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Abstract

Forward genetic screening allows for the identification of any genes important for a particular biological

process or phenotype. While the power of this approach is broadly agreed on, the efficacy of currently

available tools limits the strength of conclusions drawn from these experiments.

This thesis describes a method to optimize molecular tools for high-throughput screening, both

for shRNA and sgRNA based reagents. Using large shRNA efficacy datasets, we first designed an

algorithm predicting the potency of shRNAs based on sequence determinants. Combined with a novel

shRNA backbone that further improves the processing of synthetic shRNAs, we built a library of potent

shRNAs to reliably and efficiently knock-down any gene in the human and mouse genomes. We then

went on to apply a similar approach to identify sgRNAs with increased activity. We complemented this

with conservation and repair prediction to increase the likelihood of generating functional knock-outs.

With these tools in hand, we constructed, sequence-verified and validated arrayed shRNA and sgRNA

libraries targeting any protein coding gene in the human genome. These resources allow large-scale

screens to be performed in a multiplexed or arrayed format in a variety of biological contexts.

I have also applied these tools to identify therapeutic targets to circumvent cancer resistance to

treatment in two different contexts. To overcome the shortfalls of single target therapy, I have devel-

oped multiplexed multidimensional shRNA screening strategy, where two genes are knocked down

simultaneously in each cell. This strategy allows the identification of gene pairs that could be targeted

in tandem to maximize therapeutic benefits. As a proof of concept, I have used it with a subset of drug-

gable genes in melanoma cell lines. Moreover, we have applied our genome wide shRNA libraries to a

different resistance context, stroma-mediated resistance to gemcitabine in PDAC. In this project, we per-

formed screens in a PDAC-CAF coculture setting to try and identify cancer vulnerabilities specifically

in the presence of stroma.

Overall, the tools developed in this thesis allow for the efficient knockdown or knockout of any

gene, both in an individual or combinatorial setting. Apart from providing a resource that will be useful

for many fields, we have performed several proof-of-concept studies where we have applied our tools

to identify potential cancer drug targets.
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Chapter 1

Introduction

Genetic screens are a powerful tool to investigate gene function on a genome-wide scale. Early

forward genetic screens relied on DNA mutagens to introduce random mutations in an or-

ganism’s genome (E.M. Jorgensen & Mango, 2002; St Johnston, 2002; Kile & D.J. Hilton, 2005;

Forment et al., 2016). Following selection of individuals with aberrant phenotypes, the causal

mutation can be mapped using crosses and linkage analysis. Such screens have been performed

in numerous organism and have identified genes involved in for example development, sig-

naling and embryonic patterning (Nüsslein-Volhard & Wieschaus, 1980; Vitaterna et al., 1994).

However, the mapping of the mutations is time consuming and labor intensive. The discovery

of RNA interference (RNAi) and its harnessing as a tool to knock down genes using sequence-

specific RNA triggers has revolutionized genetic screening (Hannon, 2002). More recently, the

repurposing of the bacterial CRISPR-Cas adaptive immune system to perform guided gene

knockouts, as well as transcriptional repression or activation offers new reagents for functional

genetics (Shalem, Sanjana, & Zhang, 2015). In this introduction, I will discuss the mechanisms

of RNAi and CRISPR-Cas systems as well as the design of potent effector molecules and their

use in genome-wide genetic screens.



2 Chapter 1. Introduction

1.1 RNA interference

1.1.1 Mechanism

RNA interference is an evolutionary conserved pathway that regulates gene expression and

mediates resistance to foreign genetic material. This phenomenon was first observed in petu-

nia plants by Napoli and Jorgensen when the introduction of a transgene to deepen flower

color led to the unexpected generation of flowers with variegated or no pigmentation (Napoli,

Lemieux, & R. Jorgensen, 1990). The triggers of RNAi were then discovered by Fire and Mello

when they showed that long double-stranded RNAs (dsRNA) could elicit sequence-specific

gene silencing in Caenorhabditis elegans (Fire et al., 1998). These long dsRNA triggers can be

delivered by direct injection or by feeding C. elegans bacteria expressing dsRNA (Timmons &

Fire, 1998). The potency and specificity of RNAi coupled with complete sequencing of the

C. elegans genome rapidly allowed genome-scale loss-of-function screening to be performed

(E.M. Jorgensen & Mango, 2002). Although dsRNAs were subsequently used as RNAi trig-

gers in Drosophila melanogaster, this approach was initially hindered in mammalian cells as

long dsRNAS trigger the interferon pathway. Further studies in plants and Drosophila cells

identified small interfering RNAs (siRNA) as RNAi mediators (Hamilton & Baulcombe, 1999;

P. Zamore et al., 2000; Bernstein et al., 2001). These 22 nucleotide RNAs are loaded into the

RNA Interference Silencing Complex (RISC) and guide it to degrade messenger RNA (mRNA).

Synthetically synthesized siRNAs were shown to trigger RNAi in mammalian cells without in-

terferon pathway activation (Elbashir, Lendeckel, & Tuschl, 2001) and can be transfected into

cells to knock-down any gene of interest (Caplen et al., 2001).

The understanding of the endogenous RNAi pathway has led to the development of other

synthetic RNAi triggers mimicking microRNAs (miRNA), an endogenous class of dsRNAs

(Reinhart et al., 2000; Zeng, Wagner, & Cullen, 2002). Canonical miRNAs are expressed as long

poly-adenylated dsRNA transcripts (primary miRNA) from Pol-II promoters (Lagos-Quintana

et al., 2001; Bartel, 2004). Stem-loop, hairpin-like structures are embedded in pri-miRNA tran-

scripts and are flanked by single-stranded RNA segments (Han et al., 2006). pri-miRNAs go

through a two-step maturation process (Denli et al., 2004; Han et al., 2006). First, primary

miRNAs are processed in the nucleus by the Microprocessor complex formed by Drosha, an
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RNAse III, and DGCR8/Pasha, a dsRNA binding protein (Y. Lee et al., 2003; Gregory et al.,

2004). This complex recognizes the stem-loop structures present in the pri-miRNA and cleaves

11bp away from the stem-ssRNA junction. The resulting product, termed precursor miRNA

(pre-miRNA) is about 70nt long, and has a 5’-phosphate group and a 3’ OH. Correctly pro-

cessed pre-miRNAs are exported to the cytoplasm by exportin 5 (Yi et al., 2003; Lund et al.,

2004). Pre-miRNA are then processed by Dicer, which recognizes the 5’ and 3’ ends of the

pre-miRNA and cleaves 22 nucleotides from the 5’ end, removing the loop and producing an

imperfect dsRNA duplex of the miRNA guide strand and its complement, the passenger strand

(Bernstein et al., 2001). The guide strand is then preferentially loaded into Ago2, in the con-

text of RISC which is guided to its target mRNA, resulting in target cleavage or translational

repression (figure 1.1) (Hammond et al., 2001; Hutvagner & P.D. Zamore, 2002; Martinez et al.,

2002; Khvorova, Reynolds, & Jayasena, 2003; Schwarz et al., 2003).

Artificial short-hairpin RNAs (shRNA) similar to endogenous miRNAs have successfully

been used to trigger RNAi (Paddison, Caudy, et al., 2002; Brummelkamp, Bernards, & Agami,

2002; Paddison, Silva, et al., 2004; Berns et al., 2004; Paddison, M. Cleary, et al., 2004). The

first generation of shRNAs mimicked pre-miRNAs, with stems and loops of varying lengths

(Brummelkamp, Bernards, & Agami, 2002; Berns et al., 2004; Paddison, Silva, et al., 2004; Root

et al., 2006). These shRNAs were expressed from Pol III promoters, as RNA polymerase III

can be used for precise initiation and termination of RNA transcripts. shRNAs expressed in

this way are directly processed by Dicer to produce siRNA triggers. The second generation

of shRNAs mimic more closely the endogenous miRNA genes (Zeng, Wagner, & Cullen, 2002;

Silva, M.Z. Li, et al., 2005). They rely on embedding the sequence of the target of interest

in backbones of primary miRNA such as miR-30. These artificial miRNAs can be expressed

from Pol II promoters and go through the same two-step maturation process as endogenous

miRNAs. Second-generation shRNAs were shown to be processed more efficiently and gener-

ated a larger amount of mature small RNAs, leading to increased suppression of target mRNAs

(S.R. Knott et al., 2014). Although long dsRNAs, shRNAs, and miRNAs follow different matu-

ration steps, it is now clear that they elicit RNAi through a common biochemical pathway, with

an siRNA as the key intermediary.



4 Chapter 1. Introduction

1.1.2 siRNA and shRNA design

In mammalian cells, siRNA and shRNA-based RNAi quickly emerged as an essential tool. Yet

implementing RNAi silencing on a genome-wide scale reliably proved challenging. Whereas

long dsRNA can be used for gene-silencing in C. elegans and D. Melanogaster, discrete, short

sequences are used as silencing triggers in mammalian cells. In many cases, siRNAs or shRNAs

designed against genes have not been effective (Khvorova, Reynolds, & Jayasena, 2003). At

first, design rules were drawn from the understanding of the mechanisms of the RNAi pathway

(Schwarz et al., 2003; Khvorova, Reynolds, & Jayasena, 2003; Zeng & Cullen, 2003; Ui-Tei et

al., 2004). Although both strands of siRNA duplexes can be loaded into RISC, examination

of endogenous miRNA showed that thermodynamical asymmetry between the ends of each

strand could be used as a predictor of which strand would be loaded preferentially: the strand

with the less stable 5’ end (Schwarz et al., 2003; Khvorova, Reynolds, & Jayasena, 2003). This

was confirmed in in vitro RNAi experiments in which siRNAs were mutated and cleavage of

both sense and antisense target mRNA was measured (Schwarz et al., 2003). A systematic

analysis of 180 siRNAs targeting regions of the firefly luciferase and the human cyclophilin B

mRNA further enriched the list of features predicting siRNA efficacy (Reynolds et al., 2004).

Most of these features aimed at increasing the RISC loading bias towards the antisense strand:

high stability of the 5’ end of the sense strand and low stability of the 5’ antisense strand both

promote incorporation of the antisense strand. Low overall G/C content was also shown to be

a predictor of siRNA efficacy, as well as some base preferences at nucleotides 1, 10, 13 and 19

(Reynolds et al., 2004).

Further studies attempted to predict effective siRNAs based on sequence features but used

a relatively low number of siRNA efficacy data points, and the training sets of siRNAs were

sometimes designed following the rules mentioned above which biased predictions. Subse-

quent approaches, however, used larger and unbiased datasets: BIOPREDsi, an artificial neu-

ral network algorithm, was trained on a dataset of 2,182 randomly selected siRNAs (Huesken

et al., 2005). To assay the potency of these shRNAs, a fluorescent reporter system was used. By

flanking a reporter gene with the siRNA target sequence, fluorescence levels upon siRNA trans-

fection can be used as a proxy for siRNA efficacy. Each of these siRNAs were assayed using
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a high-throughput fluorescent reported gene system. Although BIOPREDsi successfully pre-

dicted activity of independent siRNAs sets, neural networks are “black box” algorithms which

make interpretation of the algorithm’s parameters difficult. A reanalysis of the same dataset

using the LASSO method for constructing a linear model, with additional input variables such

as frequency of k-mers within the guides further improved prediction accuracy and provided

insight into specific sequence determinants of effective siRNAs (Vert et al., 2006). The develop-

ment of reverse-transfection reagents further increased the toolkit available to rapidly identify

effective siRNAs (Ziauddin & D. Sabatini, 2001; R.Z. Wu, Bailey, & D.M. Sabatini, 2002; R. Ku-

mar, Conklin, & Mittal, 2003). Using a microarrayer, an arrayed mix of RNAi probe, siRNA

target-GFP fusion and an internal RFP control can be spotted on a glass slide. Upon transfec-

tion of cells on top of the slide, each spotted siRNA can be scored by comparing the intensity

of the GFP fluorescence to the RFP. Using this technique, a large number of siRNA or shRNAs

can be tested in vivo in a semi-automatic fashion (R. Kumar, Conklin, & Mittal, 2003).

siRNA design algorithms can be applied to shRNAs and were first used to design shRNA

genome-wide libraries (Berns et al., 2004; Paddison, Silva, et al., 2004). However, shRNAs go

through multiple additional maturation steps and specific algorithms taking these criteria into

account needed to be developed. The siRNA design algorithms mentioned above relied on

machine-learning and large training datasets, which were not initially available for shRNAs.

Novel strategies to monitor shRNA potency took advantage of high-throughput sequencing

to generate thousands of data points in a single experiment (Fellmann, Zuber, et al., 2011).

These sensor assays rely on cloning in the same vector an shRNA under control of an inducible

vector as well as the shRNA target site in the 3’ UTR of a fluorescent reporter. Such constructs

can be generated in a pooled fashion, cloned in viral vectors and transduced in cells. Upon

shRNA expression induction, fluorescence is monitored by flow cytometry. The extent of the

fluorescent reporter knockdown is correlated to the shRNA potency. Cells with varying degrees

of fluorescence can be sorted by flow-cytometry and the shRNAs from each population can be

sequenced by high-throughput sequencing. Such datasets have been used to train a highly

accurate random-forest based classification algorithm (shERWOOD) (S.R. Knott et al., 2014)

and support-vector machine classifier (SplashRNA) (Pelossof et al., 2017). Combining these

computational shRNA selection strategies with optimized miRNA backbones has allowed for
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the creation of state-of-the-art genome-wide shRNA libraries (Fellmann, Hoffmann, et al., 2013;

S.R. Knott et al., 2014).

While RNAi provides a convenient method to knock-down any gene of interest, off-target

effects can make genome-scale RNAi experiments challenging to analyze. Although this is-

sue was initially overlooked as early studies showed that a single base pair mismatch altered

significantly siRNA potency and expression profiling using DNA microarrays showed little off-

target effects. The first siRNA rules thus used BLAST to select unique genomic sequences to

avoid off-target effect (Berns et al., 2004). Subsequent studies outlined that a perfect match be-

tween the siRNA guide’s core seed region (bases 2-8) was necessary for efficient gene-silencing

but that there was high tolerance for mismatches outside of this region (A.L. Jackson, Bartz,

et al., 2003; A.L. Jackson, Burchard, et al., 2006; Birmingham et al., 2006). Complementarity be-

tween the seed region of siRNA and 3’ UTRs of multiple genes was then identified as one of the

sequence-dependent source of off-target effects. Second-generation shRNA design algorithm

take this into account and remove shRNAs mapping multiple times to the genome, allowing

up to three mismatches outside of the seed region.

Another source of off-target effects lies in the saturation of the endogenous miRNA path-

way by synthetic small RNAs. Introducing high levels of RNAi triggers has been shown to

perturb gene regulation by miRNA in cells and to induce toxicity in animals (Grimm et al.,

2006; Khan et al., 2009). These effects can be reduced by using miRNA based shRNAs and

could be potentially eliminated by using recent shRNA backbones and more effective RNAi

trigger that repress gene efficiently at lower concentrations. Off-target effects are nevertheless

unlikely to be completely eliminated and false positives in large scale RNAi experiments can

be avoided by increasing the number of shRNA targeting each gene of interest (Echeverri et al.,

2006).

By combining rules to maximize siRNA/shRNA activity and minimize off-target effects,

large collections of sequence-verified shRNA vectors covering all genes in the human and

mouse genome have been generated (Silva, M.Z. Li, et al., 2005; Root et al., 2006; S.R. Knott

et al., 2014). These collections allow for flexible targeting of any gene in a one-by-one setting as

well as multiplexed genome-wide RNAi screens.
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FIGURE 1.1: Gene perturbation using RNAi or CRISPR/Cas
systems For RNAi, synthetic shRNA can be expressed from
PolII promoters. Primary transcripts follow a multi-step mat-
uration process resulting in the production of an siRNA com-
plementary to target mRNA sequence. Target silencing is
achieved by RISC loaded with the siRNA. For CRISPR/Cas
systems, an sgRNA with a 20bp sequence complementary to
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form a complex with Cas9. The sgRNA-Cas9 complex will
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used to modulate transcription levels using catalytically in-
active Cas9 (dCas9) fused with transcription activators or re-
pressors. Adapted from Shalem, Sanjana, & Zhang, 2015.
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1.2 Gene perturbation using the CRISPR/Cas systems

In recent years, sequence-specific RNA-guided endonucleases have emerged as a complemen-

tary tool to RNAi to perform gene perturbation at the DNA level. In particular, the repurpos-

ing of the microbial adaptive immune system CRISPR (clustered regularly interspaced short

palindromic repeat) has allowed for both targeted gene mutagenesis as well as transcriptional

activation or repression (figure 1.1) (Shalem, Sanjana, & Zhang, 2015).

1.2.1 Mechanism

CRISPR/Cas systems are an adaptive immune system present in most archaea and many bac-

terial species. A CRISPR locus is comprised of CRISPR arrays, short variable sequences called

spacers, separated by short direct repeats, and is flanked by diverse cas genes (Koonin &

Makarova, 2013; Barrangou & Marraffini, 2014). CRISPR/Cas immunity involves three distinct

phases: adaptation, expression and immunity. Each of these phases requires distinct cas genes.

In the adaptation phase, short sequences, called protospacers, from invading viruses and plas-

mids are incorporated in the CRISPR array (F.J. Mojica et al., 2005; Barrangou, Fremaux, et al.,

2007; Bolotin et al., 2005). This step is followed by CRISPR RNA (crRNA) biogenesis (Brouns et

al., 2008; Deltcheva et al., 2011), which involves the transcription of CRISPR array to yield long

precursor RNAs that are further processed by Cas ribonucleases to generate small crRNAs.

These crRNAs comprise sequences from invading plasmid or phage and guide Cas nucleases

for specific cleavage of complementary sequences in the immunity phase (Brouns et al., 2008;

Garneau et al., 2010; Jinek, Chylinski, et al., 2012; Samai et al., 2015).

The adaptation phase is thought to be mediated by a Cas1 and Cas2 protein complex and

is shared by most CRISPR/Cas systems (Yosef, Goren, & Qimron, 2012; Nunez, Kranzusch,

et al., 2014; Nunez, A.S. Lee, et al., 2015). Although the precise of mechanism of how spac-

ers are acquired and integrated into the CRISPR loci remains to be determined, the selection

of new protospacers relies on the presence of highly conserved motifs termed protospacer ad-

jacent motifs (PAMs) (F. Mojica et al., 2009; Bolotin et al., 2005; Garneau et al., 2010; Shah et

al., 2013). These motifs are generally conserved 2-5nt long sequences immediately flanking
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protospacer sequences that are to be integrated in CRISPR arrays. PAMs have also been im-

plicated in the immunity phase as mutation of PAMs in target plasmids prevents cleavage by

the Cas9 nucleases (Semenova et al., 2011). As PAM sequences are absent from CRISPR arrays,

this mechanism allows the CRISPR/Cas system to distinguish self from non-self and prevents

cleavage of spacer sequences in CRISPR arrays.

Great diversity between CRISPR/Cas systems has been observed at the level of crRNA

biogenesis and targeting, and these systems have been divided in two classes, according to

the number of proteins involved in targeting: class I systems rely on multiple proteins and the

crRNA to form an effector complex (Zhao et al., 2014; R.N. Jackson et al., 2014) whereas class

II systems utilize a large Cas protein in conjunction with the guide crRNA (Jinek, Chylinski,

et al., 2012). Multiple and diverse class I systems have been characterized outlining the diverse

architecture of CRISPR/Cas (Makarova et al., 2011; Wiedenheft, Sternberg, & Doudna, 2012).

The most well studied Class I types are type I and type III. In type I systems, the pre-

crRNA is cleaved by the Cas6 endoribonuclease, one of the proteins of the CRISPR-associated

complex for antiviral defense (Cascade) (R. Wang et al., 2010). The complex then recognizes

and binds the target DNA homologous to the crRNA and recruits Cas3 which catalyzes target

cleavage (Beloglazova et al., 2011; Huo et al., 2014). In type III systems, cleaved pre-crRNA

are incorporated in an effector complex containing Cas10 that mediates target binding and

cleavage. Type III Cas-systems have been shown to target both RNA and DNA (Hale et al.,

2012; Staals et al., 2014; Samai et al., 2015; T.Y. Liu, Iavarone, & Doudna, 2017).

Class II CRISPR system rely on a single subunit crRNA-effector module, and are divided

in types II and V. Most type II loci also encode a trans-activation CRISPR RNA (tracrRNA).

The tracrRNA is partially complementary to the repeats in CRISPR arrays. Processing of the

pre-crRNA requires annealing of the tracrRNA to the repeats, formation of a complex with

Cas9 and cleavage by a host RNAse III protein (Deltcheva et al., 2011). Cas9, in complex with

the crRNA and tracrRNA, then identifies the DNA target and mediates its cleavage (Jinek,

Chylinski, et al., 2012). Type V systems, more recently identified in Francisella novicida, rely

on CpfI for both processing and interference (Zetsche, Gootenberg, et al., 2015; Fonfara et al.,

2016). CpfI cleaves pre-crRNA, to generate intermediate crRNA that are further matured and

subsequently guide the single RNA-CpfI complex to its target.
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While both class I and class II CRISPR/Cas systems rely on RNA-guided endonucleases

to provide adaptive immunity to bacteria or archaea, the effectors of class II systems are single

proteins rather than complexes making them more convenient to use as molecular tools in

different organisms. Using type II CRISPR systems as-is would still require 4 components:

two RNAs, the tracrRNA and crRNA guide as well as two proteins, RNAse III and Cas9. The

development of chimeric guide RNAs has greatly simplified this system. In vitro experiments

showed that the mature tracrRNA:crRNA duplex could be replaced by a single chimeric RNA,

also known as single-guide RNA (sgRNA), that maintains the secondary structures needed for

Cas9 cleavage as well as the 20nt needed to guide it specifically to its target (Jinek, Chylinski, et

al., 2012; S. Cho et al., 2013). This technical advance has greatly contributed to the widespread

use of S. pyogenes Cas9 coupled with sgRNAs as a genetic engineering tool.

1.2.2 Genome engineering of mammalian cells

Gene editing

In bacteria and archaea, type II CRISPR systems neutralize invading genetic elements by induc-

ing DNA double strand breaks at the target site. Two domains within Cas9 proteins, the HNH

and RuvC domain, each mediate the cleavage of one of the DNA strand, leading to a double

strand break (DSB) 3 base pairs upstream of the PAM motif (Garneau et al., 2010; Jinek, Chylin-

ski, et al., 2012). This interference provides bacteria resistance to bacteriophages or invading

plasmids. In mammalian cells, DSBs can be repaired mainly by non-homologous end-joining

(NHEJ) (Lieber et al., 2003) or by homology-directed repair (HDR) (Jasin & Rothstein, 2013).

The NHEJ pathway is error prone and an insertion-deletion (indel) mutation can be introduced

upon repair of the DSB. Targeting Cas9 to coding exons of genes of interest can lead to the in-

troduction of frame-shift mutations and premature stop codons resulting in production of non-

functional proteins and nonsense mediated-decay of the mRNA. Although on average only

two-thirds of repairs would produce frame-shift mutations, large indels might produce non-

functional proteins. This approach was first used in mammalian cells to generate knock-outs

by co-expressing Cas9 and sgRNAs to the CLTA gene and the AAVS1 locus, with a knock-out

efficiency close to 10% (Jinek, East, et al., 2013; Mali, L. Yang, et al., 2013). Other studies used
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the complete S. pyogenes CRISPR system, Cas9, tracrRNA, CRISPR array and RNAse III, to per-

form multiplexed genome engineering of EMX1 and PVALB (Cong et al., 2013). Although both

of these strategies can be used to efficiently knock-out a gene, the chimeric gRNA/Cas9 system

is more convenient as it requires only two components. This strategy was rapidly shown to

work with high efficiency in mouse embryonic stem cells and embryos and could be used to

knock-out multiple genes simultaneously, in a one-step injection of Cas9 mRNA and multiple

sgRNAs (B. Shen et al., 2013; H. Wang et al., 2013). Although all the examples above rely on

repair by the NHEJ pathway, precise genome-editing can be achieved by co-delivering a repair

donor. The frequency of the integration of the donor is increased by the DSB generated by Cas9

and this allows faster generation of engineered cell lines or mice than by conventional homolo-

gous recombination. Furthermore, single stranded DNA oligos can be used as template donors

to introduce point-mutations, protein tags, or LoxP sites efficiently and conveniently (H. Wang

et al., 2013; H. Yang et al., 2013).

Gene activation and repression using CRISPR/Cas9

As an RNA-guided endonuclease, the CRISPR/Cas9 system has further evolved to become

a powerful platform for gene regulation. Cas9 can be inactivated by introducing two muta-

tions in its catalytic domains (D10A and H841A) (Jinek, Chylinski, et al., 2012). The inactive

Cas9 (dCas9) can then be fused to any transcription factor to target it to a locus of interest and

mediate gene activation or repression. The repressive effect of dCas9 was first shown in Es-

cherichia Coli: targeting dCas9 to the promoter region or non-template strand of a transcript

leads to the down-regulation of the mRNA. This is thought to be due to steric hindrance of

RNA polymerase by Cas9 during initiation and elongation (Qi et al., 2013). dCas9 alone also

hinders mRNA transcription in mammalian cells but to a lesser extent (2-fold reduction in hu-

man cells, 1000-fold reduction in bacteria) (Qi et al., 2013). To increase this effect in mammalian

cells, dCas9 was fused to transcriptional repressors such as KRAB. The dCas9-KRAB fusion

was shown to repress a control GFP construct robustly when targeted to the locus (Gilbert,

Larson, et al., 2013). Although early studies required several sgRNAs targeting the same pro-

moter to recruit sufficient dCas9-KRAB to silence the gene, novel sgRNA selection rules have

reduced this requirement and robust knock-down can be now be achieved with one sgRNA
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(Gilbert, Horlbeck, et al., 2014; Horlbeck et al., 2016). Other dCas9 fusions have been used for

transcriptional activation and gain-of-function screens (Perez-Pinera et al., 2013; A.W. Cheng

et al., 2013; Mali, Aach, et al., 2013; Konermann et al., 2015). These large-scale experiments

were previously limited by the use of cDNA overexpression libraries, which do not always re-

capitulate isoform complexity. To activate gene expression, dCas9 can be fused to a single, or

combinations of various activation domains such as the one from VP16 (Maeder et al., 2013),

p65 and HSP1 (Konermann et al., 2015). Similarly to CRISPRi, early experiments in mam-

malian cells required at least 3 to 4 sgRNAs targeting the dCas9-activator fusion to the same

promoter to achieve gene activation. Two strategies were explored to increase the number of

synthetic activator recruited to the locus. The first, named SunTag, takes advantage of single-

chain variable fragment antibodies (scvF) in which the variable regions of the light and heavy

chain of the antibody have been fused. This antibody can be expressed from cells and fused

to proteins of interest (Tanenbaum et al., 2014). The SunTag is comprised of an array of pep-

tides recognized by such antibodies. A dCas9-SunTag fusion can thus recruit multiple copies

of an scvF-activator which leads to gene activation using a single sgRNA. A second strategy is

to modify the sgRNA scaffold. The addition of MS2-binding RNA hairpins to the parts of the

sgRNA protruding from the Cas9 protein can direct the recruitment of MS2-activator fusions to

dCas9. Using two MS2 loops to direct MS2-p65-HSF1 to the sgRNA-dCas9-VP64 duplex was

shown to greatly improve gene activation of targets (Konermann et al., 2015). Both strategies

where used in genome-scale studies where additional rules for sgRNA selection where iden-

tified to robustly activate any genes (Gilbert, Horlbeck, et al., 2014; Konermann et al., 2015).

Customizing the sgRNA scaffold provides great flexibility in directing transcription factors to

dCas9. The use of wide range of RNA recruitment structures, such as MS2, PP7 and com,

can be used to encode both target site and effector in the sgRNA. By combining both CRISPRi

and CRISPRa, this allows for the investigation of transcriptional networks by simultaneously

activating and repressing different genes (Zalatan et al., 2015).
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Epigenome editing

Recent studies have also shown that CRISPR/Cas9 can be used to modify epigenetic marks.

dCas9 fused with the histone demethylase LSD1, was shown to remove activating H3K4 ac-

tivating marks and repress gene levels when targeted specifically to enhancers (Kearns et al.,

2015). Conversely, genes can be activated by using the catalytic core of human acetyltrans-

ferase p300 to acetylate H3K27 at promoters and enhancers (I.B. Hilton et al., 2015). Similar

strategies have been devised to edit methylation marks by using dCas9-Tet1 or dCas9-DNMT3

fusions (J.I. McDonald et al., 2016; Vojta et al., 2016; X. Xu et al., 2016; X. Liu et al., 2016; Step-

per et al., 2017). Although these experiments expand the range of tools used to modify gene

expression using CRISPR/Cas9 systems, they have mostly been used on a rather small number

of genomic loci and it is unclear whether they are efficient enough to perform genome-wide

scale experiments.

1.2.3 sgRNA design

The CRISPR/Cas system allows gene perturbation in multiple ways, however they all require

precise focusing of Cas9 to the intended target. Achieving maximal on-target efficiency and

minimizing off-target effects requires careful selection of the effector sequence, especially for

genome-wide experiments. The search space for potent guides is significantly smaller for

CRISPR/Cas systems as target sites need to be flanked by specific PAM motifs. The PAM

of S. pyogenes Cas9 was first both computationally and experimentally identified: it recognizes

spacers flanked by NGG or, to a lesser extent NAG (Garneau et al., 2010; Jinek, Chylinski, et al.,

2012). The PAMs from other Cas orthologs have been characterized in high-throughput assays

to extend the repertoire of targetable sequences and provide orthogonal Cas systems. Cpf1’s

PAM, TTTN allows for example to edit AT rich regions where SpCas9 cannot be used (Esvelt

et al., 2013). Initial rules for sgRNAs were primarily based on GC content and position of the

target site in the exon structure, as introducing frameshift mutations in the first exon increase

the likelihood of generating indels that lead to loss of protein function. Comparing the efficacy

of sgRNAs targeting essential genes such as ribosomal genes refined some of these parameters

and allowed for the design of support-vector-machine classifiers to predict sgRNA potency (T.
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Wang et al., 2014). The next generation of sgRNA design algorithms relied on specific sensor as-

says similar to the ones used in RNAi to acquire large data sets of sgRNA efficacy data (Doench,

Hartenian, et al., 2014; Chari et al., 2015). Two approaches were explored, one study tiled cell

surface markers with libraries of sgRNA that were delivered using lentiviruses. Using flow

cytometry, cells that had lost the marker could be sorted and the sgRNAs sequenced. Knock-

out of the surface marker was used as a measue of the sgRNA’s potency (Doench, Hartenian,

et al., 2014). A second study generated libraries of sgRNAs and corresponding target sites, and

delivered both libraries to HEK293 cells. Direct high-throughput sequencing of the target sites

and analysis of the mutations rates was used to rank sgRNAs (Chari et al., 2015). Both of these

studies trained machine-learning algorithms and identified sequence determinants of sgRNA

efficacy. In addition to sequence based paramaters, additional variables such as chromatin ac-

cessibility at the target site can also be considered when selecting target sites (X. Wu et al., 2014;

Moreno-Mateos et al., 2015; H. Xu et al., 2015).

Similarly, CRISPRi and CRISPRa reagents have been optimized to allow the use of sin-

gle rather than multiple sgRNAs to activate or repress genes. As the mechanism of action

is different from the active Cas9, additional parameters were shown to be critical. They in-

clude distance from the target site to the transcription start site (TSS) and nucleosome posi-

tioning (Maeder et al., 2013; Gilbert, Larson, et al., 2013). Although in intial CRISPRi/a ex-

periments, sgRNAs needed to be targeted to the non-template DNA strand to exhibit activ-

ity, Cas9-transcription factor fusions do not have this requirement and large-scale experiments

showed that the DNA strand that was targeted did not correlate with sgRNA activity (Qi et al.,

2013; Gilbert, Larson, et al., 2013). The impact of the distance to TSS and nucleosome posi-

tioning were validated by analyzing CRISPRi/a straight lethal and ricin susceptibility screens

and these criteria, as well as sequence features were used to design genome-wide libraries for

gene activation and repression (Gilbert, Horlbeck, et al., 2014; H. Xu et al., 2015; Horlbeck et al.,

2016).

Early CRISPR/Cas9 mediated cleavage experiments both in vitro and in vivo showed that

Cas9 target recognition tolerated mismatches (Jinek, Chylinski, et al., 2012; Mali, L. Yang, et al.,

2013). Perfect target-sgRNA complementarity was initially thought to be required for cleavage

in a “seed” region of 13bp proximal to the PAM. These observations were refined by using a
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large number of mutated guides, with up to 5 mismatches with target sequence (Hsu et al.,

2013; Fu et al., 2013). Although mismatches in the seed sequence greatly reduce Cas9 effi-

ciency, they are tolerated at specific positions and cleavage was observed with as many as

three non-contiguous mismatches. Furthermore, small insertions or deletions in the sgRNA

do not hamper target cleavage (Lin et al., 2014). To limit off-target cleavage, initial sgRNA

design algorithm removed sgRNAs mapping to multiple genomic loci with less than three

mismatches, especially at the 5’ end of the guide RNA (Hsu et al., 2013). Other approaches

to characterize CRISPR/Cas9 off-target effects used dCas9 fused to HA tags to identify Cas9

binding sites by ChIP-Seq (Kuscu et al., 2014; X. Wu et al., 2014). These studies uncovered large

numbers of off-target binding sites, recognized by dCas9 using the 5 bp proximal to the PAM.

Additionally, chromatin accessibility was found to be a strong indicator of binding as poten-

tial off-target sites outside of DNAse I hypersensitive regions were significantly less bound.

Estimating indels generated by active Cas9 at these off-target sites however showed that they

are very rarely mutated above background level, and although Cas9 binds region with lim-

ited sequence-complementarity, perhaps more extensive pairing is required for target cleavage.

Whole genome profiling of DSB repairs using high-throughput sequencing further identified

off-target sites undetected in silico and highlighted the variability of off-target effects depend-

ing on sgRNA sequence (Pattanayak et al., 2013; X. Wang et al., 2015; S.W. Cho et al., 2014). The

specificity of other Cas9 orthologues such as Staphylococcus aureus Cas9 or from other CRISPR-

Cas types such as CpfI have also been characterized and shown to levels of specificity similar

to SpCas9 (Kleinstiver et al., 2016; D. Kim et al., 2016; Ran, Cong, et al., 2015).

In addition to filtering multi-mapper sgRNAs, chemical modifications in the sgRNA and

modification of the Cas9 protein have been used to decrease off-target effects. sgRNAs trun-

cated at their 5’ end are slightly less active than their full length counterparts but reduce sub-

stantially cleavage at off target sites. The extension of loop sequences and mutations in the

sgRNA scaffold were used in imaging experiments to direct a dCas9-eGFP fusion to target ge-

nomic sequences more selectively. To perform genome-editing with high specificity, a Cas9

nickase, in which only one of the Cas9 catalytic sites is active can be used (Cong et al., 2013;

Jinek, Chylinski, et al., 2012). To generate a DSB, a pair of target sites in close proximity needs

to be cleaved simultaneously, thus increasing specificity (Ran, Hsu, et al., 2013; Mali, Aach,
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et al., 2013).

1.3 High-throughput screening format and strategies

With optimized RNAi or CRISPR libraries in hand, large scale screens can be performed effi-

ciently. For mammalian cells based experiments, two different formats are mainly used: ar-

rayed or pooled screens. Depending on the number of target genes, arrayed screens are per-

formed in multi-well plate formats, in which each well receives a different effector. Depend-

ing on the phenotype considered, transient transfections of RNA effectors or plasmid-based

shRNAs or sgRNAs can be used, or viral vectors can be deployed when stable expression

is needed. Using this format, the effect of a knock-down/knockout on a phenotype can be

assessed by using plate-readers or automated microscopy, which allows screening of a large

variety of different phenotypes. This strategy was for example used to screen 8000 genes for

regulators of NF-kB transcription activity using as a luciferase reporter assay (Brummelkamp,

Nijman, et al., 2003; Zheng et al., 2004). The use of microscopy as a read-out allows scor-

ing of phenotypes using a greater number of parameters, temporal or spatial. This has been

applied to profile genes involved in complex phenotypes such as endocytosis by transfecting

cells with genome-wide arrayed siRNA libraries and tracking intake of fluorescent transferrin

and epidermal growth-factor by microscopy (Collinet et al., 2010). In addition to using high-

content imaging to score phenotypes, screening in an arrayed format allows greater flexibility

to deliver multiple siRNAs, or an siRNA in combination with small molecule inhibitors, to the

cells to study synthetic lethal effects or genetic interactions (Laufer et al., 2013). To reduce the

amount of screening reagents that are necessary to conduct large scale arrayed screens, another

approach is to use solid-phase reverse transfections using siRNA microarrays. This technique

relies on spotting effectors in discrete locations on glass slides, and culturing cells on these

slides. A different gene is targeted in each cluster of cells depending on its location on the spot-

ted glass slide, which allows to multiplex thousands of knock-downs per slide. One drawback

is that only microscopy read-outs can be used to identify both the position of the cells on the

glass slide and the phenotype precisely. This strategy has for example been used extensively
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in the MitoCheck project to perform genome-wide siRNA screens to identify genes involved in

cell division (Neumann et al., 2010).

Pooled screens in constrast rely on delivering multiple effector molecules using lentiviral

vectors to large number of cells simultaneously rather than in a one-by-one format. This greatly

simplifies the screening process but can only be applied to phenotypes that can be scored by en-

richment or depletion of effectors in the pool of cells or for which cells of interest can be sorted

to identify target genes. Early pooled screens relied on a positive selection to identify cells in

which the shRNA targeted a gene relevant to the phenotype (Berns et al., 2004; Kolfschoten et

al., 2005). Berns et al. for example identified components of the p53 pathway by infecting pools

of human fibroblasts with shRNA libraries and selecting and extracting the shRNA sequence

from colonies that bypassed p53-dependent proliferation arrest (Berns et al., 2004). Such ex-

periments where however limited to phenotypes for which the knockdown of specific genes

gave cells a competitive advantage. To perform negative-selection screen and identify lethal

shRNAs targeting genes important for cell growth or survival, the abundance of each shRNA

in the pool of cell needs to be tracked over time. Hits in this type of screens are genes targeted

by shRNAs that drop-out over the course of the experiment.

An initial strategy to estimate the abundance of each shRNA in a given sample was to bar-

code each sequence uniquely. After amplification of these barcodes from the genomic DNA

of the pool of cells, drop-outs can be identified by competitive hybridization of pre- and post-

treatment/culture barcodes on custom DNA microarrays (Paddison, Silva, et al., 2004; Silva,

M.Z. Li, et al., 2005; Ngo et al., 2006). This allows for example the identification of cancer cell

and proliferation and survival genes in a systematic manner. Barcoding each shRNA vector

uniquely prior to the screen requires large sequencing efforts and the generation of arrayed

shRNA libraries. Subsequent approaches relied on the hybridization of the variable region of

the shRNA directly, simplifying the generation of large-scale libraries (Schlabach et al., 2008;

Luo et al., 2009). Micro-array quantification of pooled screens shRNAs has now been replaced

by high-throughput sequencing that allows blind quantification of any number of sequences

(S.R. Knott et al., 2014). The flexibility and parallel nature of pooled screens, using shRNAs or

sgRNAs as effectors, have been particularly useful in cancer research to identify novel thera-

peutic targets and cancer vulnerabilities (Schlabach et al., 2008; E. McDonald et al., 2017).
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Genome-wide drop-out screens can be relatively easily performed in many fast growing

cancer cell lines and can be used to identify both straight-lethal and sensitizer hits when the

screen is performed while the cells are treated with a drug to identify both single and com-

binatorial drug targets in different genetic backgrounds (Luo et al., 2009; Weissmueller et al.,

2014; Manchado et al., 2016). The screening approaches described above have mostly been ap-

plied to cell culture, however they have also been transposed to in vivo systems that can be

more physiologically relevant than 2D cultures. For in vivo experiments, shRNAs or sgRNAs

can be delivered directly to adult mice tissue using viruses, or introduced by transplantation

of cells pre-infected with the effector molecules. Large-scale in vivo drop out screens have

allowed for the identification of new drug targets such as Ptpn2 as a cancer immunotherapy

target (Manguso et al., 2017). Gain-of-function genome-wide scale have also been performed

in vivo to identify genes involved in metastatic processes in lung cancer or liver regeneration

(Wuestefeld et al., 2013; Chen et al., 2015).

Pooled screens can be used to simultaneously interrogate large sets of genes in a scalable

and efficient manner when compared to arrayed screens. However, they are limited to low-

content readouts such as growth rate, or variations in expression of a fluorescent marker, as

opposed to the large number of features that can be read out by high-content microscopy in an

arrayed setting. Novel screening strategies rely on single-cell sequencing to combine the scale

of pooled screens with the complex readouts possible in arrayed screens (Dixit et al., 2016).

These experiments rely on the use of expressed barcodes identifying uniquely the molecule

used for the perturbation. For example, libraries of barcoded sgRNAs can be transduced into

cells. After selection and culture, the transcriptome of the infected cells can be analyzed by

single cell sequencing which allows recovery of both the sgRNA delivered to the cell and the

transcriptional profile. Large-scale studies using this strategy have so far been performed using

CRISPR and CRISPRi (Dixit et al., 2016; Adamson et al., 2016). Although analysis of these

experiments are still challenging, they will surely allow faster characterization of hits as well

as combinatorial pooled screens in which multiple genes are perturbed simultaneously.

To sum up, the strength of conclusions drawn from the RNAi or CRISPR experiments de-

scribed above is highly dependent on the potency of the shRNAs or sgRNAs used to trigger

knockown or knockout. In this thesis, I will first present work on optimizing both shRNA and
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sgRNA design (chapter 1 and 2). With these optimized tools in hand, I performed more com-

plex loss-of-function studies, involving the simultaneous suppression of multiple genes in a

cell, aiming at identifying combinatorial therapeutics to overcome resistance mechanisms(chapter

1), as well as interrogating a stroma-mediated gemcitabine resistance mechanism in pancreatic

cancer (chapter 3).
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Chapter 2

Combinatorial drug target discovery by

multiplex 2D RNAi screens

This project was started in Cold Spring Harbor and transferred to Cambridge when the lab moved in

September 2014. The work described in the first part of this chapter was the result of a collaboration. As

part of the shRNA library optimization, Dr. Simon Knott designed shERWOOD, the machine learning

algorithm to predict potent shRNA. The validation screens of shERWOOD versus other existing tools, as

well as the genome wide validation of ultramir versus the previous backbone were performed by Ashley

Maceli (figures 2.6, 2.7A). The rest of the results, including the experimental design of the ultramiR

backbone and building of the genome wide libraries were the result of my own work. The work describing

improved libraries and their validation was published in Molecular Cell (see Appendix A).

As part of the shERWOOD algorithm and 2D shRNA vector validation, Dr. Elvin Wagenblast

performed the qPCRs shown in figure 2.7B and 2.8. The design and construction of the 2D shRNA

vector are my own work. The initial vector construction efforts started prior to this PhD thesis and some

of the spacer length optimization work (figure 2.4A) was part of my MSc Thesis, although the data has

been re-analyzed for the purpose of this thesis. The subsequent large scale 2D screening efforts, including

design of the library, sequencing method and performing the screens are all my own work.

2.1 Introduction

The development of targeted therapies aimed at oncogenic drivers has profoundly changed

cancer treatment. These new therapies target specific pathways and molecules to which cancer
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cells have become addicted to sustain their growth, rather than any rapidly dividing cells as in

standard chemotherapy. Targeted therapies also allow for rational drug design and are tailored

to each tumor’s specific genetic mutations and oncogenic drivers, maximizing therapeutic ben-

efit and reducing treatment side effects.

Using targeted therapies has proven successful for several types of cancer where small

molecules have been used to target commonly mutated oncogenes such as Her2, BRAF or MEK

(Fisher & Larkin, 2012; Gajria & Chandarlapaty, 2011). However, although patients initially

respond to treatment, most develop drug resistance followed by tumor relapse. The resis-

tance mechanism can be explained by different factors. Following exposure to targeted ther-

apy, cancer cells can take advantage of pathway plasticity and redundancy to rescue the loss

of the targeted pathway. One example of such phenomenon is Her2 over-expressing breast

cancer. In these tumors, growth factor signaling pathways are stimulated and treatments such

as Trastuzumab have been used to directly targeted Her2 (Yu & Hung, 2000). Cancer cells can

however acquire deleterious mutations in the tumor supressor PTEN leading to the reactiva-

tion of the PI3K pathway despite HER2 inhibition (Gajria & Chandarlapaty, 2011). To overcome

such resistance mechanism, it is necessary to move towards combinatorial therapies that target

multiple pathways simultaneously. This project aims at developing strategies to discover such

combinatorial therapeutic target therapies using melanoma as a model.

Melanoma is the rarest but most aggressive of skin cancers (Schadendorf et al., 2015). It is

caused by the unimpeded proliferation of melanocytes, the cells responsible for skin pigmenta-

tion. Progression of the disease can be classified in five stages, according to the depth at which

the tumor has spread (figure 2.1). From stage 0 to stage 2, the tumor is contained locally and

can be removed by surgery. At stage 3, cancer cells have spread deeper in the skin and adjacent

lymph vessels and glands. Stage 3 tumors can still be treated by surgery but patients relapse

in 50% of cases. At stage 4, cancer cells have spread to other parts of the body and the tumors

are treated by chemotherapy or targeted therapy. The five year survival is then of only 15%

(Holmes, 2014).

High-throughput sequencing studies of numerous tumors have allowed for the discov-

ery of several genes implicated in disease progression (Davies et al., 2002; Hodis et al., 2012).

Most of these genes trigger cell growth by up regulating the MAPK/ERK signaling pathway
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FIGURE 2.1: Melanoma progression, adapted from (Holmes,
2014)

(figure 2.2). BRAF is the most commonly mutated oncogene in melanoma as 50% of tumors

harbor the BRAFV 600E activating point mutation (Curtin et al., 2005). Although introduction

of mutated BRAF in melanocytes is not sufficient to induce invasive melanoma, simultaneous

deletion of p16 or PTEN does induce oncogenic transformation (Dankort et al., 2009). Another

gene involved in the MAPK/ERK pathway, NRAS, is mutated in 20% of melanomas and ac-

tivates both the MAPK pathway as well as the PI3K pathway (’t Veer et al., 1989) Oncogenes

commonly mutated in other cancer types such as MYC, CDKN2Ap16 and PTEN are also found

to be mutated in a lower percentage of melanomas (Curtin et al., 2005; Goel et al., 2006).

Great efforts have been deployed to design small molecules targeting these mutated genes.

Vemurafenib, a BRAF inhibitor specifically targeting BRAFV 600E is currently used as treatment

for melanomas harboring this mutation (Fisher & Larkin, 2012). Despite this drug being ef-

fective the initial phase of treatment, most patient relapse after six to eight months. Several

resistance mechanism to targeted BRAFV 600E inhibition have been identified. The targeted

MAPK pathway can be reactivated by up regulation of COT1 (Johannessen et al., 2010), and

PDGFR or IGF1R signaling (Villanueva et al., 2010). Mutations of MEK, downstream of BRAF
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FIGURE 2.2: The MAPK pathway Upregulation of the
MAPK pathway is common in melanoma and leads to un-
controlled growth of the tumor cells.

in the MAPK pathway can restore the pathway activation and confer resistance to BRAF in-

hibitors (Emery et al., 2009). To counter such resistance mechanisms, new targets that can be

used in multi-therapy treatments need to be discovered.

To identify combinations of drugs deleterious to cancer cells, new assays need to be devel-

oped. Such experiments have been performed at large scale in yeast cells for which millions

of double mutants have been generated (Bandyopadhyay et al., 2010; Costanzo et al., 2016). In

mammalian cells, they have mainly been conducted in an arrayed format, by transfecting pairs

of effectors such as siRNAs and measuring phenotype by high-content microscopy (Billmann

et al., 2016). Others have relied on delivery of combinations of drug to cells to identify synergis-

tic targets. These strategies are complex to set up and generally require automation platforms,

limiting the number of combination of targets that can be tested simultaneously.

Here, we will take advantage of the high-throughput functional genomics tools devel-

oped in the lab, particularly RNA interference (RNAi) screening (Paddison, Caudy, et al., 2002;

Chang, Elledge, & Hannon, 2006). The first aim of this project aims is to adapt single shRNA

expression vector to perform combinatorial shRNA RNAi screens, in which different pairs of

genes are targeted in each cell. Several studies report the use of vectors harboring two shRNA,
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expressed bicistronically and successfully targeting pairs of genes (Chicas et al., 2010). We will

further optimize such vectors to ensure that both shRNAs are processed and elicit knockdown

at the same level. Finally, we will design a strategy to efficiently clone and sequence highly

complex pools of shRNA pairs to allow for simultaneous screening of up to 20 000 combina-

tions of targets in the same experiment.

With these optimized vectors in hand, we will screen libraries of pairs of “druggable genes"

in four melanoma cell lines with different genetic backgrounds. Hits in these screens will be

further validated in vitro using CRISPR/Cas9 system, a genetic tool orthogonal to RNAi. Us-

ing this approach, we will focus on interfering with entire molecular networks and will provide

insights on critical pathway nodes that could be targeted in combination to impede the prolif-

eration of cancer cells.
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2.2 Material and methods

2.2.1 Cloning of shRNAs in the ultramiR backbone

shRNAs sequences were predicted using the shERWOOD algorithm (S.R. Knott et al., 2014)

and 97-mers (TGCTGTTGACAGTGAGCGNNNNNNNNNNNNNNNNNNNNNNTAGTGA

AGCCACAGATGTANNNNNNNNNNNNNNNNNNNNNNTGCCTACTGCCTCGGA) or-

dered from Integrated DNA technologies. The shRNAs were amplified individually by PCR

using the Haiprin-HpaI-F primer (5’-CTGGGATTACTTCTTCAGGTTAACCCAACAGAAGG

CTAAAGAAGGTATATTGCTGTTGACAGTGAGCG) and the Hairpin-HpaI-R primer (5’-A

GAGATAGCAAGGTATTCAGTTTTAGTAAACAAGATAATTGCTCCTAAAGTAGCCCCT

TGAAGTCCGAGGCAGTAGGC). The 97-mers were amplified by PCR using KOD (Takara)

and purified using a QIAquick PCR purification kit. The amplified shRNAs were cloned by

Gibson assembly (NEB) in a vector harboring an ultramiR cassette, digested with HpaI (NEB).

1 µL of the Gibson assembly reaction was transformed by electroporation into Endura electro-

competent cells (Lucigen). Cells were plated on LB-Amp agar plates and grown overnight at

30◦C. Colonies were picked, grown, mini-prepped and the full ultramiR backbone was Sanger

sequenced by GATC-Biotech.

2.2.2 Barcoding shRNAs in the 2D-sequencing vector

The 2D-sequencing vector is based on the MSCV-derived retroviral LMN vector backbone, and

harbors an ultramiR cassette flanked by two 25bp barcodes. To build this vector, a gBlock (IDT)

comprised of two AT rich regions from the yeast genome separated by an EcoRI and XhoI re-

striction site were cloned LMN, previously digested using BglII and MluI, by Gibson assembly.

Then, an ultramiR cassette was amplified by PCR using two ultramer oligos (IDT) harboring a

25bp random barcode flanked by the Illumina Truseq or SBS3 sequence (forward primer: TAT

TCTATTCCTTGCCTTACTTTTCTTATGAATTCNNNNNNNNNNNNNNNNNNNNNNNN

NAGATCGGAAGAGCACACGTCTGAACTCCAGTCACCATGTCTGTTCTCTACATTGCTT

TTTATTGGATCCTATTGGTTTTCCTAACCAACGCGCTGCACAAGATCTTGTTTGAATGA

GGCTTCAGTACT, reverse primer: TATATGTACTTATACGGATGTTATTACTCGAGNNN
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NNNNNNNNNNNNNNNNNNNNNNAGATCGGAAGAGCGTCGTGTAGGGAAAGAGT

GTAGATCTCGGTGGTCGCCGTATCATTTTTGCGGCCGCTAGTCTGTCTAAATGTGCAAT

GGGAGCAGAACGCGTAAAGTGATTTAATTTATACCATTTTAATTCAGCT. This barcoded

ultramiR cassette was cloned by Gibson assembly in the vector created as described above us-

ing the EcoRI and XhoI site. The reaction was transformed in highly competent MegaX DH10B

T1R bacterial cells (Life Technologies). More than 5 million independent transformation events

were obtained.

The 240 shRNAs targeting druggable genes or olfactory receptors were cloned as a pool

in the 2D-seq shRNAs as described in section 2.2.1. For each clone, the full sequence of the

shRNA cassette and the flanking barcodes were Sanger sequenced by the Beckman Coulters

Genomics facility. Clones for which there was no mutations in the ultramiR cassettes and the

GC content of each barcode was lower than 80% were kept to build dual shRNA libraries.

2.2.3 Cloning of dual shRNA libraries

The MSCV-derived retroviral LMN vector backbone was adapted for the expression of pairs of

hairpins. In this vector both shRNA cassettes are driven by the 5’ long terminal repeat. GFP

and neomycin resistance gene are driven by the PGK promoter. Hairpins in the 2D Sequencing

vector were amplified individually from sequence verified glycerol stocks. The 5’ shRNAs

were amplified using primers HP1-F (5’-GGATCCTATTGGTTTTCCTAACC) and HP1-R (5’-

TCGCGATGAGAAAAAGCCG), and the 3’ shRNAs using primers HP2-F (5’-ATGCATCTTG

GCGGCTTT) and HP2-R (5’-GCGGCCGCTAGTCTGTCTAA). A limiting primer concentration

of 2µM and 35 cycles of amplification were used to equalize the amount of amplicons across

all PCR reactions. PCR products of the first or second shRNA were pooled and loaded on a

1% agarose gel. For each pool, the band ∼600bp was excised and the DNA was purified using

a QIAGEN Gel extraction kit. The two shRNA pools were cloned in a retroviral expression

vector, previously digested with BamHI and NotI (NEB), by a three-way Gibson assembly. The

reaction was transformed in highly competent MegaX DH10B T1R bacterial cells from Life

Technologies. Enough electroporations were done to have at least 1000 times the number of

different shRNA pairs independent transformation events.
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2.2.4 Cloning of dual sgRNA libraries

The pCRoatan-dualSgRNA vector (Erard, S.R.V.R. Knott, & Hannon, 2017) was adapted to

clone barcoded pairs of sgRNAs from DNA chips. DNA chips (CTGTTGACAGTGAGCGG

AAGACgctctaaaacNNNNNNNNNNNNNNNNNNNNCGGTGTGAGACGAGCGTACGCG

TNNNNNNNNNNNNNNNNNNNNCTCGAGACAGGGGTCTCAGTCGGNNNNNNNN

NNNNNNNNNNNNgttttaGTCTTCTGCCTACTGCCTCGGA, Ns are placeholders for the

first sgRNA, the 20nt barcode and the second sgRNA) were ordered from Custom Array, Inc

and amplified by PCR. The amplicons were cloned in an intermediary cloning vector (pCR-

Blunt II-TOPO, Thermi Fischer) by ligation using the SpeI and ApaI sites. Next, the hU6 pro-

moter and a Zeocin resistance cassette were amplified from pCRoatan-dualPromoter (Erard,

S.R.V.R. Knott, & Hannon, 2017) (forward-primer: AGTACCGTCTCTGGTGTTTCGTCCTTTC-

CACAAG, reverse-primer: ATGAACGCGTAGTGCGGATCCTGCAGCACGTGTT) and ligated

into the intermediary cloning vector harboring the chips with the BsmbI and Mlui restric-

tion sites. The cU6 promoter was similarly amplified from pCRoatan-dualPromoter (forward-

primer: ATCGATCTCGAGGCGCCGCCGCTCCTTCAGGCA, reverse-primer: TGATCCTGG

TCTCACGACTAAGAGCATCGAGACTGC) and cloned in the plasmid by ligation using the

BsaI and XhoI restriction sites. The full sgRNA1-hU6-barcode-cU6-sgRNA2 cassette was ex-

cised from the intermediary cloning vector using the BbsI restriction sites and ligated in pCRoatan-

dualSgRNA by ligation. For each cloning step, at number of colony greater than 100 times the

number of different sequences in the chip were obtained to keep the full complexity of the

library.

2.2.5 Cell culture

Melanoma cell lines A-375, SK-Mel-5, SK-Mel-28, and WM-266-4 were purchased from ATCC

and grown at 37◦C in DMEM supplemented with 10% FBS and 50U/mL of penicillin-streptomycin

or MEM supplemented with 10% FBS, sodium pyruvate, and 50U/mL of penicillin-streptomycin,

following supplier instructions. Platinum-A retroviral packaging cell lines were purchased

from Cell Biolabs and grown at 37◦C, in DMEM supplemented with 10% FBS, 50U/mL of

penicillin-streptomycin, 1 µg/mL puromycin and 10 µg/mL blasticidin. Human epidermal
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melanocytes (HEMa-LP) were purchased from Life Technologies and grown at 37◦C in Medium

254 supplemented with Human Melanocyte Growth Supplement-2. 4T1 cells were purchased

from ATCC and grown at 37◦C in RPMI-1640 supplemented with 10% FBS and 50U/mL of

penicillin-streptomycin. The 4T1-T cell line is a clonal line derived from the 4T1 line (Wagen-

blast et al., 2015).

2.2.6 Virus production and cell infection

Platinum-A cells were transfected with plasmids containing the VSVG receptor and the retrovi-

ral plasmid of interest, using the calcium-phosphate transfection method (Wigler et al., 1978).

The supernatant containing the retrovirus was collected two days after transfection, filtered

and stored at 4◦C until use. Cells were infected with an average representation of 1000 inde-

pendent integrations per shRNA, and with a multiplicity of infection of one. Two days after

infection, cells were selected with 400 µg/mL neomycin.

2.2.7 Small RNA cloning

Small RNA cloning of mature miRNA expressed from the dual shRNA vector

Small RNAs were cloned using the method described in (Malone et al., 2012). Briefly, 4µg of

total RNA was spiked with 32P-labeled 19- and 30-mer, loaded on a 12% polyacrylamide gel

and run at 12W for 1.5h. After exposure to a photo-screen, the gel bands corresponding to

RNAs ranging from 19 to 30bp were excised and incubated overnight with agitation in 400µL

of 0.4M NaCl. The RNAs were then extracted from the supernatant by ethanol precipitation.

The 3’ sequencing adapter was ligated to the sample by incubating the size selected RNAs for

two hours at room temperature with 1µL of 50µM adapters (/5rApp/TGGAATTCTCGGGTG

CCAAGG/3ddC/), 2 µL of T4 RNA ligase Truncated (NEB), 2µL of ATP-free T4 RNA Ligase

buffer, and 2µL of DMSO, in a total volume of 20µL. After ligation, the samples were loaded

on a polyacrilamide gels and the 41 to 52bp RNAs were extracted as previously. Next, the

5’ adapter was ligated by incubating the samples at 37◦C for two hours with 2µL of T4 RNA
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ligase (NEB), 2µL of T4 RNA ligase buffer, 2µL of DMSO and 1µL 50µM 5’ adapters (GUUCA-

GAGUUCUACAGUCCGACGAUCU), in a total volume of 20µL. Following ligation, the sam-

ples were run on a polyacrilamide gel and the ligated RNAs of size 68 to 79bp were extracted

as previously. For reverse-transcription, the RNAs were incubated at 70◦C for 30s with 2µL

of 10mM dNTPs and 1.5µL of RT primer (GCCTTGGCACCCGAGAATTCCA, complementary

to the 3’ adapter). The samples were placed on ice for one minute, and 1µL of SuperScript III

reverse-transcriptase (Invitrogen), 4µL of 5X first strand buffer, 1µL of 0.1M DTT and 1µL of

RNAse inhibitor was added. The reaction was placed at 50◦C for an hour, and the enzyme was

heat-inactivated at 70◦C for 5min. The cDNA was then amplified by PCR using KOD (Takara)

according to the manufacturer’s instructions (forwad primer : AATGATACGGCGACCAC-

CGAGATCTACACGTTCAGAGTTCTACAGTCCGA, reverse primer: CAAGCAGAAGACG-

GCATACGAGATNNNNNNGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA). Each sam-

ple was barcoded using the 6bp flanking the TruSeq Illumina sequence in the reverse primer.

The amplified DNA was loaded on a 1.5% agarose gel and the sequences ranging from 135 to

150bp were excised and purified using a QIAGEN gel extraction kit. The small RNA libraries

were quantified by qPCR and sequenced on Illumina GAII or MiSeq platforms.

Small RNA cloning of mature miRNA derived from a miR30 or UltramiR scaffold

Small RNAs (< 200bp) were extracted from 107 using the mirVana miRNA isolation kit (Ther-

moFischer). Libraries were generated using 100ng of small RNAs and the TruSeq small RNA

library preparation kit (Illumina) and sequenced on the Illumina MiSeq.

10µg of total RNA extracted using Trizol reagent were used as input. The sequence of the

linkers and PCR primers was adapted to allow for multiplexing of small RNA libraries and

sequencing using the Illumina technology.

2.2.8 Total RNA sequencing

For each cell line, total RNA was extracted using Trizol reagent. 500ng of RNA was used as

input for the Nugen Ovation RNA-Seq System v2. The cDNA was then sheared to an average

size of 200bp using a Covaris and Illumina sequencing adaptors were ligated. Libraries were
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pooled and sequenced on an Illumina Hi-Seq. The sequencing yielded at least 20 million 75bp

paired-end reads for each library.

2.2.9 Differential expression analysis

Reads were aligned to the hg19 genome (Lander et al., 2001) using Tophat 2.0.12 (Trapnell,

Pachter, & Salzberg, 2009), with default parameters. For all libraries, more than 80% of reads

mapped. Aligned reads were assigned to exons using HTSeq 0.6.0 (Anders, Pyl, & Huber, 2015)

and differentially expressed genes were called using DESeq 1.14.0 (Anders & Huber, n.d.), with

a FDR < 0.05.

2.2.10 Screen sequencing

RNAi screens

The barcodes identifying the shRNAs were amplified from screen genomic DNA using primers

P5-SBS3 (5’-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCT

TCCGATCT and P7-TruSeq-BCX (5’-CAAGCAGAAGACGGCATACGAGATNNNNNNTGT

GACTGGAGTTCAGACGTGTGCTCTTCCG, where the six Ns are the barcode used for mul-

tiplexing). For each time point, at least 200 µg of genomic DNA as input. The amplicon was

gel extracted, purified and quantified by qPCR. Libraries were pooled, and sequenced on an

Illumina High-Seq. At least 20 million reads per time point mapped to the expected barcodes.

CRISPR/Cas9 screens

The barcodes identifying the sgRNA pairs were amplified from screen genomic DNA using

primers P5-EM7 (5’-AATGATACGGCGACCACCGAGATCTACACCGATGATTAATTGTCA

ACACGTGCTGCAGACGCGT) and P7-BCX-cU6 (5’-CAAGCAGAAGACGGCATACGAGAT

NNNNNNCTGAAGGAGCGGCGGCGCCTCGAG), and processed similarly to RNAi screen

samples. Libraries were sequenced on the Illumina MiSeq using a custom read1 primer (EM7-

Seq-primer-Read1: CGATGATTAATTGTCAACACGTGCTGCAGACGCGT) and a custom in-

dex read primer (cU6-index-primer: CTCGAGGCGCCGCCGCTCCTTCAG).
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2.2.11 Screen analysis

For both RNAi and CRISPR screens, reads were mapped to an index of all barcodes expected to

be in the pool using bowtie (Langmead et al., 2009) allowing for one mismatch. Libraries were

normalized by library size and for each construct depletion rates were calculated by dividing

counts at the final timepoint by counts at the initial timepoint. These log-ratios were further

normalized so that the control population had a mean of 0 and a variance of one. Constructs

were classified as depleted with an FDR cutoff of 0.1 using an empirical Bayes moderated t-test

(Smyth, 2004).

2.3 Results

2.3.1 Dual shRNA expressing vector

Vector design

In order to knockdown two independent targets in the same cell, previous studies have relied

on co-transfection of multiple targeting molecules such as siRNAs or drugs. This can be done in

an arrayed format to achieve large scale combinatorial screening. To perform such experiments

in a pooled format, my first aim was to develop a viral vector that I could easily and stably de-

liver to cells, and from which two shRNAs could be expressed. This vector had to fulfill two

requirements. First, the two shRNAs needed to be expressed and processed at similar levels

and mediate significant knockdown for both genes simultaneously. Second, since in pooled

screens the construct is stably integrated in the genomic DNA of the cells, I needed to be able

to estimate the abundance of each shRNA pair in a pool of cells by sequencing. Others have

targeted pairs of gene and obtained significant knockdown levels by expressing two shRNAs

in a bicistronic fashion (Chicas et al., 2010; Wuestefeld et al., 2013). Following these results, we

modified the MSCV-derived vector backbone used for single shRNA screening, named LMN,

to express pairs of shRNAs from the LTR promoter. This vector additionally harbors a fluores-

cent protein and a drug resistance gene expressed from the PGK promoter to allow for tracking

and selection of infected cells (figure 2.3).
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LTR 5’ shRNA spacer 3’ shRNA PGK Neo ZsGreenIRES

FIGURE 2.3: A dual shRNA expression vector Schematic of
the vector used to expressed pairs of shRNA. A DNA spacer
is introduced between the shRNA cassette to allow efficient
processing of both shRNAs. LTR: retroviral long terminal re-
peat, PGK: mouse phosphoglycerate kinase 1 promoter, Neo:
Neomycin resistance gene, IRES: Internal ribosobal entry site,
ZsGreen: ZsGreen1 fluorescent protein. Black arrows indicate
transcription initiation sites.

Empirical evidence in our lab and others has shown that separating the shRNA from its

promoter by a few hundred base pairs can increase processing and overall knockdown effi-

ciency. We hypothesized that to get similar levels of mature guides for both shRNAs, they

needed to be separated by a DNA spacer. I thus cloned vectors with two p16 targeting shRNAs

(p16 shRNA1 and p16 shRNA2) separated with spacers ranging from 0 to 225bp. To rule out

any positional effect, two vectors were built for each spacer length: shRNA1-spacer-shRNA2

as well as shRNA2-spacer-shRNA1.

To compare the efficiency of the shRNAs depending on spacer length, we quantified the

abundance of mature guides targeting the p16 genes by small RNA cloning. We transduced

all constructs, as well as vectors expressing each single shRNA as a controls, in the A38-5 pan-

creatic adenocarcinoma cell line, and following selection, prepared small RNA libraries. We

then compared the abundance of p16 shRNA1 or p16 shRNA2 guide reads in the samples ex-

pressing pairs or single shRNAs (figure 2.4A). To account for library size, the reads from each

sample were normalized by the median number of reads of the 20 most expressed endogenous

miRNAs. The ratio of normalized counts of each p16 shRNA in dual to single hairpin con-

structs was calculated to compare processing in both contexts. This ratio represents the level

at which the shRNA is processed relative to its maximum potential in single constructs. The

results of this first experiment shows that as the spacer length increases, so does the abundance

of processed shRNA guides in the dual constructs. For the 225bp construct, both shRNAs are

on averaged processed at 20% of the level of the control single shRNA vector.

One caveat of this experiment is that pancreatic adenocarcinoma is frequently associated

with p16 mutation and knocking down this gene in the A38-5 cell line can potentially bias the
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results (Caldas et al., 1994). To further study the expression of dual shRNAs, we tested addi-

tional spacers, with a length ranging from 200 to 800bp, with two KRAS targeting hairpins. The

spacer sequences used were derived from either the Kanamycin resistance gene or A/T rich re-

gions of the yeast genome. These experiments were performed in two non-KRAS dependent

cell lines: human embryonic kidney 293T and ERC. ERCs are derived from the chicken fibrob-

last DF-1 cell line and has been used extensively in sensor assays to identify potent shRNAs

(Fellmann, Zuber, et al., 2011).

The use of these longer spacers further increases processing of the pair of shRNAs (figure

2.4B and 2.4C), although the abundance of mature shRNA reads decreases for spacers longer

than 600bp. For all constructs, the spacer does not seem to interfere with the relative processing

of the first or second shRNA as both are processed at similar levels regardless of their position

in the vector. In paired constructs, the KRAS shRNA-1 is consistently more processed than

the KRAS shRNA-2 when normalized to the single shRNA control. To explain this difference,

I examined the raw ratio (i.e. not normalized by the single hairpin construct ratio) of read

counts for the KRAS shRNAs, averaged for both cell lines (figure 2.4D). The KRAS shRNA-2

was significantly more processed in single constructs than the KRAS shRNA-1, and such strong

levels of expression are not reached in the dual shRNA construct.

Overall, when all miRNAs were ranked by number of reads, the KRAS or p16 mature

guides expressed from dual shRNAs constructs were in the top 40 most expressed miRNAs

(supplementary figure 2.1). In light of these results, we chose a 400bp spacer. This was the

longest length that we could use to sequence pairs of shRNAs by paired-end sequencing using

Illumina technology at that time. For this spacer length, both shRNAs are processed on average

at 25% the level of the single shRNA constructs which we deemed sufficient to induce potent

knockdown of both genes.

UltramiR, a variant miRNA scaffold increases shRNA potentcy

Performing combinatorial screens with RNAi requires both expressed shRNAs to elicit efficient

knockdown for the genes of interest. Figure 2.4D highlights the great variability in processing

of different hairpins, which can be a problem for combinatorial screens in which both expressed
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(A) (B)

(C) (D)

FIGURE 2.4: Optimization of spacer length to increase pro-
cessing of shRNA pairs (A) Constructs harboring a pair of
p16 targeting shRNAs were transduced in A38-5 cells and
small RNA cloning was performed. Shown is the ratio of ma-
ture p16 shRNA read counts over the median number of reads
of the top 20 microRNAs, normalized by the single shRNA
construct ratio. The x-axis indicates which shRNA was placed
in the 5’ cassette and how long the spacer was in bp, and
which shRNA was placed in the 3’ cassette. (B), (C) The same
experiment was performed using KRAS targeting hairpins in
non KRAS dependent cells either human 293T (B), or chicken
ERC (C). The length of the spacer is preceded by a K if the
spacer sequence was part of the Kanamycin resistance gene
or by a Y if it came from the yeast genome (D) Shown are the
ratio of mature KRAS shRNA reads over the median number
of reads of the top 20 microRNAs, averaged for the both cell
lines.
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hairpins need to have similar activity. At the same time as I was developing the dual shRNA

vectors, I was working with others in the lab on new strategies to select and express potent

shRNAs. This involved both designing new backbones to improve shRNA processing and

algorithms taking advantage of large shRNA efficacy datasets and machine learning techniques

to predict shRNA potency in silico based on sequence characteristics.

All of the shRNA experiments described above rely on the miR-30 scaffold that had been

modified to allow rapid cloning of any variable region. The endogenous sequence had been

modified to include an EcoRI and XhoI restriction site flanking the stem of the shRNA to fa-

cilitate cloning. Later studies of Drosha processing sequence determinants by in vitro cleavage

analysis of highly complex variable synthetic pri-miRNA libraries had identified a conserved

CNNC motif important for processing 17bp downstream of the hairpin stem (Auyeung et al.,

2013). In the miR30-based shRNA scaffold, the first C of this motif had been replaced by an A

to create the EcoRI restriction site, which might have reduce the processing of the pri-miRNA.

Others had reported that moving the EcoRI site in the miR30 scaffold to recreate this conserved

motif increased small RNA levels and lead to increased knockdown (Fellmann, Hoffmann, et

al., 2013). We reasoned that eliminating the restriction sites altogether would be best. There-

fore, we created a scaffold called ultramiR, based on the endogenous miR-30 backbone, in

which shRNAs can be cloned in the cassette using scarless Gibson assembly.

To test processing of ultramiR shRNAs, we cloned hairpins targeting RPA3 or the Renilla

luciferase in the standard miR30 scaffold and in ultramiR. These constructs were transduced at

low MOI (<0.3 to guarantee only one infection event per cell), in duplicates, in the human 293T

cell line and in the chicken fibroblast derived ERC cell line that was used previously in sensor

assays (Fellmann, Zuber, et al., 2011). Following selection for infected cells, we analyzed the

levels of mature shRNAs by small RNA sequencing. To normalize across libraries and compare

the two backbones, we calculated the log-fold enrichment of Renilla or RPA3 counts relative to

the 66th quantile of endogenous miRNA counts (figure 2.5). When shRNAs were placed in the

ultramiR backbone, the levels of mature small RNAs were significantly increased compared to

the standard miR-30 backbone.

Concurrently, Dr Knott, a member of the Hannon lab, was working on designing algo-

rithms to predict shRNA potency. Using large datasets of shRNA efficacy datapoints generated
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FIGURE 2.5: The UltramiR scaffold increases shRNA pro-
cessing shRNAs targeting RPA3 or the Renilla luciferase
were cloned in the standard mir30 scaffold and in ultramiR.
After transduction at low MOI in 293T and DF-1 cells, small
RNAs were sequenced. shRNA guide counts were normal-
ized by calculating the log-fold enrichment relative to the 66th

quantile of endogenous miRNA

by sensor assay, he built a machine-learning based algorithm termed shERWOOD that classi-

fies shRNAs by potency using sequence determinants (S.R. Knott et al., 2014). This selection

algorithm was extensively validated by performing test loss-of-function screens with libraries

harboring ∼22 000 shRNAs targeting essential genes and 4 000 targeting olfactory receptors.

These shRNAs were selected either from the TRC library, using the Designer of Small Inter-

fering RNAs (DSIR) or using shERWOOD. The three libraries were transduced at low MOI in

the pancreatic adenocarcinoma A385 cell line. Two days after infection, half of the cells were

collected for a reference timepoint, and the rest were grown for ∼12 doublings and collected

for the final timepoint. The abundance of each shRNA in both timepoints was estimated by

high-throughput sequencing and depletion log ratios were calculated. The shRNAs selected by

shERWOOD and targeting consensus-essential genes showed increased log-fold change in the

depletion screens when compared to the shRNAs selected by others algorithms (figure 2.6A).

Additionally, the percentage of shRNAs depleted for each essential gene was increased (figure
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(B)

FIGURE 2.6: Validation of shERWOOD, an shRNA potency
prediction algorithm Libraries from the TRC or Hannon-
Elledge (HE) collection, or designed using shERWOOD (SH),
targeting essential and olfactory genes were screened in
the A385 cell line. Shown in (A) is the distribution of
log-fold changes of shRNAs targeting consensus-essential
genes. Shown in (B) is the percentage of shRNAs targeting
consensus-essential genes that were depleted.

2.6B). Overall, shERWOOD was shown to be highly efficacious at selecting potent shRNAs for

any gene of interest.

Up to this point, all validation experiments had been performed in a mir30 shRNA based

backbone. We reasoned that using ultramiR would further increase shRNA potency. To test

this, we performed a side-by-side depletion screens with shRNAs targeting essential genes or

olfactory receptors as described above. The same set of shRNAs predicted by shERWOOD

were cloned in mir30 and ultramiR backbones, and screened in A385 cells as described above.

The number of shRNAs per gene depleting as well as the degree at which they depleted was

compared for both backbones (figure 2.7A). UltramiR shRNAs were found to be significantly

more depleted than miR30 shRNAs (from 0.95 to 1.05, rank-sum test, p < 0.01) and for each

essential gene, a larger percentage of ultramiR shRNAs was depleted (from 42% to 51%, rank-

sum test, p < 0.01).

We further assessed the potency of shERWOOD-UltramiR shRNAs by measuring the re-

duction of mRNA levels they induced. We cloned four shRNAs with the highest shERWOOD
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(A)

(B)

FIGURE 2.7: Validation of the UltramiR scaffold (A) A li-
brary harboring shRNAs targeting essential genes and olfac-
tory receptors was cloned in a mir30 and ultramiR backbone
and screened in A385 cells. Shown is, for both libraries, the
percentage of shRNA per essential gene that was found to
be depleted in the screen, as well as the degree at which
these shRNAs were depleted. (B) Knockdown effiencies for
shRNAs targeting mouse Mgp, Slpi and SerpinE2. shRNAs
sequences were obtained from the TRC, the V.3 Hannon-
Elledge library or selected using shERWOOD.
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prediction scores targeting mouse Mgp, SerpinE2 and Slpi into an MSCV-based ultramiR vec-

tor. To compare these constructs to existing RNAi libraries, we obtained the current TRC (five

shRNA per gene) and V.3 Hannon-Elledge (six shRNA per gene for Mgp and SerpinE2, four

for Slpi) library constructs targeting these genes. These constructs, including empty vectors as

a negative control, were packaged in viruses and mouse 4T1 cells were infected at single copy.

Following selection for infected cells, mRNA levels of each gene was assessed by quantita-

tive RT-PCR (RT-qPCR) and compared to the levels in the corresponding non-targeting control.

Both TRC and V.3 Hannon-Elledge shRNAs showed relatively modest knockdown levels with

all shRNAs mediating less than 50% target knockdown except for shRNAs 88493 and 66708

(TRC) and 11731-2 (V.3 Hannon-Elledge). In comparison, all shRNAs selected using shER-

WOOD in the ultramiR scaffold reduced target mRNA levels by over 80% (figure 2.7B). Over-

all, our data shows that selecting guide sequences using shERWOOD and placing them in the

ultramiR scaffold is a robust strategy to consistently generate potent shRNAs with high level

of target knockdown.

As a final test of our dual shRNA vector, we combined the shERWOOD-Ultramir shRNA

strategy with the dual shRNA expression vector described above. The mir30 cassettes were

switched to ultramiR cassettes and they were separated by the spacer of ∼400bp for which ma-

ture small RNA levels were optimal. Rather than performing small RNA cloning, we wanted

to assess the level of knockdown induced by both shRNAs. We thus cloned two pairs of mouse

SerpinE2 and Slpi hairpins in the dual shRNA vector, transduced the 4T1 cell line and a 4T1

derived cell line (4T1-T) and measured mRNA levels by qPCR. An empty vector was used as

a control, and log-fold changes of mRNA levels for the dual constructs samples compared to

the control were computed (figure 2.8). For both cell lines, a knockdown level of at least 65%

was observed for both shRNAs. This data, together with the small RNA cloning experiments

(figure 2.4), shows that a vector expressing pairs of shRNAs separated by a spacer can be used

to robustly knockdown pairs of genes simultaneously.

2.3.2 Screen sequencing

RNAi loss-of-function screens are generally analyzed by comparing the abundance of shRNAs

in a population of cells at a reference start point and after growing the cells. shRNAs that have a
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FIGURE 2.8: Knock-down of pairs of genes using the dual
UltramiR shRNA expression vector Pairs of shRNAs target-
ing SerpinE2 and Slpi were transduced in 4T1 and 4T1-T cells.
Shown is the log2 fold change of mRNA knockdown levels
in cells infectected with dual shRNA constructs compared to
empty constructs.

negative effect on cell growth or survival are depleted from the pool of cells. High-throughput

sequencing provides a convenient way to estimate said abundance. When the shRNAs are de-

livered by viruses and integrated stably into the genome, the guide sequence can be amplified

by PCR, Illumina adapter sequences added, and the shRNA counts can be obtained after se-

quencing. This experimental setup can in principle be adapted easily to sequence dual shRNA

screen.

My initial approach was to take advantage of paired-end sequencing technology, for which

both ends of a DNA molecule can be sequenced simultaneously. This requires extracting the

variable sequences of both guide RNAs from genomic DNA by PCR. I attempted this on ge-

nomic DNA harboring a pair of p16 targeting shRNAs separated by a 225bp (constructs 1-225-2

and 2-225-1, figure 2.4A). Despite trying a large number of conditions and primers, I was never

able to PCR a complete shRNA to shRNA fragment. I reasoned that the PCR amplification

was perhaps hindered by the complex secondary structure of the two hairpins or of the spacer

when denatured. The sequence of the longer spacers (figures 2.4B, 2.4C) was thus amplified

from A/T rich regions of the yeast genome or of the Kanamycin resistance gene and show-

ing few secondary structures as predicted by mFold (Zuker, 2003). However, even for these
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constructs, amplifying both shRNAs simultaneously proved to be unfeasible.

Since each shRNA could be amplified separately, I reasoned that one of the shRNA could be

barcoded with a random 25bp sequence that would be placed in between the pair of hairpins.

Sequencing each pair would then require two paired-end sequencing runs. The first run would

be to sequence the 5’ shRNA and the barcode, and the second to sequence the barcode and the

3’ shRNA. Putting together all the data would allow to count each pair in the pooled screen. To

clone such barcoded construct, I first ligated the first pool of shRNAs in the vector, then PCRed

the second pool with a primer harboring 25 random nucleotides as a barcode, and added the

amplicon to the vector. The barcode thus identifies the second shRNA. The resulting construct

harbored all pair-wise combinations of the shRNAs, with a 25bp barcode in between. For this

strategy to be viable, each barcode needs to identify uniquely the second shRNA. To test this

approach, I cloned a dual shRNA library with 300 shRNAs, for a total of 90 000 different pairs.

Despite using a 25bp random barcode, which represents more than a trillion different possibil-

ities, I found upon sequencing of the library that most barcodes were shared across multiple 3’

shRNAs (figure 2.9). The second shRNAs were not uniquely identified by the barcode which

made it impossible to extract the pairing information from the two sequencing runs.

FIGURE 2.9: Barcoding of shRNAs using random 25bp se-
quences A dual shRNA library harboring 90 000 different
combinations was built. The 3’ shRNA of dual shRNA con-
structs was barcoded using a 25bp sequence of random nu-
cleotides. The barcode and 3’ shRNA were sequenced us-
ing Illumina paired-end sequencing. Shown is the number
of shRNAs that were associated with a given barcode.

As barcoding shRNAs by PCR using primers with stretches of random nucleotides proved

unfeasible, I decided to barcode all the shRNAs one by one, before assembling the dual vector.
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LTR 5’ shRNA spacer 3’ shRNA

Illumina sequences

25 bp barcodes

P5 P7

FIGURE 2.10: Barcoding pairs of shRNAs using two 25bp
barcodes Schematic of the modified dual shRNA vector.
ShRNAs are separated by a 500bp spacer. Each shRNA is
uniquely barcoded by a 25bp sequence, flanked by Illumina
adapter sequences to facilitate generation of high-throughput
sequencing libraries.

The spacer was modified to allow for barcoding of both shRNAs (figure 2.10). Pairs of shRNAs

in this vector can be identified by sequencing both barcodes simultaneously in a paired-end

sequencing run. An additional advantage of barcoding both shRNAs is that it reduced greatly

the size of the amplicon that needs to be sequenced as the barcodes are in the middle of the

spacer. As the sequences are flanked by Illumina adapter sequences, libraries can be generated

in a one-step 30 cycle PCR as opposed to the two 25 cycles PCRs that are generally necessary to

sequence miR-30-based shRNA screens, which helps reduce PCR bias. This strategy was tested

with a pair of barcoded p16 shRNA transduced in A385 cells. Recovery of the pair of barcodes

could be easily achieved by PCR. Barcoding the shRNAs before hand with a unique sequence

comes at the cost of more complicated cloning steps for dual shRNA libraries but facilitates the

extraction of the information from the cells.

2.3.3 Cloning of complex 2D shRNA plasmid libraries

Most of the designs mentioned above were tested on a single pair of shRNAs. The scale of the

screens that I wanted to perform required cloning of complex pools of pairs of shRNAs in the

vector to be feasible. Barcoding the two hairpins makes the cloning of such libraries challeng-

ing: each of the barcodes needs to identify uniquely an shRNA and be different enough from

all the other barcodes to avoid confusion during sequencing. In addition, the cloning needs

to be efficient enough that all pairs are present at similar abundance in the final dual shRNA

library. To address this issue, I developed a two-step cloning strategy (figure 2.11). In the first

step, all of the shRNAs of interest are cloned in a “sequencing vector". This vector holds an ul-

tramiR cassette, flanked by spacer sequences including two 25bp random barcode. The empty
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LTR shRNAshRNA spacer

3 way Gibson assembly

shRNA 

sequencing

vector

dual shRNA 

expression

vector

PCR

FIGURE 2.11: Efficient cloning of dual shRNA libraries
Pairs of shRNAs are cloned in the 2D shRNA expression vec-
tor in two steps. First, shRNAs of interest are cloned as
pools in a sequencing vector with two 25bp barcodes. After
transformations, colonies are picked and Sanger sequenced to
identify which barcodes are linked to which shRNAs. In the
second step, the shRNAs with the first or second barcode are
amplified by PCR and all pair-wise combinations are assem-
bled by Gibson assembly in the expression vector.

sequencing vector was generated as a complex pool of vectors with millions of different bar-

code combinations. The shRNAs of interest can be cloned as a pool in this vector, and colonies

can be picked, grown, prepped and sent for Sanger sequencing. The Sanger sequencing covers

the entire ultramiR cassette as well as the two regions with barcodes. Each barcodes needs to

robustly identify an shRNA, even when sequencing errors are introduced. To filter barcodes

with similar sequences, we used the Levenshtein distance, which measures the number of edits

(insertions, deletions or substitutions) needed to transform one string of characters to another.

Constructs for which the Levenshtein edit distance of any barcode to another in the library is

less than three were discarded. Barcodes that had a GC content greater than 80% were also

removed. Glycerol stocks of constructs passing these criteria were arrayed in 96-well plates.

To clone all the pair-wise combinations of the barcoded hairpins in the 2D shRNA expres-

sion vector, two fragments of the sequencing vector need to be amplified by PCR: the shRNA

and the downstream barcode or the shRNA and the upstream barcode. These two PCRs are

performed for each arrayed shRNA in the sequencing vector, with a limiting amount of primers

to obtain similar amounts of amplicons regardless of the concentration of the template. After
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FIGURE 2.12: Validation of the dual shRNA library cloning
strategy ∼110 shRNAs were cloned in the 2D vector for a
total number of ∼ 12 000 pairs. The abundance of each pair
was estimated by high-throughput sequencing. Shown in (A)
is the distribution of pair counts. (B) Heatmap representation
of counts for each shRNA pair.

purification, all of the amplicons are pooled and cloned into the expression vector in a three-

way Gibson assembly, a highly efficient cloning method allowing for the assembly of multiple

overlapping DNA fragments. Using this method, all pair-wise combinations of shRNAs are

generated and each shRNA can be identified using its flanking 25bp barcode.

To validate this design, ∼110 shRNAs were cloned in the sequencing vector and Sanger-

sequenced. A 2D dual shRNA library comprising ∼12 000 pairs was assembled. The abun-

dance of each pair in the pool of vectors was estimated by sequencing the barcodes on an

Illumina MiSeq.

The distribution of counts per hairpin pairs shows that most pairs are similarly represented

in the pool (figure 2.12A). Furthermore, more than 90% of all possible pairs were successfully

cloned (figure 2.12B). The missing pairs were mostly due to shRNAs been absent altogether

at one or the other position (blue rows in the heatmap) which mostly likely is due to failed

amplification during the PCR of the shRNA from the sequencing vector.

Overall, the expression vector and cloning strategy I developed allows the efficient cloning

of complex dual shRNA libraries. The optimized spacer length and miRNA scaffold enables
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robust knockdown of each target gene. Finally, the barcoding strategy I designed enables mul-

tiplexed 2D RNAi screens to be carried out and analyzed easily.

2.3.4 Multiplexed 2D shRNA screens of melanoma cell lines

The first gene set I wished to interrogate in melanoma was comprised of all “druggable genes".

I thought that focusing on genes for which small molecule inhibitors existed or were being

developed would yield greater therapeutic benefits and allow for validation of hits in vivo with

drug combinations. Four melanoma cell lines were selected for this initial screen: A-375, WM-

266-4, SK-Mel-5 and SK-Mel-8. These cell lines were selected from a larger panel of 10 cell lines

for their screenability: they can be infected with retroviruses, grow rapidly which reduces the

overall length of the screen, and their size is relatively small which allows a large number of

cells to be grown on a given area of cell culture plates. Additionnally, these cell lines exhibit a

variety of mutations in genes commonly altered in melanoma (table 2.1). Although all of these

cell lines have the most common BRAFF V600E mutation, they belong to different melanoma

subtypes as classified by large genomic studies and based on alteration in other genes such as

TP53, CDKN2A and PTEN (Cancer Genome Atlas Network, 2015; Hayward et al., 2017).

A-375 SK-Mel-5 SK-Mel-28 WM-266-4
BRAF V600E/V600E V600E/WT V600E/V600E V600E/V600E
TP53 WT WT L145R/L145R WT
CDKN2A E61*/E61* ∆/∆ WT WT
PTEN WT WT WT ∆/WT

TABLE 2.1: Genotype of the four melanoma cell lines used
for the screen

Gene set and shRNA selection

The number of constructs in a dual shRNA library grows quadratically with the number of sin-

gle shRNAs considered. Based on the experience of the lab with RNAi screens, pooled screens

are feasible if the total number of shRNAs used is less than ∼70 000. Screening in smaller pools

reduces the noise inherent to such large-scale experiments. To keep the representation of all

shRNAs in the pool of cells, generally 1000 cells per shRNA are kept throughout the screen.

Limiting the screen to a targeted set of genes thus also limits the number of cells that need to
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be grown once and makes the experiment practical. For dual shRNA screens, I wanted to limit

the number of target genes to 100 to 200, for a total pairwise complexity of 10 000 to 40 000

constructs.

The first gene set we wished to interrogate in the four selected melanoma cell line com-

prised all “druggable genes". As a basis for this set, we chose to use the Sophic Druggable

Genome database that reports around 4 000 genes as druggable. This list was generated by

integrating several databases reporting such genes (Hopkins & Groom, 2002; Russ & Lampel,

2005). In addition, this gene list was enriched by adding genes for which the protein sequence

shared similarities with known druggable genes and by computationally text mining the liter-

ature (Sophic Alliance Inc, 2010).

To further reduce the size of this gene set, we considered genes that were over-expressed

in our melanoma cell lines compared to melanocytes. To assess gene expression levels, I per-

formed total RNA sequencing on the five cell lines, in duplicates. 112 genes were found to be

significantly over-expressed in at least three of the four melanoma cell lines when compared

to the melanocytes (figure 2.13A). Out of this list 67 genes were over-expressed in all four cell

lines.

A pathway analysis of these 112 genes shows that the list includes mostly genes involved

in metabolism, immunity and signaling pathways commonly dysregulated in cancer such as

the EGFR or ERBB2 pathway (figure 2.13B).

To select shRNAs targeting these 112 genes, we used shRNA sensor data that had been

generated to validate the shERWOOD algorithm. In this assay, the top 10 shRNAs as predicted

by shERWOOD for all 2 000 druggable genes had been tested for activity in vivo. For RNAi

screen, multiple targeting molecules per genes are generally used to reduce false-positives. As

10 shRNAs per gene had been validated in vivo, we selected the two best scoring shRNAs in the

sensor assay to build dual shRNA libraries for the subset of the druggable genome wished to

interrogate. The two sets of 112 hairpins were cloned into the sequencing vector and two pools

of ∼12 000 pair-wise combinations were assembled as described above. I decided to screen the

two libraries independently to lower the total number of constructs per experiment.
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FIGURE 2.13: Selection of a gene set for combinatorial
screening of melanoma cell lines (A) Total RNA sequenc-
ing was performed on A-375, Sk-Mel-5, Sk-Mel-28, WM-266-
4 and melanocytes. 112 druggable genes were found to be
significantly over-expressed in at least three of these four cell
lines compared to the melanocytes. Shown is the log of the
normalized counts of these 112 genes for these cell lines. (B)
Pathway analysis of the 112 over-expressed genes in the four
melanoma cell line compared to melanocytes.
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Screening of the melanoma cell lines

The two 2D shRNA libraries were packaged into retroviruses used to infect the A-375, SK-Mel-

5, SK-Mel-28 and WM-266-4 cell lines. Infections were performed at low MOI to reduce the

likelihood of double infection events. At least 30 million infected cells were obtained for each

cell line to keep the representation of each shRNA pair in the pool. Two days after infection, half

of the cells were collected as a reference timepoint (T0). The rest of the cells were selected with

Neomycin and grown for at least 12 doublings and a final time point was collected (T12). This

was done in triplicate. For samples infected with the first library, genomic DNA was extracted

and the pairs of barcodes identifying the shRNAs were amplified by PCR and sequenced on a

Illumina HiSeq. Each sample was sequenced with at least 15 million reads. The abundance of

each shRNA pair was measured by each pair’s number of reads mapping to the corresponding

barcodes. The log-fold change of counts of each construct between T12 and T0 was calculated.

An empirical Bayes moderated t-test was applied to the log-fold changes of the three replicates

to estimate the significance of the depletion or enrichment (R limma package (Smyth, 2004)).

The log-fold change for all pairs in the first library is shown in figure 2.14.

Since the dual shRNA library harbor all pair-wise combinations of hairpins, the lethality

of knocking down a single gene can be assessed by examining the log-fold change of pairs har-

boring two shRNAs targeting the same gene. As a sanity check for this first screen, I looked

at the depletion status of three well-studied genes in melanoma or other cancers: CTGF, PLK1

and CDK4. Connective tissue growth factor (CTGF) has recently been identified as a thera-

peutic target for melanoma and significantly reduces tumor sizes and metastasis upon knock-

down. Polo-like Kinase 1 is a kinase involved in the G2/M transition. It has been identified

as a therapeutic target in lung, colon and pancreatic cancer. CDK4 is a key player in the cy-

clin D-CDK4/Rb pathway which is misregulated in 90% of melanoma and promoting cell-

cycle progression. The knockdown of this gene was expected to be lethal especially in cells in

which CDKN2A which generally inhibits CDK4 was mutated (A-375 and SK-Mel-5). The three

shRNA pairs targeting these genes are significantly depleted across all cell lines, with the ex-

ception of the SK-Mel-5 cell line, which is resistant to PLK1 knockdown and SK-Mel-28, which

is resistant to CDK4 knockdown.
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FIGURE 2.14: Combinatorial screening of four melanoma
cell lines A dual shRNA library harboring all possible
pairs of 112 shRNAs targeting a subset of the druggable
was screened in A-375, SK-Mel-5, SK-Mel-28 and WM-266-4.
Shown is the log2 fold change of the abundance of each pair
between the final and initial timepoint. Highlighted are the
fold changes of pairs harboring two shRNAs targeting CDK4,
CTGF or PLK1.

Although these results seemed promising, we realized after the laboratory move to Cam-

bridge that the Institute’s tissue culture incubators had not been calibrated in several years.

CO2 levels were found to vary wildly between 1 and 10%. As a result, the data from this initial

screen could not be used and the second screen was not sequenced. One surprising observation

that came out of this experiment was that in all four cell lines, nearly 80% of shRNA pairs were

depleted. Negative controls were not initially included in the dual shRNA libraries as in large

scale RNAi screens a large number of shRNAs are generally not depleted. This may not be the

case here as the number of target gene is limited to a small number of druggable genes, selected

based on their expression profiles, and if any of these genes is essential for cell proliferation,

the 225 pairs harboring an shRNA targeting these genes at the first or second position would

be depleted. Since the screens needed to be repeated, I added 20 shRNAs targeting olfactory

receptors. These olfactory receptors are not expressed in the melanoma cell lines so targeting

them should not impede or favor the proliferation of the cells. This increases slightly the com-

plexity of the 2D libraries, up to ∼15 000 constructs. For the rest of this chapter, I focused on
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the A-375 cell line as it is the fastest growing of the four chosen lines and the most amenable to

high throughput screening.

A-375 cells were transduced with both dual shRNA libraries and the screen was performed

and sequenced as described above. Figure 2.15 shows the results of the screen, represented as

the depletion ratios of each constructs versus their abundance at the initial timepoint, for both

libraries.

(A) (B)

FIGURE 2.15: Combinatorial screening of the A-375
melanoma cell lines Two dual shRNA libraries harboring all
possible pairs of 112 shRNAs targeting a subset of the drug-
gable genome as well as 20 olfactory receptor shRNAs were
screened in A-375. Shown on the y-axis is the log fold change
of read counts for each pair at the final timepoint compared
to the initial timepoint. The x-axis is the log of counts at the
initial points. Pairs composed of two shRNAs targeting olfac-
tory receptors are shown in blue. (A) is the first library and
(B) the second. The log-fold change of the three replicates was
averaged.

As observed in the previous screens, more than 80% were depleted in these screens. Sur-

prisingly, the pairs harboring two olfactory receptors were overall depleted as well in both

libraries (median log2 fold-change of -2.6 for library 1 and -2.8 for library 2 for the olfactory-

olfactory distribution). This can perhaps be explained by the outgrowth of a large number of

constructs that grow faster than the olfactory targeting controls. In both libraries, at least 800

constructs are enriched over 4 fold in the final timepoint compared to the T0 and end up taking

a large fraction of reads. The enriched pairs were generally not consistent between libraries so I
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focused on the depleted constructs. To normalize across each replicate, the counts were scaled

using the mean and standard deviation of the olfactory-olfactory targeting pairs. Following

this normalization, the limma package was used as described above to identify significantly

depleted constructs (FDR < 0.05).

A pair of shRNAs can be depleted if one or both of the targeted genes impede cell prolifer-

ation. For follow-up experiments, I wished to focus on pairs for which the deleterious effect of

knocking down a pair of gene was synergistic and especially on pairs targeting genes that were

only depleted when knocked-down in combination. As these libraries include 20 shRNAs tar-

geting olfactory gene, each druggable gene shRNA is paired in 40 pairs with an olfactory gene

shRNA. The depletion rates of these constructs can be used to assess the lethality of druggable

gene targeting shRNAs. A druggable gene was considered a “hit" if in both libraries the mean

of the distribution of depletion rates of all pairs harboring an shRNA targeting this gene and

another targeting an olfactory receptor was significantly lower than 0 (t-test, p-val < 0.05). A

representative example of the distribution of three genes classified as “hits" or not is shown in

figure 2.16A. Overall, 32 druggable genes where found to be necessary for cell proliferation.

The knock-down of another 43 genes had no impact on cell growth (figure 2.16B). The remain-

ing 37 genes could not be classified in these two categories as results from both shRNA libraries

were not in agreement. This can potentially be a consequence of off-target effects.

To select pairs to investigate further, I chose constructs that were significantly depleted

and harboring two shRNAs that were not hits when paired with olfactory receptors. Addi-

tionally, at least one pair of shRNA (either shRNA1-shRNA2 or shRNA2-shRNA1) needed to

be depleted in both libraries for that pair of genes to be considered in validation experiments.

Using such criteria, I wished to select pairs of genes for which knockdown induces synergistic

deleterious effect on the proliferation of A-375 cells. An analysis of the data of both libraries

showed that around 230 pairs of genes depleted only when both genes were targeted in combi-

nation. To further select the most promising candidates for one by one follow up experiments,

I decided to perform a second validation screen to eliminate any false positives. 2D shRNA

libraries can be built very efficiently when all pair-wise combinations of two sets of genes need

to be interrogate. However, generating smaller libraries with specific shRNA pairs requires one
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(A)

(B)

FIGURE 2.16: Identification of straight lethal hits in the com-
binatorial screens (A) A druggable gene was considered a
lethal hit if in both libraries the mean of distribution of de-
pletion rates of all pairs harboring an shRNA targeting this
gene and another targeting an olfactory receptor was signif-
icantly lower than 0 (t-test, p-val < 0.05). Distributions of
olfactory receptors and 3 genes classified as non-lethal (first
four) and 3 genes considered to be lethal (last 3). (B) Aver-
age log2 fold change of all constructs harboring an shRNA
targeting a druggable gene and another targeting an olfactory
receptors. Bars are colored by gene lethality as described in
(A).
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by one cloning of all pairs before pooling. As I was concurrently designing vectors for harbor-

ing pairs of short guide RNAs (sgRNAs) to be used for CRISPR/Cas9 experiments (chapter 3),

I decided to validate the dual shRNA screen with a combinatorial CRISPR screen. The variable

region of sgRNAs is short compared to a full hairpin (20bp vs 63bp for passenger, guide and

loop). The smaller length of the variable region allows for printing complex libraries of pairs

of sgRNAs on DNA chips for which the total size of the oligo is limited. (M.A. Cleary et al.,

2004). These CRISPR libraries can be cloned in expression vectors harboring two U6 promoters

driving the expression of the sgRNAs independently. The vector I used will be described in

details in chapter 3, but its schematic map is shown in figure 2.17 for clarity purposes.

SFFV

cU6hU
6

hs
gR

N
A

Puromycin P2A ZsGreen

csgRN
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HTS adapters Barcode

pCRoatan
dual sgRNA

FIGURE 2.17: A dual sgRNA expressing vector to knock-
out pairs of genes Schematic map of the lentiviral vector
used to express pairs of sgRNAs (hU6: human U6 promoter,
cU6: chicken U6 promoter, HTS: high-throughput sequenc-
ing, SFFV: spleen focus-forming virus promoter).

In this dual sgRNA lentiviral expression vector, the first sgRNA is driven by a human U6

promoter and the second by a chicken U6 promoter. As both sgRNAs are separated by more

than 1kb, they cannot be sequenced at the same time using paired-end sequencing for which

the amplicon needs to be smaller than 700bp. A 20bp barcode was thus added to the vector

to identify each pair of sgRNAs. The two sgRNAs as well as the barcode can be printed on

the same oligo so the 20bp identifying each sgRNA pair are known by design. Restriction sites

are added between the first sgRNA and the barcode and between the barcode and the second

sgRNA to add the promoters. The cloning of these libraries in the lentiviral expression vector

requires four steps. First the chips are cloned in an intermediary vector lacking any outside

cutter restriction enzyme sites that are necessary to perform this cloning. Next, the human
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U6 promoter and sequencing adapters are cloned next to the first sgRNA and the barcode,

followed by the remaining adapters and chicken U6 promoters between the barcode and sec-

ond sgRNA. Finally the complete sgRNAs,barcode and promoters fragment is inserted in the

lentiviral vector.

FIGURE 2.18: Selection of gene pairs to target in validation
experiments shRNA pairs depletion ratio versus log counts
at the initial timepoint, for both libraries. The colors core-
spond to olfactory-olfactory pairs (blue), pairs targeting two
lethal genes (red) and combinatorial lethal pairs that will be
considered for follow-up experiments (orange).

For this validation screen, the library was composed of the ∼230 pairs identified as syner-

gistically deleterious. As a positive control, the 40 pairs of lethal genes that were most depleted

consistently in both dual shRNA libraries were also added to the library. The depletion rates of

both the pairs of interest as well as the positive controls is shown in figure 2.18. As a negative

control, 264 pairs harboring two sgRNAs targeting olfactory receptor genes were included. For

each druggable gene in the library, pairs for which one sgRNA targeted the druggable gene

and the other an olfactory receptor were added to estimate the effect of knocking out the gene

on its own. To control for false positive and false negative effects, 8 different pairs of sgRNAs

for each gene pair were included in the library. In total the dual sgRNA library harbors over 3

800 pairs. Each pair was uniquely barcoded with a 20bp long sequence. These barcodes were

selected by randomly generating 10 000 20mer and selecting sequences that had a GC content
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(A)
(B)

FIGURE 2.19: Validation of combinatorial hits from the
RNAi screen using CRISPR/Cas9 (A) Depletion ratio of
sgRNA constructs targeting pairs of olfactory genes (Olf-Olf),
pairs of druggable gene (Drug-Drug), or one of each (Drug-
Olf, Olf-Drug). (B) MA plot all constructs. Colors show the
lethal pairs identified in the RNAi screen (positive controls)
or pairs targeting two olfactory receptor genes (negative con-
trol).

between 30 and 70%. Any sequence with a Levenshtein edit distance of less than three to any

other barcode was also removed.

To perform the CRISPR screen, a cell line stably expressing the Cas9 protein was generated.

A-375 cells were first transduced with the lentiCas9-Blast plasmid (Sanjana, Shalem, & Zhang,

2014). Following selection, cells were single cell sorted in a 96-well plate. To select clones for

which Cas9 was highly active, clones were transduced with a plasmid expressing the fluores-

cent protein ZsGreen and an sgRNA targeting ZsGreen expressed from a U6 promoter. For

each clone, percentage of fluorescent cells was tracked over time and use to estimate the ac-

tivity of the Cas9 protein. A clone for which at least 60% of the cells lost ZsGreen signal was

selected to perform the screen (data not shown).

The library of dual sgRNA was packaged into lentiviruses, and transduced in A-375-Cas9

cell line at low MOI, in triplicates. As done for the RNAi screens, half of the cells were collected
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two days after infection for an initial timepoint, and the rest was grown for ∼12 doublings and

harvested for a final timepoint. For all timepoints, the barcodes identifying the pairs of sgRNA

were amplified by PCR and sequenced on an Illumina MiSeq. For each pair, depletion rates

were measures using the limma package as described previously for the 2D RNAi screen.

To validate my approach of using a orthogonal CRISPR screen to validate hits from a dual

shRNA screen, I first compared depletion rates of pairs harboring two sgRNAs targeting drug-

gable genes to the ones comprised of one or two olfactory receptor targeting sgRNAs. As all

the validation pairs with two druggable gene targeting sgRNAs were chosen because they de-

pleted in the RNAi screen, they should in principle also deplete in the CRISPR screen. As

expected, constructs with two sgRNAs directed against druggable gene were overall signifi-

cantly more depleted than the negative control (figure 2.19A rank-sum test, pval < 0.01). 72

druggable genes were present in all the different pairs of this screen, and amongst those only

13 were found to be lethal in the RNAi screen which explains why the pairs harboring only one

druggable gene deplete less than those with two (figure 2.19). Forty positive control pairs (ie.

pairs that were consistently and significantly depleted in the RNAi screen) were included in

the validation screen for a total of 320 positive control constructs (8 different sgRNA pairs per

gene pairs). Surprisingly, most of these positive controls did not hit in the CRISPR screen. Their

distribution is slightly more depleted than the olfactory-olfactory population but this is not sig-

nificant (figure 2.19B). 274 positive-control constructs out of 320 were present above threshold

in the T0 and only 64 of these pairs were significantly depleted in the final timepoint. Overall,

only 9 of the 40 positive control gene pairs had at least half of the targeting constructs depleted.

To further investigate this issue, I examined the depletion rates of the pairs for which both

sgRNAs target one of the 11 lethal gene identified in the RNAi screens (figure 2.20). Although

one or two constructs were significantly depleted for all genes, only two genes had more than

half of the targeting constructs significantly depleted. This can perhaps be explained by the

strong variability of the construct log-fold changes that was observed in the three screen repli-

cates so the depletions are not statistically significant.

Although some of the positive controls that depleted significantly in the RNAi screen did

not in the CRISPR screen, this could be explained by the difference in effector selection and

mechanism of perturbation. All the shRNAs used in the RNAi screen were validated in a
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FIGURE 2.20: Depletion of positive controls in the
CRISPR/Cas9 validation screen Depletion rates of sgRNA
constructs targeting lethal genes identified in the RNAi
screen.

sensor assay whereas the sgRNAs were predicted in silico and not tested in vitro before the

screen. In addition, targeting a gene with CRISPR/Cas9 does not always lead to a functional

knock-out in all the cells as this depends on the scar and mutations left on the loci following the

repair of the DSB. Knocking-out two genes simultaneously most likely leads to the generation

of mosaics of cells in which both, only one, or none of the genes are mutated, especially if the

potency of sgRNAs has not been tested. This would in turn lead to an increased false-negative

rate in a pooled CRISPR screen.

Despite these limitations, some true-positives can be identified in the validation CRISPR

screen (figure 2.21). These pairs of genes were targeted by at least three independent signifi-

cantly depleted dual sgRNA constructs. None of the constructs targeting these genes individu-

ally depleted significantly in both screens. Although some genes among these hits, such as the

Growth factor receptor-bound protein 2 (GRB2) (Lowenstein et al., 1992; A. Cheng et al., 1998;

Giubellino et al., 2007) and the receptor tyrosine-protein kinase ERBB3 (Sergina et al., 2007; En-

gelman et al., 2007; Miller et al., 2009), have been previously shown to be involved in cancer

proliferation or resistance mechanisms to treatment in a variety of cancers, most have not been

studied in melanoma. As all of these pairs have only been identified as lethal in pooled screen

and further experiments need to be performed, in one-by-one assay, using shRNAs, sgRNAs
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FIGURE 2.21: Synthetic lethal combinations identified in
both RNAi and CRISPR screen Graph representation of all
combinatorial pairs identified as synthetic lethal in both the
RNAi and CRISPR screen. Pairs (genes connected by black
lines) shown here deplete when in combination, but con-
structs targeting each gene in individual knock-down/knock-
outs do not deplete.

or small molecule inhibitors, to confirm their combinatorial lethality.

2.4 Discussion

Here, I have outlined an approach to perform high-throughput combinatorial RNAi screens

using an optimized expression vector harboring pairs of shRNAs. In this vector, two shRNAs,

separated by a spacer are expressed from the same promoter. To increase mature small RNA

levels of both shRNAs, I tested a range of spacer length ranging from 0 to 800nt. Spacers of

200 to 500nt allowed good processing of both hairpins and I selected the 400nt spacer for to use

in the expression vector. In addition, I designed a cloning strategy that allows large libraries

comprised of all pair-wise combinations of sets of genes to be easily assembled.
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Our initial experiments with miR30 based shRNAs highlight the importance of selecting

potent shRNAs and optimizing synthetic miRNA backbones for efficient small RNA produc-

tion. Building on large shRNA efficacy datasets, shERWOOD, a machine learning algorithm

predicting hairpin potency was developed. Coupled with a canonical miR30 backbone, named

ultramiR, it permits any gene to be knocked-down with high efficiency. These tools have wide

applications beyond dual shRNA screens, both for genome-wide screens and one-by-one ex-

periments. We have thus built a fifth-generation genome-wide library of sanger-sequenced

verified shERWOOD shRNAs in the ultramiR scaffold. These libraries harbor on average 5

shRNA for each gene of the human and mouse genome for a total of ∼75 000 human and

∼60 000 mouse shRNAs. The availability of individual sequence-verified shRNAs also allows

screens to be performed in an arrayed format, or the generation of custom pools of shRNAs

targeting a specific gene-set. This was particularly useful to obtain some of the shRNAs used

in this project.

With optimized dual shRNA expression vector in hand, the first gene set we interrogated

was comprised of all pair-wise combination of druggable genes over-expressed in four melanoma

cell line compared to melanocytes. For each pair of genes, two different pairs of shRNA were

included in two libraries to minimize false-positive and false-negative effects. Each library was

screened in parallel in the A-375 cell line. From the screen, ∼300 deleterious gene-interactions

consistently observed in both libraries were identified. To validate these results, I performed

an orthogonal CRISPR/Cas9 screen using pCRoatan, a lentiviral vector expressing pairs of

sgRNAs that I and others were developing for another project (chapter 3). Some inconsis-

tencies were observed between the CRISPR screen and the RNAi screens, especially for some

constructs that consistently depleted with shRNAs but not with sgRNA. This can perhaps be

explained by the different molecular mechanisms used to manipulate gene expression. Knock-

ing down a gene with shRNAs leads to a widespread reduction of the target mRNA to similar

levels across all cells. However, the targeted mRNA is generally not removed entirely and some

level of expression can remain. In contrast, CRISPR experiments using fluorescent reporters to

track knockout shows that knockout effiency varies cell to cell, perhaps depending on Cas9

level of expression within each cell, although this can be somewhat mitigated by generating

clonal cell lines expressing Cas9. Double-strand breaks generated by Cas9 are repaired by the
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error-prone non-homologous end-joining pathway which leads to the introduction of indels

at target site. These indels can induce both frame-shift as well as in-frame repairs with vary-

ing efficiency depending on the sgRNA used as a guide. A pool of cells with a Cas9 induced

knock-out is thus a mosaic of cells each harboring a different genomic scar at the targeted locus,

which can lead to a variety of phenotypic outcome. This is particularly true when Cas9 is di-

rected to two genes simultaneously, which can lead to four different repair events in each cell.

Improvements in sgRNA design is likely to further improve such combinatorial CRISPR screen

by increasing editing efficacy. Additionally, the potency of shRNAs used in the RNAi screen

had been experimentally tested using a sensor assay. Perhaps using similar high-throughput

assays to select sgRNAs will improve the consistency of CRISPR screens.

One of the advantages of using CRISPR technology rather than RNAi in combinatorial ex-

periments is that guides have a single variable region of 20bp which allows multiple sgRNA

to be printed on the same DNA chip. This allows great flexibility in library design and con-

structs can be barcoded with known sequences which eliminates the intermediary cloning step

required to barcode pairs of shRNA. Although this is technically feasible for two hairpins, se-

quencing of many shRNA constructs shows that when shRNAs are cloned from chips, a large

number of constructs have errors when Sanger-sequenced. This can be due to the complex

structure hairpins which makes DNA synthesis less reliable or the Gibson assembly cloning.

The intermediary cloning step is thus necessary to generated dual shRNA libraries as it selects

for error-free construct thus limiting potential false-negative effects of having mutations in the

hairpin sequences.

Combining the results of both RNAi and CRISPR screens, we focused of pairs of genes

that showed synergistic deleterious effect on cell proliferation. Although all selected pairs pass

stringent criteria in terms of number of significantly depleted construct per pair, depletion

rates, and increased lethality of combination when compared to individual targeting of both

genes, further experiments need to be performed to validate and characterize these hits. As

a first step, I am performing one-by-one dual knockdown experiment to eliminate hits that

were an artifact of the large scale screen that can be noisy given the total number of constructs

considered. In addition, some pairs can already be targeted by small molecule inhibitors, which

provides a third orthogonal validation strategy. Although four cell lines had initially been
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selected, the screens have only been performed on A-375, and lethal pairs should be tested on

a wider range of cell lines.

The tools developed in the project will allow for the high-throughput discovery of tar-

gets to be used in combinatorial drug therapies. This approach focuses on interfering with

entire molecular networks and will provide insights on critical pathway nodes that could be

targeted in combination to overcome resistance mechanisms that are observed in single target

treatments.
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2.5 Supplementary data

SUPPLEMENTARY FIGURE 2.1: Abundant mature miRNA
guides are produced from pairs of shRNAs expressed from
the same promoter Constructs harboring a pair of KRAS tar-
geting hairpins separated by a spacer of various length were
transduced in A-375 and ERC cells. Following selection, small
RNA cloning was performed. miRNA guides were ranked
by read counts. Shown is this rank for mature KRAS shRNA
guides, averaged for both cell lines.
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Chapter 3

A CRISPR resource for individual,

combinatorial, or multiplexed gene

knockout

Since this project was performed in collaboration with Dr. Simon Knott, I will describe our individual

contributions. Dr. Knott designed the machine learning algorithm and integrated the different param-

eters that make up the final CRoatan libraries (figures 3.1, 3.2, 3.3, 3.4, 3.7). I designed and validated

the dual expression vector, built the genome wide libraries and performed all experiments. The results of

this work were published in Erard et al (2017) Mol Cell (See Appendix B). For the purpose of this thesis,

I analyzed the data to generate all the figures in this chapter except the ones cited above.

3.1 Introduction

Genetic screens have proven to be invaluable tools to investigate gene function on a genome-

wide scale. However, the strength of the conclusions drawn from these experiments greatly

depends on the efficacy of the effector used for targeting. To address this issue, multiple algo-

rithms to select potent effectors were designed and experimentally validated for shRNA based

gene silencing (Fellmann, Zuber, et al., 2011; Fellmann, Hoffmann, et al., 2013; S.R. Knott et

al., 2014). Concurrently, novel shRNA backbones and expression strategies were devised to

increase on-target effect and specificity.
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As the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) bacterial sys-

tem was repurposed to perform targeted gene knock-outs in many organism, similar approaches

were taken to identify potent short guide RNAs (sgRNAs). For both several Type II and Type V

CRISPR systems, large sgRNA potency datasets were generated and used to train algorithms

to predict the efficacy of an sgRNA based on its sequence characteristics (Doench, Hartenian,

et al., 2014; Chari et al., 2015). Unlike RNAi that mediates mRNA decay, Cas9 induces double-

strand breaks at the target site. The phenotypic outcome of targeting a locus with CRISPR thus

depends not only on the efficacy of the gRNA at guiding the Cas9 to the locus, but also on the

characteristics of the genomic scar left by the repair of the DSB. To maximize the likelihood

of generating functional knockouts, initial studies focused on selecting target sites in the first

genic exons to increase the likelihood of an indel producing premature stop codons leading to

the elimination of transcripts by the nonsense-mediated decay pathway (Doench, Hartenian,

et al., 2014). Others focused on targeting protein functional domains in which the loss of a few

amino-acids would be deleterious even if the DSB was repaired in frame (Shi et al., 2015).

CRISPR induced DSB were thought to be repaired predominantly by the non-homologous

end-joining (NHEJ) pathway, making any prediction on the outcome of the repair impossible.

However, sequencing of large numbers of these genomic scars has shown that the repair can be

guided by micro-homologies between DNA end when the DSB site is flanked by short homol-

ogous stretches (Bae et al., 2014). In this case, the likelihood and characteristics of each repair

resolution can be predicted using the length and GC content of the homologous sequences, as

well as their distance from the DSB break. Using these predictions, target sites for which the

repair will lead to a frame-shift mutation can be selected.

To increase the efficacy of CRISPR reagents, different sgRNA expression strategies have

been explored. Multiple independent sgRNAs have been targeted to genes by using crRNA

arrays mimicking closely the prokaryotic gRNA maturation pathway, both using Cas9 with an

RNAse III and with CpfI (Cong et al., 2013; Zetsche, Heidenreich, et al., 2016). Alternatively,

vectors harboring sgRNAs driven from multiple U6 promoters can be designed (Vidigal &

Ventura, 2015). Although both of these strategies have mostly been used to either perform

combinatorial screens or to ablate long non-coding sequences, targeting multiple sgRNA to the

same gene should in principle lead to a greater likelihood of functional knockout.
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Here, we combined the strategies identifying highly active sgRNA sequences and predict-

ing the impact of a DSB repair on target protein to select putative target sites based on sequence,

amino-acid conservation at target site, and frame-shit mutation likelihood. Additionally, we

designed a novel vector expressing two sgRNAs, and developed an algorithm to select pairs

of sgRNAs that would have synergistic deleterious effects when simultaneously targeting the

same gene. To validate our approach experimentally and compare it to existing sgRNA selec-

tion algorithms, we performed five multiplexed loss-of-function screens in two cell lines.

3.2 Materials and methods

3.2.1 Random Forest Training and Scoring

10 random forests were constructed for each of the Doench et al and Chari et al datasets. For

each data type, sgRNAs in the top 75th and bottom 50th percentile for each gene were classified

as potent and weak, respectively. The 10 forests were trained using the Matlab treeBagger

package (1000 trees per forest). Forests were trained using incrementally increasing penalties

for false-positive classifications (1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8, 3). During training forests

are constructed using the 28 overlapping 3mers of each target as features, and the class of the

target (potent or weak) as the output.

When a new target is being scored, it is decomposed into 28 3mers, and these are given to

each of the 20 forests (10 corresponding to the Doench et al data and 10 to the Chari et al. data)

as input. The target is then assigned a value between 0 and 10 corresponding to the highest

stringency forest it was assigned as potent by. For example, if a target was called potent by a

Doench forest that was trained with a penalty of 2.2 (6th lowest) and a Chari forest trained with

a penalty of 2 (5th lowest), the target would receive a score of 5.

3.2.2 sgRNA-pair Scoring

For each gene, all pairwise scores were calculated for the top 10 CRoatan scoring sgRNAs. All

sgRNA pairs begin with a score of 0. Overlapping pairs are assigned a final score of 0. Pairs that

are less than 10kb apart with DSB-DSB distances that are not divisible by 3 are assigned a score
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of 2.5 if they target the same transcripts. Scores are incremented by 1 if pairs have imbalanced

CRoatan scores (one less than 7 and one greater than 7). This scoring matrix is then given as

input to the maximum weighted matching algorithm (matlab maxWeightMatching).

3.2.3 Cell lines

CRISPR/Cas9 screens were performed in melanoma A-375 (ATCC CRL-1619, female) and chronic

myelogenous leukemia K-562 (ATCC CCL-243, female) cell lines. A-375 were grown at 37◦C

in Dulbecco’s Modified Eagle Medium (DMEM), supplemented with 10% Fetal Bovine Serum

and 50U/mL penicillin/streptomycin. K-562 were grown at 37◦C in RPMI1640 supplemented

with 10% FBS and 50U/mL penicillin/streptomycin. The 293FT cell line (Thermo-Fischer) was

grown at 37◦C in DMEM supplemented with 10% FBS and penicillin/streptomycin.

A-375 cells were infected at low multiplicity of infection (MOI) by virus produced using

lentiCas9-Blast (Addgene # 52962) (Sanjana et al., 2014) and selected using blasticidin (10µg/mL).

Following 10 days of selection, single cells were sorted using the FACSAria IIU cell sorter (BD

Biosciences) into 96-well plates. 10 A-375-Cas9 clones were tested for Cas9 functionality by

infection with a vector expressing ZsGreen and an sgRNA targeting ZsGreen. Knockout ef-

ficiency was estimated by flow cytometry after 14 days. One of the A-375-Cas9 clonal lines

exhibiting more than 50% knockout of ZsGreen in this assay was selected for further experi-

ments. The K-562 clonal cell line expressing Cas9 was kindly gifted by Dr. Vakoc (Cold Spring

Harbor Laboratory).

3.2.4 sgRNA Library Construction

For single sgRNA libraries, sgRNA sequences were predicted using existing algorithms (RNA-

Configurator, sgRNAScorer, GPP web portal and CRoatan) and oligonucleotides containing

these sequences were ordered from Integrated DNA Technologies (IDT, Table S1). These molecules
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were amplified by PCR (forward primer (FP): TTACCGTAACTTGAAAGTATTTCGATTTCTTG-

GCTTTATATATCTTGTGGAAAGGACGAAACACCG, reverse primer (RP): GGACTAGCCT-

TATTTTAACTTGCTATTTCTAGCTCTAAAAC) and cloned by Gibson assembly into a 3rd gen-

eration lentiviral vector harboring a U6 promoter, an sgRNA backbone, and a ZsGreen-P2A-

PuromycrinR transcript driven by a spleen focus-forming virus promoter (pCRoatan-singleSgRNA).

For dual sgRNA libraries, sgRNA sequences were predicted using CRoatan. Primers con-

taining these sequences were ordered from IDT (Table S1) and used to amplify a hU6-EM7-

ZeocinR-cU6 cassette (pCRoatan-dualPromoter). The amplicon was digested with BbsI (NEB)

and ligated into a 3rd generation lentiviral vector (pCRoatan-dualSgRNA) previously digested

with BsmBI (ThermoFischer).

Combinatorial sgRNA libraries were built using DNA chips (CustomArray, Inc.) con-

taining 10K molecules harboring a barcode and two flanking sgRNA sequences (Table S2).

Chips were amplified by 5 separate 18-cycle PCRs to ensure high-complexity end product.

The amplicons were first cloned by ligation into an intermediate cloning vector (pCR-BluntII

TOPO based) using SpeI (NEB) and ApaI (NEB). Subsequently, the hU6 and cU6 promot-

ers driving the sgRNAs were added to the vector. The hU6 promoter was amplified from

lentiCrisprv2 (Addgene # 52961) by PCR (FP: AGTACCGTCTCTGGTGTTTCGTCCTTTCCA-

CAAG, RP: GTACCTACGCGTGAGGGCCTATTTCCCATGATTC), and cloned by ligation us-

ing the BsmBI (ThermoFischer) and MluI (NEB) restriction sites. The cU6 promoter (cU6-3,

Kudo et al., 2005) was amplified from a gBlock (IDT) by PCR (FP: ATCGATCTCGAGGCGC-

CGCCGCTCCTTCAGGCA, RP: TGATCCTGGTCTCACGACTAAGAGCATCGAGACTGC), and

cloned by ligation using the BsaI (NEB) and XhoI (NEB) restriction sites. Following these

three steps, the full sgRNA1-hU6-EM7-ZeocinR-Barcode-cU6-sgRNA2 cassette was digested

from the intermediate cloning vector using BbsI and ligated in the lentiviral expression vec-

tor (pCRoatan-dualSgRNA) as described previously. All transformations were performed with

Invitrogen’s MegaX DH10B T1 electro-competent cells using a Bio-Rad Gene Pulser Xcell and

Bio-Rad Gene Pulser 1 mm cuvettes for electroporation. For each library, a minimum of 10

million successfully transformed cells were obtained.
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3.2.5 sgRNA Library Screening

sgRNA libraries were packaged using the 293FT cell line (Thermo Fischer). Cells were co-

transfected with library vector (60µg), pMDL (12.5µg), CMV-Rev (6.5µg) and VSV-G (9µg) by

calcium phosphate transfection. The media was replaced at 14h and virus was collected at 36h

and filtered using a 0.45µM syringe filter (Millex-HV, EMD Millipore). Viral infections were

performed at an MOI of 0.3 to ensure a maximum of one sgRNA integration per cell. sgRNA

representation in the infected population was maintained at a minimum of 1000 infected cells

per sgRNA at each passage. All screens were performed in triplicates. Two days after infection,

cells were collected for a reference time point. After 12 doublings, cells were harvested for a

final time point. Infected cells were selected using Puromycin (1µg/mL) after the initial time

point and throughout the screen.

3.2.6 CRISPR/Cas9 Library processing and analysis

Following cell harvests, DNA was extracted using the QIAGEN QIAamp DNA Blood Midi

kit. For each sample, sgRNA molecules or barcodes identifying sgRNA pairs were extracted

from the genomic DNA in 24 separate 30-cycle PCR reactions in which 2µg of DNA input was

included. Illumina adapters were included in the PCR primers (Table S3). Libraries were se-

quenced using custom read one primers on the Illumina MiSeq or HiSeq platforms. Following

sequencing, reads were trimmed to a length of 20bp and sgRNA counts were extracted using

the bowtie algorithm (Langmead et al., 2009). For each sgRNA or sgRNA pairs, log fold change

values were calculated by dividing the abundance after twelve doublings by the abundance at

the reference timepoint, two days after infection (Knott et al., 2014).

3.2.7 Dual-sgRNA genomic scar analysis

200,000 A-375-Cas9 and K-562-Cas9 cells were transduced with CRoatan constructs targeting

3 different olfactory receptor genes. Following selection with Puromycin cells were grown for

12 doublings and then harvested for analysis. DNA was extracted using the QIAGEN QI-

Aamp DNA Blood Midi kit. The target region, including 50bp upstream and downstream of

both sgRNA target sites was amplified by PCR, in 16 25-cycle PCR reactions in which 500ng of
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DNA input was included (Table S3). Following purification using the QIAquick PCR Purifica-

tion Kit, Illumina adapters were added via PCR and samples were processed on the Illumina

MiSeq platform using paired-end reads of 200bp to cover both sgRNA target sites. Reads were

mapped to the relevant genomic region using the bwa mem algorithm and cut types were an-

alyzed and counted using the CIGAR string of the alignment (Li et al., 2009).

3.3 Results

3.3.1 sgRNA selection strategy

A random-forest algorithm to predict sgRNA efficacy

Predicting sgRNA efficacy from sequence determinants in silico requires large training datasets

of paired sequence-efficacy datapoints. Such datasets did not exists when this project started

and our first approach was to adapt the shRNA sensor assay that had been developed by the

Hannon lab and others to CRISPR/Cas9 (Fellmann, Zuber, et al., 2011). This assay relies on

expressing in the same cell an shRNA (under control of an inducible promoter) and a fluores-

cent protein flanked by the target site of the shRNA. The efficacy of the shRNA can be assessed

by measuring the drop in fluorescence when the induced. Our strategy was thus to pair both

sgRNA and target site on the same lentiviral vector, transduce Cas9 expressing cells and es-

timate sgRNA efficacy by deep sequencing mutated target sites. However, two studies using

sgRNA efficacy datasets to build algorithms to predict sgRNA strength were published shortly

after and we decided to use the datasets they had generated. Doench et al. used a library of

3000 sgRNAs tiling nine mouse and human cell surface proteins (Doench, Hartenian, et al.,

2014). Following delivery of the sgRNAs, target-negative cells were FACS-sorted. The relative

abundance of each sgRNA in the target-negative population compared to the unsorted popu-

lation can be used to measure effector potency. Chari et al. used a library-on-library approach

by first stably transducing cells with a synthesized library of 1400 target sites (Chari et al.,

2015). They then transfected a library of the corresponding sgRNAs and measured for each

sgRNA CRISPR-induced indels by high-throughput sequencing of target sites. One caveat of
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this experimental design is that each cell receives a large number of sgRNA-expressing plas-

mid, leading to high sgRNA concentration in each cell as opposed to when a single U6-sgRNA

cassette is integrated in the genome. Additionally, large number of these sgRNAs are likely to

be non-targeting but will compete for binding to Cas9 proteins reducing the number of target-

ing sgRNA-Cas9 complexes in the cell.

Using these two datasets, we developed a random forest-based sgRNA prediction algo-

rithms. All 3-mers of the sgRNA binding site, with an additional 4 base pairs upstream and

6 base pairs downstream (this includes the PAM) were used as features. For each dataset, 10

different random-forests were train to discriminate weak from potent sgRNAs using increasing

penalties for false positive predictions. The random-forests are thus increasingly stringent at

identifying potent sgRNAs. When predicting the potency of new sgRNA sequences, the high-

est stringency level they pass on both sets of random-forests is used as a score. To validate this

scoring system, we used a subset of sgRNAs from the Doench et al. dataset that were withheld

during training. The percent-ranks of sgRNAs in the in vivo assay were compared to the scores

assigned by the prediction algorithm (figure 3.1).
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FIGURE 3.1: A random forest-based algorithm to predict
sgRNA potency Activity of the sgRNAs from the Doench
et al. dataset, stratified by the random forest stringency level
passed. For all the boxplots in this chapter the the edges of the
box are the 25th and 75th percentiles. The error bars extend
to the values q3 + w(q3 - q1) and q1 - w(q3 - q1), where w is
1.5 and q1 and q3 are the 25th and 75th percentiles. sgRNAs
passing the first stringency level are significantly more active
(rank-sum test, p-val=0.032). The sgRNA percent-rank was
calculated by ranking sgRNAs targeting the same gene.
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A significant gain in activity was observed for sgRNAs passing the minimum stringency

threshold (rank sum test, p-val = 0.032). Higher scores correlate with an increase in sgRNA

potency, although this increase is not statistically significant.

Amino-acid conservation based target site selection

Unlike with shRNAs, where targeting leads to mRNA cleavage, the phenotypic consequence

of targeting a locus with an sgRNA depends on the genomic scar left by the DSB repair.

CRISPR/Cas9 induced mutations can be analyzed by high-throughput sequencing and have

been shown to be mostly deletions of varying length, which can cause frame-shifts if the length

is not a multiple of 3. If not, only a few amino-acids are deleted from the original protein. To

maximize the impact of such a deletion, previous studies have targeted Cas9 to known pro-

tein functional domain (Shi et al., 2015). As most proteins lack verified domain annotations,

this strategy cannot be easily implemented to build genome-scale sgRNA libraries. An alter-

native is to predict the effect of an indel or substitution of any amino-acid in silico using SIFT,

PolyPhen-2 or PROVEAN (P. Kumar, Henikoff, & Ng, 2009; Adzhubei et al., 2010; Choi et al.,

2012). Here, we used scores generated using PROVEAN (Protein Variation Effect Analyzer) as

it performs similarly to other software in specificity and sensitivity, and scores for any amino-

acid single substitution or deletion are available for all human proteins from Ensembl 66. For

any given protein sequence, PROVEAN uses BLASTP to create a set of other know proteins of

any species with a sequence identity over 80%. The predicted effect of an amino-acid variation

is then predicted based on the change of similarity between the protein and the selected set

before and after the mutation. This score is in fine based on the conservation of amino-acid

residues and we used it as a metric to rank sgRNA target sites according to the predicted dele-

terious effect of an amino-acid deletion. If the predicted DSB break was within a codon, we

used the PROVEAN score for a deletion of that amino-acid, if not, we averaged the scores for

the deletion of the flanking amino-acids (figure 3.2A).

An analysis of the Doench et al. datasets shows that these scores are correlated with the

measured functional knock-out rate (figure 3.2B). We thus considered the PROVEAN score of

neighbouring amino-acids when selecting target sites to maximize the deleterious effect of an

indel on protein function.
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FIGURE 3.2: Selection of target sites using amino-acid con-
servation (A) Strategy used to assign conservation scores tar-
get sites using PROVEAN scores from neighboring amino-
acids. (B) Efficacy of sgRNAs from the Doench et al. dataset
stratified by conservation score (ρ=0.317).

Predicting frame-shift mutations inducing repairs

CRISPR/Cas9 DSB were thought to be predominantly repair by the NHEJ pathway, which

makes predicting the resulting genomic scar impossible. However, recent high-throughput

characterization of large numbers scars left by CRISPR/Cas9 show that some repairs are medi-

ated by microhomology-mediated end joining (MMEJ) (Bae et al., 2014). When the DSB target

site is flanked by small homologous regions, the repair can be predicted (figure 3.3A). We rea-

soned that targeting sites with a high likelihood of an MMEJ mediated repair leading to a

frame-shift mutation would increase the rate of functional knockout. Similarly to Bae el al.,

we developed a linear regression model to predict the likelihood of a micro-homology guided

repair resolution based on the length, GC content and distance to the DSB of the correspond-

ing homologous region. For target sites with a MMEJ likelihood above the median of all target

sites, the likelihood of a FSM was measured as the fraction of predicted resolutions correspond-

ing to FSMs. An analysis of the Doench datasets shows that efficacy is increased when target

sites with an FSM score greater than 66% are chosen (figure 3.3B). In addition to conservation

scores, FSM-likelihood of targeted locus can also be used as a criteria for sgRNA selection.
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FIGURE 3.3: Selction of target sites based on frame-shift
mutation likelihood upon DSB repair (A) Cas9-induced
double-strand breaks can be repaired by micro-homology me-
diated end joining, the proportion frame-shift mutations or
in-frame repairs can be predicted based on the length, GC
content and distance to the double-strand break of the cor-
responding homologous region (B) Potency of sgRNAs from
the Doench et al. dataset stratified by frame-shit mutation
likelihood. (rank-sum test p-val=0.0405 for tertile 3 sgRNAs
compared to tertile 1 and 2 sgRNAs).

CRoatan: an algorithm to select potent sgRNAs

sgRNA potency, conservation of amino-acids at target site and predicted FSM scores can all

be used to select sgRNAs generating functional knock-outs efficiently. To consolidate these

three components in a single predictive algorithm, we first separated the sgRNAs into three

groups based on their random-forest scores: group A, with a score of 0, group B with a score

of 1 to 5 and group C with a score of 6 to 10. These groups received a baseline score of 0, 3

and 6 respectively. Within each group, sgRNAs were ranked according to their conservation

and FSM rate scores. For conservation, the target site was deemed conserved if its score was
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higher than the median score for all Cas9 sites of human CDS. For FSM rate, the threshold

was set to a FSM score greater than 66%. For each sgRNA, an additional score of 1, 2 and 3

was added to the baseline score if neither of the FSM or conservation threshold were passed,

1 if one of these threshold was passed and 2 if both were passed. sgRNAs in groups A, B or

C were thus respectively assigned scores of 1 to 3, 4 to 6 or 7 to 9 (figure 3.4A). Using these

algorithm, which we called CRoatan, we ranked the sgRNAs in the Doench et al datasets.

CRoatan scores correlate well with the observed experimental efficacy (figure 3.4B). We then

used CRoatan to predict the most ten most potent sgRNA for all protein-coding genes in human

refseq annotation and identified potent sgRNAs for each target.
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FIGURE 3.4: CRoatan: an algorithm identifying potent
sgRNAs (A) Diagram of the strategy used to combine ran-
dom forest,conservation and frame-shift mutation likelihood
scores in a single CRoatan score. (B) Re-analysis of the de-
pletion scores of the sgRNAs in the Doench et al datasets, or-
dered by their CRoatan score (ρ=0.562).

Experimental validation

To compare CRoatan to other existing sgRNA selection algorithms, we built 4 different CRISPR

libraries and performed loss-of-function screens. Each library was composed of 20 essential

genes and 20 non-essential genes, with 5 sgRNA per gene. Essential genes were chosen based
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on previous RNAi screens in cancer cell lines and olfactory receptor genes were chose as non-

essential controls. A different prediction software was used to select sgRNAs for each library:

sgRNA Scorer, Gene Perturbation Platform Web Portal (GPP WP), RNA-Configurator (Dhar-

macon) and CRoatan. Each library was independently cloned in a lentiviral vector harboring

a human U6 promoter to express the sgRNA and a spleen-focused forming virus (SFFV) pro-

moter driving the expression of ZsGreen, a fluorescent marker, and a puromycin resistance

marker in a bi-cistronic fashion. The libraries were packaged in lentiviruses and transduced

into the melanoma A375 and the chronic myelogenous leukemia K562 cell line. Both cell lines

expressed Cas9 constitutively. Following transduction, cells were selected and cultured for

around 12 doublings. The depletion of each construct was measured by calculating log-ratios

of abundance after 12 doublings to abundance 2 days after infection. To compare each library,

these log-ratios were normalized using the log-ratio of the sgRNAs targeting the non-essential

genes. Analysis of the depletion of constructs targeting essential genes in the CRoatan library

shows that the observed depletion correlates with CRoatan scores (figure 3.5). However, de-

pletion rates did not correlate with conservation score and FSM mutation alone.

FIGURE 3.5: Validation of CRoatan using a CRISPR/Cas9
depletion screen Gene by gene Z-score normalized deple-
tion rates of sgRNAs targeting essential genes, stratified by
CRoatan score (ρ=0.26). Depletion rates were calculated as
the average of the log-ratios in the screens conducted in the
A375 and K562 cell lines.

We then compared the depletion of sgRNAs targeting essential genes in the four libraries.

CRoatan constructs were found to be significantly more depleted than RNA-Configurator and
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sgRNAScorer constructs (rank-sum pval of 0.042 and 0.026 respectively, figure 3.6). Although

CRoatan constructs were on average more depleted than GPP constructs, this difference was

not statistically significant (rank-sum pval=0.19). Overall, this demonstrates the effectiveness

of CRoatan as an sgRNA selection algorithm (figure 3.6).

FIGURE 3.6: Comparaison of CRoatan to other sgRNA se-
lection tools Libraries of sgRNAs targeting essential or non-
essential genes were screened in A375 and K562. Shown are
the depletion log-ratios of sgRNAs targeting essential and
non-essential genes, averaged for both screens. Libraries were
designed using sgRNAScorer, RNA-Configurator, GPP WP or
CRoatan. sgRNAs targeting essential genes are more active in
the CRoatan library

3.3.2 Dual-gRNA expression strategy

Vector design

To further increase the efficacy of CRoatan constructs, we sought to target each gene with mul-

tiple sgRNAs simultaneously, and designed a vector expressing pairs of sgRNA. This vector

is based on the one used in the screens above (figure 3.7). Each sgRNA is expressed from an

independent U6 promoter. To lower the risk of recombination, the first sgRNA is driven by a
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human U6 promoter and the second from a chicken U6 promoter that had previously been used

in RNAi experiments to express first-generation shRNAs. We placed these promoters in oppo-

site orientation to prevent transcriptional interference. We also added a barcode identifying

each pair uniquely, flanked by Illumina sequencing adapter sequences to facilitate sequencing

of high-throughput screening experiments. The small size of sgRNA variable sequence (20bp)

allows for printing both sgRNAs and the barcode on DNA chips on the same oligo. Com-

plex libraries targeting one or two genes can be easily assembled by first cloning the chip in a

lentiviral vector harboring two sgRNA barcodes and sequentially adding the hU6 and cU6 pro-

moters. To create combinatorial libraries from existing construct, the second sgRNA cassette

can be randomly shuffled. The two sgRNA variable region are too far apart to sequence them

simultaneously by deep sequencing, but the barcode and second sgRNA sequence can be used

to uniquely identify each pair.

FIGURE 3.7: A dual-sgRNA expression vector Schematic
map of the lentiviral vector used to express pairs of sgRNAs
(hU6: human U6 promoter, cU6: chicken U6 promoter, HTS:
high-throughput sequencing, SFFV: spleen focus-forming
virus promoter).

Dual-gRNA induced genomic scars

Targeting CRISPR to two adjacent sites can theoretically allow for the deletion of large frag-

ments of genes which would be effective to disrupt gene function. To quantify the likelihood

of such events as well as the mutation rates generated by this dual-sgRNA vector at both tar-

get sites, we generated 3 dual constructs against olfactory receptors. Olfactory receptors were

chosen for this test as they generally have only one exon which makes sequencing of genomic
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scars at two target sites possible using paired-end Illumina sequencing. Following transduc-

tion in A375-Cas9 and K562-Cas9 cells, target regions were amplified by PCR and sequenced.

We then classified the observed genomic scars in five types: no mutation, hU6-sgRNA or cU6-

sgRNA indel if only one of the target site was mutated, hU6-sgRNA and cU6-sgRNA indel if

both sites were mutated simultaneously and fragment deletion when the sequence between the

two sgRNA target site was entirely removed. For all three sgRNA pairs, we observed at least

50% mutation rate in both cell lines. Surprisingly, the predominant genomic scar is fragment

deletion resulting in the removal of up to 200 base pairs in the loci (figure 3.8). Although this

rate of total fragment deletion is likely to decrease when the DSB sites are further apart, tar-

geting pairs of sgRNA to the same exon can result in large deletions that would impact greatly

protein functionality.

FIGURE 3.8: Simultaneous targeting of olfactory receptors
with multiple sgRNAs Deep sequencing analysis of deletion
patterns induced by targeting pairs of sgRNAs to olfactory
receptor genes. hU6-sgRNA or cU6-sgRNA indels are indels
where only the site targeted by the hU6 or cU6 driven sgRNA
are mutated. hU6 & cU6-sgRNA indels are indels where both
sites are mutated, and frament deletions repairs for which the
full sequence between the target sites is removed.

A careful analysis of repairs for which only a single site was mutated confirms that a sig-

nificant fraction of repair-resolutions are MMEJ mediated and can be predicted, validating
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our strategy to score target site based on the likelihood of MMEJ mediated frame shift repair-

resolutions. However, when large fragment deletions are observed, the most common genomic

scar is blunt-end joining of the predicted DSB (figure 3.9). Following this observation, we rea-

soned that increased efficiency could be obtained by selecting pairs for which the number of

nucleotides between the predicted DSBs is not divisible by 3. In this case, a large fragment can

be deleted and the resulting repair is likely to induce a frame-shift mutation.

FIGURE 3.9: Predictable genomic scars upon targeting of
sites with pairs of sgRNAs Analysis of the fragment dele-
tions described in figure 3.8. The rate of occurrence of the top
10 unique deletion pattern is shown, as measured by their av-
erage frequency in infected A375 and K562 cells. Deletions
corresponding to the precise excision of the fragment ranging
from the DSB sites of the two sgRNAs are labeled DSB-DSB
deletion. Other deletions for which additional bases are re-
moved are Others. Deletions that could be predicted by ex-
amination of small homologous regions upstream of the first
target site and downstream of the second target site are also
annotated.

sgRNA pairing

To pair sgRNAs for each target gene, we first selected the top 20 sgRNAs as predicted by

CRoatan. Sequences mapping to multiple regions of the genomes with mismatches were re-

moved to produce a short-list of 10 potent and specific sgRNAs. A 10x10 pairwise score matrix

is then calculated with all possible pairs. To maximize the likelihood of having synergistic dele-

terious effect within each pair, additional selection criteria were implemented. Pairs in which
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the target sites are overlapping were removed as this would cause similar effects as using a

single sgRNA. For most genes, we were not able to find 10 sgRNAs with the strongest score.

In this case, the pairing could create pairs with strong sgRNAs and pairs with weak sgRNAs

that would not lead to efficient knockouts. To ensure that each pair harbors a potent sgRNA,

the score of unbalanced pairs was incremented. The score of sgRNAs pairs targeting the same

exon or two different exons shared by a set of isoforms was also increased to promote pairs

where both sgRNAs target each isoform simultaneously. Additionally, target sites for which

the predict DSB to DSB distance corresponds to a frame shift mutation as mentioned above

were preferred. After scoring of each pair, a weighed graph was built and a maximum match-

ing algorithm was applied to identify the coupling with the highest sum of pair scores (figure

3.10).

Pair-strengthTop 20

Off-target
re-order

Pair-
scoring

Weighted-Maximum
Matching

Top 10

Final pairs

FIGURE 3.10: sgRNA pairing algorithm used to design
five constructs per gene For each gene, the 20 most potent
sgRNAs as predicted by CRoatan are considered. After fil-
tering sgRNAs to reduce off-target effects, all pairs are scored
in a 10x10 matrix. Scores are adjusted to increase the likeli-
hood of each pair receiving at least one potent sgRNA. The
score of pairs targeting the same exon and for which the DSB
to DSB distance is not divisible by three is also incremented.
A weighted-maximum matching algorithm is then used to se-
lect five pairs per gene.

Combinatorial CRISPR/Cas9 screen

To assess the effectiveness of our dual-sgRNA strategy, we designed a combinatorial CRISPR

screen. 100 sgRNAs targeting 10 essential genes and 10 non-essential genes were paired, for a

total of 10 000 combinations. This library was screened in A375-Cas9 and the abundance log-

ratios of each sgRNA pair were calculated as described above (reference to paragraph). The
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large number of constructs in this library allowed us to evaluate effectiveness of all components

of CRoatan, except the random-forest selection as all selected sgRNAs were in the highest scor-

ing group. Since each sgRNA targeting an essential gene is paired with 10 sgRNAs targeting

non-essential gene sgRNAs twice (10 with the essential-gene targeting sgRNA driven by the

hU6 promoter, 10 by the cU6 promoter), we measured the efficacy of the sgRNA by averaging

the log-ratios of these 10 pairs. This provides a more robust measurement of the strength of

each sgRNA than the unique depletion rate we obtained in the CRoatan single-sgRNA screen.

(A) (B) (C)

FIGURE 3.11: Assessment of the strategies used to select po-
tent sgRNAs Gene-normalized depletion rates of sgRNAs
stratified by fail/pass of the conservation threshold (A), of
the frame-shift likelihood score threshold (B), or by CRoatan
scores (C). The conservation threshold is the median conser-
vation score of all Cas9 target sites in human CDS. For frame-
shift mutation likelihood, a score greater than 66% was re-
quired to pass.

We calculated the average depletion rate of each essential gene targeting constructs and

used z-scores to compare sgRNAs targeting the same gene. When an essential gene sgRNA

is paired with a non essential gene sgRNA, it can be expressed from the human U6 promoter

or the chicken U6 promoter. To avoid any bias in promoter strength, we separated these two

cases. We then separated sgRNA constructs in two groups: pass or fail conservation threshold

or frame-shift mutation likelihood threshold. sgRNAs passing the amino-acid conservation

or the frame-shift mutation threshold deplete significantly more, regardless of whether the

sgRNA is expressed from the hU6 or cU6 promoters (figure 3.11A and 3.11B). This indicates

that both of these strategies are useful in predicting potent sgRNAs. Similarly to figure 3.5, we
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observed a correlation between the predicted CRoatan scores and the in vivo activity of sgRNAs

(figure 3.11C).

Next, to confirm that using pairs of sgRNAs on the same gene increases the likelihood of

functional knockout, we compared the depletion rates of constructs in which an essential-gene

sgRNA is paired with a non-essential gene sgRNA to constructs where it is paired with one

of the 4 other sgRNAs targeting the same gene. For each of the 10 essential gene targeted in

this screen, we compared depletion rates when the gene was targeted by pairs of sgRNAs or

with a single sgRNA. For most genes, a stronger phenotype was observed when the gene was

targeted by pairs of sgRNAs (figure 3.12A, rank-sum p-val < 0.001).

(A) (B)

FIGURE 3.12: Experimental validation of the dual-sgRNA
expression constructs (A) Average depletion rates essential
gene sgRNAs when they are paird with a non-essential gene
sgRNA (blue) or with another sgRNA targeting the same es-
sential gene (red). (B) Depletion log-rations of sgRNAs, EG-
EG: constructs with pairs of sgRNAs targeting essential gene,
NEG-EG: constructs with one sgRNA targeting an essential
gene and one a non-essential gene, NEG-NEG: constructs
with two sgRNAs targeting non-essential genes.

We extended this comparison to pairs of sgRNAs targeting different essential gene. We

found that depletion levels are increased significantly with the number of essential gene sgRNAs
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in the construct. This combinatorial screen allowed us to estimate the relevance of each com-

ponent of our computational selection process as well as our expression vector. Both the con-

servation and the frame-shift mutation likelihood scores were found to positively contribute in

the selection of potent sgRNAs. Using pairs of sgRNAs yields stronger phenotypic outcome,

here measured as construct depletion rate. Furthermore, this expression vector can be used to

knock-out multiple gene simultaneously.

3.3.3 Library validation

As a final validation of our dual-sgRNA library, we designed a dual-sgRNA CRISPR library

harboring 200 constructs targeting the 20 essential and 20 non-essential genes that were screened

initially (figure 3.6). Both CRoatan and the pairing strategy described previously (figure 3.10)

were used to identify the most potent 5 pairs per gene. This library was screened in A375-Cas9

and K562-Cas9 cells and depletion log-ratios were measured for each construct as described

above (figure 3.6). Dual CRoatan constructs were significantly more depleted than single

sgRNAs. This was true when all the other prediction algorithms we tested were considered to-

gether (rank-sum test, p-val<0.0001) or separately (rank-sum test, sgRNAScorer: p-val=1.5e−5,

RNA-Config: p-val=0.0014, GPP WP: p-val=0.015) (figure 3.13A). Although CRoatan dual sgRNAs

had higher depletion rates than CRoatan single sgRNAs, this difference was not significant

(rank-sum test, p-val=0.4). Loss-of-function genetic screens are generally performed to iden-

tify genes implicated in a phenotype of interest without any prior knowledge. In these screens,

“hits" are selected for follow-up experiments using criteria such as the number of construct

per gene significantly depleted, or with a depletion rate above a predefined threshold. We

performed such an analysis on the 5 depletion screens. We considered an increasingly large

percentage of the most depleted sgRNA constructs (top 10% to top 50%), and called a gene

a hit if at least two constructs targeting that gene were in the considered fraction. Using this

analysis, we can estimate the true-positive and false-positive rate as the fraction of essential

or non-essential genes identified as hits. In both sensitivity and specificity, the dual CRoatan

library performed better than any other library (figure 3.13B).
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FIGURE 3.13: Dual-CRoatan Constructs Provide Supe-
rior CRISPR-Based Gene Targeting (A) Depletion rates of
CRISPR constructs targeting essential and non-essential genes
in loss-of-function screens. sgRNA sequences were either se-
lected using existing algorithms (RNA-Config, sgRNAScorer,
GPP WP) or using CRoatan. Vector harboring one (existing al-
gorithms and CRoatan) or two (Dual CRoatan) sgRNAs were
used. (B) Number of genes identified as hits when an increas-
ing fraction of depleted sgRNA constructs is considered. To
be classified as a hit, two constructs targeting that gene need
to be depleted.
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3.4 Discussion

CRISPR systems have been used extensively to manipulate the genome of multiple organisms,

both in one-by-one experiments and large-scale genetic screens. Here, we leveraged available

sgRNA efficacy datasets to build a random forest based machine learning algorithm to predict

sgRNA potency. We combined this approach with stringent selection of putative target site

by conservation and frame-shift mutation repair likelihood to maximize the phenotypic con-

sequence of a DSB on protein function. Furthermore, we have demonstrated that significant

gains in efficacy can be gained when multiple sgRNAs simultaneously target Cas9 to the target

gene. We have thus designed a vector expressing pair of sgRNAs from two independent U6

promoters and implement an algorithm identifying pairs of guides with synergistic deleterious

effect. This vector can also be used to study to study complex regulatory networks and genetic

interactions in combinatorial screens.

To compare our library to preexisting sgRNA prediction tools, we performed six side-by-

side loss of function genetic screens. CRoatan reagents showed significant greater efficacy, both

in terms of depletion rates, sensitivity and specificity. Nevertheless, further improvements

could surely be implemented. In our combinatorial CRISPR screen (figure 3.12B), we noticed

that for pairs with only one essential gene targeting sgRNA, depletion rates were slightly re-

duced when that sgRNA was expressed from the chicken U6 promoter as opposed to the hu-

man U6 promoter. Thus, sequencing of the expressed guide RNAs could be performed to com-

pare these two promoters as well as others that have been used such as the mouse U6 promoter

and select the one leading to optimal levels of sgRNA expression.

Based on these results, we have used CRoatan to predict the most potent sgRNAs pairs

for all human genes and we are building a sequence-verified genome-wide arrayed library.

The availability of individual arrayed construct allows for large scale screening of complex

phenotypes for which pooled screens are not amenable. Smaller pools of constructs can also

be easily assembled for use in targeted screening approaches or in vivo screens for which the

number of sgRNAs that can be used in one experiment is limited.

Overall, we hope that this toolkit will allow for individual and combinatorial gene knock-

outs to be carried out on a large-scale, both in multiplexed and arrayed formats. The current
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FIGURE 3.14: Graphical summary of the CRoatan sgRNA
selection algorithm

library design includes five dual sgRNA CRoatan constructs targeting all refseq annotated hu-

man coding sequences. Around 50 000 constructs have been sequence-verified at present, and

we aim to complete this set to reach 100 000 sgRNA pairs targeting ∼20 000 genes.
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Chapter 4

Investigating stroma-mediated

gemcitabine resistance in pancreatic

ductal adenocarcinoma

This project was carried out in collaboration with Graham Mills, PhD student in Prof. Duncan Jodrell’s

laboratory. For the purpose of this thesis, I will outline my specific contributions to this project. The

isolation of the cancer-associated fibroblasts and cancer cell lines, as well as the characterization of the

gemcitabine resistance phenotype was performed by the Jordell lab (data used for figure 4.2). To perform

the genome-wide RNAi screen, I cloned the shRNA libraries, produced retrovirus, and infected the cancer

cells. The subsequent passaging of cells in mono and coculture was a collaborative effort between Graham

and myself, as well as the gDNA extraction and PCR of shRNAs. Esin Orhan, a master student I

supervised, also screened one of the 8 shRNA pools. The screen analysis and figures presented here are

the result of my own work.

4.1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers, in part be-

cause it is resistant to many chemotherapeutic treatments (Kamisawa et al., 2016). Over the past

decades, the main treatment has remained gemcitabine, a cytidine analogue, as well as more

recently, combinatorial therapies such as FOLFIRINOX and gemcitabine with nab-paclitaxel

(Burris et al., 1997; Vaccaro, Sperduti, & Milella, 2011; Von Hoff et al., 2013). Although these
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new treatments have increased patient outcome, their high toxicity is often not well tolerated

and new therapies are needed.

One of the characteristics of pancreatic cancer is a strong desmoplastic reaction in which a

dense and complex stroma surrounds the tumors. This fibrous tissue is composed of a variety

of cell types such as pancreatic stellate cells, fibroblasts, immune cells and extracellular matrix,

and has been shown to promote cancer progression and resistance to therapy (Feig et al., 2012).

Activated pancreatic stellate cells (PSC, or cancer-associated fibroblasts) have been identified

as one of the main drivers of the stromal reaction in PDAC (M. Apte et al., 2004; Bachem et al.,

2005). PSCs are present in the pancreas in a quiescent state and are activated upon injury as

well as in response to cytokines or to growth factors produced by cancer cells such, as PDGF,

VEGF or TGFB-1 (Bachem et al., 2005; Vonlaufen et al., 2008). Once activated, PSCs assume

a myofibroblast-like shape and secrete large amounts of extracellular matrix proteins, growth-

factors and cytokines. PSCs have been shown to promote cancer progression both in vitro and

in vivo. In vitro cultures of PDAC cell lines with activated PSC conditionned media lead to

an increase in the cancer cells proliferation, motility and resistance to gemcitabine (Hwang et

al., 2008; Z. Xu et al., 2010; Vonlaufen et al., 2008). Furthermore, subcutaneous or orthotopic

injection of cancer cells with activated PSCs increases tumor size and metastasic burden in vivo

(Hwang et al., 2008; Z. Xu et al., 2010; Bachem et al., 2005; Vonlaufen et al., 2008).

The dense stroma associated with PDAC also obstructs tumor vasculature which impedes

drug delivery. This was first shown in genetically engineered mouse models recapitulating

the progression of PDAC by inhibiting the pro-stromal Hedgehog signalling pathway using

a Smoothened inhibitor (Olive et al., 2009). This led to stromal depletion and increased tu-

mor vasculature and gemcitabine delivery. Further studies aimed at removing the stroma by

targeting hyaluronan, an abundant extracellular matrix component whose accumulation leads

to elevated interstitial fluid pressure, compressing blood vessels (Provenzano et al., 2012; Ja-

cobetz et al., 2013). Its enzymatic removal using hyaluronidase greatly improves response to

chemotherapies in mice. Although stroma ablation leads to sensitivity to treatment on the

short-term, genetic deletion of Hedgehog in PDAC mouse models led to more aggressive tu-

mors with increased metastatic burden, indicating that the stroma could also play a role in

controlling tumor growth (Rhim et al., 2014; Ozdemir et al., 2014). Clinical trials targeting the
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Hedgehog pathway in combination with gemcitabine have also failed to increase patient sur-

vival, which suggests that stromal depletion to increase drug delivery might not be a viable

therapeutic strategy (E.J. Kim et al., 2014).

Regardless of its role as a physical barrier to drug delivery, the stroma has also been shown

to confer tumor cells of multiple cancers innate resistance to therapy in in vitro coculture exper-

iments (Straussman et al., 2012; Wilson et al., 2012). In PDAC, an in vivo study has shown that

targeting the vitamin-D receptor expressed by PSC reprograms PSC towards their quiescent

state and increases tumor sensitivity to gemcitabine (Sherman et al., 2014). Targeting specific

pathways in activated PSC rather than removing the stroma can thus be leveraged to alleviate

PDAC resistance to treatment. In this project, we took advantage of a CAF-PDAC coculture sys-

tem that recapitulates stroma-mediated gemcitabine resistance to perform a high-throughput

RNAi screen. With this strategy, we hope to identify genes and pathways involved in this re-

sistance mechanism that could be used in targeted therapies in combination with gemcitabine

to treat PDAC.

4.2 Material and methods

4.2.1 Genome-wide shRNA libraries

shRNA libraries in the MSCV-based LMN vector were ordered from Transomics Technologies.

These libraries harbor shRNAs predicted by the shERWOOD algorithm (S.R. Knott et al., 2014).

8 pools of ∼10 000 shRNAs covering 19 000 mouse genes were used. Each pool was subcloned

into an MSCV-based LMH vector. In these vectors, shRNAs are expressed from the long ter-

minal repeat (LTR) retroviral promoter, and mCherry and a Hygromycin resistance gene are

expressed from the mouse phosphoglycerate kinase 1 (PGK) promoter in a bicistronic fashion.

To preserve complexity and avoid the introduction of mutations, the shRNAs were excised

from the LMN vectors by digestion using BglII and MluI (NEB). After gel extraction, the miR

cassettes were ligated into LMH previously cut with the same enzymes. Ligation reaction were
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purified on MinElute columns (QIAGEN) and transformed into MegaX DH10B T1R electro-

competent cells (Life Technologies). For each pool, at least 5 million independent transformants

were obtained.

4.2.2 Cell lines

Both cancer and cancer associated fibroblasts cell lines were provided by the Jodrell Labora-

tory, CRUK Cambridge Institute. The K8484 cell line was established from a pancreatic duc-

tal adenocarcinoma of a KRASG12D; p53R172H ;PDX-Cre (KPC) genetically engineered mouse

(Hingorani et al., 2005). Primary cancer associated fibroblasts were isolated using a differen-

tial adhesion protocol from KPC tumor tissue. Both K8484 and mCAFs cell lines were grown in

grown at 37◦C, with 5% CO2 in DMEM supplemented with 10% FBS and 50U/mL of penicillin-

streptomycin. mCAFs were engineered to be sensitive to diphteria toxin by transduction with a

retroviral vector in which the diphteria toxin receptor is driven by the LTR. To select transduced

cell, the vector also expresses the ZsGreen fluorescent protein and a Neomycin resistance gene

driven by the PGK promoter. To make the mCAFs-DTR cell line, mCAFs were transduced at

low multiplicity of infection (MOI) and selected for 10 days with 300 µg/mL of Geneticin (Life

technologies). The Phoenix-Eco (ATCC CRL-3214) packaging cells were grown at 37◦C with

5% CO2 in DMEM supplemented with 10% FBS and 50U/mL of penicillin-streptomycin.

4.2.3 Coculture assay

20 000 mCAFs-DTR (counted on the Beckman Vi-Cell) were plated in 96-well plates. The fol-

lowing day, 2 000 K8484-LMH-mCherry cells were seeded on top of the mCAFs-DTR-ZsGreen

(cocultures) or in empty wells (monocultures). On the third day, cells were dosed with gem-

citabine concentrations ranging from 0.001 to 30 µM. 72h later, the cells were harvested and

the cancer cells expressing mCherry were counted by flow cytometry on the Miltenyi Biotech

MacsQuant analyzer. For these drug curves, the number of cancer cells for each gemcitabine

concentration was normalized to the number of cells in the DMSO control.
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4.2.4 Virus production

Phoenix-Eco cells were plated at 50% confluency in 15cm tissue culture dishes. The following

day, cells were transfected using the calcium-phosphate transfection method (). A transfection

mix was prepared with viral vector (60µg), VSV-G (7.5µg), 20nM Pasha siRNA (200 µL), 2M cal-

cium chloride (187.5µL). Water was added to reach a total volume of 1.5mL. This mixture was

added to the same volume of 2xHBS while it was being bubbled. 2XHBS buffer (50mM HEPES,

280mM NaCl, 1.5mMNa2P04, 12mM Dextrose, 10mM KCl) was prepared before hand. Several

aliquots were prepared and adjusted to pH ranging from 6.9 to 7.1 using NaOH. Each aliquot

was tested by test transfection and only the best one was kept. After 60s bubbling, the mixture

was incubated for 15min at room temperature and added to the Phoenix-Eco packaging cells,

with 17mL of fresh media and 7.5µL of 100mM chloroquin. Media was replaced 14 hours later,

and Sodium Butyrate was added (1000X stock at 1M). Thirty hours later, virus was collected,

filtered using a 0.45µm filter (EMD-Millipore) and stored at 4◦C.

4.2.5 Screen infection and selection

For each shRNA library, virus titers were first estimated by test infecting K8484 cells with dif-

ferent volumes of virus, and the volume needed to infect 30% cells was calculated. Large-scale

infections were then performed in 15cm plates. In each plate, 10M K8484 cells were incubated

with the appropriate volume of virus, 8µg/mL polybrene in 16mL of media. Infection per-

centage was measure two days later by flow cytometry on the Miltenyi Biotech MacsQuant

analyzer. At least 1000 infected cells per shRNA were obtained. All the infections were done

in triplicates. K8484 infected with LMH based constructs were then selected for a week with

500µg/mL Hygromycin B (ThermoFischer scientific).

4.2.6 Monoculture and coculture screens

Once selected, infected K8484 cells of each replicate were split in 5 samples: two monoculture

screens (plus and minus gemcitabine), two for the coculture screens (plus and minus gem-

citabine) and one as an initial timepoint. For monoculture screen, 5M infected K8484 were

plated on 5 15cm dishes. The following day, 40µL of 5µM gemcitabine (final concentration of
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10nM) or 40µL of DMSO was added. Cells were dosed for 72h, harvested, counted (Vi-cell) and

and 5M cells were plated and dosed again. This was repeated 6 times, after which cells were

harvested for a final timepoint. For coculture screens, 5M infected K8484 and 50M mCAFs-

DTR were plated on 5 15cm dishes. 40µL of 50µM gemcitabine (final concentration of 100nM)

or 40µL of DMSO was added the following day and cells were dosed for 72h. Cells were then

harvested, counted and relative numbers of cancer and CAFs was assessed using the Miltenyi

Biotech MacsQuant analyzer. 5M cancer cells were plated and dosed again. When necessary,

fresh mCAFs were added to bring up the number of CAFs to 50M. This was repeated six times.

At the end of the screen, 100ng/mL of dipheteria toxin (Sigma Aldrich) was added to selec-

tively kill mCAFs-DTR. After 4 days, the remaining cells were harvested for a final timepoint.

4.2.7 Screen sequencing

gDNA was extracted from samples using the QIAmp DNA Blood Maxi kit (Qiagen). shRNAs

were amplified by PCR (forward primer: CAGAATCGTTGCCTGCACATCTTGGAAAC, re-

verse primer: CTGCTAAAGCGCATGCTCCAGACTGC). For each sample, 32 50µL PCRs (KOD,

Takara) with 2µg of gDNA as input were performed. 1mL of this first PCR was purified on 4

Qiagen PCR purification columns. Illumina adpaters were added in a secondary PCR (forward

primer P7-BCX-TS-Mir-Loop: CAAGCAGAAGACGGCATACGAGATNNNNNNGTGACTG

GAGTTCAGACGTGTGCTCTTCCGATCTTAGTGAAGCCACAGATGTA where Ns are the

6bp sequencing index, reverse primer P5-mir3: AATGATACGGCGACCACCGAGATCTACA

CCAGCAGTATGTTGAAGTCCGAGGCAGTAGGCA). To maintain complexity, 2 PCRs with

500ng of amplicon from the first PCR were done. The amplicon from the secondary PCR was

run on a 1.5% agarose gel and the band ∼150nt was excised, and the DNA was purified using

a Qiagen MinElute purification column. Libraries were then quantified using a Qubit fluorom-

eter (ThermoScientific) and pooled. The pool was then quantified precisely by qPCR (KAPA

Illumina library quantification kit) and sequenced on an Illumina HiSeq with a custom read 1

primer (CAGCAGTATGTTGAAGTCCGAGGCAGTAGGCA). Each sample was sequenced at

a depth of at least 10 million reads.



4.3. Results 93

4.2.8 Screen analysis

Reads were mapped to a custom index made of the mouse shRNA sequences present in all

pools using bowtie (Langmead et al., 2009). Differentially expressed shRNAs were called using

DESeq2 (Love, Huber, & Anders, 2014) or by selecting shRNA for which the ZScore of the log2

fold change ratio of normalized reads before and after treatment was lower than -1.96. For

both Z-Score and DESeq2 analysis a gene was considered a hit if at least two shRNAs targeting

it were hits. Genes for which only one shRNA were included in the library were called hits

if that shRNA was depleted. To perform gene-set enrichment analysis, shRNAs were ranked

using the log2 fold change ratio of read counts before and after treatment. Then, each gene

was assigned a rank equal to the average rank of the two most depleted shRNA targeting that

gene. Gene set enrichment analysis (GSEA) was then performed using GSEAPreRanked with

the ranked list as input, and the hallmark and KEGG pathway gene sets as databases (Kanehisa

& Goto, 2000; Liberzon et al., 2015; Subramanian et al., 2005).

4.3 Results

4.3.1 A coculture assay recapitulates stroma-mediated resistance in vitro

To study stroma-mediated gemcitabine resistance of pancreatic cancer cells, the Jordell lab has

developed a 2D coculture assay. In this assay, tumor cells express a fluorescent protein and

are plated on top of a confluent monolayer of cancer-associated fibroblasts. The growth of the

cancer cells and their response to drug treatment can be tracked using the intensity of the fluo-

rescent marker (figure 4.1). One of the cell lines that has been extensively tested with this assay

is the pancreatic ductal adenocarcinoma (PDAC) derived K8484 cell line. It was established

from the PDAC of the genetically engineered KRASG12D; p53R172H ;Pdx-1-Cre (KPC) mouse

model. In this model, the Cre recombinase is placed under control of the Pdx-1 promoter, spe-

cific to pancreatic progenitor cells. Upon Cre expresssion, pancreatic cells express the mutant

KRASG12D and p53R172H alleles, which leads to the development of metastatic PDACs that

recapitulate the evolution of the human cancer.
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Plate K8484-GFP cells 
in an empty well or above
a layer of broblasts

Treat cells with increasing
concentrations of 
gemcitabine for three days
and track cell numbers 
by measuring GFP intensity.

The CAF layer confers gemcitabine
resistance to the K8484-GFP cancer cells

K8484 cells derived from 
the PDAC of a KPC mouse

Primary stromal cells
isolated from KPC mouse
tissue

K8484 cells cultured alone are
sensitive to gemcitabine

FIGURE 4.1: Schematic of the cancer cell and cancer asso-
ciated fibroblast coculture assay This assay developped by
the Jordell lab to study stroma-mediated resistance to gemc-
itabine treatment

The coculture of K8484 cells with αSMA+ fibroblasts derived from KPC shows that the

cancer become resistance to gemcitabine treatment when compared to cells grown in mono-

cultures (figure 4.2). The Jordell lab has done complementary experiments to characterize this

phenotype and shown that it is transient, relies on cell-to-cell contact and is specific to can-

cer associated fibroblast as it was not observed when coculture assays were performed with

stromal cells isolated from normal fibroblasts (data not shown).

FIGURE 4.2: K8484 PDAC cells cocultured with cancer as-
sociated fibroblasts are resistant to gemcitabine Dose re-
sponse curves of K8484-GFP cells in monoculture or grown
on a monolayer of CAFs. Cells were treated with increasing
concentration of gemcitabine and the number of K8484-GFP
cells was assessed after three days of culture using the Pheras-
tar plate reader. The dotted lines indicate the concentration of
gemcitabine used in the monoculture screen (blue) or in the
coculture screen (red).
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To investigate the mechanism and genes involved in this stroma-mediated gemcitabine re-

sistance phenotype, we performed a genome-wide RNAi depletion screen. Several approaches

could be taken to perform this screen: targeting the fibroblasts, or the cancer cells, in pools or

in an arrayed format. Targeting the fibroblasts requires this screen be done in 96- or 384-well

plates, and the number of surviving K8484 cells following gemcitabine treatment could have

been used to identify hits. However, testing ∼80 000 shRNAs using this assay would have been

infeasible so we preferred to perform a pooled RNAi screen in the K8484 cell line. The coculture

assay described above was routinely done in 96-well plate, a format not suitable for the large

amount of cells that need to be cultured during large scale screens. We implemented several

modifications in the protocol to adapt it to large tissue culture dishes and to allow extraction

and sequencing of shRNAs from large pools of infected cancer cells in coculture with CAFs.

4.3.2 Genome-wide RNAi screens of K8484 PDAC cells in mono- and coculture

RNAi screens are generally analyzed by estimating the abundance of each shRNA in the initial

and final timepoint using high-throughput sequencing. To this end, the shRNAs integrated in

the genome of infected cells are amplified from genomic DNA by PCR. This proved difficult

for the timepoint of coculture screens as the pools of cells comprised 10% infected cancer cells

and 90% cancer associated fibroblasts, diluting the target loci. As this PCR needs to be as

efficient as possible to avoid skewing the distribution of shRNA counts by PCR bias, the cancer

associated fibroblasts needed to be eliminated from the pool of cells before PCR. To this end,

we transduced the CAF cell line with a plasmid harboring the human diphteria toxin receptor

(DTR) gene, a ZsGreen fluorescent protein, and a Neomycin resistance gene. (Saito et al., 2001).

As naive murine cells are resistant to diphtheria toxin because they lack the receptor, DTR

expressing cells can be killed selectively and rapidly. When treated with diphteria toxin, 80 to

95% of expressing DTR cells were found to be killed within 4 days while survival rates of naive

cells were unaffected. We thus used this strategy at the end of coculture screens to enrich for

K8484 infected with shRNAs before harvesting and PCR amplification.

With these cell lines in hands, we performed a coculture assay in 15cm dishes and observed

the same stroma-induced gemcitabine resistance. This confirmed that this experiment could

be scaled up and suitable for high-throughput pooled screens. To specifically identify genes
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FIGURE 4.3: Multiple shRNA per gene were used to target
each gene in the RNAi screen Shown is the distribution of
number of shRNAs per gene in the RNAi library used for the
screens

involved in the cross-talk between CAFs and cancer cells, we decided to perform 4 different

screens: monoculture and coculture, both on and off gemcitabine. Hits in the monoculture and

coculture off-drug screens would be genes required for proliferation of the cancer cells in mono-

or coculture independently of gemcitabine treatment. Hits in the monoculture screen would

be genes that sensitize the cancer cells to gemcitabine. The results from these three screens can

thus be used to filter the hit list of the coculture on-drug screen and identify genes that only hit

when the cells are grown in coculture and with gemcitabine.

Two different gemcitabine concentrations were chosen for mono- and coculture experi-

ments, based on the drug curves (figure 4.2). For monoculture screens, we chose a drug con-

centration of 10nM which corresponds to the IC80. At this concentration, only cells harboring

shRNAs targeting gemcitabine sensitizer genes would be significantly depleted from the pool.

K8484 in coculture are completely resistant to 10nM gemcitabine so the concentration was in-

creased to 100nM for cocultures screens. This concentration is sufficient to kill 90% of cancer

cells in monoculture and will cause cell death in coculture if the shRNA interferes with the

resistance phenotype.
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The mouse genome-wide shRNA library we used for this screen was provided by Tran-

somic technologies, which distributes the tools I described in Chapter 1. To reduce the number

of cells that needed to be cultured, the screen was split in 8 pools of 10 000 shRNAs. All the

hairpins in library were chosen using the shERWOOD algorithm and are cloned in the Ultra-

mir backbone (S.R. Knott et al., 2014). It covers over 18 500 mouse genes with an average of 4

shRNAs per gene to control for off-target effects (figure 4.3). This library was originally cloned

into LMN, a MSCV-based retroviral vector in which the shRNAs are expressed from the LTR

viral promoter, and the ZsGreen fluorescent protein as well as the Neomycin resistance gene

are driven bicistronically by the PGK promoter. As the mCAFs-DTR cell line expresses ZsGreen

as well, we subcloned the shRNA library into LMH, a vector similar to LMN where ZsGreen

was replaced with mCherry and the Neomycin resistance gene by a Hygromycin resistance

gene. This facilitates relative counting of CAFs and infected cancer cells by flow-cytometry, the

cancer cells expressing mCherry and the CAFs-DTR ZsGreen.

Each library pool was packaged in retrovirus and transduced in K8484 cells in triplicates,

at low multiplicity of infection to avoid double infection events. The number of infected cells

was superior to 500 times the number of shRNAs in each pool to keep the full complexity of

the libraries. After selection with hygromycin, each replicate was split into 5 samples: mono-

culture on and off drug, coculture on and off drug, and the rest of the cells were collected as an

initial timepoint. For cocultures, mCAFs-DTR were added to reach a ratio of 1/10 cancer cells

to fibroblasts. The next day, gemcitabine or DMSO was added to all screens, and cells were

cultured for 72hours. Cells were then split and replated, this was repeated 6 times to allow

for dilution of cells for which growth was hampered by the knockown. For coculture screens,

the relative percentage of cancer cells to fibroblasts was estimated by flow cytometry and fresh

mCAFs-DTR were added when necessary to keep the 1/10 ratio (figure 4.4).

After 6 gemcitabine dosings, monocultures were harvested for a final timepoint. Cocul-

tures were treated with diphteria toxin for 4 days and harvested. For all samples and time-

points, genomic DNA was extracted and abundance of shRNAs estimated by high-throughput

sequencing. Depletion ratios were then calculated for each shRNA by dividing counts at the

final timepoint by counts at the initial timepoint.
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FIGURE 4.4: Coculture and monoculture genome-wide
RNAi screens Large scale RNAi screens can be performed
can be performed on PDAC-CAFs coculture by introducing
the diphteria toxin receptor gene in CAFs to negatively select
them at the end of the experiment.

Screen analysis

To identify shRNAs consistently depleted in the three replicates of each samples, we used two

different statistical tools to call hits: DESeq2 and a Z-Score based ranking. DESeq2 performs

differential expression analysis by fitting negative binomial generalized linear models to each

shRNAs and uses a Wald test for significance testing. Because the genes targeted in each pool

are different, normalization across pools was not possible so we applied DESeq2 to each pool of

shRNAs independently. As an output, this analysis provides normalized log2-fold change for

each shRNA as well as whether they are statistically significantly enriched or depleted (figure

4.5A).

To validate the hits identified by DESeq2, we performed a second analysis based on Z-

Scores (figure 4.5B). For each condition, the median of the log-ratios of the three replicates

was used as a measure of shRNA depletion/enrichments. Z-scores were then calculated for

all shRNAs of the pool using this value, and shRNAs with a z-score below -1.96 or above

1.96 were deemed significantly enriched or depleted (this corresponds to a p-value < 0.05 in a

normal distribution setting).

Although little is known about the genes implicated in the stroma-mediated gemcitabine
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(A) (B)

FIGURE 4.5: Screen hit calling using DESeq or a Z-Score
analysis K8484 cells were screened with a genome-wide
RNAi libraries, in monoculture and coculture, with and with-
out gemcitabine. Screens were analysed using DEseq (A), or
using Z-Scores (B). Shown in (A) are the result of the DESeq
analysis for the coculture screen with gemcitabine. Shown on
the y-axis is the log fold change of read counts for each pair
at the final timepoint compared to the initial timepoint. The
x-axis is the log of counts at the initial timepoint. Colored are
significantly depleted shRNA (padj <0.05). Shown in (B) is
the result of the Z-Score analysis of the same screen. The y-
axis shows each shRNA depletion Z-Score. A cutoff of -1.96
was set to call an shRNA a hit.

resistance phenotype, genes such as Checkpoint Kinase 1 (CHK1) and the Serine/threonine-

protein kinase ATR have been identified as sensitizers to gemcitabine have been identified

(Prevo et al., 2012; Koh et al., 2015). For both the DESeq2 and Z-Score analysis, most of the

shRNAs targeting these genes were strongly depleted which gave us confidence with respect

to the relevance of our assay.

When we compared the shRNAs identified as hits in both of our analysis, we found that

only ∼15% were common to both (figure 4.6). One characteristic of DESeq2 is that it per-

forms automatic count outlier detection and removal. shRNAs with highly variable log2-fold

changes, for example that are depleted in 2 of the replicates but not in the third one would be

removed by DESeq2 while they could be called hits in the Z-Score analysis as it considers the

median of the three replicates. On the other hand, our Z-Score threshold selects for strongly

depleted shRNAs compared to the rest of the population while DESeq2 also can also identify

constructs that are depleted less strongly if that depletion is consistent across replicates.
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FIGURE 4.6: Different shRNAs are identified as hits using
DESeq or a Z-Score analysis Venn diagram of shRNAs iden-
tified as hits using both analysis methods described in figure
4.5.

The two analysis described above focus on scoring depleted shRNAs. However we are

mostly interested in finding which genes are responsible for our phenotype. As the shRNA

library harbors multiple shRNAs targeting each genes (figure 4.3), we used a cut-off of at least

2 significantly depleted shRNAs per gene to call gene-level hits. Genes targeted by only one or

two shRNA were also considered hit if one of the shRNA was significantly depleted. Although

these cutoffs are rather loose, we wished to reduce our false-negative rates at this stage and

not remove shRNAs targeted with few shRNAs. This certainly increases the number of false-

positives but these can be removed in validation experiments.

Gene hits were called based on the shRNA-level results from the Z-Score and DESeq2 anal-

ysis, for each condition (figure 4.7). Overall, the Z-Score based analysis identified a larger

number of gene hits than the DESeq one which is coherent based on the number of shRNAs

classified as significantly depleted by both methods. For both analysis, ∼300 genes were iden-

tified as specifically depleted in the coculture plus gemcitabine sample. Surprisingly, over 150

genes were hits only in the coculture minus screen. These hits are in theory not lethal genes as

these would be shared with the monoculture minus gemcitabine sample. As the cancer cells

are competing with the fibroblasts in the cocultures, these are perhaps weaker hits that only
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(A) (B)

FIGURE 4.7: Identification of gene hits in the coculture and
monoculture screens Venn diagram of genes identified as hits
using the DESeq (A) or ZScore analysis (B). A gene was con-
sidered a hit if at least 2 shRNAs were significantly depleted,
or one shRNA if the gene was targeted by a unique shRNA.
C and M stand for coculture and monoculture. m and p stand
for minus gemcitabine or plus gemcitabine.

appear when additional selection pressure is applied. However, it remains unclear why these

hits are not also shared with the coculture plus gemcitabine sample.

To identify pathways implicated in the resistance phenotype, we performed gene-set en-

richment analysis in the hits of the four screens, using the hallmark and KEGG pathway gene

sets (Kanehisa & Goto, 2000; Liberzon et al., 2015; Subramanian et al., 2005) (figure 4.8). In both

cases, pathways related to cell proliferation and maintenance such as DNA replication, cell

cycle, or proteasome and ribosomal activity were significantly enriched in hits of all screens.

However, no pathway was identified as significantly enriched only in hits of samples treated

with gemcitabine which could have provided insights into genes to target in follow-up experi-

ments.

Before performing one-by-one validation experiments, we wished to repeat the screen on

a smaller scale to confirm that the hits identified in the large-scale experiments were true-

positives. For this secondary screen, we selected all genes identified as lethal in the mono-

culture and coculture plus gemcitabine screen. To control for false-positives, we ordered 5

shRNA per gene and added 200 shRNAs targeting human olfactory receptors, for a total of

∼6000 shRNAs. These experiments are currently ongoing.
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(A) (B)

FIGURE 4.8: Gene-set enrichment analysis identifies signif-
icantly depleted pathways Genes were pre-ranked using the
average rank of the the two most depleted shRNA targeting
each gene. The hallmark gene set (A), or the KEGG gene set
(B) were used. Shown are pathways significantly enriched in
depleted shRNAs (FDR < 0.1). Color indicates log10 of the
p-value.

4.4 Discussion

One of the challenges of investigating stroma-mediated gemcitabine resistance mechanism is

the lack of assays that can be leveraged to perform high-throughput experiments. Here, we

adapted a CAF-PDAC in vitro coculture assay to perform a genome-wide RNAi screen to iden-

tify sensitizers to gemcitabine. This required scaling up the format of the assay as well engi-

neering the CAFs to add the diphteria toxin receptor to specifically extract cancer cells from

the coculture. The scale and length of the RNAi screen certainly introduces additional noise

to the experiment, as only one in ten cells in culture harbors an shRNA and some may be de-

pleted during passaging of the cocultures. However, essential pathways as well as some genes

involved in gemcitabine resistance in monocultures were found to be depleted which gives us

some confidence in the hits that will be identified in this assay. It is still too early to pinpoint

genes involved in the resistance mechanism, but the secondary RNAi screen will hopefully be

helpful in identifying sensitizers to gemcitabine in the monoculture screens as well as players

involved in the CAF-cancer cell crosstalk in the coculture screens.
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Chapter 5

Conclusions

The aim of this thesis was to optimize molecular biology tools to perform large-scale genetic

screening, both in a combinatorial or single target setting. Genetic screens have been widely

used to chart genome-phenotype interactions. However, the strength and reproducibility of

the results drawn from these experiments greatly depends on the potency of the reagents used

to elicit knock-down or knock-out. I first worked on developing genome-wide libraries of

highly potent shRNAs. Active sequences can be selected efficiently by acquiring large em-

pirical shRNA efficacy datasets to train machine-learning algorithms (Fellmann, Zuber, et al.,

2011; S.R. Knott et al., 2014). These sensor assays, combined with optimized expression vec-

tors and synthetic miRNA backbones, allowed us to generate compact (ie with a small number

of highly efficient shRNAs targeting each gene) shRNA libraries that improved the accuracy

of RNAi dropout screens (S.R. Knott et al., 2014). Building on this experience, we applied the

same reasoning to build CRISPR libraries by using published sgRNA activity datasets (Doench,

Hartenian, et al., 2014; Chari et al., 2015) and designing vectors expressing pairs of sgRNAs to

maximize knock-out likelihood.

One of the differences in predicting potent shRNA vs sgRNA stems from the differences

in targeting mRNA or DNA. For shRNAs, targeting any sequence to the mRNA will lead to its

complete degradation. The effect of an sgRNA, however, is not only dependent on the efficacy

of guiding Cas9 to the loci and on its cleavage but also on the repair of the double-strand break

and its effect on the coding sequence. Although most previously published sgRNA design

algorithm relied mostly on predicting sgRNA efficacy (Doench, Hartenian, et al., 2014; Chari

et al., 2015), we have shown that targeting conserved amino-acid increases protein functional
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knock-out rate by increasing the likelihood that even the removal of a few base-pairs during

DSB repair will be deleterious to protein function. Moreover, although DSBs where thought to

be mainly repaired by NHEJ, leading to repair pattern difficult to predict, recent studies have

revealed that the DSB is flanked by small stretches of homologous sequences, it can be repaired

by HEJ in a predictable manner (Bae et al., 2014). We have taken advantage of this knowledge

and we showed that selecting target sites that would induce predictable frame-shift mutations

also results in increased knock-out rates.

The development of new expression strategies for shRNAs and sgRNAs has also driven

the increase in their specificity and potency. For shRNAs, one improvement was the use of

mir30-based shRNAs expressed from Pol II promoters mimicking endogenous miRNA (Silva,

M.Z. Li, et al., 2005). These constructs were shown to be more efficient than simple hairpin

designs similar to pre-miRNAs. We have also shown here that the potency of miR-30 based

constructs can be further increased by using scar-free cloning which allows removal of any

restriction sites in the scaffold of the mir30 shRNA. Others have achieved similar results by

moving the restriction sites used for cloning away for the hairpin structure to facilitate process-

ing (Fellmann, Hoffmann, et al., 2013). Similarly, several chimeric sgRNA backbones replacing

the crRNA/tracRNA hybrid have been tested to maximize knock-out rates using Cas9 (Jinek,

Chylinski, et al., 2012; S. Cho et al., 2013). In additions to these backbone optimizations, vec-

tors expressing multiple sgRNAs from Pol III promoters or as crRNA arrays have been used

to direct Cas9 to multiple genes (Cong et al., 2013; Zetsche, Heidenreich, et al., 2016; Vidigal &

Ventura, 2015). We used a similar strategy here to focus Cas9 to multiple sites within the same

gene. This significantly increases functional consequences when compared to single sgRNA

targeting.

Here, we have combined both machine-learning and expression strategies to create efficient

shRNA and sgRNA constructs to maximize gene perturbation at the mRNA or gDNA level.

Using these tools, we have generated libraries of constructs targeting all protein coding genes

in the human or mouse genome. Each shRNA or sgRNA library is comprised of over ∼100

000 sequence-verified constructs targeting ∼ 20 000 genes. These libraries are available in an

arrayed format and can be used to perform large-scale pooled or arrayed screens.

Moving forward, several improvements to both selection algorithms as well as expression
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strategies could be implemented to further increase the efficacy of these tools. For both shRNAs

and sgRNAs, design algorithms rely on large efficacy datasets and their accuracy depends on

the quality and size of that data. Subsequent shRNA predictors to the one presented here have

used larger integrated datasets and two-tiered SVMs to increase accuracy. Similarly, increasing

datapoints could yield better predictions of potent sgRNAs, as current predictors have relied

on datasets of less than 2000 sequences. In addition, the development of sensor type assays

for sgRNAs similar to the ones used shRNAs could possibly lead to better predictions. In this

study, we used datasets from Doench et al and Chari et al. Doench et al targeted nine surface

proteins with tiled libraries of sgRNAs and assessed knockout rates using flow-cytometry. The

assay was performed over two weeks which possibly may limit separation of potent vs less

potent sgRNA and, as endogenous loci are targeted, other factors such as locus accessibility

could be at play. Chari et al first introduced synthetic target-site libraries in cells before trans-

fecting sgRNA libraries, and used high-throughput sequencing to assess knock-out. Each cell

thus received a large number of different sgRNAs that compete for Cas9 binding which could

also introduce a bias in the selection. In my opinion, an ideal sensor experiment would be to

deliver both the sgRNA and the target site in the same vector and use direct sequence-based

readout. This would mimic closely the way sgRNAs are used in genetic screens (one sgRNA

expressed in each cell) and sequencing the target sites allows to score both the frequency of

indel generation as well as the type of genomic scars that are introduced by the repair. This

could also be used to study micro-homology directed end joining repair with larger datasets.

In addition to larger and more accurate training datasets, improving sgRNA expression

could lead to better knock-out rates. In our current library, pairs of sgRNA, we used a human

and a chicken U6 promoter to avoid any recombination. However, combinatorial experiments

with lethal and non-lethal sgRNA expressed from either the cU6 or hU6 promoter show that

the activity of sgRNAs expressed from the cU6 promoters is lower. We have not yet deter-

mined whether this is due to transcription levels or precision of the transcription from the cU6

promoter. Identifying or testing new U6 promoters could perhaps also contribute to higher

efficacy in future sgRNA libraries.

Genetic screens have been extremely powerful tools to identify cancer dependencies and

therapeutic targets that can be leveraged in the clinic (Schlabach et al., 2008). However, one of
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the limitations of single-targeted therapies is the appearance of resistance cancer cells following

treatment. This can be due to the acquisition of new mutations as well as rewiring of cellular

pathways to compensate for the inhibition of the targeted one. To reduce the development of

these resistance mechanisms, combinatorial targeted therapies can be used. Synthetic lethal

screens, in which the screen is performed on drug or on a modified cell line, have been widely

used to identify lethal combinations in a systematic manner (Luo et al., 2009; Manchado et al.,

2016). However, they require one of the targets to be known. To be able to test large number

of target combinations simultaneously, the strategy outlined in this thesis relies on expressing

pairs of shRNA from the same promoter. By separating both shRNAs by ∼500bp, similar levels

of miRNA are generated, and both genes can be knocked down to similar levels. To use these

vectors in high-throughput pooled screens, the sequence of both shRNAs needs to be ampli-

fied from genomic DNA of pools of cells which was surprisingly challenging. After exploring

several alternatives, I had to rely on uniquely barcoding each shRNA and sequencing pairs of

barcode to estimate the abundance of the pairs in the pool of cells. This complicates the gen-

eration of dual shRNA libraries but greatly simplifies screen sequencing when compared to

classic single shRNA screen. As a proof of principle, a screen of ∼10 000 pairs of shRNAs tar-

geting druggable gene was performed in a melanoma cell line. This initial screen yielded over

300 synthetic lethal pairs. To validate the hits from this initial RNAi screen and remove false

positives, I performed a secondary CRISPR screen using the vectors described above. Overall,

13 pairs were identified as strong hits in both shRNA and CRISPR screens. Although these hits

remain to be validated in one-by-one assays, these results indicate the viability of our approach

to identify synthetic lethal pairs of genes on a large-scale.

Although targeting multiple pathways in cancer cells can overcome resistance mecha-

nisms, growing evidence highlights the role of the tumor micro-environment in protecting the

tumor from therapy (M.V. Apte et al., 2013). Thus, addressing the specific advantages that stro-

mal cells confer to cancer cells can be another powerful approach. As part of this thesis, we

have leveraged RNAi tools we have developed to perform a genome-wide screen in a PDAC-

CAFs coculture model. This model recapitulates the stroma-mediated gemcitabine resistance

of PDAC that was observed in vivo. The hits from this screen are still being validated, but this

systematic approach will hopefully provide insights in the pathways involved in the crosstalk
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between cancer and stromal cells.

Overall, we have combined biological insights, novel expression strategies and empirical

efficacy measurements together with machine-learning algorithms to develop potent molecu-

lar tools to perform gene perturbation. The tools developed in this thesis allow for efficient

knockdown or knockout of genes both in an individual or combinatorial setting. This toolkit

provides a resource of arrayed, sequence-verified libraries of constructs targeting any gene in

the human genome. It could be used in many areas of biology to uncover genotype to pheno-

type relationships. In this thesis, I have used these tools to identify combinatorial drug targets

in melanoma and investigate stroma-mediated gemcitabine resistance in PDAC. Although the

results of these studies need to be further validated, they provide a proof of concept of how

these resources can be applied.
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SUMMARY

The strength of conclusions drawn from RNAi-based
studies is heavily influenced by the quality of tools
used to elicit knockdown. Prior studies have devel-
oped algorithms to design siRNAs. However, to
date, no established method has emerged to iden-
tify effective shRNAs, which have lower intracellular
abundance than transfected siRNAs and undergo
additional processing steps. We recently developed
a multiplexed assay for identifying potent shRNAs
and used this method to generate �250,000 shRNA
efficacy data points. Using these data, we developed
shERWOOD, an algorithm capable of predicting, for
any shRNA, the likelihood that it will elicit potent
target knockdown. Combined with additional shRNA
design strategies, shERWOOD allows the ab initio
identification of potent shRNAs that specifically
target the majority of each gene’s multiple tran-
scripts. We validated the performance of our shRNA
designs using several orthogonal strategies and con-
structed genome-wide collections of shRNAs for hu-
mans and mice based on our approach.

INTRODUCTION

The discovery of RNAi promised a new era in which the power

of genetics could be applied to model organisms for which

large-scale studies of gene function were previously inconve-

nient or impossible (Berns et al., 2004; Brummelkamp et al.,

2002; Chuang and Meyerowitz, 2000; Fire et al., 1998; Gupta

et al., 2004; Hannon, 2002; Kamath et al., 2003; Kambris et al.,

2006; Paddison et al., 2004; Sánchez Alvarado and Newmark,

1999; Svoboda et al., 2000; Timmons and Fire, 1998; Tuschl

et al., 1999; Zender et al., 2008). It quickly became clear that

implementing RNAi, especially on a genome-wide scale, could

be challenging. This was particularly true for applications in

mammalian cells in which discrete sequences, in the form of

small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs),

were used as silencing triggers (Brummelkamp et al., 2002; Elba-

shir et al., 2001; Paddison et al., 2002). The overall degree of

knockdown achieved was found to vary tremendously depend-

ing on the precise sequence of the small RNA that is loaded

into the RNAi effector complex (RISC) (Chiu and Rana, 2002;

Khvorova et al., 2003; Schwarz et al., 2003). However, the nature

of sequence and structural motifs that favor RISC loading and

high turnover target cleavage has yet to be fully revealed

(Ameres and Zamore, 2013).

Early studies aimed at optimizing RNAi in mammals used

endogenous microRNAs as a guide for the design of effective

artificial RNAi triggers (Khvorova et al., 2003; Reynolds et al.,

2004; Schwarz et al., 2003; Ui-Tei et al., 2004; Zeng and Cullen,

2003). Canonical microRNAs are processed by a two-step nu-

cleolytic mechanism (Seitz and Zamore, 2006). The initial cleav-

age of the primary microRNA (miRNA) transcript in the nucleus

by the microprocessor yields a short, often imperfect hairpin

loop, the pre-miRNA (Denli et al., 2004; Lee et al., 2003). This

is exported to the cytoplasm, where a second cleavage by Dicer

and its associated cofactors yields a short duplex of �19-20

nucleotides with two nucleotide 30 overhangs (Bernstein et al.,

2001; Grishok et al., 2001; Hutvágner et al., 2001; Ketting

et al., 2001; Lund et al., 2004; Yi et al., 2003). This duplex serves

as a substrate for preferential loading of one strand into Argo-

naute proteins in the context of RISC (Hammond et al., 2001;

Hutvágner and Zamore, 2002; Khvorova et al., 2003; Martinez

et al., 2002; Schwarz et al., 2003).

An examination of the sequences of endogenousmiRNAs indi-

cated that thermodynamic asymmetry between the two ends of

the short duplex was a strong predictor of which strandwould be

accepted by Argonaute as the ‘‘guide’’ (Khvorova et al., 2003;

Schwarz et al., 2003). Applying this insight to artificial triggers,

initially in the form of siRNAs, validated the generality of this

observation, and thermodynamic asymmetry became a key

guiding principle of both siRNA and shRNA design (Reynolds

et al., 2004; Silva et al., 2005). Subsequent studies of the struc-

ture of the Ago-small RNA complex have also indicated a

sequence preference for a 50 terminal U that fits into a binding

pocket in the mid-domain of the Argonaute protein (Seitz et al.,

2008; Wang et al., 2008).

In many ways, siRNAs gain entry into RISC in mammals by

simulating the end product of the two-step miRNA processing
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pathway. shRNAs, whichmimic either the primary miRNA or pre-

miRNA, must be processed nucleolytically prior to RISC loading

(Brummelkamp et al., 2002; Cullen, 2006; Paddison et al., 2002).

Therefore, shRNAs are likely subject to additional constraints

that lead to efficient recognition by Drosha and Dicer. We do

not yet understand the selection rules for effective flux through

the miRNA biogenesis pathway and, therefore, cannot predict

ab initio which transcripts will produce small RNAs. However,

studies of Drosha in particular have implicated patterns of con-

servation and base pairing in the basal stem, regions adjacent

to the Drosha cleavage site, as determinants of efficient pre-

miRNA cleavage (Auyeung et al., 2013; Chen et al., 2004; Han

et al., 2006; Seitz and Zamore, 2006). Elements within the hairpin

loop have also been shown to have an impact on both Drosha ef-

ficiency and its site preference (Han et al., 2006; Zhang and

Zeng, 2010).

Several attempts have been made to extract predictive rules

for the design of effective small RNAs from endpoint silencing

data. The first serious attempt applied artificial neural networks

to a set of �2,000 paired data points, associating the sequence

of siRNA guides with a corresponding knockdown measure-

ment (established using fluorescent reporters) (Huesken et al.,

2005). Experience in the field supported the effectiveness of

BIOPREDSi. However, access to the algorithm eventually

became impossible. The same data set was subsequently

used to produce a second algorithm, Designer of Small Inter-

fering RNA (DSIR), which included additional input variables

(the frequency of each nucleotide, each 2-mer, and each 3-

mer within the guide) (Vert et al., 2006). To accommodate this

large number of parameters, linear modeling was performed

using Lasso regression (a form of linear regression that iteratively

decreases the use of nonpredictive variables in the linear model)

(Tibshirani, 1996).

siRNA design algorithms could be applied for the design of

shRNAs, and these did inform the design of genome-wide

shRNA collections (Berns et al., 2004; Paddison et al., 2004).

However, the prognostic power of siRNA design algorithms

is compromised for shRNA design. shRNAs, expressed from

RNA polII or polIII promoters, reach lower intracellular concen-

trations than transfected, synthetic siRNAs (Berns et al., 2004;

Paddison et al., 2004). Moreover, shRNAs have additional con-

straints for effective processing. Therefore, it was imperative

that shRNA-specific algorithms be developed.

The generation of accurate siRNA design algorithms was only

made possible with the creation of large training data sets. So

far, a corresponding shRNA data set has been lacking. Recently,

we developed a ‘‘sensor’’ method that allows for the parallel

assessment of shRNA potencies on a massive scale (Fellmann

et al., 2011). Using the sensor approach, we interrogated

�250,000 shRNAs for their effectiveness in the reporter setting.

We used this data set to train a machine learning algorithm for

potent shRNA prediction. We tested this algorithm, which we

termed, shERWOOD, both at the level of individual shRNAs and

at the level of optimized shRNA mini libraries. We demonstrated

that, by applying computational shRNA selection in combination

with a set of target selection heuristics and an optimized micro-

RNAscaffold,weareable tocreatehighlypotent shRNAs.Webuilt

upon this result to design and construct next-generation shRNA

libraries targeting the constitutive exomes of mice and humans.

Predictions for other organisms and custom shRNA designs are

also made available via a web-based version of shERWOOD.

RESULTS

Neighboring Positions of the Target Sequence Are
Predictive of shRNA Strength
As a prelude to creating an shRNA design algorithm, we first

developed a large-scale sensor data set in which shRNA po-

tency wasmeasured and associated with sequence information.

To perform the assay, we synthesized 12 sets of �25,000 con-

structs that included a doxycycline-inducible shRNA and a

GFP-tagged shRNA target sequence located downstream of a

constitutive promoter (Fellmann et al., 2011). Libraries were

packaged and infected (at single copy) into a reporter cell line.

In the absence of doxycycline, GFP was detectable in each

cell. However, in the presence of doxycycline, the shRNAs

became expressed, and the resultant GFP signal was reduced

in a manner proportional to shRNA potency. Using fluores-

cence-activated cell sorting, cells with low GFP levels, in the

presence of drug, were gathered and analyzed via next genera-

tion sequencing (NGS) to determine which shRNAs became

enriched (i.e., which shRNAs have high potency). Operating iter-

ative cycles of this assay has been shown to identify extremely

potent constructs (Fellmann et al., 2011).

We next wished to extract which sequence characteristics

were most predictive of shRNA efficacy. This subset of charac-

teristics could then be employed as inputs during machine

learning. We first developed a method to consolidate the

different sensor data points into a single value for each shRNA

(see Supplemental Information available online). These accu-

rately capture the enrichment pattern of individual iterations of

the sensor in one single value, therefore allowing downstream

machine learning to proceed more easily (Figure 1A). Analysis

of the coefficients used to consolidate the sensor data shows

that information from the final sensor iteration contributes the

most to the final potency value. However, information from the

second iteration is also included (Figure S1A).

To distinguish discretely between strong and weak shRNAs,

we applied an empirical Bayes moderated t test to the shRNA

potency measurements extracted from two biological replicates

(Smyth, 2004). Strong and weak shRNAs were those that were

enriched or depleted, respectively, with a false discovery rate

(FDR) < 0.05.

To test individual nucleotide positions for their predictive ca-

pacity, we compared, at each position in the target sequence,

each nucleotide’s enrichment and or depletion levels in the

potent compared with the weak shRNAs (Figure 1B; Figure S1B;

binomial test, FDR < 0.05; Vacic et al., 2006). In general, low GC

content is predictive of high efficacy, with the exception of the

third nucleotide inside the guide target, which shows a strong se-

lection for cytosine. Also of note is a lack of enrichment for thymi-

dine at the 22nd position of the guide target (corresponding to the

first position of the guide). This arose because our input data sets

were derived from shRNAs preselected by DSIR.

We next tested whether any pairs of positions had predictive

capacity for shRNA strength beyond what was expected based
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on their individual predictive power. To calculate a measurement

for each position pair, we applied linear regression to identify

synergistic predictive capacity (p value < 0.05; Supplemental

Experimental Procedures). Following this, each position pair

was assigned a value equal to the sum of nucleotide combina-

tions that were predictive of shRNA potency when assessed at

the two positions (Figure 1C; Figure S1C). For a given position

within the target, the most predictive partner is the neighboring

nucleotide. An exception to this trend is observed in the posi-

tions corresponding to the shRNA guide seed, where predictive

position pairs are also observed in nucleotides separated by up

to four bases.

Finally, we wished to determine whether triplets of positions

showed a similar trend to that observed in the pairwise analysis.

For this, we performed amodified version of the linear regression

tests described above, where triplets instead of pairs of nucleo-

tides were assessed for synergistic predictive capacity. As with

the pairwise analysis, neighboring triplets of positions within the

target show strong predictive power compared with triplets of

nonneighboring positions (Figure 1D). Furthermore, the distance

between predictive triplets is also extended slightly in the guide

seed region of the shRNA.

A Sensor-Based Computational Algorithm to Predict
shRNA Efficacy
Because sequence-based characteristics correlated with

shRNA efficiency, we sought to apply machine learning to the

sensor-derived efficacymeasurements. The goal was to develop

a computational algorithm that would predict, for any target

sequence, the potency of a corresponding shRNA.We reasoned

that the best machine learning tool to apply to this task was

random forest regression analysis (Breiman, 2001). The reasons

for this decision were two-fold. First, there is no decrease in the

accuracy of random forests when the number of input variables

is large. Second, the architecture of the algorithm takes into ac-

count increases in accuracy that can be achieved by analyzing

combinations of input variables.

Our training data set was of two distinct types. One comprised

an unbiased set of shRNAs that tiled every nucleotide of nine

genes (Fellmann et al., 2011). A second comprised a larger

set of shRNAs preselected by the DSIR algorithm (described

above). We therefore chose to separate data corresponding to

each input class and to train separate forests. We also chose

to separate data based on the 50 nucleotide of the guide. This

was done for two reasons. First, previous studies, supported

Figure 1. Identification of Sequence Characteristics Predictive of shRNA Efficacy

(A) shRNA score determination via sensor NGS data. On the left is a heatmap representation of normalized shRNA read counts for each on-dox sensor sort. The

right panel represents shRNA potencies, calculated by extracting the first principal component of the left panel matrix.

(B) A nucleotide logo representing enriched (top) and depleted (bottom) nucleotides (p < 0.05) in potent shRNAs.

(C) A heatmap demonstrating the predictive capacity (with respect to shRNA potency) of each pair of positions within the target region. Heatmap cells are colored

to represent the number of nucleotide combinations that were significantly predictive (p < 0.05) at each position-pair.

(D) The predictive capacity of each triplet of positions within the target region. Data point colors and sizes represent the number of nucleotide triplets that were

significantly predictive (p < 0.05) at each position triplet.
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by structural insights, had suggested that the 50 nucleotide of

the guide was a prominent determinant of small RNA potency

(Fellmann et al., 2011; Frank et al., 2010; Khvorova et al.,

2003; Reynolds et al., 2004). Therefore, training forests individ-

ually for shRNAs initiating with each base focused the prediction

process on additional determinants. Moreover, the DSIR-based

predictions were already heavily biased toward U and A at the

50 position. In fact, the bias was so strong that we did not

have sufficient data to train 50C and 50G forests for these data

sets. This meant that, in the first pass, we trained six indepen-

dent modules.

In each module, input data were composed of individual base

information as well as all neighboring pairs of bases throughout

the guide sequence. In addition, the set of triplet position/nucle-

otide combinations found to be predictive, as assessed by

linear regression, were also included (Figure 1D). After training

each of the modules, we sought to determine which input vari-

ables were relied most heavily upon. For each module, each

variable was permuted across observations, and the resultant

reduction in predictive capacity was recorded at each regres-

sion tree. The resultant changes were then averaged across

trees, and that mean was normalized by their standard devia-

tion. The triplet variables were heavily relied upon (Figure S2A),

particularly the triplet corresponding to shRNA guide positions

2–4.

To consolidate these modules, a second-tier random forest

was trained using the first-tier outputs, the corresponding

shRNA guide base information, and a set of thermodynamic

properties extracted from each shRNA (e.g., enthalpy, entropy).

We named the compiled algorithm shERWOOD.

To test the prognostic power of shERWOOD, we took advan-

tage of the unbiased nature of the tiled shRNA sensor data. For

each of the nine genes represented, we independently trained a

shERWOOD algorithm without the data corresponding to that

gene. We could then test shERWOOD performance against

experimental data in a manner that was not skewed by the use

of those data for training. We saw an overall Pearson correlation

of 0.72 between experimentally derived potency measurements

and computational predictions (Figure 2A). For comparison,

DSIR achieves a correlation of 0.4, and a prior shRNA prediction

algorithm trained on a subset of the sensor data used in

this study achieves 0.56 (Matveeva et al., 2012; Vert et al.,

2006). This indicates that shERWOOD achieves a roughly

180% increase in performance over currently existing siRNA

prediction algorithms and a 126% increase in efficacy over exist-

ing shRNA-specific prediction algorithms.

We supplemented shERWOOD with additional heuristics to

maximize the probability of successfully reducing protein levels

in most cell and tissue types. The complex nature of alternative

splicing patterns provided a strong motivation for directing

shRNAs against constitutive exons. We therefore developed a

strategy that iteratively searches for regions within a gene that

are shared by at least 80% of transcripts (Supplemental Experi-

mental Procedures). This algorithm also tests whether high-po-

tency shRNAs have the potential to cosuppress paralogous

genes. Considered together, these strategies have the potential

to maximize the probability of biologically meaningful results

from studies using shRNAs.

Benchmarking shERWOOD
To assess the performance of the shERWOOD algorithm, we

felt that it was necessary to test a large number of shRNAs

for their biological effects because one can find anecdotal ev-

idence for excellent performance for nearly any algorithm or

strategy. We therefore chose �2,200 genes based on their

enrichment in gene ontology (GO) categories likely to impact

the growth and survival of cells in culture (Figure 2B). As con-

trols, particularly for the likelihood of off-target effects, we

included 400 olfactory receptor genes. Olfactory receptors

are expressed only in olfactory neurons, and even then, they

display allelic choice so that only one paralog is expressed

per cell. Therefore, shRNAs targeting olfactory receptors are

highly unlikely to have relevant, on-target biological effects

in any cell line screened in vitro. To benchmark the perfor-

mance of shERWOOD, we compared a focused mini library

predicted with this algorithm to two widely used genome-

wide collections, namely The RNAi Consortium (TRC) collec-

tion distributed by Sigma-Genosys and the so-called Han-

non-Elledge V3 library distributed presently by GE Dharmacon

(K.C., unpublished data). To produce the shERWOOD-based

library and a deeper simulation of the V3 library, we used either

shERWOOD or DSIR to predict their top 10 scoring shRNAs for

our test genes. The sequences of TRC shRNAs are listed on a

public web portal, and we selected all listed shRNAs for each

gene. In the case of TRC shRNAs, it was necessary to adapt

them to a 22-base pair stem for placement into the miR-30

context.

For each test library, we synthesized 27,000 oligonucleotides

in solid phase on microarrays (Cleary et al., 2004). These were

cleaved, amplified, and cloned directly into a miR-30 scaffold

within a murine stem cell virus (MSCV)-based retroviral vector

without sequence validation. In this arrangement, the primary

shRNA was transcribed from the long terminal repeat (LTR)

promoter, whereas GFP and Neomycin resistance were ex-

pressed separately as a bicistronic transcription unit from the

phosphoglycerate kinase promoter (PGK) (Figure S2D). Pilot

sequencing showed that each library was of similar quality and

representation.

Each library was infected separately into the pancreatic ductal

adenocarcinoma cell line A385. Two days after infection, cells

were collected for a reference time point, and, after �12 dou-

blings, cells were again harvested for a final time point (Supple-

mental Experimental Procedures). shRNA representation was

determined following amplification of hairpin inserts from

genomic DNA (Sims et al., 2011), and, after processing, shRNA

read counts were compared between the initial and final time

points (Supplemental Experimental Procedures; Figures S2E–

S2G).

To enable direct comparisons between libraries, we censored

the shERWOOD- and DSIR-based libraries on a per gene basis

to contain the same number of hairpins as were available in the

TRC library, keeping those with the best algorithmic scores.

We then selected the consensus set of ‘‘essential’’ genes, ac-

cepting only those where at least two hairpins in each library

passed the statistical threshold (FDR < 0.1). As expected, the

resulting set of genes that were important for the growth and

survival of A385 was depleted of olfactory receptor shRNAs
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(Figure 2C). In contrast, the set of consensus-essential genes

was enriched for GO terms associated with translation.

To benchmark shRNA selection strategies against each other,

we determined the percentage of shRNAs in each mini library

that scored for each consensus essential gene. For the TRC li-

brary, 24% of shRNAs achieved significant depletion, whereas

31% of DSIR-predicted sequences and 40% of shERWOOD-

based hairpins scored (Figure 2D). We also considered perfor-

mance from the perspective of median log-fold depletion.

For the TRC collection, the average log-fold change was �0.4.

For DSIR, this rose to �0.62, and it increased further to �0.78

for shERWOOD shRNAs (Figure 2E). We note that this type of

Figure 2. Construction and Validation of an shRNA-Specific Predictive Algorithm

(A) Consolidated cross-validation of predictions versus sensor scores for all shRNAs in the Fellmann et al. (2011) data set (shRNAs are separated by the guide

50 nucleotide).
(B) GO term instances associated with the targeted gene set selected for shRNA validation screens.

(C) GO term instances associatedwith genes for which at least two hairpins were significantly depleted in each of the TRC, Hannon-Elledge (HE), and shERWOOD

(SW) validation screens.

(D) The percentage of shRNAs targeting consensus-essential genes that were depleted in each of the TRC, HE, and shERWOOD shRNA screens. The plot was

made with the Matlab Boxplot function using default parameters. The edges of the box are the 25th and 75th percentiles. The error bars extend to the values q3 +

w(q3 � q1) and q1 � w(q3 � q1), where w is 1.5 and q1 and q3 are the 25th and 75th percentiles.

(E) Average log-fold change for shRNAs targeting consensus-essential genes (per gene) for each of the TRC, EH, and shERWOOD validation screens. The plot

was made with the Matlab Boxplot function using default parameters. The edges of the box are the 25th and 75th percentiles. The error bars extend to the values

q3 + w(q3 � q1) and q1 � w(q3 � q1), where w is 1.5 and q1 and q3 are the 25th and 75th percentiles.

(F) The percentage of shRNAs corresponding to consensus-essential genes that, for any given shERWOOD score, were depleted in the shERWOOD validation

screen.
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analysis slightly favors the library with the weakest overall

shRNAs because it will be this collection that sets entry criteria

for the consensus-essential gene set.

To assess whether shERWOOD scores were a proxy for

shRNA potency, we examined the relationship between the

shERWOOD score and the probability of being significantly

depleted for each consensus-essential gene. For this, we

analyzed all ten shERWOOD predictions using a sliding scale

of shERWOOD score cutoffs (Figure 2F). As an example, consid-

ering shRNAs with a score greater than 0.5, the likelihood that an

shRNA will be depleted if it targets one of our consensus essen-

tial genes is 42%. Again, this underestimates the information

content of shERWOOD scores because, in the cumulative plot

shown, the minimum number of scoring hairpins for a given

gene, irrespective of scores, is two (i.e., 20%).

Structure-Guided Insights Expand the shRNAPrediction
Space
Regardless of the accuracy of predictive models, we sometimes

found it difficult to identify potent shRNAs because of search

space restrictions imposed by sequence constraints (e.g., GC

content), gene length, or the complexity of alternative splicing

patterns. We therefore sought ways to expand the sequence

space to which we could apply the shERWOOD approach. Anal-

ysis of miRNA seed sequences as well as other data have sug-

gested that the first base of the small RNA guide does not pair

with its target (Lai, 2002; Lewis et al., 2005; Yuan et al., 2006).

Structural studies have supported this hypothesis by showing

that the first base of the guide is tightly bound within a pocket

in the mid-domain of Ago proteins (Figure S3A; Elkayam et al.,

2012; Frank et al., 2010; Nakanishi et al., 2012; Wang et al.,

2008). Because the first base of the guide is a strong contributor

to shRNA efficacy, we reasoned that we could expand the range

of possible effective shRNAs by simply changing the first base of

all potential guides to a U, promoting their binding to RISC, and,

theoretically, not altering target site choice. We will henceforth

refer to this as the 1U strategy. A simulated construction of a hu-

man genome-wide shRNA library demonstrates that, when this

strategy is implemented, predicted shRNA potencies increase

dramatically, particularly for short GC-rich genes (Figure S3B).

To test the 1U strategy in a high-throughput manner, we

constructed a sensor library where the top 15 shRNAs targeting

a set of �2,000 ‘‘druggable’’ genes were predicted using the

1U strategy. The constructs were designed so that the shRNAs

contained the 1U conversion and the target sites contained

the endogenous base. shRNA potencies were extracted as

described in Figures 1 and 3A. The distribution indicates that

�50% of the shRNAs were strong or very strong (knockdown ef-

ficiency > 75%) based on the scores of control shRNAs that were

assayed in parallel. When shRNAs were separated into native

and artificial 1U sets and the score distributions were plotted,

we were surprised to see a significant reduction in the efficacy

of the nonnative 1U shRNAs (Figure 3B; Wilcoxon rank-sum

test, p value < 0.01). This was strongly suggesting that RISC in-

teracts not only with the 1U of the guide but also with the first

base of the target site.

We therefore stratified 1U shRNAs into four sets based on their

endogenous 50 nucleotide (Figure 3C). This analysis indicated

that only a subset of shRNAs performs well when a 1U switch

is made (based on the bimodal distributions for endogenous

1A, 1C, and 1G shRNAs) but that the subset that does perform

well is predicted to be quite efficacious by the sensor assay.

This bimodal distribution is not observed for shERWOOD-

selected endogenous 1U shRNAs, and we see that the majority

of this shRNA class are efficient.

Given these results, we sought to determine whether we could

predict sequences for which a 1U conversion would result in a

highly effective shRNA. We fit a Gaussian mixture model to the

sensor scores (Figure S3C) and applied this model to assign

shRNAs into one of the two resultant populations (Figure S3D).

Following clustering, we applied a binomial test separately for

shRNAs where the endogenous base was 1A, 1C, 1G, and 1U

to determine whether any nucleotides were enriched/depleted

in the strong shRNAs with respect to weak shRNAs. All sets

show a strong enrichment for U in the target region correspond-

ing to the shRNA guide positions 3, 7, and 8 (Figure 3D). There is

also a strong selection for Cs in the target region-corresponding

position 19 of the endogenous 1A, 1C, and 1G shRNA guides.

These results prompted us to develop a computational algo-

rithm that could both select the strongest endogenous 1U

shRNAs and identify which endogenous 1C, 1G, and 1A shRNAs

were likely to yield potent 1U-converted molecules. Data points

for which the mixed Gaussian clustering resulted in less than a

70% confidence group assignment were censored (Figure S3E).

We trained a random forest using the 22 nucleotides of the

endogenous base as well as all neighboring pairs of nucleotides

as input and the corresponding 1U conversion sensor scores as

output. The algorithm was able to achieve 80% specificity while

maintaining 50% sensitivity. Notably, we were able to increase

the specificity to 85% through the supplemental application of

previously reported rules for shRNA selection (Figure 3E; Fell-

mann et al., 2011; Matveeva et al., 2012).

To validate this addition to the shERWOOD algorithm, we per-

formed an shRNA screen as described above, in which shRNAs

were selected with the 1U strategy with or without applying the

additional filter. We also applied this variant of the algorithm to

the shRNA screen described in Figure 2. We found that, when

additional filters were applied to the 1U strategy, shRNAs target-

ing our set of consensus-essential genes showed a significantly

higher percentage of depleted shRNAs per gene (Wilcoxon rank-

sum test, p < 0.01) and a stronger mean depletion, as measured

by log ratio (Wilcoxon rank-sum test, p < 0.01; Figure 3F).

A Variant miRNA Scaffold Increases shRNA Potency
Recently completed studies of evolutionarily conserved determi-

nants of Drosha processing raised the possibility that the place-

ment of the EcoRI site in the standard miR-30 scaffold might

have reduced the efficiency of pre-miRNA cleavage (Auyeung

et al., 2013). Others have reported that alternatively positioning

the EcoRI site within the scaffold increases small RNA levels,

presumably by improving biogenesis. This led to overall more

potent knockdown (Fellmann et al., 2013). We therefore chose

to create shRNAs byGibson assembly, removing restriction sites

altogether from the shRNA scaffold (Figure S4). We felt that this

was the surest way to avoid any unanticipated effects of altering

processing signals. We termed this scaffold ultramiR.
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To test ultramiR performance, we inserted two shRNAs, tar-

geting luciferase or mouse RPA3, into the standard scaffold

and into ultramiR. These constructs were packaged and infected

in duplicate (multiplicity of infection [MOI] < 0.3) into human

embryonic kidney 293T (HEK293T) cells and the modified DF1

reporter line used for the sensor screen, respectively (Fellmann

et al., 2011). Following selection for singly infected cells, we

analyzed the levels of mature shRNAs by small RNA sequencing

(Malone et al., 2012). shRNA guide counts were normalized

across libraries by determining their log-fold enrichment relative

to the 66th quantile of endogenous microRNA levels. A compar-

ison of the normalized shRNA values indicated that, when

shRNAs were placed into the ultramiR scaffold, mature small

RNA levels were increased significantly relative to levels

observed using the standard miR-30 scaffold (Figure 4A).

Notably, the performance of ultramiR and the previously

described alternate scaffold, miR-E, were indistinguishable

(data not shown).

To provide a more rigorous test of ultramiR performance, we

created a variant of the shERWOOD-selected 1U strategy

shRNA library and compared its performance to that of

the same library in the standard scaffold. Considering the

consensus-essential gene set, over half of all shRNAs in the li-

brary were depleted significantly (Figure 4B). This substantial

improvement (from 42% to 51%, Wilcoxon rank-sum test, p <

0.01) was accompanied by a greater degree of mean log-fold

Figure 3. Structure-Guided Maximization of shRNA Prediction Space

(A) Histogram of sensor scores for the top 15 shRNAs as identified by the shERWOOD-1U strategy, targeting �2000 druggable genes. Overlaid are the

mean sensor scores for control shRNAs representing poor, medium, potent, and very potent shRNAs (with mean knockdown efficiencies of 25%, 50%, 75%,

and >90%, respectively).

(B) The distribution of shERWOOD-1U prediction scores for shRNAs where endogenous 1U shRNAs are separated from endogenous non-1U shRNAs. Sensor

scores for endogenous 1U and non-1U shRNAs are displayed on the left. The plot was made with the Matlab Boxplot function using default parameters. The

edges of the box are the 25th and 75th percentiles. The error bars extend to the values q3 + w(q3� q1) and q1�w(q3� q1), where w is 1.5 and q1 and q3 are the

25th and 75th percentiles.

(C) Distribution of sensor scores for shERWOOD-1U-selected shRNAs, separated by endogenous guide 50 nucleotides.
(D) A nucleotide logo representing enriched (top) and depleted (bottom) nucleotides (p < 0.05) in potent shERWOOD-1U-selected shRNAs (separated by

endogenous guide 50 nucleotides).
(E) The distribution of sensor scores for shRNAs classified as weak and potent by a random forest classifier trained on the shERWOO-1U sensor data.

(F) The distributions of the percentage of shERWOOD- and shERWOOD-1U-selected shRNAs targeting consensus-essential genes that were depleted

in validation screens (left). In addition, normalized log-fold changes of shRNAs, identified under each selection scheme, are displayed (right). The plot

was made with the Matlab Boxplot function using default parameters. The edges of the box are the 25th and 75th percentiles. The error bars extend to the values

q3 + w(q3 � q1) and q1 � w(q3 � q1), where w is 1.5 and q1 and q3 are the 25th and 75th percentiles.
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depletion for each construct (from �0.95 to �1.05, Wilcoxon

rank-sum test, p < 0.01).

We also tested a limited number of individual shRNAs for their

potency by measuring reductions in target mRNA levels. We

selected the four shRNAs with the highest shERWOOD scores

for mouse Mgp, Serpine2, and Slpi. These were cloned into

an MSCV-based ultramiR vector in which hygromycin resis-

tance and mCherry were also expressed as a bicistronic tran-

script from the PGK promoter. We also chose to compare these

shRNAs to those developed using previous library construction

strategies. For this, we obtained the current TRC (five shRNAs

per gene) and V.3 Hannon-Elledge (six shRNAs per gene) li-

brary constructs targeting these genes. For the Hannon-Elledge

library, because there were not four precloned shRNAs for each

gene, we assembled the remaining shRNAs that were designed

as part of that library but never constructed. We failed to clone

two constructs (both targeting Slpi) after multiple attempts,

meaning that only four V3 constructs were tested for that

Figure 4. Validation of an Alternative Mir

Scaffold

(A) Relative abundances of processed guide se-

quences for two shRNAs (as determined via small

RNA cloning and NGS analysis) when cloned into

traditional miR30 and ultramiR scaffolds. Values

represent the log-fold enrichment of shRNA guides

with respect to sequences corresponding to the

ten most abundant microRNAs.

(B) Distributions of the percentage of shHER-

WOOD-1U-selected shRNAs targeting con-

sensus-essential genes that were depleted in

validation screens when shRNAs were placed into

miR30 and ultramiR scaffolds. Log-fold changes

for the same constructs are displayed on the left.

The plot was made with the Matlab Boxplot func-

tion using default parameters. The edges of the

box are the 25th and 75th percentiles. The error

bars extend to the values q3 + w(q3� q1) and q1�
w(q3 � q1), where w is 1.5 and q1 and q3 are the

25th and 75th percentiles.

(C) Knockdown efficiencies for shRNAs targeting

the mouse genes Mgp, Slpi, and Mgp. shRNAs

assessed were those contained within the TRC

collection, those initially designed for the Hannon-

Elledge V.3 library, and those designed using the

current strategies. The TRC and Hannon-Elledge

V.3 shRNAs are housed within each library’s

lentiviral vectors, whereas the shERWOOD-1U-

selected shRNAs are housed within an ultramiR

scaffold in a retroviral vector. Ultramir is constitu-

tively expressed from the LTR.

(D) The number of differentially expressed genes

(>2-fold change and FDR < 0.05) identified through

pairwise comparisons of the cell lines corre-

sponding to Mgp and Slpi knockdown by the

shERWOOD-1U-selected shRNAs and the TRC

shRNAs 88943 and 66708.

gene. Mouse 4T1 cells were infected at

single copy, and knockdown was tested

following selection of infected cells.

The TRC library is carried within a vector

lacking a fluorescent marker. We therefore calibrated infection

levels to achieve single copy by comparison with parallel

infections and selections with V3 constructs. The knockdown

efficiency of each shRNA was assessed by comparing tran-

script levels (via quantitative PCR) to those in cells infected

with corresponding empty vectors. The TRC shRNAs showed

modest knockdown in most cases, with only two shRNAs

showing more than 80% of transcript reduction (88943 and

66708, Figure 4C). The Hannon-Elledge V.3 shRNAs produced

relatively modest levels of knockdown. In comparison the

majority of shRNAs designed using the strategies outlined

here reduced target mRNA levels by over 80%, with most

reducing target mRNA levels by more than 90% (Figure 4D).

Considered together, our data indicate that the combined use

of shERWOOD and the ultramiR scaffold consistently produces

highly potent shRNAs.

To assess the specificity of shRNA knockdown, we per-

formed RNA sequencing (RNA-seq) on all cell lines expressing
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shERWOOD-ultramiR shRNAs targeting Slpi and Mgp and the

two cell lines harboring TRC constructs 88943 and 66708, which

target Mgp and Slpi, respectively. Even in the absence of off-

target effects, the silencing of a gene through RNAi will likely

elicit biological effects that result in changes in the abundance

of other mRNAs. Unlike so-called ‘‘off-target’’ effects, pheno-

typic effects that emanate from on-target silencing should be

consistent for all efficacious shRNAs. Therefore, by comparing

the expression profiles of cells harboring different shRNAs corre-

sponding to a single gene, one should be able to infer the scope

of off-target effects for each construct. The shRNAs that show

the greatest propensity to off-targets will be those that create

expression profiles most dissimilar to the mean profile.

When either Mgp or Slpi were silenced using the strategies

outline here, the expression profiles in the resultant lines were

found to be highly similar. Less than 25 genes were altered in

their expression (DESeq, fold change > 2 and FDR < 0.05) be-

tween any pair of corresponding lines. However, when these

were compared with lines that had Mgp or Slpi silenced using

potent TRC constructs, a significant difference in expression

profiles was observed. Over 500 genes are altered in the line

where Mgp has been silenced using the TRC constructs, and

approximately 250 are altered in the line expressing the TRC

Slpi-shRNA (Figure 4D).

These results could reflect our current strategies for reducing

off-targeting or our use of a microRNA-based scaffold. Recently,

others have observed strong phenotypic changes, related to mi-

croRNA dysregulation, when U6 driven stem-loop shRNAs were

expressed in cells where the target gene had been deleted (Baek

et al., 2014). In contrast, when these same shRNAs were ex-

pressed from a microRNA scaffold, the phenotype was not

observed. Overall, the aforementioned analysis indicates that

shRNAs produced using the strategies outlined in this report,

when expressed in an ultramiR scaffold, show strong knock-

down capacity and limited off-target effects.

DISCUSSION

The application of RNAi in mammalian cells promised a revolu-

tion in understanding gene function and in the discovery and vali-

dation of therapeutic targets. Although the impact of RNAi has

been enormous, there has also been substantial frustration in at-

tempts to fully realize the potential of this technology. Many

different sequences often need to be tested to obtain one that

potently suppresses expression, a problem that is particularly

acute with shRNAs expressed from single-copy transgenes.

This, and the resulting variability in the quality of publicly avail-

able genome-wide shRNA collections, has caused consterna-

tion, particularly when very similar shRNA screens carried out

by different investigators yield largely nonoverlapping results

(Babij et al., 2011; Luo et al., 2009; Scholl et al., 2009). We tried

to address problems with current shRNA technologies by opti-

mizing target sequence choice and small RNA production.

We leveraged our prior development of a high-throughput

assay for testing shRNA potency to develop a computational

algorithm capable of accurately predicting the outcome of the

sensor screen and, in turn, predicting potentially potent shRNAs.

Through iterative cycles of training and refinement we produced

a tool that permits highly efficacious shRNAs to be generated for

nearly any gene.

We validated the performance of our approach and bench-

marked it against current tools using nonsequence verified,

focused shRNA libraries. Based on our analyses, we can now

generate shRNA libraries where nearly 60% of all hairpins target-

ing essential genes are strongly depleted in multiplexed screens.

This means that, for any library containing, on average, four hair-

pins per gene, most bona fide hits will be identified by multiple

hairpins, greatly reducing the probability of false-positive calls.

Because our libraries were used in their raw forms, we feel that

this is a lower boundary of performance because sequence-vali-

dated and arrayed collections will not contain a mixture of

shRNA variants generated by synthesis and PCR errors.

Given the promise of our approach, we have undertaken the

construction of fourth- and fifth-generation sequence-verified

shRNA libraries targeting the mouse and human genomes.

The fourth generation toolkit takes advantage of shERWOOD

in a canonical miR-30 scaffold and currently comprises over

75,000 shRNAs targeting human genes and 40,000 shRNAs

targeting mouse genes. The fifth-generation toolkit places

shERWOOD shRNAs in the ultramiR scaffold and is presently

�50% complete.

We have predicted shERWOOD shRNAs targeting constitutive

exons of annotated human, mouse, and rat protein coding

genes, and these are available via a web portal (http://

sherwood.cshl.edu:8080/sherwood/). We have additionally

made shERWOOD available as a web-based tool for custom

shRNA prediction, for example for the design of shRNAs for

other model organisms or for specific mRNA isoforms or non-

coding RNAs.

Overall, we feel that the combination of improvements to

shRNA technologies described herein creates a next-generation

RNAi toolkit that will produce more reliable outcomes for inves-

tigators, whether applied on a gene-by-gene basis or in the

context of unbiased, genome-wide screens.

EXPERIMENTAL PROCEDURES

Cell Lines

The sensor algorithm was performed using Eco-rtTA-chicken (ERC) cells

(derived from DF-1 chicken embryonic fibroblasts) (Fellmann et al., 2011). All

shRNA screens were performed in the pancreatic adenocarcinoma cell line

A385 (Cui et al., 2012). Small RNA analysis for RPA2 shRNAs was performed

in the ERC cell line (Fellmann et al., 2011) and in HEK293T cells for the Renilla

shRNAs. Individual shRNA knockdown experiments were performed in the

4T1 murine mammary cancer cell line (Dexter et al., 1978).

Vectors

All RNAi screens and small RNA cloning experiments were performed with an

MSCV-based retroviral vector harboring a bicistronic transcript (eGFP-IRES-

Neomycin) downstream of the PGK promoter (Figure S2D). Single-target

knockdown experiments for shERWOOD-ultramiR shRNAs were performed

with a similar vector, where Neomycin is replaced with Hygromycin, and

enhanced GFP is replaced with mCHERRY. Single-target knockdown experi-

ments for the Hannon-Elledge V3 and TRC shRNAs were performed with the

GIPZ and pLKO.1 vectors, respectively (GE Dharmacon).

shRNA Library Construction

To ensure high-complexity end products, all shRNA libraries were amplified

from raw chip material using 16 separate reactions with 22 PCR cycles. For
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each reaction, 1 ml of 100 mM chip material was used. All transformations were

performed with Invitrogen’s MegaX DH10B T1 electrocompetent cells using a

Bio-Rad Gene Pulser Xcell and Bio-Rad Gene Pulser 1 mm cuvettes for elec-

troporation. For each library, a minimum of 25 M successfully transformed

cells were obtained.

shRNA Library Screening

shRNA libraries were packaged using the Platinum-A retrovirus packaging cell

(Cell Biolabs). Cells were cotransfected with glycoprotein G of the vesicular

stomatitis virus and siRNAs targeting the shRNA processing protein Pasha

(QIAGEN). Viral infections were performed at an MOI of 0.3 to ensure a

maximum of one shRNA infection per cell. shRNA representation in the in-

fected cell population was maintained at a minimum of 1,000 infected cells

per shRNA on each passage. All screens were performed in triplicate. Two

days after infection, cells were collected for a reference time point, and, after

�12 doublings, cells were again harvested for a final time point. Neomycin se-

lection began after the initial time point and continued throughout the screens.

shRNA Library Processing and Analysis

Following cell harvests, DNA was extracted with the QIAGEN QIAamp DNA

Blood Maxi kit. For each sample, shRNA molecules were extracted from

genomic DNA in 96 separate 25-cycle PCR reactions where 2 mg of input

DNA was included in each reaction. Following this initial PCR, Illumina

adapters were added via PCR, and samples were processed on the Illumina

Hi-Seq-2.0 platform (read depth was maintained at �1,000 short reads per

shRNA). Following sequencing, shRNA counts were extracted with the bowtie

algorithm (allowing zero mismatches) and normalized by their total counts.

Log-fold changes demonstrated a GC bias in the control shRNA population

(Figure S2E). To remove this bias, a 1� polynomial was fit to each screen rep-

licate’s log-fold change versus GC content data, and this curve was then sub-

tracted from each data point (Figure S2F). Following this, values were further

normalized so that the control population had a population variance of one.

shRNAs were classified as depleted with an FDR cutoff of 0.1 using an empir-

ical Bayes moderated test (Figure S2G; Smyth, 2004).

For further details, see the Supplemental Experimental Procedures.
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SUMMARY

We have combined a machine-learning approach
with other strategies to optimize knockout efficiency
with the CRISPR/Cas9 system. In addition, we have
developed a multiplexed sgRNA expression strategy
that promotes the functional ablation of single genes
and allows for combinatorial targeting. These strate-
gies have been combined to design and construct a
genome-wide, sequence-verified, arrayedCRISPR li-
brary. This resource allows single-target or combina-
torial genetic screens to be carried out at scale in a
multiplexed or arrayed format. By conducting parallel
loss-of-function screens, we compare our approach
to existing sgRNA design and expression strategies.

INTRODUCTION

Genetic screens have played a fundamental role in charting ge-

notype-phenotype interaction maps for a variety of organisms

(Carpenter and Sabatini, 2004). However, confounding factors,

such as non-uniformity in the efficacies of targeting molecules,

have limited the depth to which data from such studies can be in-

terpreted. These problems have been somewhat mitigated for

short hairpin RNA (shRNA)-based gene silencing because, after

several rounds of optimization, experimentally validated

algorithms for selecting potent guide sequences have been

developed (Fellmann et al., 2011; Knott et al., 2014; Pelossof et

al., 2017). Similar approaches have been applied for selecting

Cas9guideRNAs (sgRNAs) for usewith the type II clustered regu-

larly interspaced short palindromic repeats (CRISPR) system,

where large sgRNA potency datasets were used to train predic-

tion algorithms (Chari et al., 2015; Doench et al., 2014, 2016).

However, unlike with mRNA cleavage, Cas9-induced double-

strand breaks (DSBs) leave a genomic scar whose characteris-

ticsdetermine thephenotypic consequencesof targeting a locus.

The distance of the target from the translation start site is anti-

correlated with sgRNA efficacy, probably because N terminus

proximal frameshift mutations (FSMs) are more likely to induce

nonsense-mediated mRNA decay or the production of truncated

nonfunctional proteins (Doench et al., 2014). Non-homologous

end joining (NHEJ) was thought to act as the predominant repair

mechanism at Cas9-induced DSBs; this made predicting the

likelihood of an FSM, for a given target, impossible. However,

deep sequencing of these genomic scars has revealed that

some homologous end joining (HEJ) contributes to repair of

Cas9 cleavage events (Bae et al., 2014). Here the frequencies

of specific repair resolutions are dependent on the length, gua-

nine-cytosine (GC) content, and distance from the cut site of

the two DSB-flanking homologous loci, suggesting that these

likelihoods can be estimated. Finally, sgRNAs that focus Cas9

to functional domains provide a greater probability of phenotypic

impact, likely because in-frame mutations in these regions have

a greater potential to disrupt protein function (Shi et al., 2015).

The implementation of optimized effector expression strate-

gies should also drive the efficacy of CRISPR knockout assays.

Systems have been developed in which multiple RNA polymer-

ase III promoters drive independent sgRNAs (Vidigal and Ven-

tura, 2015). Alternatively, others have shown that Cpf1 can be

focused to multiple targets in cells that express crRNA arrays

harboring independent sgRNAs (Zetsche et al., 2017). These

tools have primarily been applied in order to characterize combi-

natorial gene interactions and to delete non-coding sequences.

However, these strategies may also aid in studies where single

gene knockouts are desired in each cell, as the simultaneous

focusing of Cas9 to multiple sites within the target should elicit

greater functional consequences.

DESIGN

Not all of the strategies outlined above have been experimen-

tally validated, nor have they been integrated into a consoli-

dated framework for constructing sgRNA expression vectors.

We reasoned that a gain in sgRNA efficacy could be achieved

by combining current selection methods with strategies to maxi-

mize the likelihood of functionally deleterious genomic scars. We

developed an sgRNA selection algorithm that identifies puta-

tive targetsbasedonpredictive nucleotidecombinations, the like-

lihood of an FSM, and whether the target lies in a functional

domain. For effector delivery, we have developed a system that

allows for the simultaneous expression of two independent

sgRNAs from each construct. With the goal of expressing two

348 Molecular Cell 67, 348–354, July 20, 2017 ª 2017 The Authors. Published by Elsevier Inc.
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guides for a single target in each construct, we have developed a

computational algorithm that optimizes the likelihood of synergis-

tic deleterious effects. These methods have been validated

through a reanalysis of pre-existing data and by carrying out

comparative multiplexed CRISPR screens. We have predicted

construct designs for all protein-coding human genes and made

these available via a web portal (http://croatan.hannonlab.org/).

RESULTS

gRNA Selection Strategy
Two datasets of sgRNA efficacy have been used to develop exist-

ing selection algorithms. Doench et al. (2014) assessed the

potency of sgRNAs in libraries that tiled cell surface proteins.

There the abundance of integrated sgRNAs in FACS-isolated,

target-negative cells was used as a measure of effector strength.

Chari et al. (2015) infected cells with scrambled Cas9 targets and

then transfected the samecellswith corresponding sgRNAs. Here

target mutation rates were the readout for efficiency. We devel-

oped a random-forest-based sgRNA prediction tool using these

two datasets for training. For each dataset, ten random forests

were trained to separate potent andweakguides,whichwerepre-

classified based upon a top- and bottom-40% efficacy cutoff,

respectively. All 3mers in the region spanning four nucleotides up-

streamand six nucleotides downstreamof the sgRNAbinding site

were used as input. The ten random forests were trained using

incrementally increasing penalties for false-positive predictions.

Thus, those trained with higher values were more stringent in as-

signing potency to a target. When analyzing new sgRNAs, se-

quences receive scores equal to the highest stringency level

they pass in both random forest sets. This scoring system was

applied to sgRNAs in the Doench tiling set that were withheld dur-

ing training, and a significant difference in efficacy is observed

when comparing sgRNAs that pass versus those that fail the min-

imum-stringency threshold (Figure S1A, rank-sump value < 0.01).

Beyond this, increments in prediction values are notmatchedwith

significant efficiency gains, although scores do correlate with po-

tency globally.

The advantage of focusing Cas9 to known functional protein

domains has been previously recognized (Shi et al., 2015). How-

ever, as many genes lack well-defined domain information, this

strategy is not easily applied to the construction of genome-scale

sgRNA collections. As a surrogate, we used amino-acid conser-

vationat theCas9cut-site toguidesgRNAselection.Weassigned

scores to targets based on the predicted deleterious effects of

DSB-proximal amino acid substitutions, which were calculated

using the protein variation effect analyzer (PROVEAN) algorithm

(Figure S1B; Choi et al., 2012). A reanalysis of the Doench tiling

set shows that, for sgRNAs that pass theminimum random forest

stringency threshold, these scores are correlated with the proba-

bility of inducing a measurable phenotype (Figure 1A, Spearman

correlation [r] = 0.32).

Others have demonstrated that repair at Cas9-induced DSBs

is partially driven by HEJ (Figure S1C; Bae et al., 2014). Using

deep-sequencing data of Cas9 targets, we developed a linear

regression model to predict the likelihood of homology-guided

repair resolutions based on the length, GC content, and dis-

tance to the DSB of the corresponding homologous loci. The

overall likelihood of an FSM at a target is measured as the frac-

tion of predicted resolution scores that correspond to FSMs

(Figure S1D, r = 0.74). This is only relevant for targets where ho-

mologous repair is likely. Thus, a lower-limit cutoff equal to the

median of likelihood sums for HEJ-guided resolutions at human

CDS Cas9 targets is applied as well. A reanalysis of the Doench

dataset demonstrates that, for sgRNAs that pass the minimum

random forest stringency threshold, a gain in efficacy can be at-

tained by selecting targets where there is >66% chance that an

FSM will occur (Figure 1B, rank-sum p value < 0.05).

To consolidate these predictive component algorithms, we

first group sgRNAs based on the stringency level they passed

during random-forest analysis (groups A, B, and C, Figure S1E).

Within each group, sgRNAs are ranked based on their passing

conservation and FSM-likelihood threshold tests. The median

score of all human CDS Cas9 sites is the lower-limit threshold

for conservation. We set a threshold of 66% to qualify sgRNAs

as being likely to induce an FSM. sgRNAs in group A are given

a score between one and three based on their passing zero,

one, or two of the conservation and FSM-likelihood tests.

With these same tests, sgRNAs in groups B and C are assigned

scores between four and six and between seven and nine,

respectively. A reanalysis of the Doench tiling set with this

algorithm, which we call CRoatan, demonstrates that scores

correlate strongly with potency (Figure 1C, r = 0.52). When

CRoatan was applied to identify ten sgRNAs for each protein-

coding gene in the refseq annotation, the algorithm could identify

high-scoring sgRNAs for each target (Figure S1F).

To evaluate CRoatan empirically, we constructed four CRISPR

librarieswhoseoutputwould informon thequality of the tool. Each

library was composed of 200 sgRNAs targeting 20 essential and

20 nonessential genes (EG and NEG, respectively; five sgRNAs

per gene). EGs were identified in a summary analysis of indepen-

dent shRNA screens, and olfactory-receptor genes served as

NEGs (Marcotte et al., 2012). For each library, a different sgRNA

selection tool was used to define inclusion: gene perturbation

platform (GPP; Doench et al., 2014), sgRNAScorer (Chari et al.,

2015), Edit-R (Dharmacon), and CRoatan. Libraries were cloned

into a lentiviral backbone where human U6 drives sgRNA expres-

sion and where a zsGreen-P2A-Puromycin bicistronic transcript

is expressed from the spleen focus-forming virus promoter

(SFFV). Libraries were packaged and infected into A-375 mela-

noma and K-562 leukemia cells, and following selection with pu-

romycin, the cells were passaged for�12 doublings. Normalized

log ratioswere then calculatedbasedonconstruct abundances in

the infected and final cell populations (Knott et al., 2014).

To assess the effectiveness of our effector selection strate-

gies, we calculated gene-normalized depletion scores for all

EG-sgRNAs in the CRoatan library. We could not test the initial

grouping strategy, as all sgRNAs were group C members (Fig-

ure S1E). The depletion rates of EG-sgRNAs were correlated

with CRoatan score (Figure 1D, r = 0.52). Depletion rates

were not found to correlate with conservation or FSM-likeli-

hood scores alone. When EG-sgRNA depletion rates were

compared among the four libraries, CRoatan sgRNAs were

found to be significantly more reduced in representation than

those identified with the sgRNAScorer and Edit-R tools (Fig-

ure 1E, rank-sum p value < 0.05). CRoatan EG-sgRNAs were
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more depleted than those identified with the GPP algorithm;

however, this difference was not statistically significant (rank-

sum p value > 0.05).

Dual-sgRNA Expression Constructs
We reasoned that a higher frequency of deleterious mutations

could be inflicted by simultaneously focusing multiple inde-

pendent sgRNAs to each gene target. Toward this end, we

constructed a lentiviral vector harboring two divergent U6 pro-

moters, where the 50 promoter was human and the 30 promoter

was chicken (Figure 2A, hU6 and cU6, respectively). These

were chosen to reduce the probability that recombination

would eliminate critical elements of the cassette. Between the

promoters is an identification barcode, which is bordered by
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Figure 1. CRoatan, an Algorithm for Identi-

fying Potent sgRNAs

(A) Thepotencyof sgRNAsanalyzed inDoenchetal.

stratified by conservation score (calculated as

described in Figure S1B, r = 0.32). An sgRNA

percentile is thepercentile rankof ansgRNA relative

to all other effectors targeting the same gene. This

plot, as all others in the figure, was generated with

the MATLAB boxplot function using default

parameters. The edges of the box are the 25th and

75th percentiles. The error bars extend to the values

q3+w(q3�q1) andq1�w(q3�q1),wherew is 1.5

and q1 and q3 are the 25th and 75th percentiles.

(B) Efficacy percentiles of the sgRNAs analyzed in

Doench et al. when stratified by the likelihood of

frameshift mutations (FSM likelihood) at the cor-

responding target site (rank-sum p value = 0.0405

for tertile 3 versus tertile 1 and 2 sgRNAs).

(C) Efficacy percentiles of the sgRNAs analyzed in

Doench et al. when stratified by the consolidated

CRoatan algorithm (r = 0.52).

(D) Z-score-normalized depletion rates of EG-

sgRNAswhen stratified byCRoatan score (r= 0.21).

Depletion rates were calculated as the average log

ratio in screens carried out in A-375 and K-562 cells.

(E) Depletion rates of NEG- and EG-targeting

sgRNAs in screens corresponding to those

described in (D). sgRNA libraries were designed

using the GPP-WP, sgRNAScorer, and Edit-R al-

gorithms (rank-sum p value = 0.0942 for GPP-WP,

0.0209 for sgRNAScorer, and 0.0233 for Edit-R).

Illumina adapters, for sequencing-based

quantification of construct abundances.

The vector also harbors a bicistronic

zsGreen-P2A-Puromycin transcript that

is expressed from SFFV.

We designed an algorithm to pair

sgRNAs for a target within the dual-U6

vector to maximize the probability of

synergistic deleterious effects. The algo-

rithm receives as input ten sgRNAs,which

have been extracted from the top-20

CRoatan-scoring effectors, after they

have been reranked to reflect off-target

likelihoods (Figure 2B; Knott et al., 2014).

A10310pairwise scorematrix is thencalculatedusingaheuristic

scoring algorithm (Figure S2A). sgRNAs with overlapping targets

are not considered for pairing. To ensure that each construct har-

bors at least one potent effector, the algorithm increments the

score of sgRNA pairs with unbalanced CRoatan scores. sgRNA

pairs are also increased in their scores if they target the same

exon or two exons that contribute to a common set of isoforms.

Finally, we predicted that DSB-DSB blunt-end joining would be

the predominant repair resolution in cases where simultaneous

cleavage events caused the target-flanked region to be deleted.

Thus, the score is also increased for each pair whose deletion

fragment length corresponds to an FSM. After the sgRNA pairs

have been scored, a weighted maximum matching algorithm is

applied to identify thecouplingwith thehighest sumofpair scores.
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To test our library assembly strategy, we cloned dual-CRoatan

constructs for three olfactory receptor genes (OR10A4, OR2W5,

and OR6C74) and infected A-375 and K-562 cells with these.

These sgRNA pairs were chosen for the short distance between

their corresponding targets, which allows simultaneous analysis

of both sites with Illumina paired-end sequencing. We profiled

the genomic scars that had been left after infection and found

that high rates ofmutation existed for all sgRNA pairs (Figure 2C).

Fragment deletion between the two targets was the predominant

scar. A deeper analysis revealed that, in these cases, the most

commonly observed resolution was the predicted blunt-end

joining of the two DSBs (Figures 2D and S2B).

High-Throughput Analysis of Library Efficacy
To evaluate our strategymore broadly,we designeda combinato-

rial CRISPR screening library whose output would inform on the

contributions that the CRoatan algorithm, as well as the dual-
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Figure 2. Simultaneous Targeting with

Multiple sgRNAs Results in Predictable

Genomic Scars

(A) Schematic map of the lentiviral, dual-sgRNA

expression vector with relevant features high-

lighted. hU6, human U6 promoter; cU6, chicken

U6 promoter; hsgRNA, human U6-promoter-

driven sgRNA; csgRNA, human U6-promoter-

driven sgRNA; HTS, high-throughput sequencing

adapters; SFFV, spleen focus-forming virus

promoter.

(B) sgRNA pairing algorithm used to design five

targeting constructs for a gene. The top 20 sgRNAs

for each gene are filtered to a set of 10 to reduce the

probability ofoff-targetingeffects.Pairswithin these

10are thenscoredusing thesetofheuristicsdefined

in Figure S2. The resultant pairing matrix is then

used as input for a maximum-weighted matching

algorithm to define a final set of 5 sgRNA pairs.

(C) Paired-end sequencing analysis of genomic

scars left after dual-CRoatan NEG-targeting con-

structs have been infected into A-375 and K-562

cells. hsgRNA and csgRNA indels are where only

one of the two targeted regions shows mutational

burden in an HTS fragment. hsgRNA and csgRNA

indel counts represent cases where both targets

have indels, and fragment deletions are where the

region between the two targets is deleted.

(D) Analysis of the genomic scars described in (C)

that correspond to fragment deletions between

two sgRNA target sites. The top ten most frequent

deletions are shown with their corresponding rate

of occurrence, as measured by their average fre-

quency in infected A-375 and K-562 cells. Scars

that result from exact deletion of the double-

strand-break-flanked fragment are annotated as

DSB-DSB deletions. Scars where, in addition to

the fragment deletion, other bases are inserted or

deleted are annotated as non-DSB-DSBdeletions.

sgRNA expression system, made to re-

agent efficacy. The library was composed

of 100 sgRNAs targeting 20 EGs and 20

NEGs. sgRNAs were cloned into both the

hU6 and cU6 positions, which resulted in a final library harboring

10,000sgRNApairs. The constructswere screened inA-375 cells,

and these experiments were processed in the same manner as

those experiments described in Figures 1D and 1E.

Toassess the impact of theCRoatanalgorithmconstituents,we

calculated gene-normalized depletion scores for constructs

harboring one EG-sgRNA, as depletion rates could be attributed

directly to the efficacy of this effector for these constructs. In

contrast to the single-sgRNA CRoatan screen described in Fig-

ures 1D and 1E, here depletion rates were significantly greater

for EG-sgRNAs that passed the conservation and FSM-likelihood

thresholds, indicating that these two strategies contributed posi-

tively (Figures S3A and S3B, Friedman p value < 0.05). We reason

that this correlation was observable here, and not in the initial

CRoatan screen, because for each EG-sgRNA, the score was

calculated as the average depletion rate of the 100 constructs in

which it was paired with an NEG-sgRNA. Also, as was the case
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for the initial CRoatan screen, depletion rates correlated positively

with CRoatan score (Figure S3C, Friedman p value < 0.01).

A significant increase in depletion levels was also observed

when constructs harboring two EG-sgRNAs were compared to

those harboring one or zero EG-RNAs (Figure S3D, rank-sum p

value < 0.01). This was also evident at the individual sgRNA level.

For each EG-sgRNA, we calculated the mean depletion rate of

constructs where it was paired with an NEG-sgRNA and also

-3

-2

-1

0

1

2
paired with sgRNAs targeting same genepaired with NEG-sgRNAs

AURKB ZNF207XAB2SMC2RRM1RPA1NUP98MCM2CDC5L

A
ve

ra
ge

 D
ep

le
tio

n 
(z

-s
co

re
)

NEG EG

sg
R

N
A

 D
ep

le
tio

n 
(lo

g 2(
T

n/
T

0)
)

CRoatan

0

2

4

6

8

10

12

20

14

16

18

G
en

e 
H

its
 (

2 
sg

R
N

A
s 

D
ep

le
te

d)

sgRNA Depletion Cuttoff (decile)

A

CB

-6

-5

-4

-3

-2

-1

0

1

2

Dual-CRoatan

1 5
Existing

Algorithns

Dual-
CRoatan

CRoatan

NEGNEG EG EG

42

SUPT6H

p-val=2.5e-5

p-val>0.05

3
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(A) Average depletion rates for each EG-sgRNA when it is paired with NEG-sgRNAs (gray) and when it is paired with sgRNAs targeting the same EG (brown).

sgRNAs are grouped based on the gene target; rank-sum p value = 0.0006.

(B)Depletion rates ofNEG-andEG-targetingCRISPRconstructs innegative-selection screens. Shownare theconsolidateddepletion rates for single-sgRNAconstructs

selected using pre-existing tools (GPP, sgRNAScorer, or Edit-R algorithms) as well as the rates for CRoatan single-sgRNA constructs and CRoatan dual-sgRNA con-

structs (dual-CRoatan, rank-sumpvalue=2.5e-5 for existingalgorithmsandpvalue>0.05 for single-CRoatanconstructs).Depletion rateswerecalculatedas theaverage

log ratio inscreenscarriedout inA-375andK-562cells. Thisplotwasgeneratedwith theMATLABboxplot functionusingdefaultparameters. Theedgesof theboxare the

25th and 75th percentiles. The error bars extend to the values q3 + w(q3� q1) and q1� w(q3� q1), where w is 1.5 and q1 and q3 are the 25th and 75th percentiles.

(C) Gene-level analysis of CRoatan and CRoatan dual-sgRNA construct depletion rates. Using the average depletion rate for each construct in A-375 and K-562

cells, gene ‘‘hits’’ were calculated using a series of stringencies (top 10%, 20%, 30%, 40%, and 50% most-depleted sgRNAs). For a gene to be called a hit at a

given stringency, a minimum of two constructs need to be depleted beyond the stringency level.
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where it was paired with one of the other four sgRNAs that target

the same gene. Nearly all of the EG-sgRNAs elicited a more

robust phenotype when they were paired with other sgRNAs tar-

geting the same gene (Figure 3A, rank-sum p value < 0.001).

As a final test of our consolidated strategy, we constructed

a CRISPR library using the CRoatan algorithm and the pairing

principles outlined in Figures 2A, 2B, and S2A (dual-CRoatan).

Each construct in the library harbors two sgRNAs that together

target one of the 10 EGs or 10 NEGs described in Figures 1D

and 1E for multiplexed mutagenesis. The library was screened

and analyzed as was described for these earlier experiments.

The EG-targeting dual-CRoatan constructs had significantly

higher depletion rates than the single-sgRNA constructs. This

was true when all sgRNAs identified with existing algorithms

were considered together and also when sgRNAs identified

with the GPP, sgRNAScorer, and Edit-R algorithms were con-

sidered separately (rank-sum p values = 2.4e-5, 0.005, 3.9e-5,

and 0.002, respectively). EG-targeting constructs in the dual-

CRoatan library were more depleted than their counterparts

in the CRoatan library; however, this difference was deemed

statistically insignificant (rank-sum p value > 0.05). Finally, we

analyzed the CRoatan and dual-CRoatan screens to identify

gene-level ‘‘hits.’’ Using a two-construct minimum threshold

to identify a gene as depleted, we calculated false-positive

and true-positive rates at a series of construct depletion cut-

offs. This analysis demonstrated the superiority of the dual-

CRoatan library in terms of both sensitivity and specificity

(Figure 3C).

DISCUSSION

The CRISPR-Cas9 system has been applied to a variety of

molecular manipulations, with the most common being pertur-

bation of gene function inmammalian cells. This can be achieved

by inducing mutations in target gene coding sequences or

by focusing transcriptional regulators to gene promoters. Others

have demonstrated, through a set of parallel loss-of-func-

tion screens, that mutagenesis is more effective at ablating

gene function. Here we have combined machine-learning and

sgRNA-expression strategies to create CRISPR constructs that

maximize the likelihood of mutation-based functional silencing.

Through a set of parallel genetic screens, we have demonstrated

that these reagents are significantly more efficacious than other

available tools. Based upon these results, we have assembled a

sequence-verified collection of CRISPR constructs using these

design principles.

We have demonstrated that a significant gain in efficacy is

attained when two independent sgRNAs simultaneously focus

Cas9 to the target gene. Thus, we have designed the library

such that two sgRNAswith high prediction scores are expressed

from each construct (Figure S3E). An added benefit of this strat-

egy is that constructs can be easily manipulated to target gene

pairs to interrogate synthetic interactions. This feature will be

particularly useful for identifying parallel or related molecular

pathwayswith combinatorial screens. Another feature of the tool-

kit is the availability of individual sequence-verified constructs,

which allows large-scale screens to be carried out in an arrayed

format.

Overall, we hope that this toolkit will be of benefit to the scien-

tific community, as it will allow individual and combinatorial gene

knockouts to be carried out on a large scale in both multiplexed

and arrayed formats. The library design includes five constructs

for each protein coding human Refseq gene. At present, the

library is comprised of �50,000 sequence-verified constructs;

the goal is to complete the collection at five constructs per

�20,000 predicted genes.

LIMITATIONS

At the date of publication, half of the�100,000 construct designs

in the human library had been sequence verified and included in

the physical resource. Thus, there is poor coverage, in terms of

targetingmolecules, for a subset of genes. Current coverage sta-

tistics are reported on the following web portal: http://croatan.

hannonlab.org.
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KEY RESOURCES TABLE

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Gregory

Hannon (greg.hannon@cruk.cam.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines
CRISPR/Cas9 screens were performed in melanoma A-375 (ATCC CRL-1619, female) and chronic myelogenous leukemia K-562

(ATCC CCL-243, female) cell lines. A-375 were grown at 37C in DMEM, supplemented with 10% FBS and penicillin/streptomycin.

K-562 were grown at 37C in RPMI1640 supplemented with 10% FBS and penicillin/streptomycin. The 293FT cell line (Thermo-

Fischer) was grown at 37C in DMEM supplemented with 10% FBS and penicillin/streptomycin.

A-375 cells were infected at lowMOI by virus produced using lentiCas9-Blast (Addgene #52962) (Sanjana et al., 2014) and selected

using blasticidin (10 mg/mL). Following 10 days of selection, single cells were sorted using the FACSAria IIU cell sorter (BD

Biosciences) into 96-well plates. 10 A-375-Cas9 clones were tested for Cas9 functionality by infection with a vector expressing

ZsGreen and an sgRNA targeting ZsGreen. Knockout efficiency was estimated by flow cytometry after 14 days. One of the

A-375-Cas9 clonal lines exhibiting more than 50% knockout of ZsGreen in this assay was selected for further experiments. The

K-562 clonal cell line expressing Cas9 was kindly gifted by Dr. Vakoc (Cold Spring Harbor Laboratory).

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Raw and analyzed data This paper GEO: GSE97434

Human reference genome NCBI build 37, GRCh37 Genome Reference

Consortium

http://www.ncbi.nlm.nih.gov/projects/

genome/assembly/grc/human/

Experimental Models: Cell Lines

A-375 ATCC CRL-1619

A-375-Cas9 This paper

K562-Cas9 Gift by the Vakoc
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METHOD DETAILS

Random Forest Training and Scoring
Ten random forests were constructed for each of the Doench et al. and Chari et al. datasets. For each data type, sgRNAs in the top-

and bottom-40th percentile for each gene were classified as potent and weak, respectively. The 10 forests were trained using the

MATLAB treeBagger package (1000 trees per forest). Forests were trained using incrementally increasing penalties for false-positive

classifications (0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2). During training forests are constructed using the 28 overlapping 3mers of each

target as features, and the class of the target (potent or weak) as the output.

When a new target is being scored, it is decomposed into 28 3mers, and these are given to each of the 20 forests (10 corresponding

to the Doench et al. data and 10 to the Chari et al. data) as input. The target is then assigned a value between 0 and 10 corresponding

to the highest stringency forest it was assigned as potent by. For example, if a target was called potent by a Doench forest that was

trained with a penalty of 1.2 (6th lowest) and a Chari forest trained with a penalty of 1 (5th lowest), the target would receive a score of 5.

The data presented in Figures S1A and 1C were calculated using out-of-bag random forest predictions with default MATLAB

parameters.

sgRNA-Pair Scoring
For each gene, all pairwise scores were calculated for the top 10 CRoatan scoring sgRNAs. All sgRNA pairs begin with a score of 0.

Overlapping pairs are assigned a final score of 0. Pairs that are less than 10kb apart with DSB-DSB distances that are not divisible by

3 are assigned a score of 2.5 if they target the same transcripts. Scores are incremented by 1 if pairs have imbalanced CRoatan

scores (one less than 7 and one greater than 7). This scoring matrix is then given as input to the maximum weighted matching algo-

rithm (MATLAB maxWeightMatching).

sgRNA Library Construction
For single sgRNA libraries, sgRNA sequences were predicted using existing algorithms (Edit-R, sgRNAScorer, GPP web portal and

CRoatan) and oligonucleotides containing these sequences were ordered from Integrated DNA Technologies (IDT, Table S1). These

molecules were amplified by PCR (forward primer (FP): TTACCGTAACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGA

AAGGACGAAACACCG, reverse primer (RP): GGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC) and cloned by Gibson

assembly into a 3rd generation lentiviral vector harboring a U6 promoter, an sgRNA backbone, and a ZsGreen-P2A-PuromycrinR

transcript driven by a spleen focus-forming virus promoter (pCRoatan-singleSgRNA).

For dual sgRNA libraries, sgRNA sequences were predicted using CRoatan. Primers containing these sequences were ordered

from IDT (Table S1) and used to amplify a hU6-EM7-ZeocinR-cU6 cassette (pCRoatan-dualPromoter). The amplicon was digested

with BbsI (NEB) and ligated into a 3rd generation lentiviral vector (pCRoatan-dualSgRNA) previously digested with BsmBI

(ThermoFischer).

Combinatorial sgRNA libraries were built using DNA chips (CustomArray, Inc.) containing 10K molecules harboring a barcode and

two flanking sgRNA sequences (Table S2). Chips were amplified by 5 separate 18-cycle PCRs to ensure high-complexity end

product. The amplicons were first cloned by ligation into an intermediate cloning vector (pCR-BluntII TOPO based) using SpeI

(NEB) and ApaI (NEB). Subsequently, the hU6 and cU6 promoters driving the sgRNAs were added to the vector. The hU6 promoter

was amplified from lentiCrisprv2 (Addgene #52961) by PCR (FP: AGTACCGTCTCTGGTGTTTCGTCCTTTCCACAAG, RP: GTACCT

ACGCGTGAGGGCCTATTTCCCATGATTC), and cloned by ligation using the BsmBI (ThermoFischer) and MluI (NEB) restriction

sites. The cU6 promoter (cU6-3, Kudo and Sutou, 2005) was amplified from a gBlock (IDT) by PCR (FP: ATCGATCTCGAGG

CGCCGCCGCTCCTTCAGGCA, RP: TGATCCTGGTCTCACGACTAAGAGCATCGAGACTGC), and cloned by ligation using the

BsaI (NEB) and XhoI (NEB) restriction sites. Following these three steps, the full sgRNA1-hU6-EM7-ZeocinR-Barcode-cU6-sgRNA2

cassette was digested from the intermediate cloning vector using BbsI and ligated in the lentiviral expression vector (pCRoatan-dual-

SgRNA) as described previously. All transformations were performed with Invitrogen’s MegaX DH10B T1 electro-competent cells

using a Bio-Rad Gene Pulser Xcell and Bio-Rad Gene Pulser 1 mm cuvettes for electroporation. For each library, a minimum of

10 million successfully transformed cells were obtained.

sgRNA Library Screening
sgRNA libraries were packaged using the 293FT cell line (Thermo Fischer). Cells were co-transfected with library vector (60 mg),

pMDL (12.5 mg), CMV-Rev (6.5 mg) and VSV-G (9 mg) by calcium phosphate transfection. The media was replaced at 14h and

virus was collected at 36h and filtered using a 0.45 mM syringe filter (Millex�-HV, EMD Millipore). Viral infections were per-

formed at an MOI of 0.3 to ensure a maximum of one sgRNA integration per cell. sgRNA representation in the infected popu-

lation was maintained at a minimum of 1000 infected cells per sgRNA at each passage. All screens were performed in tripli-

cates. Two days after infection, cells were collected for a reference time point. After �12 doublings, cells were harvested

for a final time point. Infected cells were selected using Puromycin (1 mg/mL) after the initial time point and throughout the

screen.
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CRISPR/Cas9 Library Processing and Analysis
Following cell harvests, DNA was extracted using the QIAGEN QIAamp DNA Blood Midi kit. For each sample, sgRNA molecules or

barcodes identifying sgRNA pairs were extracted from the genomic DNA in 24 separate 30-cycle PCR reactions in which 2 mg of DNA

input was included. Illumina adapters were included in the PCR primers (Table S3). Libraries were sequenced using custom read one

primers on the Illumina MiSeq or HiSeq platforms. Following sequencing, reads were trimmed to a length of 20bp and construct

counts were extracted using the bowtie algorithm (Langmead et al., 2009). Constructs were then filtered based on a minimum

read-count threshold of 50 in the reference sample. Corresponding log-fold change valueswere then calculated by dividing the abun-

dance after twelve doublings by the abundance at the reference time point, two days after infection (Knott et al., 2014).

Dual-sgRNA Genomic Scar Analysis
200,000 A-375-Cas9 and K-562-Cas9 cells were transduced with CRoatan constructs targeting 3 different olfactory receptor genes.

Following selection with Puromycin cells were grown for�12 doublings and then harvested for analysis. DNAwas extracted using the

QIAGEN QIAamp DNA Blood Midi kit. The target region, including 50bp upstream and downstream of both sgRNA target sites was

amplified by PCR, in 16 25-cycle PCR reactions in which 500ng of DNA input was included (Table S3). Following purification using the

QIAquick PCR Purification Kit, Illumina adapters were added via PCR and samples were processed on the Illumina MiSeq platform

using paired-end reads of 200bp to cover both sgRNA target sites. Readsweremapped to the relevant genomic region using the bwa

mem algorithm and cut types were analyzed and counted using the CIGAR string of the alignment (Li and Durbin, 2009).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical parameters such as definition of center, error bars and significance are reported in the main text, figures and figure leg-

ends. Data are judged to be significant when p < 0.05 by the rank-sum test or the Friedman test. Statistical significance analysis

was performed in MATLAB using the freidman and ranksum functions.

DATA AND SOFTWARE AVAILABILITY

All raw and processed data have been deposited in the National Center for Biotechnology Information Gene Expression Omnibus

under accession number GSE97434. All code will be made available for non-commercial use upon request.

ADDITIONAL RESOURCES

Detailed Protocol
A detailed protocol describing the cloning of pairs of sgRNAs in the pCRoatan-dualSgRNA expression vector is provided in the

Methods S1.

Online Resource
Detailed cloning protocols, plasmid maps and construct designs for all protein coding human genes are available via a web portal:

http://croatan.hannonlab.org.
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