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Methods	to	Probe	the	Function	of	Modified	Bases	in	DNA	
Robyn	Elizabeth	Hardisty	
		
This	thesis	is	focused	on	the	development	and	utilisation	of	chemical	and	biological	tools	

to	probe	the	function	of	modified	bases	in	DNA	with	specific	exploration	of	the	less	well-

studied	T-modifications:	5-hmU,	5-fU	and	Base	J.		 	

	 LCMS/MS	 techniques	 are	 first	 utilised	 to	 enable	 the	 accurate	 global	

quantification	of	T-modifications	(5-hmU,	5-fU	and	Base	J)	in	both	trypanosomatids	and	

mammalian	DNA.		 	

	 A	 chemical	 affinity-enrichment	 sequencing	 method	 for	 the	 T-modifications	 is	

next	 described,	 which	 allows	 their	 chemoselective	 tagging	 over	 their	 C-modification	

counterparts.	 DNA	 fragments	 containing	 5-fU	 are	 selectively	 tagged	 and	 enriched	 via	

oxime,	 hydrazine	 or	 benzimidazole	 formation	 using	 a	 biotinylated	 probe,	 and	 DNA	

fragments	 containing	 5-hmU	 can	 be	 first	 chemically	 oxidised	 to	 5-fU	 using	 KRuO4.	

.Proof-of-principle	T-modification	enrichment	is	demonstrated	by	DNA	sequencing.		 	

	 In	 the	 following	 chapter,	 sequencing	methods	 are	 employed	 to	 investigate	 the	

role	 of	T-modifications	 in	both	 trypanosomatids	 and	mammalian	 samples.	 In	T.Brucei,	

Base	 J	 formation	 is	probed	by	artificial	 incorporation	of	5-hmU	and	subsequent	Base	 J	

chemical	sequencing.	Base	J	is	preferentially	formed	or	depleted	at	certain	genomic	loci;	

suggesting	that	Base	J	formation	is	sequence-specific.	This	may	imply	a	distinct	role	for	

the	5-hmU	sites	which	are	not	further	glucosylated.	Next,	5-hmU	enrichment	sequencing	

is	performed	in	SMUG1	knockdown	HEK293T	cells	to	determine	the	genomic	location	of	

5-hmU	in	mammals.	An	increase	in	5-hmU	loci	is	observed	upon	SMUG1	knockdown.	5-

hmU	 enriched	 regions	 are	 found	 to	 be	 T-rich	 and	 depleted	 in	 exons	 and	 promoters.	

Furthermore,	 5-hmU	 sites	 show	 poor	 overlap	with	 known	 TET-enzyme	 binding	 sites,	

indicating	 that	5-hmU	 is	 formed	via	 a	TET-independent	mechanism	 in	HEK293T	 cells.	

	 Next,	mass	spectrometry-based	proteomics	studies	are	utilised	to	determine	5-

fU	protein-binders	 in	mammals.	 Pulldown	of	 proteins	using	biotinylated	baits	 enables	

the	identification	of	proteins	which	are	enriched	or	suppressed	in	the	presence	of	the	5-

fU	modification	 compared	 to	 a	 non-modified	 control.	 Enriched	 proteins	 include	 those	

associated	with	DNA-damage,	consistent	with	 the	current	understanding	 that	5-fU	 is	a	

product	of	oxidative	damage	in	mammalian	DNA.		 	

	 Finally,	a	mechanistic	insight	into	the	effect	of	formylated	bases	on	nucleosomal	

structure	 is	 described.	 Schiff	 base	 formation	 between	 formylated	 nucleobases	 and	

histone	 protein	 lysine	 side-chains	 is	 demonstrated.	 This	 provides	 a	 molecular	

mechanism	for	the	association	of	5-fC	with	increased	nucleosomal	occupancy	in	vivo.	
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1.	Introduction	
1.1.	Structure	of	DNA	

DNA	is	a	remarkable	molecule	which	forms	the	basis	of	our	genetic	code;	it	is	composed	

of	 four	 nucleobases,	 adenine	 (A),	 guanine	 (G),	 cytosine	 (C),	 thymine	 (T),	 which	 are	

attached	 to	 a	 deoxyribose	 sugar	 and	 linked	 together	 via	 a	 phosphodiester	 backbone.	

Nucleobases	 form	 a	 specific	 recognition	 pattern,	 via	 hydrogen-bonding,	 in	 which	 G	

hybridises	 with	 C,	 and	 A	 hybridises	 with	 T	 (Figure	 1	 -	 A).	 This	 cognate	 base-pair	

recognition	 is	essential	 for	DNA	replication,	mRNA	synthesis	during	 transcription,	and	

translation	 for	 protein	 synthesis.1	 All	 our	 genetic	 information	 is	 stored	 in	 the	 linear	

sequence	 of	 these	 four	 DNA	 nucleobases,	 and	 is	 responsible	 for	 the	 passage	 of	

information	from	one	generation	to	the	next.	

	

	
Figure	1:	A)	Cognate	base-pairing	within	the	structure	of	DNA.	B)	The	asymmetric	double	helical	structure	
of	DNA.	The	figure	is	adapted	from	the	original	text	by	Watson	and	Crick	who	first	described	the	structure	of	
DNA.1	
	

DNA	 most	 commonly	 folds	 into	 a	 double	 helical	 structure,	 B-DNA,	 composed	 of	 two	

complementary	DNA	strands	that	are	asymmetric	and	run	in	opposite	directions	(Figure	

1	 -	 B).	H-bonding	 is	 responsible	 for	 holding	 the	 two	 strands	 together,	 and	 the	 overall	

structure	is	further	stabilised	by	Van	der	Waals	and	π-π	interactions	between	stacks	of	

aromatic	 nucleobases.	 The	 double	 helical	 structure	 enables	 large	 amounts	 of	

information	 to	 be	 stored	 in	 a	 compact	 volume,	 whilst	 genetic	 information	 is	 still	

accessible	 through	 its	major	and	minor	grooves.	Proteins	and	small	molecules	bind	 to	

distinct	sequences	in	these	grooves	due	to	differences	in	the	patterns	of	H-bond	donors	

or	 acceptors	 (Figure	 2).	 This	 is	 important	 for	 sequence-based	 activation	 of	 DNA	

function;	e.g.	the	recruitment	and	binding	of	transcription	factors	and	DNA	helicases	in	

the	major	groove.2	Furthermore,	polyamide	small	molecules	have	been	designed	to	bind	

in	the	minor	groove	in	a	sequence	specific	manner.3		

	

A B

major groove

minor groove
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In	higher	organisms,	DNA	 is	 condensed	with	histone	proteins	 to	 form	chromatin.	This	

further	stabilises	the	DNA	structure,	protects	genomic	integrity	and	compacts	the	DNA	

into	a	small	volume	for	storage.4	

	

	
Figure	2:	Cognate	base-pairs	and	H-bonding	donor	and	acceptor	patterns	in	the	major	and	minor	groove	of	
DNA.	This	is	essential	for	sequence-specific	recognition	of	proteins	and	small	molecules.		
	

1.2.	Epigenetics		

Nature	 has	 evolved	mechanisms	 to	 control	 the	 expression	 of	 genes	 via	 an	 additional	

layer	of	information,	based	on	the	same	primary	code.	The	term	“epigenetics”	was	first	

coined	 in	 1942	 and	 defined	 as	 “changes	 in	 phenotype	without	 changes	 in	 genotype”.5	

Epigenetics	 can	 explain	 the	 vast	 phenotypic	 changes	 that	 occur	 throughout	 an	

organism’s	 lifespan,	 as	well	 as	 the	 ability	 of	 tissue	 to	differentiate;	 e.g.	 heart	 and	 lung	

tissue	share	the	same	genetic	code,	despite	having	vastly	different	functions.		

	

1.2.1.	Histone	Modifications	

Certain	 modifications	 which	 occur	 on	 histone	 protein	 side-chains	 are	 established	

epigenetic	 marks.	 These	 include	 lysine	 acetylation;	 lysine	 (mono-,	 di-	 and	 tri-)	

methylation;	arginine	methylation	and	serine,	threonine	and	tyrosine	phosphorylation,	

among	others.6		Such	modifications	have	a	contributory	role	in	determining	whether	the	

DNA	 within	 chromatin	 is	 in	 an	 accessible	 (euchromatin)	 or	 non-accessible	 and	

repressed	 (heterochromatin)	 state.5	 Lysine	 acetylation,	 for	 example,	 is	 a	 marker	 for	

transcriptionally	 active	 genes.	 The	 resultant	 loss	 of	 positive	 charge	 associated	 with	

acetylated	 lysine	 results	 in	 weakened	 interactions	 between	 histone	 proteins	 and	 the	

negatively	charged	DNA	phosphate	backbone,	meaning	chromatin	is	no	longer	packed	as	

tightly	(Figure	3).	
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Figure	 3:	 Histone	 modifications,	 shown	 here	 the	 effect	 of	 lysine	 acetylation,	 can	 alter	 chromatin	
accessibility	and	gene	expression.	Figure	adapted	from	[7].	
	

DNA	base	modifications	exist	 in	addition	 to	histone	modifications8,9,	which	expand	the	

scope	of	the	genetic	alphabet	beyond	the	four	canonical	bases	A,	G,	C	and	T		(Figure	4).	

These	modifications	do	not	alter	the	base-pairing	pattern	of	the	DNA	primary	code,	but	

have	a	unique	chemical	moiety	that	protrudes	into	the	major	groove.	As	such,	DNA	base	

modifications	 have	 the	 propensity	 to	 alter	 the	 way	 in	 which	 proteins,	 including	

transcription	 factors,	 can	 bind	 or	 recognise	 DNA;	 these	 bases	 can	 modulate	 gene	

expression	and	are	epigenetic	as	a	result.	

	

1.2.2.	DNA	Modifications	

DNA	 base	 modifications	 occur	 in	 all	 forms	 of	 life,	 and	 the	 chemical	 scope	 of	 these	

modifications	 are	 extensive,	 ranging	 from	 methylation	 to	 the	 introduction	 of	 amino	

acids	or	sugar	substituents	(Figure	4).	DNA	modifications	are	particularly	prevalent	 in	

bacteria	and	bacteriophages;10	 in	 these	systems	modifications	are	used	as	a	protective	

mechanism	 from	 host-endonuclease	 digestion,	 and	 are	 usually	 incorporated	 into	 the	

nucleobase	 pool	 (Table	 1).	 In	 certain	 phages,	 hypermodified	 bases	 are	 generated	 by	

DNA	modifying	enzymes	in	a	post-replicative	manner,	e.g.	T-even	phages	further	modify	

5-hmC	 derived	 from	 the	 nucleobase	 pool	 to	 form	 α	 and	 β-D-Glucosyl-5-

hydroxymethylcytosine	(5-glchmC).	

	

Acetylated chromatin
Accessible, open and transcriptionally active

Deacetylated chromatin
Compact and transcriptionally repressed
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Figure	4:	Top)	Canonical	bases	with	sites	of	modification	labelled	in	blue.	Bottom)	Base	modifications	
known	to	occur	in	the	genomic	DNA	of	various	organisms.	Those	in	bold	are	those	reported	to	exist	in	
eukaryotic	DNA.	Modified	bases	can	be	detected	and	quantified	by	a	number	of	methods,	such	as	LCMS/MS	
(Section	1.5.1).	
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Base	 Phage	 Abundance		

(%	of	canonical	nucleoside)	

5-methylcytosine	(5-mC)	 Xaruhomonas	orzae	

Φ174	

100%	

~0.5%	

Uracil	(U)	 B	subtilis	PBS2	 100%	

5-hydroxymethyluracil	(5-hmU)	 SP8,	φe,	SPO1,	H1,	SP82G,	2C,	φ25	 100%	

2-aminoadenine		 S	elongazus	S-2L	 100%	

5-hydroxymethylcytosine	(5-hmC)		

+	glycosylated	derivatives	(5-glchmC)	

E.coli	T2,	T4,	T6	 100%	(5-hmC	+	5-glchmC)	

N6-carbamoylmethyladenine E.	Coli	phage	Mu	 15%	

7-methylguanine	(7-mG)	 Singella	sonnei	phage	DDV1	 1%	

α	-glutamylthymine	 B	subitilis	SP10	 15-20%	

α	-putrescinylthymine	 Pseudomonas	acidovorans	phage	

φW14	

50%	

N4-methylcytosine	(4-mC)	 Bacteria	 ~0.5-2%	

N6-methyladenine	(6-mA)	 Bacteria	

T2,	T4	

~0.3-3%	

~0.5-2%	

Table	1:	The	large	chemical	scope	and	abundance	of	modified	bases	in	bacteria	and	bacteriophage.10		

	

1.3.	Eukaryotic	DNA	Base	Modifications	

DNA	 base	modifications	 are	 also	 prevalent	 in	 eukaryotes,	 and	 a	 number	 of	 these	 are	

‘epigenetic’	 and	 implicated	 in	 gene	 regulation.9	Our	 knowledge	 of	 the	 eukaryotic	DNA	

alphabet	 is	rapidly	expanding,	and	the	development	of	chemical	and	biological	 tools	 is	

therefore	crucial	to	probe	and	understand	their	functional	role.		

	

1.3.1.	5-methylcytosine	

The	best	known	and	most	studied	eukaryotic	modification	is	5-methylcytosine	(5-mC);	

commonly	 referred	 to	 as	 the	 “fifth”	 base	 of	 DNA.	 5-mC	 is	 the	 most	 abundant	 DNA	

modification	in	mammalian	systems,	accounting	for	~1%	of	all	bases	in	humans.11		5-mC	

is	 formed	 enzymatically	 in	 a	 post-replicative	 manner	 via	 DNA	 methyltransferase	

(DNMT)	enzymes.	Their	mode	of	action	involves	a	key	cysteine	residue	which	attacks	at	

the	C6	position	of	cytosine.	Methylation	at	the	C5	position	of	the	base	then	follows,	with	

the	 co-factor	 S-adenosyl	 methionine	 (SAM)	 acting	 as	 a	 methyl	 donor,	 followed	 by	

rearomatisation	 of	 the	 base	 (Figure	 5).	 	 There	 are	 several	 classes	 of	 DNMT	 enzymes:	

DNMT1	 acts	 as	 a	 maintenance	 methylase,	 which	 restores	 the	 methylation	 marks	 on	

newly	replicated	DNA,	whilst	DNMT3a,	DNMT3b	and	DNMT3c	act	as	de	novo	methylases	

leading	to	the	methylation	of	new	sites.12,13,14	
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Figure	5:	Mechanism	of	C	methylation	via	the	DNMT	family	of	enzymes	
	

60-80%	of	 5-mC	 occurs	mainly	 in	 a	 cytosine-phosphate-guanosine	 (CpG)	 dinucleotide	

context,15	 since	 CpG	 sites	 are	 the	 preferred	 substrate	 of	 the	 DNMT	 enzymes.	 The	

palindromic	nature	of	these	sites	provides	a	mechanism	for	inheritance,	and	DNMT1	has	

been	shown	to	exhibit	a	preference	towards	hemimethylated	rather	than	unmethylated	

sites.16	 DNA	methylation	 is	 mainly	 associated	 with	 gene	 silencing	 and	 transcriptional	

repression,	 and	 is	 responsible	 for	 a	 number	 of	 biological	 processes	 such	 as	 X	

chromosome	 inactivation,	 genetic	 imprinting	 and	 cell-differentiation.17	 CpG	

dinucleotides	 depleted	 of	 5-mC	 marks	 strongly	 correlate	 with	 the	 gene	

promoters/transcriptional	 start-sites	 of	 active	 genes.	 These	 genes	 can	 be	 dynamically	

regulated,	 and	 certain	 tissue-specific	 CpG	 sites	 can	 become	 methylated	 and	 thus	

transcriptionally	blocked	during	differentiation	or	early	development.18	The	importance	

of	this	mark	for	normal	development	is	evident	from	the	abnormal	cytosine	methylation	

patterns	 that	 are	 associated	with	 disease	 states.	 Aberrant	methylation	 is	 observed	 in	

cancerous	 cells;	 genomes	 generally	 become	 globally	 hypomethylated	 (reduced	

methylation),	 whilst	 specific	 regions	 including	 tumour	 processor	 genes	 are	

hypermethylated	 (increased	 methylation),19,20	 leading	 to	 tumorgenesis.20	 DNMT1	

knockdown	and	the	associated	loss	of	methylation	is	lethal	in	mice	and	somatic	human	

cells21,22,	 and	 mutations	 of	 methyltransferases	 are	 associated	 with	 developmental	

disease.23		
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Figure	5:	The	hydrophobic	methyl	group	of	5-mC	affects	duplex	stability	and	protein	recognition.	
	

5-mC	 does	 not	 interfere	 with	 the	 base-pairing	 properties	 of	 C,	 yet	 the	 addition	 of	 a	

hydrophobic	methyl	group	in	the	DNA	major	groove	(Figure	5)	has	been	shown	to	affect	

DNA	recognition	and	double	helix	stability.24	The	presence	of	a	methyl	molecular	handle	

leads	to	recruitment	of	specific	5-mC	binding	proteins,	including	the	methyl	CpG	binding	

class	 of	 protein	 (MeCPs),	which	 further	 recruit	 chromatin	 remodellers	 and	 repressive	

complexes	to	methylated	DNA.25	As	a	result,	it	is	evident	that	the	methylation	mark	does	

not	work	 independently,	 and	 a	 large	 amount	 of	 epigenetic	 crosstalk	 between	 DNA	 C-

methylation	and	histone	modifications	exist.26	 In	mammals,	C-methylation	and	histone	

methylation	 are	 strongly	 correlated	 at	 certain	 sites	 (H3K9),	 while	 de-novo	 DNMT3-

mediated	methylation	is	linked	with	unmethylated	H3K4.		

	

The	study	of	5-mC	clearly	demonstrates	that	DNA	modifications	have	the	propensity	to	

alter	and	direct	gene	expression.	However,	within	the	last	decade,	our	knowledge	of	the	

eukaryotic	DNA	alphabet	has	expanded	even	further.		

	

1.3.2.	The	Base	Excision	Repair	(BER)	Pathway		

Modified	bases	can	be	written	or	erased	from	the	genome	by	DNA	modifying	enzymes.	

The	 absence	 or	 presence	 of	 5-mC	 can,	 for	 example,	 determine	 whether	 a	 gene	 is	

transcriptionally	 active	 or	 repressed	 respectively.	 During	 early	 mammalian	

development,	 substantial	 changes	 in	 DNA	 methylation,	 notably	 demethylation,	 are	

essential	for	the	differentiation	of	pluripotent	stem-cells	into	distinct	tissues.27,28	

	

Removal	of	 the	methylation	mark	or	modified	bases	 can	either	occur	passively,	 e.g.	 in	

the	 case	of	 5-mC,	when	newly	 replicated	 cells	 fail	 to	be	 remethylated	by	DNMT1,29	 or	

can	 be	 excised	 and	 replaced	 in	 a	 DNA	 replication	 independent	 manner	 via	 the	 base-

excision	repair	(BER)	pathway	(Figure	6).	In	BER,	DNA	glycosylases	first	recognise	and	

bind	a	specific	modified	base,	and	flip	it	out	from	the	double	helix.	 	Modified	bases	can	

then	 be	 excised	 via	 cleavage	 of	 the	 N-glycosidic	 bond	 to	 generate	 an	

Major Groove

Minor Groove
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apurinic/apyrimidinic	(AP)	site.	 	This	 in	turn	is	removed	by	an	AP	endonuclease/lyase	

which	creates	a	nick	in	the	DNA	backbone,	followed	by	either	short-patch	(replacement	

of	 a	 single-nucleotide)	 or	 long-patch	 (>	 2	 nucleotides)	 repair.	 In	 short-patch	 repair,	 a	

DNA	polymerase	inserts	the	canonical	base	at	the	single	excision	site	via	Watson-Crick	

base-pairing	and	a	DNA	ligase	is	recruited	to	seal	the	nick.	In	long-patch	repair,	the	DNA	

polymerase	continues	to	displace	DNA	downstream	of	the	excision	site	(2-13	bases);	a	

Flap	 endonuclease	 (FEN1)	 subsequently	 removes	 the	 overhang,	 and	 a	 DNA	 ligase	

subsequently	seals	the	nick	between	the	newly-synthesised	and	initial	DNA	strand.30,31	

	

In	plants,	a	specific	5-mC	glycosylase	can	excise	the	methylation	mark	directly,	however	

no	such	ortholog	exists	in	mammals.32	Further	investigation	into	the	dynamic	removal	of	

5-mC	 in	 mammals	 led	 to	 the	 discovery	 of	 other	 oxidised	 C-modifications	 in	 the	

mammalian	genome.		

	

	

Figure	6:	Short	and	long-patch	base	excision	repair	pathway	of	modified	or	damaged	bases,	leading	to	their	
replacement	with	a	canonical	nucleobase.	
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1.3.3.	Oxidised	Cytosine	Derivatives	and	their	Role	in	Active	Demethylation	

The	oxidised	C	derivative	5-hydroxymethylcytosine	(5-hmC)	was	first	reported	to	occur	

in	mammals	in	197233,	but	renewed	interest	in	this	mark	arose	due	to	the	discovery	of	

the	ten-eleven-translocation	(TET)	family	of	enzymes	1,	2	and	3.	The	TET	enzymes	are	

Fe(II)/2-oxoglutarate-dependent	 dioxygenases	which	 utilise	molecular	 oxygen	 for	 the	

sequential	oxidation	of	5-mC.34	TET1-dependent	oxidation	of	5-mC	to	form	5-hmC	was	

first	 reported	 by	 Talihiani	 et	al	 in	 2009,35	 and	 further	 investigation	 revealed	 that	 the	

TET	 enzymes	 can	 successively	 oxidise	 5-hmC	 to	 both	 5-formylcytosine	 (5-fC)	 and	 5-

carboxycytosine	(5-caC).36	Within	somatic	cells,	 the	5-hmC	mark	occurs	approximately	

once	every	103	bases37,38,	and	the	levels	of	5-fC	and	5-caC	are	three	and	four	fold	lower	

respectively.39,40	 Whilst	 5-hmC	 is	 stable	 to	 excision	 by	 mammalian	 DNA	 glycosylases,	

both	5-fC	and	5-caC	can	be	excised	by	thymine	DNA	glycosylase	(TDG).41,42	This	enables	

5-mC	active	demethylation	after	iterative	TET	oxidation	and	subsequent	BER	(Figure	7).	

TDG	 is	 found	 to	 be	 essential	 for	 epigenetic	 regulation,	 and	 TDG	 knockout	 is	

embryonically	lethal	in	mice	due	to	the	altered	regulation	of	developmental	genes.43	

	

	
Figure	7:	Demethylation	of	5-mC	can	occur	via	iterative	oxidation	of	5-mC	to	5-fC	and	5-caC	followed	by	
TDG	excision	via	BER.44	
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1.3.4.	Oxidised	Cytosine	Derivatives	as	Independent	Regulatory	Marks	

In	 addition	 to	 being	 intermediates	 of	 the	 active	 demethylation	 pathway,	 a	 wealth	 of	

evidence	 suggests	 that	 the	 oxidised	 C	 derivatives	 are	 epigenetic	 marks	 in	 their	 own	

right.	Rather	than	being	transient	intermediates,	5-hmC	and	5-fC	are	found	to	be	stable	

marks	in	mouse	embryonic	stem	cell	(mESC)	DNA,	shown	via	isotopic	labelling	studies	

and	 subsequent	 tandem	 liquid	 chromatography	 mass	 spectrometry	 (LC-MS/MS)	

analysis	 (Introduction	 –	1.5.1).45,46	Genomic	maps	of	 5-hmC	 reveal	 the	mark	 is	mainly	

enriched	 in	 poised	 enhancers	 of	 developmental	 genes.47	 Furthermore,	 LC-MS/MS	

analysis	of	5-hmC	finds	this	mark,	unlike	5-mC,	to	be	tissue	specific	and	age-dependent;	

for	 example,	 higher	 5-hmC	 levels	 occur	 in	 the	 central	 nervous	 system38	 compared	 to	

other	murine	 tissues.	 	Low	 levels	of	5-hmC	are	also	associated	with	cancer,48	however	

this	may	be	 explained	by	 the	 fact	TET-mediated	5-hmC	 formation	 fails	 to	 be	properly	

maintained	in	fast-proliferating	tissue.46		

	

5-fC,	 surprisingly,	 is	 reported	 to	 recruit	more	 unique	 protein	 readers	 compared	 to	 all	

the	other	C-modifications,	including	a	number	of	transcription	factors	(e.g.	FOXK1)	and	

chromatin	remodelling	proteins	(e.g.	EHMT1).49,50	5-fC	and	5-caC	genomic	maps	showed	

these	marks	to	be	enriched	in	gene	bodies,	enhancers	and	promoters;42,51,52	while	recent	

profiling	 in	 different	 murine	 tissues	 revealed	 a	 tissue-specific	 role	 for	 5-fC,	 where	

unique	 5-fC	 signals	 were	 present	 in	 the	 active	 enhancers	 of	 developmental	 genes.53	

Furthermore,	He	and	co-workers	suggest	 the	oxidised	cytosine	modifications,	5-fC	and	

5-caC,	may	 lead	 to	 increased	RNA	 Polymerase	 II	 (Pol	 II)	 stalling	 during	 transcription.	

Specific	 H-bonding	 interactions	 between	 5-caC	 and	 the	 Pol	 II	 recognition	 loop	 were	

identified	via	 crystallography,	 in	 support	of	 this	mechanism,54	 	 indicating	 these	marks	

can	affect	gene	expression.	As	such,	 the	oxidised	cytosine	derivatives	appear	to	have	a	

distinct	 epigenetic	 function,	 aside	 from	 solely	 being	 intermediate	 products	 of	 active	

demethylation.	
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1.3.5.	8-oxoguanine	-	Oxidative	Stress	and	Gene	Regulation		

There	are	a	number	of	alternative	DNA	base	modifications	aside	from	the	well-studied	C	

marks	that	also	have	a	unique	role	in	gene	regulation.		8-oxoguanine	(8-oxoG)	arises	due	

to	radical	oxygen	species	(ROS)	damage	to	G	(Figure	4),	and	is	both	mutagenic	(due	to	

its	 propensity	 to	 base-pair	 with	 A)	 and	 a	 marker	 of	 oxidative	 damage.55	 8-oxoG	 is	

excised	 from	 the	 genome	 by	 the	 8-oxoguanine	 glycosylase	 1	 (OGG1)	 and	 BER,	 where	

steady-state	 levels	estimate	 its	occurrence	to	be	one	8-oxoG	per	million	nucleosides	 in	

mammalian	tissue.40	8-oxoG	is	mainly	found	to	occur	in	gene	deserts.56		

	

Several	studies	have	suggested	a	link	between	the	repair	of	this	oxidative-damage	mark	

and	 altered	 gene	 expression.	 Promoters	 containing	 8-oxoG	 were	 found	 to	 markedly	

reduce	 the	 transcription	 of	 reporter	 genes	 as	 a	 result	 of	 8-oxoG	 excision.57	 However,	

other	studies	suggest	that	8-oxoG	excision	upregulates	gene	expression	at	certain	genes;	

directed	 DNA-oxidative	 damage,	 resulting	 from	 H3K9	 demethylation,	 was	 shown	 to	

recruit	 BER	 enzymes	 leading	 to	 facilitated	 transcription.58	 Furthermore,	 Burrows	 and	

co-workers	 suggest	 that	 the	 excision	 of	 8-oxoG	 leads	 to	 gene	 activation	 within	

promoters	 capable	 of	 forming	 G-quadruplex	 structures.59	 In	 addition,	 global	

transcriptome	analysis	of	OGG1	knockout	mice	indicated	a	link	between	OGG1	BER	and	

cellular	 signalling.60	Thus,	 these	 reports	 are	 the	 first	 to	 suggest	 that	oxidative	damage	

marks	may	also	affect	gene	expression,	and	are	potentially	‘epigenetic’	in	nature.	
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1.4.	T-modifications	(5-hmU,	5-fU	and	Base	J)	

1.4.1.	Mammalian	T-modifications	

Mammalian	 tissues	 also	 contain	 the	 oxidised	 T	 analogues	 5-hmU	 and	 5-fU	 (Figure	 4),	

however	the	functional	role	of	these	bases	is	less	well-explored.	These	modifications	are	

demonstrated	to	occur	at	a	level	of	0.5-5	per	106	nucleosides40,	where	5-hmU	levels	are	

highest	 in	mESCs	and	sperm.40,61	Both	5-hmU	and	5-fU	modifications	have	traditionally	

been	considered	to	be	oxidative	damage	products	of	T,	caused	by	ROS	radical	oxidation	

of	the	5’-methyl	group.55	These	marks	can	be	excised	from	the	mammalian	genome	via	

the	BER	pathway.	In	their	cognate	base-pair	with	A,	both	5-hmU	and	5-fU	are	excised	by	

Single-stranded	monofunctional	uracil	glycosylase	1	(SMUG1),62	whilst	a	whole	host	of	

DNA	 glycosylases	 are	 found	 to	 repair	 these	 T-modifications	 when	 mispaired	 with	 G,	

including	SMUG1,	TDG	and	Methyl-CpG-binding	domain	4	(MBD4).63	hmU:G	excision	 is	

much	more	efficient	-	even	when	only	comparing	the	relative	rates	of	SMUG1,	it	is	found	

that	hmU:G	is	excised	60-fold	faster	than	hmU:A.64	There	are	also	single	in	vitro	reports	

that	5-fU:A	can	be	excised	by	TDG	and	NTH1.65,66		

	

1.4.1.i	5-hmU	-	Association	with	Disease		

5-hmU	 is	 associated	 with	 disease	 and	 aging;	 levels	 of	 5-hmU	 autoantibodies	 were	

increased	 in	 individuals	 that	 suffered	 from	cancer,	 and	 remarkably	 in	 those	 that	were	

diagnosed	with	breast,	colon	and	rectal	cancers	0.5-6	years	after	sampling.67	Djuric	et	al.	

also	 found	 increased	5-hmU	 in	 the	blood	of	 individuals	suffering	 from	breast	cancer,68	

whilst	 further	 work	 highlighted	 a	 correlation	 between	 5-hmU	 and	 both	 cancer	

invasiveness	 and	 tissue	 age.69	 Such	 studies	 suggest	 5-hmU	 could	 be	 a	 potential	

biomarker	for	disease,	potentially	due	to	BER	dysfunction.		

	

1.4.1.ii	5-hmU	-	Beyond	a	Random	Oxidative	Damage	Mark		

There	 are	now	 suggestions	 that	5-hmU	may	have	 a	unique	 regulatory	 role	 aside	 from	

being	 the	 result	 of	 random	 oxidative	 damage	 in	 mammalian	 systems.	 It	 was	 initially	

hypothesised	that	5-hmU	may	derive	from	enzymatic	5-hmC	deamination	in	mammalian	

DNA,	via	the	activation	induced	cytidine	deaminases	(AID)	and	Apolipoprotein	B	mRNA	

editing	enzyme	(APOBEC)	family	of	enzymes.	This	is	proposed	to	be	an	alternative	TET-

dependent	 active	 demethylation	 pathway,	 in	which	 unmethylated	 C	 can	 be	 reinstated	

after	efficient	excision	of	the	hmU:G	mispair	by	BER	(Figure	8	-	A).	 	AID	is	required	for	

the	 demethylation	 of	 silenced	 promoters	 in	 heterokaryons70	 and	 for	 paternal	

demethylation	 after	 fertilisation	 in	mice.71	 In	 addition,	 Cortellini	 et	al.	 found	 that	 AID	

forms	a	complex	with	TDG	in	HEK239T	cells,	supporting	this	mechanism	further.72	Since	
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AID/APOBEC	deaminases	are	overexpressed	in	a	number	of	cancer	types73,	enhanced	5-

hmU	 from	 a	 deamination	mechanism	 could	 be	 an	 alternative	 explanation	 for	 the	 low	

levels	 of	 5-hmC	 found	 in	 cancer	 tissue.73	 However,	 the	 5-hmC	 deamination	 proposal	

remains	unsupported	since	cytidine	deaminases	are	found	to	show	no	activity	towards	

5-hmC	 in	 vitro;	 deamination	 activity	 of	 the	 AID/APOBEC	 enzymes	 was	 found	 to	 be	

inversely	proportional	 to	 the	 size	 of	 the	 substituent	 at	 the	5’	 position	 (e.g.	 C	>	mC	>>	

hmC).74	Thus,	AID-related	demethylation	is	instead	likely	to	occur	via	C	à	U,	or	mC	à	T	

deamination,	 followed	by	BER	excision	with	TDG.71	Nevertheless,	Guo	et	al.	 found	 that	

AID	 or	 APOBEC	 overexpression	 led	 to	 much	 increased	 demethylation	 of	 5-hmC-

transfected	DNA,	compared	to	5-mC-transfected	DNA	in	HEK293T	cells.75	When	AID	was	

overexpressed	in	the	adult	dentate	gyrus	(part	of	the	hippocampus	in	the	brain),	5-hmC	

levels	 were	 reduced	 by	 59%.	 Further	 still,	 shRNA	 knockdown	 of	 APOBEC3	 in	 these	

systems	 also	 led	 to	 reduced	 5-hmC	 demethylation	 in	 neuronal	 promoters,	 suggesting	

such	a	5-hmC	deamination	mechanism	exists.		

	

	

	
	

Figure	8:	A)	Proposed	alternative	active	demethylation	pathway	where	5-hmC	is	enzymatically	deaminated	
to	 form	 a	 5-hmU:G	 mispair,	 which	 is	 removed	 by	 BER.	 B)	 Isotopic	 labelling	 and	 LC-MS/MS	 analysis	
determined	the	origin	of	5-hmU	in	mESCs.	C)	The	TET	family	of	enzymes	are	shown	to	oxidise	T	to	5-hmU,	
5-fU	and	5-caU.	
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To	 definitively	 determine	 the	 origin	 of	 5-hmU	 in	 mammalian	 cells,	 Carrell	 and	 co-

workers	utilised	isotopic	labelling	and	LC-MS/MS	measurements	to	trace	the	formation	

of	5-hmU.40	This	was	achieved	by	growing	mESCs	in	culture	medium	supplemented	with	
15N2-13C-thymidine	 to	 label	 T,	 or	 13CD3-methionine	 to	 label	 5-mC	 and	 its	 oxidised	

derivatives	(Figure	8	–	B).	In	steady-state	mESCs,	all	5-hmU	was	found	to	derive	from	T,	

questioning	 the	 significance	 of	 a	 5-mC-oxidation-deamination	 based	 mechanism.	

However,	 in	TDG	knockdown	mESCs,	~7%	of	 5-hmU	modifications	 arose	 from	5-hmC	

deamination.	 This	 suggests	 that	 although	 5-hmC	 deamination	 can	 occur,	 it	 is	 coupled	

with	 rapid	 and	 efficient	 excision	 in	 the	 steady-state.	 Furthermore,	 the	 5-hmC	

deamination	mechanism	may	be	more	prominent	in	certain	tissues,	such	as	in	the	brain.		

	

Two	 independent	 groups	 have	 now	 suggested	 that	 5-hmU	 is	 generated	 enzymatically	

from	 T,	 via	 the	 TET	 family	 of	 enzymes.40,76	 Carell	 and	 co-workers	 demonstrated	 the	

ability	 of	 the	 recombinant	 mTET1	 enzyme	 to	 oxidise	 T	 to	 form	 5-hmU	 in	 vitro.	

Furthermore,	 the	 levels	of	5-hmU	in	mESCs	are	 found	to	vary	with	TET	expression:	5-

hmU	is	depleted	by	~3-fold	as	a	result	of	TET1	and	TET2	knockdown	in	mESCs;	whilst	

ectopic	overexpression	of	the	catalytic	domain	of	TET1	in	HEK293T	cells	led	to	a	65-fold	

increase	 in	both	5-hmU	and	5-hmC	 respectively.	By	 assessing	 the	dynamic	 changes	 in	

response	 to	 mESC	 differentiation,	 changes	 in	 5-hmU	 levels	 mostly	 resembled	 those	

observed	 for	 5-hmC,	 peaking	 8-16	 hours	 after	 differentiation.40	 Pais	 et	 al	 also	

demonstrated	in	vitro	T	oxidation	with	Naegleria	TET	led	to	the	formation	of	5-hmU	and	

other	oxidised	derivatives,	including	5-fU	(Figure	8	-	B).76			

	

5-hmU-protein	interactions	have	also	been	assessed	to	probe	the	function	of	this	mark.40	

5-hmU	 binding	 proteins	 included	 1)	 regulatory	 proteins	 Uhrf2	 and	 HIVEP3,	 2)	

chromatin	 modellers	 Chd1	 and	 Chd9,	 and	 3)	 DNA	 methyltransferases	 DNMT3a	 and	

DNMT3b.	 This	 suggests	 a	 regulatory	 role	 for	 5-hmU	 in	 the	 mammalian	 genome.	

However,	thus	far,	no	methods	have	been	developed	to	determine	the	genomic	location	

of	5-hmU	in	mammalian	DNA,	which	will	be	crucial	for	further	insight	into	its	biological	

function.		
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1.4.1.iii	5-fU	in	Mammalian	DNA	

5-fU	 is	 also	 present	 in	 mammalian	 DNA,	 however	 any	 potential	 function	 beyond	 a	

marker	 of	 oxidative	 damage	 has	 not	 been	 explored.	 Isotopic	 labelling	 studies	 to	

determine	 the	origin	of	5-fU	 in	mESCs	 revealed	 the	majority	of	5-fU	 to	derive	 from	T,	

although	~3%	of	all	5-fU	arose	from	deamination	both	in	wild-type	and	TDG	knockdown	

cells.40	 LC-MS/MS	 analysis	 during	mESC	 differentiation	 revealed	 that	 changes	 in	 5-fU	

levels	 were	 more	 likely	 to	 cluster	 with	 the	 oxidative	 damage	 marker	 8-oxoG.	

Furthermore,	 5-fU	 levels	 did	 not	 significantly	 vary	 with	 TET	 expression	 in	 mESCs,40	

although	other	enzymes	in	the	TET	family	(Naegleria)	were	found	to	have	the	capability	

to	oxidise	5-hmU	further	to	5-fU	and	5-caU	(Figure	8	-	C).76		

	

The	occurrence	of	5-fU	in	DNA	is	slightly	mutagenic,	likely	due	to	its	higher	propensity	

to	 mispair	 with	 G	 during	 replication.77,78	 The	 presence	 of	 the	 electron	 withdrawing	

formyl	group	increases	the	acidity	of	the	NH	proton	(pKa	=	8.12)	compared	to	thymine	

(pKa	 =	 9.69),	 facilitating	 formation	 of	 the	 enol	 tautomer,	 especially	 upon	 ionisation	

(Figure	9).	As	such,	the	presence	of	5-fU	has	the	propensity	to	cause	TàC	transitions	in	

the	cell,	where	this	potential	source	of	mutation	(if	5-fU	fails	to	be	repaired	efficiently)	

may	be	 implicated	 in	 the	onset	of	disease.	Whilst	 in	vitro	 studies	demonstrate	 that	 the	

presence	of	5-fU	in	DNA	can	impede	transcription	factor	binding	(shown	both	with	AP-1	

and	NFκB)79,80	a	global	proteomics	study	to	determine	5-fU	protein-binders	in	mammals	

has	yet	to	be	reported.	Similarly	to	5-hmU,	a	method	to	generate	a	genome-wide	map	of	

5-fU	is	also	yet	to	be	developed.	

	

	
Figure	9:	A)	5-formyluracil	is	more	likely	to	form	the	enol	tautomer.	B)	fU:G	mispair	with	the	enol	tautomer	
of	5-fU	
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1.4.2.	SMUG1	

SMUG1	is	the	dominant	DNA	glycosylase	responsible	for	both	5-hmU	and	5-fU	excision,	

and	 is	 the	 only	 glycosylase	 that	 is	 consistently	 reported	 to	 excise	 these	 bases	 in	 their	

natural	 base-pair	 context.62,63	 In	 addition	 to	 its	 role	 repairing	 oxidized	 T	 derivatives,	

SMUG1	 is	 also	 a	 significant	 back-up	 enzyme	 for	 excising	 genomic	 uracil	 (U)81,	 which	

occurs	 due	 to	 misincorporation	 of	 dUTP,	 or	 chemical	 or	 enzymatic	 deamination	 of	

cytosine	in	DNA.82	SMUG1	is	only	present	in	higher	eukaryotes,	including	humans,	and	is	

found	 to	 be	 absent	 in	 lower	 organisms	 including	 yeast	 and	E.coli.	 Since	 a	 correlation	

exists	 between	 organisms	 that	 contain	 5-mC	 and	 those	 that	 express	 SMUG1,	 it	 was	

initially	hypothesized	 that	 the	enzyme	may	be	 important	 in	 the	processing	of	cytosine	

methylation.83		

	

In	 contrast	 to	TDG	knockout	mice	which	are	 found	 to	be	embryonically	 lethal,	 SMUG1	

knockout	mice	are	viable	for	>1	year	of	age.81	In	these	mice,	all	notable	5-hmU	excision	

capacity	was	lost,	confirming	that	SMUG1	is	the	sole	mammalian	glycosylase	for	removal	

of	this	mark.	Whilst	the	feeding	of	5-hmU	mononucleoside	is	found	to	be	toxic	to	human	

cell-lines	and	mice81,84,	this	has	been	attributed	to	excessive	SMUG1	repair	and	cells	fed	

with	5-hmU	remain	viable	when	SMUG1	is	knocked	down.85	

	

SMUG1	deficiency	 is	 found	to	be	 linked	with	breast	cancer	 invasiveness,86	and	a	single	

nucleotide	 polymorophism	 (SNP)	 in	 the	 SMUG1	 gene	 is	 associated	 with	 the	 most	

significant	 increased	 risk	 (1.42	 fold)	 in	 bladder	 cancer	 compared	 to	 all	 other	 BER	

enzymes.87	 Levels	 of	 SMUG1	 are	 also	 reduced	 in	 Werner’s	 syndrome	 cells,	 a	 disease	

associated	 with	 accelerated	 aging.88	 Furthermore,	 SMUG1	 knockdown	 in	 mouse	

embryonic	 fibroblasts	 (MEF)	 show	 a	 mutator	 phenotype,	 with	 increased	 mutation	

occurrence	 (~	2.4	 fold)	 compared	 to	wild-type	 cells.89	Analysis	 revealed	 that	>90%	of	

mutational	 sites	 occurred	 at	 non-CpG	 sequences.	 An	 enhanced	 rate	 of	 mutations	 can	

potentially	be	explained	by	a	corresponding	elevation	of	mutagenic	5-fU,	or	the	inability	

to	efficiently	process	U:G,	hmU:G	or	fU:G	mispairs,	leading	to	CàT	transitions.	

	

These	studies	imply	that	an	inability	to	excise	the	T-modifications	via	the	BER	pathway	

may	have	 implications	 in	disease.	Thus	the	specific	study	of	SMUG1	may	also	 infer	the	

function,	role	or	consequence	of	oxidized	T-modifications	in	DNA.	
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1.4.3.	T-modifications	in	Trypanosomatids	and	Base	J	

The	 T-modifications	 are	 also	 prominently	 observed	 in	 the	 genomes	 of	

trypanosomatids.90	Trypanosomatids	are	a	class	of	eukaryotic	flagellated	protists	which	

are	 mainly	 parasitic,	 and	 are	 responsible	 for	 a	 number	 of	 tropical	 diseases	 including	

African	 sleeping	 sickness,	 Chagas	 disease	 and	 Leishmaniasis.	 Species	 include	

Trypanosoma	 and	Leishmania,	which	have	multiple	 life-forms	depending	on	 their	host.	

Both	 their	 life-cycles	 include	 a	 proliferative	 procyclic	 form	 (PCF	 -	 insect	 host)	 and	 a	

proliferative	 bloodstream	 form	 (BSF	 -	 vertebrate/mammalian	 host)	 (Figure	 10	 -	 A),	

separated	 by	 non-proliferative	 life-stages	 where	 trypanosomatids	 undergo	

differentiation.	 	 Transcription	 in	 trypanosomes	 varies	 from	 mammalian	 systems	

(polycistronic	vs	monocistronic),	since	transcribed	mRNA	codes	for	several	genes	in	one	

cluster.91	(Figure	10	-	B)	

	

Hypermodified	 β-glucosylated	 hydroxymethyluracil,	 named	 Base	 J,	 occurs	 in	

trypanosomatids	alongside	5-hmU	(Figure	10	–	C).	T-modifications	are	more	abundant	

than	those	in	mammals,	and	occur	at	a	level	of	0.5%	and	0.04%	of	all	T	nucleosides	for	

Base	J	and	5-hmU	respectively.90	In	these	systems,	T	is	enzymatically	oxidized	to	5-hmU	

by	 the	 sequence-specific	 J-binding	 proteins	 (JBP)	 1	 and	 2,	 which	 are	 Fe(II)	 and	 2-

oxoglutarate-dependent	 dioxygenases	 homologous	 to	 the	 TET	 enzymes	 found	 in	

mammals92,93	 (Figure	 10-	 C).	 Whilst	 JBP1	 is	 mainly	 involved	 in	 T-modification	

maintenance	and	binds	to	Base	J	containing	DNA	directly,	 JBP2	is	considered	to	be	the	

major	 de-novo	 regulator	 of	 5-hmU,	 and	 binds	 to	 chromatin	 in	 a	 Base	 J-independent	

manner.	No	identified	5-hmU	glycosylase	(e.g.	SMUG1	ortholog)	exists	in	trypanosomes,	

and	 5-hmU	 is	 instead	 enzymatically	 glucosylated	 by	 J-glucosyltransferase	 (J-GT)94	 to	

form	 Base	 J,	 reported	 to	 occur	 in	 a	 non-sequence	 specific	manner.95	 Base	 J	 is	 heavily	

implicated	in	gene	regulation	and	transcriptional	regulation,	and	is	enriched	at	sites	of	

Pol	 II	 initiation	 and	 termination.	 In	 L.	 major,	 98%	 of	 Base	 J	 occurs	 in	 telomeric	 or	

repetitive	 elements.	 This	 number	 falls	 to	~75%	 in	T.	brucei,	 whilst	 Base	 J	 is	 found	 to	

mainly	occur	outside	of	 telomeric	 regions	 in	other	 trypanosomes	and	kinetoplastids.96	

Knockdown	of	JBP	enzymes	and	subsequent	depletion	of	Base	J	in	L.	major	is	lethal;	in	T.	

brucei,	 this	 leads	 to	 increased	 transcriptional	 read-through	 or	 transcriptional	 defects	

and	 altered	 expression	 of	 downstream	 genes.97,98,99	 In	 T.	 brucei,	 JBP	 enzymes	 are	

developmentally	 regulated,	 and	 found	 to	 be	 downregulated	 in	 PCF	 trypanosomes,100	

leading	to	the	absence	of	detectable	Base	J	in	this	life-form.101	

	



	 18	

	
Figure	 10:	 A)	 A	 life-cycle	 of	 a	 trypanosomatid	 passes	 through	 a	 BSF	 and	 PCF	 depending	 on	 the	 host	
species102	 B)	 Schematic	 of	 polycistronic	 gene	 regulation	 where	 several	 genes	 are	 transcribed	 into	 one	
mRNA.103	C)	Biosynthesis	of	T-modifications	in	trypanosomatids.		
	

Base	J	loci	are	also	found	to	be	associated	with	modified	histone	H3	variants
	
in	certain	

trypanosomes,104	 which	 gives	 further	 evidence	 to	 the	 role	 of	 Base	 J	 as	 a	 regulator	 of	

transcription,	and	provides	evidence	of	epigenetic	crosstalk	between	DNA	and	histones	

in	chromatin.		

	

There	have	been	many	studies	 into	 the	role	of	Base	 J,	and	 its	overall	 functional	role	 is	

still	 under	 some	 scrutiny.	 	 However,	 investigations	 into	 the	 5-hmU	 intermediate	 have	

been	limited.	J-GT	knockdown	and	JBP	overexpression	is	shown	to	cause	an	associated	

decrease	 in	5-hmU	levels,	and	an	 increase	 in	detectable	5-fU;	this	suggests	that	5-hmU	

may	be	dynamically	regulated	in	trypanosomes94,	and	a	possible	distinct	role	for	5-hmU	

requires	further	exploration.	Furthermore,	a	greater	understanding	of	the	dynamics	and	

regulatory	roles	of	T-modifications	 in	these	systems	may	highlight	potential	druggable	

targets,	 specific	 for	 trypansomatids	 (e.g.	 JBP1	 and	 J-GT	 enzymes	 are	 not	 expressed	 in	

mammals)	for	the	novel	treatment	of	parasitic	diseases.	
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1.5.	Methods	to	Determine	the	Function	of	Modified	Bases	in	DNA	

The	role	and	presence	of	T-modifications	is	less	explored	and	understood	compared	to	

the	analogous	C-modifications.	In	mammals,	preliminary	studies	suggest	5-hmU	may	be	

formed	enzymatically,	and	have	a	role	in	gene	regulation.	Since	5-hmU	and	5-fU	are	also	

products	of	ROS,	they	may	also	have	a	similar	biological	role	to	8-oxoG.	Thus,	the	origin	

and	 genomic	 location	 of	 these	 marks	 should	 be	 determined.	 Furthermore,	 the	 T-

modifications	 are	 heavily	 implicated	 in	 the	 gene	 regulation	 of	 trypanosomatids.	

Therefore	a	unique	role	for	5-hmU,	aside	from	being	an	intermediate	in	Base	J	synthesis,	

requires	investigation.		

	

To	 further	 understand	 the	 role	 of	 DNA	 modifications	 in	 biology,	 the	 development	 of	

chemical	and	biological	tools	is	essential.	Several	techniques	were	explored	throughout	

this	 PhD	 thesis:	 1)	 the	 global	 quantification	 of	 modified	 bases	 in	 DNA;	 2)	 DNA	

sequencing	of	modified	bases	to	determine	their	genomic	loci;	3)	the	study	of	modified-

base-protein	interactions	using	proteomics;	and	4)	the	use	of	chemical	biology	to	probe	

the	effect	of	DNA	modifications	on	nucleosomal	 structure.	These	methods	will	now	be	

reviewed	in	some	detail,	with	regards	to	how	they	have	been	utilised	previously	in	the	

rapidly	 expanding	 modified	 bases	 field.	 These	 strategies	 were	 exploited	 to	 further	

explore	the	role	of	modified	bases	in	DNA,	with	a	specific	focus	on	the	development	and	

utilisation	of	methods	to	probe	T-modification	function.	

	

1.5.1.	Detection	and	Global	Quantification	Methods	

Detection	 and	 subsequent	 global	 quantitation	of	modified	bases	 is	 a	 powerful	 tool	 for	

the	 discovery	 and	 elucidation	 of	 modified	 bases	 in	 organisms.	 	 Such	methods	 can	 be	

used	 to	assess	 the	 level	 and	dynamics	of	modifications	 in	different	biological	 systems:	

e.g.	 in	 a	 variety	 of	 organisms,	 tissues,	 cell-types	 or	 phenotypes.37,105	 Quantification	

methods,	 particularly	 those	 for	 low	 abundance	modifications,	 require	 high	 resolution	

and	sensitivity	due	to	the	high	background	signal	caused	by	the	canonical	bases.		

	

Novel	 modified	 bases	 have,	 in	 the	 past,	 been	 detected	 and	 quantified	 via	 thin	 layer	

chromatography	 (TLC).	 This	method	 enables	 separation	 of	 constituent	 DNA	 bases	 via	

their	unique	polar	properties	 in	two	dimensions,106	where	sensitivity	can	be	 improved	

via	the	use	of	radioactively	labelled	32P-DNA.	TLC	was	used	for	the	discovery	of	5-hmC	in	

mammals107	 and	 Base	 J	 in	 trypanosomes.108	Whilst	 this	 method	 has	 been	 valuable	 in	

discovery,	it	requires	the	laborious	and	sometimes	impractical	use	of	radioisotopes,	and	

is	limited	in	sensitivity.	Furthermore,	modified	nucleobases	may	co-elute	under	certain	
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conditions,	 highlighting	 potential	 issues	 with	 specificity.109	 Alternative	 quantitation	

methods	 include:	 enzyme-linked	 immunosorbant	 assays	 (ELISA)	 or	 ‘dot-blot’	

techniques,	used	to	quantify	the	levels	of	a	modified	base	by	using	specific	antibodies,110	

and	Forster-resonance	energy	transfer	(FRET)-based	assays	which	quantifies	modified	

bases	 that	 have	 been	 fluorescently	 tagged.111	 These	 methods,	 although	 useful,	 have	

typically	higher	detection	limits	and	also	have	issues	with	specificity;112	e.g.	fluorescent	

tagging	of	modified	bases	requires	a	strictly	chemoselective	method.		

	

The	 gold-standard	 for	 modified	 base	 quantitation	 uses	 LC-MS/MS	 techniques,113	

discussed	 further	 in	 Chapter	 2.	 The	 advantage	 of	 LC-MS/MS	 is	 its	 superior	

discrimination	between	different	modified	bases	which	are	simultaneously	resolved	via	

both	chromatography	and	mass.	This	method	is	extremely	sensitive,	can	detect	down	to	

femtomolar	 quantities,	 and	 has	 been	 used	 for	 the	 detection	 and	 quantification	 of	 low	

abundance	modifications	such	as	5-caC	and	5-hmU	in	mammals.40	LC-MS/MS	is	crucial	

for	probing	 the	dynamics	of	modifications	 in	biological	 systems;	 thus	methods	will	 be	

developed	 to	 enable	 accurate	 LC-MS/MS	measurements	 of	 T-modifications,	 and	 other	

low	abundance	modifications,	in	this	PhD.		

	

1.5.2.	Sequencing	of	modified	bases	

1.5.2.i.	Next-Generation	DNA	Sequencing	Technology	

Next-generation	 sequencing	 (NGS),	 e.g.	 Solexa/Illumina,	 has	 enabled	 scientists	 to	

routinely	 decode	 the	 genome	 of	 any	 organism	 in	 a	 rapid	 and	 inexpensive	manner.114	

Using	 a	 sequencing	 by	 synthesis	 approach,	 the	DNA	 sequence	 is	 decoded	 stepwise	 by	

complementary	 reversible-terminator	 fluorescent	 deoxyribonucleoside	 triphosphates	

(dNTPs).	These	dNTPs,	labelled	with	a	specific	fluorophore	to	distinguish	each	base,	are	

inserted	opposite	the	template	strand	via	Watson-Crick	base	pairing.	Protecting	groups,	

present	 on	 the	 3’-OH	 group	 of	 each	 nucleotide,	 temporarily	 stall	 polymerisation	 until	

they	are	chemically	removed,	and	this	process	is	then	repeated	for	the	remainder	of	the	

DNA	 strand.	 Before	 sequencing,	 genomic	 DNA	 must	 be	 first	 sonicated	 into	 smaller	

fragments	 before	 the	 ligation	 of	 DNA	 sequencing	 adaptors.	 These	 adaptors	 bind	 to	

complementary	 primers	 on	 the	 DNA	 sequencer	 flow-cell,	 and	 each	 DNA	 template	 is	

subsequently	amplified	via	solid-phase	PCR.		This	generates	a	cluster	of	the	initial	DNA	

fragment	 which	 enhances	 the	 fluorescent	 signal	 (Figure	 11).	 The	 sequences	 obtained	

(known	as	‘reads’)	can	be	aligned	to	the	reference	genome	of	the	organism	of	interest.			
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Modified	bases	do	not	give	a	unique	readout	via	NGS,	as	modified	bases	share	the	same	

Watson-Crick	base-pairing	pattern	as	the	canonical	bases	(e.g.	both	5-hmU	and	T	would	

base-pair	with	A;	 and	hence	would	be	 ‘read’	 as	 a	 ‘T’).115	However,	NGS	 in	 conjunction	

with	other	methods	can	still	be	used	 to	determine	 the	genomic	 loci	of	modified	bases.	

These	 methods	 include	 both	 1)	 affinity	 mapping	 of	 modified-base	 containing	 DNA	

fragments;	 and	 2)	 techniques	 which	 identify	 DNA	 modifications	 at	 single-base	

resolution.	In	addition,	the	development	of	third-generation	sequencing	technology	may	

allow	the	routine	sequencing	of	modified	bases	in	the	future.		

	
Figure	11:	Schematic	representation	of	the	workflow	of	NGS	sequencing	technology.	

	

1.5.2.ii.	Affinity	Mapping	of	Modified	DNA	

One	 way	 to	 determine	 the	 genomic	 loci	 of	 DNA	 modifications	 is	 to	 affinity-enrich	

fragments	of	DNA	which	contain	modified	bases	prior	 to	NGS	(Figure	12).	This	can	be	

achieved	 either	 via	1)	 selective	 chemical	 labelling	with	 an	 affinity	 tag	 and	 subsequent	

enrichment	(e.g.	–	with	biotin	and	enrichment	with	magnetic	streptavidin	beads)	or	2)	

affinity	 enrichment	 with	 antibodies	 that	 are	 specific	 for	 the	 DNA	 modification	 in	

question.	Fragments	are	enriched	via	immobilisation,	and	non-modified	DNA	fragments	

can	be	removed	in	successive	wash	steps.		After	preparing	enriched	fragments	for	NGS,	

high	 throughput	 sequencing	 of	 these	 fragments	 leads	 to	 a	 build-up	 of	 ‘reads’	 at	

particular	 genomic	 locations;	 this	 identifies	where	modifications	 occur	 in	 the	 genome	

(Figure	 12).	 Affinity	 mapping	 typically	 generates	 ‘low	 resolution’	 peaks	 (typically	

hundreds	of	base-pairs),	but	is	a	relatively	low	cost	method	which	gives	a	great	insight	

into	where	modified	bases	arise.			
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Figure	12:	Affinity	enrichment	methods	to	determine	the	genomic	loci	of	modified	bases	in	DNA	via	A)	
chemical	enrichment	using	an	affinity	tag	(e.g.	–	biotin)	or	B)	using	a	specific	antibody	for	enrichment.	
	

1.5.2.iii.	Chemical	Enrichment	Methods	

Both	 chemical	 and	chemoenzymatic	DNA	enrichment	 techniques	have	been	utilised	 to	

map	a	number	of	modified	bases	(Figure	13).	5-hmC	“pulldown”	or	enrichment	methods	

exploit	 the	 natural	 enzymatic	 glucosylation	 reaction	 of	 5-hmC	 by	 the	 T4	 phage	 β-

glucosyltransferase.	After	glucosylation	of	DNA	containing	5-hmC,	Rao	and	co-workers	

used	 sodium	 periodate	 oxidation	 to	 cleave	 the	 vicinal	 diols	 on	 the	 sugar	 moiety	 to	

generate	reactive	dialdehydes,116	which	were	subsequently	tagged	via	oxime	formation	

using	a	biotinylated	oxyamine.	This	method	was	named	GLIB	(glucosylation,	periodate	

oxidation,	biotinylation)-seq	(Figure	13).	He	and	co-workers	instead	employed	N3-UDP-

glucose	 as	 an	 alternative	 non-natural	 substrate	 for	 T4	 β-GT.117	 The	 resulting	 azido-

glucosylated	 5-hmC	 can	 be	 tagged	 with	 an	 alkyne-linked	 biotin	 using	 1,3-dipolar	

cycloaddition	“click”	chemistry	(Figure	13)	

	

Previous	work	within	the	Balasubramanian	group51,53	employed	biotinylated	oxyamines	

to	generate	genome-wide	maps	of	5-fC,	exploiting	its	reactive	aldehyde	moiety	to	form	

an	oxime	(Figure	13).	8-oxoG	has	instead	been	mapped	via	selection	oxidation,	using	the	

mild	 1-electron	 oxidant	 potassium	 hexabromiridate.	 This	 is	 achievable	 due	 to	 the	

reduced	redox	potential	of	this	base	compared	to	G	and	the	other	canonical	nucleosides;	

the	 resultant	 electrophilic	 intermediate	 can	 be	 trapped	 with	 a	 biotinylated	 amine	

nucleophile	 and	 utilised	 for	 enrichment	 of	 DNA	 fragments	 containing	 8-oxoG	 (Figure	

13).	
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Figure	13:	Chemical	functionalisation	with	biotin	used	in	existing	methods	for	enrichment	of	modified	
bases.	1)	GLIB-seq	periodate	oxidation	of	5-glchmC	followed	by	oxyamine	functionalisation	of	the	
aldehydes,	2)	Glucosylation	of	5-hmC	using	UDP-N3-glucose	followed	by	Huisgen	1,3-dipolar	click	chemistry	
with	a	biotinylated	alkyne	tag,	3)	Selective	1-electron	oxidation	of	8-oxoG	followed	by	nucleophilic	addition	
of	a	biotinylated	amine,	4)	Oxime	formation	with	5-fC	using	a	biotinylated	oxyamine.		

	

1.5.2.iv.	Antibody	Enrichment	Methods	

Antibodies	with	a	particular	affinity	to	a	modified	base	can	be	used	to	generate	genome-

wide	maps	using	DNA	 immunoprecipitation	 (DIP).	 This	 has	 enabled	mapping	of	 5-mC	

(MeDIP)118,	 5-hmC	 (hMeDIP-seq)119,	 5-fC	 (5fCDIPseq)42,	 5-caC	 (5caCDIPseq)42and	Base	

J.98	A	potential	drawback	of	DIP	methods	compared	to	chemical	enrichment	is	a	density-

dependent	bias,120	where	fragments	that	contain	a	higher	abundance	of	modification	are	

more	likely	to	be	captured.	However,	these	techniques	have	had	great	utility,	especially	

for	bases	that	do	not	have	a	reactive	chemical	handle,	such	as	5-mC.		
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1.5.2.v.	Single-base	Resolution	Methods	–	Restriction	Endonucleases	

Other	 sequencing	 methods	 generate	 a	 read-out	 for	 a	 modified	 base	 at	 single-base	

resolution.	Restriction	endonucleases	are	enzymes	that	cleave	the	phosphodiester	DNA	

backbone	 at	 a	 particular	 sequence.	 A	 subset	 of	 these	 enzymes	 can	 differentially	 cut	

depending	 on	 the	 presence	 or	 absence	 of	 a	 modification	 site,	 and	 subsequent	 DNA	

sequencing	 can	 thus	 determine	 the	 genomic	 location	 of	modified	 bases.	 For	 example,	

AbasI	is	an	enzyme	that	preferentially	cuts	at	sites	of	5-glchmC,	and	can	be	used	to	map	

5-hmC	sites	after	treatment	with	T4	β-glucosyltransferase	(Figure	14).	This	is	a	simple	

way	 of	 detecting	 modified	 bases	 with	 good	 resolution,	 however	 natural	 restriction	

enzymes	 that	 specifically	 cleave	 certain	 modified	 bases	 need	 to	 be	 firstly	 identified.	

Furthermore,	sites	may	also	be	cleaved	with	varying	efficiency.121			

	

	
Figure	14:	Single-base	resolution	sequencing	methods.	A)	Restriction	endonucleases	can	specifically	cleave	
the	 phosphodiester	 backbone	 at	 sites	 of	 modified	 bases;	 NGS	 after	 endonuclease	 treatment	 can	 reveal	
where	 modifications	 arise.	 B)	 Bisulfite	 conversion	 of	 C	 to	 U	 allows	 discrimination	 of	 5-mC	 (resistant	 to	
deamination)	 and	 C	 (deaminated	 to	 T)	 after	 NGS.	 C)	 ox-BS	 seq,	 red-BS-seq	 and	 TAB-seq	 can	 be	 used	 to	
distinguish	between	different	C-modifications	after	NGS.	
	

1.5.2.vi.	Single-Base	Resolution	Methods	-	Chemical	Transformation		

Chemical	 transformation	 methods	 instead	 differentially	 alter	 the	 Watson-Crick	 base-

pairing	pattern	of	modified	bases	from	the	canonical	bases;	this	enables	a	discriminative	

readout	of	modified	bases	at	single-base	resolution	after	NGS.	The	bisulfite	reaction	has	

been	essential	 for	distinguishing	between	C	and	its	most	abundant	modification,	5-mC.	

Prior	 to	 bisulfite	 treatment,	 both	 C	 and	 5-mC	 are	 read	 as	 ‘C’	 via	NGS,	 since	 they	 both	

base-pair	with	G.	The	bisulfite	 reaction	 catalyses	 the	hydrolytic	deamination	of	C	 to	U	

(read	as	T),	whilst	5-mC	(read	as	C)	remains	intact	(Figure	14).122		
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However,	 the	 bisulfite	 reaction	 fails	 to	 distinguish	 between	 the	 other	 oxidised	 C	

derivatives:	5-hmC,	like	5-mC,	is	resistant	to	bisulfite	deamination;123	whilst	5-fC	and	5-

caC	 deaminate	 under	 bisulfite	 conditions.	 Further	 chemical	 transformations	 prior	 to	

bisulfite	 have	 now	 been	 utilized	 to	 generate	 definitive	 maps	 of	 each	 C-modification	

(Figure	14).	Oxidative	bisulfite	 (oxBS)-seq124,	uses	potassium	perruthenate	 (KRuO4)	 to	

oxidise	 5-hmC	 to	 5-fC	 prior	 to	 bisulfite,	 which	 generates	 a	 definitive	 map	 of	 5-mC.	

Subtraction	of	an	oxBS	dataset	from	a	BS	dataset	identifies	sites	of	5-hmC.	5-fC	is	further	

distinguished	 by	 treatment	 with	 sodium	 borohydride	 (redBS-seq)	 to	 form	 5-hmC,	

followed	by	comparison	with	BS	and	ox-BS	datasets.125	Many	other	alternative	bisulfite-

based	 techniques	 (e.g.	 Tet-assisted	 bisulfite	 (TAB)-seq	 –	 Figure	 14)126	 have	 now	been	

developed	to	distinguish	these	modifications	based	on	similar	principles.	In	addition,	Xia	

and	 coworkers	 have	 recently	 developed	 a	 “bisulfite-free”	 method	 to	 detect	 5-fC	 at	

single-base	 resolution;	 selective	 tagging	 of	 5-fC	 with	 1,3-indianone	 derivatives,	 and	

subsequent	PCR	leads	to	C-to-T	transitions	at	5-fC	sites.127			

	

1.5.2.vii.	Third-generation	Sequencing	Methods		

The	development	of	third	generation-sequencing	methods	has	the	potential	to	routinely	

decode	modified	bases	without	prior	chemical	transformation.	Single	molecule	real-time	

sequencing	 (SMRT-seq)	uses	a	processing	polymerase	 to	 insert	nucleotides	opposite	a	

template	strand.	The	identity	of	each	base	is	determined	by	its	unique	kinetic	signature,	

thus,	 modified	 bases	 can	 be	 distinguished	 from	 the	 canonical	 ones	 in	 this	manner.128	

Chemical	labelling	can	be	used	in	conjunction	with	SMRT-seq,	since	bulkier	bases	have	a	

more	unique	signature	which	can	aid	detection.129	Additional	advantages	of	SMRT-seq	

include	 the	 ability	 to	 decode	 multiple	 modifications	 in	 one	 sequencing	 run,	 and	 the	

ability	to	sequence	longer	reads	(up	to	20000	bp).	Unfortunately,	current	technology	is	

still	 low	 throughput	 and	 is	 only	 feasible	 for	 the	 sequencing	 of	 small	 genomes,	 or	 in	

larger	organisms	after	affinity	enrichment.	Furthermore,	 this	sequencing	 technology	 is	

currently	 less	widespread	 and	 accessible,	 and	 requires	 large	 amounts	 of	 optimization	

for	 each	modified	 base.	 Regardless,	 SMRT-seq	 has	 already	 been	 used	 to	map	 cytosine	

modifications	 in	 smaller	 organisms	 such	 as	 fungi130,	 Base	 J	 in	 trypanosomes131	 and	 is	

likely	 to	be	 an	extremely	 important	 tool	 in	 the	 future.	 Similarly,	 nanopore-sequencing	

measures	changes	in	ionic	current	while	a	nucleotide	strand	electrophoretically	passes	

through	a	nanopore.132,133	Modified	bases	have	a	different	current	to	the	canonical	bases,	

and	hence	can	be	distinguished.	 	However,	 the	accuracy	of	 this	sequencing	 technology	

requires	improvement	before	it	is	routinely	used	for	this	purpose	in	the	future.134			
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1.5.2.viii.	Application	of	Sequencing	Methods	in	this	Study	

The	 development	 of	 chemical	 and	 biological	 tools	 have	 been	 essential	 to	 decode	 the	

genomic	location	and	function	of	modified	bases	in	eukaryotic	DNA	by	sequencing.	The	

current	methods	applicable	to	an	NGS	platform	are	hence	summarised	in	Table	2.		

	
Modified	base	 Chemical	Enrichment	

techniques	

Antibody	

Enrichment	techniques		

Single-base	resolution		

techniques	

5-mC	 No	technique	published		 5Me-DIP135	 Bisulfite	

ox-BS124	

5-hmC	 GLIB-seq136	

hMeSeal-seq117	

5hme-DIP137	

CMS-DIP136	

JBP1-DIP138	

ox-BS124	

TAB-seq126	

SCL-exo139	

AbaSI-seq140	

PvuRts1141	

5-fC	 Aldehyde	reactive	

probe51,53	

fCSeal-seq52	

5fC-DIP42	 fC-CET127	

red-BS125	

fCAB-seq52	

MAB-seq142	

CLEVER-seq143	

5-caC	 No	technique	published	 5caC-DIP42	 DIP-Cab-seq144	

MAB-seq145	

5-hmU	 No	technique	published	 No	technique	published	 No	technique	published	

5-fU	 No	technique	published	 No	technique	published	 No	technique	published	

Base	J	 No	technique	published	 Base	J-DIP98	 No	technique	published	

8-oxoG	 OG-seq146	 8-oxoG	DIP56	 No	technique	published	

Table	2:	Current	methods	to	sequence	modified	bases	in	DNA	which	are	compatible	with	Illumina	NGS	
technology	
	

There	 are	 currently	 no	 methods	 to	 determine	 the	 genomic	 location	 of	 the	 T-

modifications	5-hmU	and	5-fU.	Thus,	chemical	and	biological	tools	will	be	developed	and	

utilized	 in	 this	 thesis	 to	 enable	 genome-wide	mapping	 of	 these	modifications	 in	 both	

mammalian	 and	 trypanosomatids.	 This	will	 provide	 further	 insight	 into	 the	 role	 of	 T-

modifications	in	these	biological	systems.			
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1.5.3.	Proteomics	and	Modified	Base	Protein	Interactions	

Other	methods	to	probe	the	biological	function	of	modified	bases	in	DNA	arises	from	the	

study	of	DNA-protein	 interactions.	Modified	bases	possess	different	 chemical	moieties	

which	 protrude	 into	 the	 DNA	 major	 groove	 and	 as	 such,	 these	 moieties	 have	 the	

propensity	 to	 ascribe	 unique	 molecular	 binding	 interactions	 with	 specific	 proteins.	

Protein	binders	may	include	“writers”	which	generate	the	modification,	“readers”	which	

recognise	 and	 interact	 with	 the	 modification,	 and	 “erasers”	 which	 excise	 the	

modification	from	the	genome.147		

	

Proteomics,	profiling	proteins	by	mass	spectrometry,	is	typically	used	to	decipher	which	

proteins	 are	 recruited	 to	 modified	 base	 containing	 fragments.	 Biotinylated	 “bait”	

modified	DNA	strands	can	be	incubated	in	the	presence	of	cellular	protein	extract,	and	

interacting	proteins	can	be	identified	by	mass	(Figure	15).49	

	

	
Figure	15:	Proteomics	can	be	used	to	decipher	proteins	that	preferentially	interact	with	modified	bases.		

	

Examples	of	such	techniques	include	those	which	led	to	the	discovery	of	MCBP2.148	This	

protein	 is	 found	 to	 bind	 specifically	 to	 methylated	 CpG	 dinucleotide	 containing	

sequences,	and	further	work	led	to	the	discovery	of	a	whole	host	of	other	MCBPs.	These	

proteins	 are	 found	 to	 be	 essential	 regulators	 of	 the	 transcriptional	 state	 of	 the	

epigenome,	 and	 facilitate	 epigenetic	 crosstalk	 by	 interactions	 with	 histone	 modifying	

proteins.25	Proteomics	studies	have	thus	far	been	reported	for	all	the	C	derivatives	and	

5-hmU	 in	 mammalian	 tissue,	 therefore	 5-fU	 protein	 binders	 will	 be	 explored	 in	 this	

thesis.		

	

1.5.4.	Effect	of	Modified	Bases	on	Nucleosome	Structure		

Studies	 can	 be	 performed	 to	 probe	 the	 effect	 of	 modified	 bases	 on	 higher	 order	

chromatin	structure.	Chromatin	consists	of	strings	of	nucleosome	subunits	connected	by	

linker	DNA,	where	each	subunit	 is	 composed	of	 eight	histone	proteins	 (H2A,	H2B,	H3,	

H4	subunits)	wrapped	round	147bp	of	DNA.149	Nucleosomes	are	the	basic	fundamental	

units	 of	 chromatin	 and	 control	 access	 to	 genetic	 information.	 The	 dynamics	 and	

occupancy	of	nucleosomes	 is	 therefore	a	huge	determinant	of	gene	regulation,	and	the	
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establishment	of	dynamic	regulatory	regions	marked	by	nucleosomes	is	essential	for	the	

gain	of	 cell	 identity.	The	presence	of	DNA	modifications	 is	 shown	 to	directly	alter	and	

affect	 both	 nucleosomal	 positioning	 and	 stability,	 leading	 to	 a	 downstream	 effect	 on	

gene	expression.150			

	

Due	 to	 the	 complexity	 of	 chromatin,	 researchers	 often	 study	 one	 nucleosomal	 unit	 to	

study	 chromatin	 interactions	 with	 DNA	 in	 vitro.	DNA	 CpG	 methylation,	 for	 example,	

demonstrates	 more	 rigid	 wrapping	 around	 the	 histone	 octamer	 in	 this	 model,	which	

may	 reflect	 5-mC’s	 association	 with	 gene	 silencing.151	 5-hmC	 modified	 DNA	

demonstrated	increased	nucleosomal	stability	compared	to	unmodified	C,	however	the	

presence	of	5-hmC	showed	weakened	interactions	with	the	H2A-H2B	subunit	dimer.152		

	

The	 relationship	 between	 DNA	modifications	 and	 nucleosome	 occupancy	 can	 also	 be	

probed	 using	 Micrococcal	 Nuclease	 (MNase)-seq.	 In	 this	 method,	 DNA	 that	 is	 not	

associated	with	chromatin	 is	enzymatically	digested,	whilst	nucleosomal	DNA	remains	

intact	 for	 sequencing.	 This	 generates	 a	 genome-wide	 map	 of	 nucleosome	 structure,	

which	can	be	directly	correlated	with	the	presence,	or	absence,	of	DNA	modifications.153	

DNA	with	distinctive	periodicity	(10bp)	of	certain	dinucleotides	(CpG)	is	characteristic	

of	positioned	nucleosomes,	and	the	methylation	status	at	these	sites	has	been	shown	to	

alter	 DNA	 affinity	 towards	 the	 histone	 octamer.154	 Methylated	 CpG	 dinucleotides	 are	

strongly	 correlated	with	 nucleosome	 occupancy,155	while	 5-hmC	 loci	 and	 TET-binding	

sites	 are	 instead	 associated	 with	 labile	 MNase-sensitive	 nucleosomes,	 poised	 for	

eviction,	in	mESCs.153		

	

The	study	of	modified-base	nucleosomal	interactions	can	provide	great	insight	into	how	

modified	bases	can	fundamentally	alter	nucleosomal	organisation	and	downstream	gene	

expression.	 However,	 there	 are	 currently	 limited	 studies	 on	 the	 effect	 of	 formylated	

modified	bases,	such	as	5-fC	and	5-fU,	on	higher	chromatin	structure.	The	role	of	these	

marks	will	be	explored	 in	 this	 thesis,	 to	provide	a	unique	mechanistic	 insight	 into	 the	

association	of	these	modifications	with	nucleosomal	occupancy.		
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2.	Global	Measurements	of	Modified	Bases	by	LC-MS/MS	
	

2.1.	Introduction	of	LC-MS/MS	Methods	and	Workflow	
Quantification	 of	 modified	 bases	 is	 a	 powerful	 tool	 to	 compare	 global	 levels	 of	

modifications	 in	 different	 organisms,	 tissues	 and	 phenotypes;	 liquid	 chromatography	

tandem	 mass	 spectrometry	 (LC-MS/MS)	 is	 the	 most	 sensitive	 and	 discriminating	

method	for	the	accurate	measurement	of	modified	bases.		

	

2.1.1	LC-MS/MS	Workflow	

	

	
Figure	16:	Schematic	demonstrating	the	workflow	of	LC-MS/MS	measurement,	labels	in	green	demonstrate	
internal	calibration	using	an	internal	SIL	standard.	
	

Genomic	DNA,	extracted	 from	tissue	or	cells,	 is	 initially	enzymatically	digested	 into	 its	

constituent	 mononucleosides.40	 Mononucleosides	 are	 then	 separated	 by	

chromatographic	 retention	 followed	 by	 mass	 analysis,	 where	 the	 parent	 ion	 of	 each	

modified	 base	 is	 targeted	 for	 further	 fragmentation.	 Accurate	 mass	 signals	 from	 the	

corresponding	 nucleoside	 fragments	 are	 extracted	 from	 the	 total	 ion	 count	 (TIC)	 and	

subsequently	 integrated	 for	 quantification;	 this	 integrated	 mass	 signal	 is	 used	 to	

determine	 the	 concentration	of	 a	nucleoside	within	 a	 genomic	 sample,	 by	 comparison	

with	a	calibration	line	of	nucleoside	standards	(Figure	16).		

	

The	accuracy	of	mass	quantification	can	be	improved	via	the	use	of	an	internal	standard	

that	is	“spiked”	into	both	calibration	standards	and	biological	samples.	Quantification	is	

instead	determined	via	the	mass	integration	area	ratio	of	nucleoside/internal	standard.	

This	corrects	 for	matrix	effects	which	arise	 in	complex	biological	 samples,156,157	where	

molecules	 that	 originate	 from	 the	 sample	 matrix	 co-elute	 with	 the	 biological	 target	

causing	 suppression	 (or	 enhancement)	 of	 the	 TIC.	 The	 gold-standard	 of	 mass	

quantification	employs	an	internal	standard	that	is	an	isotopically	labelled	(SIL)	variant	

of	 the	 target	 compound.113,157	 	 A	 SIL	 has	 the	 same	 chromatographic	 and	 ionisation	
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properties	as	the	non-labelled	modified	base,	however	it	has	a	distinct	mass	signal	that	

can	be	integrated	separately.		

	

After	 digestion,	 several	 modified	 bases	 can	 be	 targeted	 and	 quantified	 in	 parallel.	

Comparison	of	the	modified	base	concentration	with	that	of	a	canonical	nucleoside	(e.g.	

T)	 determines	 the	 percentage	modified	 base	 present	within	 a	 genomic	 sample.	 Levels	

are	 therefore	 reported	 as	 a	 proportion	 of	 one	 nucleoside	 (e.g.	 per	 T)	 or	 of	 the	 total	

number	of	nucleosides	(e.g.	per	N,	taking	into	consideration	the	percentage	GC	content	

for	the	organism	in	question).	Modern	mass	spectrometry	can	accurately	quantify	over	a	

wide	range	of	concentrations	and	is	sensitive	enough	to	detect	femtomole	quantities	of	

modified	bases.40,158	As	such,	LC-MS/MS	methods	have	been	integral	in	determining	the	

global	levels	of	DNA	modifications	in	different	cell	types,	phenotypes	and	tissues	within	

the	modified	bases	field.48,159,160	

	

2.1.2.	Global	Measurement	of	T-modifications	in	DNA	

The	 aim	 of	 this	 chapter	 was	 to	 develop	 methods	 to	 accurately	 quantify	 the	 T-

modifications,	5-hmU,	5-fU	and	Base	J,	in	genomic	DNA.	The	ability	to	measure	the	global	

levels	 of	 these	 bases	would	 highlight	 biological	 targets	 for	 further	 study,	 designed	 to	

complement	 the	 development	 of	 T-modification	 enrichment-sequencing	methods	 (See	

Chapters	 3	 and	 4).	 Furthermore,	 LC-MS/MS	 could	 be	 used	 to	 assess	 changes	 in	 T-

modification	 global	 levels	 in	 response	 to	 biological	 perturbation,	 thereby	 providing	

greater	 insight	 into	 the	 role	 and	 metabolism	 of	 these	 marks.	 A	 main	 target	 was	 the	

accurate	 measurement	 of	 T-modifications	 in	 both	 trypanosomatids	 and	 mammalian	

systems.	 At	 the	 outset	 of	 this	 project,	 several	 groups	 had	 reported	 LC-MS/MS	

measurement	of	T-modifications	 in	mammals40,160,161,162;	 yet,	 accurate	quantification	of	

these	marks	had	yet	to	be	reported	for	trypanosomal	DNA.	LC-MS/MS	measurements	for	

Base	J	and	5-hmU	have	since	been	reported	 in	bloodstream-form	(BSF)	trypanosomes,	

at	levels	of	0.5%	and	0.017%	per	T	for	Base	J	and	5-hmU	respectively.90	
 

2.2.	Synthesis	of	5-hmU	and	5-fU	Nucleoside	Standards	

In	 order	 to	 accurately	quantify	T-modifications	 in	 genomic	 samples	using	 the	 internal	

calibration	 strategy,	 nucleoside	 standards	 (both	with	 and	without	 SIL)	were	 required.		

5-hmU	mononucleoside	 was	 synthesised	 in	 one	 step	 by	 reaction	 of	 deoxyuridine	 (U)	

mononucleoside	with	formaldehyde	in	the	presence	of	potassium	hydroxide,	utilising	a	

published	 procedure	 (Scheme	 1).163	 The	 5-fU	 mononucleoside	 was	 subsequently	

synthesised	by	5-hmU	oxidation	using	manganese	dioxide,163	a	1-electron	oxidant	with	
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selective	reactivity	towards	benzylic	or	allylic	alcohols.164	This	enabled	chemoselective	

oxidation	of	the	allylic	primary	hydroxyl	group	on	the	nucleobase,	 leaving	the	primary	

hydroxyl	group	on	the	sugar	intact.		

	

	
Scheme	1:	Reaction	of	U	with	formaldehyde	under	basic	conditions	yields	5-hmU	mononucleoside.	
Subsequent	radical	oxidation	of	5-hmU	generates	the	5-fU	mononucleoside.	
	

Analogous	syntheses	were	employed	to	generate	+3	5-hmU	(hmU-SIL)	and	+2	5-fU	(fU-

SIL)	standards	utilising	heavily	labelled	formaldehyde	(13CD2O)	(Figure	17).	Deuterated	

solvents	were	used	as	a	precaution	to	prevent	any	proton	exchange	and	loss	of	isotopic	

integrity.	Other	mononucleoside	standards	(C,	T,	Base	 J,	5-mC	and	5-hmC)	were	either	

commercially	 sourced	 or	 had	 been	 synthesised	 by	 other	 members	 of	 the	

Balasubramanian	group.	

	

	
Figure	17:	Synthesised	isotopically	labelled	standards:	hmU-SIL	and	fU-SIL		

	

2.3.	Background	and	Improvement	of	nano-HPLC	Q-exactive	set-up	

A	 Dionex	 3000	 nano-HPLC	 coupled	 with	 a	 Q	 ExactiveTM	(QE)	mass	 spectrometer	 was	

utilised	for	LC-MS/MS	measurements.	The	Balasubramanian	group	had	previously	used	

this	 set-up	 for	 quantification	 of	 C-modifications,	 using	 a	 custom-packed	 0.075	 μm	 x	 5	

mm	 Hypercarb	 column,	 suitable	 for	 nano-flow.45,46	 Hypercarb	 is	 a	 porous	 graphitic	

carbon	 (PGC)	 column	 material,	 and	 has	 superb	 retention	 and	 separation	 of	 polar	

analytes	 such	 as	 nucleosides.	 However,	 the	 former	 LC	 set-up	 required	 custom-made	

columns	which	were	prone	to	leakage	and	variability	in	chromatography.		
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Chromatographic	reproducibility	was	therefore	vastly	 improved	with	the	use	of	a	0.18	

μm	Hypercarb	KAPA	capillary	column.	This	column	could	be	directly	connected	 to	 the	

Dionex	 3000	 using	 two	 fingertight	 nanoviper	 connectors,	 which	 greatly	 reduced	

previous	issues	with	dead-volume	and	leakage	(Appendix	–	Chapter	2).	

	

2.4.	Validation	of	Nucleoside	Standards,	Calibration	Curves	and	Detection	Limits	

The	synthetic	nucleoside	and	SIL	standards	were	initially	validated	using	the	LC-MS/MS	

set-up,	which	confirmed	the	co-elution	of	SIL	and	non-labelled	standards	(Figure	18).	It	

was	also	ensured	that	the	SIL	standards	contained	no	detectable	signal	derived	from	the	

unlabelled	nucleoside,	to	avoid	contamination	of	genomic	samples.	

	
Figure	18:	Validation	of	unlabelled	and	SIL	nucleoside	standards	of	5-hmU,	5-hmU	SIL,	5-fU,	5-fU	SIL	and	
Base	J.		
	

	
Figure	19:	Schematic	of	fragmentation	pattern	of	T-modifications	and	their	most	abundant	fragment	ion.	
	

Next,	 the	most	 ionisable	 fragment	 for	 each	 nucleoside	was	 determined	 to	 be	 used	 for	

quantification	(Figure	19).	For	T	and	5-fU,	the	most	ionisable	fragment	corresponded	to	

the	protonated	base	fragment	after	cleavage	of	the	N-glycosidic	bond	(T	243	à	127,	T	

SIL:	146	à	130;	fU	257	à	141,	5-fU	SIL:	259	à	143	respectively).	For	5-hmU	the	most	

ionisable	 fragment	corresponded	to	 loss	of	 the	deoxyribose	group	and	hydroxyl	group	
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(5-hmU:	259	à	125,	5-hmU	SIL:	262	à	128),	whilst	in	Base	J	this	corresponded	to	loss	

of	 deoxyribose	 and	 the	 glucose	moiety	 (421	à	 143).	 Accurate	 calibration	 lines	 were	

constructed	 for	 each	 of	 the	 above	 T-modifications	 and	 their	 relative	 detection	 limits	

were	determined	 (Figure	20,	 Table	 3).	 A	Base	 J	 SIL	was	not	 required	 since	 the	use	 of	

hmU-SIL	 as	 an	 internal	 standard	 led	 to	 excellent	 linearity	 (Figure	20).	Notably,	 the	T-

modifications	were	observed	to	have	much	higher	limits	of	detection	compared	with	the	

analogous	 C-modifications	 (Table	 3);	 this	 is	 likely	 due	 to	 the	 lower	 proton	 affinity	

possessed	by	T-modifications.165		

	
	Figure	20:	Calibration	lines	for	quantification	of	Base	J	and	5-hmU.	
	

Modification	 Quantitative	detection	limit	(fmol)	

5-mC	 0.9	

5-hmC	 0.2	

5-fC	 2	

5-hmU	 2	

5-fU	 30	

Base	J	 15	

Table	 3:	 Table	 demonstrating	 relative	 quantitative	 detection	 limits	 of	modified	 bases	 on	 the	 Q-Exactive	
spectrometer,	determined	from	calibration	standards.	
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2.5.	Detection	and	Quantification	of	Modifications	in	Trypanosomatids	

The	optimised	and	validated	method	was	used	to	accurately	quantify	Base	J	and	5-hmU	

in	the	trypanosomatids	Leishmania	major	(L.major)	and	Trypanosoma	brucei	(T.	brucei).	

The	measurements	obtained	were	in	accordance	with	the	reported	LC-MS/MS	levels	in	

bloodstream-form	(BSF)	T.	brucei,90	suggesting	the	method	was	robust.	Levels	of	 these	

marks	in	another	trypanosomatid,	L.	major,	were	found	to	be	similar	(Figure	21).		

	

The	 next	 aim	 was	 to	 detect	 and	 quantify	 T-modifications	 in	 procyclic	 form	 (PCF)	 T.	

brucei.	 There	 were	 several	 references	 to	 suggest	 that	 this	 life-form	 lacks	 Base	 J,166	

however,	one	report	had	detected	5-hmU	in	this	life-form	by	32P	radiolabelling.108	Thus,	

the	presence	of	5-hmU	in	PCF	trypanosomes	was	firstly	confirmed,	followed	by	accurate	

LC-MS/MS	 quantification.	 5-hmU	 levels	 were	 found	 to	 be	 ~5-fold	 lower	 than	 in	 BSF	

trypanosomes,	whilst	Base	J	was	undetected	(Figure	21).	
	

		

	
Figure	21:	Accurate	T-modification	quantification	in	L.	major	and	the	BSF	and	PCF	forms	of	T.	brucei	(Left:	
5-hmU	 Right:	 Base	 J).	 n.d.	 =	 not	 detected.	 For	 T.	 Brucei	 Genomic	 DNA	 was	 extracted	 in	 the	 presence	 of	
antioxidant	 inhibitors,	 to	minimise	spurious	oxidation	during	sample	processing.40	L.	major	 samples	were	
measured	 using	 the	 0.075	 mm	 x	 5	 mm	 custom-packed	 hypercarb	 nano-column.	 T.Brucei	 samples	 were	
measured	using	the	0.18	mm	x	3	mm	commercial	capillary	hypercarb	column.	
	

The	presence	of	5-hmU	and	associated	lack	of	detectable	Base	J	in	PCF	trypanosomes	is	

of	 particular	 interest.	 The	 JBP	 enzymes	 1	 and	 2,	 responsible	 for	 T	 oxidation	 in	

trypanosomes,	 are	 downregulated	 by	 ~10	 and	 ~5	 fold	 respectively	 in	 PCF	

trypanosomes.167	Liu	et	al.	also	detected	the	presence	of	5-hmU	in	JBP-null	bloodstream-

form	 trypanosomes,	 suggesting	 5-hmU	 may	 be	 generated	 in	 a	 JBP-independent	

process.90	Furthermore,	J-GT,	the	glucosyltransferase	responsible	for	converting	5-hmU	

to	Base	J,	is	still	expressed	in	procyclic	trypanosomes.	Indeed,	it	has	been	reported	that	

Base	 J	 is	 formed	 in	PCF	T.Brucei	when	cells	are	artificially	 fed	with	5-hmU.	166,92	 It	was	
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therefore	unclear	why	5-hmU	is	observed,	and	not	Base	J,	based	on	the	current	dogma;	

however,	5-hmU	generation	by	spurious	oxidative	damage	cannot	be	ruled	out.	

Furthermore,	 the	 presence	 of	 5-fU	 and	 5-mC	modifications	 in	 trypanosomes	was	 also	

investigated.	Whilst	5-fU	was	undetectable	in	these	samples,	likely	as	a	result	of	its	high	

detection	 limit	 (Table	3),	 5-mC	was	detected	 in	both	BSF	 and	PCF	 trypanosomes.	The	

presence	of	5-mC	in	this	organism	is	supported	by	Militello	et	al.,	who	identified	a	DNMT	

gene	 in	 T.	 brucei,	 expressed	 at	 similar	 levels	 in	 both-life	 forms.168	 Unfortunately,	 the	

levels	of	5-mC	were	too	low	to	be	accurately	quantified.	Methods	therefore	needed	to	be	

developed	 for	 the	quantification	of	 low	abundance	modifications	using	 the	nano-HPLC	

coupled	QE	set-up.	

	

2.6.	Towards	Quantification	of	Low-abundance	Modifications	in	Genomic	Samples		

Modified	base	quantification	is	challenging	when	modifications	are	in	low	abundance	or	

are	poorly	ionising.	This	 is	complicated	by	the	high	background	signal	of	the	canonical	

nucleosides,	 and	 other	 components	 of	 the	 digestion	 mixture,	 which	 leads	 to	 ion	

suppression.	 T-modifications	 in	 mammalian	 tissues	 are	 much	 less	 abundant	 than	 in	

trypanosomatids	 (Introduction	 1.4.1),	 and	T-modifications	 have	much	 higher	 limits	 of	

detection	 compared	 to	 the	 analogous	 C-modifications	 (Table	 3).	 The	 nano-flow	 HPLC	

instrumentation	 restricts	 the	 amount	 of	 DNA	 that	 can	 be	 digested	 and	 subsequently	

loaded	 onto	 the	 column,	 thus	 accurate	 quantification	 of	 low	 abundance	modifications	

(e.g.	 5-hmU	 and	 5-fU	 in	 mammalian	 samples)	 was	 not	 possible	 using	 this	 set-up.	

Alternative	 strategies	 were	 therefore	 required	 to	 accurately	 quantify	 such	

modifications.	 Once	 developed,	 these	 methods	 would	 be	 applicable	 for	 the	

quantification	of	any	low	abundance	modified	base.	

	

2.6.1.	HPLC	Enrichment	

HPLC	 pre-enrichment	 of	 modified	 bases	 before	 LC-MS/MS	 injection	 was	 therefore	

employed	as	a	method	for	low	abundance	base	quantitation	(Figure	22).162	This	allowed	

larger	 quantities	 of	 DNA	 to	 be	 digested	 before	 enrichment,	 thus	 improving	 the	 mass	

intensity	 signal	 of	 modified	 bases	 for	more	 accurate	 quantification.	 An	 added	 benefit	

was	 that	HPLC	pre-enrichment	enabled	purification	of	modified	bases	 from	the	higher	

abundance	 canonical	 bases	 within	 the	 digestion	 mixture,	 which	 helped	 to	 alleviate	

background	signal	and	ion	suppression.	
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Synthetic	nucleoside	 standards	were	 first	used	 to	determine	 the	necessary	 timepoints	

for	enrichment	of	each	modified	base	using	HPLC.	Enrichment	of	a	known	amount	of	5-

hmU	 and	 5-fU	 mononucleoside	 demonstrated	 full	 recovery,	 indicating	 the	 method	 is	

quantitative.	The	enrichment	method	was	then	applied	to	the	digested	genomic	samples,	

before	injection	into	the	QE	mass	spectrometer.	Quantification	of	a	canonical	nucleoside	

(e.g.	T)	in	a	diluted	portion	(e.g.	1	in	50)	of	digested	samples	enabled	modified	bases	to	

be	reported	as	a	proportion	of	total	nucleosides.		

	

Figure	22:	HPLC	pre-enrichment	of	modified	bases	before	LC-MS/MS	injection	

	

2.6.1.i	C-modifications	in	Trypanosomatids	

The	HPLC	pre-enrichment	strategy	was	 first	used	to	accurately	quantify	the	 level	of	5-

mC	in	trypanosomatids	(Figure	23	-	Left).	Similar	levels	of	5-mC	were	found	in	both	BSF	

and	 PCF	T.	 brucei,	 as	 expected	 by	 the	 similar	 levels	 of	 reported	 DNMT	 expression.168	

Interestingly,	 the	 presence	 of	 5-hmC	 in	 this	 organism	 was	 also	 detected,	 which	 was	

supported	 by	 the	 findings	 of	 Valentine	 et	al.169	 Since	T.	brucei	 lack	 TET	 enzymes,	 this	

indicates	that	JBPs	may	also	have	the	potential	to	oxidise	5-mC	à	5-hmC	along	with	T	à	

5-hmU	oxidation.		

	

Figure	23:	Left:	Accurate	quantification	of	5-mC	in	both	BSF	and	PCF	T.	brucei.	Right:	5-hmC	detection	 in	
T.brucei	and	confirmation	using	hmC-SIL.		
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2.6.1.ii	5-hmU	and	5-fU	Quantification	in	Biological	Samples		

The	enrichment	strategy	was	next	applied	to	quantify	the	levels	of	5-hmU	and	5-fU	in	a	

range	of	organisms,	 including	mammals	 (Figure	24	 -	Left).	 Large	amounts	 (>	20μg)	of	

DNA	were	digested	for	each	replicate	to	ensure	that	the	5-hmU	and	5-fU	signals	were	at	

a	 concentration	 sufficiently	 above	 the	 limit	 of	 detection	 and	 background	 level.	 This	

proved	to	be	more	problematic	for	5-fU,	hence	measurements	were	only	recorded	in	a	

subset	of	the	samples	screened	(Figure	24	-	Right).		

	

The	data	 suggests	no	 significant	 increase	 in	5-hmU	and	5-fU	 levels	 in	 cancer	 cell-lines	

(MCF7)	in	comparison	to	somatic	tissue	(mESC	and	HEK293T	cells).	High	5-hmU	levels	

in	the	blood	have	previously	been	suggested	to	be	a	biomarker	of	cancer68,69,	however	in	

these	 circumstances,	measurements	 reflected	 the	 level	 of	 free	mononucleoside	 rather	

than	 the	 level	 of	modified	 base	 present	 within	 genomic	 DNA.	 	 Furthermore,	 the	 data	

acquired	 suggests	 that	 5-hmU	 levels	 are	 elevated	 in	 the	 model	 plant	 A.	 Thaliana	

compared	 to	 the	 other	 organisms	 screened.	 This	 may	 result	 from	 increased	 ROS	

susceptibility	due	to	constant	UV	radiation	exposure,170		whilst	there	is	also	no	known	5-

hmU	glycosylase	in	this	organism.171		
	

	
Figure	 24:	 Left:	 5-hmU	 measurements	 in	 different	 organisms,	 Right:	 5-fU	 measurements	 in	 different	
organisms.		
	

The	 observed	 5-hmU	 level	 in	 HEK239T	 genomic	 DNA	was	 on	 average	~5-fold	 higher	

than	those	reported	by	Carell	and	co-workers,40	yet	in	accordance	with	levels	reported	

by	 Liu	 et	 al.162	 The	 difference	 in	 levels	 is	 likely	 explained	 by	 variance	 in	 oxidative	

damage	within	 biological	 systems/technical	 replicates,	which	 can	 also	 account	 for	 the	

variability	of	5-hmU	levels	reported	in	the	literature	for	mammalian	samples.40,161,162		
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2.7.	Conclusion	

A	 focus	 of	 this	 chapter	 was	 the	 development	 of	 methods	 to	 accurately	 quantify	 T-

modifications	in	biological	systems.	In	the	process,	methods	to	quantify	low	abundance	

modifications	 have	 been	 investigated	 and	 developed,	 and	 these	 methods	 can	 now	 be	

used	for	the	global	measurement	of	any	low-abundance	modified	bases	in	DNA.		

	

Accurate	 T-modification	 quantification	 is	 demonstrated	 in	 both	 trypanosomatids	 and	

mammalian	samples,	and	LC-MS/MS	measurements	can	now	be	used	to	support	other	

studies	 described	 in	 this	 thesis	 (Chapter	 4).	 Whilst	 LC-MS/MS	 enables	 the	 global	

measurement	 of	 T-modification	 levels,	 this	 method	 fails	 to	 provide	 any	 sequence	

context	 information.	 Thus,	 methods	 need	 to	 be	 explored	 to	 affinity-enrich	 DNA	

fragments	 containing	 T-modifications	 in	 combination	 with	 NGS,	 to	 determine	 the	

genomic	loci	of	T-modifications	in	biological	samples	(Chapters	3	and	4).		

	

Due	 to	 potential	 variance	 in	 T-modification	 oxidative	 damage	 in	mammalian	 samples,	

several	 biological/technical	 replicates	 should	 ideally	 be	 measured	 when	 comparing	

global	levels	of	T-modifications	between	different	phenotypes	or	tissues.	This	requires	a	

large	amount	of	genomic	material,	thus	a	future	goal	would	be	to	explore	derivatisation	

chemistry	 to	 improve	 the	 detection	 limit	 of	 low	 abundance	modifications	 in	 genomic	

samples.	 Reactive	 handles	 on	 modified	 bases,	 (e.g.	 the	 formyl	 group	 of	 5-fU)	 can	 be	

tagged	 with	 a	 charged	 or	 highly	 ionisable	 moiety	 to	 facilitate	 their	 detection	 and	

quantification	in	smaller	quantities	of	genomic	DNA.172	A	derivatisation	strategy	for	5-fU	

was	briefly	explored	(Appendix	–	Chapter	2),	although	further	optimisation	is	required	

to	enable	accurate	quantification	at	this	stage.		
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3.	Selective	chemical	labelling	of	T-modifications		
3.1.	Introduction	

In	 order	 to	 further	 understand	 the	 role	 of	 T-modifications	 in	 both	 mammals	 and	

trypansomatids,	 the	 aim	 of	 this	 chapter	 was	 to	 develop	 a	 chemistry-based	 affinity	

method	 to	 enrich	 DNA	 fragments	 containing	 5-hmU	 and	 5-fU	 from	 genomic	 samples.	

This	would	 require	 selective	 chemical	 tagging	 (e.g.	 biotinylation),	 followed	 by	 affinity	

purification	or	“pulldown”	of	tagged	fragments	using	streptavidin.	In	combination	with	

next-generation	DNA	sequencing	(NGS),	this	method	could	be	used	to	generate	genome-

wide	 maps	 of	 T-modifications.	 	 Ultimately,	 these	 maps	 can	 be	 correlated	 with	 other	

available	data	sets	(e.g.	gene	expression,	nucleosome	structure,	protein	binding)	to	help	

understand	the	function	of	T-modifications	in	biological	systems.	A	chemical	enrichment	

method	would	be	complementary	to	an	antibody-based	hmU-DIP	method	that	was	being	

developed	in	parallel	within	the	Balasubramanian	group.	

	

Whilst	many	methods	have	been	developed	to	map	the	analogous	C-modifications,	there	

were	no	reported	methods	for	the	affinity-enrichment	of	5-hmU	and	5-fU	(Introduction	

–	 1.5.2.viii).	 Therefore,	 this	 study	 aimed	 to	 establish	 a	 chemical	 or	 chemo-enzymatic	

tagging	method	for	the	T-modifications	that	was	selective	over	other	DNA	modifications	

and	 the	 canonical	 bases.	 In	 order	 to	 avoid	 any	 uncontrolled	 DNA	 damage	 (e.g.	

depurination	 or	 backbone	 fragmentation),	 such	 a	 reaction	 needed	 to	 proceed	 in	mild	

aqueous	conditions	(pH	>	ca.	5).	Furthermore,	the	reaction	ideally	required	quantitative	

or	near-quantitative	labelling	for	efficient	T-modification	pulldown.	

	

Due	to	the	presence	of	a	reactive	aldehyde	moiety	on	5-fU,	it	was	envisaged	that	Schiff	

base,	alkoxime	or	hydrazine	 formation	could	be	utilised	 for	 labelling	this	base.	 (Figure	

25)		

	

	
Figure	25:	Strategy	to	tag	5-fU	via	formation	of	a	Schiff	base,	hydrazone	or	oxime	
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Figure	 26:	 Strategies	 to	 tag	 5-hmU	 via	 i)	 β-glucosylation	 and	 subsequent	 click	 chemistry,	 ii)	 azide	
substitution	at	the	hydroxyl	group	followed	by	click	chemistry	or	iii)	oxidation	and	5-fU	tagging.	
	

For	5-hmU,	it	was	hypothesised	that	the	base	could	be	functionalised	via	three	different	

strategies	(Figure	26).	Firstly,	5-hmU	was	likely	to	be	a	natural	substrate	for	the	T4-β-

glucosyltransferases	and	could	therefore	be	tagged	chemoenzymatically,	analogously	to	

5-hmC	 (Introduction	 –	 1.5.2.iii).116	 Secondly,	 the	 hydroxyl	 group	 of	 5-hmU	 could	 be	

directly	 functionalised	 by	 activating	 the	 hydroxyl	 group	 followed	 by	 nucleophilic	

substitution	with	sodium	azide,	followed	by	1,3-dipolar	cycloaddition	“click”	chemistry	

with	 a	 biotinylated	 alkyne.173	 Thirdly,	 5-hmU	 could	 be	 synthetically	 oxidised	 to	 5-fU,	

which	 could	 be	 subsequently	 tagged	 using	 the	 same	 strategy	 for	 5-fU	 as	 discussed	

above.	A	major	 criterion	 for	 every	method	would	be	 a	way	 to	 selectively	discriminate	

the	T-modifications	 from	canonical	 and	other	naturally	 occurring	modified	bases.	One	

obvious	 challenge	 for	 this	 strategy	was	 the	 very	 similar	 chemical	 reactivity	 of	 5-hmU	

and	5-hmC,	 and	 also	 of	 5-fU	 and	5-fC,	 all	 of	which	 co-exist	 in	 genomic	DNA.	This	was	

especially	a	concern	for	5-hmC,	which	has	a	much	higher	overall	abundance	than	5-hmU	

in	mammalian	tissue	(Figure	27).40		
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Figure	27:	Relative	modification	levels	of	hmC,	hmU,	fC	and	fU	in	mESC	(R1)	and	HEK293T	cells	using	data	
reported	by	Carell	and	co-workers.40	
	

Furthermore,	 selectivity	 is	 also	 required	 over	 apurinic/apyrmidinic	 (AP)	 sites;	 these	

sites	 are	 defined	 by	 the	 lack	 of	 a	 DNA	 base,	 and	 are	 another	 potential	 source	 of	

aldehydes	present	in	genomic	samples.	Although	AP	sites	thermodynamically	prefer	the	

ring-closed	 form	 of	 the	 sugar,	 they	 are	 in	 equilibrium	 with	 the	 ring-open	 aldehyde-

containing	form,	which	can	be	trapped	in	the	presence	of	an	aldehyde	probe	(Figure	28).	

AP	 sites	 are	 formed	enzymatically	 as	 intermediates	 in	 the	BER	pathway	 (Introduction	

1.3.2),	but	also	arise	due	 to	DNA	damage	 (depurination	or	depyrimidination).	Reports	

estimate	the	level	of	AP	sites	to	be	1-10	per	106	nucleosides	in	murine	tissue,	however	

these	estimates	do	not	consider	other	aldehydes	present	in	DNA.174	In	addition,	as	well	

as	 natural	 DNA	 damage,	 AP	 sites	 can	 also	 be	 induced	 during	 DNA	 extraction	 or	 in	

response	 to	 harsh	 chemical	 treatment	 of	 DNA.175	 As	 a	 result,	 a	 chemical	 pulldown	

strategy	 must	 be	 extremely	 chemoselective	 for	 the	 T-modifications	 to	 ensure	 no	

background	reactivity	or	subsequent	pulldown	of	C-modifications	or	AP	sites.		

	

	
Figure	28:	AP	site	equilibrium	between	the	closed	and	open	sugar	form,	which	can	be	trapped	as	a	result	of	
Schiff	base,	hydrazone	or	oxime	formation.	
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3.2.	Chemoenzymatic	Selective	Glucosylation	of	5-hmC	

As	 already	 highlighted,	 5-hmC	 can	 be	 tagged	 by	 exploiting	 a	 natural	 enzymatic	

glucosylation	 reaction	 which	 occurs	 in	 T4	 phages	 (Introduction	 1.5.2.iii).	 It	 was	

therefore	investigated	whether	the	same	strategy	could	be	applied	towards	5-hmU.	

	

To	assess	 the	5-hmC/5-hmU	substrate	preference	 for	T4	β-GT	glucosylation,	 synthetic	

double	 stranded	 DNA	 (dsDNA)	 containing	 5-hmC	 or	 5-hmU	 (GhmCAT,	 GCAhmU	 and	

GhmCAhmU)	 was	 synthesised	 by	 polymerase	 chain	 reaction	 (PCR).	 To	 synthesise	

modified	 base-containing	 DNA,	 modified	 triphosphates	 can	 be	 used	 to	 replace	 the	

canonical	 base	 in	 the	 PCR	 reaction	 (e.g	 dhmCTP	 replaces	 dCTP),124	 where	 modified	

bases	 are	 inserted	 in	 all	 non-primer	 regions.	 Synthetic	 DNA	 strands	 bearing	 either	 5-

hmU	 or	 5-hmC	 were	 incubated	 with	 UDP-glucose	 in	 the	 presence	 of	 T4	 β-GT.	 After	

purification,	 the	 DNA	 was	 enzymatically	 digested	 into	 its	 composite	 nucleosides,	 and	

analysis	was	carried	out	by	measuring	HPLC	consumption	of	5-hmC	and	5-hmU.		While	

the	 5-hmC	 signal	 was	 depleted	 after	 the	 glucosylation	 reaction,	 the	 5-hmU	 signal	

remained	 intact	 (Figure	29),	 suggesting	 that	 the	β-glucosylation	 is	 selective	 for	5-hmC	

over	5-hmU.	Subsequent	LC-MS/MS	analysis	(Chapter	2)	revealed	the	conversion	of	5-

hmC	 to	 5-glchmC	was	 >99%,	whilst	 only	 a	 small	 proportion	 of	 5-hmU	was	 consumed	

(4%).	

	

		
Figure	29:	HPLC	trace	of	digested	mononucleotides	of	DNA.		Top:	Left	-	GhmCAT	starting	material,	Right	-	
GhmCAT	 after	 treatment	 with	 T4	 β-GT	 (the	 5-glchmC	 product	 is	 likely	 co-eluting	 with	 a	 canonical	
nucleoside,	most	likely	A),	Bottom:		Left	-	GCAhmU	starting	material,	Right	-	GCAhmU	after	treatment	with	
T4	β-GT,	the	5-hmU	peak	is	not	consumed.		
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These	results	have	since	been	corroborated	by	Wang	and	co-workers176	where	efficient	

glucosylation	 of	 5-hmU	 with	 T4-β-GT	 was	 shown	 to	 only	 occur	 when	 5-hmU	 was	

mispaired	with	guanine.	Since	the	goal	was	comprehensive	tagging	of	5-hmU	regardless	

of	 sequence	 (hybridisation)	 context,	 this	 raised	 questions	 about	 the	 utility	 of	 5-hmU	

tagging	via	the	T4-β-GT	strategy.	However,	5-hmC	glucosylation	could	be	useful	to	block	

5-hmC	from	further	functionalisation,	allowing	selective	reactivity	of	5-hmU.	

	

He	 and	 co-workers	 have	 since	 utilised	 this	 result	 to	 develop	 a	 proof-of-concept	

enrichment	 method	 for	 fragments	 containing	 hmU:G	 mispairs	 using	 an	 azido-glucose	

based	enrichment	strategy	analogous	 to	 that	used	 for	5-hmC.177	This	method	could	be	

used	to	 look	specifically	 for	such	mispairs	generated	by	5-hmC	deamination.	However,	

since	 most	 naturally	 occurring	 5-hmU	 occurs	 in	 a	 T:A	 base-pair	 context,40	 this	 casts	

doubt	over	the	usefulness	of	this	overall	approach.		
 

3.3.	Direct	Hydroxyl	Group	Activation 

The	 feasibility	 of	 direct	 functionalisation	 of	 the	 5-hmU-hydroxyl	 group	 was	 next	

explored.	 	A	publication	by	Zhou	and	co-workers	had	highlighted	a	method	 to	directly	

functionalise	 the	 hydroxyl	 group	 of	 5-hmU	 selectively	 over	 5-hmC	 at	 the	

mononucleoside	level,	using	sodium	azide	in	trifluoroacetic	acid	(TFA)	(Scheme	2).178	If	

an	analogous	reaction	could	be	optimised	for	reaction	with	DNA	oligomers,	the	resultant	

azide	could	 then	be	coupled	with	a	biotinylated	alkyne	using	1,3	dipolar	cycloaddition	

click	chemistry.		

	

	
	

Scheme	2:	Reaction	of	5-hmU	with	sodium	azide	to	give	target	molecule	5-azaU	which	was	used	as	an	LC-
MS	standard	to	assess	the	potential	of	this	strategy.	
	

	As	 TFA	 is	 an	 unsuitable	 solvent	 for	 reactions	 involving	 DNA,	 due	 to	 the	 extensive	

depurination	 and	 depyrimidination	 that	 occurs	 under	 acidic	 conditions,	 a	 range	 of	

milder	acidic	agents	were	examined	in	the	presence	of	sodium	azide,	 including	the	use	

of	 the	water-soluble	 Lewis	 acids	 scandium	 triflate	and	 ytterbium	 triflate.	However,	 no	
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azide	 substitution	 was	 observed	 by	 LC-MS,	 highlighting	 the	 challenge	 of	 dehydrative	

activation	 of	 the	 hydroxymethyl	 group	 in	 aqueous	 conditions.	 An	 analogous	 strategy	

using	 the	 water-soluble	 coupling	 agents	 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-

methylmorpholinium	 chloride	 (DMT-MM)	 and	 N-(3-dimethylaminopropyl)-N'-

ethylcarbodiimide	hydrochloride	(EDC)	was	examined,	where	it	was	postulated	that	the	

hydroxyl	group	could	be	activated	to	nucleophilic	attack.	DMT-MM	has	previously	been	

used	to	selectively	activate	and	functionalise	the	anomeric	hydroxyl	group	of	mono-	and	

oligosaccharides	 in	 water	 for	 further	 glucosylation	 reactions.179	 This	 agent	 is	 also	 a	

water-soluble	 analogue	 of	 cyanuric	 chloride,	 which	 has	 been	 used	 to	 catalyse	 azide	

functionalisation	of	hydroxyl	groups.180	

	

Whilst	LC-MS	analysis	suggested	that	5-hmU	mononucleotide	reactions	with	both	DMT-

MM	and	EDC	resulted	in	a	product	with	the	expected	mass	(see	Chapter	3	-	Appendix	for	

further	discussion),	functionalisation	did	not	occur	at	the	desired	location.		Since	direct	

activation	of	the	5-hmU	hydroxymethyl	group	appeared	to	be	challenging,	the	oxidation	

approach	was	pursued	instead.		

	

3.4.	Oxidation	and	Aldehyde	Tagging	Strategy	

3.4.1.	5-hmU	Oxidation	

Oxidation	 of	 5-hmU	 to	 5-fU	 would	 allow	 functionalisation	 of	 the	 resultant	 reactive	

aldehyde	group.	Potassium	perruthenate	in	the	presence	of	sodium	hydroxide	was	used	

to	 oxidise	 a	 deoxynucleotide-oligomer	 (ODN)	 that	 contained	 a	 single	 5-hmU	 (hmU-

ODN),	 utilising	 conditions	 previously	 used	 for	 the	 oxidation	 of	 5-hmC.124	 The	 desired	

oxidation	to	5-fU	was	observed	by	LC-MS	with	the	expected	mass	shift	(Scheme	3).	

	

	
Scheme	3:	hmU-ODN	oxidation	to	fU-ODN2	showed	the	correct	mass	shift	by	LC-MS	analysis	
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Quantitative	oxidation	of	5-hmU	 to	5-fU	was	 further	 corroborated	by	mononucleoside	

composition	analysis	by	LC-MS/MS	after	nuclease	digestion.	Analysis	of	the	mass	signals	

for	C,	T,	A,	G,	5-hmU	and	5-fU	showed	 the	complete	disappearance	of	 the	5-hmU	peak	

and	formation	of	a	new	5-fU	peak	after	potassium	perruthenate	oxidation	(Figure	30).		

	

	
Figure	30:	HPLC-MS	extracted	[M+H]+	fragment	ion	count	for	C,	T,	A,	G,	5-hmU	and	5-fU	deoxynucleosides	
after	digestion	of	top)	hmU-ODN	and	bottom)	hmU-ODN	after	treatment	with	potassium	perruthenate.  
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3.4.2.	5-fU	Tagging	with	a	Biotinylated	Oxyamine	(ARP)	

Using	 the	 aldehyde	 group	 to	 tag	 5-fU	 would	 provide	 a	 strategy	 for	 the	 chemical	

enrichment	of	both	5-fU,	and	5-hmU	after	chemical	oxidation.	It	was	envisaged	that	5-fU	

could	 be	 tagged	 with	 a	 biotinylated	 oxyamine	 or	 hydrazine	 to	 form	 an	 oxime	 or	

hydrazone	 respectively.	 This	was	 first	 demonstrated	 using	 the	 commercially	 available	

oxyamine	aldehyde	reactive	probe	(ARP).	Resultant	oxime	 formation	of	ARP	with	5-fU	

was	 quantitative,	 while	 no	 reaction	 was	 observed	 with	 a	 control	 ODN	 of	 the	 same	

general	 sequence	 which	 contained	 only	 the	 canonical	 nucleosides	 (Figure	 31).	 	 The	

oxime	product	is	stable	with	respect	to	reversion	due	to	the	alpha	effect.	

	

	
Figure	31:	Top:	Structure	of	ARP.	Bottom:	LC-MS	trace	demonstrates	quantitative	reaction	of	fU-ODN	with	
ARP,	demonstrating	the	scope	of	the	5-fU	tagging	strategy.	No	reaction	was	observed	with	a	non-modified	
control	ODN	(GCAT-ODN)	
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However,	ARP	can	also	react	with	5-fC,	and	this	probe	had	previously	been	utilised	for	

5-fC	 genome-wide	 mapping.51	 Functionalisation	 of	 5-fC	 using	 ARP	 required	 a	 long	

reaction	time	(24	hr),	acidic	reaction	media,	and	the	presence	of	a	nucleophilic	catalyst,	

p-anisidine.	 Under	 these	 conditions,	 ARP	 is	 unable	 to	 discern	 between	 the	 two	

formylated	bases	(Table	4	–	Entry	1),	preventing	selective	T-modification	enrichment.	

		

	

Figure	32:	A	-	Oxime	formation	between	5-fU	and	a	biotinylated	oxyamine	adduct	(ARP)	is	chemoselective	
over	5-fC;	this	can	be	a	strategy	for	selective	T-modification	enrichment.	B	–	LC-MS	trace	demonstrating	the	
selective	reaction	of	fU-ODN	with	ARP	in	the	presence	of	fC-ODN.	Conditions	(Table	4	–	Entry	4).		
	

Therefore,	 conditions	 were	 optimised	 to	 enable	 a	 chemoselective	 method	 for	 5-fU	

tagging	 that	 discriminated	 between	 the	 T	 and	 C-modifications.	 Quantitative	 oxime	

formation	 occurred	 with	 5-fU	 without	 the	 addition	 of	 the	 nucleophilic	 catalyst	 p-

anisidine.	 Subsequent	 optimisation	 by	 modulating	 the	 pH	 sought	 to	 completely	

eliminate	 background	 reactivity	 of	 5-fC.	 In	 pH	 6	 buffer,	 full	 conversion	 of	 5-fU	 was	

observed	after	4	hr	and	5-fC	functionalisation	was	undetected	(Table	4	–	Entry	4,	Figure	

32).	The	unexpected	high	reactivity	and	enhanced	electrophilicity	of	5-fU	indicated	the	

feasibility	of	5-fU	chemoselective	functionalisation	in	the	presence	of	5-fC;	furthermore,	

a	 5-hmC	 glucosylation	 blocking	 step	 (Section	 3.2)	 would	 not	 be	 required	 to	 achieve	

selective	5-hmU	pulldown.		
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	 Conditions	(ARP)	 fU-ODN	(%)	 fC	ODN	(%)	

1	 24	hr,	pH	5,	100	mM	p-anisidine,	 100	 94	

2	 24	hr,	pH	5	 100	 26	

3	 24	hr,	pH	6	 100	 3	

4	 4	hr,	pH	6	 100	 n.d	

5	 24	hr,	pH	7	 64	 n.d	

6	 24	hr,	pH	8	 21	 n.d	

Table	 4:	 Reaction	 conversions	 with	 0.4	 mM	 ARP	 under	 various	 conditions.	 %	 conversion	 refers	 to	
integration	of	LC-MS	product	and	starting	material	signal	at	260nm.	n.d.	signifies	that	formation	of	product	
was	not	detected.	Conversion	becomes	less	efficient	with	increasing	pH.		
	

3.4.3.	5-fU	Tagging	with	a	Biotinylated	Hydrazide	(BH)	

To	 screen	 for	 alternative	 biotinylated	 tagging	 reagents,	 the	 reactivity	 of	 fU-ODN	with	

commercially	 available	 (+)-biotinamidohexanonic	 acid	 hydrazide	 (BH)	 was	 next	

explored.	BH	also	demonstrated	enhanced	reactivity	with	 fU-ODN	over	 fC-ODN,	as	had	

been	 observed	 with	 ARP.	 Absolute	 selectivity	 for	 5-fU	 was	 observed	 after	 4	 hr	 at	

ambient	temperature	with	10	mM	BH	(Table	5	-	Entry	5,	Figure	34),	whereas	analogous	

quantitative	conversion	of	5-fC	required	addition	of	p-anisidine	and	heating	(Table	5	–	

Entry	 1).	 The	 efficiency	 of	 this	 reaction	 under	mild	 pH-neutral	 conditions	 (pH	7)	was	

also	suited	for	its	applicability	to	DNA.			

	

 
Figure	33:	Top:	Reaction	scheme	of	5-fU	with	biotinylated	hydrazide	(BH)	to	form	a	hydrazine,	bottom:	
structure	of	BH.	

	

	 Conditions	(BH)	 fU-ODN	(%)	 fC-ODN	(%)	

1	 20	mM	BH,	24	hr,	pH	5,	40	°C,	100	mM	p-anisidine	 100	 100	

2	 10	mM	BH,	24	hr,	pH	6	 100	 13	

3	 10	mM	BH,	4	h,r	pH	6	 100	 2	

4	 10	mM	BH,	24	hr,	pH	7		 100	 1	

5	 10	mM	BH,	4	hr,	pH		7		 100	 n.d	

Table	 5:	Reaction	 conversions	with	BH	at	various	 concentrations	and	conditions.	%	conversion	 refers	 to	
integration	of	LC-MS	product	and	starting	material	signal	at	260nm.	n.d.	signifies	formation	of	product	was	
not	detected.	
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Figure	34:	Selective	reaction	of	fU-ODN	with	BH,	where	the	fU-ODN	BH	adduct	and	fC-ODN	peaks	overlap.	
	

3.4.4.	5-fU	Tagging	with	o-phenylenediamine	and	Derivatives	

Zhou	 and	 co-workers	 had	 reported	 that	 the	 5-fU	 mononucleoside	 reacted	 with	 o-

phenylenediamine	in	dimethyl	formamide	to	form	a	stable	benzimidazole	product,	after	

oxidation	 with	 hydrogen	 peroxide	 (Scheme	 4).163	 It	 was	 therefore	 examined	whether	

this	 reaction	 could	 also	 be	 exploited	 for	 the	 chemical	 tagging	 of	 5-fU	 in	 DNA.	 	 One	

potential	 advantage	 of	 the	 benzimidazole	 product	 would	 be	 its	 stability	 to	 reversion	

under	pulldown	conditions.		

	
Scheme	4:	Literature	reaction	of	5-fU	with	o-phenylenediamine		

	

Thus,	 fU-ODN	 was	 treated	 with	 o-phenylenediamine	 to	 test	 whether	 analogous	

reactivity	was	achievable	in	aqueous	conditions.	The	reaction	proceeded	quantitatively	

in	 pH	 6	 buffer,	 without	 the	 addition	 of	 any	 oxidant	 beyond	 the	 oxygen	 dissolved	 in	

water,	 to	give	 the	 stable	aromatic	benzimidazole	product.	Under	analogous	conditions	

using	100mM	o-phenylenediamine,	fC-ODN	also	underwent	adduct	formation	(Table	6	–	

Entry	1).	However,	 the	reaction	with	5-fC	was	supressed	at	a	neutral	pH,	and	reduced	

concentration	 of	 reagent	 (5	 mM),	 while	 quantitative	 reaction	 with	 fU-ODN	 was	 still	

achievable	 (Table	6	–	Entry	4).	This	 further	demonstrated	 that	T-modifications	can	be	

tagged	 chemoselectively	 due	 to	 the	 enhanced	 reactivity	 of	 5-fU	 over	 5-fC,	 although	

background	reactivity	was	not	completely	eliminated	with	this	moiety.		
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	 Conditions	(o-phenylenediamine)	 (fU-ODN	(%)	
	

fC-ODN	(%)	

1	 100	mM,	24	hr,	pH		6	 100	 82	

2	 5	mM,	1	h,r	pH	6		 100	 17	

3	 100	mM,	24	hr,	pH	7	 100	 56	

4	 5	mM,	1	hr,	pH	7	 100	 2	

5	 100	mM,	24	hr,	pH	8	 100	 13	

6	 5	mM,	1	hr,	pH	8	 100	 2	

Table	6:	Reaction	conversions	with	o-phenylenediamine	under	various	conditions.	%	conversion	refers	to	
integration	 of	 LC-MS	 product	 and	 starting	material	 signal	 at	 260nm.	 The	%	 reaction	 of	 fC-ODN	 refers	 to	
extent	 of	 fC-ODN	 consumption	 since	 two	 peaks	 were	 observed	 corresponding	 to	 5-fC	 functionalisation	
(Chapter	3	-	Appendix).	
	

	
Scheme	5:	Synthesis	of	biotinylated	o-phenylenediamine	(o-Biophen)	using	EDC-activated	peptide	coupling	
chemistry.	
	

To	 further	 examine	 the	 scope	 of	 differential	 reactivity	 in	 the	 pulldown	 strategy,	 a	

molecule	was	designed	and	synthesised	that	incorporated	both	o-phenylenediamine	and	

a	 biotin	 linker.	 Biotinylated	 o-phenylenediamine	 (o-Biophen)	 was	 synthesised	 in	 one	

step	 from	 4,5-diaminobenzoic	 acid	 (1)	 and	 biotin	 hydrazide	 (2),	 using	 EDC	 peptide	

coupling	 chemistry	 in	 the	 presence	 of	 hydroxybenzotriazole	 (HOBt),	 which	 acts	 as	 a	

nucleophilic	 catalyst181	 (Scheme	 5).	 Subsequent	 reaction	 of	 the	 o-Biophen	 probe	with	

the	 ODN	models	 demonstrated	 that	 this	 reagent	 could	 also	 discriminate	 between	 the	

two	formylated	bases,	which	would	allow	selective	5-fU	enrichment	(Figure	35).	
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Figure	35:	LC-MS	trace	demonstrating	the	selective	reaction	of	fU-ODN	with	o-Biophen	probe	in	the	
presence	of	fC-ODN.		

	
3.5.	Proof	of	Concept	Chemical	Enrichment	Pulldown	Studies	

To	 validate	 the	 selectivity	 and	 feasibility	 of	 this	 approach	 for	 a	 pulldown	 sequencing	

method,	 the	 tagging	 strategy	 and	 extent	 of	 enrichment	was	 assessed	 by	 quantitative-

PCR	(qPCR).		80mer	dsDNA	models	containing	5-fU,	5-fC	or	non-modified	T	(fU-DNA,	fC-

DNA	and	GCAT-DNA)	were	designed	 to	1)	 incorporate	 two	modified	bases	per	 strand,	

and	 2)	 contain	 different	 primer	 regions	 so	 that	 each	 model	 could	 be	 distinguished	

separately	 by	 qPCR.	 Following	 a	modified	 protocol	 from	 Rao	 and	 co-workers116,	 DNA	

strands	were	 subjected	 to	 the	 optimised	 chemoselective	 tagging	 conditions	with	 each	

probe,	 before	 purification	 using	 size	 exclusion	 chromatography.	 The	 tagged	 DNA	was	

incubated	in	the	presence	of	magnetic	streptavidin	beads,	before	subsequent	removal	of	

the	supernatant,	which	contained	non-bound	DNA,	and	stringent	washing	of	the	beads.	

The	 DNA	 was	 eluted	 from	 the	 beads	 by	 heating	 in	 formamide,	 which	 destroys	 the	

biotin/streptavidin	interaction,	and	subsequently	purified	by	size	filtration.		
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Figure	36:	Workflow	of	chemical	enrichment	experiment	followed	by	qPCR	quantification.	

	

The	enriched	DNA	was	quantified	by	qPCR	in	comparison	with	calibration	lines	for	each	

model	DNA	strand	(Figure	36).	An	approximately	150-fold	enrichment	of	 fU-DNA	over	

fC-DNA	was	 demonstrated	with	 each	 probe	 after	 chemoselective	 tagging	 (Figure	 37).	

The	extent	of	5-fU	enrichment	was	similar	over	both	fC-DNA	and	GCAT-DNA	for	the	BH	

probe,	indicating	that	captured	fC-DNA	was	at	the	background	level	and	hence	unlikely	

to	be	caused	by	covalent	reactivity.		

	

The	selectivity	of	5-fC	enrichment	conditions51,	using	ARP	in	the	presence	of	p-anisidine,	

were	 also	 tested	 by	 qPCR.	 As	 expected,	 limited	 discrimination	 between	 5-fU	 and	 5-fC	

was	observed	using	5-fC	tagging	chemistry;	this	suggested	that	previously	generated	5-

fC	 genome-wide	 maps	 would	 have	 simultaneously	 enriched	 for	 the	 5-fU	

modification.51,53		

	

	
Figure	37:	Extent	of	enrichment	of	fU-DNA	over	fC-DNA	or	GCAT-DNA	under	different	conditions	(Mean	+	
SD).	
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3.6.	Ab	initio	Quantum	Mechanical	Calculations	on	5-fU	and	5-fC	Reactivity	
The	following	ab	initio	work	was	completed	in	collaboration	with	Dr	A.	Sahakyan,	
Balasubramanian	group.	
	

To	obtain	a	 theoretical	 insight	on	what	might	 facilitate	 the	 increased	reactivity	of	5-fU	

over	 5-fC,	 ab	 initio	 quantum	 mechanical	 calculations	 were	 performed	 on	 simplified	

model	 systems.	 Both	 5-fU	 and	 5-fC	 were	 modelled	 with	 a	 methyl	 group	 at	 the	 N-

glycosidic	 position	 (5-fUm	and	 5-fCm),	 while	 methylamine	 was	 taken	 to	 be	 the	 model	

reactant	(Figure	38).	When	modelling	transition	states,	the	rate-determining	step	of	the	

reaction	 was	 considered	 to	 be	 nucleophilic	 addition	 to	 the	 aldehyde	 to	 form	 the	

hemiaminal.		

	

	
Figure	 38:	 a)	 The	 simplified	 molecules	 for	 the	 computational	 study.	 b)	 The	 first	 stage	 of	 the	 addition	
reaction,	expected	to	be	the	rate	limiting	step.182	
	

3.6.1.	Aldehyde	Rotation	Barriers	in	5-fUm	and	5-fCm.		

Since	5-fUm	and	5-fCm	can	exist	in	two	rotameric	states,	syn	or	anti,	the	minimum	energy	

structures	(MES)	of	these	two	nucleotides	and	the	associated	rotation	barrier	between	

the	 two	 conformations	was	 initially	 considered.	 It	was	 found	 that	while	 5-fUm	prefers	

the	anti	conformation	in	its	ground	state	(11.58	kcal/mol	rotation	barrier),	5-fCm	prefers	

the	 syn	 conformation	 (15.43	 kcal/mol	 rotation	 barrier),	 likely	 due	 to	 a	 stabilising	 H-

bond	 interaction	 between	 4-NH2	 and	 the	 aldehyde	 oxygen	 (Figure	 39).	 The	 rotation	

barriers	are	substantial	enough	that	the	molecules	are	 likely	to	occupy	their	minimum	

energy	structures	at	ambient	temperature,	which	is	supported	by	crystal	structures	of	5-

fU-	and	5-fC-containing	small	molecules.183,184,185,186	

 

It	was	therefore	feasible	that	the	differences	in	conformational	preference	of	5-fU	and	5-

fC	 could	 contribute	 to	 the	 different	 reactivities	 observed	 for	 these	 formylated	

nucleobases.	 Since	 the	 biotinylated	 probes	 are	more	 sterically	 bulky	 than	 the	methyl	

group,	 it	 was	 conceivable	 that	 the	 products	 of	 the	 reaction	 would	 prefer	 the	 anti	
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configuration.	Whilst	 the	anti	 arrangement	 is	 favoured	by	5-fU,	 the	same	arrangement	

for	5-fC	would	require	a	rotation	barrier	 to	be	overcome.	Moreover,	upon	hemiaminal	

formation,	 the	H-bonding	 interaction	 responsible	 for	 the	5-fC	 syn	 conformation	would	

be	disrupted,	a	further	energetic	cost.			

	

	
Figure	 39:	 The	 energy	 minima	 (syn	 and	 anti)	 and	 the	 transition	 states	 (TS)	 along	 the	 aldehyde	 group	
rotation	pathway	in	a)	5-fUm	and	b)	5-fCm.	The	higher	energy	conformations	are	marked	with	asterisks.182		
	

3.6.2.	Partial	Charges	and	LUMO	Orbital	Energies	at	the	Aldehyde	of	5-fUm	and	5-

fCm.		

The	partial	charges	at	the	aldehyde	carbon	for	5-fUm	and	5-fCm	were	next	considered,	to	

determine	 if	 electrostatics	 contributed	 to	 the	difference	 in	 reactivity.	Both	Mulliken187	

(Mull)	 charges	 and	Merz-Singh-Kollman188,189	 (MSK)	were	 considered	 for	5-fUm	and	5-

fCm	 in	 both	 rotameric	 states.	 The	 computations,	 however,	 gave	 inconclusive	 results,	

since	 the	 calculated	 charge	 greatly	 varied	 depending	 on	 the	 model	 used	 (Figure	 40).	

When	 considering	 the	 ground	 rotameric	 states,	 5-fC	 appeared	 to	 have	 either	 a	 higher	

(MK)	 or	 similar	 (Mull)	 positive	 charge,	 which	 contradicted	 the	 experimental	

observation.	This	suggested	that,	unsurprisingly,	the	reaction	was	not	driven	purely	by	

electrostatics.		
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Figure	 40:	 The	Mulliken	 (Mull)	 and	Merz-Singh-Kolmann	 (MSK)	 partial	 charges	 at	 the	 aldehyde	 carbon	
calculated	for	both	syn	and	anti	conformers	of	a)	5-fUm	and	b)	5-fCm.	The	minimum	energy	conformers	along	
with	the	MSK	charges	are	shown	in	c)	and	e)	for	5-fUm	and	5-fCm	respectively.	Charge	distribution	(colour	
pallet	from	red	to	blue	for	-0.08	to	+0.08	charge	range)	is	demonstrated	in	d)	and	f).182	
	

3.6.3.	Natural	Bond	Orbital	Analysis	of	5-fUm	and	5-fCm.		

Next,	 natural	 bond	 orbital	 (NBO)	 analysis190,191	was	 used	 to	 determine	whether	 5-fUm	

and	 5-fCm	 orbital	 energies	might	 reveal	 a	 core	 electronic	 difference	 between	 the	 two	

formylated	bases.	The	most	marked	difference	was	the	calculated	orbital	energy	of	the	

Cring-Caldehyde	bonding	orbital,	which	was	found	to	be	18.37	kcal/mol	more	stable	in	5-fCm	

compared	 to	 5-fUm	when	 considering	 their	 rotameric	 ground	 states.	 Such	 a	 difference	

suggested	 a	 higher	 degree	 of	 conjugation	 in	 5-fC	 compared	 to	 5-fU.	 Upon	hemiaminal	

formation,	 the	 aldehyde	 carbon	 becomes	 more	 tetrahedral,	 leading	 to	 a	 loss	 of	

stabilizing	 conjugation;	 this	 effect	would	 therefore	be	 less	disruptive	 for	5-fU,	 thereby	

contributing	 to	 its	 enhanced	 reactivity.	 In	 addition,	 when	 considering	 LUMO	 orbital	

energies,	5-fUm	was	found	to	have	a	 lower	orbital	energy	regardless	of	rotameric	state	

(8.63	kcal/mol	difference	based	on	preferred	5-fUm	vs	5-fCm	conformation),	indicating	a	

much	better	orbital	energy	overlap	between	the	LUMO	of	the	aldehyde	and	the	HOMO	of	

the	incoming	nucleophile.	

	

For	both	model	reactions	with	5-fUm	and	5-fCm,	the	location	of	a	transition	state	for	the	

nucleophilic	addition	was	attempted.	When	considering	the	interactions	between	5-fUm,	

the	 incoming	 nucleophile	 and	 a	 water	 molecule,	 an	 energy	 minimum	 was	 identified	

(Figure	 41),	 which	 was	 more	 stable	 than	 a	 system	 of	 non-interacting	 individual	

molecules	 (-13.79	 kcal/mol).	 	 This	 intermediate	 structure	 demonstrates	 that	 a	 6-

membered	hydrogen	transfer	ring	 is	 formed,	where	the	4-O	of	5-fU	 forms	a	stabilising	

hydrogen	bond	with	 the	 incoming	nucleophile.	 It	was	also	observed	 that	 the	aldehyde	

carbon	loses	planarity	upon	interaction	with	the	nucleophile,	which	would	aid	C-N	bond	

formation.	It	was,	however,	not	possible	to	locate	a	similar	energy	minimum	for	5-fC.	
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Figure	41:	The	intermediate	state	(ΔE=-13.79	kcal/mol)	formed	during	hemiaminal	formation	with	5-fUm	
(a).	The	structure	is	stabilised	via	the	extra	hydrogen	bond	between	the	amino	group	and	the	4-O	of	5-fUm.	
The	aldehyde	carbon	has	partially	gained	tetrahedricity	(b)	upon	C-N	bond	formation,	and	slightly	rotated	
to	facilitate	the	formation	of	the	above-mentioned	hydrogen	bond.	All	the	outlined	distances	are	measured	
in	Å.182	
	

In	conclusion,	the	alternative	preferred	conformation	of	5-fU	and	5-fC	may	go	some	way	

to	 explaining	 such	 a	 difference	 in	 reactivity,	 however	 core-electronic	 differences	

corroborate	the	finding	that	5-fU	is	a	better	electrophile,	providing	an	explanation	for	its	

enhanced	reactivity	compared	to	5-fC.	
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3.7.	Apurinic/Apyrimidinic	(AP)	Site	Selectivity		

Although	 it	 had	 been	 demonstrated	 that	 5-fU	 could	 be	 tagged	 selectively	 over	 5-fC,	 it	

was	possible	that	AP	sites	could	also	be	trapped	in	the	presence	of	an	aldehyde	reactive	

probe.	ARP	has	in	fact	been	utilised	for	AP	site	quantification,192	hence	it	was	necessary	

to	 determine	 the	 potential	 background	 of	 AP	 sites	 in	 the	 proposed	 T-modification	

enrichment-sequencing	method.	 	AP	site	cross-reactivity	was	firstly	investigated	under	

the	optimised	conditions	for	5-fU	tagging	with	BH,	ARP	and	o-phenylenediamine	probes.	

BH	demonstrated	the	least	cross-reactivity	with	AP-ODN,	suggesting	this	probe	may	be	

advantageous	to	supress	any	signals	from	AP	sites	(Table	7).		

	
	 Probe	 AP-ODN	Reactivity	(%)	

1	 0.4	mM	ARP,	pH	6,	4	hr	 90	

2	 10	mM	BH,	pH	7,	4	hr	 10	

3	 5mM,	o-phenylenediamine,	pH	7,	1	hr	 28	

Table	7:	Percentage	labelling	of	probes	with	AP-ODN	where	%	conversion	refers	to	integration	of	LC-MS	
product	and	starting	material	signal	at	260nm	using	optimised	conditions	for	5-fU	tagging.	
	

However,	 AP	 sites	 have	 been	 reported	 to	 cause	 polymerase-stalling	 during	 primer	

extension	 or	 PCR	 of	 DNA	 fragments.193	 Since	 the	 amount	 of	 DNA	 recovered	 after	

chemical	pulldown	is	likely	to	be	very	small	due	to	the	low	abundance	of	5-fU	(and	DNA	

containing	AP	sites),	 several	cycles	of	PCR	amplification	are	anticipated	after	chemical	

enrichment	 to	 generate	 sufficient	 DNA	 for	 sequencing	 (e.g.	 14-16	 cycles	 of	 PCR	 are	

required	 for	 5-fC	 chemical	 enrichment).51,53	 Full	 polymerase	 extension	 is	 essential	 for	

NGS	 since	 both	 sequencing	 adaptors	 are	 required	 for	 amplification	 on	 the	 DNA	

sequencing	 flow-cell	 (Section	3.8.1).	 It	was	 therefore	 likely	 that	 tagged	AP	sites	would	

fail	to	amplify,	regardless	of	tagging	efficacy.	

	

	To	 confirm	 this	 finding,	 an	 80bp	 oligomer	 containing	 two	 AP	 sites	 (AP-DNA),	 was	

synthesised	 from	 the	 enzymatic	 treatment	 of	 U-containing	 DNA	 (U-DNA)	 with	 Uracil	

DNA	glycosylase	(UNG)	enzyme	and	incubation	at	37	°C	(Figure	42).51	
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Figure	42:	AP-DNA	can	be	formed	via	excision	of	U	from	U-DNA	using	the	UNG	enzyme.	The	resulting	AP	
site	is	in	equilibrium	between	closed	and	open	sugar	form,	the	latter	containing	a	reactive	aldehyde.	
	

A	primer-extension	experiment	was	next	performed	on	AP-DNA	and	an	equivalent	80-

mer	bearing	two	5-fU	modifications	(fU-DNA),	which	had	both	been	treated	with	the	BH	

probe	under	optimised	conditions	(Table	5	–	Entry	5).	While	full	polymerase	extension	

was	observed	 in	 the	 latter	 case,	 stalling	predominantly	occurred	at	 the	 first	AP	site	 in	

AP-DNA,	 and	 no	 full-length	 product	 was	 observed	 (Figure	 43).	 This	 confirmed	 the	

expectation	that	AP	sites	are	 likely	to	be	under-represented	by	sequencing	even	in	the	

event	of	promiscuous	reactivity.	

	

	
Figure	43:	Polymerase	extension	of	80mer	DNA	containing	either	two	5-fU	modifications	(fU-DNA)	or	two	
AP	sites	(AP-DNA)	which	had	been	treated	with	the	BH	probe.	No	full-length	primer	extension	of	AP-DNA	is	
observed,	however	two	polymerase	stalling	sites	corresponding	to	AP	loci	are	seen.	
	

Furthermore,	DNA	fragments	containing	AP	sites	were	prone	to	fragmentation	under	

the	basic	5-hmU	à	5-fU	oxidation	conditions194	(Figure	44).	Since	oxidation	occurs	after	

the	ligation	of	adaptors	for	sequencing	(Section	3.8.3),	this	would	further	render	DNA	

bearing	AP-sites	unsequenceable	after	fragmentation.		
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Figure	44:	Under	denaturation	conditions	for	hmU-ODN	oxidation	(50	mM	sodium	hydroxide),	AP-ODN	
fragmentation	is	observed.	
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3.8.	 Incorporation	 of	 Chemical	 Tagging	 into	 the	 NGS	 Library	 Preparation	

Workflow	

3.8.1.	Background	-	Library	Preparation	of	Samples	for	NGS	

Proof	of	principle	selective	tagging	and	enrichment	had	now	been	demonstrated	for	5-

hmU	and	5-fU.	The	chemical	tagging	method	next	needed	to	be	incorporated	into	an	NGS	

library	 preparation	 workflow	 to	 enable	 T-modification-enrichment	 sequencing	 of	

genomic	samples.			

	

Library	preparation	for	NGS	(Figure	45)	includes:	1)	a	fragmentation	step,	where	DNA	is	

first	sonicated	(broken	down)	into	smaller	fragments	of	around	100-1000	bp;	2)	an	end-

repair	 step,	where	 an	 enzymatic	mixture	 of	 T4	 polymerase,	 Klenow	 fragment	 and	 T4	

polynucleotide	kinase	fills	in	5’	overhangs,	resects	3’	overhangs	to	generate	blunt	ends	

and	 phosphorylates	 the	 5’	 end;	 3)	 an	 A-tailing	 step,	 where	 a	 DNA	 polymerase	 (e.g.	

Klenow	 fragment)	 adds	 dATP	 to	 the	 3’	 ends;	 4)	 Adaptor	 Ligation,	 where	 sequencing	

adaptors	 containing	 complementary	 dT	 overhangs	 are	 ligated	 to	 DNA	 fragments	 by	 a	

DNA	 ligase	 (these	 adaptors	 are	 necessary	 for	 hybridisation	 onto	 the	 sequencing	 flow-

cell,	 and	 for	 subsequent	 PCR	 enrichment)	 and	 5)	 PCR	 amplification,	 where	 ligated	

fragments	 are	 amplified	 by	 PCR	 using	 primers	 complementary	 to	 the	 sequencing	

adaptors;	this	generates	adequate	amounts	of	DNA	for	sequencing.195,196	

	

Chemical	 tagging	 and/or	 enrichment	 needed	 to	 be	 incorporated	 into	 this	 workflow,	

either	after	 sonication	or	before	 the	PCR	step	 (Figure	45);	 furthermore,	potential	PCR	

biases	associated	with	the	biotinylated	probes	needed	to	be	considered.	

	

	
Figure	 45:	 Workflow	 of	 library	 preparation	 for	 NGS.	 Chemical	 tagging	 and/or	 enrichment	 can	 be	
incorporated	at	either	points	A)	or	B).	
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3.8.2.	Probe	Reversibility	and	Minimisation	of	PCR	Biases	

Considering	that	T-modifications	in	genomic	samples	are	low	in	abundance	(Chapter	2),	

the	PCR	step	would	be	essential	after	affinity	enrichment	to	generate	adequate	amounts	

of	DNA	for	sequencing.	However,	 the	presence	of	a	 large	chemical	moiety	on	DNA	(i.e.	

biotin	linker)	can	cause	polymerase	stalling,	affecting	the	PCR	amplification	efficiency	of	

chemically-tagged	DNA	fragments.123,197	This	would	be	of	particular	concern	in	densely	

modified	 regions,	 leading	 to	 a	 potential	 underrepresentation	 of	 genomic	 loci	 that	 are	

biologically	relevant.	 It	had	already	been	demonstrated	that	the	biotinylated	oxyamine	

ARP	 caused	 significant	 polymerase	 at	 5-fC	 sites	 after	 tagging.197	 This	 was	 alleviated	

when	 a	 cleavable	 biotinylated	 oxyamine	 ARP	 variant	was	 employed,	 leaving	 behind	 a	

smaller	oxime	chemical	residue	(Figure	46).197	The	cleavable	variant	was	therefore	used	

for	subsequent	chemical	5-fC	mapping.53	

	

	
Figure	46:	Chemical	tagging	of	5-fC	with	ARP	led	to	polymerase	stalling.		A	cleavable	oxyamine	linker	using	
TCEP-mediated	 Staudinger	 chemistry	 results	 in	 a	 5-fC-oxime	 adduct	 which	 demonstrated	 reduced	 PCR	
polymerase	stalling	compared	to	ARP.197	
	

As	 an	 alternative	 to	 the	 cleavable	 linker	 strategy,	 it	was	 found	 that	 the	 fU-BH	 adduct	

could	 be	 reversed.	 This	 occurred	 quantitatively	 via	 transimination	 in	 the	 presence	 of	

hydroxylamine	and	the	nucleophilic	catalyst	p-anisidine,198,199	 to	 leave	a	smaller	oxime	

moiety	 on	 5-fU	 (Scheme	 6).	 ARP	 adduct	 reversion	was	 possible	 yet	 required	 harsher	

conditions,	 while	 the	 benzimidazole	 formed	 from	 o-phenylenediamine	 was	 stable	 to	

reversion	(Appendix	–	Chapter	3).	
	

	
Scheme	6:	5-fU-BH	adduct	could	be	reversed	in	the	presence	of	p-anisdine	+	NH2OH	

	

O

NH2

N

N N
O

O

NH2

N

N N
O

= Biotin linker

TCEP

O

NH2

N

N N
OH

ARP-adduct

Cleavable
linker adduct

fC-ARP

PCR

fC-oxime

Polymerase stalling

Elongation
N3

Cleave

N

NH

O

O N

NH

O

O

N
H
N

O

= Biotin linker

N
HO

NH2OH
p-anisidine



	 62	

The	transimination	reaction	with	the	BH-adducts	also	enabled	chemoselective	elution	of	

5-fU-modified	 DNA	 from	 the	 beads,	 while	 the	 fC-BH-adduct	 remained	 intact.	 This	

exploited	the	enhanced	electrophilicity	of	5-fU	and	its	related	compounds,	as	had	been	

modelled	 by	 quantum	mechanical	 calculations.	 Selective	 elution	was	 achievable	 using	

neutral	conditions	with	moderate	heating	(40	°C)	in	the	presence	of	p-anisidine	(Figure	

47).	For	the	5-fC-BH	adduct,	probe	reversibility	required	more	acidic	conditions	(pH	5)	

and	longer	reaction	times	in	order	to	go	to	completion	(Appendix	–	Chapter	3).		

	

Figure	47:	5-fU-BH	adduct	could	be	reversed	chemoselectively	while	5-fC-BH	adduct	remained	stable	under	
chemical	elution	conditions.	A)	fU-ODN	and	fC-ODN	BH	adducts	generated	via	quantitative	tagging	with	BH	
in	the	presence	of	p-anisidine,	B)	Selective	transamination	observed	for	fU-BH	adduct	ODN	to	form	fU-
NH2OH	ODN	in	the	presence	of	p-anisdine.	
	

This	strategy	enabled	a	second-round	of	enrichment	for	5-fU	modified	DNA	fragments;	

any	 5-fC	 adducts	 resulting	 from	 promiscuous	 reactivity	 in	 the	 tagging	 step	 remain	

attached	 to	 the	 streptavidin	 beads.	 	 An	 approximately	 9-fold	 additional	 increase	 in	

selectivity	for	fU-DNA	was	observed	using	NH2OH-mediated	cleavage	as	determined	by	

qPCR	 (Figure	 48).	 This	 elution	 method	 further	 ensured	 selective	 T-modification	

enrichment,	whilst	also	minimising	PCR	biases.	
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Figure	48:	5-fU/5-fC	selective	enrichment	(mean	with	SD)	of	BH	adducts	using	NH2OH	mediated	selective	

chemical	elution		
	

3.8.3.	Library	Preparation	for	T-modification	Using	Model	DNA	

Chemoselective	tagging	and	chemoselective	elution	had	now	been	demonstrated	for	the	

T-modifications.	 In	 order	 to	 confirm	 T-modification	 chemical-enrichment	 by	

sequencing,	 these	 steps	 were	 incorporated	 into	 the	 library	 preparation	 procedure.	

Model	 ODNs	 (fU-DNA/hmU-DNA,	 fC-DNA2/hmC-DNA2,	 GCAT-DNA)	 were	 utilised	 to	

validate	 the	 procedure	 and	 to	 determine	 the	 extent	 of	 enrichment	 after	 library	

preparation	and	NGS.	

	

For	5-fU	enrichment	sequencing,	sonicated	DNA	fragments	were	firstly	subjected	to	the	

optimised	tagging	conditions,	followed	by	purification.	The	fragments	were	prepared	for	

DNA	sequencing	via	standard	library	preparation	for	Illumina	sequencing	using	the	NEB	

Ultra	 II	 library	 preparation	 kit;	 this	 was	 followed	 by	 streptavidin	 enrichment	 of	

biotinylated	DNA	fragments,	selective	NH2OH-mediated	elution	and	subsequent	PCR.		

For	 5-hmU	 chemical	 enrichment	 sequencing,	 the	 workflow	 was	 slightly	 altered	 to	

accommodate	 the	 fact	 that	 chemical	 oxidation	 resulted	 in	 the	 formation	 of	 single-

stranded	DNA.124	Due	 to	 the	 inefficiency	of	single-stranded	 ligation,	 ligation	of	double-

stranded	 DNA	 fragments	 was	 performed	 prior	 to	 the	 chemical	 tagging	 reaction.	

Modified	adaptors	(5’-OMe	and	3’-Phos)	were	used	to	avoid	any	unspecific	oxidation	of	

terminal	 5’-OH	or	3’-OH	hydroxyl	 groups	on	DNA	 fragments.	The	DNA	was	denatured	

(50	mM	sodium	hydroxide,	37	°C,	30	min)	to	single-stranded	DNA	before	addition	of	the	

oxidant.	The	oxidised	DNA	was	subjected	to	chemoselective	tagging	conditions	followed	

by	 chemical	 enrichment,	 selective	 NH2OH-mediated	 elution	 and	 subsequent	 PCR.	 The	

oxidation	 step	was	 extremely	 sensitive	 to	 the	 presence	 of	 alcohol	 or	 residual	 enzyme	
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from	 prior	 ligation	 steps.	 Thus,	 prior	 to	 chemical	 enrichment,	 purification	 steps	 to	

remove	any	trace	impurities	were	essential.		

	

	
Figure	49:	5-fU	and	5-hmU	enrichment	(mean	with	SD)	demonstrated	by	fold	enrichment	of	sequencing	
reads.		
	

By	 comparing	 the	 number	 of	 sequencing	 reads	 of	 model	 ODNs	 after	 chemical-

enrichment	 sequencing,	 significant	 enrichment	 of	 fU-DNA	 (>	 100-fold)	 was	 observed	

over	 fC-DNA2	and	GCAT-DNA	models	 (Figure	49	 -	Left).	This	was	possible	by	utilising	

both	chemoselective	5-fU	tagging	and	NH2OH-mediated	elution.	5-hmU	enrichment	was	

also	observed	via	 sequencing	 reads	 (Figure	49	 -	Right);	 enrichment	 efficacies	 in	 some	

replicates	were	more	variable,	likely	due	to	varying	efficiency	of	the	oxidation	step.	NGS	

of	the	DNA	models	confirmed	that	the	chemical	enrichment	method	for	5-fU	and	5-hmU	

was	compatible	when	incorporated	into	the	library	preparation	procedure.	Thus,	these	

methods	could	now	be	applied	 for	T-modification	enrichment	sequencing	 in	biological	

samples.		

	

3.9.	Chemical	Discrimination	Between	5-hmU	and	5-fU		

Finally,	 since	 5-hmU	 is	 also	 tagged	 using	 the	 same	 chemistry	 as	 for	 5-fU,	 a	 proof-of-

principle	method	was	demonstrated	by	LC-MS	to	chemically	discriminate	between	 the	

two	T-modifications.	It	was	shown	that	5-fU	can	be	chemically	blocked	prior	to	5-hmU	

oxidation	using	N-methylhydroxylamine.	5-hmU	can	then	be	selectively	tagged	using	the	

BH	 probe	 following	 oxidation	 (Scheme	 7).	 Although	 chemical	 discrimination	 may	 be	

useful,	 it	was	envisaged	that	 the	presence	of	5-hmU	enriched	regions	could	 instead	be	

determined	 bioinformatically	 by	 comparing	 chemical	 enrichment-sequencing	maps	 in	

the	presence	or	absence	of	an	oxidation	step.		
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Scheme	 7:	 5-hmU	 can	 be	 tagged	 selectively	 over	 5-fU	 via	 prior	 blocking	 of	 5-fU	 with	 N-
methylhydroxylamine,	oxidation	and	tagging	with	BH.	
	

3.10.	Conclusion	

In	 conclusion,	 reactivity	 and	 proof-of-concept	 enrichment	 studies	 highlighted	 the	

feasibility	 of	 using	 a	 chemoselective	 method	 to	 tag	 5-fU	 (and	 5-hmU	 after	 chemical	

oxidation).	This	enables	the	enrichment	of	DNA	fragments	that	contain	T-modifications	

selectivity	over	the	analogous	C-modifications.182	The	increased	reactivity	of	5-fU,	over	

5-fC,	was	rationalised	using	ab	initio	quantum	mechanical	calculations.	Selectivity	of	5-

fU	versus	AP	sites	was	also	assessed;	it	was	demonstrated	that	DNA	containing	AP	sites	

are	unlikely	 to	be	 efficiently	 amplified	by	DNA	polymerases,	 hence,	AP	 sites	would	be	

underrepresented	in	any	chemical	enrichment	method	where	DNA	sequencing	provides	

the	readout.		

	

The	 chemical	 enrichment	 method	 was	 next	 incorporated	 into	 the	 experimental	

workflow	 for	 DNA	 sequencing.	 A	 selective	 chemical	 elution	 method	 using	 NH2OH-

transiminiation	 was	 shown	 to	 provide	 further	 T-modification	 discrimination,	 while	

minimising	potential	PCR	biases.	Using	model	DNA	 fragments,	 selective	enrichment	of	

both	5-hmU	and	5-fU	was	demonstrated	by	NGS.		

	

The	chemical-enrichment	method	could	now	be	used	to	generate	T-modification	maps	

in	trypanosomatid	and	mammalian	targets	in	order	to	probe	their	function;	indeed,	this	

method	 was	 utilised	 to	 generate	 the	 first	 5-hmU	 affinity	 map	 in	 the	 trypanosomatid	

Leishmania	 in	 combination	with	 a	 hmU-DIP	method	 (Section	 –	 4.2.1).	 	 An	 alternative	

proof	 of	 principle	 chemoenzymatic	 method	 to	 enrich	 5-hmU	 has	 recently	 been	

published	 by	 Bullard	 et	al;	 this	 involves	 enzymatic	 glucosylation	 of	 5-hmU	with	UDP-

glucose	 and	 J-GT,	 followed	 by	 Base	 J	 immunoprecipitation.200	 There	 are,	 however,	
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several	 limitations	 of	 this	method	 compared	 to	 the	 strategy	 proposed	 in	 this	 chapter.	

Firstly,	 the	 J-GT	 enzyme	 is	 not	 widely	 available;	 secondly,	 the	 use	 of	 Base	 J	

immunoprecipitation	 prevents	 the	 discrimination	 of	 5-hmU	 and	 Base	 J	 loci	 in	

trypanosomatid	 targets	 and	 thirdly,	 the	 method	 depends	 on	 J-GT	 not	 having	 any	

sequence	 specificity,	 an	 assumption	 which	 is	 questioned	 in		

Chapter	4.		

	

Although	 the	 work	 in	 this	 chapter	 was	 designed	 with	 the	 chemical	 enrichment	 of	 T-

modified	 bases	 in	mind,	 analogous	 chemistry	 inspired	 by	 this	work	 has	 subsequently	

been	used	for	chemoselective	fluorescence	visualisation	of	5-fU	in	DNA.201	Furthermore,	

the	chemistry	developed	could	be	applied	 in	 the	 future	 to	 tag	T-modifications	prior	 to	

third-generation	sequencing	methods;	the	presence	of	a	 large	chemical	tag	will	help	to	

discriminate	their	kinetic	signal	from	the	canonical	bases.129			

	

Finally,	 the	work	 in	 this	 chapter	 highlights	 that	 conditions	 currently	 utilised	 for	 5-fC-

enrichment	sequencing	fail	to	discriminate	between	5-fC	and	5-fU;	this	should	therefore	

be	acknowledged	 for	 any	 future	5-fC-based	enrichment	 sequencing.	 Since	5-hmU	sites	

can	 be	 distinguished	 from	5-fU	 sites	 by	 prior	 5-fU	 blocking,	 this	 type	 of	 strategy	 (e.g.	

selectively	 blocking	 5-fU	 tagging	 via	 irreversible	 benzimidazole	 formation	 with	 o-

phenylendiamine)	could	be	utilised	to	achieve	selective	5-fC	tagging.		
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4.	Exploring	the	Role	of	T-modifications	in	Trypanosomatid	and	

Mammalian	Systems	by	Sequencing	

	
4.1.	Introduction	

The	aim	of	this	chapter	was	to	utilise	NGS	to	explore	the	role	of	T-modifications	in	both	

trypanosomatids	and	mammalian	 targets.	 In	 trypanosomatids,	5-hmU	 is	 enzymatically	

generated	 via	 JBP-oxidation	 of	 thymine,	which	 is	 further	 glycosylated	by	 J-GT	 to	 form	

Base	J	(Introduction	–	1.4.3).	A	goal	of	this	chapter	was	to	explore	the	origin	of	distinct	

5-hmU	loci	in	trypanosomes,	independent	from	Base	J	loci,	suggesting	a	unique	role	for	

5-hmU	aside	from	being	a	Base	J	intermediate.	In	mammals,	5-hmU	and	5-fU	are	known	

products	 of	 ROS,	whilst	 5-hmU	has	 also	 been	 suggested	 to	 be	 a	 product	 of	 enzymatic	

TET-mediated	oxidation,	and	implicated	in	gene	regulation.40	Thus,	a	second	aim	of	this	

chapter	was	to	generate	the	first	T-modification	maps	in	the	human	genome,	to	provide	

further	insight	into	the	origin,	biological	role	and	consequence	of	oxidised	T	derivatives	

in	mammalian	systems.		

	

4.2.	T-modification	Mapping	in	Trypanosomatids	

4.2.1.	Introduction	-	T-modification	Mapping	in	Leishmania	

Kawasaki	et	al.	 generated	 the	 first	genome-wide	map	of	5-hmU	 in	 the	 trypanosomatid	

Leishmania.202	5-hmU	maps	were	generated	based	on	the	chemical	method	developed	in	

Chapter	3,	 and	an	antibody	affinity	approach	using	a	goat	polyclonal	antibody	specific	

for	 5-hmU	 (hmU-DIP).	 Furthermore,	 since	 this	 organism	 also	 contains	 the	

hypermodified	Base	 J,	 chemical	 enrichment	of	Base	 J	was	performed	using	 a	modified	

GLIB-seq	approach	(Figure	50).	This	method	utilises	sodium	periodate	oxidation	of	the	

glucose	moiety	followed	by	aldehyde-tagging	with	the	biotinylated	hyrazide	probe	BH.		

	

	
Figure	50:	Chemical	method	utilised	for	Base	J	enrichment-sequencing;	this	involves	periodate	oxidation	of	
Base	J	followed	by	BH	tagging	of	the	dialdehydes.	
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Genomic	 regions	 enriched	 with	 modifications	 were	 determined	 by	 a	 build-up	 of	

sequencing	reads	at	certain	loci.203	Genomic	regions	enriched	with	5-hmU	were	found	to	

overlap	with	Base	J	 loci	(93%)	(Figure	51	–	A),	consistent	with	this	modification	being	

an	intermediate	in	Base	J	synthesis	(Figure	51	-	C).	However,	a	notable	outcome	of	this	

study	was	 the	detection	of	 	 “5-hmU	only”	 loci	 (Figure	51	–	B);	 these	 loci	were	distinct	

genomic	 regions	enriched	 for	 the	5-hmU	modification,	but	not	Base	 J.	This	 indicated	a	

unique	function	for	the	5-hmU	mark	in	addition	to	being	a	Base	J	intermediate.		

	

Sabatini	 and	 co-workers	 have	 suggested	 that	 Base	 J	 loci	 is	 determined	 via	 sequence	

specific	JBP1/JBP2	mediated	5-hmU	formation.	This	is	based	on	an	understanding	that		

J-GT	efficiently	converts	5-hmU	to	Base	J	with	no	sequence	specificity.95	The	presence	of	

distinct	5-hmU-loci	in	the	Leishmania	trypanosomatid	challenges	this	pre-existing	view,	

since	it	is	not	clear	why	5-hmU	in	these	regions	are	protected	from	further	glucosylation	

(Figure	51	–	C).	Furthermore,	 there	are	numerous	regions	where	Base	 J	 is	 found	to	be	

specifically	 enriched	 in	 the	 absence	 of	 5-hmU.	 This	 suggests	 that	 5-hmU	 in	 certain	

sequence	contexts	is	instead	more	quickly	or	preferentially	glycosylated	by	J-GT	(Figure	

51	–	C).		These	observations	raised	questions	about	the	existence	and	function	of	5-hmU	

within	distinct	5-hmU	enriched	regions	in	trypanosomatids,	and	the	sequence	specificity	

of	Base	J	formation.		

	

	
Figure	51:	A)	Overlap	of	5-hmU-enriched	loci	with	Base	J-enriched	genomic	loci	in	the	Leishmania	genome	
as	 determined	 by	 chemical	mapping,	 B)	 Gene-viewer	 demonstrating	 the	 presence	 of	 hmU-only	 enriched	
regions	(demonstrated	by	red	arrows)	determined	by	5-hmU	chemical	mapping	(top	panel),	which	are	not	
enriched	by	Base	 J	 chemical-mapping	 (bottom	panel)	C)	The	biosynthetic	pathway	of	Base	 J	 formation	 in	
Leishmania	and	other	trypanosomatids.	The	presence	of	distinct	Base	J	and	distinct	5-hmU	loci	may	indicate	
preferential	glucosylation	of	certain	5-hmU	marks.	A	and	B	parts	of	figure	are	from	reference	[202]	
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4.2.2.	T-modification	Sequencing	in	T.brucei	

This	 was	 a	 collaborative	 project	 where	 T-modification	 sequencing	 was	 carried	 out	 by	
myself	or	Dr	F.	Kawasaki	where	indicated;	bioinformatics	analysis	was	performed	by	Dr	F.	
Kawasaki,	 Dr	 S.	 Martinez-Cuesta	 or	 Dr	 D.	 Beraldi;	 trypanosome	 culture	 was	 either	
performed	by	Dr	Janaina	Freitas,	Carrington	group	(Differentiation	experiment)	or	myself	
(5-hmU	 spike-in	 experiment);	 Dr	 F.	 Kawasaki	 assisted	 with	 sample	 preparation	 for	 LC-
MS/MS.	All	LC-MS/MS	measurements	were	carried	out	by	myself.	
	

To	 further	 probe	 the	 role	 of	 5-hmU	 in	 trypanosomatids,	 a	 collaboration	was	 initiated	

with	 the	 Carrington	 group	 (Department	 of	 Biochemistry,	 University	 of	 Cambridge)	 to	

probe	these	marks	in	T.brucei.	 In	this	organism,	5-hmU	is	present	in	both	bloodstream	

form	 (BSF)	 and	 procyclic	 form	 (PCF),	whilst	 Base	 J	 is	 only	 detectable	 in	 BSF	 (Section	

2.5).	Base	J	and	5-hmU	enrichment-sequencing	was	firstly	performed	in	both	life-stages	

of	T.brucei	(Sequencing	by	Dr	F.	Kawasaki).	Distinct	5-hmU	loci	were	also	present	in	BSF	

T.brucei	 (Figure	 52	 –	 A)	 and	were	more	 abundant	 compared	 to	 Leishmania.	 Many	 of	

these	regions	were	commonly	enriched	with	5-hmU	enriched	regions	observed	 in	PCF	

(Figure	 52	 -	 B),	which	 lacks	 Base	 J.	 This	 provided	 further	 evidence	 that	 some	 5-hmU	

marks	were	resistant	 to	 further	glucosylation,	and	suggested	 that	5-hmU	could	have	a	

distinct	 epigenetic	 role	 beyond	 being	 a	 Base	 J	 intermediate.	 Studies	 were	 therefore	

designed	to	assess	the	sequence	specificity,	formation	and	dynamics	of	J-GT	mediated	β-

glucosylation	 in	 PCF	T.Brucei,	 to	 address	 the	 existence	 of	 distinct	 5-hmU	 loci	 in	 these	

organisms.			

	
Figure	52:	A)	Overlap	of	Base	J	and	5-hmU	distinct	loci	in	BSF	trypanosomes,	B)	Overlap	of	5-hmU	loci	in	
BSF	and	PCF	life-stages.	
	

4.2.3.	Exploring	the	Specificity	of	J-GT	Enzyme	

To	 further	 understand	 J-GT	 sequence	 specificity,	 β-glucosylation	 of	 artificially	

incorporated	5-hmU	in	PCF	T.brucei	was	assessed.	Borst	and	co-workers	had	previously	

demonstrated	 that	 supplementation	 of	 the	 5-hmU	 mononucleoside	 into	 PCF	 culture	

medium	led	to	formation	of	Base	J.109	The	5-hmU	mononucleoside	is	assimilated	into	the	

nucleobase	pool	and	incorporated	into	the	triphosphate	pathway	leading	to	generation	

of	5-dhmUTP.	This	leads	to	the	stochastic	incorporation	of	5-hmU	at	T-sites	throughout	
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the	 genome,	 which	 can	 be	 further	 glycosylated	 to	 form	 Base	 J.	 By	 replicating	 this	

experiment	and	 chemically-mapping	Base	 J	 formation,	 the	 sequence	 specificity	of	 J-GT	

could	be	 assessed	by	determining	areas	of	 the	 genome	enriched	or	depleted	of	Base	 J	

(Figure	53).	

	

	
Figure	 53:	 Workflow	 of	 hmU-spike	 in	 experiment	 in	 PCF	 trypanosomes.	 5-hmU	 incorporation	 and	
subsequent	Base	J	chemical-mapping	will	enable	assessment	of	J-GT	sequence-specificity		
	

PCF	 trypanosomes	 were	 therefore	 cultured	 in	 media	 supplemented	 with	 the	 5-hmU	

mononucleoside	(1	mM),	and	left	to	proliferate	without	dilution,	while	control	cultures	

were	grown	in	the	absence	of	mononucleoside.	Subsequent	DNA	extraction	and	accurate	

measurement	of	T-modifications	via	LC-MS/MS	confirmed	 the	 incorporation	of	5-hmU	

into	 artificially-fed	 PCF	DNA.	 Global	 5-hmU	 levels	were	~13-fold	 higher	 in	 5-hmU-fed	

samples	than	in	control	cultures	which	had	not	been	supplemented,	while	global	levels	

were	~2.75-fold	higher	than	the	natural	abundance	of	5-hmU	in	BSF	(Figure	54-	Left).	

Base	J	 formation	in	the	artificially	 fed	trypanosomes	was	also	confirmed	by	LC-MS/MS	

(Figure	54-	Right).	

	

	
Figure	54:	T-modification	levels	(Left-	5-hmU,	Right	–	Base	J)	in	PCF	trypanosomes	that	had	been	cultured	
in	the	presence	of	5-hmU,	compared	with	natural	levels	in	BSF	and	PCF	trypanosomes.	n.d	=	not	detected.	
	

	

J hmU hmU hmU
J hmU

hmU
hmU

hmU

Base J enriched regions

J J J hmU
J hmU

J
J

J

Base J depleted regions

R
ea

d 
co

un
t

Chromosome

Base J Sequence specificity

R
ea

d 
co

un
t

Chromosome

Base J Depletion

+ 5-hmU

- 5-hmU

+ 5-hmU

- 5-hmU

hmU hmU hmU hmU
hmU

hmU
hmU

hmU

hmU

+ 5-hmU
- 5-hmU

dhmUTP

T.bru
ce

i B
SF

T. b
ru

ce
i P

CF

T.bru
ce

i P
CF 

+ 1
mM hmU 

0

1×10-3

2×10-3

3×10-3

4×10-3

5×10-3

B
as

e 
J/

T

n.d

T.bru
ce

i B
SF

T.bru
ce

i P
CF 

T.bru
ce

i P
CF

+ 1
mM hmU

0.0

5.0×10-4

1.0×10-3

1.5×10-3

5-
hm

U
/T



	 71	

5-hmU	levels	appeared	to	remain	relatively	constant	irrespective	of	culture-time	in	the	

presence	 of	 5-hmU	 mononucleoside	 (Figure	 55	 -	 Left).	 In	 contrast,	 Base	 J	 levels	

increased	 with	 proliferation	 time,	 likely	 explained	 by	 a	 time-lag	 associated	 with	

enzymatic	 glucosylation	 (Figure	 55	 -	 Right).	 Base	 J	 levels	 reached	 ~6%	 of	 those	

observed	in	BSF,	despite	the	relative	5-hmU	levels	being	higher.	Since	not	all	5-hmU	was	

subject	 to	glucosylation,	 this	 further	 indicated	 that	 J-GT	activity	may	have	a	sequence-

context	dependence.	

	

	
Figure	55:	T-modification	levels	(Left-	hmU,	Right	–	Base	J)	in	PCF	trypanosomes	cultured	in	the	presence	
of	5-hmU	mononucleoside	and	relative	time	of	culture/proliferation.		
	

	

To	determine	the	loci	of	Base	J	in	these	samples,	and	hence	J-GT	specificity,	Base	J	was	

mapped	 via	 chemical-enrichment	 sequencing.	 Since	 5-hmU	 is	 randomly	 incorporated	

into	the	genome	when	added	to	the	culture	media,	areas	of	Base	J	enrichment	relative	to	

the	 rest	 of	 the	 genome	 are	 indicative	 of	 regions	 where	 Base	 J	 preferentially	 forms	

(Figure	53).	Furthermore,	areas	of	the	genome	protected	or	resistant	to	β-glucosylation	

(e.g.	 the	 5-hmU	 mark	 fails	 to	 be	 converted	 to	 Base	 J)	 would	 have	 a	 depleted	 signal	

relative	 to	 the	 rest	 of	 the	 genome	 (Figure	 53).	 The	 extent	 of	 Base	 J	 enrichment	 was	

normalised	against	control	samples,	which	had	been	cultured	 in	the	absence	of	5-hmU	

mononucleoside.				

	

Analysis	of	Base	J	mapping	found	that	Base	J	was	enriched	(e.g.	indicative	of	preferential	

Base	 J	 formation)	 in	 genomic	 regions	 where	 Base	 J	 is	 naturally	 observed	 in	 BSF	

trypanosomes.	 This	 indicated	 a	 sequence	 preference	 for	 J-GT	 glucosylation	 in	 these	

regions	 (Figure	 56	 –	 A),	 although	 it	 cannot	 be	 ruled	 out	 that	 other	 factors	 (e.g.	

chromatin)	may	 play	 a	 role.	 The	 extent	 of	 Base	 J	 enrichment	 relative	 to	 surrounding	

sites	 was	 diminished	 with	 increasing	 proliferating	 time,	 as	 surrounding	 5-hmU	 sites	

became	 glucosylated.	 Notably,	 after	 a	 longer	 proliferation	 time,	 the	 Base	 J	 signal	 was	
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strongly	depleted	in	regions	of	the	genome	associated	with	distinct	5-hmU	loci	(Figure	

56	–	B).	This	corroborated	the	hypothesis	that	5-hmU	modifications	in	certain	genomic	

regions	 are	 protected	 from	 further	 glucosylation,	 indicating	 that	 Base	 J	 formation	 is	

sequence	specific.	

	

 
Figure	56:	A)	Base	J	chemical	enrichment	across	Base	J-enriched	regions	(pink	panel)	determined	by	Base	J	
mapping	in	BSF,	B)	Base	J	chemical	enrichment	across	5-hmU	only	regions	(green	panel)	as	determined	by	
hmU-chemical	enrichment	sequencing.	
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4.2.4.	LC-MS/MS	Differentiation	Study	

Currently,	a	 lack	of	Base	 J	 signal	 in	PCF	trypanosomes	has	been	attributed	 to	a	 lack	of	

Base	 J	 maintenance	 due	 to	 reduced	 JBP	 expression;	 thus,	 Base	 J	 levels	 are	 passively	

removed	 by	 dilution	 via	 proliferation.101	 However,	 an	 alternative	 hypothesis	 could	 be	

that	Base	J	 is	actively	removed	(e.g.	enzymatically	excised	in	a	replication-independent	

manner)	 from	the	genome.	This	could	potentially	explain	 the	absence	of	Base	 J	 in	PCF	

trypanosomes	and	the	observance	of	distinct	hmU-only	loci	in	both	life-forms.	

	

Since	Base	 J	 levels	 vary	 drastically	 between	 two	 life	 forms	 (Base	 J	 is	 only	 detected	 in	

BSF,	section	2.5),	Base	J	dynamics	were	assessed	during	the	differentiation	process	(BSF	

à	PCF)	via	LC-MS/MS.	The	differentiation	process	in	BSF	trypanosomes	was	initiated	in	

vitro	via	1)	cold-shock	stimulation,	and	2)	chemical	treatment	with	citrate/cis-aconitate.	

Since	 BSF	 trypanosomes	 reside	 in	 the	 homoeothermic	 environment	 (37	 °C)	 of	 the	

mammalian	host,	a	cold-shock	is	thought	to	signal	a	change	of	environment	indicative	of	

the	tsetse	fly	host,	which	initiates	differentiation.204	In	the	latter	case,	BSF	trypanosomes	

cannot	respire	in	the	presence	of	citrate/cis-aconitate,	thus	addition	of	these	chemicals	

leads	 to	 differentiation	 and	 production	 of	 procyclic-specific	 enzymes	 capable	 of	

breaking	 down	 these	 metabolites.205	 Some	 time	 after	 differentiation	 initiation,	 cells	

begin	 to	proliferate;	 thus,	Base	 J	 levels	 assessed	by	LC-MS/MS	should	be	 compared	 to	

theoretical	levels	expected	by	dilution	proliferation.		

	

Interestingly,	Base	J	levels	were	estimated	to	be	generally	lower	than	that	expected	due	

to	 dilution	 by	 proliferation,	 however	 this	 effect	 was	 quite	 slight	 (Figure	 57).	 Most	

notable	is	a	loss	of	Base	J	after	24	hr	after	cis-aconitate/citrate	addition,	despite	cells	not	

proliferating	 until	 >	 24	 hr.	 This	 provided	 some	 indication	 that	 Base	 J	may	 be	 actively	

removed	from	the	genome.	Such	a	phenomenon	could	be	one	potential	explanation	for	

the	observation	of	5-hmU,	and	absence	of	Base	J	in	PCFs.	However,	further	work	needs	

to	be	performed	to	conclusively	demonstrate	this	process;	more	accurate	measurements	

of	cell	proliferation	(e.g.	via	isotopic	labelling)	would	be	highly	beneficial.		
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Figure	57:	Top:	Number	of	cells	and	timepoints	after	differentiation	initiated	by	both	chemical	(green)	and	
cold-shock	(lilac)	methods.	Middle	(cis-aconitate/citrate)	and	bottom	(cold-shock):	LC-MS/MS	levels	of	Base	
J	(red)	and	those	expected	due	to	Base	J	dilution	by	proliferation	as	determined	by	number	of	cells	(blue).	
All	plotted	against	hours	after	differentiation	initiation.		
	

The	identification	of	5-hmU-only	loci,	distinct	from	Base	J,	indicates	a	unique	role	for	5-

hmU	 in	 this	 organism	 aside	 from	 being	 a	 Base	 J	 intermediate.	 These	 areas	 remain	

depleted	 with	 Base	 J	 when	 5-hmU	 is	 stochastically	 incorporated	 into	 the	

trypanosomatid	 genome,	 providing	 evidence	 that	 Base	 J	 formation	 occurs	 in	 a	 non-

random	 manner.	 This	 may	 highlight	 that	 the	 J-GT	 enzyme	 possesses	 sequence	

specificity,	or	could	reflect	active	Base	J	removal	from	the	genome	at	certain	sites.	These	

studies	 therefore	 provide	 further	 insight	 into	 the	 dynamics	 and	 biosynthesis	 of	 T-

modifications	in	T.Brucei.	
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4.3.	Sequencing	T-modifications	(5-hmU/5-fU)	in	Mammalian	Tissue		
Bioinformatic	analysis	was	performed	by	Dr	Sergio	Martinez-Cuesta		
	

4.3.1.	Introduction	and	Design	of	Experiment	

T-modification	 enrichment	 sequencing	 methods	 had	 been	 validated	 in	 the	 model	

organism	Leishmania;	 thus,	 these	methods	 could	 now	 be	 utilised	 to	 generate	 the	 first	

maps	 of	 T-modifications	 in	 the	 human	 genome.	 This	 would	 be	 important	 to	 further	

investigate	the	biological	role	of	these	marks	in	mammals.	

	

SMUG1	knockdown	HEK293T	cells	were	chosen	as	the	first	mammalian	biological	target	

for	T-modification	enrichment	sequencing.	The	design	of	this	experiment	was	analogous	

to	 5-fC	 affinity-mapping	 studies	 performed	 by	 the	 Balasubramanian	 lab51,53	 (chemical	

enrichment)	 and	 Zhang	 lab	 (antibody	 enrichment)42.	 5-fC	 enrichment-sequencing	 in	

TDG	depleted	samples	was	found	to	generate	more	regions	with	significant	enrichment	

compared	 to	 the	 wild-type	 model.	 Since	 SMUG1	 is	 the	 main	 5-hmU	 and	 5-fU	 DNA	

glycosylase,	 knockdown	 of	 this	 protein	 should	 reduce	 the	 extent	 of	 T-modification	

excision	 and	 hence	 increase	 the	 levels	 and	 lifetime	 of	 these	DNA	modifications	 in	 the	

genome.	 This	 would	 lead	 to	 accumulation	 of	 T-modifications	 in	 regions	 where	 they	

naturally	 form;	 thus,	 subsequent	 mapping	 of	 these	 regions	 would	 help	 to	 infer	 their	

biological	 relevance	 (Figure	 58).	 HEK293T	 cells	were	 chosen	 as	 this	 cell-line	 is	 easily	

amenable	 to	RNA	 interference.	Furthermore,	 the	T-modification	maps	generated	could	

be	subjected	 to	association	studies	with	pre-existing	datasets	available	 in	 this	cell-line	

(e.g.	DNaseI,	TET-binding	sites)	for	further	functional	investigation.206		

	

Figure	58:	Design	of	experiment	using	SMUG1	knockdown	for	T-modification	enrichment	sequencing	

	

5-hmU	and	5-fU	levels	had	been	shown	to	increase	by	40%	and	70%	respectively	in	cells	

where	SMUG1	had	been	knocked	down	with	60%	transfection	efficiency.40	Furthermore,	

a	recent	study	suggested	that	SMUG1	knockout	in	mouse	brain	led	to	~26-fold	increase	

in	5-hmU	levels.207	
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4.3.2.	HEK293T	esiRNA	SMUG1	Knockdown		

HEK293T	 cells	 were	 transfected	 with	 SMUG1	 esiRNA	 for	 96	 hrs.	 esiRNA	 is	 a	

heterogeneous	 mixture	 of	 different	 siRNA	 sequences	 that	 target	 the	 same	 mRNA	

transcript,	 thus,	 this	approach	has	generally	higher	 transfection	efficacies	and	exhibits	

less	off-target	 effects	 compared	 to	 a	 single	 sequence	 target.208,209	 It	was	 reasoned	 that	

longer	 transfection	 times	 would:	 1)	 increase	 transfection	 efficiency	 and	 2)	 allow	 T-

modifications	 a	 longer	 time	 to	naturally	 accumulate	without	 repair.	As	 a	 control,	 cells	

were	cultured	in	the	presence	of	an	esiRNA	targeting	Renilla	Luciferase	(RLuc),	a	gene	

not	present	in	the	human	genome.		

	

SMUG1	knockdown	and	esiRNA	transfection	efficiency	was	firstly	monitored	by	reverse-

transcription-PCR	(RT-PCR)	of	SMUG1	transcripts	normalised	to	a	housekeeping	control	

gene	 (e.g.	 actin).	 This	 allowed	 the	 relative	 quantification	 of	 mRNA	 knockdown,	

normalising	 for	 amount	 of	 RNA	 input.	 Following	 this,	 RNA	 was	 extracted	 from	 the	

harvested	 cells	 and	 reverse	 transcribed	 to	 cDNA	 before	 qPCR.	 Relative	 quantification	

was	 assessed	 using	 four	 combinations	 of	 primer	 pairs	 (SMUG1	 vs.	 actin)	 in	 SMUG1	

knockdown	 samples	 compared	 to	 the	 RLuc	 esiRNA	 transfected	 negative	 control.	 An	

average	94%	transfection	efficiency	was	observed	via	qPCR	after	96	hr	(Figure	59).	

	

	
Figure	59:	Knockdown	of	SMUG1	as	determined	by	mRNA	Smug1	transcript	levels	versus	actin	via	RT-PCR	

(Mean	+	SD).	
	

	 	

Rlu
c

Acti
n P

rim
er

 1 

Smug1 P
rim

er
 1

Acti
n P

rim
er

 2 

Smug1 P
rim

er
 1

Acti
n P

rim
er

 1 

Smug1 P
rim

er
 2

Acti
n P

rim
er

 2 

Smug1 P
rim

er
 2

0

50

100

%
 S

M
U

G
1 

kn
oc

kd
ow

n 



	 77	

	
Figure	60:	Western	blot	demonstrated	knockdown	of	SMUG1	protein	after	esiRNA	transfection	relative	to	
wild-type	HEK293T	and	RLuc	transfected	negative	control.	k.d.	=	knockdown,	w.t.	=	wildtype		
	

The	 SMUG1	 esiRNA	 transfection	 was	 also	 assessed	 using	 a	 Western	 blot	 plot	 to	

determine	 the	percentage	knockdown	of	 the	 SMUG1	protein.	Using	 rabbit	monoclonal	

antibodies	against	SMUG1	and	tubulin,	disappearance	of	a	35	kDa	band	corresponding	

to	 the	 SMUG1	 protein	 was	 observed	 in	 knockdown	 protein	 extracts	 (Figure	 60).	 The	

average	percentage	knockdown	of	SMUG1	protein	was	~88%	across	all	replicates	when	

normalised	to	wild-type	and	~94%	compared	to	the	RLuc	transfected	negative	control.	

	

Next,	 T-modification	 levels	 in	 transfected	 cells	 were	 assessed	 by	 LC-MS/MS.	 As	

discussed	in	Chapter	2,	variation	between	biological	and	technical	digestion	replicates	is	

observed;	however,	the	overall	average	level	of	5-hmU	was	found	to	be	higher	in	SMUG1	

knockdown	samples	compared	to	that	of	wild-type	(~2-fold).	Accurate	measurements	of	

5-fU	weren’t	possible	at	this	stage,	impeded	by	its	higher	limit	of	detection		

	

4.3.3.	Mammalian	hmU-modification	Enrichment	Sequencing	via	hmU-DIP	

5-hmU	 enriched	 regions	 in	 both	 SMUG1	 knockdown	 and	 RLuc	 samples	 were	 firstly	

mapped	 using	 the	 hmU-DIP	 method,	 which	 utilises	 a	 commercial	 goat	 polyclonal	

antibody	 that	 has	 been	 raised	 against	 the	 5-hmU	mononucleoside.202	 After	 ligation	 of	

sequencing	 adaptors,	 DNA	 was	 denatured	 by	 heating	 before	 incubation	 with	 the	

antibody	at	4	 °C	overnight.	The	mixture	was	 then	 immunoprecipitated	using	magnetic	
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beads	 that	 bind	 to	 Protein	G,	while	 non-bound	DNA	was	 removed	 in	 successive	wash	

steps.		Bound-DNA	fragments	were	subsequently	eluted	from	the	antibody	by	heating	in	

the	presence	of	Proteinase	K.		

	

5-hmU	enriched	regions	were	determined	by	an	increased	number	of	sequencing	reads	

as	detected	by	the	MACS	peak	caller203	(p-value	<	10-5)	compared	to	input	(non-enriched	

DNA).	Within	technical	replicates	(n	=	2),	29989	consensus	peaks	(~50%	overlap)	were	

found	between	SMUG1	knockdown	libraries.	To	exclude	the	possibility	that	peaks	arise	

due	to	the	inherent	reactivity	of	the	5-hmU	antibody,	peaks	in	RLuc	transfected	controls	

were	 also	 called.	 The	 consensus	 peaks	 in	 the	 SMUG1	 knockdown	 libraries	 were	

approximately	 10-fold	 higher	 than	 consensus	 peaks	 observed	 in	 the	 RLuc	 transfected	

negative	controls	(3225).		The	elevated	levels	likely	reflect	the	increase	in	5-hmU	due	to	

depletion	 of	 SMUG1-mediated	 5-hmU	 excision	 upon	 knockdown.	 In	 addition,	 SMUG1	

peaks	were	further	validated	by	control	hmU-DIP	libraries	that	had	been	enzymatically	

treated	with	SMUG1	(e.g.	to	remove	5-hmU)	prior	to	affinity-enrichment;	this	led	to	the	

disappearance	of	peaks	(Appendix	–	Chapter	4).		

	

	
Figure	 61:	 Example	 of	 5-hmU	 enriched	 regions	 in	 SMUG1	 knockdown	 samples	 assessed	 by	 hmU-DIP	
sequencing.	
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To	exclude	method-derived	artefacts	in	a	stringent	manner,	control-DIP	sequencing	was	

performed	 using	 a	 non-specific	 goat	 polyclonal	 IgG	 antibody.	 This	 is	 a	 recommended	

control	 for	 antibody-affinity	 sequencing	 methods,210	 and	 accounts	 for	 PCR	 efficiency	

biases	 which	 may	 arise	 in	 low-diversity	 sequencing	 libraries.211	 Thus,	 any	 genomic	

regions	that	also	demonstrated	a	large	number	of	sequencing	reads	with	the	control	IgG	

antibody	were	eliminated	from	the	SMUG1	knockdown	5-hmU	dataset;	this	gave	11937	

high	 confidence	 peaks	 which	 were	 used	 for	 downstream	 analysis.	 The	 non-random	

genomic	 distribution	 of	 5-hmU	 indicated	 that	 this	 mark	 may	 have	 a	 functional	 role	

(Figure	61).	

	

4.3.3.i	Motif	Analysis,	Origin	in	Cells	and	Association	with	Chromatin	

5-hmU	 in	mammalian	cells	 is	proposed	 to	derive	 from	either	ROS	or	TET	oxidation	of	

T.40	To	try	and	establish	the	origin	of	5-hmU	in	HEK293T	cells,	motif-sequence	analysis	

of	 5-hmU-enriched	 regions	 was	 firstly	 determined	 using	 the	 Multiple	 EM	 for	 Motif	

Elicitation	 (MEME)	 and	 Discriminative	 Regular	 Expression	 Motif	 Elicitation	 (DREME)	

tool.212		

	

	
Figure	62:	Common	motifs	of	hmU-enriched	regions	as	determined	by	MEME	(Top)	AND	DREME	(Bottom)	
analysis.	 E-value	 is	 a	measure	 of	 statistical	 significance	 that	 a	 certain	motif	 is	 enriched	within	 a	 dataset	
compared	to	a	random	dataset	of	the	same	size	and	length.	

MEME

DREME

E= 3.8E-821

E= 6.59E-156

E= 6.59E-65

E= 4.7E-205

E= 3.0E-144

E= 2.0E-137



	 80	

	

Enriched	 motifs	 within	 5-hmU-loci	 were	 found	 to	 be	 generally	 T-rich	 in	 nature,	

containing	 distinct	motifs	 (Figure	 62).	 Observed	motifs	 did	 not	 resemble	 known	 TET	

binding	sites,	which	are	usually	enriched	for	CpG	dinucleotides.213,214		

	

To	 further	probe	 the	origin	of	5-hmU	 in	genomic	DNA,	5-hmU	peaks	were	overlapped	

with	 TET2	 and	 TET3	 chromatin	 immunoprecipitation	 (ChIP)	 datasets,	 generated	 in	

HEK293T	cells	(ENCODE	GEO	#	GSM897576	and	GSM897577).213	Only	0.3%	and	0.2%	

peaks	 overlapped	with	 TET2	 and	TET3	 binding	 sites	 respectively;	 this	 suggested	 that	

the	majority	of	5-hmU	loci	(as	determined	by	hmU-DIP)	arises	from	a	TET-independent	

process	 in	 HEK293T	 cells.	 This	 may,	 however,	 reflect	 the	 low	 expression	 of	 TET	

enzymes	in	this	cell-line.40		

	

5-hmU	 is	 therefore	 likely	 to	be	 formed	 in	ROS-dependent	processes	 in	HEK293T	cells,	

and	thus	may	have	a	similar	biological	role	to	8-oxoG	(Introduction	1.3.5).	Thus,	5-hmU	

loci	 were	 correlated	 with	 chromatin	 accessibility,	 as	 accessible	 genomic	 loci	 may	 be	

more	 susceptible	 to	oxidative	DNA	damage.215	5-hmU	enriched	 loci	were	 compared	 to	

regions	 of	 open	 chromatin,	 as	 determined	 by	 a	 DNaseI-seq	 dataset	 in	 HEK293T	 cells	

(ENCODE	GEO	#	GSM1008573);	DNaseI	digests	fragments	of	nucleosome-depleted	DNA,	

which	are	then	sequenced	by	NGS.216	Only	1.3%	of	hmU-loci	were	found	to	overlap	with	

open	 chromatin	 regions,	 and	 5-hmU	 loci	were	 instead	 depleted	 from	 open	 chromatin	

regions	 compared	 to	 a	 random	 distribution	 of	 genomic	 loci	 (Figure	 63).	 This	 implied	

that	 the	 5-hmU	 mark	 may	 be	 associated	 with	 heterochromatin	 and	 silenced	 genes,	

however	 this	 could	 also	 reflect	 preferential	 repair	 of	 5-hmU	 in	 open	 chromatin	

regions.217,215	

	
Figure	 63:	 Within	 5-hmU	 enriched	 regions,	 DNaseI	 density	 signal	 is	 depleted	 compared	 to	 randomly	
selected	 genomic	 regions	 (x5)	 of	 the	 same	 size	 distribution	 as	 the	 5-hmU	 genomic	 region.	 F-seq	 density	
signal	refers	to	regions	of	enriched	signal	from	DNaseI	experiments	based	on	F-seq	peak-calling.218	
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4.3.3.ii	Genomic	Location	and	Association	with	Gene	Expression	
To	 investigate	any	 role	of	5-hmU	and	 its	 association	with	genes,	 the	distribution	of	5-

hmU	 loci	 among	 functional	 features	 was	 determined	 using	 the	 genomic-annotation	

tester	(GAT)	tool.219	5-hmU	was	found	to	be	mainly	located	in	intergenic	(65%)	regions	

or	 gene	 deserts,	while	 a	 large	 proportion	 of	 5-hmU	 enriched	 regions	 also	 occurred	 in	

intragenic	 regions	 (33%,	 Figure	 64).	 Notably,	 5-hmU	 loci	 were	 generally	 depleted	 in	

other	genomic	regions	compared	 to	 the	normal	genomic	distribution	(Figure	64).	This	

included	1)	a	depletion	in	promoters,	where	oxidised	cytosine	derivatives	are	typically	

enriched53,220	 and	 2)	 a	 strong	 depletion	 in	 exons,	 a	 phenomenon	 also	 reported	 for	 8-

oxoG.56,146	This	could	indicate	preferential	repair	or	suppression	in	the	creation	of	these	

marks	in	coding	regions,	which	would	eliminate	potential	mutagenesis	caused	by	their	

existence	or	repair.		

	

	
	
Figure	 64:	 Left	 -	 Genomic	 distribution	 of	 5-hmU-enriched	 regions	 determined	 by	 GAT,	 Right	 -	 Log2Fold	
enrichment	 of	 5-hmU	 enriched	 regions	 relative	 to	 the	 typical	 genomic	 distribution,	 determined	 by	 peak	
width.	
	

To	further	investigate	the	role	of	5-hmU	associated	genes,	gene	ontology	was	performed	

using	 DAVID	 (the	 database	 for	 annotation,	 visualisation	 and	 integrated	 discovery)	

functional	analysis221,222	on	the	subset	of	5-hmU	enriched	regions	in	the	vicinity	(±1	kB)	

of	a	gene;	both	GO_biological	process	(Table	8),	and	KEGG_pathway	(Table	9)	ontology	

tools	 were	 used.	 A	 noticeable	 link	 was	 observed	 between	 5-hmU	 enriched-loci	 and	

genes	 involved	in	cellular	signalling,	and	a	number	of	 these	functions	were	specifically	

associated	with	synaptic	transmission	and	the	central	nervous	system.		
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GO_Biological	Process	 Number	of	genes	 q-value		

Regulation	of	GTPase	activity	 25	 9.90E-04	

Protein	phosphorylation	 89	 1.60E-02	

Extracellular	matrix	organisation	 47	 1.70E-02	

Cell	adhesion	 90	 2.00E-02	

Peptidyl-tyrosine	phosphorylation	 38	 3.70E-02	

Microtuble	cytoskeleton	organisation	 22	 5.30E-02	

Ephrin	receptor	signalling	pathway	 25	 5.50E-02	

Synaptic	transmission,	glutamatergic	 11	 5.70E-02	

Positive	regulation	of	GTPase	activity	 100	 1.00E-01	

Table	8:	Functional	enrichment	as	defined	by	GO_biological	process	terms,	number	of	genes	and	associated	q-value.	

	
KEGG_pathway	 Number	of	genes	 q-value	

Morphine	Addiction	 30	 8.3E-05	

Retrograde	endocannabinoid	signalling	 30	 4.6E-04	

ECM-receptor	interaction	 27	 4.4E-04	

Focal	adhesion	 48	 3.7E-04	

cAMP	signalling	pathway	 45	 9.8E-04	

Axon	guidance	 33	 1.2E-03	

Calcium	signalling	pathway	 41	 1.4E-03	

Glutamergic	synapse	 30	 1.5E-03	

PI3K-Akt	signalling	pathway	 67	 1.6E-03	

Oxytocin	signalling	pathway	 36	 4.3E-03	

Cholinergic	synapse	 28	 4.4E-03	

Circadian	entrainment	 25	 4.9E-03	

Table	9:	Functional	enrichment	as	defined	by	KEGG	pathway,	number	of	genes	and	associated	q-value.	

	

The	 5-hmU	mark,	 and	 subsequent	 SMUG1	 excision,	may	 be	 important	 for	 influencing	

gene	regulation,	potentially	in	response	to	environmental	factors,	such	as	ROS.	Thus,	to	

further	 investigate	 the	 relationship	 between	 5-hmU	 and	 gene	 expression,	 differential	

mRNA	levels	between	SMUG1	knockdown	and	control	cells	were	assessed	via	RNA-seq.	

To	prepare	samples	for	RNA-seq,	total	RNA	was	first	extracted	and	mRNA	was	selected	

for	 using	 oligo-(dT)	 magnetic	 beads	 which	 bind	 to	 poly(A)	 regions.	 The	 RNA	 was	

fragmented	 and	 reverse	 transcribed,	 followed	 by	 second-strand	 DNA	 synthesis,	 both	

using	random	priming.	The	resultant	cDNA	was	prepared	 for	NGS	via	standard	 library	

preparation	(Section	-	3.7.1).		
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There	 were	 a	 number	 of	 differentially	 expressed	 genes	 (both	 upregulated	 and	

downregulated)	which	 contained	5-hmU	 in	 the	 SMUG1	knockdown	 sample,	 but	not	 in	

the	 RLuc	 negatively	 transfected	 control	 (Figure	 64).	 This	 included	 GFI1B	 (4.6-fold	

upregulated),	a	 transcriptional	 repressor	 important	 for	blood-cell	development,223	and	

DAB1	 (2.2-fold	 downregulated),	 associated	 with	 signal	 transduction	 in	 the	 central	

nervous	system,224	among	others	(Appendix	–	Chapter	4).	This	implied	that	5-hmU	(e.g.	

by	 transcription	 factor	 or	 recruitment	 of	 chromatin	 remodelling	 proteins),40	 or	 BER-

excision	(shown	to	both	initiate	or	repress	transcription),57,225	could	be	responsible	for	

altered	expression	at	specific	genes.	

	

	
Figure	 64:	 The	 presence	 of	 5-hmU	 peaks	 in	 SMUG1	 knockdown	 samples,	 but	 not	 RLuc	 samples	 in	
differentially	 expressed	 genes.	 A)	 CSPG4	 (1.5-fold	 upregulated	 in	 SMUG1	 knockdown,	 q	 =	 9.5E-03)	
associates	with	malignant	tumor	progression226,	B)	GFI1B	(4.6-fold	upregulated	in	SMUG1	knockdown,	q	=	
1.6E-02)	C)	DAB1	(2.2-fold	downregulated	in	SMUG1	knockdown,	q	=	6.6E-03)		
	
However,	 within	 genes	 proximal	 to	 5-hmU,	 there	 was	 no	 significant	 change	 in	 global	

transcription	upon	SMUG1	knockdown	(Figure	65).		
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Figure	65:		No	significant	change	in	RNA	read	count	occurs	upon	SMUG1	knockdown	within	genes	proximal	
to	5-hmU		(1670	genes	contained	hmU	peaks	in	both	SMUG1	hmU-DIP	replicates	and	in	neither	of	the	RLuc	
controls	(1670).	

Furthermore,	there	was	no	clear	correlation	between	differentially	expressed	genes	and	

those	that	contained	5-hmU.	In	total,	564	genes	were	differentially	expressed	(q-value	<	

0.05).	Of	244	downregulated	and	321	upregulated	genes,	only	14%	and	11%	contained	

5-hmU	 respectively.	 This	 indicated	 that	 SMUG1-mediated	 5-hmU	 excision	 does	 not	

globally	alter	gene	expression.		

	

4.4.	5-fU	and	5-hmU	Chemical-enrichment	Sequencing	

T-modification	 sequencing	 was	 also	 attempted	 in	 the	 SMUG1	 knockdown	 HEK293T	

samples	 using	 chemical	 enrichment-methods	 (Section	 3.7.3).	 For	 5-fU	 chemical	

sequencing,	 efficient	 enrichment	 was	 confirmed	 by	 model	 ODN	 spike-in	 controls,	

however,	 a	 limited	number	of	 enriched	 regions	 (<	200	peaks)	were	determined	using	

the	 MACS203	 peak-caller	 (p	 <	 1E-05).	 Lowering	 the	 significance	 threshold	 led	 to	 an	

increased	 number	 of	 peaks;	 however,	 a	 limited	 number	 of	 consensus	 regions	 were	

observed	 between	 replicates	 (Table	 10).	 This	may	 indicate	 that	 the	 chemical	method	

suffers	 from	 technical	 biases,	 potentially	 against	 clusters	 of	 modifications,	 or	 high	

background	noise,	which	could	inhibit	5-fU	detection.	

	
	 Peaks	Rep	1	 Peaks	Rep	2	 Consensus	peaks	

p	<	1E-05	 155	 26	 5	

p	<	1E-04	 919	 127	 12	

Table	10:	Number	of	peaks	identified	by	MACS	in	5-fU	chemical	enrichment	libraries	and	consensus	peaks	
between	technical	replicates.		
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Furthermore,	 5-hmU	 chemical	 enrichment	 sequencing	 with	 the	 SMUG1	 knockdown	

sample	also	failed	to	identify	regions	of	5-hmU	loci	(34	peaks,	p	<	1E-05)	at	this	stage.	As	

such,	 further	 optimisation	 is	 required	 to	 enable	 detection	 of	 T-modifications	 in	

mammalian	samples	using	this	method.	It	is	currently	not	clear	why	there	is	discrepancy	

with	the	hmU-DIP	method,	although	the	chemical	method	is	also	found	to	detect	fewer	

peaks	 than	hmU-DIP	 in	 trypanosomatid	genomes.	The	chemical	method	suffers	 from	a	

relatively	 large	 background	 signal;	 thus,	 the	 method	 may	 not	 be	 sensitive	 enough	 to	

detect	T-modifications	in	mammals	where	they	are	less	abundant.		

	
4.5.	Conclusion	

To	 investigate	 potential	 functions	 of	 T-modifications	 in	 both	 trypanosomatids	 and	

mammalian	 cells,	 genome-wide	 localisation	 profiles	 of	 these	 marks,	 as	 well	 as	 their	

global	levels,	were	investigated	using	NGS	and	LCMS/MS.		

	

In	trypanosomatids,	5-hmU	was	observed	in	distinct	loci	from	its	downstream	product,	

Base	 J,	 suggesting	 5-hmU	 itself	 may	 have	 a	 unique	 function	 in	 these	 organisms.	 By	

tracing	Base	J	 formation	by	chemical-sequencing,	5-hmU	appeared	to	be	maintained	in	

certain	 loci	 without	 being	 converted	 to	 Base	 J.	 This	 challenges	 the	 current	

understanding	 that	 5-hmU	 is	 the	 substrate	 of	 J-GT	 regardless	 of	 sequence	 contexts.	

Further	 work	 should	 address	 the	 biological	 functions	 of	 5-hmU	 in	 such	 loci	 by	 1)	

perturbing	relevant	enzymes	involved	with	T-modification	biosynthesis	(e.g.	JBP1,	JBP2,	

J-GT),	 in	 combination	with	 any	 changes	 in	T-modification	profile	 and	 gene	 expression	

and	 2)	 identifying	 reader	 proteins	 of	 5-hmU	 and	 Base	 J	 in	 trypanosomatid	 systems.		

Proteomic	studies	may	also	identify	candidate	enzymes	which	can	dynamically	regulate	

5-hmU	and	Base	J	(e.g.	via	active	removal	of	Base	J.)	

	

In	mammalian	systems,	where	T-modifications	are	efficiently	removed	by	BER,	esiRNA	

SMUG1	 knockdown	 was	 performed	 to	 investigate	 the	 consequence	 of	 T-modification	

excision	 deficiency.	 A	 significant	 increase	 of	 5-hmU	 loci	 were	 observed	 in	 SMUG1	

knockdown	HEK293T	cells	compared	to	controls.	These	loci	were	found	not	to	correlate	

with	 reported	 TET-binding	 sites,	 indicating	 that	 the	 majority	 of	 5-hmU	 loci	 originate	

from	TET-independent	processes	in	HEK293T	cells.	5-hmU	is	therefore	instead	likely	to	

arise	from	ROS;	5-hmU	loci	were	found	to	be	mainly	 located	in	 intergenic	and	intronic	

regions,	and	were	depleted	in	coding	regions,	similar	to	another	major	ROS	product	8-

oxoG.			
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Genes	 that	 were	 proximal	 to	 5-hmU	 loci	 were	 enriched	 with	 genes	 associated	 with	

cellular	signalling	and	the	central	nervous	system	by	gene	ontology	analysis.	A	number	

of	 candidate	 genes	 proximal	 to	 5-hmU	 were	 differentially	 expressed	 upon	 SMUG1	

knockdown,	 however,	 5-hmU	 was	 found	 to	 have	 no	 significant	 global	 effect	 on	

differential	mRNA	levels.		

	

Future	 work	 should	 focus	 on	 continuing	 to	 elucidate	 a	 potential	 biological	 role	 or	

consequence	 for	 this	 modification	 in	 the	 mammalian	 genome,	 although	 it	 cannot	 be	

ruled	out	that	5-hmU	solely	occurs	due	to	random	oxidative	damage	with	no	functional	

role.	 Biological	 perturbation	 studies	 (e.g.	 increased	 exposure	 to	 ROS)	 and	 their	

corresponding	 effect	 on	 hmU-loci	 and	 gene	 expression	 will	 help	 to	 establish	 their	

functional	role	or	consequence.	This	is	of	particular	importance	for	genes	proximal	to	5-

hmU	that	are	differentially	expressed	upon	SMUG1	knockdown.	Other	biological	targets,	

e.g.	 SMUG1	 knockout	mice,	may	 yield	 a	more	 significant	 result,	 since	 levels	 of	 5-hmU	

change	by	~26-fold	upon	SMUG1	depletion.	 In	addition,	 similar	hmU-DIP	experiments	

could	also	be	performed	in	a	mESC	model;	mESCs	have	higher	natural	TET	expression;40	

thus,	TET-mediated	5-hmU	formation	may	be	more	relevant	in	this	cell-line.		

	

For	further	analysis,	efforts	should	focus	on	the	optimisation	of	T-modification	chemical	

enrichment	 methods	 (e.g.	 reduce	 background	 signal),	 which	 currently	 fail	 to	 identify	

substantial	regions	of	T-modification	enrichment.	This	would	be	an	important	tool	to	co-

validate	5-hmU	regions	identified	by	the	hmU-DIP	method.		
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5.	Identification	of	5-fU	protein	binders	by	proteomics	
	

5.1.	Introduction	

DNA	modifications	bear	unique	chemical	moieties	that	protrude	into	the	major	groove,	

and	thus	have	the	propensity	to	alter	protein	recognition	and	recruitment	to	DNA.	DNA	

binding	 proteins	 include	 those	 that	 can	 1)	 create	 DNA	 modifications	 (“writer”);	 2)	

recognise	 DNA	 modifications	 (“reader”)	 and	 3)	 remove	 or	 excise	 DNA	 modifications	

(“eraser”).147	Writer	and	eraser	proteins	control	DNA	modification	dynamics,	while	the	

presence	 of	 these	 marks	 can	 alter	 the	 way	 in	 which	 protein	 readers,	 such	 as	

transcription	 factors,	 can	 bind	 or	 interact	 with	 DNA.	 	 This	 ultimately	 can	 have	 a	

downstream	effect	on	the	regulation	of	genes.25,49	

	

Affinity-based	 enrichment	 of	 proteins	 that	 tightly	 bind	 to	 DNA	 modifications	 (i.e.	

pulldown),	in	combination	with	mass	spectrometry-based	proteomics,	is	a	powerful	tool	

in	functional	genomics	(Figure	66).	Biotinylated	DNA	baits,	containing	modified	bases	of	

interest,	are	 incubated	with	protein	extract,	 followed	by	enrichment	of	bound	proteins	

via	 the	 streptavidin-biotin	 interaction.25,40,49,148	 Subsequent	 proteomics	 experiments	

utilise	the	unique	sequence	and	LC-MS/MS	fragmentation	pattern	of	peptides	to	identify	

proteins	 in	 an	 enriched	 pool.	 Proteins	 are	 enzymatically	 digested	 into	 smaller	

polypeptide	units	and	 identified	by	comparison	with	comprehensive	polypeptide	mass	

databases	 for	 the	 organism	 in	 question.	 In	 a	 data-dependent	 acquisition	 (DDA)	

approach,	 a	 full	 MS	 spectrum	 acquired	 alongside	 MS2	 fragmentation	 enables	 a	 large	

number	of	proteins	to	be	identified	simultaneously.227,228	Integration	of	the	mass	signal	

can	be	subsequently	used	for	protein	quantification.		

	

	
Figure	 66:	Workflow	 of	 protein	 pulldown	 and	 identification	 of	 proteins	 via	 mass	 spectrometry	 based	
proteomics.	
	

Proteomics	studies	have	identified	a	number	of	proteins	that	preferentially	interact	with	

the	C-modifications	 in	mammals,49,50	and	also	with	the	T-modification	5-hmU.40	5-hmU	

protein	 pulldown	 identified	 a	 number	 of	 transcription	 factors	 and	 chromatin	

remodelling	 proteins	 that	 are	 specifically	 enriched,	 giving	 further	 credence	 to	 5-hmU	
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having	 a	 regulatory	 role.	 However,	 no	 such	 study	 had	 been	 carried	 out	 to	 determine	

global	 protein	 interactions	 with	 5-fU,	 a	 potentially	 mutagenic	 mark	 implicated	 in	

disease.	Thus,	5-fU	protein	interactions	needed	to	be	explored,	in	order	to	reveal	further	

information	about	its	potential	role,	function	or	biological	consequence.			

	

5.2.	5-fU	Pulldown	and	Proteomics		
HEK293T	nuclear	protein	extract	was	provided	by	Dr	Sabrina	Huber,	Balasubramanian	group.		

	

Biotinylated	5-fU	modified	dsDNA	(fU-DNA1)	was	synthesized	by	PCR,	along	with	a	non-

modified	control	(GCAT-DNA1),	to	be	used	as	protein	baits.	The	DNA	sequence	used	for	

pulldown	 corresponded	 to	 a	 region	 of	 the	 p53	 tumor	 suppressor	 gene,	 prone	 to	

mutation	 in	 cancer	 tissue.229	 A	modified	 proteomics	 pulldown	 procedure	was	 utilised	

based	on	that	which	had	been	previously	reported	for	5-fC	pulldown;49	biotinylated	DNA	

was	 pre-incubated	 with	 streptavidin	 beads,	 before	 incubation	 with	 nuclear	 protein	

extract	at	4	°C.	The	supernatant	was	removed	and	the	magnetic	beads	were	washed	to	

remove	non-interacting	proteins.	Pulled-down	proteins	were	eluted	from	the	beads,	ran	

on	a	Bis-Tris	Nupage	gel	and	visualised	with	Coomassie	blue	stain.	A	clear	enrichment	of	

proteins	 in	 the	 presence	 of	 biotinylated	 DNA	was	 observed	 compared	 to	 the	 no-DNA	

control;	 this	 suggested	 that	 non-specific	 binding	 to	 streptavidin	 beads	 was	 minimal	

(Figure	67).	

	

	
Figure	67:	Biotinylated	DNA	pulldown	of	proteins,	compared	(HEK293T	nuclear	extract)	with	no-
DNA/”beads-only”	control.	4-20%	SDS-PAGE	gel	ran	in	MOPS	buffer,	stained	with	Coomassie	blue.	
	

The	gel-lanes	were	cut,	subjected	to	tryptic	digest	and	submitted	for	proteomic	analysis.	

Using	Scaffold	software,230	pulled-down	proteins	were	compared	semi-quantitatively	via	

t-test,	 normalising	 for	 total	 protein	 spectral	 counts;230	 a	 method	 utilised	 for	 many	

relative	 quantification	 proteomics	 studies.231,232,233,234	 This	 permitted	 identification	 of	

proteins	 that	were	 either	 enriched	 or	 depleted	 in	 the	 presence	 of	 5-fU	modified	DNA	

compared	 to	 the	 non-modified	DNA	 control	 (Figure	 68).	 For	 two	 replicates,	 a	 p-value	

No-DNA controlGCAT-DNA1fU-DNA1
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significance	threshold	of		>	0.1,	a	protein	threshold	of	95%,	a	peptide	threshold	of	50%,	

and	 a	 minimum	 identification	 of	 two	 peptides	 for	 each	 protein	 was	 required.	 Of	 the	

1283	 proteins	 identified,	 41	were	 found	 to	 be	 consistently	 enriched	 in	 the	 5-fU	DNA-

bound	 pool	 (>	 0.4	 log2-fold-change	 5-fU/control,	 Table	 11),	 whilst	 53	 proteins	 were	

found	 to	 be	 consistently	 depleted	 in	 the	 5-fU	DNA-bound	pool	 (>	 0.4	 log2-fold-change	

control/5-fU,	Table	13)	

	

	
Figure	68:	Volcano	plot	showing	fold-change	enrichment	and	their	significance	after	t-test	using	Scaffold	
software.	 	
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Protein	 Log2Fold	Enrichment		

fUDNA1/GCATDNA1	

			p-value		

RNA-binding	protein	4	(RBM4)	 4.43	 8.39E-02	

Vigilin	(HDLBP)	 4.19	 8.52E-02	

DNA	primase	small	subunit	(PRIM1)	 4.16	 2.10E-03	

TAR	DNA-binding	protein	43	(TARDBP)	 3.09	 1.99E-02	

Transcriptional	repressor	protein	YY1	(YY1)	 2.56	 5.06E-02	

DNA	Primase	large	subunit	(PRIM2)	 2.50	 7.76E-02	

Mediator	of	RNA	polymerase	II	transcription	subunit	6	(MED6)	 2.26	 3.43E-02	

28S	ribosomal	protein	S23,	mitochondrial	(MRPS23)	 2.26	 2.45E-03	

Meiotic	nuclear	division	protein	1	homolog	(MND1)	 2.26	 4.98E-03	

Centrosome-associated	protein	350	(CEP350)	 2.24	 8.59E-03	

Procollagen	galactosyltransferase	1	(COLGALT1)	 2.17	 9.14E-02	

Protein	FAM50A	(FAM50A)	 2.11	 9.14E-02	

Heterogeneous	nuclear	ribonucleoprotein	M	(HNRPM)	 1.99	 4.92E-02	

Integrator	complex	subunit	3	(INTS3)	 1.99	 3.74E-02	

5'-3'	exoribonuclease	2	(XRN2)	 1.67	 6.33E-02	

Glutathione	peroxidase	(Gpx)	 1.67	 6.38E-02	

Staphylococcal	nuclease	domain-containing	protein	1	(SND1)	 1.46	 1.79E-02	

	Cell	growth-inhibiting	protein	34		 1.37	 7.89E-02	

General	transcription	factor	IIH	subunit	1	(GTF2H1)	 1.37	 7.64E-02	

ATP-dependent	RNA	helicase	(DDX1)	 1.32	 2.78E-02	

Glyceraldehyde-3-phosphate	dehydrogenase	(GAPDH)	 1.21	 1.53E-02	

tRNA-splicing	ligase	RtcB	homolog	(RTCB)	 1.17	 1.10E-02	

UPF0568	protein(C14orf166)	 1.14	 9.35E-02	

Treacle	protein	(tcof1)	 1.09	 9.35E-02	

Histone	deacetylase	complex	subunit	(SAP130)	 0.91	 1.54E-02	

Ubiquitin-associated	protein	2-like	(UBAP2L)	 0.88	 6.26E-02	

Uracil-DNA	glycosylase	(UNG)	 0.74	 6.26E-02	

Pre-mRNA	cleavage	complex	2	protein	Pcf	11	(PCF11)	 0.72	 7.29E-02	

Bifunctional	methylenetetrahydrofolate	

dehydrogenase/cyclohydrolase	(MTHFD2)	

0.68	 2.75E-03	

Procollagen-lysine,2-oxoglutarate	5-dioxygenase	3	(PLOD3)	 0.63	 9.05E-02	

LRPAP1	(Alpha-2-macroglobulin	receptor-associated	protein)	 0.63	 7.86E-02	

Signal	recognition	particle	receptor	subunit	beta	(SRPRB)	 0.57	 3.86E-02	

Paired	amphipathic	helix	protein	Sin3a	(SIN3A)	 0.56	 1.43E-02	

Emerin	(EMD)	 0.53	 1.43E-02	

Epidermal	growth	factor	receptor	pathway	substrate	8		(EPS8)	 0.52	 1.43E-02	

Nitric	oxide	synthase	interacting	protein	(NOSIP)	 0.51	 5.55E-02	

RNA	binding	motif	protein	26	(RBM26)	 0.51	 1.60E-02	

Procollagen-lysine,2-oxoglutarate	5-dioxygenase	1	(PLOD1)	 0.48	 6.44E-02	

DnaJ	homolog	subfamily	C	member	8	(DNJC8)	 0.47	 9.61E-04	

Flap	endonuclease	1	(FEN1)	 0.44	 5.12E-02	

Uveal	 autoantigen	 with	 coiled-coil	 domains	 and	 ankyrin	 repeats	

(UACA)	

0.44	 9.93E-03	

Table	11:	Specifically	enriched	(>	0.4	log2-fold-change	fUDNA1/	GCAT1-DNA	control)	5-fU	DNA-binding	
proteins	with	their	Log2Fold	change	and	their	associated	p-value.	 	
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5.3.	Functional	Analysis	of	5-fU	enriched	Proteins	

To	determine	the	role	of	proteins	enriched	by	5-fU,	functional	annotation	analysis	of	5-

fU	 binding	 proteins	 was	 performed	 using	 DAVID	 using	 the	 UP_keywords	

function.221,222,235			

	
Function	 Number	 Proteins	 p-value	

Acetylation	 28	 XRN,	DDX1,	PCF11,	PBM2,	SIN3A,	SAP130,	C14orf166,	EMD,	FAM50A,	

FEN1,	 GTF2H1,	 GAPDH,	 HDLBP,	 INTS3,	 MED6,	 MDN1,	 MTHFD2,	

MRPS23,	PRIM1,	SND1,	TCOF1,	UBAP2L,	UNG,	UACA	

2.80E-10	

	

Nucleus	 25	 XRN1,	 DDX1,	 PCF11,	 RTCB,	 RBM4,	 SIN3A,	 SAP130,	 TARDBP,	 YY1,	

CEP350,	C14ORF166,	EMD,	FAM50A,	FEN1,	GTF2H1,	GAPDH,	HDLBP,	

INTS3,	MED6,	MND1,	NOSIP,	SND1,	TCOF1,	UNG,	UACA	

2.40E-07	

	

Phosphoprotein	 26	 XRN2,	DDX1,	LRPAP1,	PCF11,	RTCB,	RBM26,	SIN3A,	SRPBP,	SAP130,	

SIN3A,	 TARDBP,	 YY1,	 CEP350,	 EMD,	 EPS8,	 FEN1,	 GTF2H1,	 GAPDH,	

HDLBP,	INTS3,	NOSIP,	PRIM2,	SND1,	TCOF1,	UBAP2L,	UNG	

3.40E-04	

	

DNA	repair	 5	 YY1,	FEN1,	GTF2H1,	INTS3,	UNG	 1.70E-03	

	

Transcription	 12	 XRN2,	 DDX1,	 SIN3A,	 SAP130,	 TARDBP,	 YY1,	 C14orf166,	 GTF2H1,	

MED6,	PRIM1,	PRIM2,	SND1	

2.00E-03	

	

Ubi	conjugation	 10	 PCF11,	RBM26,	SIN3A,	SAP130,	TARDBP,	YY1,	EPS8,	GAPDH,	TCOF1,	

UACA	

2.20E-03	

	

mRNA	processing	 5	 XRN2,	DDX1,	PCF11,	RBM4,	TARDBP	 2.60E-03	

DNA	damage	 5	 YY1,	FEN1,	GTF2H1,	INTS3,	UNG	 3.20E-03	

	

Primosome	 2	 PRIM1,	PRIM2	 3.50E-03	

Exonuclease	 3	 XRN2,	DDX1,	FEN1	 3.60E-03	

RNA-binding	 5	 DDX1,	RBM26,	RBM4,	TARDBP,	C14orf166,	HDLBP	 5.70E-03	

Methylation	 7	 XRN2,	PCF11,	SAP130,	TARDBP,	FEN1,	GAPDH,	UBAP2L	 7.4E-03	

DNA	replication	 4	 FEN1,	PRIM1,	PRIM2	 1.20E-02	

Isopeptide	bond	 3	 PCF11,	RBM26,	SAP130,	TARDBP,	YY1,	TCOF1,	UACA	 1.30E-02	

Transcriptional	

regulation	

10	 XRN2,	 DDX1,	 SIN3A,	 SAP130,	 TARDBP,	 YY1,	 C14orf166,	 GTF2H1,	

MED6,	SND1	

1.70E-02	

	

Nuclease	 3	 FEN1,	XRN2,	DDX1	 2.30E-02	

Coiled	coil		 2	 LRPAP1,	 PCF11,	 RBM26,	 SIN3A,	 CEP350,	 FAM50A,	 FEN1,	 HDLBP,	

MDN1,	TCOF1,	UACA	

3.20E-02	

Vitamin	C	 2	 PLOD1,	PLOD3	 3.40E-02	

DNA	directed	

RNA	polymerease	

2	 PRIM1,	PRIM2	 6.60E-02	

Oxidoreductase	 4	 GAPDH,	MTHFD2,	PLOD1,	PLOD3	 8.10E-02	

Repressor	 4	 SIN3A,	SAP130,	YY1,	TARDBP	 8.40E-02	

Table	12:	5-fU	enriched	proteins	corresponding	to	different	biological	functions	and	their	associated	p-
value	of	enrichment	in	annotation	categories,	analysed	using	DAVID	functional	analysis.	
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Furthermore,	 functional	 protein	 association	 networks	were	 identified	 via	 the	 STRING	

algorithm236.	 This	 determined	 protein	 clusters	 within	 the	 5-fU	 protein	 interactome	

(Figure	69);	5-fU	enriched	proteins	were	primarily	associated	in	two	main	clusters.		

	

	
Figure	69:	Associated	protein	networks	of	5-fU	enriched	proteins	from	STRING.236	

	

Consistent	with	5-fU	being	a	product	of	oxidative	DNA	damage,	multiple	proteins	were	

revealed	 to	 be	 associated	 with	 DNA	 damage	 and	 DNA	 repair.	 The	 YY1	 transcription	

factor	is	reported	to	be	recruited	to	sites	of	laser-induced	DNA	damage,237	while	FEN	is	

an	 important	 protein	 involved	 in	 removing	 overhangs	 after	 long-patch	 BER.31	 In	

addition	 to	 those	 highlighted	 by	 functional	 analysis,	 GAPDH	 is	 reported	 to	 bind	 to	AP	

sites	in	DNA,	and	is	involved	in	the	recruitment	and	activation	of	APE1	which	cleaves	AP	

sites	 after	 BER.238	 Many	 of	 the	 proteins	 enriched	 in	 the	 5-fU	 DNA-bound	 pools	 were	

associated	with	stress	response	pathways.	TCOF1	has	been	 implicated	 in	the	oxidative	

stress	response,	where	it	 is	shown	to	have	antioxidant	ROS	cytoprotective	action,239,240	

whilst	GPx	reduces	ROS	by	enzymatic	reduction	of		hydrogen	peroxide	to	water.241	One	

of	the	largest	networks	involves	the	DNA-binder	DDX1,	which	is	rapidly	redistributed	in	

cells	 that	 are	 exposed	 to	 ionising	 radiation,	 and	 important	 for	 stress	 survival.242,243	

Furthermore,	 commonly	 enriched	 proteins	 were	 found	 between	 this	 5-fU	 proteomics	

study	 and	 a	 study	 where	 cells	 had	 been	 subjected	 to	 oxidative	 stress	 via	 cellular	

steatosis	(HDLBP,	MTHFD2,	RTCB,	SND1).244	These	findings	indicate	that	5-fU	may	serve	

as	a	molecular	marker	for	oxidative	stress	in	cells.		
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Notably,	a	number	of	5-fU	enriched	proteins	also	appear	to	be	linked	with	transcription	

and	transcriptional	regulation,	 including	several	transcription	factors	and	mediators	of	

RNA	polymerases	245,246,247.	SAP130	has	literature	precedent	for	binding	preferentially	to	

UV-damaged	 DNA.248	 This	 protein	 associates	 with	 SIN3a,	 which	 functions	 as	 a	

transcriptional	 co-repressor	 in	 association	with	 histone	 deacetylases	 (HDAC)	 and	 has	

roles	in	chromatin	remodelling.249	TARDBP	also	functions	as	a	transcriptional	repressor,	

repressing	acrv1	gene	expression	during	spermatogenesis	in	mouse.250	As	a	result,	this	

highlighted	that	5-fU	may	also	have	an	influence	on	gene	expression.	

	

5.4.	5-fU	Suppressed	Proteins	

A	subset	of	proteins	were	instead	preferentially	depleted	in	fU	DNA-bound	pools	(Table	

13).	 Impeded	binding	of	 several	 transcription	 factors,	 including	FOXC1	and	ELF2,	was	

observed,	the	former	being	important	for	cardiovascular	development.251	Furthermore,	

DNA-binding	 protein	 DNA-methyltransferase	 related	 protein	 1	 (DMAP1)	 was	

suppressed.	This	protein	is	implicated	in	epigenetic	regulation	and	associates	with	both	

DNMT1	 and	 HDAC,	 leading	 to	 transcriptionally	 inactivated	 genes	 after	 replication.252	

Several	chromatin	remodellers	were	also	suppressed:	CHAF1B,	integral	for	nucleosome	

assembly253;	 ASH2	 histone	 methyltransferase	 subunit,	 responsible	 for	 methylation	 of	

H3K4254;	 and	 SAGA	 complex	 associated	 factor	 29	 (SGF29).255	 The	 reduced	 binding	 of	

these	 proteins	 suggests	 that	 the	 presence	 of	 5-fU	 may	 impair	 the	 normal	 epigenetic	

processing	of	DNA.		
 

Protein		 Log2Fold	Enrichment		

GCATDNA1/fUDNA1	

p-value	

Transcriptional	repressor	p66-beta	(GATAD2B)	 3.95	 5.52E-02	

Phenylalanyl-tRNA	synthetase	alpha	chain	(FARSA)	 3.87	 5.45E-04	

Poly	[ADP-ribose]	polymerase	1	(PARP-1)	 3.74	 1.44E-02	

Poly(A)	RNA	polymerase	(MTPAP)	 3.27	 7.57E-02	

SAGA	Complex	Associated	Factor	29	(SGF29)	 3.25	 2.82E-06	

Methyltransferase-like	protein	13	(METTL13)	 3.22	 8.27E-02	

DNA	methyltransferase	1-associated	protein	1	(DMAP1)	 3.14	 7.73E-03	

ADP	Ribosylation	Factor	GTPase	Activating	Protein	2	(ARFGAP2)	 2.80	 9.13E-04	

Dedicator	Of	Cytokinesis	1	(DOCK1)	 2.69	 5.16E-02	

Engulfment	And	Cell	Motility	2	(ELMO2)	 2.69	 8.41E-02	

Leucine-rich	repeat	and	WD	repeat-containing	protein	1	(LRWD1)	 2.69	 8.41E-02	

Cysteine-rich	protein	2-binding	protein	(KAT14)	 2.69	 8.41E-02	

Ribosomal	Protein	L23	(RPL23)	 2.65	 2.54E-02	

Nucleus	Accumbens	Associated	1	(NACC1)	 2.65	 2.54E-02	

Metastasis	associated	1	family	member	2	(MTA2)	 2.53	 4.20E-02	

Tho	complex	1	(THOC1)	 2.53	 4.20E-02	
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Chromatin	assembly	factor	1	subunit	B	(CHAF1B)	 2.53	 4.20E-02	

BUD31	homolog	(BUD31)	 2.53	 4.20E-02	

Migration-inducing	gene	14	 2.48	 9.57E-02	

Pyruvate	dehydrogenase	(acetyl-transferring)]	kinase	isozyme	3	(PDK3)	 2.48	 9.57E-02	

Forkhead	box	protein	C1	(FOXC1)	 2.35	 6.52E-03	

NADH	dehydrogenase	[ubiquinone]	flavoprotein	1	(NDUFV1)	 2.35	 6.52E-03	

60S	ribosomal	protein	L22	(RPL22)	 2.35	 6.52E-03	

Protein	phosphatase	2C	56	(ABI1)	 2.14	 1.01E-02	

Replication	factor	C	subunit	5	(RFC5)	 2.14	 1.01E-02	

PCNA-associated	factor	(PAF)	 2.14	 1.01E-02	

Heat	shock	70	kDa	protein	14	(HSPA14)	 2.14	 1.01E-02	

Large	neutral	amino	acids	transporter	small	subunit	1	(SLC7A5)	 2.14	 1.01E-02	

Nuclear	receptor	coactivator	6	(NCOA6)	 2.14	 1.01E-02	

Talin-1	(TLN1)	 2.14	 1.01E-02	

Protein	lin-9	homolog	(LIN9)	 2.14	 1.01E-02	

Rho	GTPase-activating	protein	5	(ARHGAP5)	 2.02	 6.22E-02	

Microtubule-associated	protein	RP/EB	family	member	2	(MAPRE2)	 2.02	 5.24E-02	

ETS-related	transcription	factor	Elf-2	(ELF2)	 1.93	 5.29E-02	

Nucleolar	and	spindle-associated	protein	1	(NUSAP1)	 1.93	 5.29E-02	

Interferon	regulatory	factor	2-binding	protein	2	(IRF2BP2)	 1.89	 6.75E-02	

Density-regulated	protein	(DENR)	 1.25	 7.12E-03	

NADH	dehydrogenase	[ubiquinone]	flavoprotein	3	(NDUF3V)	 1.24	 3.14E-02	

Epididymis	tissue	sperm	binding	protein	Li	14m	 1.02	 1.66E-02	

Coatomer	subunit	delta	(ARCN1)	 0.98	 6.34E-02	

REST	corepressor	1	(RCOR1)	 0.95	 1.32E-02	

Delta-1-pyrroline-5-carboxylate	synthase	(ALDH18A1)	 0.87	 9.42E-02	

ATP	synthase	subunit	alpha	(ATP5A1)	 0.86	 9.60E-02	

CREB/ATF	bZIP	transcription	factor	(CREBZF)	 0.84	 7.83E-02	

AFG3-like	protein	2	(AFG3L2)	 0.73	 9.03E-02	

NADH-ubiquinone	oxidoreductase	75	kDa	subunit	(NDUFS1)	 0.71	 2.84E-02	

ELM2	and	SANT	domain-containing	protein	1	(ELMSAN1)	 0.69	 2.87E-02	

Set1/Ash2	histone	methyltransferase	complex	subunit	ASH2	(ASH2L)	 0.68	 5.82E-02	

Pleiotropic	regulator	1	(PLRG1)	 0.66	 4.08E-02	

Neural	Wiskott-Aldrich	syndrome	protein	(WASL)	 0.48	 1.79E-02	

Table	13:	Specifically	enriched	(>	0.4	log2-fold-change	GCAT1-DNA	control/fU-DNA1)	5-fU	DNA-binding	
proteins	with	their	log2fold	change	and	associated	p-value.	
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5.5.	UNG	as	a	5-fU	Binder	

In	 this	 study,	 fU-DNA	 baits	 led	 to	 enrichment	 of	 the	 DNA	 glycosylase,	 uracil	

deglycosylase	 (UNG).	 This	 protein	 is	 typically	 known	 for	 the	 selective	 excision	 and	

repair	 of	 U	 in	 DNA;256	 yet,	 a	 previous	 study	 demonstrated	 a	 potential	 correlation	

between	 the	pKa	of	 the	N(3)H	uracil	derivative	and	UNG	binding	affinity	using	a	UNG	

structural	mimic.257	 The	 reduced	 pKa	 of	 5-fU	 (due	 to	 its	 electron	withdrawing	 formyl	

group)	was	rationalised	to	have	tighter	UNG	binding	over	unmodified	DNA.		

	

Since	 UNG	 possesses	 glycosylase	 capacity,	 the	 capability	 of	 UNG	 to	 excise	 5-fU	 was	

assessed.	fU-ODN,	a	10mer	containing	one	5-fU	modification,	was	incubated	with	E.	coli	

UNG,	which	shares	the	same	catalytic	domain	(200	amino	acid	residues)	as	the	human	

UNG	isoform.256	A	~12%	conversion	to	AP-site	DNA	was	observed,	indicating	UNG	has	a	

slight	 capacity	 to	 excise	 5-fU	 (Figure	 70),	 although	 large	 quantities	 of	 enzyme	 were	

required	(50	U).		

	

	
Figure	 70:	 UNG	 incubation	 with	 fU-ODN	 led	 to	 formation	 of	 AP-site	 containing	 ODN	 (AP-ODN2).	 %	
conversion	was	calculated	by	integration	of	peak	at	260	nm	between	starting	fU-ODN	and	AP-ODN2	
	

The	mammalian	5-fU	glycosylase	SMUG1,	considered	as	the	main	5-fU	glycosylase,62	was	

not	identified	in	this	5-fU	proteomics	study.	However,	the	level	of	SMUG1	abundance	is	

low	 in	HEK293	 cells258	 (~	 5	 fold	 lower	 than	UNG2)	 and	 a	 large	 drawback	 of	 classical	

global	proteomics	is	the	lack	of	sensitivity	for	low	abundance	proteins	in	the	presence	of	

those	 that	 are	much	more	 abundant.259	 Since	 the	 rate	of	 excision	 is	 found	 to	be	much	

slower	and	 less	 efficient	 than	 that	observed	with	hSMUG1	protein	 in	vitro,	 hSMUG1	 is	

still	likely	to	be	the	dominant	5-fU	glycosylase	in	humans.		

	

UNG’s	 mode	 of	 action	 involves	 scanning	 DNA	 and	 forming	 a	 pseudo-base	 pair	 with	

uracil/thymine-derived	 bases	 as	 they	 partially	 emerge	 from	 the	 DNA	 double	 helix.260	

This	 interaction	 leads	 to	 the	 DNA	 base	 being	 flipped	 out,	 and	 whilst	 U	 can	 be	

incorporated	into	the	active	site	and	subsequently	excised,	the	methyl	group	of	thymine	

fU-ODN 
[M-2H]2- calcd. = 1519.3
[M-2H]2- obs. = 1519.3

AP-ODN2 
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sterically	clashes	with	a	tyrosine	residue	(Y66)	in	the	active	site,	allowing	discrimination	

between	 these	 two	 bases.261	 Thus,	 UNG	 has	 limited	 tolerance	 for	 uracil	 bases	 with	

substituents	 at	 the	 5’	 position;	 indeed,	 UNG	 has	 also	 been	 shown	 to	 have	 no	 excision	

activity	against	5-chloro,	5-bromo	or	5-iodo-uracil,261,262,263	 yet,	 shows	 limited	excision	

activity	 towards	 the	 smaller	 5-fluorouracil.264	 Observation	 of	 the	 UNG	 protein	 co-

crystallised	 with	 U	 (Figure	 71)	 suggests	 that	 the	 planar	 formyl	 group	 of	 5-fU	 may	

facilitate	its	accommodation	into	the	UNG	active	site,	enabling	its	limited	excision.	

	

	
Figure	71:	Crystal	structure	of	uracil	co-crystallised	with	UNG.	Steric	clash	with	Y66	leads	to	selectivity	for	
U	incorporation	over	T,	where	the	central	molecule	represents	the	U	base.261		
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5.6.	Conclusion	

Mass	spectrometry-based	proteomics	has	 identified	a	number	of	key	proteins	 that	are	

consistently	 enriched	 in	 the	 presence	 of	 5-fU	 compared	 to	 a	 non-modified	 control.	 A	

large	 number	 of	 these	 proteins	 appear	 to	 be	 involved	 in	 the	 DNA	 damage	 response,	

consistent	 with	 the	 current	 understanding	 that	 5-fU	 is	 caused	 by	 ROS-activated	

oxidation	of	T.	Furthermore,	a	number	of	proteins	are	also	involved	in	redox	regulation	

and	 antioxidant	 activity,	 suggesting	 that	 5-fU	 could	 potentially	 act	 as	 a	 marker	 for	

oxidative	stress.		

	

A	subset	of	proteins	linked	with	gene	regulation	were	also	enriched	or	suppressed	in	the	

presence	 of	 the	 5-fU	 modification,	 suggesting	 the	 mark	 could	 have	 an	 effect	 on	 gene	

expression.	Furthermore,	UNG	is	 identified	as	a	5-fU	binder,	and	subsequent	follow-up	

study	shows	UNG	has	a	slight	capacity	to	excise	or	‘erase’	5-fU	from	DNA.		

	

Follow-up	work	should	explore	5-fU	protein	pulldown	using	alternative	sequence	baits	

to	 determine	 if	 5-fU-protein	 recruitment	 is	 sequence-specific.	 In	 addition,	 proteomic	

baits	using	 less	heavily-modified	5-fU	may	be	more	biologically	relevant,	reflecting	the	

low	 abundance	 of	 5-fU	 in	 mammalian	 DNA	 (Section	 2.6.1.ii).	 To	 improve	 future	

experimental	 design,	 the	 addition	of	 competitor	non-modified	DNA	would	 allow	more	

stringent	 selection	of	5-fU	preferential	binders.	Furthermore,	 the	use	of	 stable	 isotope	

labelling	with	 amino	acids	 in	 cell	 culture	 (SILAC)	nuclear	 extracts	 is	 likely	 to	 increase	

the	reliability	of	quantitative	measurements,	particularly	for	low-abundance	proteins.		

	

In	this	current	study,	 it	 is	not	clear	which	proteins	are	direct	binders	to	5-fU,	or	which	

are	 enriched	 as	 part	 of	 a	 wider	 complex.	 ELISA	 studies	 or	 EMSA-assays	 with	 native	

proteins	 would	 definitively	 identify	 direct	 5-fU	 binders,	 and	 the	 strength	 of	 this	

interaction	could	be	subsequently	assessed.		
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6.	Probing	interactions	between	formylated	DNA	bases	and	

histone	proteins	
	

6.1.	Introduction	

Nucleosomes	 are	 the	 fundamental	 units	 of	 chromatin	 and	 control	 access	 to	 genetic	

information.	Nucleosomal	 organisation	 is	 influenced	by	 a	number	of	 factors,	 including	

DNA	 sequence	 and	 chromatin	 remodelling	 proteins,265,266	 and	 is	 a	 key	 determinant	 of	

gene	 expression.	Regulatory	 regions	depleted	of	 nucleosomes,	 and	 those	marked	with	

particular	histone	modifications	(e.g.	lysine	acetylation	and	methylation),	are	correlated	

with	transcriptionally	active	genes.		

	

Certain	dinucleotides	 are	 shown	 to	 favour	 interactions	with	 the	histone	 core	 (e.g.	 CG)	

and	 hence	 facilitate	 the	 bending	 and	 rotational	 positioning	 of	 DNA	 within	 the	

nucleosome,	 which	 occurs	 with	 ~10bp	 periodicity.267	 The	 presence	 of	 5-mC,	 within	

these	nucleotides,	is	shown	to	alter	nucleosomal	stability.154	In	addition,	there	have	been	

numerous	 reports	 assessing	 how	 5-mC	 and	 5-hmC	 alter	 nucleosomal	 structure	 and	

positioning	 (Introduction,	 1.5.4).	 However,	 there	 has	 been	 less	 exploration	 into	 the	

effect	of	formylated	nucleobases	on	chromatin	architecture.			

	

Proteomics	 studies	 have	 shown	 that	 formylated	 bases	 can	 influence	 DNA-protein	

binding	 (Chapter	 5);	 5-fC,	 in	 particular,	 is	 found	 to	 specifically	 recruit	 a	 number	 of	

chromatin	 remodelling	 proteins.49	 Furthermore,	 genome-wide	maps	 of	 5-fC	 show	 this	

mark	 is	 correlated	with	 tissue-specific	 active	 enhancers,	 lysine	 acetylation	 and	 lysine	

monomethylation,53	raising	questions	about	its	role	in	chromatin	biology.	Both	5-fU	and	

5-fC	 are	 shown	 to	 alter	 the	 physical	 properties	 of	 DNA,150,268	 and	 hence	 have	 the	

propensity	 to	 influence	 protein	 recognition	 and	 biological	 function.	 A	 novel	 DNA	

structure	in	the	presence	of	multiple	5-fC	modifications,	termed	F-DNA,	was	solved	by	X-

ray	 crystallography269;	 although	 the	 relevance	 of	 this	 structure	 has	 recently	 been	

challenged	by	Brown	and	co-workers.270	In	relation	to	nucleosome	structure,	an	in	vitro	

study	by	Ngo	et	al.,	using	FRET	and	optical	tweezers,	demonstrated	that	5-fC	increased	

the	 flexibility	of	DNA,	which	 in	 turn	enhanced	nucleosomal	stability	compared	 to	non-

modified	C.150		

	

Thus,	this	chapter	will	describe	studies	aimed	to	determine	the	influence	of	formylated	

modified	 bases	 on	 nucleosomal	 structure.	 A	 particular	 focus	 was	 to	 explore	 whether	
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direct	 Schiff	 base	 formation	 could	 occur	 between	 formylated	nucleobases	 and	histone	

protein	side-chains,	which	may	contribute	to	nucleosomal	stability	and	positioning.	

	

6.1.1.	Effect	of	Formylated	DNA	on		Nucleosomal	Occupancy	in	vitro	and	in	vivo	
In	vivo	and	in	vitro	studies	performed	by	Dr	E.A.	Raiber	or	Z.Li		
	

Work	within	 the	Balasubramanian	group	had	demonstrated	 that	DNA	containing	both		

5-fC	 (heavily-modified	 and	 ~1%	 modified)	 and	 5-fU	 (heavily-modfiied)	 increased	

nucleosome	 occupancy	 in	 vitro	 (unpublished	 work).	 Nucleosome	 occupancy	 was	

assessed	 by	 determining	 the	 ratio	 of	 Cy5-labelled	 DNA	 between	 nucleosomal	 and	

unbound	 DNA	 fractions	 after	 nucleosome	 assembly	 (Figure	 72	 –	 A	 and	 B).	 A	 further	

study,	using	salt	titration	to	dissociate	the	nucleosome,	confirmed	that	5-fC	DNA	(~1%	

modified)	 increased	 nucleosomal	 stability	 (c½	 =	 531	 ±	 1.0	 mM)	 compared	 to	 a	 non-

modified	C	control		(c½	=	480	±	1.1	mM)	(Figure	72		-	C).		

	
Figure	 72:	 A)	 Gel	 demonstrating	 the	 nucleosome	 assembly	 of	 fluorescently-labelled	modified	 DNA	with	
histone	 proteins	 in	 the	 presence	 of	 chaperones.	 	 B)	 Relative	 nucleosomal	 occupancy	 determined	 by	 the	
relative	ratio	of	DNA	(by	Cy5	fluorescent	signal)	in	nucleosomal	and	free	DNA	fractions.	5-fC	and	5-fU	DNA	
markedly	increase	nucleosome	occupancy	compared	to	other	modifications	in	vitro.	C)	Salt	titration,	where	
salt	dissociates	the	nucleosome,	was	used	to	assess	the	stability	of	nucleosomes	in	the	presence	of	5-fC.	5-fC	
DNA	increased	the	stability	of	the	nucleosome	with	respect	to	a	non-modified	control.	Low	density	refers	to	
DNA	that	is	~1%	modified.	
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A	 nucleosome	 reconstitution	 experiment,	 performed	 by	 E.A	 Raiber,	 further	

demonstrated	that	the	presence	of	5-fC	influenced	nucleosomal	positioning	(unpublished	

work).	 Mouse	 hindbrain	 DNA	 (E	 =	 11.5	 days),	 shown	 to	 be	 enriched	 in	 5-fC,53	 was	

reconstituted	 with	 nucleosomes	 and	 treated	 with	 MNase	 to	 generate	 a	 map	 of	

nucleosomal	occupancy.	As	a	control,	DNA	was	treated	with	sodium	borohydride	before	

nucleosome	reconstitution;125	 this	reagent	reduces	5-fC	to	5-hmC,	and	hence	the	effect	

of	5-fC	on	nucleosomal	positioning	could	be	assessed	independent	of	sequence	context.	

Nucleosomes	were	 found	 to	be	 enriched	 at	 5-fC	 sites,	 but	not	 in	 the	 reduced	 (5-hmC)	

control	 (Figure	73	 –	A).	Next,	 to	determine	 genome-wide	nucleosomal	 organisation	 in	

vivo,	MNase-seq	(peformed	by	E.A.	Raiber)	was	performed	directly	on	mouse	hindbrain	

tissue,	where	nucleosome	positioning	was	correlated	with	genome-wide	maps	of	5-fC.53	

Consistent	with	the	in	vitro	studies,	higher	average	nucleosome	occupancy	at	5-fC	sites	

was	observed	compared	to	other	positioned	nucleosomes.	Furthermore,	5-fC	containing	

CpGis	 demonstrated	 higher	 nucleosomal	 occupancy	 compared	 to	 non-fC	 containing	

CpGis	 (Figure	 73	 –	 B).	 This	 was	 of	 relevance	 as	 CpGis	 are	 usually	 associated	 with	

depletion	of	nucleosomes	in	vivo.271,272	

	

	
Figure	73:	a)	A	nucleosome	reconstitution	experiment	with	mouse	hindbrain	DNA	and	subsequent	MNase	
treatment	and	NGS	demonstrated	higher	nucleosome	occupancy	(determined	by	MNase	RPKM)	at	5-fC	sites	
(determined	in	TDG	knockout	hindbrain),	and	not	in	a	NaBH4	reduced	control	(5-hmC).	b)	MNase	treatment	
of	mouse	hindbrain	tissue	revealed	higher	nucleosome	occupancy	(determined	by	MNase	RPKM)	within	5-
fC-enriched	regions	at	CpGi	loci,	compared	to	CpGi	which	do	not	contain	5-fC.		
	

My	 role	was	 to	 extend	 this	 study	 to	more	 fully	 understand	 the	molecular	 interactions	

between	 formylated	 bases	 and	 nucleosomes;	 this	 would	 provide	 a	 mechanism	

underpinning	 the	 enhanced	 nucleosomal	 occupancy	 at	 5-fC-enriched	 loci	 observed	 in	

vivo	and	the	increased	nucleosomal	formation	observed	with	both	5-fC	and	5-fU	in	vitro.	

	 	

A) B)
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6.1.2.	 Basis	 for	 Probing	 Schiff	 Base	 Formation	 between	 Formylated	 DNA	

Nucleobases	and	Histone	Proteins.	

Since	histone	proteins	are	 lysine-rich,	 including	 their	N-terminal	 tails,	 it	was	reasoned	

that	reversible	Schiff-base	 interactions	beween	 lysines	and	formylated	bases	(5-fC	and	

5-fU)	could	alter	the	positioning	and	stability	of	nucleosomal	structure	 in	DNA	(Figure	

74).	 It	 had	 already	 been	 demonstrated	 that	 the	 formyl	 groups	 in	 both	 5-fU	 and	 5-fC	

could	 readily	 form	 Schiff	 bases	 with	 various	 nitrogen-nucleophiles	 present	 in	 excess	

(Chapter	 3).	 Furthermore,	 5-fU	 had	 been	 shown	 to	 form	 a	 Schiff	 base	 with	 5-

aminocytosine	 as	 a	 non-natural	 base-pair,273	 suggesting	 the	 formyl	 group	 can	 interact	

with	amines	 in	 close	proximity.	Therefore,	 interactions	between	 formylated	bases	and	

lysine	residues	were	explored	to	assess	the	potential	relevance	of	Schiff	base	formation	

within	the	nucleosome.		

	

	
Figure	 74:	 Proposed	 Schiff	 base	 formation	 between	 formylated	 bases	 (demonstrated	 here	 by	 5-fC)	 and	
lysine	side-chains	of	histone	proteins	may	contribute	to	increased	formylated-DNA	nucleosomal	occupancy	
and	stability.		
	

6.2.	Schiff	Base	Formation	between	Formyl	Groups	and	Lysine		

Schiff-bases	 can	 be	 covalently	 trapped	 by	 sodium	 cyanoborohydride	 (NaBH3CN)	

reduction;	 this	 reagent	 is	 selective	 for	 imine	reduction	over	aldehyde	reduction	under	

neutral	conditions.274	Imine	reduction	by	sodium	cyanoborohydride	has	been	routinely	

applied	 in	 chemical	 biology	 to	 probe	 key	 lysine	 residues	 involved	 in	 enzymatic	

reactions.275	 In	 addition,	 crosslinking	 between	 aldehyde-bearing	 DNA	 and	 proteins,	

including	 for	 AP	 sites	 and	 DNA	 damage	 products,	 had	 been	 demonstrated	 previously	

suggesting	proof	of	principle	for	this	work.276,277,278,279	Selective	reduction	could	thus	be	

used	 as	 a	 tool	 to	 probe	 potential	 associations	 between	 5-fU/5-fC	 and	 proximal	 lysine	

residues.		
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6.2.1	Reactivity	of	Lysine	with	5-fU	and	5-fC-bearing	ODNs		

Reactivity	of	lysine	with	5-fC	and	5-fU	was	assessed	using	ODNs	bearing	one	formylated	

base	 (fU-ODN	 or	 fC-ODN).	 In	 the	 presence	 of	 lysine	 (10	 mM)	 and	 sodium	

cyanoborohydride	(25	mM),	trapped	Schiff	base	adducts	with	fU-ODN	were	observed	via	

LC-MS	(Figure	75).		

	

	
	

Figure	 75:	 LC-MS	 trace	 showing	 sodium	 cyanoborohydride	 reduction	 of	 the	 Schiff	 base	 adduct	 formed	
between	lysine	and	fU-ODN.	Two	products	were	observed	demonstrating	Schiff	base	formation	with	either	
the	α-	or	ε-	amine	of	lysine	(bottom).	Reactivity	of	fU-ODN	was	confirmed	with	both	5-aminovaleric	acid	and	
glycine	as	models	for	both	α-	or	ε-	amines	(Chapter	6	Appendix).	
	

Using	 the	 same	 crosslinking	 conditions	 as	 those	 used	 for	 fU-ODN,	 no	 crosslink	 was	

observed	for	5-fC.	This	demonstrates	the	reduced	electrophilicity	of	5-fC	and	its	adducts	

compared	 with	 5-fU,	 as	 discussed	 previously	 in	 this	 thesis	 (Chapter	 3).	 Further	

optimisation	 revealed	 that	 lysine-5-fC	 crosslinking	 was	 possible	 in	 the	 presence	 of	 a	

much	more	concentrated	solution	of	lysine	(500	mM)	and	with	heating	to	37	°C	(Figure	

76	 -	 top).	At	 this	 concentration	of	 lysine,	 Schiff	 base	 formation	without	 reduction	was	

also	observable	(Figure	76	–	bottom),	however,	subsequent	purification	of	the	oligomer	

from	 lysine	 led	 to	 re-equilibriation	 and	 recovery	 of	 fC-ODN,	 demonstrating	 the	

reversibility	of	Schiff	base	formation.	
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Figure	 76:	Top:	 fC-ODN	crosslinked	with	 lysine	after	 incubation	with	sodium	cyanoborohydride,	Bottom:	
fC-ODN	Schiff	base	 interaction	with	 lysine	 in	 the	absence	of	reducing	agent.	Two	products	were	observed	
demonstrating	 Schiff	 base	 formation	 with	 either	 the	 α-	 or	 ε-	 amine	 of	 lysine.	 Reactivity	 of	 fC-ODN	 was	
confirmed	with	both	5-aminovaleric	acid	and	glycine	as	models	for	both	α-	or	ε-	amines.	
	

6.3.	Crosslinking	with	Model	Proteins	

Having	demonstrated	the	feasibility	of	crosslinking	DNA	bearing	5-fU	or	5-fC	with	lysine,	

the	applicability	of	crosslinking	DNA	to	proteins	was	next	investigated;	this	had	already	

been	demonstrated	for	aldehyde-bearing	DNA	containing	the	damaged	base	7-deaza-7-

(2,3-dihydroxypropyl)-guanine.279	 Thus,	 the	 model	 proteins	 Bovine	 Serum	 Albumin	

(BSA,	59	 lysines)	and	Ribonuclease	A	(Ribo	A,	8	 lysines)	were	 incubated	with	fU,	 fC	or	

non-modified	DNA	(fU-DNA1,	fC-DNA1,	GCAT-DNA1)	in	the	presence	of	reducing	agent.	

After	incubation,	analysis	by	gel	electrophoresis	demonstrated	shifted	gel-bands	for	fU-

DNA1	corresponding	 to	DNA-protein	crosslinks	with	both	model	proteins,	BSA	(MW	=	

66.5	 kDa)	 and	Ribo	A	 (MW	=	 13.7	 kDa),	whilst	 no	 shifted	 band	was	 observed	 for	 the	

non-formylated	 GCAT-DNA1	 control	 (Figure	 77).	 Crosslinking	 of	 fU-ODN	with	 Ribo	 A	

was	also	demonstrated	by	mass	spectroscopy	(Figure	78).		

	

fC-ODN + Lysine + NaBH3CN
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Figure	77:	Incubation	of	fU-DNA1	and	model	proteins	in	the	presence	of	sodium	cyanoborohydride	led	to	
fU-DNA1	shifted	gel-bands	demonstrate	crosslinking	with	Ribo	A	and	BSA	model	proteins.	12%	SDS	gel	ran	
in	MES	buffer.	
	

	
Figure	 78:	Mass	 spectrum	demonstrating	 covalent	 crosslink	 (MW	=	16.71	kDa)	between	 fU-ODN	 (MW	=	
3.04	kDa)	and	Ribo	A	(13.67	kDa).	
	

In	 contrast,	 no	 5-fC	 crosslink	 was	 observed	 with	 the	 model	 proteins,	 either	 by	 gel	

electrophoresis	or	mass	spectroscopy;	this	was	even	with	the	increased	concentration	of	

reducing	agent	necessary	for	crosslinking	on	the	ODN	model.	A	lack	of	reactivity	with	fC-

DNA1	 demonstrated	 that	 reduction	 of	 5-fC	 Schiff-base	 adducts	 may	 only	 be	 possible	

with	 interacting	 proteins	 in	 close	 proximity,	 as	 in	 the	 nucleosome.	 Thus,	 Schiff	 base	

formation	 was	 instead	 probed	 using	 an	 in	 vitro	 nucleosome	 model	 for	 further	

exploration.	
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6.4.	Crosslinking	in	the	Nucleosome	
Nucleosome	assembly	was	performed	by	Z.	Li	or	Dr	E.A.	Raiber.	
	
Nucleosomes	 were	 assembled	 either	 via	 chaperone	 or	 salt	 dilution	 using	 the	Widom	

DNA	 sequence,	 selected	 for	 its	 high	 affinity	 towards	 histone	 proteins.280	 Formylated	

bases	(5-fU	and	5-fC)	replaced	non-canonical	bases	(T	and	C)	in	non-primer	regions	of	

the	Widom	sequence	(leading	to	55	and	70	formylated	bases	respectively).	Nucleosomes	

were	 incubated	 with	 sodium	 cyanoborohydride	 (100	 mM)	 at	 37	 °C	 for	 18	 hr.	 The	

reducing	 agent	 was	 removed	 using	 size-exclusion	 chromatography	 and	 the	 resulting	

mixture	was	ran	on	a	denaturing	protein	gel	and	imaged	for	subsequent	analysis.		

	

	
	
Figure	79:	12%	SDS	gel	ran	in	MES	buffer	after	incubation	of	modified-DNA	containing	nucleosomes	in	the	
presence	of	100mM	sodium	cyanoborohydride	for	18	hr.	Crosslinking	of	5-fC	is	observed	corresponding	to	
DNA	+	one	histone	subunit.	5-fU	shows	shifted	gel-bands	>	100	kDa.	No	shifted	gel-bands	were	observed	for	
non-modified	or	5-caC	containing	DNA	controls.	
	

A	shifted	gel-band	was	observed	for	labelled	5-fC-containing	DNA	corresponding	to	the	

size	of	 the	DNA	 (44	kDa)	plus	one	histone	 subunit	 (15-20	kDa),	 indicating	Schiff	 base	

formation	within	 the	nucleosome	 (Figure	79).	No	analogous	band	was	 seen	 for	GCAT-

Widom	DNA	or	5-caC-Widom	DNA	controls,	which	are	incapable	of	forming	Schiff	bases	

with	 lysine.	 It	was	reasoned	 that	 reductive	 trapping	with	5-fC	was	possible	within	 the	

nucleosome	due	to	their	close	proximity	with	histone	protein	lysine	side-chains.		

	

In	 contrast,	 5-fU	 crosslinking	 led	 to	 the	 formation	 of	 higher	 molecular	 weight	 bands	

(Figure	79).	Since	the	Widom	DNA	sequence	contains	more	than	one	5-fU	per	strand,	the	

results	 suggested	 that	 5-fU	was	 either	 crosslinking	 to	more	 than	 one	 histone	 subunit	

simultaneously,	 or	was	 alternatively/in	 addition	 crosslinking	 to	other	high	 abundance	

proteins	 in	the	nucleosome	assembly	mixture	such	as	BSA	(as	demonstrated	by	model	
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potein	 studies)	 or	 the	 Nucleosome	 Assembly	 Protein	 1	 (NAP1)	 chaperone.	 This	

demonstrated	 the	 higher	 reactivity	 of	 5-fU	 adducts	 with	 sodium	 cyanoborohydride.	

Efforts	 to	 subject	 the	 5-fU	 nucleosome	 to	 milder	 reduction	 conditions	 still	 showed	

shifted	 gel-bands	 corresponding	 to	 >	 80	 kDa	 under	 these	 conditions,	 indicating	 the	

promiscuity	of	5-fU	reactivity	(Appendix	–	Chapter	6).	

	

6.5.	Probing	Crosslinking	via	Proteomics	Experiments	

6.5.1.	Analysis	of	Shifted	Gel-bands	via	Proteomics		

To	 provide	 conclusive	 evidence	 of	 crosslinking	 between	 formylated	 DNA	 and	 histone	

proteins	within	the	nucleosome,	proteomic	mass-spectrometric	analysis	was	utilised	to	

confirm	the	presence	of	histone	proteins	within	DNA-protein	crosslinked	bands.	Bands	

were	 extracted	 and	 subjected	 to	 tryptic	 digest	 before	 proteomics	 analysis.	 For	

crosslinked	 5-fC	 DNA,	 polypeptides	 corresponding	 to	 histone	 protein	 subunits	 were	

identified	by	mass	spectrometry,	providing	conclusive	evidence	 for	crosslinking	 in	 the	

nucleosomal	model.	H2B	and	H4	subunits	were	seen	in	all	5-fC	crosslinked	samples	and	

the	H3	subunit	was	observed	in	2/3	replicates	(Table	14).	This	indicated	that	Schiff	base	

formation	occurs	at	multiple	positions	within	the	nucleosome.	An	analogous	molecular-

weight	 band	 corresponding	 to	GCAT-Widom	 (which	had	been	 exposed	 to	 crosslinking	

conditions)	was	submitted	as	a	control,	where	no	histone	proteins	were	detected.		

	
Subunit	 fC-Rep1	 fC-Rep2	 fC-Rep3	 C	 fU	

H2A	 ✗ ✗	 ✗ ✗	 ✗	

H2B	 ✓ ✓	 ✓ ✗	 ✗	

H3	 ✓ ✗	 ✓ ✗	 ✗	

H4	 ✓ ✓ 	 ✓ ✗	 ✗	

Table	14:	Peptides	of	histone	subunits	identified	by	mass-spectrometry	based	proteomics.			

	

In	 addition,	 no	 histone	 subunits	 were	 identified	 by	 proteomics	 in	 the	 5-fU	 DNA	

nucleosome	shifted	gel-band;	 this	 indicated	 that	5-fU	DNA	 is	 instead	crosslinking	with	

other	 components	 of	 the	 nucleosome	 assembly	 mixture	 (e.g.	 Nucleosome	 Assembly	

Protein	 1).	However,	 it	 is	 possible	 that	 excessive	DNA	 crosslinking	 to	 histone	 peptide	

fragments	may	have	inhibited	their	identification.	
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	6.5.2.	Identifying	Crosslinking	Sites	via	Proteomics	

It	was	 envisaged	 that	 proteomics	 could	be	utilised	 to	 identify	 the	 exact	 sites	 of	 lysine	

crosslinking	 via	 a	 histone	 peptide	 mass-shift	 (Figure	 80).	 These	 sites	 would	 be	

indicative	of	stabilising	interactions	with	formylated-Widom	DNA.	

	

	
Figure	80:	Schematic	demonstrating	tryptic	digest	of	histone	to	different-sized	peptide	fragments.	Site	of	
crosslinking	can	be	determined	by	a	mass-shift	of	5-fC.	Some	peptide	units	after	proteolytic	digest	can	be	
too	small	or	large	to	be	observed	via	mass	spectrometry.		
	

	In	order	to	determine	sites	of	crosslinking	via	mass-shift,	efficient	peptide	coverage	of	

crosslinking	sites	(e.g.	lysine)	would	be	necessary	to	explore	the	extent	and	occurrence	

of	Schiff	base	 formation	(Figure	80).	To	 improve	peptide	coverage,	peptides	should	be	

cut	into	chains	6-20	amino	acids	in	length.227	Fragments	<	6	are	too	small	to	be	unique	

for	a	particular	protein	in	database	searches,	whereas	fragments	>	20	suffer	from	poor	

ionisation.	Whilst	100%	coverage	is	unlikely	to	ever	be	attainable,	different	proteolytic	

enzymes	were	screened;	 these	enzymes	cut	at	different	amino	acid	 residue	restriction	

sites,	 and	hence	are	 likely	 to	give	a	different	distribution	of	peptide	chain	 lengths	and	

sequences.	 Trypsin,	 the	 most	 typically	 used	 protein	 digestion	 enzyme	 for	 proteomic	

study,	 cuts	at	 the	C-terminus	between	 lysine	and	arginine,	apart	 from	 in	 the	 instances	

where	 these	 amino	 acids	 follow	 a	 proline	 residue.281	 In	 contrast,	 chymotrypsin	 (high	

specificity)	cuts	at	C-terminus	tryptophan,	tyrosine	and	phenylalanine,	Asp-N	cuts	at	N-

terminus	aspartic	acid	and	glutamine,	while	Arg-C	cuts	at	C-terminus	arginine.282,283		

	
	 Trypsin		

%	

Trypsin	

Lysine	%	

Chymotrypsin	

%	

Chymotrypsin	

Lysine	%	

Arg-C	

%	

Arg-C		

Lysine	%	

Asp-N	%	 Asp-N	

Lysine	%	

H2A	 27	 14	 22	 14	 17	 21	 7	 0	

H2B	 51	 36	 22	 9	 56	 36	 50	 36	

H3	 33	 31	 26	 8	 62	 69	 45	 31	

H4	 52	 36	 22	 9	 56	 27	 34	 18	

Table	15:	Overall	coverage	and	percentage	lysine	coverage	for	each	histone	subunit	after	treatment	with	
different	proteolytic	enzymes.		
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Unfortunately,	 the	 overall	 percentage	 lysine	 coverage	 was	 poor	 irrespective	 of	

proteolytic	enzyme	used,	where	the	best	scenario	reached	69%	for	the	H3	subunit	using	

Arg-C	(Table	15).	This	approach	was	therefore	not	suitable	to	assess	5-fC-lysine	histone	

interactions	 in	 an	 unbiased	 manner,	 as	 crucial	 interactions	 may	 not	 be	 detected	 in	

regions	devoid	of	peptide	coverage.	 	As	an	alternative	strategy,	crosslinking	sites	could	

be	 determined	 by	 a	 polymerase	 stop-assay	 and	 subsequent	 NGS.	 Sites	 of	 polymerase	

stalling,	 caused	 by	 the	 presence	 of	 a	 bulky	 histone	 subunit	 crosslink,	 would	 thus	 be	

indicative	of	sites	where	Schiff	base	formation	occurs.		

	

6.6.	Polymerase	Stalling	Assay	and	NGS	to	identify	5-fC	crosslinking	sites	

Bioinformatic	 analysis	 of	 sequencing	data	was	 performed	by	Dr	 Sergio	Martinez	Cuesta,	
Molecular	 modelling	 of	 the	 nucleosome	 was	 performed	 by	 Dr	 Guillem	 Portella.	
	
Polymerase	 stop	 assays	 have	 previously	 been	 used	 to	 determine	 sites	 of	 guanine	

alkylation	damage284	 and	DNA-protein	 conjugates.285	These	 techniques	 can	be	 coupled	

with	DNA	 sequencing	 to	 show	 the	 exact	 site	 of	DNA-polymerase	 stalling,	 an	 approach	

that	 has	 recently	 been	 used	 to	 determine	 the	 genomic	 location	 of	 DNA-cisplatin	

adducts.286	 This	 experiment,	 instead	 of	 the	 proteomics	 approach,	 would	 provide	

information	 about	 every	 potential	 5-fC	 crosslinking	 site	 in	 an	 unbiased	 manner.	

Furthermore,	any	significant	stalling	sites	can	be	computationally	modelled	 to	 identify	

potentially	 stabilising	 interactions	 with	 proximal	 lysine	 residues	 within	 the	

nucleosome.287		

	

A	workflow	for	a	polymerase	extension	experiment	was	designed	in	order	to	determine	

the	 sites	 of	 significant	 5-fC-lysine	 interactions	 via	 crosslinking	 (Figure	 81);	 free	 5-fC-

containing	DNA	in	the	absence	of	histone	proteins	was	used	as	a	control	to	account	for	

natural	polymerase-stalling	events.	5-fC-containing	nucleosomes	were	 first	 exposed	 to	

the	 crosslinking	 conditions	 (100	mM	 sodium	 cyanoborohydride,	 37	 °C,	 18	 hr)	 before	

being	purified	from	the	reducing	agent	using	size	exclusion	chromatography.	The	DNA	

was	then	denatured	by	heating	and	subjected	to	single	primer	extension,	using	forward	

and	reverse	primers	of	the	Widom	DNA	sequence.	Following	extension,	the	mixture	was	

treated	with	Proteinase	K,	 to	 digest	 the	 crosslinked	histone	 subunit.	 The	mixture	was	

purified	 and	 subsquently	 treated	 with	 the	 5’	à	 3’	 RecJf	 exonuclease	 to	 remove	 the	

resultant	 ssDNA	 overhang	 to	 enable	 efficient	 ligation	 of	 sequencing	 adaptors.	 After	

purification,	DNA	was	subjected	to	the	standard	library	preparation	procedure	for	NGS	

(Section	3.7.1),	and	submitted	for	DNA	sequencing.		
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Figure	81:	Design	and	workflow	of	polymerase	stall	assay	after	5-fC	nucleosome	crosslinking.		

	

To	determine	 the	extent	of	 crosslinking,	 the	 ratio	of	 truncated	DNA	sequences	 for	 the	

cross-linked	nucleosome	and	 the	control	 sequence	was	calculated,	normalising	 for	 the	

size	 of	 each	 library.	 Less	 full-extension	 product	 was	 observed	 in	 the	 sodium	

cyanoborohydride	 treated	5-fC	nucleosome	condition	 compared	 to	 the	 control	 in	both	

forward	 (Rev	 –	 6-fold)	 and	 reverse	 (Fw	 –	 1.2-fold)	 primer	 extension	 conditions.	 This	

indicated	 greater	 polymerase	 stalling	 due	 to	DNA-histone	 protein	 crosslinking,	 in	 line	

with	expectations.				

	

Next,	the	extent	of	stalling	was	assessed	at	each	individual	site	on	the	Widom	sequence	

by	 ratio	 of	 truncated	 sequences.	 A	 moving	 average	 (±1)	 of	 fold-change	 stalling	 was	

plotted	against	each	position	of	the	forward	and	reverse	Widom	template	(Figure	82).	A	

clear	pattern	of	stalling	emerged,	with	distinct	periodicity.	All	stalling	maxima	had	a	5-fC	

in	the	vicinity,	either	directly	at	the	site	of	stalling,	or	at	the	nucleotides	surrounding	the	

crosslinking	site.	Greater	stalling	sites	were	indicative	of	greater	Schiff	base	formation	in	

the	nucleosome.	

NaBH3CN

fC

fC

Lys

Lys

Lys
Polymerase stall

Single primer
extension

Proteinase K
digestion

LysssDNA RecJF

exonuclease
treatment

LysLigate

Sequence
AGCTAGTAAGAGCTAGATAAGGC

AGCTAGTAAGAGC

Compare ratio

Crosslinked

H4H3

H2A

H2B

H4H3

H2A

H2B

H4H3

H2A

H2BH2B

H2A

H4

H2A

H3 H4

H2B
5’
3’ 5’

5’
5’
3’5’

3’
5’



	 110	

	
Figure	 82:	 Log2Fold-change	 in	 polymerase	 stalling	 between	 crosslinked	 nucleosomes	 and	 the	 free	 DNA	
control.	 The	 likely	 5-fC	 crosslinked	 site(s)	 are	 highlighted	 in	 red.	 Arrow	 demonstrates	 the	 direction	 of	
polymerase.	
	

To	determine	the	significance	of	the	periodic	stalling	sites,	the	polymerase	data	set	was	

overlapped	with	a	molecular	dynamics	 simulation	of	 the	nucleosome.	Notably,	 stalling	

sites	were	found	to	be	periodically	and	almost	symmetrically	distributed	either	side	of	

the	 nucleosome	 dyad,	 demonstrating	 ~10-12	 bp	 periodicity.	 Significant	 stalling	 sites	

were	 more	 likely	 when	 5-fC	 was	 facing	 the	 major	 groove	 towards	 the	 histone	 core	

(Figures	 83	 and	 84).	 This	 correlated	 with	 molecular	 modelling	 data	 that	 determined	

likely	nucleotide-lysine	contact	frequency.		
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In	combination	with	modelling,	the	most	likely	5-fC	crosslinking	sites	were	identified	by	

identifying	the	most	proximal	lysine	(Table	16).	This	indicated	that	crosslinking	occurs	

with	mainly	H4,	H3	and	H2B	histone	subunits,	in	accordance	with	the	initial	proteomics	

data.	

	

This	study	implies	that	specific	and	potentially	stabilising	interactions	between	5-fC	and	

lysine	 can	 exist	 in	 the	 nucleosome;	 these	 interactions	 provide	 a	 potential	 molecular	

mechanism	 for	 5-fC-directed	 nucleosomal	 positioning	 and	 the	 increased	 nucleosomal	

occupancy	associated	with	this	mark.	

	

	

	
	

Figure	 83:	Upper	panel:	Polymerase	 stop	data	demonstrates	 the	 log2fold	 change	between	 the	number	of	
truncated	reads	at	a	given	position	compared	to	the	number	of	reads	in	an	untreated	5-fC	sample,	both	for	
forward	(blue)	and	reverse	strand	(orange).	The	grey	line	indicates	the	orientation	of	the	major	groove	with	
respect	to	the	histone	core,	1	indicates	core-facing	and	-1	indicates	where	5-fC	points	away	from	the	histone	
core.		
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Figure	84:	Model	of	nucleosome	demonstrating	5-fC	positions	that	indicated	significant	stalling	(red	
spheres)	and	proximal	lysine	residues	(blue	spheres).	
	

fC	residue	 Lys	residue	 Probability	 Histone	subunit	

Fw	(38)		 2	 0.01	 H2B_1	Tail	

Fw	(52)	 16	 0.04	 H4_2	Tail	

Fw	(64)		 31	 0.11	 H4_2	

Fw	(76)	 115	 0.30	 H3_2	

Fw	(92)	 16	 0.04	 H4_1	

Fw	(112)	 8	 0.04	 H2B_2_Tail	

Rev	(33)		 36	 0.02	 H2A_1	Tail	

Rev	(50)		 12	 0.15	 H2B_2	Tail	

Rev	(63)		 23	 0.12	 H3_1	

Rev	(73)	 115	 0.11	 H3_1	

Rev	(94)	 16	 0.04	 H4_2	

Table	 16:	 Most	 likely	 Schiff-base	 sites	 between	 5-fC	 and	 histone	 protein	 side-chains	 modelled	 using	
polymerase	 stop	data	 and	proximal	 lysine	distances	 via	molecular	 simulation.	Table	 gives	details	 of	DNA	
Widom	position;	proximal	lysine	histone	subunit	and	whether	lysine	is	part	of	the	core	histone	subunit	or	
histone	tail.		
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6.7.	Conclusion		

The	 identification	 of	 significant	 5-fC	 interactions	 with	 histone	 proteins	 to	 form	 Schiff	

bases	provides	new	mechanistic	 insight	 into	the	enhanced	assembly	and	stability	of	5-

fC-DNA	nucleosomes	in	vitro.	This	data	provides	support	for	the	hypothesis	that	specific	

Schiff	base	formation	between	5-fC	and	histone	residues	occurs	preferentially	at	certain	

positions	 within	 the	 nucleosome,	 hence	 indicating	 that	 Schiff	 base	 formation	 could	

contribute	to	nucleosomal	positioning	and	stability.		

	

Furthermore,	 Schiff	 base	 formation	 between	 5-fC	 and	 histone	 proteins	 provides	 a	

mechanistic	 hypothesis	 for	 the	 association	 of	 5-fC	 and	nucleosomes	 in	vivo.	 	 It	 is	 now	

speculated	that	specific	reversible	Schiff	base	formation	may	determine	the	positioning	

and	anchoring	of	nucleosomes	at	the	5-fC	mark.	This	has	wider	implications	for	the	role	

of	this	modified	base	with	regard	to	chromatin	architecture	and	gene	expression.		

	

At	 the	 time	of	writing,	 the	 ability	of	5-fC	 to	 form	Schiff	 base	 interactions	with	histone	

proteins	 was	 corroborated	 by	 two	 other	 studies.	 Li	 et	 al.	 investigated	 the	 effect	 of	

crosslinking	using	DNA	models	bearing	a	single	5-fC	site	at	four	different	positions	in	the	

sequence.288	 Whilst	 a	 different	 DNA	 sequence	 was	 used,	 (hence	 sequence-specific	

interactions	cannot	be	directly	compared),	greater	crosslinking	was	also	observed	when	

the	 5-fC	 site	 pointed	 towards	 the	 histone	 core,	 in	 agreement	 with	 the	 results	 in	 this	

chapter.	 In	 addition,	 Tretyakova	 and	 co-workers	 demonstrated	 the	 presence	 of	 5-fC	

lysine	adducts	after	sodium	cyanoborohydride	reduction	in	HEK293T	cells;	~1/100	5-fC	

sites	were	estimated	by	LCMS/MS	to	form	a	Schiff	base	in	vivo.289		

	

Further	work	could	validate	significant	stalling	sites	observed	in	the	polymerase	stalling	

assay	by	using	Widom	sequence	DNA	with	single	5-fC	sites	at	key	positions.	Structural	

analysis	 of	 the	 5-fC-Widom	 nucleosome	 (e.g.	 X-ray	 crystallography),	 would	 provide	

conclusive	 evidence	 for	 5-fC-lysine	 Schiff	 base	 formation	 in	 this	 model.	 Most	

importantly,	 it	 should	 now	 be	 determined	 whether	 lysine-5-fC	 interactions	 are	

functionally	 relevant	 in	 biology.	 A	 genome-wide	 polymerase-stalling	 assay,	 or	 primer	

extension	at	specific	regions	of	interest,	could	be	utilised	to	assess	the	genomic	location	

of	 5-fC-lysine	 Schiff	 bases.	 Alternatively,	 a	 modified	 MNase-seq	 experiment	 could	 be	

performed	 after	 crosslinking	 and	 nucleosomal	 dissociation,	 where	 an	 enrichment	 in	

MNase	signal	would	determine	where	crosslinking	sites	arise.	
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5-fU	 also	 demonstrated	 the	 ability	 to	 form	 a	 Schiff	 base	with	 lysine,	and	DNA-protein	

crosslinking	was	validated	with	model	proteins.	However,	increased	reactivity	of	the	5-

fU	 lysine	 adduct,	 which	 lead	 to	 excessive	 crosslinking,	 made	 5-fU	 nucleosomal	

interactions	 difficult	 to	 probe.	 To	 further	 investigate	 5-fU	 and	 its	 association	 with	

nucleosomes	1)	Widom-DNA	containing	single	5-fU	sites	at	key	positions	could	be	used	

or	 2)	 reduction	 conditions	 could	 be	 further	 optimised.	 Analogous	 polymerase	 stalling	

experiments,	 in	 the	 first	 instance,	 can	 then	 be	 performed	 using	 in	 vitro	 nucleosome	

models.		
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7.	Materials	and	Methods	
 

7.1.	General		

General	 chemistry	 remarks	 All	 solvents	 and	 reagents	 were	 purified	 by	 standard	

techniques	 reported	 in	 Armarego,	 W.	 L.	 F.,	 Chai,	 C.	 L.	 L.,	 Purification	 of	 Laboratory	

Chemicals,	 5th	 edition,	 Elsevier,	 2003;	 or	 used	 as	 supplied	 from	 commercial	 sources	

(Sigma	 Aldrich®	 unless	 stated	 otherwise).	 Thin	 layer	 chromatography	 (TLC)	 was	

performed	on	Merck	Kieselgel	60	F254	plates,	and	spots	were	visualized	under	UV	light.	

LC-MS	was	performed	on	an	Amazon	ESI-MS	 (Bruker)	 connected	 to	Ultimate	3000	LC	

(Dionex)	(Agilent	Technologies,	Santa	Clara,	CA).	Flash	chromatography	was	carried	out	

using	CombiFlash	Rf	(Teledyne	Isco)	with	puriFlash	columns	(Interchim).	NMR	spectra	

were	 acquired	 on	 a	 Bruker®	 DRX-500	 instrument	 using	 deuterated	 solvents	 as	

indicated	 and	 at	 ambient	 probe	 temperature	 (300	 K).	 Notation	 for	 the	 NMR	 spectral	

splitting	patterns	 includes:	singlet	(s),	doublet	(d),	doublet	of	doublets	(dd),	 triplet	(t),	

doublet	 of	 triplets	 (dt)	 quartet	 (q),	 quinent	 (qn)	 multiplet/overlapping	 peaks	 (m).	

Signals	 are	 quoted	 as	 δ	 values	 in	 ppm,	 coupling	 constants	 (J)	 are	 quoted	 in	 Hz	 and	

approximated	 to	 the	 nearest	 0.1.	 Data	 analysis	 for	 the	 NMR	 spectra	 was	 performed	

using	 MestReNova®	 software.	 HRMS	 were	 recorded	 on	 a	 Waters	 LCT	 Premier	 (ESI)	

spectrometer.		

	

Temperature	 controlled	 reactions	 and	qPCR	Temperature	controlled	reactions	and	

PCRs	 were	 performed	 either	 in	 a	 T100	 Thermal	 cycler	 (Bio-Rad)	 or	 peqSTAR	 96X	

Universal	 Gradient	 (Peqlab).	 qPCRs	were	 carried	 out	 using	 a	 CFX96	 Touch	 Real-Time	

PCR	system	(Bio-Rad)	and	data	was	analysed	using	CFX	Software	manager	(BioRad).		

	

Polymerase	Chain	Reaction	for	synthesis	of	modified	DNA	and	non-modified	DNA	

PCRs	were	made	up	with	4	x	dNTP	(1	mM),	 forward	primer	(1	μM),	reverse	primer	(1	

μM),	 template	 (0.01	 μM),	 10	 ×	 DreamTaq	 Buffer	 (2.5	 μL)	 and	 DreamTaq	 Polymerase	

(Thermo	Scientific,	0.25	μL)	to	give	a	final	volume	of	25	μL.	Primers	and	templates	were	

obtained	from	Sigma	Aldrich	or	Invitrogen.	dGTP,	dCTP,	dATP	and	dTTP	were	obtained	

from	 ThermoFischer,	 while	 modified	 dNTP	 (dfUTP,	 dfCTP,	 dhmCTP,	 dhmUTP)	 were	

obtained	 from	 Trilink	 Biotechnologies.	 The	 mixture	 was	 subjected	 to	 the	 following	

thermal	cycle:	95	°C	for	3	min,	40	cycles	of	(95	°C	for	30	s,	60	°C	for	60	s,	72	°C	for	90	s),	

72	°C	 for	5	min.	The	PCR	products	were	purified	using	a	GeneJET	PCR	Purification	Kit	

(Thermo	 Scientific)	 according	 to	 the	 manufacturer’s	 instructions.	 Formation	 of	 PCR	

products	 were	 confirmed	 by	 Tapestation	 2200	 (Agilent	 Technologies)	 using	 D1000	
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screen-tape.	 Confirmation	 of	 incorporated	 bases	 was	 confirmed	 by	 digestion	 of	

synthetic	DNA	and	injection	into	a	Q-Exactive	MS	spectrometer	(Thermo	Fischer).		

	

Sonication	 of	 DNA	 Genomic	 DNA	was	 sheared	 by	 sonication	with	 the	 Covaris	M220	

Focused-ultrasonicator	to	an	average	fragment	length	of	200	or	300	bp.	Fragmentation	

was	confirmed	by	Agilent	2200	Tapestation	using	D1000	screentape.	

	

Digestion	of	Synthetic	DNA	DNA	(500ng	-	1	μg)	in	the	presence	of	Degradase	Plus	(1	

μL,	Zymo	Research)	and	10	×	Degradase	Plus	reaction	buffer	(4	μL,	Zymo	Research)	in	a	

final	volume	of	40	μL	was	digested	into	its	constituent	nucleosides	via	incubation	at	37	

°C	for	4	hr.	The	nucleoside	mixture	was	subsequently	purified	by	filtration	using	Amicon	

Ultra-0.5	mL	Centrifugal	Filters	10K	(Millipore).		

	

DNA	 and	RNA	 extraction	DNA	was	extracted	 from	cell-lines	using	DNeasy	blood	and	

tissue	 kit	 (Qiagen).	 ATL,	 AL,	 AW1	 and	 AW2	 lysis	 and	 wash	 buffers	 were	 all	

supplemented	 with	 desferal	 (200	 μM)	 and	 butylated	 hydroxytoluene	 (200	 μM)	 as	

recommended	to	reduce	spurious	DNA	oxidation	during	extraction.40	RNA	was	extracted	

using	 RNEasy	 mini	 kit	 (Qiagen)	 and	 Qiashredder	 columns	 (Qiagen);	 RLT	 buffer	 was	

additionally	supplemented	with	DTT	(40	mM).		

	

Quantification	 and	 screening	 of	 DNA/RNA	 Quantification	 of	 nucleic	 acids	 was	

performed	using	Nanodrop	1000	or	Nanodrop	one	(Thermo	Fischer).	The	size	of	DNA	

fragments	 was	 assessed	 via	 Tapestation	 using	 D1000	 or	 High	 sensitivity	 DNA	

screentapes	(Agilent).	

	

Gel	electrophoresis	Gel	electrophoresis	was	carried	out	using	an	X-cell	surelock	mini-

cell	 electrophoresis	 system	 (Life	 Technologies),	 powered	 with	 Pharmacia	 power-

supplies.	DNA	either	carried	Fluorescein,	Cy5	or	Cy3	labels	for	visualization,	or	was	first	

stained	with	SYBR	gold	(Thermo	Fischer)	before	imaging.	Gels	were	imaged	either	using	

a	G:Box	(Syngene)	or	Typhoon.	

	

DNA	 library	 preparation	 for	 NGS	 and	 library	 quantification	 DNA	 libraries	 were	

prepared	 using	 NEBNext®	 Ultra™	 DNA	 Library	 Prep	 Kit	 for	 Illumina	 using	 Illumina	

TruSeq	adaptors	(2.5	μL)	or	custom	adaptors	(2.5	μL,	10	mM)	using	the	NEBNext	Ultra	II	

End	Prep	Enzyme	mix	followed	by	the	addition	of	NEB	Next	Ultra	II	Ligation	Master	Mix	

in	the	presence	of	NEBNext	Ligation	Enhancer.	Genomic	samples	were	purified	and	size-
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selected	 using	 Ampure	 XP	 beads	 (Beckmann	 Coulter).	 Libraries	 were	 amplified	 using	

NEBNext	Ultra	II	Q5	Master	Mix	unless	otherwise	stated.	DNA	libraries	were	quantified	

using	KAPA	Library	Quantification	kit	(KAPA	Biosystems)	before	NGS.	

	

RNA	library	preparation	for	NGS	(RNA-seq)	and	 library	quantification	mRNA	was	

isolated	 from	 Total	 RNA	 (1	 μg)	 using	 NEBNext	 Poly	 (A)	 mRNA	 magnetic	 isolation	

module	(NEB)	and	then	prepared	for	NGS	using	NEBNext	Ultra	Directional	RNA	Library	

prep	Kit	for	Illumina	according	to	the	manufacturer’s	instructions,	instead	using	TruSeq	

adaptors	(2.5	μL)	and	without	USER	digestion.		Samples	were	purified	and	size-selected	

using	Ampure	XP	beads	(Beckmann	Coulter).	Resultant	 libraries	were	quantified	using	

KAPA	Library	Quantification	kit	(KAPA	Biosystems)	before	NGS.	

	

General	 biotin-streptavidin	 affinity-enrichment-procedure	 A	 reported	 DNA	

enrichment	 protocol	 was	 used	with	 some	modifications.116	 MagneSphere	 streptavidin	

magnetic	 beads	 (50	 μg,	 Promega)	 or	 MyOne	 C1	 Dynabeads	 Streptavidin	 C1	 (50	 μg,	

Thermo	Fischer)	were	washed	with	1	×	binding	buffer	(5	mM	Tris	pH	7.5,	0.5	mM	EDTA,	

1M	NaCl,	0.05%	Tween	20)	(3	x	500	μL)	and	resuspended	 in	50	μL	2	×	binding	buffer	

(10	mM	Tris	pH	7.5,	1	mM	EDTA,	2	M	NaCl,	0.1%	Tween	20).	DNA	and	Salmon	sperm	

DNA	 (10	 μg,	 Invitrogen)	were	mixed	 and	made	 up	 to	 a	 final	 volume	 of	 50	 μL,	 before	

addition	 to	 the	 magnetic	 beads	 and	 incubation	 for	 15	 min	 at	 RT.	 Beads	 were	 then	

washed	 with	 1	 ×	 binding	 buffer	 (6	 ×	 500	 μL)	 before	 either	 formamide-heating	 or	

NH2OH-mediated	chemical	elution.	

	

NGS	 sequencing	DNA	sequencing	was	carried	out	 internally	and	performed	on	either	

MiSeq	 or	 NextSeq500	 instruments	 (Illumina	 Inc.)	 depending	 on	 experimental	

requirements.	All	consumables	were	purchased	from	Illumina	Inc.		
 

Oligomer	LC-MS	analysis	LC-MS	was	performed	using	an	XTerra	MS	C18	column	(2.5	

μM,	2.1	x	50	mm),	using	solvents	A	(100	mM	1,1,1,3,3,3-	hexafluoro-2-propanol,	10	mM	

NEt3)	and	B	(MeOH),	at	a	flow-rate	of	0.2	mL/min,	with	a	gradient	5%–30%	B	increasing	

at	1%	per	min.	Reaction	conversion	was	calculated	by	 integration	of	UV	signals	of	 the	

starting	material	 and	product(s)	 at	260	nm.	The	 identity	of	products	was	 assessed	by	

ESI-MS	 with	 negative	 polarity	 in	 ultra-scan	 mode.	 Data	 was	 acquired	 between	 1000-

2800	m/z.	
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Source	of	fU-ODN,	fC-ODN	and	hmU-ODN	fU-ODN	(Table	19)	was	synthesized	using	a	

protected	 5-formyldeoxyuridine	 phosphoramidite.268	 The	 identity	 of	 the	 product	 was	

confirmed	 by	 LC-MS	 analysis.	 fC-ODN	 (Table	 19)	 was	 obtained	 from	 Eurogentec	 and	

subjected	to	further	HPLC	purification	using	a	Agilent	Technologies	1200	series	HPLC	to	

remove	 impurities.	 A	 Pursuit	 C18	 column	 (5	 μM	 ,	 150	 x	 10.0	mm,	 Agilent)	was	 used,	

(solvent	A	=	50	mM	NH4OAc,	solvent	B	=	MeCN,	flow-rate	4	mL/min,	3%	B	for	5	min,	and	

a	 gradient	 of	 3-10%	 B	 for	 25	 min).	 hmU-ODN	 and	 hmU-ODN2	 (See	 Table	 19)	 were	

purchased	 from	ATD	Bio,	U-ODN	was	purchased	 from	Sigma	Aldrich	and	AP-ODN	was	

synthesized	from	U-ODN	as	discussed	below.			

	

Synthesis	of	modified	DNA	by	polymerase	chain	reaction	(PCR).		

fU-DNA	was	synthesised	using	template	1	and	 forward	primer	1	and	reverse	primer	1	

(Appendix,	Table	18)	in	the	presence	of	dATP,	dCTP,	dGTP	and	dfUTP.	

hmU-DNA	was	synthesised	using	template	1	and	forward	primer	1	and	reverse	primer	1	

(Appendix,	Table	18)	in	the	presence	of	dATP,	dCTP,	dGTP	and	dhmUTP.	

fC-DNA	 was	 synthesised	 using	 template	 2,	 forward	 primer	 2	 and	 reverse	 primer	 2	

(Appendix,	Table	18)	in	the	presence	of	dATP,	dfCTP,	dGTP,	and	dTTP.	

hmC-DNA2	was	synthesised	using	 template	5,	 forward	primer	5	and	reverse	primer	5	

(Appendix,	Table	18)	in	the	presence	of	dTTP,	dhmCTP,	dATP,	dGTP.	

GCAT-DNA	was	 synthesised	using	 template	3,	 forward	primer	3	 and	 reverse	primer	3	

(Appendix,	Table	18)	in	the	presence	of	dATP,	dCTP,	dGTP	and	dTTP.	

U-DNA	was	 synthesized	using	 template	1	and	 forward	primer	1	and	 reverse	primer	1	

(Appendix,	Table	18)	in	the	presence	of	dATP,	dCTP,	dGTP	and	dUTP.	

Widom-DNA	was	 synthesised	 using	Widom	 template	 and	Widom	 forward	 primer	 and	

reverse	 primer	 (Appendix,	 Table	 18)	 in	 the	 presence	 of	 dATP,	 dGTP,	

dTTP/dhmUTP/dfUTP	and	dCTP/dhmCTP/dfCTP/dcaCTP	

fU-DNA1,	 fC-DNA1,	 GCAT-DNA1	 for	 protein	 pulldown	 and	model	 protein	 crosslinking	

studies	 was	 synthesised	 using	 template	 4,	 forward	 primer	 4	 and	 reverse	 primer	 4	

(Appendix,	Table	18)	in	the	presence	of	dfUTP/dTTP,	dfCTP/dCTP,	dATP,	dGTP.		

fC-DNA2	 was	 synthesised	 using	 template	 5,	 forward	 primer	 5	 and	 reverse	 primer	 5	

(Appendix,	Table	18)	in	the	presence	of	dTTP,	dfCTP,	dATP,	dGTP.	

	

Proteomics-analysis	 (performed	and	written	by	Cambridge	Proteomics	Centre)	 1D	 gel	

bands	were	cut,	destained,	reduced	(DTT)	and	alkylated	(iodoacetamide)	and	subjected	

to	enzymatic	digestion	with	 trypsin,	 chymotrypsin,	Arg-C	or	Asp-N	overnight	at	37	 °C.	

After	 digestion,	 the	 supernatant	 was	 pipetted	 into	 a	 sample	 vial	 and	 loaded	 onto	 an	
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autosampler	 for	 automated	 LC-MS/MS	 analysis.	 All	 LC-MS/MS	 experiments	 were	

performed	using	a	Dionex	Ultimate	3000	RSLC	nanoUPLC	(Thermo	Fisher	Scientific	Inc,	

Waltham,	 MA,	 USA)	 system	 and	 a	 Q	 Exactive	 Orbitrap	 mass	 spectrometer	 (Thermo	

Fisher	 Scientific	 Inc,	 Waltham,	 MA,	 USA).	 Separation	 of	 peptides	 was	 performed	 by	

reverse-phase	 chromatography	 at	 a	 flow	 rate	 of	 300	 nL/min	 and	 a	 Thermo	 Scientific	

reverse-phase	nano	Easy-spray	 column	 (Thermo	Scientific	 PepMap	C18,	 2mm	particle	

size,	 100	 Å	 pore	 size,	 75	mm	 i.d.	 x	 50cm	 length).	 Peptides	 were	 loaded	 onto	 a	 pre-

column	 (Thermo	 Scientific	 PepMap	 100	 C18,	 5mm	 particle	 size,	 100	 Å	 pore	 size,	

300	mm	i.d.	x	5mm	length)	from	the	Ultimate	3000	autosampler	with	0.1%	formic	acid	

for	3	min	at	a	flow	rate	of	10	mL/min.	After	this	period,	the	column	valve	was	switched	

to	allow	elution	of	peptides	from	the	pre-column	onto	the	analytical	column.	Solvent	A	

was	water	+	0.1%	formic	acid	and	solvent	B	was	80%	acetonitrile,	20%	water	+	0.1%	

formic	acid.	The	linear	gradient	employed	was	2-40%	B	in	30	min.	

	

The	 LC	 eluant	 was	 sprayed	 into	 the	 mass	 spectrometer	 by	 means	 of	 an	 Easy-Spray	

source	(Thermo	Fisher	Scientific	Inc.).	All	m/z	values	of	eluting	ions	were	measured	in	

an	Orbitrap	mass	analyzer,	set	at	a	resolution	of	70000	and	was	scanned	between	m/z	

380-1500.	Data	dependent	scans	(Top	20)	were	employed	to	automatically	 isolate	and	

generate	fragment	ions	by	higher	energy	collisional	dissociation	(HCD,	NCE:25%)	in	the	

HCD	collision	cell	and	measurement	of	the	resulting	fragment	ions	was	performed	in	the	

Orbitrap	 analyser,	 set	 at	 a	 resolution	 of	 17500.	 	 Singly	 charged	 ions	 and	 ions	 with	

unassigned	charge	states	were	excluded	from	being	selected	for	MS/MS	and	a	dynamic	

exclusion	window	of	20	s	was	employed.	

	

Post-run,	the	data	was	processed	using	Protein	Discoverer	(version	2.1,	ThermoFisher).		

Briefly,	all	MS/MS	data	were	converted	to	mgf	files	and	the	files	were	then	submitted	to	

the	 Mascot	 search	 algorithm	 (Matrix	 Science,	 London	 UK)	 and	 searched	 against	 the	

Uniprot	 human	 database	 (151984	 sequences;	 47833598	 residues)	 and	 common	

contaminant	 sequences	 (115	 sequences,	 38274	 residues).	 	 Variable	 modifications	 of	

oxidation	(M),	deamidation	(NQ)	and	carbamidomethyl	were	applied.	The	peptide	and	

fragment	 mass	 tolerances	 were	 set	 to	 5	 ppm	 and	 0.1	 Da,	 respectively.	 A	 significance	

threshold	value	of	p	<	0.05	and	a	peptide	cut-off	score	of	20	were	also	applied.		
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7.2.	Chapter	2	Materials	and	Methods	

5-hmU	 To	 a	 solution	 of	 2-deoxyuridine	 (13.15	 g,	 57.6	 mmol)	 in	

formaldehyde	(15.19	mL,	37%	by	weight	in	H2O)	under	an	atmosphere	

of	 Ar	 was	 added	 1M	 KOH	 (100	 mL,	 100	 mmol).	 The	 reaction	 was	

sealed	 and	 heated	 for	 72	 hours	 at	 60	 °C.	 The	 reaction	 mixture	 was	

concentrated	 in	 vacuo	 and	 was	 then	 purified	 by	 flash	 column	

chromatography	(5:1	CH2Cl2:MeOH)	and	recrystallized	 from	MeOH	to	

afford	5-hydroxymethyldeoxyuridine	(5-hmU)	as	white	crystals	(7.13	g,	

48%);	δH	(500MHz,	d4-methanol)	7.98	(s,	1H,	H6),	6.32	(dd,	 J	=	7.3,	6.2,	1H,	H1’),	4.42	

(1H,	dt,	J	=	6.5,	3.5,	H3’),	4.34	(2H,	s,	H5’’),	3.94	(1H,	app	q,	J	=	3.5,	H4’)	3.80	(1H,	dd,	J	=	

12.0,	3.5,	H5’),	3.74	 (1H,	dd,	 J	 =	12.0,	3.5,	H5’)	2.28	 (2H,	m,	H2’);	 δC	 (126MHz,	MeOD)	

161.1	 (C4),	 152.2	 (C2),	 139.4	 (C6),	 115.3	 (C5),	 88.9	 (C4’),	 86.5	 (C1’),	 72.3	 (C3’),	 62.9	

(C5’),	 58.0	 (C5’’),	 41.3	 (C2’).	 Data	 was	 in	 accordance	 with	 that	 reported	 in	 the	

literature.290	

	

hmU-SIL	To	a	solution	of	2-deoxyuridine	(173	mg,	0.75	mmol)	in	13C-

d2-formaldehyde	 (1.5	 mL,	 20%	 by	 weight	 in	 D2O)	 under	 an	 argon	

atmosphere	was	added	NEt3	 (1.35	mL,	9.70	mmol).	The	 reaction	was	

sealed	 and	 heated	 for	 72	 h	 at	 60	 °C.	 The	 reaction	 mixture	 was	

concentrated	 and	 then	 purified	 by	 flash	 column	 chromatography	

(CH2Cl2:MeOH	 =	 6:1	 to	 5:1,	 v/v)	 to	 afford	5-[13CD2]	hydroxymethyl-2’-

deoxyuridine	 (hmU-SIL)	as	a	white	 solid.	 (72	mg,	37%);	 1H	NMR	(500	

MHz,	d4-methanol)	δ	7.96	(1H,	d,	JC–H	=	4.1,	H6),	6.29	(1H,	dd,	J	=	7.3,	6.2,	H1’),	4.42	(1H,	

dt,	J	=	6.5,	3.4,	H3’),	3.94	(1H,	app	q,	J	=	3.4,	H4’)	3.78	(1H,	dd,	J	=	12.0,	3.4,	H5’),	3.72	(1H,	

dd,	 J	=	12.0,	3.4,	H5’)	2.24	(2H,	m,	H2’).	13C	NMR	(126	MHz,	MeOD)	δ	161.5	(C4)	152.2	

(C2),	139.5	(d,	 JC–C	=	4.6,	C6),	115.1	(d,	 JC–C	=	53.0,	C5),	88.9	(C4’),	85.5	(C1’),	72.3	(C3’),	

62.9	 (C5’),	 57.4	 (qn,	 JC–D	=	 21.9,	 C5’’),	 41.3	 (C2’);	 HRMS	 C913CH13D2N2O6	 [M+H]+	 calcd.	

262.1089,	found	262.1096.	

	

hmU-SIL2	 To	 a	 solution	 of	 deoxyuridine	 (300	 mg,	 1.23	 mmol)	 in	

formaldehyde-d2	 (2.24	 mL,	 20%	 by	 weight	 in	 D2O)	 under	 an	

atmosphere	of	Ar	was	added	NEt3	(1.93	ml,	13.9	mmol).	The	reaction	

was	sealed	and	heated	for	72	hours	at	60	°C.	The	reaction	mixture	was	

concentrated	in	vacuo	before	purification	using	a	Combiflash	(gradient	

19:1	 EtOAc:	 MeOH	 à	 9:1	 EtOAc:	 MeOH)	 followed	 by	 further	

purification	 by	 preparative	 HPLC	 (199:1	 H2O:MeCN)	 to	 afford	 d2-5-
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hydroxymethyluridine	 (hmU-SIL2)	 as	 a	 white	 solid	 (8mg,	 2%);	 δH	 (500MHz,	 d4-

methanol)	7.96	 (1H,	d,	 J	=	1.5,	H6),	6.29	 (1H,	dd,	 J	=	7.3,	6.2,	H1’),	4.85	 (2H,	d,	 J	=	1.7,	

H5’’),	4.39	(1H,	dt,	J	=	6.5,	3.4,	H3’),	4.06	(1H,	t,	J	=	12.8,	H3’),	4.05	(1H,	dt,	J	=	4.1,	H4’),	

3.92	(1H,	app	q,	J	=	3.4,	H4’),	3.78	(1H,	dd,	J	=	12.0,	3.4,	H5’),	3.72	(1H,	dd,	J	=	12.0,	3.4),	

2.25	(2H,	m,	H2’);	δC	(126MHz,	D2O)	165.2	(C4),	152.2	(C2),	139.5	(C6),	115.1	(C5),	88.9	

(C1’),	 86.5	 (C4’),	 72.3	 (C2’),	 62.9	 (C3’),	 60.5	 (C5’),	 57.5	 (m,	 C5’’),	 41.2	 (C2’);	 HRMS		

[M+H]+	expected	277.1005,	found	277.1009.	

	

5-fU	To	a	 solution	of	5-hydroxydeoxyuridine	 (65	mg,	0.25	mmol)	 in	

MeOH	(1	mL)	was	added	MnO2	(109	mg,	1.25	mmol)	and	the	reaction	

mixture	was	stirred	at	50	°C	for	18	hr.	The	catalyst	was	removed	by	

filtering	 through	 Celite,	 which	 was	 washed	 with	 MeOH,	 and	 the	

filtrate	was	concentrated	under	reduced	pressure.	The	crude	product	

was	 purified	 by	 column	 chromatography	 (9:1	 CH2Cl2:MeOH	à	 5:1	

CH2Cl2:MeOH)	 to	 afford	 5-formyldeoxyuridine	 (5-fU)	 as	 a	 pale	 solid	 (13	 mg,	 20%);	 1H	

NMR	(500	MHz,	D2O)	9.55	(1H,	s,	H5’’),	8.68	(1H,	s,	H6),	6.15	(1H,	t,	J	=	5.9,	H1)	4.37	(1H,	

dt,	J	=	6.5,	4.7,	H3’),	4.01	(1H,	td,	J	=	4.6,	3.3,	H4’),	3.79	(1H,	dd,	J	=	12.6,	3.3,	H5’),	3.68	

(1H,	dd,	J	=	12.6,	4.6,	H5’),	2.38	(2H,	m	H2’);	13C	NMR	(126	MHz,	D2O)	189.0	(C5’’),	162.9	

(C5),	151.2	(C4),	150.4	(C2)	111.2	(C5),	87.2	(C1’),	86.9	(C4’),	69.8	(C3’),	60.6	(C5’),	39.6	

(C2’).	Data	was	in	accordance	with	that	reported	in	the	literature.291	

	

fU-SIL	To	a	solution	of	hmU-SIL	(40	mg,	0.15	mmol)	 in	MeOH	(1	mL)	

was	 added	 MnO2	 (67	 mg,	 1.25	 mmol)	 and	 the	 reaction	 mixture	 was	

stirred	 at	 50	 °C	 for	 18	 hr.	 The	 catalyst	 was	 removed	 by	 filtering	

through	celite,	washed	with	MeOH,	and	 the	 filtrate	was	concentrated.	

The	 crude	 product	 was	 purified	 by	 flash	 column	 chromatography	

(CH2Cl2:MeOH	 =	 9:1	 to	 5:1,	 v/v)	 to	 afford	 5-[13CD]	 formyl-2’-

deoxyuridine	(fU-SIL)	 as	a	white	solid	 (3	mg,	8%);	 1H	NMR	(500	MHz,	

D2O)	δ	8.68	(1H,	d,	JC–H	=	4.8,	H6),	6.14	(1H,	app	t,	J	=	6.5,	H1’),	4.37	(1H,	dt,	J	=	6.5,	4.7,	

H3’),	4.01	(1H,	dt,	J	=	4.7,	3.3,	H4’),	3.79	(1H,	dd,	J	=	12.6,	3.3,	H5’),	3.68	(1H,	dd,	J	=	12.6,	

4.7,	H5’),	2.43	(1H,	m,	H2’),	2.33	(1H,	m,	H2’).	13C	NMR	(126	MHz,	D2O)	δ	188.7	(t,	JC–D	=	

27.3,	C5’’),	163.0	(C6),	151.2	(d,	JC-C	=	6.4,	C4),	150.4	(C2),	111.2	(d,	JC–C	=	61.4,	C5),	87.2	

(C1’),	86.9	(C4’),	69.8	(C3’),	60.6	(C5’),	39.6	(C2’);	HRMS	C913CH11DN2NaO6	[M+Na]+	calcd.	

281.0689,	found	281.0692.	
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Source	of	Genomic	DNA	 samples.	HEK293T	cell	pellets	were	generated	by	myself	or	

by	 Dr	 S.	 Huber	 (Balasubramanian	 group).	 MCF7	 and	 mESC	 (derived	 from	 129/C6	

blastocyst)	 cell	 pellets	 were	 provided	 by	 Dr	 S.	 Mao,	 (Balasubramanian	 group).	

Bloodstream	 and	 procyclic	 form	 T.brucei	 cell	 pellets	 were	 provided	 by	 Prof.	 M.	

Carrington	or	Dr	J.	Freitas	(Carrington	group,	Department	of	Biochemistry,	University	of	

Cambridge).	L.major	DNA	was	sourced	from	ATCC,	A.	Thaliana	DNA	was	acquired	from	

Prof.	 D.	 Baulcombe	 (Department	 of	 Plant	 Sciences,	 University	 of	 Cambridge),	 Archea	

DNA	 (Sulfolobus	 acidocaldarius	 MW001)	 was	 provided	 by	 Dr	 F.	 Werner	 (University	

College	of	 London).	DNA	was	 extracted	 from	 tissue	 and	 cell-lines	using	 the	procedure	

outlined	by	Carell	et	al,	using	a	Qiagen	extraction	kit	in	the	presence	of	antioxidants	BHT	

and	 desferral.40	 This	 procedure	 was	 designed	 to	 minimise	 artificial	 5-hmU	 and	 5-fU	

thymine	 auto-oxidation	 during	 DNA	 extraction.	 	 This	 was	 possible	 for	 trypanosome	

samples	 and	 mammalian	 cell-lines,	 however	 DNA	 from	 Leishmania,	 Archea	 and	

Arabadopsis	were	acquired	after	DNA	extraction.	

	

DNA	 digestion	 Trypanosomatid	 samples	 containing	 hypermodified	 Base	 J,	 were	 first	

sonicated	to	~200	bp	before	addition	of	Degradase	Plus	(0.5	μL,	Zymo	Research),	MNase	

(0.1	μL,	NEB),	UltraPure	Benzoase	 (0.2	μL,	 Sigma	Aldrich),	Antarctic	Phosphatase	 (0.4	

μL,	 NEB)	 in	 the	 presence	 of	 10	 x	 Degradase	 Buffer	 and	 left	 for	 12	 hr.	 Mammalian	

samples	were	digested	 in	 the	presence	 of	Degradase	Plus	 (1	 μL	per	 2	 μg	DNA)	 in	 the	

presence	 of	 10	 x	 Degradase	 buffer	 and	 left	 for	 4	 hr.	 Digested	mononucleosides	 were	

purified	using	Amicon	Ultra-0.5	mL	Centrifugal	Filters	10K	(Millipore).	
 

Q-Exactive	LC-MS/MS	Set-up	LC-MS/MS	analysis	was	performed	on	a	Q-Exactive	mass	

spectrometer	 (Thermo	 Fischer)	 coupled	 with	 an	 UltimMate	 3000	 RSLC	 nano-HPLC	

(Dionex)	and	either	a	self-packed	hypercarb	column	(50mm	x	75	µm,	3	µm	particle	size)	

or	 a	 commercially	 sourced	 hypercarb	 kappaguard	 column	 (30	mm	 x	 0.18	mm,	 5	 µm	

particle	 size,	 Thermo	 Fischer)	 connected	 with	 2	 x	 nanoviper	 connectors	 (75	 µm	 x	

150mm).	 Samples	were	 injected	 onto	 the	 column	 via	 the	 loading	 pump	 in	 95:5	 0.1%	

formic	 acid	 H2O:MeCN	with	 a	 flow-rate	 of	 2	 µL/min.	 A	 valve	 switch	 to	 the	 NC	 pump	

followed	after	 either	5	or	7	min;	 the	 flow-rate	was	 set	 to	1.5	µL	min−1	 and	 ran	with	a	

gradient	of	95:5	à	0:100	0.1%	formic	acid	H2O:MeCN	with	a	run-time	of	19	min.	Parent	

ions	were	fragmented	in	positive	ion	mode	with	10%	normalised	collision	energy	using	

parallel-reaction	monitoring	 (PRM).	MS2	 resolution	was	 35,000	with	 an	AGC	 target	 of	

2e5,	a	maximum	injection	time	of	100	ms	and	an	isolation	window	of	1.0	m/z.	Extracted	

ion	 chromatograms	 (±5ppm)	 were	 used	 for	 detection	 and	 quantification,	 and	
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quantification	was	performed	using	XCalibur	QuanBrowser	software	(Thermo	Fischer)	

via	 internal	 calibration	 using	 SIL	 standards	 where	 possible;	 hmU-SIL	 was	 used	 as	 an	

internal	 standard	 for	 Base	 J	 internal	 calibration	 and	 T-SIL	 was	 used	 for	 Girard’s	 T	

calibration.	

	

Calibration	lines	A	dilution	series	of	T	or	C	was	prepared	in	the	range	of	0.045	–	9000	

nM.	SIL	standards	were	added	to	every	calibration	point,	to	give	a	final	concentration	of	

25	nM	T-SIL	or	C-SIL.	 For	modified	bases,	 dilution	 series	 of	 hmC,	mC,	Base	 J,	 hmU,	 fU	

were	prepared	in	the	range	of	0.00009	nM	–	450	nM.	SIL	standards	(hmC-SIL,	hmU-SIL,	

hmU-SIL2,	 fU-SIL	 or	 mC-SIL)	 were	 added	 to	 every	 calibration	 point	 to	 give	 a	 final	

concentration	of	either	5	nM	or	2.5	nM.	Concentration	of	known	nucleoside	standards	

were	 plotted	 against	 the	 mass	 integration	 area	 ratio	 of	 nucleoside/internal	 standard	

using	 QuanBroswer	 software	 (Thermo	 Fischer)	 to	 generate	 calibration	 lines	 for	

subsequent	quantification.		

	

LC-MS/MS	Quantification	To	each	digested	genomic	sample	was	added	an	equivalent	

concentration	of	SIL	standards	to	that	of	the	calibration	line.	The	mass	integration	area	

ratio	 of	 nucleoside/internal	 standard	 was	 compared	 to	 the	 linear	 fit	 equation	 of	

calibration	 lines	 using	 QuanBrowser	 software	 to	 determine	 nucleoside	 concentration	

(Thermo	Fischer).	

	

HPLC	 enrichment	 HPLC	 pre-enrichment	 of	 genomic	 samples	 was	 performed	 on	

Ultimate	3000	Dionex	HPLC	system	(Thermo	Fischer)	equipped	with	a	Waters	HSS-T3	

column	(2.1	x	100	mm,	1.8	µm	particle	size).	Flow	rate	was	0.35	mL/min	and	ran	with	a	

gradient	of	98:2	to	0:100	(H2O:MeCN	0.1%	formic	acid).		Mononucleoside	fractions	were	

collected	 at	 particular	 timepoints	 (Appendix,	 Chapter	 2	 -	 Table	 21),	 previously	

determined	 by	 the	 UV	 signals	 of	 nucleoside	 standards	 in	 model	 studies	 (Appendix,	

Chapter	2	-	Figure	88).	Collected	fractions	were	lyophilised	overnight	and	resolubilised	

in	 water	 for	 LC-MS/MS	 analysis.	 A	 proportion	 of	 the	 digested	 sample	 was	 kept	 for	

quantification	of	T	or	C	without	pre-enrichment.	

	

fU-ODN	with	Girard’s	Reagent	T	Girard’s	T	(50	mM)	was	added	to	fU-ODN	(1-2	μL,	100	

uM)	in	pH	7	phosphate	buffer	(40	mM)	and	left	at	RT	for	3	hr.	The	sample	was	purified	

by	oligo	clean	and	concentrator	kit	 (Zymo	Research)	and	analysed	by	oligomer	LC-MS	

analysis.		
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7.3.	Chapter	3	Materials	and	Methods	

5-azidomethyluracil	 Using	 a	 procedure	 outlined	 by	 Xu	 et	 al178,	 5-

hmU	(69	mg,	0.27	mmol)	and	NaN3	(65	mg,	1	mmol)	were	dissolved	

in	TFA	and	 the	 reaction	mixture	was	 left	 to	 stir	 at	 rt	 for	18	hr.	The	

reaction	 mixture	 was	 neutralised	 with	 aq.	 NaHCO3	 solution	 before	

concentration	 under	 reduced	 pressure.	 The	 reaction	 mixture	 was	

purified	 using	 a	 Combiflash	 gradient	 19:1	à	 9:1	 CH2Cl2:MeOH)	 to	

afford	5-azidomethyluracil	as	a	white	solid	(20	mg,	26%);	NMR	data	

was	 in	accordance	with	 the	 literature	 reports.178	 δH	 (500MHz,	d6-DMSO)	11.52	 (1H,	 s,	

H3),	8.01	(1H,	s,	H6),	6.12	(1H,	d,	J	=	6.7,	H1’),	5.25	(2H,	d,	J	=	4.3,	C5’),	5.03	(1H,	t,	J	=	5.2,	

H3’),	4.21	(1H,	m,	H3’),	4.04	(2H,	d,	J	=	2.5,	H5’’),	3.76	(1H,	q,	J	=	3.7,	H4’),	2.01	(2H,	m,	

H2’);	δC	(126MHz,	d6-DMSO)	162.9	(C4),	150.3	(C2),	140.0	(C6),	108.3	(C5),	87.5	(C4’),	

84.3	(C1’),	70.3	(C3’),	61.3	(C5’),	47.0	(C5’’),	41.0	(C2’).		

	

o-phenbiotin.	 To	 a	 solution	 of	 3,4-

diaminobenzoic	acid		(70	mg,	0.46	mmol)	

in	DMF	(20	mL)	was	added		

1-hydroxybenzotriazole	 (84	 mg,	 0.55	

mmol),	 N-(3-dimethylaminopropyl)-N'-

ethylcarbodiimide	 hydrochloride	 (96	mg,	 0.50	mmol),	 NEt3	 (0.12	ml,	 0.86	mmol)	 and	

(+)-biotin	hydrazide	 (107	mg,	0.41	mmol).	The	reaction	was	stirred	at	45	°C	for	18	hr,	

and	the	solvent	was	then	removed	in	vacuo.	The	reaction	mixture	was	subjected	to	flash	

chromatography	 (CH2Cl2:MeOH=19:1	 to	 3:2,	 v/v)	 and	 size	 exclusion	 chromatography	

using	Sephadex	LH-20	to	afford	biotinylated	phenylendediamine	linker	o-phenbiotin	as	

a	white	 solid.	 (35	mg,	 20%);	 1H	 NMR	 (500	MHz,	methanol-d4)	 δ	 7.23	 (d,	 J	=	 2.1,	 1H,	

H14),	7.19	(dd,	J	=	8.2,	2.1,	1H,	H18),	6.67	(1H,	d,	J	=	8.2,	H17),	4.49	(ddd,	J	=	7.9,	5.0,	0.9,	

1H,	H2),	4.32	(dd,	J	=	7.9,	4.5,	1H,	H5),	3.22	(ddd,	J	=	8.4,	6.2,	4.5,	1H,	H6),	2.93	(dd,	J	=	

12.7,	5.0,	1H,	H1),	2.70	(d,	J	=	12.7,	1H,	H1),	2.32	(m,	2H,	H10),	1.75	(m,	2H,	H9),	1.67–

1.45	 (m,	 4H,	H7,	H8);	 13C	 NMR	 (100	MHz,	methanol-d4)	 δ	 173.9,	 168.2,	 164.8,	 140.0,	

133.3,	 121.2,	 119.5,	 115.2,	 114.1,	 61.8,	 60.3,	 55.5,	 39.7,	 33.2,	 28.2,	 28.0,	 25.0;	 HRMS	

C17H25N6O3S+	[M+H]+	calculated	393.1709,	found	393.1701.	
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7.3.2.	β-glucosylation	with	UDP-Glucose	Widom	sequence	DNA	containing	1)	5-hmC,	

2)	5-hmU	or	3)	5-hmC	and	5-hmU	(500	ng)	was	subjected	to	β-glucosylation	conditions	

using	the	Quest-hmC	DNA	enrichment	kit.	(Zymo	Research).	DNA	was	made	up	to	38μL,	

before	the	addition	of	10	x	hmC-GT	buffer	(5	μL),	UDP-Glucose	(5	μL,	1	mM)	and	5-hmC	

β-GT	enzyme	(2	μL),	and	the	mixture	was	incubated	at	37	°C	for	4	hr.	The	products	were	

purified	using	Genejet	PCR	Purification	kit	(Thermo	Fischer).	DNA	(starting	material	and	

β-glucosylated)	was	digested	using	the	digestion	of	synthetic	DNA	protocol	and	purified	

by	 10K	 Amicon	 centrifugal	 filters	 (Millipore).	 Nucleosides	 were	 separated	 using	 a	

Hewlett	 Packard	 Series	 1100	 HPLC	 and	 Eclipse	 XDB:C18	 column	 heated	 to	 45	 °C,	

dimensions	3.5	uM,	3.0	x	150	mm,	with	a	flowrate	of	1	mL/min.	Eluting	buffers	were	A)	

500	mM	NH4OAc	pH	=	5,	B)	MeCN,	C)	H2O.	Buffer	A	was	kept	at	1%	 throughout	each	

run,	with	gradients	0	min	–	1%	B,	8	min	–	4%	B,	10	min	–	95%	B.	Analysis	revealed	a	

consumption	of	hmC	peak	after	glycosylation	conditions,	while	the	hmU	peak	remained.		

Subsequent	 LC-MS/MS	 Q-Exactive	 quantification	 of	 GhmCAhmU-DNA	 was	 used	 to	

determine	 hmC	 and	 hmU	 consumption.	 This	 was	 measured	 by	 comparing	 mass	

integration	area	ratios	of	5-hmU	and	5-hmC,	normalized	to	C,	in	starting	material	DNA,	

and	after	glycosylation	conditions.	99.9%	of	5-hmC	was	consumed	compared	to	4.3%	of	

5-hmU	after	glycosylation.		

	

Analysis	of	mononucleoside	reactions	by	LC-MS.	LC-MS	analysis	was	performed	on	a	

Bruker	Dionex	Ultimate	3000	system,	using	a	Kinetex	100A	column	dimensions	50	x	2.1	

mM,	using	solvents	A)	0.1%	TFA	 in	Water,	B)	0.1%	TFA	 in	MeCN,	 flow-rate	1mL/min,	

with	 a	 gradient,	 0.5%	 B	 0-2	 min,	 0.5-100%	 B	 2-3	 min.	 Extracted	 ion	 count	 and	

subsequent	integration	of	chromatograms	gave	%	conversion	of	reaction.		

	

Acid	Catalysis	No	observation	of	target	molecule	5-azaU	was	observed	by	LC-MS	when	

NaN3	(0.15	mmol)	was	added	to	5-hmU	in	the	presence	of	acid	in	aqueous	conditions.	To	

a	 solution	of	 5-hmU	 (4.0	mg,	 0.01	mmol)	 in	water	 (1	mL)	was	 added	 either	Yb(OTf)3	

(19.2	mg,	0.02	mmol),	Sc(OTf)3	(15.2	mg,	0.02	mmol)	or	TFA	(20	μL,	2%	by	volume)	and	

left	for	18	hr.		

	

Reactions	with	DMT-MM	To	a	solution	of	5-hmU	(1.0	mg,	0.01	mmol)	was	added	DMT-

MM	(5.0	mg,	0.1	mMol)	and	either	i)	NEt3	(0.1	mmol)	ii)	2,6-Lutidine	(0.1	mmol),	iii)	2,6-

ditertbutylpyridine	(0.1	mmol),	 iv)	N-methylmorpholine	(0.1	mmol)	or	v)	no	base	and	

the	 reactions	were	 stirred	 at	 18	 hr	 at	 a)	 RT,	 b)	 50	 °C.	 Reactions	were	 analysed	 using	

general	LC-MS	analysis.	
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Reaction	 with	 DMT-MM	 and	 NaN3	 To	 see	 if	 the	 DMT-MM	 adduct	 could	 be	 further	

functionalized	by	sodium	azide,	to	a	solution	of	5-hmU	 (15	mg,	0.06	mmol)	was	added	

DMT-MM	(222	mg,	0.8	mmol)	and	NaN3	(58	mg,	0.89	mmol)	 in	H2O.	The	reaction	was	

analysed	 using	 general	 LC-MS	 analysis.	 No	 target	 product	 formation	 5-azaU	 was	

observed	by	LC-MS.		

	

Reaction	with	 EDC	To	a	 solution	of	5-hmU	 (13	mg,	 0.05	mmol)	 in	water,	was	 added	

EDC	(15	mg,	0.25	mmol)	and	NEt3	(34	μL,	0.25	mmol)	and	the	solution	was	left	to	stir	at	

RT	 for	 18	 hr.	 The	 reaction	was	 analysed	 using	 LC-MS	 analysis,	 demonstrating	 adduct	

formation	(56%).	Attempted	preparative	HPLC	purification	(Buffer	A:	0.1%	TFA	in	H2O,	

Buffer	B:	0.1%	TFA	in	MeCN,	gradient	5-100%	B)	lead	to	re-equibriliation	of	peak	after	

separation.	LC-MS	[M+H]	=	414.2.	

	

ODN	 Reaction	 with	 DMT-MM	 To	 hmU-ODN,	 Phos-hmU-ODN	 or	 Phos-GCAT-ODN	 in	

water	was	added	DMT-MM	(75	μg)	and	NEt3	(1	μL)	to	make	a	final	reaction	volume	of	25	

μL.	The	mixtures	were	incubated	for	16	hr	at	50	°C	before	purification	using	mni	quick	

spin	columns	(Roche)	which	had	been	pre-washed	with	water	(2	x	300	μL)	oligomer	LC-

MS	analysis.	

	

Chemical	oxidation	of	hmU-ODN.	Using	a	protocol	used	for	5-hmC	oxidation,124	hmU-

ODN	(2	μL,	100	uM)	(Appendix	–	Table	19)	was	incubated	with	NaOH	(1.25	μL,	1M)	and	

KRuO4	 (1	 μL,	 15	mM	 in	 0.05	M	NaOH)	 (Alfa	 Aesar)	 on	 ice	 for	 1	 hr.	 The	 reaction	was	

purified	by	mini	quick	spin	oligo	column	(Roche),	which	was	pre-washed	with	water	(2	

×	 300	 μL).	 The	 ODN	 reaction	was	 traced	 using	 general	 oligomer	 LC-MS	 analysis,	 and	

nucleobase	 composition	 of	 digested	 DNA	 was	 analyzed	 by	 a	 Q-exactive	 (Thermo	

Fischer)	 quadrupole-orbitrap	 hybrid	 tandem	 MS	 spectrometer	 in	 positive	 ion	 mode.	

Extracted	ion	chromatograms	of	base	fragments	were	used	corresponding	to	C,	T,	A,	G,	

5-hmU	 and	 5-fU	 respectively.	 Gaussian	 smoothing	 (7	 points)	 was	 applied.	 Analogous	

oxidation	 conditions	 can	 be	 achieved	 by	 using	 1	 μL	 of	 the	 oxidant	 contained	 in	 the	

TrueMethyl	kit	(Cambridge	Epigentix)	which	has	been	diluted	10-fold	in	water.	

	

Chemical	 tagging	 reactions	with	ARP.	 fU-ODN,	 fC-ODN,	AP-ODN,	GCAT-ODN	(0.5	 -	2	

μL,	 100	 uM)	 (Appendix	 –	 Table	 19)	were	 incubated	with	 ARP	 (0.4	mM)	 at	 RT,	 in	 the	

presence	of	absence	of	p-anisidine	(100	mM)	in	sodium	phosphate	buffer	or	NH4OAc	(40	

mM)	at	a	range	of	different	pH	and	incubation	times	(Table	4	and	7).	Reactions	on	ODNs	
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were	purified	by	mini	quick	spin	oligo	columns	(Roche),	which	were	pre-washed	with	

water	(2	×	300	μL).	Reactions	were	traced	using	general	oligomer	LC-MS	analysis.	ARP	

(Biotinylcarbazoylmethyl)Hydroxylamine,	Cayman	Chemicals)	was	made	up	as	a	 stock	

solution	in	DMSO	(100	mM)	and	p-anisidine	was	made	up	as	a	stock	solution	in	MeOH	(1	

M).	

		

Chemical	tagging	reactions	with	BH.	fU-ODN,	fC-ODN,	AP-ODN,	GCAT-ODN	(0.5	-	2	μL,	

100	uM)	(Appendix	Table	19)	were	incubated	with	BH	(10	or	20	mM),	the	presence	of	

absence	 of	 p-anisidine	 (100	mM)	 in	 sodium	 phosphate	 buffer	 (40	mM)	 at	 a	 range	 of	

different	 pH,	 temperature	 and	 incubation	 times	 	 (Table	 5	 and	 7).	 Reactions	 on	 ODNs	

were	purified	by	mini	quick	spin	oligo	columns	(Roche),	which	were	pre-washed	with	

water	 (2	×	300	μL).	Reactions	were	 traced	using	general	oligomer	LC-MS	analysis.	BH	

((+)-Biotinamidohexanoic	 acid	 hydrazide,	 Sigma	 Aldrich)	 was	 made	 up	 as	 a	 stock	

solution	in	DMSO	(100	mM)	and	p-anisidine	was	made	up	as	a	stock	solution	in	MeOH	(1	

M).	

	

Chemical	 tagging	 reactions	 with	 o-phenylenediamine.	 fU-ODN,	 fC-ODN,	 AP-ODN,	

GCAT-ODN	 (0.5	 -	 2	 μL,	 100	 uM)	 (Appendix	 –	 Table	 19)	 were	 incubated	 with	 o-

phenylenediamine	(100	or	5	mM)	at	RT,	in	sodium	phosphate	buffer	(40	mM)	at	a	range	

of	different	pH	and	incubation	times	(Table	6	and	7).	Reactions	on	ODNs	were	purified	

by	mini	quick	spin	oligo	columns	(Roche),	which	were	pre-washed	with	water	(2	×	300	

μL).	Reactions	were	traced	using	general	oligomer	LC-MS	analysis.	o-phenylenediamine	

(Sigma	Aldrich)	was	made	up	as	a	stock	solution	in	MeOH	(100	mM).	

	

Chemical	 tagging	 reactions	 with	 o-biophen.	 fU-ODN,	 fC-ODN,	 AP-ODN,	 GCAT-ODN	

(0.5	-	2	μL,	100	uM,	Appendix	–	Table	19)	were	incubated	with	o-biophen	(5	mM)	in	pH	

7	sodium	phosphate	buffer	(40	mM)	at	RT	for	4	hr.	The	ODN	reaction	was	purified	by	

mini	quick	spin	oligo	columns	(Roche),	which	were	pre-washed	with	water	(2	×	300	μL).	

Reactions	were	traced	using	general	oligomer	LC-MS	analysis.	o-Biophen	was	made	up	

as	a	stock	solution	in	DMSO	(100	mM).	

	

Selective	chemical	labeling	of	hmU-ODN	over	fU-ODN.	To	a	mixture	of	fU-ODN	(3	μL,	

100	 μM)	 and	 hmU-ODN	 (3	 μL,	 100	 μM)	 was	 added	 N-methylhydroxylamine	

hydrochloride	 (5	 μL,	 50	mM)	 and	 pH	 6	 Sodium	 Phosphate	 Buffer	 (40	mM)	 in	 a	 final	

reaction	 volume	 of	 50	 μL.	 The	 reaction	was	 left	 for	 3	 hr	 at	 RT,	 before	 being	 purified	

using	2	x	Bio-Spin	P-6	Gel	Columns,	SSC	Buffer	(Bio-Rad),	which	had	been	pre-washed	
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with	water	(6	×	500	μL).	The	resultant	solution	was	incubated	with	NaOH	(2.5	μL,	1M)	

and	KRuO4	(2	μL,	15	mM	in	0.05	M	NaOH)	(Alfa	Aesar)	on	ice	for	1	hr.	The	mixture	was	

purified	by	mini	quick	spin	oligo	column	(Roche),	which	was	pre-washed	with	water	(2	

×	 300	 μL),	 before	 the	 addition	 of	 BH	 (10	 μL,	 100	 mM)	 and	 pH	 7	 Sodium	 Phosphate	

Buffer	 (40	mM).	Purification	was	completed	via	mini	quick	spin	oligo	column	(Roche),	

which	 had	 been	 pre-washed	 with	 water	 (2	 ×	 300	 μL).	 Analysis	 was	 performed	 by	

general	oligomer	LC-MS	analysis.		

	

Synthesis	of	AP-site	containing	DNA	(AP-ODN	and	AP-DNA)	U-ODN	or	U-DNA	(1	μg,	

Appendix	 Table	 19)	 in	 the	 presence	 of	 UNG	 (1	 μL,	 5U,	 NEB)	 and	 10	 ×	 UNG	 reaction	

buffer	(3	μL,	NEB)	in	a	final	volume	of	30	μL	was	incubated	at	37	°C	for	3	hr	to	generate	

AP-ODN	or	AP-DNA	respectively.	AP-ODN	was	purified	by	mini	quick	spin	oligo	column	

(Roche).	AP-DNA	was	purified	by	GeneJET	PCR	Purification	Kit	(Thermo	Scientific)	and		

confirmed	by	oligomer	LC-MS	analysis.	

	

Ab	 initio	 Quantum	 Mechanical	 Calculations	 (Performed	by	Dr	A.	 Sahakyan)	 Closed-

shell	 restricted	 Hartree-Fock	 (RHF)	 calculations	 were	 done	 with	 the	 Møller-Plesset	

correlation	 energy	 correction	 truncated	 at	 second-order	 (MP2)292,293	 and	 with	 the	

double-zeta	cc-pVDZ	Dunning’s	correlation	consistent	basis	set.294,295	All	the	calculations	

were	done	using	the	Gaussian	03	suite	of	programs.296		

	

Energy	minima	were	 found	 through	a	 fully	 relaxed	geometry	optimisation	of	 two	(syn	

and	 anti)	 rotameric	 structures	 constructed	 for	 both	 5-fUm	 and	 5-fCm.	 The	 transition	

states	were	located	via	synchronous	transit-guided	quasi-Newton	search297	in	between	

the	 two	 minima.	 All	 the	 found	 stationary	 points	 were	 verified	 to	 be	 either	 energy	

minima	 or	 transition	 states	 (first	 order	 saddle	 points)	 via	 an	 additional	 vibrational	

frequency	 calculation	 to	 find	 out	 the	 number	 (or	 the	 absence)	 of	 the	 imaginary	 force	

constants.	

	

AP-DNA	and	fU-DNA	Primer	extension		A	protocol	was	used	based	on	that	reported	by	

McInroy	et	al.197	AP-DNA	or	fU-DNA	was	firstly	reacted	with	BH	(10	mM)	for	4	hr	in	pH	7	

phosphate	 buffer	 (40	 mM).	 The	 DNA	 was	 purified	 using	 mini	 quick	 spin	 columns	

(Roche).	 200	ng	 of	 the	 reacted	 product	was	 subjected	 to	 polymerase	 extension	 in	 the	

presence	 of	 dNTP	 (0.2	 mM),	 5’-Fluorescein-labelled	 Rev	 primer	 1	 (1	 mM),	 10	 x	

DreamTaq	 Buffer	 (5	 μL)	 and	 DreamTaq	 Polymerase	 (1	 μL).	 After	 an	 initial		
3	min	denaturation	 at	 95	 °C,	 10-cycles	 of	 denaturation	 (95	 °C,	 30s),	 annealing	 (52	 °C,	
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30s)	and	extension	(72	°C,	30s)	were	performed.	Polymerase	extension	was	monitored	

on	a	10%	TBE-Urea	gel.		

	

AP-ODN	 fragmentation	 AP-DNA	 and	 hmU-ODN2	 were	 incubated	 in	 the	 presence	 of	

NaOH	 (50	 mM)	 for	 1	 hr	 at	 40	 °C,	 before	 purification	 using	 mini	 quick	 spin	 columns	

(Roche).	ODNs	were	analysed	by	oligomer	LC-MS	analysis.			

	

qPCR	enrichment	studies	and	biotinylated	adduct	reversal	

Reaction	procedure	 for	 chemical	enrichment	 studies.	DNA	(500	ng)	was	subjected	

to	reaction	conditions	a,	b,	c,	d	or	e.	The	reactions	were	purified	using	mini	quick	spin	

oligo	 columns	 (Roche)	 pre-washed	 with	 water	 (2	 ×	 300	 μL).	 The	 resulting	 purified	

mixture	was	 diluted	 100-fold	 to	 give	 an	 approximate	 concentration	 of	 100	 pg/μL	 per	

ODN.	Reactions	were	done	in	duplicate	or	triplicate:	

a)	fU-DNA	and	fC-DNA	(500	ng)	was	incubated	with	NH4OAc	buffer	pH	=	5	(40	mM),	ARP	

(2	M)	and	p-anisidine	(100	mM),	to	make	a	final	reaction	volume	of	50	μL,	at	RT	for		

24	hr;	

b)	fU-DNA	and	fC-DNA	(500	ng)	was	incubated	with	sodium	phosphate	buffer	pH	=	6	(40	

mM)	and	ARP	(0.4	mM)	to	make	a	final	reaction	volume	of	50	μL,	at	RT	for	4	hr;	

c)	 fU-DNA	 and	 fC-DNA	 (500	ng)	was	 incubated	with	 sodium	phosphate	 buffer	 pH	=	 7		

(40	mM)	and	BH	(10	mM)	to	make	a	final	reaction	volume	of	50	μL,	at	RT	for	4	hr;	

d)	fU-DNA	and	fC-DNA	(500	ng)	was	incubated	with	sodium	phosphate	buffer	pH	=	7	(40	

mM)	and	o-phenbiotin	(5	mM)	to	make	a	final	reaction	volume	of	50	μL,	at	RT	for	4	hr;	

e)	fU-DNA	and	GCAT-DNA	(500	ng)	was	incubated	with	sodium	phosphate	buffer	pH	=	7		

(40	mM)	and	BH	(10	mM)	to	make	a	final	reaction	volume	of	50	μL,	at	RT	for	4	hr.	

Input	DNA	 (10	μL,	1	ng)	 in	 the	presence	of	 Salmon	 sperm	 (10	μg)	was	 incubated	 and	

enriched	 using	 the	 general	 affinity-enrichment	 procedure	 using	 Magnesphere	

streptavidin	magnetic	beads	(50	μg,	Promega)	and	eluted	via	formamide	elution.		

	

Formamide	elution	After	streptavidin	enrichment,	magnetic	beads	were	resuspended	

in	100	μL	elution	buffer	(95%	formamide,	10	mM	EDTA)	and	were	heated	to	95	°C	for	5	

min.	 The	 eluent	 was	 removed	 from	 the	 beads	 and	 placed	 on	 ice.	 The	 step	 was	 then	

repeated	using	50	μL	elution	buffer	 to	remove	residual	DNA	from	the	magnetic	beads.	

The	 eluent	 was	 diluted	 with	 water	 (350	 μL),	 and	 purified	 by	 filtration	 using	 Amicon	

Ultra-0.5	mL	Centrifugal	Filters	10K	(Millipore),	following	a	wash	by	water	(450	μL)	and	

centrifugation	for	15	min.	The	Amicon	filters	were	washed	with	water	and	centrifuged	
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for	a	further	15	min	(2	×	450	μL).	DNA	was	then	recovered	from	the	Amicon	filter	(25	

μL)	and	enrichment	was	assessed	by	qPCR.	

	

qPCR	 analysis	 for	 chemical	 enrichment	 studies.	 qPCRs	 were	 performed	 using	 a	

CFX96	 Real-Time	 System	 (BioRad),	 and	 data	 was	 processed	 using	 the	 CFX	 Software	

manager	 (BioRad).	 Enriched	DNA	 (1	μL)	was	 added	 to	 a	mixture	of	Brilliant	 III	Ultra-	
Fast	SYBR	Green	qPCR	Master	Mix	(5	μL)	(Agilent	Technologies),	forward	primer	1,	2	or	

3	(1	μM),	reverse	primer	1,	2	or	3	(1	μM)	(Appendix,	Table	18)	and	diluted	with	water	to	

give	a	final	volume	of	10	μL.	The	mixture	was	subject	to	qPCR	according	to	the	protocol	

outlined	 by	 the	manufacturer.	 DNA	 concentration	was	 quantified	 by	comparison	with	

calibration	 lines	of	known	concentration	of	 input	ODNs	(Appendix,	Chapter	2	–	Figure	

92).	

	

Synthesis	of	BH-adduct	starting	materials	for	reversal	study	fU-ODN	(2	μL)	and/or	

fC-ODN	(2	μL)	were	incubated	with	BH	(10	mM)	in	the	presence	of	p-anisdine	(100	mM)	

in	pH	6	phosphate	buffer	(40	mM)	at	40	°C	for	18	hr,	before	purification	via	mini	quick	

spin	oligo	columns	(Roche).	fU-ODN-BH	and	fC-ODN-BH	adduct	formation	was	

confirmed	by	general	oligomer	LC-MS	analysis.	The	purified	mixture	was	diluted	100	

fold	to	give	an	approximate	concentration	of	100	pg/μL	per	ODN	to	be	used	for	qPCR	

enrichment	studies.	

	

5-fU-ODN-adduct	reversal	 fU-BH,	fU-o-phen	and	fU-ARP	ODN	adducts	were	incubated	

in	the	presence	of	p-anisidine	(100	mM)	and	the	presence	or	absence	of	hydroxylamine	

(0.05%	v/v)	in	pH	7	or	pH	6	phosphate	buffer	(40	mM)	or	pH	5	NH4OAc	buffer	for	2	hr.	

Reactions	 were	 purified	 by	 mini	 quick	 spin	 oligo	 columns	 (Roche)	 and	 analysed	 by	

oligomer	LC-MS	analysis.		

	

5-fC-BH	 reversal	 fC-ODN-BH	was	 incubated	 in	 the	 presence	 of	p-anisdine	 (100	mM),	

and	 hydroxylamine	 (0.05%	 v/v)	 in	 either	 pH	 5	 NH4OAc	 buffer	 	 (40	 mM)	 or	 pH	 6	

phosphate	buffer	(40	mM)	and	heated	at	40	°C	for	4	hr	or	24	hr.	Reactions	were	purified	

by	mini	quick	spin	oligo	columns	(Roche)	and	analysed	by	oligomer	LC-MS	analysis.		

	

Polymerase	 stop	 assay	 for	 probes:	 A	 primer	 extension	 experiment	 was	 performed	

based	on	conditions	reported	by	McInroy	et	al.197	fU-DNA	was	firstly	reacted	with	i)	BH	

(10	mM)	or	ii)	NH2OH	(0.5%	v/v)	in	pH	7	phosphate	buffer	(40	mM)	for	4	hr	or	iii)	ARP	

(0.4	mM),	pH	6	phosphate	buffer	(40	mM).	The	DNA	was	purified	using	mini	quick	spin	



	 131	

columns	(Roche).	200ng	of	the	reacted	product	was	subjected	to	polymerase	extension	

in	 the	presence	of	 dNTP	 (0.2	mM),	5’-Fluorescein-labelled	Rev	primer	1	 (1	mM),	10	 x	

DreamTaq	 Buffer	 (5	 μL)	 and	 DreamTaq	 Polymease	 (1	 μL).	 After	 an	 initial	 3	 min	

denaturation	at	95	°C,	10-cycles	of	denaturation	(95	°C,	30s),	annealing	(52	°C,	30s)	and	

extension	 (72	 °C,	 30s)	were	performed.	The	products	were	 visualised	on	 a	 10%	TBE-

Urea	gel.		

	

Library	preparation	of	DNA	models	

Chemical	 5-fU	 enrichment-sequencing	 library	 preparation	 Fragmented	 DNA	

samples	 (1	 μg)	 and	 spike-in	 ODNS	 (fU-DNA,	 fC-DNA2,	 GCAT-DNA,	 100pg),	 (+)-

biotinamidohexanoic	acid	hydrazide	BH	(10	mM)	and	pH	7	sodium	phosphate	buffer	(40	

mM)	 was	 incubated	 at	 RT	 for	 4	hr	 followed	 by	 work-up	 with	 DNA	 Clean	 and	

Concentrator	5	 (Zymo	Research)	or	Micro	Biospin-P6	columns	 in	SDS	buffer	 (BioRad).	

DNA	 fragments	 were	 subjected	 to	 the	 general	 NGS	 library	 preparation	 procedure,	

followed	 by	 general	 affinity-enrichment	 procedure	 using	 Magnesphere	 beads	

(Promega).	 DNA	 fragments	 were	 eluted	 off	 beads	 by	 incubating	 with	 (0.05%	 v/v	

NH2OH),	pH	7	sodium	phosphate	buffer	(40	mM)	and	p-anisidine	(100	mM),	at	40	°C	for	

2	 hr.	 DNA	 fragments	 were	 removed	 from	 the	 beads	 and	 purified	 by	 GeneJet	 PCR	

purification	 kit	 (ThermoFischer)	 or	 DNA	 Clean	 and	 Concentrator-5	 (Zymo	 Research).	

PCR	of	enriched	fragments	was	achieved	using	NEBNext	Ultra	II	Q5	Master	Mix	(NEB).	

	

Chemical	 5-hmU	 enrichment-sequencing	 library	 preparation	 Fragmented	 DNA	

samples	 (1	 μg)	 and	 spike-in	 ODNs	 (hmU-DNA,	 hmC-DNA2,	 GCAT-DNA	 300	 pg)	 were	

firstly	 ligated	 using	 general	 NGS	 library	 preparation	 procedure	 in	 the	 presence	 of	

custom	 adaptors	 1)	 5′-MeO-GAATGATACGGCGACCACCGAGATCTA	

CACTCTTTCCCTACACGACGCTCTTCCGATCT-3′	(Eurogentec)	and		

2)	 GATCGGAAGAGCACACGTCTGAACTCCAGTCACNNNNNNATCTCGTATGCCGTCT	

TCTGCTTG-O-phosphate-3′	 (Sigma	 Aldrich)	 which	 were	 annealed	 prior	 to	 use.	 After	

library	preparation,	Ampure	beads	were	washed	twice	with	80%	MeCN,	and	the	eluted	

fragments	were	purified	 twice	with	Micro	BioSpin-P6	columns	 in	SDS	buffer	 (BioRad).	

To	 22.75	 μL	 ligated	 DNA	 solution	 was	 added	 NaOH	 (1	 μL,	 1M)	 and	 the	 mixture	 was	

heated	at	40	°C	for	30	min,	before	the	addition	of	ten-fold	diluted	oxidant	solution	(1	μL)	

provided	in	the	TrueMethyl	kit	(Cambridge	Epigenetics);	the	solution	was	incubated	at	

40	 °C	 for	 a	 futher	 30	min.	 Samples	were	 purified	 using	Micro-Biospin	P-6	 columns	 in	

SDS	 buffer	 (BioRad).	 To	 the	 eluted	 solution	 was	 added	 (+)-biotinamidohexanoic	 acid	

hydrazide	 BH	 (10	mM)	 and	 pH	 7	 sodium	phosphate	 buffer	 (40	mM),	 and	 the	mixture	
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was	incubated	at	RT	for	4	hr	followed	by	work-up	with	DNA	Clean	and	Concentrator	5	

(Zymo	Research)	or	Biospin-P6	 columns	 in	 SDS	buffer	 (BioRad).	DNA	 fragments	were	

subjected	to	the	general	affinity-enrichment	procedure.	DNA	fragments	were	eluted	off	

beads	by	incubating	with	(0.05%	v/v	NH2OH),	pH	7	sodium	phosphate	buffer	(40	mM)	

and	p-anisidine	(100	mM),	and	heating	at	40	°C	for	2	hr.	DNA	fragments	were	purified	

by	 GeneJet	 PCR	 purification	 kit	 (ThermoFischer)	 or	 DNA	 Clean	 and	 Concentrator	 5	

(Zymo	Research).	PCR	of	 enriched	 fragments	was	achieved	using	NEBNext	Ultra	 II	Q5	

Master	Mix	(NEB).	
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7.4.	Chapter	4	Materials	and	Methods	

	

Artificial	 5-hmU	 feeding	 experiment	 in	 T.Brucei	 Procyclic	 trypanosomes	 were	

cultured	in	DTM	media	(20	mL)	in	the	presence	or	absence	of	5-hmU	mononucleoside	(1	

mM)	 for	 at	 least	 48	 hr.	 Cells	 were	 left	 to	 proliferate	 without	 dilution	 at	 27	 °C	 in	 an	

atmosphere	of	5%	CO2	for	2,	4	or	6	days.	

	

Differentiation	 by	 cis-aconitate/citrate	 in	 T.Brucei	 (performed	 by	 Dr	 J.	 Freitas,	

Department	 of	 Biochemistry,	 Carrington	 lab,	 University	 of	 Cambridge)	 Cis-

aconitate/citrate	 differentiation	 was	 initiated	 using	 a	 procedure	 reported	 by	

Ziegelbauer	 et	al.298	 Bloodstream	T.brucei	 cells	 in	mid-log	 phase	were	 resuspended	 in	

diffrentiating	 trypanosome	 medium	 (DTM)	 supplemented	 with	 cis-aconitate	 (3	 mM)	

and	sodium	citrate	 (3	mM).	Cells	were	 left	 for	96	hr	at	27	 °C	 in	an	atmosphere	of	5%	

CO2.	Cell	number	was	also	determined	at	each	timepoint	to	monitor	cell	proliferation.		

	

Differentiation	by	cold-shock	in	T.Brucei	(performed	by	Dr	J.	Freitas,	Carrington	lab,	

Department	 of	 Biochemistry,	 University	 of	 Cambridge)	 Cold-shock	 differentiation	was	

performed	using	a	procedure	reported	by	Engstler	et	al.204	Bloodstream	T.brucei	cells	in	

mid-log	phase	were	suspended	in	DTM	and	incubated	at	20	°C	for	16	hr.	After	16	hr,	cis-

aconitate	(6	mM)	was	added	to	the	culture	medium	and	cells	were	left	to	proliferate	at	

27	°C	for	96	hr	in	an	atmosphere	of	5%	CO2.	Cells	were	harvested,	at	24	hr	time	points,	

and	cell	number	was	determined	to	as	a	measure	of	cell	proliferation.		

	

DTM	Media	Composition	DTM	media	was	used	as	described	in	Reference	[205].	1	x	DTM	

for	 media:	 10	 x	 DTM	 (10	 %	 v/v),	 H2O	 (90%	 v/v),	 NaCl	 (6.8	 g/L),	 HEPES	 (7.5	 g/L),	

NaHCO3	(2.2g/L),	glutamic	acid	(240mg/L),	glutamine	(1.34	g/L),	glycerol	(720	mg/L),	

proline	 (640	 mg/L),	 mercapoethanol	 (0.0014	 %	 v/v),	 haemin	 (0.3%	 v/v),	 heat	

inactivated	 feline	 bovine	 serum	 (15	 %	 v/v),	 100	 x	 penicillin-streptomycin	 (1%	 v/v),	

adjusted	 to	 pH	 =	 7.2	 using	 5M	 NaOH	 where	 10x	 DTM:	 KCl	 (4	 g/L),	 CaCl	 (2	 g/L),	

H2NaO4P·H2O	 (1.4	 g/L),	 MgSO4·7H2O	 (2	 g/L),	 sodium	 pyruvate	 (1.1	 g/L),	 phenol	 red	

(100	mg/L),	 alanine	 (90	mg/L),	 arginine	 (1.26	 g/L),	 asparagine	 (150	mg/L),	 aspartic	

acid	 (140	mg/L),	 cysteine	 (240	mg/L),	 glutamic	 acid	 (150	mg/L),	 glutamine	 (3	 g/L),	

glycine	 (80	mg/L),	histidine-HCl·H2O	(420	mg/L),	 isoleucine	 (520	mg/L),	 leucine	 (520	

mg/L),	 lysine-HCl	 (730	 mg/L),	 methionine	 (150	 mg/L),	 phenylalanine	 (320	 mg/L),	

proline	 (60	mg/L),	 serine	 (110	mg/L),	 threonine	(480	mg/L),	 tryptophan	(100	mg/L),	

tyrosine	(360	mg/L),	valine	(460	mg/L),	hypoxanthine	(140	mg/L	in	NaOH	1%	v/v))		
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LC-MS/MS	measurements	Global	quantification	of	Base	J	and	5-hmU	were	performed	

as	described	in	Materials	&	Methods	–	Chapter	2.	

	

HEK293T	 cell	 culture	HEK293T	 cells	 (ATCC)	were	 cultured	 in	DMEM	 culture	media	

(Thermo	 Fischer)	 supplemented	 with	 FBS	 (10%)	 and	 penicillin-streptomycin	 (100U,	

Thermo	 Fischer).	 Cells	 were	 washed	 with	 PBS	 and	 detached	 using	 0.05%	 Trypsin	

(Thermo	Fischer).	

	

esiRNA	Transfection	Cells	were	transfected	either	transfected	in	either:	a)	6-well	plate	

or	b)	T75	flask	using	either	RLuc	or	SMUG1	MISSION	esiRNA	(Sigma	Aldrich).	esiRNA	in	

OptiMEM	 (Thermo	 Fischer)	 (a)	 1	 μg	 in	 125	 μL	 ,	 b)	 6	 μg	 in	 500	 μL)	 was	 added	 to	

Lipofectamine	3000	(Thermo	Fischer)	in	OptiMEM	(a)	7.5	μL	in	125	μL,	b)	45	μL)	in	500	

μL)	 and	 incubated	 for	 5	min	 before	 being	 added	 supplemented	 to	 the	 DMEM	 culture	

media	(a)	1.75	mL,	b)	9mL).	Cells	were	grown	in	the	presence	of	transfection	agents	for	

48	hr	or	96	hr.		

	

Protein	 extraction	 and	quantification	Cell	pellets	were	 lysed	in	 ice-cold	RIPA	buffer	

(Thermo	 Fischer)	 and	 vortexed	 and	 incubated	 for	 15	 min	 on	 ice.	 The	 mixture	 was	

centrifuged	and	supernatant	containing	protein	extract	was	retained.		Protein	lysate	was	

quantified	using	Pierce	BCA	Protein	Assay	Kit,	where	proteins	were	 compared	 to	BCA	

standards	by	visualization	at	562	nm	on	a	SPECTROstarNano	(BMG	Labtech).	

	

RT-qPCR	 Reverse	 transcription	 was	 achieved	 using	 High	 Capacity	 Reverse	

Transcription	 Kit	 (Thermo	 Fischer)	 with	 (800	 ng	 –	 1	 μg)	 input	 RNA	 using	 random	

primers,	following	the	manufacturer’s	instructions.	Resultant	cDNA	(1	μL)	was	added	to	

a	 mixture	 of	 Brilliant	 III	 Ultra-Fast	 SYBR	 Green	 qPCR	 Master	 Mix	 (5	 μL)	 (Agilent	

Technologies),	 forward	 and	 reverse	 primers	 for	 actin	 or	 smug1	 (1	 μM)	 (Appendix,	

Chapter	 4	 -	 Table	 42)	 and	diluted	with	water	 to	 give	 a	 final	 volume	of	 10	 μL.	 SMUG1	

mNA	expression	was	determined	by	relative	quantification	to	actin	mRNA	expression.		

	

Western	blot	Western	blot	was	performed	using	Wes	(Protein	Simple)	utilising	the	12-

230	kDa	Wes	 Seperation	Module	 and	 anti-rabbit	 detection	module.	 0.73	μg	 of	 protein	

extract	was	loaded	per	sample,	where	Rabbit	monoclonal	Anti-SMUG1	antibody	(abcam	

-	 ab192240,	 1	 in	 50	 dilution)	 and	 β-Tubilin	 antibody	 (Cell	 signalling,	 	 #2146,	 1	 in	 50	

dilution)	 were	 mixed	 for	 detection	 and	 quantification	 of	 SMUG1	 and	 tubulin	
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respectively.	Relative	protein	expression	was	quantitatively	determined	using	Compass	

for	Simple	Western	software.		

	

5-hmU	and	5-fU	 chemical	 enrichment-sequencing	Fragmented	DNA	samples	(1	μg)	

and	 spike-in	 ODNs	 (fU-ODN/hmU-ODN,	 fC-ODN/hmC-ODN,	 GCAT-ODN;	 100	 pg)	 were	

prepared	for	NGS	as	described	as	described	in	Chapter	3	Materials	and	Methods.	For	5-

fU	 chemical-enrichment	 sequencing,	 14	 cycles	 of	 PCR	 generated	 adequate	 DNA	 for	

sequencing.	 For	 5-hmU	 chemical-enrichment	 sequencing,	 18	 cycles	 of	 PCR	 generated	

adequate	DNA	for	sequencing.	

	

Chemical	 base	 J	 enrichment-sequencing202	 Fragmented	 DNA	 samples	 (250	ng-500	

ng),	NaIO4		(50	mM)	and	sodium	acetate	buffer	(50	mM,	pH	5.5)	were	incubated	at	40	°C	

for	1	hr	followed	by	work-up	with	DNA	Clean	and	Concentrator	5	(Zymo	Research).	The	

resultant	 DNA	 solution	 (25	μL),	 pH	 6	 phosphate	 buffer	 (40	 mM),	 (+)-

biotinamidohexanoic	 acid	hydrazide	BH	 (10	mM)	and	p-anisidine	 (2	mM)	were	mixed	

and	incubated	at	40	°C	for	12	hr.	The	samples	were	subjected	to	the	general	NGS	library	

preparation	 procedure,	 and	 Base	 J-containing	 DNA	 fragments	 were	 affinity-enriched	

using	Dynabeads	MyOne	Streptavidin	C1	 (ThermoFischer).	 PCR	of	 enriched	 fragments	

was	 achieved	 on	 beads	 using	 KAPA	 HiFi	 Uracil	 +	 Polymerase	 (KAPA	 Biosystems);	 10	

cycles	 rendered	 adequate	 DNA	 for	 sequencing.	 Control	 libraries	 were	 prepared	

following	all	the	above	steps	in	the	absence	of	the	NaIO4	oxidation	step.	

	

5-hmU	DIP	 sequencing202	Fragmented	DNA	samples	(1	μg)	and	spike-in	ODNs	(hmU-

ODN,	 hmC-ODN2,	 GCAT-ODN;	 500pg)	 were	 firstly	 subjected	 to	 general	 NGS	 library	

preparation	procedure.	The	 ligated	sample	was	purified	via	Ampure	beads	(Beckmann	

Coulter).	 Salmon	 sperm	was	 added	 (1	 μL,	 10mg/mL)	 to	 the	 ligated	mixture	 and	DNA	

was	 denatured	 via	 heating	 to	 95	°C	 for	 10	 min	 before	 snap-cooling	 on	 ice.	 To	 the	

solution	 was	 added	 2	 x	 binding	 buffer	 (0.2%	 Tween	 20	 in	 PBS,	 50	 μL),	 anti-

hydroxymethyluridine	antibody	ab19735	(10	μL,	abcam)	and	rabbit	anti-goat	 IgG	H&L	

ab6697	 (5	 μL).	 The	 solution	 was	 incubated	 at	 4	°C	 for	 16	 hr	 before	 incubation	 with	

Dynabeads	Protein	G	(100	μL,	Life	Technologies)	in	binding	buffer	(0.1%	v/v	tween	20	

in	PBS)	for	2	hr.	The	supernatant	was	removed	and	the	beads	were	washed	with	binding	

buffer	(x5).	The	magnetic	beads	were	then	suspended	in	elution	buffer	(100	μL,	50mM	

Tris-HCl,	pH	8,	10mM	EDTA,	0.5%	SDS,	40	μg	Proteinase	K)	and	heated	at	50	°C	for	2	hr	

at	1300	rpm.	The	supernatant	was	removed	from	the	magnetic	beads	and	purified	using	

DNA	Clean	and	Concentrator	5	(Zymo	Research).	The	eluted	fragments	were	subjected	
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to	PCR	using	NEBNext	Ultra	II	Q5	Master	Mix	(NEB);	14	cycles	rendered	adequate	DNA	

for	 sequencing.	 For	 control	 libraries,	 control	 Goat	 IgG,	 polyclonal	 isotype	 control	

(ab37373)	was	utilised	in	the	place	of	anti-hydroxymethyluridine	antibody.		

	

NGS	 Sequencing	 Base	 J	 enrichment	 sequencing	 was	 ran	 on	 a	 MiSeq	 instrument	 in	

single-end	mode,	with	 a	 read-length	 of	 150.	 5-fU	 chemical-enrichment	 sequencing,	 5-

hmU	 chemical-enrichment	 sequencing	 and	 5-hmU-DIP	 enrichment-sequencing	 and	

RNA-seq	libraries	were	ran	on	a	NextSeq	instrument	in	paired-end,	using	a	High	output	

kit	with	a	readlengths	of	75.		

	

SMUG1	treatment	for	“no-hmU”	DIP-control	To	fragmented	genomic	DNA	(1	μg)	and	

spike-in	contols	(hmU-DNA,	hmC-DNA2,	GCAT-DNA,	500	pg)	was	added	hSMUG1	(3	μL,	

15U,	NEB)	and	NEB	buffer	1	 (3	μL)	 to	make	a	 total	 reaction	volume	of	30	μL,	and	 the	

mixture	 was	 incubated	 at	 37	 °C	 for	 18	 hr	 before	 purification	 using	 DNA	 Clean	 and	

Concentrator	5	 (Zymo	Research).	The	 resultant	mixture	was	 then	 subject	 to	 the	hmU-

DIP	sequencing	protocol.	

	

Sequencing	data	 visualisation	Sequencing	data	was	visualised	and	screenshots	were	

taken	from	IGV	version	2.3.69.	

	

Analysis	 of	 Base	 J	 chemical-sequencing	 data	 (performed	 by	 Dr	 F.	 Kawasaki,	

Balasubramanian	 group)	 Sequencing	 reads	 were	 trimmed	 to	 remove	 adaptors	 using	

cutadapt	version	1.11.	Reads	were	aligned	to	the	trypanosome	genome	using	bwa	mem	

version	0.7.10.2.	Primary	alignments	with	mapping	of	>10	were	retained.	Filtering	and	

manipulations	were	performed	using	 samtoools	version	1.1.3.	The	difference	between	

samples	 fed	 with	 5-hmU	 mononucleoside	 and	 control	 samples	 were	 quantified	 and	

analysed	using	Deeptools.		

	

Analysis	 of	 T-modification	 enrichment	 data	 (performed	 by	 Dr	 S.	 Martinez-Cuesta,	

Balasubramanian	 group).	 The	 quality	 of	 raw	 FASTQ	 sequencing	 libraries	 were	 firstly	

checked	using	FastQC.	Adaptors	were	trimmed	and	filtered,	base	quality	was	performed	

using	 cutadapt	 (-m	 15,	 -q	 20).	 Reads	were	 aligned	 to	 the	 human	 genome	 hg19	 using	

bwamem,	 duplicate	 reads	 were	 removed	 using	 sambamba.	 Data	 from	 different	

sequencing	 lanes	were	merged,	 alignments	were	 filtered	 and	 indexed	 using	 samtools.	

Unmapped,	 duplicate	 reads,	 and	 mapping	 with	 low	 quality	 mapping	 of	 >10	 wee	
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removed.	 Reads	 aligning	 to	 blacklisted	 regions	 were	 filtered	

(https;//sites.google.com/site/anshulkundaje/	

projects/blacklists).	 Spike-in	 sequences	 were	 added	 to	 the	 hg	 file,	 and	 enrichment	 of	

spike-ins	 was	 obtained	 via	 samtools.	 Bam	 files	 were	 converting	 to	 tdf	 files	 for	

visualisation	using	intergrative	genomics	viewer	(IGV)	using	the	igvtools	function.	

Peak	calling	against	the	input	library	was	determined	using	MACS2.	The	intersection	of	

peaks	was	 determined	 using	 bedtools,	 along	with	 the	 depth	 of	 coverage	 of	 alignment	

files	 within	 called	 peaks.	 Nucleotide	 sequences	 within	 peaks	 were	 obtained	 using	

bedtools	and	getfasta.	Motif	analysis	was	performed	using	the	online	version	of	MEME-

ChiP.	 Genomic	 regions	 of	 called	 peaks	 were	 determined	 using	 GAT	 using	 “-ignore-

segment-tracks”	 and	 “—num-samples=10000’,	 human	 genome	 annotations	 were	

obtained	using	 the	CGAT	code	applied	 to	GRCh37.	Unix	 tools	 (awk,	 cat,	 sort	and	uniq)	

were	 used	 for	 downstream	 file	manipulation.	 Intersections	 of	 hmU-loci	with	 different	

genomic	 datasets,	 and	 intersection	 compared	 to	 random	 shuffling	 of	 regions	 was	

performed	 using	 bedtools.	 Visualiation	 of	 DNaseI	 datasets	 were	 obtained	 using	

deeptools.	 Conversion	 of	 hg18	 to	 hg19,	 to	 determine	 intersections	 with	 TET-binding	

peaks,	was	performed	using	liftOver.		

	

Analysis	 of	 RNA-seq	 data	 (performed	 by	 Dr	 S.	 Martinez-Cuesta,	 Balasubramanian	

group)	 The	 quality	 of	 FASTQ	 sequencing	 files	 was	 determined	 via	 FASTQC.	 Illumina	

adaptors	were	trimmed,	and	base	quality	was	called	as	for	the	analysis	of	T-modification	

enrichment	data	above.	Reads	were	aligned	to	the	human	reference	genome	hg19	using	

tophat2.	Data	from	different	sequencing	lanes	was	merged,	alignments	were	filtered	and	

indexed	 using	 samtools,	 low	 quality	 alignments	 (<	 10)	 were	 removed.	 Read	 count	 of	

exons	 in	 hg19	 was	 performed	 using	 htseq-count	 using	 options	 “-s	 no:	 and	 “-m	

intersection-strict”,	 indicating	 that	data	 is	not	 from	a	 strand-specific	assay.	Only	 reads	

from	exons	were	kept.	Differential	gene	expression	between	SMUG1	and	RLuc	libraries,	

along	with	statistical	analysis,	was	performed	using	the	R	programming	language,	edgeR	

and	 GenomicFeatures.	 R	 packages	 data.table	 and	 reshape2	 were	 used	 to	 manipulate	

matrices	and	tables	and	ggplot2	was	used	for	data	visualisation.		

	

7.5.	Chapter	5	Materials	and	methods	

	
Nuclear	protein	extract	(performed	by	Dr	S.	Huber,	Balasubramanian	group)	Cells	were	

harvested	in	PBS	and	resuspended	in	Hypotonic	buffer	(500	μL,	20	mM	Tris-HCl	pH	7.4,	

10	 mM	 NaCl,	 3mM	 MgCl2)	 in	 the	 presence	 of	 NP40	 detergent	 (25	 μL,	 10%)	 before	
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centrifugation	 to	 separate	 the	 cytoplasmic	 extract	 (supernatant)	 and	 nuclear	 fraction	

(pellet).	The	nuclear	pellet	was	resuspended	in	Cell	Extraction	buffer	(10	mM	Tris-HCl	

pH	7.4,	2mM	Na3VO4,	100	mm	NaCl,	1%	Triton	X-100,	1	mM	EDTA,	10%	glycerol,	1	mM	

EGTA,	 0.1%	 SDS,	 1mM	 NaF,	 0.5%	 deoxycholate,	 20	 mM	 Na4P2O7).	 Proteins	 were	

quantified	 using	 the	 Pierce	 BCA	 Protein	 Assay	 Kit,	 where	 proteins	were	 compared	 to	

BCA	standards	by	visualization	at	562	nm	on	a	SPECTROstarNano	(BMG	Labtech).	

	

Protein	pulldown	Protein	pulldown	was	carried	out	as	done	by	Reik	and	co-workers,	

with	 some	 modifications.49	 Thermo	 Pierce	 streptavidin	 beads	 (10	 μL)	 were	 firstly	

washed	 in	 buffer	 A	 (1	 x	 PBS,	 0.1%	 Triton	 X-100,	 x3)	 and	 incubated	 with	 1	 μg	 of	

biotinylated	 DNA	 fU-DNA1	 or	 GCAT-DNA1	 at	 RT	 for	 1	 hr.	 The	 beads	were	washed	 in	

buffer	A,	and	were	resuspended	in	buffer	B	(0.2	mM	EDTA,	20%	Glycerol,	20mM	HEPES-

KOH	pH	7.9,	0.1M	KCl,	1mM	DTT,	1mM	PMSF,	0.1%	Triton	X-100)	and	 incubated	with	

100	μg	HEK293T	nuclear	 extract	 for	1	hr.	 The	beads	were	 subsequently	washed	with	

buffer	B	(x	6),	once	with	PBS,	and	then	heated	in	1	x	LDS	loading	buffer	supplemented	

with	4	mM	DTT	at	 95	 °C	 for	 5	min.	 The	 eluted	proteins	were	 then	 removed	 from	 the	

beads	 and	 ran	 on	 a	 4-20%	 SDS-PAGE	 gel	 in	 MOPS	 buffer.	 The	 gel	 was	 stained	 with	

Coomassie	blue,	each	lane	was	cut	into	8-pieces	and	submitted	for	proteomics	analysis.		

	

Proteomic	 downstream	 analysis	 To	 determine	 enriched	 proteins	 for	 fU-DNA1	 and	

GCAT-DNA1,	a	t-test	(p	<	0.1)	was	performed	using	Scaffold	software	(Version	4.4.8)	to	

determine	log2fold	change	between	modified	and	non-modified	DNA	total	mass	spectral	

counts.	 Low	 scoring	 matches	 were	 removed	 and	 no	 multiple	 test	 corrections	 were	

performed.	A	minimum	of	2	peptides	was	required	for	identification.	Using	95%	protein	

and	 50%	 peptide	 probability	 thresholds,	 as	 determined	 by	 algorithms	 in	 the	 Scaffold	

software,	 the	 false	 discovery	 rate	 was	 estimated	 to	 be	 0.0%.	 Common	 contaminants	

such	as	keratin	were	discounted.		

	

UNG	 excision	 fU-ODN	or	U-ODN	 (500	ng)	 (Appendix,	Table	19)	was	 incubated	 in	 the	

presence	of	UNG	buffer	(3	μL)	in	the	presence	of	UDG	(50	U,	NEB)	and	was	incubated	at	

37	 °C	 for	 18	 hr.	 Analysis	 of	 5-fU	 excision	was	 performed	 via	 general	 LC-MS	 oligomer	

analysis.		

	

hSMUG1	excision	fU-ODN	(500	ng)	was	incubated	in	the	presence	of	UNG	buffer	(3	μL)	

in	the	presence	of	SMUG1	(25	U,	NEB)	and	was	incubated	at	37	°C	for	18	hr.	Analysis	of	

5-fU	excision	was	performed	via	general	LC-MS	oligomer	analysis.		



	 139	

7.6.	Chapter	6	Materials	and	Methods	
	
fU-ODN	crosslinking	conditions	 fU-ODN	(500	ng)	was	incubated	in	the	presence	of	a)	

lysine,	 b)	 glycine,	 c)	 5-aminovaleric	 acid,	 d)	 guanidium	 hydrochloride	 (10	 mM)	 and	

NaBH3CN	(25	mM)	in	PBS	in	a	total	volume	of		25	μL.	The	reaction	mixture	was	purified	

by	mini	quick	spin	column	(Roche)	or	oligo	clean	and	concentrator	kit	(Zymo	Research).	

Reaction	analysis	was	performed	via	general	LC-MS	oligomer	analysis.	

	

fC-ODN	crosslinking	conditions	 fC-ODN	(500	ng)	was	incubated	in	the	presence	of	a)	

lysine,	b)	 glycine,	 c)	5-aminovaleric	 acid,	d)	 guanidium	hydrochloride	 (500mM)	 in	 the	

presence	 or	 absence	 of	 NaBH3CN	 (100	 mM)	 in	 PBS	 in	 a	 total	 volume	 of	 25	 μL.	 The	

reaction	mixture	was	purified	by	mini	quick	spin	column	oligo	clean	and	concentrator	

kit	 (Zymo	 Research).	 Reaction	 analysis	 was	 performed	 via	 general	 LC-MS	 oligomer	

analysis.	

	

Model	 protein	 crosslinking	 fU-DNA1,	 fC-DNA1	 or	 T-DNA1	 (1	 μg)	 labelled	 with	

Fluorescein	 was	 incubated	 with	 of	 BSA	 (5.88	 μg)	 or	 Ribonuclease	 A	 (1.21	 μg)	 in	 the	

presence	of	NaBH3CN	(25	mM)	at	4	°C	for	18	hr,	or	NaBH3CN	(100	mM)	at	37	°C	for	18	

hr.	 The	 mixture	 was	 purified	 by	 P-6	 Micro	 Bio-spin	 columns	 (Bio-Rad)	 before	 gel	

electrophoresis	 on	 a	 denaturing	 12%	 Bis-Tris	 Nu-page	 gels,	 which	 were	 ran	 in	 MES	

buffer.			

	

Crosslink	with	model	proteins	for	mass	spectrometry	fU-ODN	or	fC-ODN2	(400	ng)	

was	incubated	with	Ribonuclease	A	(1.8	μg)	in	the	presence	of	NaBH3CN	(25	mM)	at	4	°C	

for	18	hr,	or	NaBH3CN	(100	mM)	at	37	°C	for	18	hr.	DNA-protein	crosslink	was	analysed	

by	electrospray	mass	spectroscopy.	The	sample	was	ran	on	a	ACQUITY	UPLC®	Protein	

BEH	 C4	 Column	 (Waters)	 before	 injection	 into	 a	 Xevo-G2-S	 Q-Tof,	 using	 solvents	 A	

(0.1%	formic	acid	in	water)	and	B	(0.1%	formic	acid	in	95:5	MeCN:water),	at	a	flow-rate	

of	0.2	mL/min,	with	a	gradient	5%–95%	B,	increasing	at	1%	per	min.	Mass	was	acquired	

between	300-5000	m/z.	

	

Nucleosome	assembly		(performed	by	Z.	Li	or	Dr	E.A.	Raiber,	Balasubramanian	group)	

Nucleosomes	were	assembled	either	using	chaperones	(Chromatin	Assembly	Kit,	Active	

Motif)	 for	 the	 crosslinking	 and	 proteomics	 studies,	 or	 via	 Salt	 Dilution	 (EpiMark	

Nuclesome	 Assembly	 Kit,	 NEB)	 for	 the	 polymerase	 stop	 assay,	 according	 to	

manufacturer’s	instructions.	
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Crosslinking	formylated	Widom	nucleosome	Nucleosomes	composed	from	Widom	

DNA	(5-fC,	C,	5-fU	and	5-caC)	labelled	with	Cy3	and	Cy5	labels,	and	previously	stained	

with	GelRed,	were	incubated	at	37	°C	for	18	hr	in	the	presence	of	NaBH3CN	(100	mM).	

The	mixture	was	purified	using	P-6	Micro-spin	columns	(Bio-Rad)	and	crosslinking	

formation	was	monitored	via	gel	electrophoresis,	using	a	denaturing	12%	Bis-Tris	Nu-

page	gel	ran	in	MES	buffer.			

	

Optimisation	 of	 5-fU	 nucleosome	 crosslinking	 5-fU	 nucleosome	 composed	 from	

Widom	DNA	labelled	with	Cy3	and	Cy5	were	incubated	at	either	37	°C	or	4	°C	for	3	hr	or	

18	hr	in	the	presence	of	varying	concentrations	of	NaBH3CN	(100	mM,	10	mM,	1	mM).	

After	 reduction,	 the	 mixture	 was	 purified	 using	 P-6	 Micro-spin	 columns	 (Bio-Rad)	

before	analysis	by	gel	electrophoresis	on	a	denaturing	12%	Bis-Tris	Nu-page	gel	ran	in	

MES	buffer.			

	

Proteomics	analysis	5-fU	or	5-fU	crosslinked	nucleosome	shifted	gel-bands,	and	C	band	

corresponding	 to	 the	 same	molecular	 weight	 were	 cut	 and	 submitted	 for	 proteomics	

analysis.	 Protein	 threshold	 was	 set	 to	 95%	 and	 a	 peptide	 threshold	 of	 50%,	 with	 a	

mimimum	 of	 one	 peptide	 fragment	 for	 discovery.	 H4	 and	 H2B	were	 identified	 in	 the	

case	of	5-fC	in	n	=	3	crosslinked	replicates,	H3	was	found	in	2/3	replicates.	No	histone	

proteins	 were	 identified	 for	 the	 C-control	 and	 5-fU	 band.	 Protein	 coverage	 was	

determined	using	Scaffold	software.	%	Lysine	coverage	was	determined	by	number	of	

lysine	 residues	 in	 peptide	 fragments	 identified	 by	 proteomics/the	 total	 number	 of	

lysines	within	the	histone	subunit.	

	

RecJF	 optimisation	 5’-Phos-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT		 (10	 mM)	

and	3’-TCTGCACACGAGAAGGCTAG-5’-Phos	(10	mM)	were	annealed	 in	10mM	Tris-HCl,	

50mM	NaCl	and	1mM	EDTA	buffer	by	heating	to	95	°C	followed	by	cooling	to	4	°C.	400	

ng	of	annealed	DNA	was	treated	with	RecJF	(3	µL,	30U	or	9	µL	90U,	NEB)	in	the	presence	

of	NEB	2	buffer	 (3	µL)	 in	a	 total	volume	of	30	µL.	The	resultant	mixture	was	ran	on	a	

10%	TBE-Urea	denaturing	gel.		

	

Polymerase	stalling	experiment	by	NGS	sequencing	Nucleosomes	composed	of	5-fC	

Widom	DNA	were	 incubated	at	37	°C	 for	18	hr	 in	 the	presence	100mM	NaBH3CN.	The	

mixture	was	purified	by	Micro	Biospin	P6	Tris	columns	(BioRad).	Free	5-fC	widom	DNA	

was	used	as	a	control.	Polymerase	extension	was	achieved	in	the	presence	of	dNTP	(200	

µM),	fw	or	rev	primer	(0.5	µM),	1	x	polymerase	buffer	and	DreamTaq	(1	µL,	5U)	and	was	
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heated	at	95	°C	for	30	s,	60	°C	for	60	s	and	72°	C	for	3	min.	After	extension,	the	mixture	

was	treated	with	Proteinase	K	(40	µg)	in	Proteinase	K	buffer	at	37	°C	(750	mM	Gu-HCl,	

5%	Tween	20,	30mM	EDTA,	30mM	Tris-HCl),	before	being	purified	by	Oligo	clean	and	

concentrator	 Kit	 (Zymo	 Research).	 The	 samples	 were	 then	 treated	 with	 RecJF	 (3	 µL,	

90U)	 for	 12	 hr	 at	 37	 °C	 to	 remove	 excess	 primer	 and	 overhangs.	 The	 samples	 were	

repurified	by	Oligo	clean	and	concentrator	Kit	(Zymo	Research)	before	being	ligated	for	

DNA	 sequencing	 using	 NEB	 NEBNext®	Ultra™	 II	 DNA	 Library	 Prep	 Kit	 for	 Illumina®	

(NEB)	in	the	presence	of	standard	Illumina	adaptors	(2.5	µL),	and	subject	to	6	cycles	of	

PCR	using	NEB	Ultra	II	Q5	Master	mix.	Libraries	were	sequenced	on	a	MiSeq	instrument	

in	single-end	with	150	cycles.	

	

Polymerase	 stalling	 by	 NGS	 data	 analysis	 (performed	 by	 Dr	 S	 Martinez-Cuesta,	

Balasubramanian	group).	BCL	files	were	converted	to	FASTQ	using	bcl2fast1.	Trimming	

and	quality	check	of	sequencing	reads	was	performed	as	for	T-modification	enrichment	

sequencing	 libraries.	 Trimmed	 reads	 from	 the	 libraries	 were	 aligned	 to	 forward	 and	

reverse	 strands	 of	 the	Widom	 sequence	 using	 bowtie2.	 Alignments	 were	 filtered	 and	

sorted	using	samtools.	Counting	of	truncated	sequences	was	performed	using	samtools.	

Unix	tools	and	python	were	used	to	transform	output	files	to	tables.	Data	was	analysed	

using	the	R	programming	software	and	statistical	analysis	was	performed	using	edgeR	

and	data.table.	A	moving	average	(±1)	of	 fold-change	was	plotted	against	 the	 template	

position	of	the	Widom	sequence	for	visualisation	of	stalling	pattern.	

	

Molecular	Dynamics	simulations	of	nucleosomal	particles	(performed	and	written	by	

Dr	 G.	 Portella,	 Balasubramanian	 group)	 Molecular	 dynamics	 (MD)	 simulations	 were	

completed	 using	 Gromacs-4.5	 software299	 and	 periodic	 boundary	 conditions	 and	 the	

particle	mesh	Ewald	method300	for	long-range	electrostatics.	The	short-range	repulsive	

and	 attractive	 dispersion	 interactions	were	modelled	 using	 a	 Lennard-Jones	 potential	

with	a	cut-off	of	1.0	nm.	The	Settle	algorithm301	was	used	to	constrain	bond	lengths	and	

angles	 of	 water	 molecules,	 and	 P-Lincs302	 was	 used	 for	 all	 other	 bond	 lengths,	 in	

combination	with	virtual	 interaction-sites299,303	to	remove	the	hydrogen	vibrations	and	

therefore	 use	 a	 time	 step	 of	 4	 fs.	 The	 temperature	was	 kept	 constant	 as	 described	 in	

Bussi	 et	 al.304.	 The	 pressure	was	 kept	 constant	 and	 it	 was	 controlled	 by	 coupling	 the	

simulation	box	to	a	pressure	bath	of	1	atm305.	The	amber99SB*-ildn306	force-fields	was	

used	 to	describe	 the	histone	 tails,	and	 the	amber99+parmBSC0307	 force	 field	was	used	

for	 the	nucleosomal	DNA.	The	 solvent	was	modeled	using	 the	TIP3P	water	model,	 the	

sodium	 and	 chlorine	 ion	 were	 modeled	 using	 Dang’s	 parameters308,	 and	 manganese	
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atoms	parameters	taken	from	the	Amber	force	field	database.	 	Two	dinucleotide	model	

initial	conformations	were	built	following	the	protocol	described	in	Collepardo	et	al.309,	

by	stacking	two	nucleosome	particles	(X-ray	structure	with	PDB	code	1KX5)310	on	top	of	

each	 other.	 In	 one	 model	 the	 inter-nucleosomal	 distance,	 as	 measured	 by	 the	 vector	

connecting	the	center	of	mass	of	the	two	nucleosomal	was	set	to	6	nm,	and	in	the	second	

model	 was	 set	 to	 7	 nm.	 The	 histone	 tail	 sequences	 were	 replaced	 by	 the	 human	

sequences.	The	di-nucleosome	systems	were	embedded	in	a	truncated	octahedron	box	

containing	~200,000	water	molecules,	leaving	2	nm	between	the	nucleosome	atoms	and	

the	edges	of	the	box.	This	separation	is	 large	enough	to	accommodate	a	fully	extended	

H3	tail,	which	is	the	longest	one.	Approximately	900	sodium	ions	and	600	chlorine	ions	

were	 added	 to	balance	 the	nucleosome	 charge	 and	give	 an	 ionic	 concentration	of	 150	

mM	 NaCl	 (the	 exact	 values	 depend	 on	 the	 model).	 Each	 di-nucleosome	 system	 was	

energy	 minimized	 and	 simulated	 twice	 (using	 two	 different	 random	 seeds)	 for	 1.15	

microsecond.	To	facilitate	the	analysis	the	MD	trajectories	of	the	di-nucleotide	systems	

were	split	into	individual	nucleosomes,	imaged	to	remove	periodic	boundary	crossings,	

and	then	concatenated	into	one	long	trajectory	containing	one	nucleosome.	To	alleviate	

auto-correlation	effects,	we	analysed	frames	with	a	2ns	frequency.	After	discarding	first	

100	 ns	 of	 each	 trajectory,	 the	 resulting	 concatenated	 trajectory	 contained	 4200	

structures.	 For	 each	nucleotide,	we	 collect	 the	 set	 of	 lysine	 residues	whose	 side	 chain	

atoms	are	found	within	a	cut-off	distance	of	1.2nm	with	respect	to	the	nucleotides	in	any	

of	 the	 analysed	 frames.	 From	 these	 set	 of	 distances,	 we	 compute	 for	 each	 pair	 of	

reference	 position	 –	 lysine	 side-chain	 a	 time/ensemble	 averaged	 contact	 metric	 by	

means	 of	 a	 continuous	 switching	 function.	1 1 + 𝑒 !∗ !!!.!∗!! 	was	 used	 as	 such	

switching	 function,	 where	 b=10	 and	 d0=0.5	 and	 x	 represents	 the	 minimum	 distance	

between	 any	 atom	 in	 the	 lysine	 side	 chain	 with	 the	 reference	 nucleotide.	 The	

parameters	were	empirically	chosen	such	that	distances	below	0.5	nm	result	in	a	value	

of	~1,	and	anything	above	0.5	nm	decays	to	0	(at	~1	nm	is	almost	zero).	 	As	proxy	for	

the	orientation	of	duplex	DNA	strands	with	respect	 to	 the	nucleosome	core,	 the	phase	

angle	𝜑	the	 angle	 between	 a	𝑣!"	vector	 centered	 at	 the	 base	 pair	 centre	 of	 mass	 and	

pointing	towards	the	minor	groove	with	the	vector	connecting	the	centre	of	mass	of	the	

base	pair	and	the	centre	of	mass	of	the	nucleosome.	The	vector	𝑣!"	was	defined	as	the	

sum	of	the	two	vectors	connecting	the	center	of	mass	with	the	N9(Y)/N1(R)	for	a	given	

base	 pair.	 The	 resulting	 curve	 was	 further	 refined	 by	 fitting	 a	 sinusoidal	 curve,	

maximum	 and	 minimum	 values	 were	 rescaled	 to	 the	 [-1,	 1]	 range	 for	 visualization	

purposes.	 In	 our	 definition,	 a	 large	𝜑	value	 associated	 to	 a	 given	 base	 pair	 reports	

locations	where	the	major	groove	faces	the	histone	core.		
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8.	Appendix	
8.1.	General	
ODN	 MW	 ESI-MS	
fU-ODN	 3039.5	 [M-2H]2-	=	1519.3	
fC-ODN	 6128.1	 [M-3H]3-	=	2041.4	

[M-4H]4-	=	1530.8	
hmU-ODN	 3121.5	 [M-2H]2-	=	1560.3	
GCAT-ODN	 3105.5	 [M-2H]2-	=	1552.3	
hmU-ODN	+	KRuO4		 3119.5	 [M-2H]2-	=	1559.2	
fU-ODN	+	ARP	 3354.7	 [M-2H]2-	=	1676.8	
fU-ODN	+	BH	 3392.3	 [M-2H]2-	=	1695.8	
fU-ODN	+	o-phenylenediamine	 3127.6	 [M-2H]2-	=	1563.3	
fU-ODN	+	o-phenbiotin	 3413.5	 [M-2H]2-	=	1705.3	
fU-ODN	+	NH2OMe	 3068.6	 [M-2H]2-	=	1533.8	
fC-ODN	+	ARP	 6438.2	 [M-3H]3-	=	2145.7	

[M-4H]4-	=	1609.0	
fC-ODN	+	BH	 6478.3	 [M-3H]3-	=	2159.1	

[M-4H]4-	=	1619.1	
fC-ODN	+	o-phenylenediamine	 Benzimidazole	=	

6213.1	
Intermediate	=	
6215.2	

	
[M-3H]3-	=	1552.8	
	
[M-4H]4	=	1553.4	

fC-ODN	+	o-phenbiotin	 6497.2	 [M-3H]3-	=	2165.4	
[M-4H]4			=	1624.8	

hmU-ODN	+	KRuO4	+	BH	 3472.7	 [M-2H]2-	=	1735.8	
U-ODN	 3035.7	 [M-3H]3-	=	1311.2	
AP-ODN	 3840.7	 [M-3H]3-		=	1279.9	
AP-ODN	+	KRuO4	 Fragment	1	=	

1566.3	
Fragment	2	=		
2174.4	

	
[M-H]-	=	1565.3	
	
[M-2H]2--	=	1086.2	

AP-ODN	+	ARP	 4153.8	 [M-3H]3-		=	1383.9	
AP-ODN	+	BH	 4193.9	 [M-3H]3-	=	1397.3	
AP-ODN	+	o-phenylenediamine	 3929.7	 [M-3H]3-		=	1309.2	
hmU–ODN	 3039.5	 [M-2H]2-	=	1520.3	
hmU-ODN	+	DMT-MM	 +1=	3260.	

+2	=	3383.6	
[M-2H]2-	=	1629.8	
[M-2H]2-	=	1699.2	

GCAT-ODN	+	DMT-MM	 +1=3244.5	
+2	=	3383.6	

[M-2H]2-	=	1621.8	
[M-2H]2-	=	1691.3	

hmU-ODN2	+	DMT-MM	 3180.6	 [M-2H]2-	=	1589.8	
fU-ODN	+	NH2OH	 3054.5	 [M-2H]2-	=	1526.8	
fC-ODN	+	NH2OH	 6140.1	 [M-4H]4	=		1534.5	
fU-ODN	+	SMUG1/UNG	 2997.5	 [M-2H]2-	=	1498.3	
fU-ODN	+	Lysine	+	NaBH3CN	 3169.6	 [M-2H]2-	=	1584.3	
fC-ODN	+	Lysine	+	NaBH3CN	 6255.2	 [M-4H]4	=	1562.8	
fC-ODN	+	Lysine	 6253.2	 [M-4H]4	=	1563.3	
fU-ODN	+	Girard’s	T	 3153.6	 [M-2H]2-	=	1575.8	
fU-ODN	+	Glycine	+	NaBH3CN	 3096.6	 [M-2H]2-	=	1548.8	
fC-ODN	+	Glycine	+	NaBH3CN	 6184.1	 [M-4H]4	=	1545.5	
fU-ODN	+	5-Aminovaleric	acid	+	NaBH3CN	 3152.6	 [M-2H]2-	=	1569.8	
fC-ODN	+	5-Aminovaleric	acid	+	NaBH3CN	 6240.2	 [M-4H]4	=	1556.0	
Table	17:	Mass	data	for	ODNs	used	in	this	thesis	and	their	reaction	products	
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	 Sequence	

Widom	Template	 5’-ATCGAGAATCCCGGTGCCGAGGCCGCTCAATTGGTCGTAGACAGCTCTAGCACCGCTTAAACGC	
ACGTACGCGCTGTCCCCCGCGTTTTAACCGCCAAGGGGATTACTCCCTAGTCTCCAGGCACGTGTC	
AGATATATACATCCGAT-3’	

Template	1	 5’-TTCTTGGCTGTGGCTCTGCGTCCTTGTCCTGCCCACTGCCTGACGGGCGGAGGCACAACAGAGA	
GCAACACCGCCGAGGA-3’	

Template	2	 5’-CTAAATCTACTAAATCCTCTAAATCTATTCTATACATGAATCTTAGTTAAAGGTAGTAGTAGT	
AGATATAAGATGATAGG-3’	

Template	3	 5’-GCTCGCTTTGTTGGTTTCCTTGTTCTCTGTGCCCACTGCCTGACGGGCGGAAAGCAGCGCGAGC	
AAGCGAGACAGGACAC-3’	

Template	4	 5’-	GGGGACCCTGGGCAACCAGCCCTGTCGTCTCTCCAGCCCCAGCTGCTCACCATCGCTATCTGAG	
CAGCGCTCATGGTGGGGGCAGCGCCTCACAACCTC-3’	

Template	5	 5’-CTAATCTCCAATCCATCCTAATCTCATACTTATTTCTGAACTTTATGATTCTCTAACTACTTAC	
TTCAACTACTACTCTT-3’	

Widom	Reverse	Primer	 5’-	ATCGAGAATCCCGGTGCCGA-3’	where	 in	some	instances	the	5’	end	 is	modified	with	Cy5	
or	Cy3	

Widom	Forward	Primer	 5’-	ATCGGATGTATATATCTGACACGTGCCTGGAGA-3’	where	in	some	instances	the	5’	end	is	
modified	with	Fluoriscein,	Cy5	or	Cy3	

Forward	Primer	1	 5’-TTCTTGGCTGTGGCTCTGCGTCCTTGTCCT-3’	

Reverse	Primer	1	 5’-TCCTCGGCGGTGTTGCTCTCTGTTGTGCCT-3’	 where	 in	 some	 instances	 the	 5’	 end	 is	
modified	with	Fluorescein	

Forward	Primer	2	 5’-CTAAATCTACTAAATCCTCTAAATCTATTC-3’	

Reverse	Primer	2	 5’-CCTATCATCTTATATCTACTACTACTACCT-3’	

Forward	Primer	3	 5’-GCTCGCTTTGTTGGTTTCCTTGTTCTCTGT-3’	

Reverse	Primer	3	 5’-GTGTCCTGTCTCGCTTGCTCGCGCTGCTTT-3’	

Forward	Primer	4	 5’-Biotin-GGGGACCCTGGGCAACCAGC-3’		

Reverse	Primer	4	 5’-GAGGTTGTGAGGCGCTGCCC-3’	where	in	some	instances	the	5’	end	is	modified	with	
Fluorescein.	

Forward	Primer	5	 5’-CTA	ATC	TCC	AAT	CCA	TCC	TAA	TCT	CA-3’	

Reverse	Primer	5	 5’-CTCTAACTACTTACTTCAACTACTACTCTT-3’	

Table	18:	Sequence	of	templates	and	primers	used	for	PCR	synthesis	of	DNA	in	this	thesis.	

	
ODNs	 Sequences	

fU-ODN	 5’-ATCGCAfUGTA-3’	

fC-ODN	 5’-TAATTATCfCGGACTCATAAG-3’	

U-ODN	 5’-CAGATUTACGATT	

AP-ODN	 5’-CAGATAPTACGATT	

hmU-ODN	 5’Phos-ATCGCAhmUGTA-3’	

fU-ODN2	 5’Phos-ATCGCAfUGTA-3’	

hmU-ODN	 5’-ATCGCAhmUGTA-3’	

GCAT-ODN	 5’Phos-ATCGCATGTA-3’	

fC-ODN2	 5’-ATCGfCGCGTA	

Table	19:	Sequences	of	ODNs	used	in	this	thesis	(modifications	are	highlighted	in	bold).	
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8.2	Appendix	Chapter	2	

Girard’s	Reagent	T	Derivatisation	of	5-fU	and	associated	improvement	in	formyl-
group	detection	-	The	following	work	was	done	in	collaboration	with	a	Masters’	student		
J.	Cross,	under	my	supervision.	
	

It	had	been	demonstrated	that	5-fU	could	be	quantified	using	large	amounts	of	extracted	

DNA	 following	enrichment,	however	 this	 required	 lots	of	 genomic	material	due	 to	 the	

high	detection	limit	of	5-fU,	meaning	accurate	5-fU	measurement	remained	problematic.	

To	 try	 and	 alleviate	 this	 problem,	Wang	 and	 co-workers	had	previously	 reported	 that	

the	 detection	 limit	 for	 5-fU	 could	 be	 improved	 with	 the	 use	 of	 a	 derivatising	 agent,	

Girard’s	Reagent	T.311	This	molecule	bears	a	positively	charged	ammonium	moiety,	and	

hence	 lowers	 the	 detection	 limit	 in	 positive	 ion	 mode	 MS.	 Thus,	 this	 strategy	 was	

investigated	to	improve	the	detection	of	5-fU	in	genomic	samples,	with	the	aim	of	being	

able	to	detect	and	quantify	5-fU	in	smaller	quantities	(e.g.	1	μg	of	DNA).	

	

	
Figure	85:	Derivatisation	of	5-fU-ODN	with	Girard’s	Reagent	T.		

	

The	reported	derivatising	strategy	was	modified	so	 that	5-fU	was	tagged	prior	 to	DNA	

digestion	rather	than	before	LCMS/MS	injection.	This	enabled	the	removal	of	any	excess	

derivatising	 reagent	 via	 size	 exclusion,	 to	 avoid	 injection	 into	 the	 highly	 sensitive	 QE	

spectrometer.	 	Derivatisation	conditions	were	developed	on	a	10mer	containing	one	5-

fU	base	(fU-ODN),	using	analogous	5-fU-tagging	chemistry	to	that	developed	in	Chapter	

3	(Figure	85).	These	reaction	conditions	were	subsequently	applied	to	genomic	material	

before	DNA	digestion.	After	adduct	 formation	with	Girard’s	T,	5-fU	was	detected	in	~1	

μg	of	genomic	HEK293T	sample,	highlighting	the	scope	of	using	derivatization	chemistry	

for	low	abundance	modifications.	(Figure	86	-	Left).		
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Figure	 86:	 Left:	 Girard’s-fU	 adduct	 detected	 in	 HEK293T	 sample,	 Right:	 Linear	 relationship	 between	
concentration	 and	mass	 integration	 of	 5-fU	 Girard’s	 adduct	 standard	was	 only	 attainable	 within	 a	 small	
concentration	range.		
	

Unfortunately,	 a	 linear	 relationship	 between	 concentration	 and	mass	 integration	 was	

only	observed	within	a	small	concentration	range	for	the	derivatised	nucleoside	(Figure	

86	 -	 Right).	 This	 highlights	 that	 the	 5-fU	 derivatisation	 method	 cannot	 be	 used	 for	

accurate	quantification	at	this	stage.	However,	this	method	could	still	be	a	useful	tool	for	

relative	quantification	of	5-fU	between	samples.	When	genomic	samples	were	diluted,	a	

corresponding	 reduction	 in	 signal	 intensity	 was	 observed,	 providing	 validation	 for	 a	

relative	quantification	approach.	

	

Accurate	quantification	could	be	improved	with	the	use	of	an	isotopically	labeled	variant	

of	 the	derivatised	base,	 to	be	used	as	a	SIL	 internal	standard.	Furthermore,	alternative	

derivatising	probes	should	be	screened,	utilizing	the	chemistry	developed	in	Chapter	3,	

which	 may	 show	 an	 improved	 linear	 relationship	 between	 concentration	 and	 mass	

signal.	 Derivatisation	 approaches	would	 be	 highly	 beneficial	 to	 improve	 the	 detection	

limit	of	other	low	abundance	modified	bases;	furthermore,	derivatization	could	aid	the	

discovery	of	new	modified	bases	in	genomic	DNA.		
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Chapter	2	Supplementary	tables	and	figures	
	 Parent	Ion	[M+H]+	 Fragment	Ion	[M+H]+	

T	 243	 127.0502	

T-SIL	(d3-T)	 246	 130.06903	

C	 228	 112.05054	

C-SIL		(15N3-C)	 231	 115.04164	

mC		 242	 126.06619	

mC-SIL	(d3-mC)	 245	 129.08502	

hmC	 258	 142.0611	

hmC-SIL	(d3-hmC)	 261	 145.07993	

fC	 256	 140.04545	

hmU	 259	 125.03455	

hmU-SIL	(13C-d2-hmU)	 262	 128.05046	

hmU-SIL2	(13C-d1	-	hmU)	 261	 127.04711	

fU	 257	 141.02947	

fU-SIL	(13C-d1	-	fU)	 259	 143.0391	

Base	J	 421	 143.04512	

A	 252	 136.06177	

G	 268	 152.05669	

fU-Girard-T	 370	 370.17211	

254.12477	

	
Table	 20:	Parent	and	 fragment	 ion	masses	used	 for	detection	and	quantification	via	LC-MS/MS.	All	bases	
contain	the	deoxyribose	sugar.	T,	C,	mC,	A	and	G	standards	were	purchased	from	Sigma	Aldrich;	hmC,	fC	was	
sourced	from	Berry	and	Associates;	C-SIL	was	purchased	from	Cambridge	Isotope	Laboratories;	mC-SIL	and	
hmC-SIL	were	purchased	from	Toronto	Research	Chemicals;	T-SIL	was	purchased	from	Carbosynth;	hmU,	
fU,	hmU-SIL,	hmU-SIL2	and	fU-SIL	were	synthesised	by	myself,	Base	J	was	synthesised	by	Dr	F.	Kawasaki,	
Balasubramanian	group;	fU-Girard	was	synthesised	by	J.	Cross,	Balasubramanian	group	

	

	

	
Figure	87:	A)	0.075	mm	nano-HPLC	hypercarb	column	(custom-packed),	B)	0.18	mm	capillary	KAPA	
hypercarb	column	(Thermo	Fischer)	connected	to	the	Dionex	3000	with	nanoviper	connectors	for	more	
reliable	and	reproducible	chromatography.		

	

A) B)
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Figure	88:	Example	calibration	lines	for	C,	T,	5-mC	and	5-fU	LC-MS/MS	quantification	
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Figure	89:	Retention	times	of	canonical	nucleosides	and	modified	base	standards	via	UHPLC,	measured	at	
260	nm.		
	
Nucleoside	 Collected	fraction	(retention	time)	

mC	 1.0-2.2	

hmU	 3.0-4.1	

fU	 6.0-7.2	

hmC	 1.0-2.2	

Table	21:	Timepoints	of	fraction	collection	using	UHPLC	pre-enrichment	of	DNA	modified	bases.	

	
	 hmU/T	 Base	J/T	
Leishmania	major	
	
	
Bio	1	
	
	
	
	
Bio	2	
Average	

8.59E-04	
1.73E-04	
2.98E-04	
4.43E-04	
	
3.07E-04	
2.19E-04	
5.31E-04	
3.52E-04	 	

2.86E-03	
2.98E-03	
2.69E-03	
2.84E-03	
	
3.15E-03	
3.30E-03	
3.58E-03	
3.35E-03	

3.98E-04	 3.09E-03	
T.brucei	BSF	
Bio	1	
	
Bio	2	
	
	
	
Average	

3.65E-04	
3.48E-04	
3.56E-04	
2.24E-04	
2.57E-04	
2.41E-04	

4.55E-03	
4.50E-03	
4.53E-03	
3.78E-03	
3.59E-03	
3.68E-03	

2.99E-04	 4.11E-03	
T.brucei	PCF	
Bio	1	
Bio	2	

	
7.11E-05	
7.17E-05	

	
n.d	
n.d	

Average	 7.14E-05	 	
Table	22:	Accurate	5-hmU	and	Base	J	measurements	as	a	proportion	of	T	in	trypanosomatids.	n.d	=	not	
detected.	
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	 mC/N	
T.brucei		BSF	
	
Average	

9.37E-05	
8.82E-05	
9.09E-05	

T.brucei	PCF	
	
Average	

8.56E-05	
8.15E-05	
8.37E-05	

Table	23:	Accurate	5-mC	measurements	as	a	proportion	of	total	nucleosides	in	T.Brucei	

	

Table	24:	Accurate	5-hmU	and	5-fU	measurements	as	a	proportion	of	total	nucleosides	in	a	variety	of	
organisms/cell-lines	
	 	

	 hmU/per	N	 fU/per	N	
Archea	
	
	
Average		

8.59E-06	
8.89E-06	
	
8.73E-06	

2.41E-06	
4.46E-06	
	
3.48E-06	

MCF7	
Bio	1	Tech	1	
	
Bio	1	Tech	2	
MCF7	Bio	1	
	
	
Bio	2	Tech	1	
	
Bio	2	Tech	2	
MCF7	Bio	2	
Average	

1.94E-06	
2.19E-06	
4.26E-06	
4.25E-06	
3.16E-06	
	
8.78E-07	
9.17E-07	
1.03E-06	
1.03E-06	
9.64E-07	
2.06E-06	

4.90E-061	
4.77E-061	
2.98E-062	
3.39E-062	
	4.01E-06	
	

mESC	
	
Average	

5.66E-06	
6.08E-06	
5.87E-06	

	

A.thaliana	
	
Average		

9.81E-05	
9.82E-05	
9.82E-05	

	

HEK293T	
	
	
Bio	1	Tech	1	Average	
	
	
	
Bio	1	Tech	2	Average	
	
	
	
	
Bio	1	Tech	3	Average	
	
	
	
Bio	2	Average	
	
HEK293T	Average	

5.44E-06	
5.10E-06	
5.37E-05	
5.30E-06	
	
3.97E-06	
4.10E-06	
4.04E-06	
	
1.36E-06	
1.03E-06	
1.18E-06	
1.19E-06	
	
3.76E-06	
3.59E-06	
3.67E-06	
	
3.59E-06	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
2.21E-06	
2.85E-06	
2.53E-06	
	
2.53E-06	



	 151	

8.3.	Appendix	Chapter	3	

Direction	functionalization	of	hydroxyl-group		

Reaction	with	EDC	

Adduct	 formation	 was	 observed	 between	 5-hmU	 and	 EDC	 by	 LC-MS,	 however	

investigation	of	the	EDC	adduct	by	crude	1H	NMR	indicated	no	functionalisation	at	the	5’	

hydroxyl	group.	Only	a	small	5’’	CH2	shift	was	seen	compared	to	that	observed	for	the	H6	

proton	(Figure	90).	Other	carbodiimides	have	been	previously	shown	to	exhibit	adduct	

formation	with	 T	 and	U	 nucleosides,	where	 functionalisation	 occurs	 at	 the	 endocyclic	

nitrogen.312	 It	 was	 therefore	 highly	 likely	 that	 it	 was	 the	 product	 forming	 shown	 in	

Figure	90-b,	rather	than	the	desired	functionalization	at	the	5’’	position.		

	

	
	
Figure	90:	Top:	LC-MS	trace	of	hmU-EDC	adduct	mass.	Bottom:	a)	1H	NMR	shows	a	greater	chemical	shift	
difference	at	H6	rather	than	H5’’.	b)	Suggested	structure	of	5-hmU	EDC	adduct.	

	

Reaction	with	DMT-MM	

Mono-adduct	formation	of	5-hmU	mononucleoside	was	also	observable	by	DMT-MM	by	

LC-MS	 analysis,	 however	 supplementation	 with	 sodium	 azide	 led	 to	 no	 formation	 of	

target	molecule	 5-azaU	 by	 LC-MS.	 	 Due	 to	 the	 excess	 of	 coupling	 reagent,	 purification	

was	 problematic.	 This	 reaction	 was	 therefore	 alternatively	 traced	 using	 a	 single-

stranded	 oligomer	which	 contained	 one	 5-hmU	 (hmU-ODN).	Using	 this	model,	 a	 large	

excess	of	reagent	could	be	added	to	the	substrate,	and	facile	purification	was	achieved	

via	size	exclusion	chromatography.	hmU-ODN	and	GCAT-ODN	were	treated	with	DMT-

MM	substrate,	where	quantitative	 conversion	was	observed	 in	both	 cases	 (Figure	91).	

Since	hmU-ODN	and	GCAT-ODN	are	both	phosphorylated	at	the	5’-position,	the	reaction	
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was	 repeated	 with	 a	 non-phosphorylated	 variant	 of	 the	 oligomer	 hmU-ODN2,	 which	

harboured	the	same	sequence.	Reaction	with	unphosphorylated	hmU-ODN	(hmU-ODN2)	

revealed	only	~1%	desired	adduct	formation.	This	indicated	that	functionalization	was	

mainly	occurring	on	 the	phosphate	ester	with	ODN	models,	 and	hence	highlighted	 the	

unfeasibility	of	the	direct	hydroxyl	activation	approach.	

	

	
Figure	 91:	 Top:	 mono	 and	 di-adduct	 formation	 of	 DMT-MM	with	 5’-phosphorylated	 hmU-ODN,	 Middle:	
mono	 and	 di-adduct	 formation	 of	 DMT-MM	 with	 5’-phosphorylated	 GCAT-ODN,	 Bottom:	 <1%	 adduct	
formation	of	DMT-MM	with	hmU-ODN2.	
	

Reaction	of	fC-ODN	with	o-phenylenediamine	derivatives		

fC-ODN	and	 incubation	with	o-phenylenediamine	 saw	 the	observance	of	 two	products	

(Figure	 92).	 Further	 investigation	 by	 LC-MS	 revealed	 one	 product	 with	 mass	

corresponding	to	the	reduced	benzimidazole	product,	while	the	other	corresponded	to	

the	 non-reduced	 intermediate.	 Since	 both	 the	 reduced	 and	 non-reduced	 forms	would	

enable	 5-fC	 enrichment,	 both	 these	 reaction	 outcomes	 were	 minimised	 to	 enable	

chemoselective	tagging	of	5-fU.		

hmU-ODN + DMT-MM

hmU-ODN + DMT-MM (mono)

hmU-ODN + DMT-MM (di)

[M-2H]2- obs. = 1630.0
[M-2H]2- calcd. = 1629.8

[M-2H]2- obs. = 1699.5
[M-2H]2- calcd. = 1699.2

GCAT-ODN + DMT-MM

[M-2H]2- obs. = 1622.0
[M-2H]2- calcd. = 1621.8

GCAT-ODN + DMT-MM (mono) hmU-ODN + DMT-MM (di)
[M-2H]2- obs. = 1691.5
[M-2H]2- calcd. = 1691.3

hmU-ODN2 + DMT-MM

hmU-ODN
[M-2H]2- obs. = 1520.3
[M-2H]2- calcd. = 1520.3 hmU-ODN + DMT-MM (mono)

[M-2H]2- obs. = 1520.8
[M-2H]2- calcd. = 1589.3
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Figure	 92:	 LC-MS	 trace	 and	 corresponding	 mass	 spectrum	 associated	 with	 each	 peak	 demonstrates	 a	
reduced	5-fC	benzimidazole	product	and	a	non-reduced	Schiff	base	adduct.	
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Biotinylated	adduct	reversibility	

The	fU-BH	ODN	adduct	could	be	reverted	back	to	fU-ODN	in	the	presence	of	p-anisidine.	

Reversion	of	the	biotinylated	probe	was	found	to	be	more	effective	by	transamination	in	

the	 presence	 of	 NH2OH	 (Table	 25).	 Reversion	 was	 also	 possible	 for	 the	 fU-ARP	 ODN	

adduct	 but	 this	 required	 a	 lower	pH,	whilst	o-phenylenediamine	was	mainly	 stable	 to	

reversion	(Appendix,	Chapter	3	-	Table	26).	5-fC-BH	adduct	reversion	required	harsher	

conditions	compared	to	the	5-fU-BH	adduct	due	its	reduced	electrophilicity.	

	
Entry	 Conditions			 fC-ODN	BH	adduct	Reversion	(%)	
1	 pH		6,	2	hr	 62	
2	 pH	7	2	hr	 68	
3	 pH	7,	2	hr,	0.05%	NH2OH	 100	

Table	25:	%	reversion	of	fU-BH	adduct	to	generate	fU-ODN	or	fU-ODN-oxime	determined	by	integration	of	
the	260nM	UV	signal	via	LC-MS	analysis.		
	

Entry	 Conditions		(100	mM	p-anisidine,	0.05%	v/v	
NH2OH)	

Adduct	Reversion	(%)	

1	 ARP	pH		6,	2	hr	 83	
2	 ARP	pH	5,	2	hr	 30	
3	 o-phenylenediamine	pH	6,	2	hr	 14	

Table	26:	%	reversion	of	fU-ARP	and	fU-o-phenylenediamine	ODN	adducts	to	form	fU-oxime	as	determined	
by	integration	of	the	260nm	UV	signal	via	LC-MS	analysis.		
	

Entry	 Conditions		(100	mM	p-anisidine,	0.05%	v/v	
NH2OH)	

fC-ODN	BH	adduct	Reversion	(%)	

1	 pH		6,	4	hr	 62	
2	 pH	6,	4	hr	 93	
3	 pH	5,	24	hr	 100	

Table	27:	%	reversion	of	fC-BH	ODN	adduct	to	form	fC-oxime	as	determined	by	integration	of	the	260nm	
UV	signal	via	LC-MS	analysis.	fC-BH	ODN	adduct	reversion	required	harsher	conditions	compared	to	the	5-
fU-BH	adduct	due	its	reduced	electrophilicity.	
	

	 Enrichment/fC-DNA2	or	hmC-DNA2	 Average	

fU-chem	 114.7	
111.7	

122.7	
118.8	

158.3	
152.1	

129.7	

hmU-chem	 71.2	
100.0	

71.4	
125.2	

	 92.0	

Table	28:	Enrichment	of	T-modifications	via	sequencing	reads	of	model	ODN	sequences	over	hmC-DNA2	
and	fC-DNA2	
	

	 Enrichment/GCAT-DNA	 Average	

fU-chem	 163.1	
161.2	

207.0	
161.2	

225.4	
236.2	

192.4	

hmU-chem	 74.6	
60.1	

89.1	
75.2	

	 74.4	

Table	29:	Enrichment	of	T-modifications	via	sequencing	reads	of	model	ODN	sequences	over	GCAT-DNA	
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Chapter	3	Supplementary	figures	and	tables	

	

	
	

	
	

	
Figure	93:	Example	calibration	lines	for	qPCR	quantification	of	fU-DNA,	fC-DNA	and	GCAT-DNA.	
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Figure	 94:	 Polymerase	 stalling	 of	 a	 DNA	model	 containing	 2	modifications	 or	 adducts	 per	 strand.	More	
significant	polymerase	stalling	is	observed	for	ARP	and	BH	adducts	compared	with	native	5-fU	and	the	5-fU	
oxime	(NH2OH)	adducts	formed	after	chemical	elution.	
	
Probe	ARP	+		

p-anisidine	

Selectivity	

fU-DNA/fC-DNA	

Mean	

Selectivity		

Bio	1,	Tech	1	 1.8	 1.5	

Bio	1,	Tech	2	 1.1	

Bio	2,	Tech	1	 1.7	 1.4	

Bio	2,	Tech	2	 1.2	

Table	30:	Selectivity	determined	by	qPCR	enrichment	for	Probe	ARP	+	p-anisidine	for	fU-DNA	and	fC-DNA.	

	
Probe	ARP	 Selectivity	

fU-DNA/fC-DNA	

Mean	

Selectivity		

Bio	1,	Tech	1	 197	 184	

Bio	1,	Tech	2	 236	

Bio	1,	Tech	3	 119	

Bio	2,	Tech	1	 143	 112	

Bio	2,	Tech	2	 54	

Bio	3,	Tech	3	 138	

Bio	3,	Tech	1	 164	 139	

Bio	3,	Tech	2	 114	

Table	31:	Selectivity	determined	by	qPCR	enrichment	for	Probe	ARP	for	fU-DNA	and	fC-DNA.	

	
Probe	BH	 Selectivity	

fU-DNA/fC-DNA	

Mean	

Selectivity		

Bio	1,	Tech	1	 163	 176	

Bio	1,	Tech	2	 208	

Bio	1,	Tech	3	 156	

Bio	2,	Tech	1	 141	 123	

Bio	2,	Tech	2	 104	

Bio	3,	Tech	1	 236	 224	

Bio	3,	Tech	2	 211	

Table	32:	Selectivity	determined	by	qPCR	enrichment	for	Probe	BH	for	fU-DNA	and	fC-DNA	

Primer
(20bp)

Full-length
(80bp)

Marker
(52bp)

5-fU NH2OHARP BH
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Probe	
o-phenbiotin	

Selectivity	
	fU-DNA/fC-DNA	

Mean	
Selectivity		

Bio	1,	Tech	1	 115	 120	

Bio	1,	Tech	2	 86	

Bio	1,	Tech	3	 160	

Bio	2,	Tech	1	 236	 217	

Bio	2,	Tech	2	 197	

Bio	3,	Tech	1	 94	 98	

Bio	3,	Tech	2	 102	

Table	33:	Selectivity	determined	by	qPCR	enrichment	for	o-phenbiotin	for	fU-DNA	and	fC-DNA.	

	
Probe	BH	 Selectivity	

fU-DNA/GCAT-DNA	
Mean	
Selectivity		

Bio	1,	Tech	1	 162	 151	

Bio	1,	Tech	2	 141	

Bio	1,	Tech	3	 151	

Bio	2,	Tech	1	 120	 134	

Bio	2,	Tech	2	 142	

Bio	2,	Tech	3	 139	

Bio	3,	Tech	1	 147	 149	

Bio	3,	Tech	2	 169	

Bio	3,	Tech	3	 131	

Table	34:	Selectivity	determined	by	qPCR	enrichment	for	Probe	2	for	fU-DNA	and	GCAT-DNA.	

	
BH	Chemical	reversion	 Selectivity	fU-DNA/fC-DNA	

Tech	1	 7.9	

Tech	2	 10.0	

Tech	3	 8.4	

Mean	 8.8	

Table	 35:	 Selectivity	 determined	 by	 qPCR	 enrichment	 of	 fU-DNA	 over	 fC-DNA	 via	 NH2OH-mediated	
chemoselective	elution.	
	
Model	Molecule	 Ground	State	 Orbital	Energy	(a.	u.)	

5-fCm	anti	 no	 -0.91041	

5-fCm	syn	 yes	 -0.92741	

5-fUm	anti	 yes	 -0.89813	

5-fUm	syn	 no	 -0.90472	

Table	 36:	 Orbital	 energies	 (in	 atomic	 units)	 of	 the	 Cring-Caldehyde	 bonding	 orbitals	 in	 the	 studied	 model	
molecules,	as	calculated	via	NBO	analysis.	
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Model	Molecule	 Ground	State	 Orbital	Energy	(a.	u.)	

5-fCm	anti	 no	 -1.36378	

5-fCm	syn	 yes	 -1.36138	

5-fUm	anti	 yes	 -1.35866	

5-fUm	syn	 no	 -1.36961	

Table	 37:	Orbital	 energies	 (in	 atomic	 units)	 of	 the	C=O	bonding	 orbitals	 in	 the	 aldehyde	moieties	 of	 the	
studied	model	molecules,	as	calculated	via	NBO	analysis.	
	
Model	Molecule	 Ground	State	 LUMO	

5-fCm	anti	 no	 0.07321	

5-fCm	syn	 yes	 0.07643	

5-fUm	anti	 yes	 0.06268	

5-fUm	syn	 no	 0.06850	

Table	38:	Orbital	energies	(in	atomic	units)	of	the	LUMO	of	the	studied	model	molecules,	as	calculated	via	
NBO	analysis.	
	

	
Figure	95:	LC-MS	trace	of	hmU-ODN,	Chapter	3,	Scheme	3.	

	

	
Figure	96:	LC-MS	trace	of	fU-ODN2	after	hmU-ODN	treatment	with	KRuO4,	Chapter	3,	Scheme	3.	

	

hmU-ODN
[M-2H]2- calcd. = 1560.3
[M-2H]2- obs. = 1560.5

hmU-ODN + KRuO4
[M-2H]2- calcd. = 1559.2
[M-2H]2- obs. = 1559.6
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Figure	97:	LC-MS	trace	Chapter	3,	Table	4,	Entry	1	

	

	
Figure	98:	LC-MS	trace	Chapter	3,	Table	4,	Entry	2	

	

	
Figure	99:	LC-MS	trace	Chapter	3,	Table	4,	Entry	3	

	

	
Figure	100:	LC-MS	trace	Chapter	3,	Table	4,	Entry	4	

	

fU-ODN + ARP
[M-2H]2- calcd. = 1677.8
[M-2H]2- obs. = 1676.2

fC-ODN + ARP
[M-2H]2- calcd. = 1609.0
[M-2H]2-obs. = 1609.2

fC-ODN

fU-ODN + ARP
[M-2H]2- calcd. = 1676.8
[M-2H]2- obs. = 1676.0

fC-ODN + ARP
[M-4H]4- calcd. = 1609.9
[M-4H]4- obs. =1609.2

fC-ODN
[M-4H]4- calcd. = 1530.80
[M-4H]4- obs. =1530.9

fU-ODN + ARP
[M-2H]2- calcd. = 1676.8
[M-2H]2- obs. = 1676.0

fC-ODN
[M-4H]4- calcd. = 1530.80
[M-4H]4- obs. =1530.9

fC-ODN
[M-4H]4- calcd. = 1530.80
[M-4H]4- obs. =1530.9

fU-ODN + ARP
[M-2H]2- calcd. = 1676.8
[M-2H]2- obs. = 1676.4
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Figure	101:	LC-MS	trace	Chapter	3,	Table	4,	Entry	5	

	

	
Figure	102:	LC-MS	trace	Chapter	3,	Table	4,	Entry	6	

	

	
Figure	103:	LC-MS	trace	Chapter	3,	Table	5,	Entry	1	

	

	
Figure	104:	LC-MS	trace	Chapter	3,	Table	5,	Entry	2	

	

fU-ODN + ARP
[M-2H]2- calcd. = 1676.8
[M-2H]2- obs. = 1676.0

fC-ODN
[M-4H]4- calcd. = 1530.80
[M-4H]4- obs. =1530.9

fU-ODN
[M-2H]2- calcd. = 1519.3
[M-2H]2- obs. = 1519.3

fC-ODN
[M-4H]4- calcd. = 1530.80
[M-4H]4- obs. =1530.9

fU-ODN + ARP
[M-2H]2- calcd. = 1676.8
[M-2H]2- obs. = 1676.0fU-ODN

[M-2H]2- calcd. = 1519.3
[M-2H]2- obs. = 1519.3

fU-ODN + BH
[M-2H]2- calcd. = 166.2
obs. = 1696.6

fC-ODN + BH
[M-2H]2- calcd. = 1619.1
obs. = 1619.5

fC-ODN
[M-4H]4- calcd. = 1530.80
[M-4H]4- obs. =1530.9

fC-ODN + BH
[M-4H]4- calcd. = 1619.1
[M-4H]4- obs. =1619.3
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Figure	105:	LC-MS	trace	Chapter	3,	Table	5,	Entry	3	

	

	

	
Figure	106:	LC-MS	trace	Chapter	3,	Table	5,	Entry	4	
	

	
Figure	107:	LC-MS	trace	Chapter	3,	Table	5,	Entry	5	
	

	
Figure	108:	LC-MS	trace	Chapter	3,	Table	6,	Entry	1	
	
	
	

fC-ODN
[M-4H]4- calcd. = 1530.80
[M-4H]4- obs. =1531.0

fC-ODN + BH
[M-4H]4- calcd. = 1619.1
[M-4H]4- obs. =1619.3

fC-ODN
[M-4H]4- calcd. = 1530.80
[M-4H]4- obs. =1532.4

fC-ODN + BH
[M-4H]4- calcd. = 1619.1
[M-4H]4- obs. =1619.2

fU-ODN + BH
[M-2H]2- calcd. = 1695.8
[M-2H]2- obs. = 1696.3

fC-ODN
[M-4H]4- calcd. = 1530.8
[M-4H]4- obs. =1530.9

fU-ODN + o-phenylenediamine
[M-2H]2- calcd. = 1563.3
[M-2H]2- obs. = 1563.4

fC-ODN + o-phenylenediamine

Product:
[M-4H]4- calcd. = 1552.8
[M-4H]4- obs. = 1552.9

Intermediate
[M-4H]4- calcd. = 1553.4
[M-4H]4- obs. =1553.4fC-ODN

[M-4H]4- calcd. = 1530.8
[M-4H]4- obs. =1530.9

o-phenylenediamine
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Figure	109:		LC-MS	trace	Chapter	3,	Table	6,	Entry	2	

	

	
Figure	110:	LC-MS	trace	Chapter	3,	Table	6,	Entry	3	
	

	
Figure	111:	LC-MS	trace	Chapter	3,	Table	6,	Entry	4	
	

	
Figure	112:	LC-MS	trace	Chapter	3,	Table	6,	Entry	5	
	

	
Figure	113:	LC-MS	trace	Chapter	3,	Table	6,	Entry	6	
	

fC-ODN
[M-4H]4- calcd. = 1530.8
[M-4H]4- obs. =1531.0

fU-ODN + o-phenylenediamine
[M-2H]2- calcd. = 1563.3
[M-2H]2- obs. = 1563.5

fC-ODN + o-phenylenediamine

Intermediate
[M-4H]4- calcd. = 1553.4
[M-4H]4- obs. =1553.4

Product:
[M-4H]4- calcd. = 1552.8
[M-4H]4- obs. =1553.0

fU-ODN + o-phenylenediamine
[M-2H]2- calcd. = 1563.3
[M-2H]2- obs. = 1563.4

o-phenylenediamine fC-ODN
[M-4H]4- calcd. = 1530.8
[M-4H]4- obs. =1530.8

fC-ODN + o-phenylenediamine
Intermediate
[M-4H]4- calcd. = 1553.4
[M-4H]4- obs. =1553.4

Product:
[M-4H]4- calcd. = 1552.8
[M-4H]4- obs. = 1552.9

fU-ODN + o-phenylenediamine
[M-2H]2- calcd. = 1563.3
[M-2H]2- obs. = 1563.5

fC-ODN
[M-4H]4- calcd. = 1530.8
[M-4H]4- obs. =1531.0 fC-ODN + o-phenylenediamine

Intermediate
[M-4H]4- calcd. = 1553.4
[M-4H]4- obs. =1553.4

Product:
[M-4H]4- calcd. = 1552.8
[M-4H]4- obs. =1553.0

o-phenylenediamine

fU-ODN + o-phenylenediamine
[M-2H]2- calcd. = 1563.3
[M-2H]2- obs. = 1563.4

fC-ODN
[M-4H]4- calcd. = 1530.8
[M-4H]4- obs. =1530.8

Intermediate
[M-4H]4- calcd. = 1553.4
[M-4H]4- obs. =1553.3

Product:
[M-4H]4- calcd. = 1552.8
[M-4H]4- obs. = 1552.9

fC-ODN + o-phenylenediamine

fU-ODN + o-phenylenediamine
[M-2H]2- calcd. = 1563.3
[M-2H]2- obs. = 1563.5

fC-ODN
[M-4H]4- calcd. = 1530.8
[M-4H]4- obs. =1531.0 fC-ODN + o-phenylenediamine

Intermediate
[M-4H]4- calcd. = 1553.4
[M-4H]4- obs. =1553.3

Product:
[M-4H]4- calcd. = 1552.8
[M-4H]4- obs. =1552.9
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Figure	114:	LC-MS	trace	Appendix,	Table	25,	Entry	1	

	

	
Figure	115:	LC-MS	trace	Appendix,	Table	25,	Entry	2	
	

	
Figure	116:	LC-MS	trace	Appendix,	Table	25,	Entry	1	
	

	
Figure	117:	LC-MS	trace	Appendix,	Table	26,	Entry	2	
	

fU-ODN + BH
[M-2H]2- calcd. = 1695.8
[M-2H]2- obs. = 1695.8

fU-ODN 
[M-2H]2- calcd. = 1519.3
[M-2H]2- obs. = 1519.3

fU-ODN 
[M-2H]2- calcd. = 1519.3
[M-2H]2- obs. = 1519.3

fU-ODN + BH
[M-2H]2- calcd. = 1695.8
[M-2H]2- obs. = 1695.8

fU-ODN + NH2OH
[M-2H]2- calcd. = 1526.8
obs. = 1526.8

fU-ODN + ARP
[M-2H]2- calcd. = 1676.8
obs. = 1675.8

fU-ODN + NH2OH
[M-2H]2- calcd. = 1526.8
obs. = 1526.8



	 164	

	
Figure	118:	LC-MS	trace	Appendix,	Table	26,	Entry	3	

	

	
Figure	119:	LC-MS	trace	Appendix,	Table	27,	Entry	1	
	

	
Figure	120:	LC-MS	trace	Appendix,	Table	27,	Entry	2	
	

	
Figure	121:	LC-MS	trace	Appendix,	Table	27,	Entry	3	
	

fU-ODN-o-phen
[M-2H]2- calcd. = 1563.4
obs. = 1563.3

fC-ODN + BH
[M-4H]4- calcd. = 1619.1
[M-4H]4- obs. =1619.0

fC-ODN + NH2OH
[M-4H]4- calcd. = 1534.5
[M-4H]4- obs. = 1534.4

fC-ODN + NH2OH
[M-4H]4- calcd. = 1534.5
[M-4H]4- obs. = 1534.4

fC-ODN + BH
[M-4H]4- calcd. = 1619.1
[M-4H]4- obs. =1619.0

fC-ODN + NH2OH
[M-4H]4- calcd. = 1534.5
[M-4H]4- obs. = 1534.5
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Figure	122:	LC-MS	trace	of	U-ODN	starting	material	
	

	
Figure	 123:	LC-MS	trace	of	AP-ODN,	generated	by	 incubation	of	U-ODN	with	UNG	(5U)	at	37	°C	 for	3	hr,	
Chapter	3	-	Figure	42	
	

	
Figure	124:	LC-MS	trace,	Chapter	3,	Table	7,	Entry	1	
	

	
Figure	125:	LC-MS	trace,	Chapter	3,	Table	7,	Entry	2	
	

	
Figure	126:	LC-MS	trace,	Chapter	3,	Table	7,	Entry	3	
	

U-ODN
[M-3H]3- calcd. = 1311.2
[M-3H]3- obs. = 1310.2

AP-ODN
[M-3H]3- calcd. = 1279.9
[M-3H]3- obs. = 1278.8

AP-ODN + ARP
[M-3H]3- calcd. = 1383.9
[M-3H]3- obs. = 1383.5

AP-ODN
[M-3H]3- calcd. = 1279.9
[M-3H]3- obs. = 1278.9

AP-ODN + BH
[M-3H]3- calcd. = 1397.3
[M-3H]3- obs. = 1396.7

AP-ODN + o-phenylenediamine
[M-3H]3- calcd. = 1309.2
[M-3H]3- obs. = 1308.4

AP-ODN
[M-3H]3- calcd. = 1279.9
[M-3H]3- obs. = 1279.1

AP-ODN Fragment 2
[M-3H]3- calcd. = 1086.2
[M-3H]3- obs. = 1086.6



	 166	

	
Figure	127:	LC-MS	trace,	Chapter	3,	Scheme	7	

	 	

fU-ODN + NH2OMe
[M-2H]2- calcd. = 1533.8
[M-2H]2- obs. = 1534.3 hmU-ODN + KRuO4 + BH

[M-2H]2- calcd. = 1735.8
[M-2H]2- obs. = 1736.5
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8.4.	Appendix	Chapter	4	

Validation	of	hmU-DIP	peaks	via	SMUG1	pre-treatment	control	

In	 order	 to	 rule-out	 a	 particular	 sequence	 context	 associated	 with	 5-hmU	 antibody	

binding,	HEK293T	DNA	was	firstly	treated	with	hSMUG1	(NEB)	for	18	hr	prior	to	hmU-

DIP	enrichment.	Since	hSMUG1	excises	5-hmU	from	the	genome,	 this	can	be	used	as	a	

further	 control	 to	 validate	 peaks	 generated	 from	 hmU-DIP	 sequencing	 via	 a	

disappearance	of	peak/signal	after	hSMUG1	treatment.	Spike-in	controls	confirmed	that	

5-hmU	is	no	longer	enriched	after	treatment	(Table	45).		

	

Gene	ontology	analysis	of	differentially	expressed	genes	upon	SMUG1	knockdown	

SMUG1	has	no	known	function	aside	from	being	a	DNA	glycosylase,	and	can	excise	both	

U,	 and	 the	 oxidised	 T	 derivatives	 5-hmU	 and	 5-fU	 from	 genomic	 DNA.	 Since	 SMUG1	

deficiency	 is	 linked	with	aging,	 cancer	and	disease	 (Introduction),	 it	was	of	 interest	 to	

determine	the	effect	of	SMUG1	knockdown	on	gene	expression.	Gene	ontology	analysis	

was	 thus	 performed	 on	 both	 upregulated	 and	 downregulated	 genes	 upon	 SMUG1	

knockdown.	 Within	 downregulated	 genes,	 there	 was	 no	 clear	 enrichment	 of	 gene	

function.	 However,	 several	 upregulated	 genes	 were	 found	 to	 be	 involved	 in	 the	

inflammatory	 response	 and	 cell	 signalling,	 along	with	 genes	 associated	with	 a	 cellular	

response	to	hydrogen	peroxide	and	a	hypoxic	response	(Table	39).	

	
	 Genes	 q-value	 	

Extracellular	matrix	
organisation	

17	 2.30E-04	 CD44,	CDH1,	CCDC80,	COL1A1,	COLD4A1,	COL9A3,	COLD5A2,	FN1,	
FBLN5,	ITGA11,	ITGA5,	ICAN1,	LUM,	LOX,	SPIN1,	TNC,	VCAM1	

Positive	regulation	of	
gene	expression	

19	 2.60E-04	 CITED1,	CITED2,	FEV,	KLF4,	AGO3,	BMP2,	CDH3,	ERBB3,	EPB4IL4B,	
FN1,	HIF1A,	INHBA,	LAMP3,	NFIL3,	PIK3CD,	SERPINB9,	SPRY2,	TNC,	
TLR3	

Response	to	
lipopolysaccharide	

15	 2.80E-04	 CXCL1,	CXCL10,	CXCL11,	CD40,	CITED1,	FOS,	JUN,	TNFRSF14,	
TNFRSF9,	NOCT,	PCK1,	PLCG2,	THBD,	TRIB1,	VCAM1	

Wound	healing	 11	 3.00E-04	 ELK3,	CDH3,	ERBB3,	EPB41L4B,	FN1,	LOX,	PPARA,	PDGFRB,	SDC4,	TNC	

SMAD	protein	signal	
transduction	

9	 2.50E-03	 CITED1,	FOS,	JUN,	BMP2,	BMP5,	GDF10,	GDF15,	INHBA,	INHBB	

Negative	regulation	
of	cell	proliferation	

21	 2.30E-03	 ADAMTS1,	CXCL1,	CXCL8,	CBFA2T3,	ETS1,	JUN,	KLF4,	NDRG1,	
RAPGEF2,	SOX4,	TNRFSF9,	BMP2,	BMP5,	INHBA,	IFIT3,	IFNL1,	IRF6,	
PMP22,	RARRES3,	RIPPLY3,	SPRY2	

Regulation	of	cell	
proliferation	

14	 2.70E-03	 CXCL19,	CXCL11,	CD40,	JUN,	NDRG1,	NFKBIA,	RAPGEF2,	TNFRSF14,	
ANXA1,	ERBB3,	JAG1,	SAT1,	TNC,	TFRC	

Defence	response	to	
virus	

13	 3.70E-03	 OASL,	BNIP3L,	BNIP3,	CXCL10,	CD40,	APOBEC3D,	IFNB1,	IFIT2,	IFIT3,	
IFNL1,	PMAIP1,	TLR3,	ZC3HAV1	

Angiogenesis	 15	 3.50E-03	 CXCL8,	ELK3,	JUN,	TNFAIP2,	ANGPTL4,	CSPG4,	FN1,	HAND1,	HMOX1,	
HIF1A,	ITGA5,	JAG1,	RHOB,	SAT1,	SIPR1	

Response	to	hypoxia	 13	 4.50E-03	 BNIP3,	CXCR4,	CBFA2T3,	CITED2,	ETS1,	ANGPTL4,	BMP2,	HMOX1,	
HIF1A,	LDHA,	PPARA,	PLOD2,	VCAM1	

Response	to	drug	 17	 6.30E-03	 HMGCS1,	ABCA1,	ABCG2,	FOS,	JUN,	WFDC1,	ANXA1,	CDH1,	CDH3,	
COL1A1,	CCND1,	LGALS1,	INHBA,	ICAM1,	LDHA,	LOX,	TRPA1	

Inflammatory	
response	

19	 7.30E-03	 AXL,	CCL5,	CXCL1,	CXCL10,	CXCL11,	CXCL8,	CXCR4,	CD40,	FOS,	
TNFAIP3,	TNFRSF14,	TNFRSF9,	ADGRE2,	ANXA1,	BMP2,	BDKRB2,	
PTX3,	PIK3CD,	TLR3	

Positive	regulation	of	
transcription	from	
RNA	polymerase	II	
promoter	

34	 7.50E-03	 AKNA,	CXCL10,	CD40,	CITED1,	CITED2,	ELK3,	ETS1,	ETV1,	ETV4,	
FOSL2,	FOS,	JUN,	KLF4,	MAFF,	NFKBIA,	SOX4,	ABHD14B,	ATF3,	BMP2,	
BMP5,	CSRNP1,	EPCAM,	CGA,	HAND1,	HIF1A,	INHBA,	IFNB1,	JAG1,	
LUM,	MEOX1,	PPARA,	SLC40A1,	S1PR1,	TLR3	
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Response	to	cAMP	 7	 1.20E-02	 CITED1,	FOS,	JUN,	COL1A1,	DUSP1,	LDHA,	THBD	

Cellular	respone	to	
hypoxia	

9	 2.00E-02	 BNIP3L,	BNIP3,	NDRG1,	HMOX1,	HIF1A,	ICAM1,	PMAIP1,	PCK1,	STC1	

Cellular	response	to	
hydrogen	peroxide	

7	 3.40E-02	 JUN,	COL1A1,	DUSP1,	HMOX1,	LDHA,	PDGFRB,	TRPA1	

Table	39:		Gene	ontology	analysis	via	DAVID	using	GO_Biological	process	of	upregulated	genes	upon	SMUG1	
knockdown	FDR	<0.05	
	

Chapter	4	Supplementary	Tables	and	Figures	
T.Brucei	Differentiation	
experiment	

Base	J/T	

	 Cold-shock	 Cis-aconitate/citrate	
0	hr	
	
Average	

	
	

1.91E-03	
1.33E-03	
1.62E-03	

24	hr	
	
Average	

1.17E-03	
1.17E-03	
1.17E-03	

8.81E-04	
1.20E-03	
1.04E-03	

48	hr		
	
Average	

7.85E-04	
1.03E-03	
9.07E-04	

4.00E-04	
7.94E-04	
5.98E-04	

72	hr		
Average	

5.35E-04	
3.95E-04	
4.65E-04	

5.62E-05	
9.29E-05	
7.45E-05	

96	hr		
Average	

2.02E-04	
2.92E-04	
2.47E-04	

6.55E-05	
n.d	

Table	40:	LC-MS/MS	measurements	of	Base	J	as	a	proportion	of	T	at	several	timepoints	after	differentiation				
initiation	in	T.Brucei.	
	

T.Brucei		5-hmU	spike-in	
experiment	

hmU/T	 Base	J/T	

2	day	
Tech1	
	
Tech2	
Average	

1.60E-03	
1.78E-03	
6.11E-05	
1.21E-03	
1.30E-03	

3.25E-05	
1.21E-05	
1.14E-04	
9.09E-05	
6.25E-05	

>	2	day,	2	day	proliferation	
	
	
	
	
	
	
	
	
	
Average	

9.63E-04	
7.64E-04	
7.38E-04	
7.00E-04	
1.08E-03	
8.70E-04	
1.21E-03	
1.24E-03	
8.71E-04	
8.72E-04	
9.41E-04	

2.15E-04	
2.02E-04	
2.36E-04	
1.99E-04	
2.28E-04	
1.81E-04	
1.38E-04	
1.26E-04	
1.80E-04	
2.26E-04	
1.93E-04	

>	2	day,	4	day	proliferation	
	
	
	
	
	
Average	

7.80E-04	
7.70E-04	
9.18E-04	
9.72E-04	
7.23E-04	
7.94E-04	
8.26E-04	

1.87E-04	
2.22E-04	
2.38E-04	
2.58E-04	
3.16E-04	
2.65E-04	
2.48E-04	

>	2	day,	6	day	proliferation	 1.10E-03	
8.60E-04	

3.83E-04	
2.57E-04	

Average	 9.80E-04	 3.20E-04	
Table	 41:	 LC-MS/MS	measurements	 of	 5-hmU	 and	 Base	 J	 as	 a	 proportion	 of	 T,	 where	 PCF	T.Brucei	 are	
cultured	in	the	presence	of	1mM	5-hmU	
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Actin1	fw	 5’-GGATCAGCAAGCAGGAGTATG-3’	

Actin1	rev	 5’-AGAAAGGGTGTAACGCAACTAA-3’	

Actin	2	fw	 5’-GGACCTGACTGACTACCTCAT-3’	

Actin	2	rev	 5’-CGTAGCACAGCTTCTCCTTAAT-3’	

Smug1.1	fw	 5’-ACCTTTTGGCATGGCCCAGACTG-3’	

Smug1.1	rev	 5’-GGAGTAAGGTTGCGCCCGCT	-3’	

Smug1.2	fw	 5’-CAATCTTTCCTTGGCCACTGC-3’	

Smug	1.2	rev	 5’-AACCTTACTCCTGCTGAGCTG-3’	

Table	42:	Actin	and	Smug1	Primers	used	for	relative	quantification	using	RT-qPCR	of	SMUG1	knockdown	

	
Biological	Sample	 5-hmU/N	
Average	HEK293T	 3.59E-06	

	
Smug1	knockdown	(96	hr)	
	
Smug	Bio	1	Average	
	
	
Smug	Bio	2	Tech	1	
	
	
	
	
Smug	Bio	2	Tech	2	
Smug	Bio	2.2	Average	
	
	
	
Smug	Bio	3	Average	

5.87E-06	
5.83E-06	
5.85E-06	
	
1.13E-05	
1.15E-05	
1.14E-05	
	
7.09E-06	
6.94E-06	
7.02E-06	
9.21E-06	
	
3.54E-06	
4.34E-06	
3.94E-06	

Average	SMUG1	knockdown	
	

6.33E-06	
	

Table	43:	5-hmU	and	5-fU	global	levels	in	SMUG1	knockdown	samples	as	a	proportion	of	total	nucleosides.		
	
	
	
	

	
Figure	 128:	 a)	 Specificity	 of	 hmU-specific	 antibody	 compared	 to	 other	 modified	 and	 canonical	 bases,	
determined	 by	 ELISA.	 Figure	 taken	 from	 reference	 [202]	 b)	 Average	 5-hmU	 enrichment	 determined	 by	
sequencing	ODN	models	(hmU-ODN,	hmC-ODN2,	GCAT-ODN)	in	hmU-DIP	and	control	IgG	libraries.		
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Library	 Sequencing	

Reads	

Peaks		

(p	>	1E-05)	

hmU/hmC		

enrichment	

hmU/T	

enrichment	

SMUG1	hmUDIP1		 294071719	 64848	 4.37	 6.09	

SMUG1	hmUDIP2	 151336100	 53356	 3.52	 6.27	

Rluc	hmUDIP1	 166330520	 112635	 10.00	 16.08	

Rluc	hmUDIP2	 123315707	 8874	 9.16	 13.02	

SMUG	1	Control	IgG		 175657640	 9516	 0.73	 0.81	

Rluc	Control	IgG	 186341837	 38886	 0.31	 0.24	

SMUG1treatedDIP1	 58874526	 22551	 0.24	 0.10	

SMUG1treatedDIP2	 192234606	 43156	 0.67	 0.16	

fUchem1	 185009707	 151	 189.41	 167.09	

fUchem2	 44228575	 26	 50.63	 76.50	

hmU-chem	 68673453	 34	 79.36	 69.19	

Table	 44:	 Number	 of	 peaks	 per	 library	 determined	 by	 the	 MACS2	 peak-caller,	 and	 extent	 of	 5-hmU	
enrichment	determined	by	spike-in	sequencing	controls.		
	
Library	 Consensus	peaks		

90%	

Consensus	peaks		

50%	

Consensus	peaks	

25%	

SMUG1	hmUDIP	 5296	 29989	 33484	

Rluc	hmUDIP	 199	 3225	 5540	

Ctrl	IgG	DIP	 248	 6829	 8487	

Smug1	treated	DIP	 457	 5552	 8895	

SMUG1hmUDIP	(50%)	and	RLuc	hmUDIP	(50%)	 -	 487	 -	

Smug1hmUDIP	(50%)	–	Rluc1	–	Rluc2	 -	 4488	 -	

Table	45:	Consensus	peaks	at	different	percentage	overlap	between	DIP-library	replicates	and	consensus	
between	SMUG1hmUDIP	and	Rluc	hmUDIP		common	peaks	(50%).	(-)	=	not	calculated	
	

Library	 Peaks	–	Ctrl	IgG	samples	 Peaks	–	CtrlIgG	–	SMUG1		treated	samples	

SMUG1	hmUDIP	(50%)	 11937	 7095	

Rluc	hmUDIP	(50%)	 3034	 1294	

Table	 46:	Number	of	peaks	after	Ctrl	 IgG	peaks	and	SMUG1	 treated	peaks	are	 subsected	 from	 the	 initial	
intersection	of	replicates.	
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Gene	 Log-foldchange	 FDR	

MSH4	 -1.89	 2.03E-02	
GABRB1	 -1.76	 8.19E-03	
ZMAT1	 -1.24	 1.14E-03	
DAB1	 -1.14	 6.59E-03	
LUZP2	 -1.12	 1.11E-02	
SPOCK3	 -1.10	 8.07E-14	
KCTD8	 -1.02	 4.05E-02	
ASTN1	 -0.85	 5.79E-08	
AK5	 -0.81	 2.02E-07	
SLC16A12	 -0.77	 1.10E-02	
LINC00342	 -0.74	 5.25E-05	
LRRIQ1	 -0.73	 8.06E-03	
PPFIA2	 -0.72	 7.48E-03	
RNFT2	 -0.70	 9.10E-04	
NELL1	 -0.68	 2.22E-03	
EBF4	 -0.66	 2.06E-03	
SLC13A3	 -0.64	 1.50E-06	
CFAP44	 -0.64	 1.23E-04	
SLC35F1	 -0.63	 1.21E-03	
TMEM265	 -0.61	 3.04E-05	
RHPN1	 -0.59	 8.92E-03	
RTN1	 -0.53	 2.50E-02	
IQCH-AS1	 -0.53	 4.60E-02	
BMPR2	 -0.52	 1.84E-02	
CLHC1	 -0.51	 1.88E-02	
LSAMP	 -0.49	 3.22E-03	
LOC146880	 -0.49	 4.96E-03	
NFIB	 -0.48	 1.94E-02	
IFI44L	 -0.43	 3.54E-02	
LPP	 -0.42	 1.94E-02	
TMCO4	 0.41	 2.32E-02	
SLC13A4	 0.41	 3.20E-02	
ABCG2	 0.43	 2.52E-02	
KIAA1462	 0.43	 8.10E-03	
TBC1D5	 0.45	 1.84E-02	
SYNPO	 0.45	 4.05E-02	
SUSD1	 0.47	 4.57E-02	
FAM219A	 0.48	 4.91E-02	
COL14A1	 0.52	 2.23E-03	
KLF8	 0.53	 1.16E-02	
GLT8D2	 0.55	 4.20E-03	
TNFAIP2	 0.55	 2.61E-02	
SARDH	 0.58	 6.59E-03	
PIK3CD	 0.58	 3.96E-02	
CSPG4	 0.60	 9.50E-03	
ITGA11	 0.61	 3.73E-02	
STK31	 0.62	 1.09E-02	
RTN4R	 0.64	 2.16E-02	
CALCB	 0.66	 9.53E-04	
FAM160A1	 0.66	 2.50E-02	
LONRF3	 0.70	 1.16E-02	
TMEM45A	 0.72	 4.02E-05	
AMOT	 0.73	 4.45E-08	
AXL	 0.77	 2.90E-03	
CDH1	 0.77	 2.50E-02	
PDGFRB	 0.81	 3.66E-02	
GRM4	 0.94	 6.55E-03	
CGA	 1,96	 1.23E-26	
GFI1B	 2.19	 1.58E-02	
VWA3B	 2.52	 4.88E-02	
Table	47:	Differentially	expressed	genes	upon	SMUG1	knockdown	which	contain	5-hmU.	
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8.5.	Appendix	Chapter	5	

	
Figure	129:	LC-MS	trace,	fU-ODN	+	hSMUG1	(5	U)	for	3	hr.	

	

Function	 Number	of	proteins	 p-value	

Acetylation	 31	 5.60E-12	

Phosphoprotein	 41	 9.10E-09	

Transit	peptide	 9	 4.10E-05	

Transcription	 17	 1.10E-04	

Nucleus	 26	 1.70E-04	

Transcription	regulation	 16	 2.90E-04	

Mitochondrion	 11	 3.00E-04	

Mitochondrion	inner	membrane	 6	 4.90E-04	

NAD	 5	 8.60E-04	

Cytoplasm	 23	 1.00E-03	

Isopeptide	bond	 10	 1.50E-03	

Ubi	conjugation	 12	 2.20E-03	

Chromatin	regulator	 5	 5.20E-03	

Neurodegeneration	 5	 5.50E-03	

Methylation	 8	 1.00E-02	

Table	48:	DAVID	functional	analysis	of	T-enriched	proteins	by	UP_keywords	function.	

	 	

AP-ODN2 (fU-ODN + SMUG1)
[M-2H]2- calcd. = 1458.3
[M-2H]2- obs. = 1458.2
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8.6	Appendix	Chapter	6	

	
Figure	130:	12%	SDS	gel	run	in	MES	buffer	after	incubation	of	nucleosomes	in	the	presence	of	NaBH3CN.	A)	
Free	 DNA;	 B)	 Free	 DNA	 +	 100	 mM	 NaBH3CN;	 C)	 Nucleosome,	 37	 °C,	 18	 hr;	 D)	 100	 mM	 NaBH3CN,	
Nucleosome,	4	°C,	18	hr;	E)	10	mM	NaBH3CN,	Nucleosome,	4	°C,	18	hr;	F)	10	mM	NaBH3CN,	Nucleosome,	4	
°C,	3	hr;	G)	1	mM	NaBH3CN,	Nucleosome,	4	°C,	18	hr.	Attempts	made	to	suppress	excessive	5-fU	crosslinking	
included	the	use	of	1)	lower	temperature	reduction,	2)	less	reducing	agent	and	3)	less	reaction	time.	Extent	
of	reduction	appeared	to	be	reduced,	however	bands	were	still	>	100	Da,	indicating	promiscuous	reactivity	
with	5-fU.	
	

	
Figure	131:	Optimisation	and	validation	of	RecJF	digestion	with	model	system	with	a	14bp	overhang.	DNA	
with	a	14bp	overhang	was	treated	by	different	concentrations	of	RecJF	 for	16	hr	and	visualised	on	a	TBE-
Urea	gel.	In	the	presence	of	90U	RecJF,	a	band	at	20bp	can	be	observed	whilst	all	product	at	34bp	is	digested,	
confirming	removal	of	the	ss-overhang.		
	

5-fU ss DNA

DNA protein 
crosslinks

A) B) C) D) E) F) G)

Annealed

30 U RecJF 90 U RecJF
No Enz

20bp 34bp Annealed 20bp 34bp Annealed

34bp

20bp
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Figure	132:	a)	Fold-increase	in	truncated	sequences	between	crosslinked	and	non-crosslinked	polymerase	
extension,	More	stalling	occurred	at	the	majority	of	positions	compared	to	the	controls.	b)	Log2fold	stalling	
fC	increase	in	stalling	at	each	position	between	crosslinked	and	non-crosslinked	polymerase	extension.	
	

	
Figure	133:	LC-MS	trace,	fU-ODN	+	Glycine	(10	mM),	NaBH3CN	(25	mM),	18	hr	

	
Figure	134:	LC-MS	trace,	fU-ODN	+	5-aminovaleric	acid	(10	mM),	NaBH3CN	(25	mM),	18	hr	

	

	
Figure	135:	fU-ODN	+	Guanidinium	hydrochloride	(10	mM),	NaBH3CN	(25	mM),	18	hr	
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fU-ODN + Glycine + NaBH3CN
[M-2H]2- calcd. = 1548.8
[M-2H]2- obs. = 1548.7

fU-ODN + NaBH3CN
[M-2H]2- calcd. = 1520.3
[M-2H]2- obs. = 1520.2

fU-ODN + NaBH3CN
[M-2H]2- calcd. = 1520.3
[M-2H]2- obs. = 1520.4

fU-ODN + 5-aminovaleric acid 
+ NaBH3CN
[M-2H]2- calcd. = 1569.8
[M-2H]2- obs. = 1570.6

hmU-ODN (fU-ODN + NaBH3CN)
[M-2H]2- calcd. = 1520.3
[M-2H]2- obs. = 1520.3
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Figure	136:	fC-ODN	+	Glycine	(500	mM),	NaBH3CN	(100	mM),	18	hr,	37	°C	
	

	
Figure	137:	fC-ODN	+	5-Aminovaleric	acid	(500	mM),	NaBH3CN	(100	mM),	18	hr,	37	°C		
	

	
Figure	138:	fC-ODN	+	Guanidium	hydrochloride	(500	mM),	NaBH3CN	(100	mM),	18h,	37	°C	

	

	

	

	

	

	

	

	

	

	

	

fC-ODN + Glycine + RA
[M-4H]4- calcd. = 1545.5
[M-4H]4- obs. = 1545.4

fC-ODN
[M-4H]4- calcd. = 1530.8
[M-4H]4- obs. = 1531.0

fC-ODN
[M-4H]4- calcd. = 1530.8
[M-4H]4- obs. = 1530.7fC-ODN + 5-aminovaleric acid

[M-4H]4- calcd. = 1556.0
[M-4H]4- obs. = 1555.9

fC-ODN
[M-4H]4- calcd. = 1530.8
[M-4H]4- obs. = 1530.8
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Fw	 Base	 Log2Fold	
Change	

Rev	 Base	 Log2Fold	
Change	

35	 T	 4.12	 113	 A	 4.93	

36	 G	 3.28	 112	 G	 4.67	

37	 A	 3.25	 111	 C	 3.88	

38	 T	 3.44	 110	 A	 4.32	

39	 C	 3.73	 109	 T	 4.32	

40	 C	 3.67	 108	 C	 4.36	

41	 C	 3.52	 107	 T	 4.22	

42	 T	 3.35	 106	 G	 4.74	

43	 C	 3.43	 105	 T	 4.70	

44	 A	 3.62	 104	 C	 4.52	

45	 T	 3.48	 103	 G	 4.75	

46	 T	 3.71	 102	 A	 4.79	

47	 A	 3.79	 101	 G	 4.72	

48	 G	 4.08	 100	 A	 3.81	

49	 G	 4.98	 99	 T	 4.00	

50	 G	 4.86	 98	 C	 4.25	

51	 G	 4.68	 97	 G	 5.85	

52	 A	 2.97	 96	 T	 5.76	

53	 A	 2.98	 95	 G	 5.72	

54	 C	 3.11	 94	 G	 3.79	

55	 C	 3.65	 93	 C	 4.00	

56	 G	 3.72	 92	 G	 3.65	

57	 C	 3.70	 91	 A	 3.78	

58	 C	 3.30	 90	 A	 3.39	

59	 A	 3.60	 89	 T	 2.94	

60	 A	 4.41	 88	 T	 3.07	

61	 T	 4.38	 87	 T	 3.62	

62	 T	 4.19	 86	 G	 4.27	

63	 T	 3.48	 85	 C	 4.36	

64	 T	 3.64	 84	 G	 4.38	

65	 G	 3.56	 83	 T	 3.91	

66	 C	 3.26	 82	 G	 3.67	

67	 G	 2.86	 81	 C	 3.81	

68	 C	 2.88	 80	 A	 4.10	

69	 C	 3.11	 79	 T	 3.83	

70	 C	 3.48	 78	 G	 3.38	

71	 C	 3.82	 77	 C	 3.49	

72	 C	 3.82	 76	 G	 4.44	

73	 T	 3.50	 75	 C	 4.77	

74	 G	 3.09	 74	 G	 4.64	

75	 T	 2.74	 73	 A	 3.96	

76	 C	 3.21	 72	 C	 3.13	

77	 G	 3.35	 71	 A	 3.02	
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78	 C	 3.58	 70	 G	 2.94	

79	 G	 3.45	 69	 G	 2.89	

80	 C	 3.26	 68	 G	 2.73	

81	 A	 3.45	 67	 G	 2.98	

82	 T	 3.17	 66	 G	 3.13	

83	 G	 3.15	 65	 C	 3.02	

84	 C	 2.60	 64	 G	 2.58	

85	 A	 3.20	 63	 C	 3.18	

86	 C	 3.45	 62	 A	 3.06	

87	 G	 3.46	 61	 A	 3.14	

88	 C	 2.96	 60	 A	 2.27	

89	 A	 3.07	 59	 A	 2.27	

90	 A	 3.09	 58	 T	 2.37	

91	 A	 3.43	 57	 T	 2.42	

92	 T	 3.07	 56	 G	 3.17	

93	 T	 2.98	 55	 G	 3.33	

94	 C	 2.83	 54	 C	 3.55	

95	 G	 2.73	 53	 G	 3.03	

96	 C	 2.73	 52	 G	 2.98	

97	 C	 3.14	 51	 T	 2.86	

98	 A	 3.41	 50	 T	 3.06	

99	 C	 3.67	 49	 C	 2.90	

100	 G	 3.32	 48	 C	 2.60	

101	 A	 3.14	 47	 C	 2.26	

102	 T	 2.74	 46	 C	 2.12	

103	 C	 3.00	 45	 T	 2.05	

104	 T	 2.83	 44	 A	 2.18	

105	 C	 2.96	 43	 A	 2.42	

106	 G	 2.43	 42	 T	 2.40	

107	 A	 2.69	 41	 G	 2.58	

108	 C	 2.30	 40	 A	 2.29	

109	 A	 2.39	 39	 G	 2.24	

110	 G	 2.30	 38	 G	 1.72	

111	 A	 2.78	 37	 G	 1.78	

112	 T	 3.34	 36	 A	 2.05	

113	 G	 3.43	 35	 T	 2.09	

	

Table	49:	Log2Fold	change	of	truncated	sequence	of	crosslinked	sample	over	control	sample	plotted	
against	Widom	position	and	base.	
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