = Z,, ©...®Z,,,
and defining o, 3:Z, — Z, coordinatewise using aP), 37 we have that the
expression in Z, attains values in S,, x S, x ... x5, . Hence, it takes at most
(p1 —1)...(pp— 1) values. A standard calculation reveals that for n sufficiently
large, the number of values becomes o(q). (The p that appears in the sums and

products below ranges over primes only.) Indeed,
-1 1 1 1
H p—zexp( Z 10g(1——)>:exp< Z ——+O<—2)>
N<p<M p N<p<M p N<p<M p p

()

as M — oo, since Zp%:oo. O

Proof of Lemma 7.22. Let \ja(x) + pnx + AafB(y) + poy be the linear part of the
expression. The proof is based on a dependent random choice argument. We
will define a:Z, — Z, essentially by setting each a(y) uniformly independently
at random (for technical reasons, for every « we will forbid one value in Z,). Our

aim is to define 3 accordingly so that the expression evades zero value. Hence,
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for every y, we want to find 5(y) such that there is no x with

B(y)(nga(x) + nex + A2)
+a(x)(nia(x) + nox + ngy + Aq) (7.4)
+n52° + N7y + w4 pgy = 0.

In other words, provided nsa(z) + ngx + A2 # 0 always, we want a value of (y)
such that

1

B) # e (Ve (®) + rn ) )

+a(x)(nia(r) + now + A\y) + nzz® + ,u1x>,

for all x € Z,. Hence, this becomes the requirement that for every fixed y, the
set

1
{ " nga(z) 4 ner + Ao

Sy = <y(n4oz(ac) + nx + pio)

+a(z)(nio(z) + nox + Ay) + nsz® + ,u1w> ‘x € Zp}

is not the whole set Z,. We now define a:Z, — Z, by setting each «o(z) inde-

pendently to be a uniform random variable on Z,, \ {—%?‘2} (which is fine, as

Let B, be the event that the set S, is the whole Z,, i.e. for every v there is
x such that

0 =v (nga(x) + nex + A\2)
(7.6)
+(y(n4a(a:) +n7x + o) + a(r)(nia(z) + nox 4+ Ap) + nsa® + u1x>.

Suppose that B, occurs. We cannot use the same x for two values of v, so
by counting, for every v, we have exactly one x = x(v) such that (7.6) holds.
Suppose that we already know this permutation z(v) = m(v). The equation is

further equivalent to

nio(m(v))?+a(r(v)) (nem(v) + nay + nzv + A1) + nsm(v)? + nem(v)v
+n7m(v)y + pm(v) + ype + vie = 0.

Hence, for every v, we know that a(m(v)) must take one of the two values

depending only on v, since ny # 0. So, given 7, there are at most 2P choices for
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«. Hence, the probability of B, is P(B,) < p!2P/(p — 1)?. By Stirling’s formula,

-0 (())

By the union bound, the probability P(U,B,) = o(1), so there is a choice of «
such that for all y we have S, # Z,. For such «, we can define 3 so that the

expression does not attain every value, proving the lemma. O]

Returning to our main argument, the case when the quadratic part is of the

form

() + crz) () + cow) + (@) + c32)(By) + cay) + () + e52) (B(Y) + o)

follows directly from Corollary 7.23, since ny = 1,n3 = 2.

7.6.2 FE HAS THREE VARIABLES

Finally, we address the case when the quadratic part of £ has exactly three
variables. Once again, we only need to consider the situation when Gg has a
cycle. We know that G is a graph on three vertices, with v;; +e < 3. The only
such graphs that have cycles are xy, zy (a repeated edge and an isolated vertex),
xy, xy,rz (a repeated edge and an additional edge) and xy,yz, zz (a cycle of
length 3).

Gg is a repeated edge. In this case, the quadratic part of the expression is

w.lo.g.

(@) + c1x)(B(y) + c2y) + (@) + c32)(B(y) + cay) + (7(2) + ¢52) (7(2) + c62).

If ¢; = c3 or ¢35 = ¢4, we can further factorize the expression and apply Proposi-
tion 7.20, to finish the proof. Thus assume that ¢; # c3 and ¢ # c4.
Let the linear part of the expression be Aja(x) 4 pyz+ X B(y) + oy + Asy(2) +

p3z. Fix a prime p, and apply Lemma 7.15 to the expression

(@) +e12)(B(y) + cay) + () + c32) (B(y) + cay) + Ma() + pnz+ A5 (y) + pay

to make it constant. Hence, it remains to pick v:Z, — Z, so that the expression
(V(2) + ¢52)(v(2) + c62) + A3v(2) + paz
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attains a small number of values, which we can ensure if we apply Lemma 7.17
for each z to the polynomial v(2)?+ (c5z + gz + A3)Y(2) + c5¢62° + pzz. Provided
p is large enough, (z) can be chosen so that the value of the polynomial is small.

This completes the proof in this case.

Gg is a 3-cycle. In this case, the quadratic part of E has three mixed terms,

one for each pair of variables among z,y, z. More precisely, it is

() + 1) (B(y) + c2y) + (B(y) + csy)(v(2) + ca2) + (1(2) + es2)(al@) + ce2),

where ¢1,...,c6 € {0,1}. Let the linear part be

Aa(@) + x4+ AaB(y) + pay + Asy(2) + paz.

First, assume that no further factorization is possible, i.e. ¢; # c¢g,¢2 # c3
and ¢4 # c5. We set a(x) = —c1x + dv, B(y) = —c3y + do, y(2) = —c52 + ds, so
that the expression becomes

di((c2 — c3)y + d2) + da((cs — c5)z + d3) + ds((ce — c1)x + dy)
+ (1 — ad)z + (p2 — e3A)y + (13 — csA3)2 + (Midy + Aadz + Asdy).

Rearranging further, we obtain

z(ds(ce — c1) + 1 — erdi) + y(di(cr — ¢3) + p2 — c3)2)
+ Z(d2(04 — 65) + M3 — 05)\3) + ()\1(11 + )\gdg + )\3(13 + dldg + dgdg + dgdl).

Setting dy = #2=2X2 g, — #3=5As 4 J, = M=9M the expression becomes
c3—Ca c5—cy c1—cg

constant.

Now, suppose that w.l.o.g. ¢; = ¢g. Assume for now that (c3—c2)(ca—c5) =0,
we will address the case when this product does not vanish later. The expression

becomes

(a(@)+c12)(B(y) + ey + 7(2) + ¢52) + (B(y) + c3y)(V(2) + ca2)
‘|‘)\1()é(.’13') + pix + )\2ﬁ<y) + oy + )\3’}/(2) + Usz.

We use the identification of coordinates approach. We will take ¢ = p1paps,
where p; < pa < ps < 2p; are arbitrarily large primes. Identify Z, = Z,, ®7Z,, ®
Zy,. Our first step is to set

ar(z) = —c121, f1(y) = —csyr + 1 — A3, ae(x) = —c129,72(2) = —caze + 1 — Ao
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This way, the quadratic terms vanish in the first two coordinates, and we still
have freedom of choosing f5,v; to cancel the linear terms in y,z. We want to
do the same for ag, so we set G3(y) = —cays + 1 — A\, v3(2) = —c523. However,

with such a choice, the third coordinate of the expression is

(1= A)(ag(@) + cras) + ((es — c2)ys + 1 — Ai)((ea — ¢5)23) + Aag(z) + s
+ ys(p2 — Aac2) + 2313 — Azcs) + Ao(1 — Ay)
=a3(2) + (1 — M)er + pn)zs + (3 — c2)(ca — e5)yazs + (H2 — Aac2)ys
+ (g — Azes + (1 — Ap)(ca — ¢5))23 + Xa(1 — Ap).

Since (c3 — ¢3)(cq — ¢5) = 0, the expression becomes

((Ml — i )rr + (p2 — esdo)yn +71(2) + (p3 + (1 = Az)eq)zr + Ao(1 — A3),

(1 — 1 A1) wa + Ba(y) + (2 + c3(1 — A2))y2 + (13 — cads)za + A3(1 — Ag),
as(z) + ((1 = Ap)er + pa)ws + (p2 — Aaca)ys
+ (,u3 — )\365 +1-— )\1)23 -+ )\2(1 — )\1))

We may now apply the identification of coordinates idea, using Proposi-

tion 7.19, to finish the proof in this case.

Now assume that (c3 — c2)(cq — c5) # 0. We shall take ¢ = p1papspaps and
use the additional fourth and fifth coordinates to cancel out the y323 term. Also,
using the prime number theorem, we can find arbitrarily large primes such that
P < - <ps <p+ O(logp;). In the work below it will be essential that all
the primes are close in value (although it will not be important to have them
this close). Writing E also for the resulting map defined by «, 3,7 and the

expression, our aim is to show that

5
> “mod,, ,, (E;)
=1

takes few values in Z,,.
We use the same choices of ay,as, 81, f3,72,73 as in the case when (c3 —

c2)(ca —c5) = 0. Next, we set au(r) = —ci124,Ba(y) = —mOdpa,m(?/:%) -
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c3Ya, Y4(y) = mody, »,(23) — csz4. Observe that

mody, p, ((B1(y) + caya) (Va(y) + caz4)) + mody, 4 (y323)
= mody, ,, (— mod,, p, (y3) mody; 5, (23)) + Y323
=Tps © LP4(_7TP4 O lpg <y3)7TP4 O lpg (23)) + Y323

Let U3 = 1, (y3) and Z5 = 1p,(23). Hence 73,23 € {0,1,...,p3—1} are integers
such that m,,(73) = y3 and 7, (Z3) = 23 hold. We also have

Lpa (= Ty © Lps (Y3)Tpy © 1p5(23)) = 1, (=7, (U3) 70, (Z3)) = 1, (7, (= T3 73)).-

But ¢, (7, (—7373)) is an integer w € {0,1,...,ps — 1} such that m,, (w) =
Tp, (—U373), thus w = Y3725 + pat, for t = f%—?’} Therefore, with this choice of
t we have
mody, p, ((B1(y) + c3y4) (va(y) + caza)) + mod,, p, (Y323)

= Tps © bpy (—Tp, © Lpy (Y3)Tp, © Ly (23)) + Y323

= Tps (=% + Pat) + Tpy (U3) ps (Z3)

= s (Pat) = 7p, (P4 — p3)1)

Proceeding further, we use the fifth coordinate to approximate (py — ps3)t.

To this end, write M = |\/ps, 3 = uM + u',Z3 = vM + v, where v/,v" €
{0,1,...,M — 1}, u,v = O(M). Observe that uv is a good approximation to t

|t_w|:'[w | <14 | B paw
D4 D4
. (uM + u)(vM + ') — pyuv
Pa
w'vM + uv' M + u'v' uv(py — M?
<1+ . + (p4p ) < C1y/pa
4 4

for some absolute constant C4, since u,v,u’,v', M, |ps — M?|= O(,/ps). There-

fore, we set az = —c1x5, B5(y) = —mp, (w) — c3Y5, V5(2) = Tp, (V(ps — p3)) — ca2s.
Note that f5,~; are well defined, as u depends on y only, and v depends on z

only. With 5 and 5 so defined we have

mody; py ((85(y) + c3y5) (15(2) + ca25)) + Ty (E(pa — p3))
= Ty (Lps (—Tps (W) s (V(ps — p3))) + t(pa — p3))
= Ty (Lps (Tps (—uv(ps — p3))) + t(ps — p3))
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We also have that ¢, (7, (—uv(ps — p3))) is an integer s € {0,1,...,p5 — 1}

such that m,,(s) = 7, (—uv(ps — p3)), thus s = —uv(py — ps3) + pst’, where
t = f%] < (4 log ps, for an absolute constant Cy. Therefore,

modys py ((B5(y) + c3y5)(15(2) + €a25)) + 7, (E(pa — p3))
= Ty (Lps (Tps (—uv(ps — p3))) + t(ps — p3))
= Ty (—uv(ps — p3) + pst’ + t(pa — p3))
= py ((t — uv)(pa — p3) + pst’)

Summing up the work done so far we conclude that

mOdy, p, (y323) + modp, p, (B4(y) + cs94) (1a(y) + ca24))
+ mody, , ((85(y) + ¢3y5) (V5(2) + cazs))
=Y323 + mody, p, (— mody, p, (y3) mod,y, 5, (23))
+ mody; p, (Tps (—uv(ps — p3))) € 51,
where Sy C Z,, is the set defined by {m,,(a(ps — ps3) + psb):a,b € Z,|a|<
C1y/Pa, |b|< Cylogps}. In particular |S)|= O(\/p_glog2 p3). Finally, we put ev-
erything together, using Lemma 7.14. Recall the definitions (the maps (4, 74 and

~5 below are slightly modified to cancel the term (c3 — ¢o)(cy — ¢5)y3z3 instead

of just y3z3)

a1(z) = —c11, Si(y) = —esyn + 1 — A3,

as(x) = —c19, Y2 (2) = —c4z0 + 1 — Mg,

Bs(y) = —cays + 1 — A1, 73(2) = —cs23,
(z) =

Q

z —C124, ﬁ4(y) = —(03 - 02) mOdps,m (93) — C3Ya,

4
Ya(y) = (€4 — ¢5) modyy, p, (23) — ca24,
a5 = —C1Ts, ﬁ5(y) = —7Tp5(U) — C3Ys,
Y5(2) = Tps (v(pa — p3)(c3 — c2)(ca — ¢5)) — cazs.

Thus, 37, mod,, . (E;) equals

5
= mod,,,, ((042'(33) + 1) (Bi(y) + 2y +7i(2) + c521)
=1

+ (Bi(y) + c3yi) (vi(2) + cazi)

+ Moy (z) + e + Mo Bi(y) + poyi + Asvi(2) + M3Z¢)
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=mody, p, (71(2’) + (1 — e1d)wr + (p2 — c3\2)yn
+ (ps + ca(l — X))z + Ao(1 — )\3)>
+ mody, , <52(?/) + (1 — et d)ma + (2 + c3(1 — A2))1e

+ (,Ug — C4)\3)Z2 + )\3(1 — )\2)>

+ a3(z) + yszs(cs — ca)(ca — ¢5) + 3(cr(l — M) + p) + (2 — Aaca)ys
+ (1= M)(ea — ¢5) — esAz + p3)z3 + Aol — Ay)
- 1m0dy, (= (€5 = €2)(e4 = €5) MOy, (35) MOy, (25)
+ (11 = Arer)zg — (c3 — c2) Ao modyy, , (y3)
+ (p2 — c3Aa)ys + (c4 — c5) A3 mod,, p, (23) + (3 — >\304)z4>
100 (= s (W) (0P = p5) 5 — 2) 4 = c5)
+ (1 — Arer)ms — Aamps () + (e — Aac3)ys

o+ Ay (0(ps = pa)(es = e2) (e = e5)) + (115 = Aocs)zs)

s (e (@3(2)) + (1 = 1)t (21) + (1 = 1M )i (22)

+ (11 = A1) + pn)ipg (23) + (11 — Aier)ip, (T4) + (11 — Aier) g (25)
+ 1po (B2(y)) + (k2 = c3A2) iy, (y1) + (12 + c3(1 = A2)) 1, (2)
+ (p2 = AaC2)ips (Y3) — (c3 — 2) Aoty (modp, p, (y3))
+ (12 = c3A2)ip, (Ya) — Aatps (Tps (1)) + (12 — AaCs)ips (y5)
+ tp (71(2)) + (13 + ca(1 = A3))ip, (21) + (3 — cads)ip, (22)
+ (1= A1)(ea = ¢5) = csA3 + p3)tp (23) + (ca — ¢5) Agtp, (modyp, p, (23))
+ (13 = AsCa)ip, (22) + Astps (Tps (0(pa — p3)(c3 — €2)(ca — ¢5)))
+ (p5 — )\304)%5(25))
+ (e3 = e2)(cs — e5) (U325 — MOy, (O, () MOy, (25))

— mod,, p, (), (uv(ps — PS)))) .

Finally, we set as, 82,71 to cancel the linear z,y, z terms respectively:

a3(x) = =Ty (111 — 1 A1)y, (T1) + (1 — 1)1, (2)
+ (er(T = A1) + 1) tps (23) + (1 — Arcr)ip, (T4) + (1 — Arer)ips (5))
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Ba(y) = —mp, (12 — c3)2
+ (k2 — AaCa) iy,

tpr (Y1) + (2 + c3(1 = A2))epy (y2)
ys) — (3 — c2) Aatp, (mody, p, (y3))
) = Aoty (s (w)) + (12 = A2cs)ips (y5)))
M(2) = =, (s + ca(l = A3))tp, (21) + (13 — caAs)p, (22)
+ (1= A1)(ea = ¢5) = csA3 + p3)tpy (23) + (ca = €5) Astp, (modyp, p, (23))
+ (13 = AsCa)ip, (24) + At (Tps (v(pa — p3)(c3 — €2)(ca — ¢5)))

+ (5 — Asca)tps (25)))
With this choice of «, 8,y we have

+ (2 — 3X2)tp, (s

)
(
(
)

5
o(1
> mody, () 2 (es = e2) (e — e3) (74
i=1

- HlOdm D3 (HlOdps D4 (93) InOdps,m (Z3)) - InOdp5 D3 (ﬂ-ps (UU (p4 - p3>>)>
which takes small number of values.

Gr is has a repeated edge and another single edge. In this case, the

quadratic part of the expression is w.l.o.g.

(@) + e1x)(B(Y) + c2y) + (a@) + c32) (B(y) + cay) + (a(2) + e52)(7(2) + c62).

If ¢y = ¢3 or co = ¢4, we can further factorize the expression and apply
Proposition 7.20, to finish the proof. Thus assume that ¢; # c¢3 and ¢y # ¢4.

Since all ¢; € {0, 1}, we must have ¢5 € {c1,c3}, so w.lo.g. ¢5 = ¢;.

We now discuss a limitation of the usual approach based on the identification
of coordinates idea. Basically, we always try to cancel out the quadratic terms
by taking some of the «;, 5;,7; to be affine, while we use the rest to cancel out
the linear terms in x;, y;, z;. Let us try the same strategy here. Temporarily we
work in Z, ®Z, @ ... D Z, to ignore the difficulties that arise from moving from
one modulus to another one. For technical reasons, we use a slightly unusual
indexing of n+2 coordinates by —1,0,...,n. Start by using the coordinate -1 to
get a free v_; which is later used to cancel the linear terms involving z. Thus, we
set a_i(z) = —cyz_1 and B_1(y) = —cqy_1. Similarly, try to use the coordinate

0 to get a free 5y map. Rewriting the expression as

B(y)2a(x)+(c1+c3)z)+y((catca)a(z)+(creatcscq)x) +(a(x) +es2) (v(2)+c62),
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we see that we need to set ap(x) = =92z, + C, for a constant C' and ~y(z) =
—cg2zp. The issue is that we get a term xgyo with a non-zero coefficient. The
natural thing to do now is to try to cancel somehow this term. During this
digression, we forget about the linear terms (in any case, we can cancel them by

remaining free o, B;,7i)-

The most natural thing is to set v;(z) = —¢gz; for i = 1,2,...,n (as further
mixed quadratic terms involving z seem even harder to cancel). Hence, the
question is whether we can find linear maps oy, ..., a,, 1, ..., s, each a linear
combination of xg, z1,...,x, or Yo, y1, ..., Y, such that (w.l.o.g. ¢; = ¢y =0 and

C3 = C4 — 1)
D au)Bile) + (04(x) + ) (Bily) +9) = 0. (7.7)

Write a;(z) = > 7 Aiyry and Bi(y) = D27 Bijy;. Let d;; equal 1if ¢ = j and

zero otherwise. Expanding the (7.7) we obtain

Z ((Z Aijxj> (Z Bz‘k?Jk) + (Z(Aij + 51;’)%’) <Z(sz + 5ik)yk>>
i=1 =0 k=0 =0 k=0
= (Z 2AijBix, + Aijoix + 04 B, + 6ij5ik) ZjYk-
j=0 k=0 \i=1
(7.8)

Hence, we require that for every j,k € {0,1,...,n}, which are not both
zero, we have Y 24;; By + Aij0i + 0ijBig + 0;j0i = 0, while for j = k =0
this expression is non-zero (to cancel the initial z¢yy term). We now define two
(n+1) X (n+1) matrices P, @, with entries indexed by {0,1...,n}x{0,1,...,n},
by setting P;; = A;; when ¢ > 1 and Pjy = 0, and Q; = By, if ¢ > 1 and Qo = 0.
Let I” be the matrix of all zeros except I/, = 1 for ¢ > 1, and let J be the matrix

consisting of zeros only, except Jyy = 1. We rewrite (7.8) as a matrix equation
2PQ + PI'+QI' + I' = \J
for some non-zero A. However, this is the same as

QP+ TIN2Q +TI')=2)\] — I
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But comparing ranks we have
rank(2\J — I') = rank((2P + I')(2Q + I')) <rank(2P + I')
<n <n-+1=rank(2\J — I')

which is a contradiction. Hence, this case requires a different approach.

Finally, we construct the desired maps for this expression. By adding linear

terms to a, 3,7, we may assume that the expression is

a(z)B(y) + ((z) + az)(B(y) + c2y) + a(x)y(2) (7.9

FAa(x) + pnr + A B(Y) + pay + A3y (2) + psz
for some coefficients c¢y,co € {—1,1}, A1, Ao, A3 € N, puq, pio, s € Z. Let us
begin by observing that in most cases there is a rather simple solution, which
strangely we could not generalize to work for all choices of coefficients. Try
setting a(x) = A, B(y) = —coy + B, for some constants A, B and suppose we
work in Z,, where ¢ is a product of distinct, arbitrarily large primes (so that all

the coefficients and related expressions are coprime with ¢). With these choices,

the expression (7.9) becomes
A(—coy+ B) + (A+ c1x) B+ Ay(2) + MA + iz + Xo(—cy + B)
+ p2y + Agy(2) + paz
=y(—c2A — c2do + p2) + x(a1B 4 p1) +7(2)(A + A3)
+ sz + (2AB + M A + A B).

Further, set B = —pci, (recall that ¢j, ¢, € {—1,1} s0 ¢;' = ¢1,¢5" = ¢3) 50
that the coefficient of x above vanishes. We try to pick A such that coefficient
of y also becomes zero, setting A = coo — Xo. If A+ A3 # 0, then we can pick
v3 to cancel the z term, and the expression actually becomes constant.
Otherwise, assume that cops — Ay + A3 = 0. The following proposition solves
the problem of making the image of expressions that satisfy this relationship
miss at least some values. The complete result which says that the image can

be made small is then a consequence of a simple number-theoretic calculation.

Proposition 7.24. Let ¢1,c9, \1, Ao, A3, i1, po, i3 € Z be some fized coefficients,
such that ¢y, co € {—1,1} and capig — Ao + A3 — o # 0. Then, for all sufficiently
large primes p,q, obeying ¢ < p < 2q, we may find maps o, B,7: Lipg — Zipg such

that the expression (7.9) misses at least p — q values.
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Proof. As always, Z,, is viewed as Z, ® Z,. In the first coordinate, we set
a1 (x) = capia — Ao — ¢, B1(y) = —coy — picy, 11 (2) = m%, with d1(z) to
be chosen and a constant D. After a suitable choice of D, the first coordinate
of the expression becomes y; — 01(2).

On the other hand, we shall use the second coordinate to evade some of the

values. To this end, we generalize Lemma 7.22, with a similar proof.

Lemma 7.25. Let S be a set, and g a prime. Let f: S — Zq be any map, and
let ¢y, Coy A1y Aa, i1, f2 € Z be any coefficients. Then, provided |S|q?*-q! < (¢—1)?
we may pick o, Bs: Ly — Zg for all s € S, such that

() Bs(y) + () +c12) (Bs(y) +cay) F Aa(x) + e+ B (y) +pay+ f(s) (7.10)
never takes value zero.

Proof of Lemma 7.25. We proceed similarly as in the proof of Lemma 7.22, start-
ing by defining each a(z) independently, uniformly at random in Z,\{—2"*(c;z+
A2) }, with this single value omitted for technical reasons.

For each y and s € S, we want to pick fs(y), so that (7.10) does not vanish
for any z. Let E, ; be the event that we cannot do this, i.e. that, having fixed

y, s for every value 3, we can find = such that
a(z)B + (a(z) + az)(B + cy) + Ma(@) + uz + b + ey + f(s). (7.11)

If E,, occurs, observe that (7.11) cannot hold for distinct £y, S, with the

same choice of x, since this equation can be rewritten as
B(2a(x) + 1z + A2) + y(ca(x) + crcom + pi2) + Ma(x) + iz + f(s)

and by the choice of a, the coefficient of 3 is never zero. Hence, if m: Z, — Z, is
the map that sends each 5 to the corresponding value of x for which the (7.11)
vanishes, we must have 7 injective, which is thus a bijection.

Suppose furthermore that we know 7 as well. Note that in this case we can

almost determine «. Indeed, for all 8 we have

0 =B2a(r(B)) + aam(B) + A2) + y(coa(m(B)) + crcam(B) + pi2)
+ Ma(m(B)) + pum(B) + f(s)
=a(m(B))(2B + yc2 + A1) + Blarm(B) + A2) + y(crcam(B) + pi2) + pum(B) + f(s)
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Substituting 3 = 7~1(3’), we obtain

a(B)2r (B +yca+ M)+ (B) e + X)) +y(ercaf’ + pa) + a8 + f(s) = 0

for all 5/ € Z,, so a(f') is uniquely determined for all 3’ such that 27—1(5’) +
yco + A1 # 0, i.e. for ¢ — 1 values. So there are at most ¢ ways to pick «, and in
conclusion, the probability of E, s is P(E, ) < ¢q-q! /(¢ — 1)?. Finally, we have

q!
(g —1)

P(Uy.Eys) <Y P(E,,) < |S|¢°

Y,s

<1,

so it is possible to choose « for which all other maps can be defined so that

(7.10) never vanishes. O

Set v2 = 0. Let 1 = t,(v1),t = t4(psz2) € Z. We define 6;(2) = mp(t), so
the first coordinate becomes 7,(y7 —t). We set f:Z, — Z,, by f(y1) = 7,(v1).
Apply Lemma 7.25 to Z,, S = Z,, and the expression

a(22) By, (Y2) + (a2(w2) + c1m2)(Bay, (Y2) + cayo)
FAra(T2) + a2 + Aoy, (Y2) + paya + f(y1)
to define v, B2 ,,: Zq —+ Z4 to make it non-zero always. Note that we may apply
the lemma since pg?q! < (q—1)?, whenever ¢ < p < 2gq, for sufficiently large g. We

define B5(y) as fBay, (y2). Finally, we show that values (my,(r), —my(r)) € Z, ® Z,
are not attained for r € {0,1,...,p —q— 1}.

Suppose that € {0,1,...,p —q— 1} and suppose that the expression takes
value (my,(r), —m,(r)). Thus, the first coordinate gives m,(y7 — t) = m,(r), so p
divides y; —t — r, so either y; < t+4+r —p,y1 =t+r,ory; > t+r + p. But,
ne{0,1,....p—1}te{0,1,...,¢g—1} and r € {0,1,...,p — ¢ — 1}, so we

must have y; =t + r.
Next, let v stand for the value of
a2(22) B2y, (Y2)+(aa(w2) + c122)(Bay, (12) + c212)
+Aag(xe) + 1o + X224, (y2) + Hayo.

By the definition of ay, fa,,, we always have v + f(y;) # 0. If the second
coordinate equals —m,(r), then we have 0 = v+ pgzo +7,(r) = v+7,(t) +74(r) =

v+ m(t+ 1) =v+ 7 (yr) = v+ f(y1), which is impossible. O
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Corollary 7.26. Let cq,co, A1, Ao, A3, i1, o, i3 € Z be some fized coefficients,
such that c1,co € {—1,1} and copio — Xg + A3 — ca # 0. Let € > 0 be any small
real. Then, we can find q, a product of arbitrarily large distinct primes and maps

a, B,7v: Ly — Ly such that the expression (7.9) takes at most eq values in Z,.

Proof. We proceed as follows. Look at all the primes 2F < ¢; < g2 < -+ < g <
(1+3)2F and (1+2)2" <p1 < ps < -+ < p, < 2571 For k sufficiently large,
by the prime number theorem, n,m > Q(2*/k). For k sufficiently large, pairs of
primes p;, g; satisty the conditions of Proposition 7.24, which we apply to obtain
Qi Biy Vit Lipygy — Lyp,g; SO that the expression (7.9) misses at least p; — ¢; values
in Zy,q- In other words, the expression (7.9) takes at most (1 — ﬁ)pz‘%‘ values
in Zp,q,- Let Py = {p1,p2, .-, Pmin{m,n} }, and let Qy be the product of all p;g;.
Viewing Zg, as a direct sum of Z,,,, we can therefore define o, 3,v:Zg, —
Zq

[lep (1 — ﬁ)@k < exp(—7)Qx values in Zg,, for some positive constant c.

. coordinatewise using «;, f;, Vi, so that the expression (7.9) attains at most
Finally, taking Zq, ® Zq,., ® ... ® Zq,, and using the maps «, 3,7 on
cach Zg, separately, makes the expression (7.9) take at most [, exp(—%) =
exp(—e¢ N 1) proportion of values in Zg, & Zq,,, ® ... ® Zg, , which goes to

zero as N goes to infinity, as desired. O]

This finishes the proof of Theorem 7.21. O]

7.7 CONCLUDING REMARKS

We conclude the chapter with some problems and several questions related to
the ingredients used in our construction. Firstly, the main question here is still

the following.

Question 7.27. Suppose that A C Zy has A— A = Z, and let ay,ap_1,...,a1 €
N. How small can aA* + ap_1A¥' + - +a; A be? What is the answer when q
is square-free/product of O(1) primes/prime? When can we get a power saving,

i.€. ’&kAk -+ a/k/'f]_Ak_l 4+ .. 4+ alAlg ql—e?

The next natural question is about the number of values attained by expres-

sions.
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Question 7.28. Let k € N be given. We consider expressions in variables
T1, %9, . .., Tk and maps oy (1), az(xs), ..., ap(xg). Let E be any N-linear com-
bination of products of terms of the form o;(z;) or ay(x;) + x;. Is there a choice
of a ¢ € N and maps o;: Z, — Z, such that E attains only o(q) values in Z,?
Is there a choice for which we have a power-saving, i.e. E attains only O(q'~¢)

values? What if q is square-free/product of O(1) primes/prime?

We remark that in our construction, there was a power-saving choice for most
of the expressions. In fact, the only ones for which our arguments do not lead

to a power-saving are

a(z)*+a(@)8(y) + (a(z) + 2)(B(y) + y)
—|—/\1a(x) + mx + )\2ﬁ<y> + oy + )\37(2) + U3z

and

a(z)y(z)+a(@)B(y) + (a(z) + 2)(B(y) + )
FAh1a(z) + iz + AB(y) + poy + Asv(2) + psz,

(for a specific choice of A;, ;).

Returning once again to the identification of coordinates idea, it turns out
that Proposition 7.13 is nearly optimal for some expressions, provided p and q
are close. Namely, consider expression £ = o/(z)f'(y) + (¢/(z) + z) + (B'(y) +
y) + 1. Putting a(z) = o/(x) + 1,5(y) = B'(y) + 1, the expression becomes
E = a(@)B(y) + 2+ y.

Observation 7.29. Let p and q be distinct primes. Given any maps o, 3: Zpq —
Ly, the expression o(x)B(y) +x +y attains at least Q(min{p, q}) values in Z,,.

Proof. We begin by observing that if a(x) is not invertible for some choice of z,
viewing Z,, as Z, ® Z,, for some coordinate ¢ € {1,2}, we have E. = z. + ..
Letting y. vary, we obtain at least min{p, ¢} values.

Therefore, assume that all «(z) are invertible in Z,, = Z, & Z,. Fix some
x. Consider all values vy, vy, ..., v, of E(x,y), (where E(z,y) is evaluation of
the expression for the given choice of z,y), as y ranges over Z,,. We may
assume 7 < 1—10 min{p, ¢}, otherwise we are done. Hence, we obtain a partition

YiuYoU...UY, =Z,,, where E(x,y) = v; if y € Y;. Call a pair y;, y» invertible
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if y1 — yo is invertible in Z,,. Observe that in each set Y;, there are at least
max{|Y;|(|Y:|—p — ¢+ 1)/2,0} invertible pairs. However, if E(z,y1) = E(z, y2)
for an invertible pair g, yo, then a(x)3(y1)+yn = a(2)B(y2)+ v, 50 Blun) —Blys)
is invertible, and a(z) = m Thus, for every invertible pair y;,y. there
is a value w(y1, y2) such that E(x,y,) = E(x,yz) implies a(x) = w(y1, y2).

For a fixed w, take = such that a(x) = w, and consider the partition Y; U
... UY, = Z,, as above. Firstly, take R to be the set of indices ¢ such that
Yi|> 2(p +q). Thus, 3°,,5|Yi|< 7 2(p+q) < s min{p, ¢} (p + ¢) < Zpg. Hence,
> ierlYil> 2pq. Therefore, we obtain that the number of invertible pairs {y,y}

that have value w(y;,y2) = a(x) = w is at least

> max{|Yi|([Vi|-p — g +1)/2,0} > > _|[V;|(|Yi]-p—q+1)/2
i=1 i€ER

> ;IYil(p +q)/22 %pq(p +q).

If v attains at most 2(p+q) values, we simply consider E(x,y) for fixed y. The
expression then attains at least pq/2(p + q) values, thus the claim follows, so we
may assume that o attains more than 2(p + ¢) values. But then, for every value
w of o, we have at least %pq(p + ¢) invertible pairs {y;, y2} with w(yy,y2) = w,
so the total number of invertible pairs is at least Spq(p + q) - 2(p + q) > P*¢,

which is a contradiction. OJ

It could be interesting to better understand the minimum image size for
this expression. Furthermore, recall that in the case of prime modulus, our
understanding of the right size of image is much weaker. In fact, the argu-
ments we provided can merely prove that maps « and [ can be chosen so
that this expression is not surjective (just apply Lemma 7.25 to the expres-
sion a(z)B(y) + (a(z) + z) + (B(y) + y) + 1 which we saw is equivalent to the

expression discussed).

Let us temporarily change the variables to v and v, so we consider the ex-
pression a(u)fB(v) + u + v (we keep x and y for their traditional meaning of
coordinates in the plane). For the lower bounds on the image size, all we can say

follows from a finite field version of Szemerédi-Trotter theorem. This was first
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proved by Bourgain, Katz and Tao [10]. We state the version of Stevens and de
Zeeuw [50], with state-of-the-art bounds.

Theorem 7.30 (Finite fields Szemerédi-Trotter theorem [50]). Let L be a set

of p lines and let P be a set of p points in the plane Z, x Z,. Then there are at

22/15)

most O(p point-line incidences.

Given maps « and  we may define set of lines £ = {{y = —a(u)r—u}:u €

Zp} and a set of points P = {(8(v),v)}. Then, our expression takes value ¢
if and only if there is an incidence between lines in £ and points in P — (0, ¢)
(the set of points gets translated by (0, —c)). Let f:Z, — Ny be the number of

incidences between these two sets for the given ¢. We then have
PP =1[PlILl= ) f(o).

Theorem 7.30 bounds the maximum such a function can attain from above by
O(p**/*®). Thus, the support of this function must have size at least Q(p%/'®),

which is very far from the upper bounds. Hence, we pose the following question.

Question 7.31. Let o, 3:Z,, — Z, be maps and p prime. What is the smallest

number of values that the expression a(x)B(y) + x +y must attain?

We expect that the answer is p'°() and we would not be surprised even if

the set of non-values had size p°(V).

Finally, we pose the question of improving the bounds in Lemma 7.11.

Question 7.32. Suppose that ci,ca, ..., cq are never simultaneously zero. How

large a set F' in Lemma 7.11 can we take?
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