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Abstract Theories of the representation and processing of
concepts have been greatly enhanced by models based on
information available in semantic property norms. This infor-
mation relates both to the identity of the features produced in
the norms and to their statistical properties. In this article, we
introduce a new and large set of property norms that are
designed to be a more flexible tool to meet the demands of
many different disciplines interested in conceptual knowledge
representation, from cognitive psychology to computational
linguistics. As well as providing all features listed by 2 or
more participants, we also show the considerable linguistic
variation that underlies each normalized feature label and the
number of participants who generated each variant. Our norms
are highly comparable with the largest extant set (McRae,
Cree, Seidenberg, &McNorgan, 2005) in terms of the number
and distribution of features. In addition, we show how the
norms give rise to a coherent category structure. We provide
these norms in the hope that the greater detail available in the
Centre for Speech, Language and the Brain norms should
further promote the development of models of conceptual
knowledge. The norms can be downloaded at www.csl.
psychol.cam.ac.uk/propertynorms.
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Introduction

Knowing the meaning of a concrete object, such as sofa ,
cat , or cabbage , entails knowing both its individual iden-
tity and how it can relate to other concepts by forming
categories, such as furniture , animals , or vegetables .
Throughout the history of cognitive psychology, many
accounts of the organization of conceptual knowledge have
been based upon the idea that concepts are distributed
representations consisting of semantic primitives, or fea-
tures , and that the overlap and differences in such feature-
based representations can explain both the individuality of
objects and their relationship to one another (Cree,
McNorgan, & McRae, 2006; Hampton, 1979; McRae,
Cree, Westmacott, & de Sa, 1999; McRae, de Sa, &
Seidenberg, 1997; Moss, Tyler, & Jennings, 1997; Rosch,
1975; Smith & Medin, 1981; Taylor, Moss, & Tyler, 2007;
Tyler & Moss, 2001). In order to test such accounts, it is
necessary to have a model of the semantic feature infor-
mation participants are likely to possess, and this has
usually been estimated using semantic property norm data.

Researchers have used semantic property norms to explore
many aspects of the semantic representation and processing of
objects. The individual features generated by participants in
property norming studies provide stimuli to test various claims
about the representation of conceptual knowledge (Cree,
McNorgan, & McRae, 2006; Cree & McRae, 2003;
Grondin, Lupker, & McRae, 2009; McRae, Cree,
Westmacott, & de Sa, 1999; Randall, Moss, Rodd, Greer, &
Tyler, 2004; Taylor, Devereux, Acres, Randall, & Tyler, 2012;
Tyler & Moss, 2001) and its breakdown in cases of acquired
brain damage (Garrard, Lambon Ralph, Patterson, Pratt, &
Hodges, 2005; Greer et al., 2001;McRae&Cree, 2002;Moss,
Tyler, & Jennings, 1997; Moss, Tyler, Durrant-Peatfield, &
Bunn, 1998;Moss, Tyler, & Devlin, 2002; Rogers et al., 2004;
Tyler & Moss, 1997). In particular, theoretically motivated
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statistics that relate to features—their frequency of occurrence
across concepts and the likelihood that pairs of features co-
occur—have been proposed as fundamental organizing prin-
ciples of cognitive models, allowing precise, quantitative
claims about the architecture of the conceptual processing
system to be explored through computational modeling
(Cree et al., 2006; Mirman & Magnuson, 2008; O’Connor,
Cree, & McRae, 2009; Randall et al., 2004; Rogers et al.,
2004). Features from property norms are also important to our
understanding of the neural underpinnings of conceptual
representation and processing (Clarke, Taylor, Devereux,
Randall, & Tyler, 2013; Tyler et al., 2013) and their
distributional characteristics have been used in classification
models to further this understanding (Chang, Mitchell, & Just,
2011). The use of featural information that has been generated
by property norms has also been useful in understanding the
time course of conceptual processing (Clarke et al., 2013;
Sudre et al., 2012).

The most detailed and extensive set of norms made
available to date is the set collected by McRae, Cree,
Seidenberg, and McNorgan (2005). This set of norms con-
sists of feature listings for 541 concrete objects and pro-
vides information on type of feature and feature production
frequency for each concept. McRae et al. (2005) have also
developed a systematic method for producing collated norm
lists from the data provided by individual participants in
norming studies, which has proved to be a useful method-
ological template for other researchers (e.g., Kremer &
Baroni, 2011). For example, McRae et al.’s (2005) meth-
odology takes into account that participants can produce
features that may be conjunctions or disjunctions of smaller
units of information (e.g., has four wheels ; is green or
red ). Such composite features are divided into separate
features during the normalization process (has four wheels
and has wheels ; is green and is red). McRae et al. (2005)
also used a cutoff point for the production frequency of
features, with a minimum of 5 (out of 30) participants
having to produce a feature for it to be included in the
final feature set for a given concept. While other norms
also exist (240 nouns and 216 verbs, Vinson & Vigliocco,
2008; 64 nouns, Garrard, Lambon Ralph, Hodges, &
Patterson, 2001; 193 nouns, Randall et al., 2004; 1,808
nouns, verbs, adjectives, and other parts of speech,
Buchanan, Holmes, Teasley, & Hutchison, 2013), the
McRae norms are the most widely used and have been
considered a gold standard model of semantic feature rep-
resentations of concepts (Baroni, Evert, & Lenci, 2008;
Devereux, Pilkington, Poibeau, & Korhonen, 2009; Kelly,
Devereux, & Korhonen, 2013).

The present article offers a new set of property norms,
many of which overlap with the McRae et al. (2005) set, to
add to the body of existing knowledge. The aim of this new
set is to offer a more flexible tool that will enable an even

wider use of property norms. Whereas the McRae norms
contain features that have been produced by a minimum of
5 participants, our new set offers all the features that have
been generated with a production frequency of two or
more, enabling researchers to choose their own cutoff point
and providing the base data that will help to establish
which is the best cutoff point to capture shared knowledge
while excluding idiosyncrasies associated with individual
participants. In addition, we make available data on the
linguistic variation in the features that the participants
produced, by detailing which raw responses were mapped
onto each normalized feature. These data include both
syntactic variations (“does eat”; “is used for eating”; “is
used in eating”; “is used to eat”) and the synonyms that
have been incorporated into a single feature (“lives in the
sea”; “lives in the ocean”; “is marine”). Our primary ratio-
nale for making available these linguistic variability data is
that they will provide computational linguists with a useful
resource for training and evaluating systems designed to
automatically extract property-norm-like semantic feature
representations from text corpora. In training such systems,
the data on variations can be incorporated into the feature-
learning framework to provide a bridge between the vari-
ous wordings typically found in corpora and the normal-
ized semantic feature labels. Furthermore, in evaluating
such systems, human property norms are a useful “ground
truth” that the model output can be compared against. A
problem arises, however, because extracted features may
be correct but not exactly match features in human norms,
such as the McRae norms (e.g., the system may extract
lives in sea , where found in ocean is the corresponding
feature in the norms). In evaluating automatically acquired
features against human data, researchers have therefore
expanded a small number of the McRae feature labels by
hand to include synonyms and inflectional variants (e.g.,
lives on water can be expanded to {aquatic , lake , ocean ,
river , sea , water}; see Baroni et al., 2008; Baroni & Lenci,
2009), although there is no guarantee that these are the
variants people actually use. By providing the linguistic
variability data for every feature, we aim to fill this gap.

Another innovative feature of our norms is that the data
were collected online, so that participants were able to com-
plete the experiment in their own homes. The data were then
available in a digital format that permitted a significant degree
of automated analysis. In particular, participants’ raw re-
sponses were processed using lexical rewrite rules, part-of-
speech tagging from an automatic parser, and morphological
decomposition. The purpose of this preprocessing was to
automate and standardize as far as possible the steps required
to map the variable raw feature responses to single semantic
feature labels (e.g., the responses “is for a child” and “is for
children” can be automatically mapped to the standardized
feature is for children).

1120 Behav Res (2014) 46:1119–1127



Method

Participants

One hundred twenty-three members of the Centre for Speech,
Language and Brain (CSLB) subject pool, 18–40 years of age,
right-handed, and native speakers of British English, took part
in this study. Participants completed the study online, and the
study was approved by the Cambridge Psychology Research
Ethics Committee. Participants were able to take part in repeat
sessions and completed between 1 and 11 sessions. Sessions
were designed to last about an hour, with 30 concepts present-
ed in each session. Participants received £6 in payment for
each session.

Stimuli

A total of 866 concrete concepts were selected for online
norm completion. In selecting the concepts to be normed,
we aimed to replicate the McRae norms as much as possi-
ble, and so we included all concepts from that set that were
applicable to a British English environment (n = 490/541).
We omitted concepts that are unfamiliar to Britons (e.g.,
cougar, chickadee, caribou, tomahawk ). We selected ad-
ditional items from the Snodgrass and Vanderwart (1980)
pictures, from various other unnormed concrete concepts
that we have used in previous studies, from items with
high concreteness ratings (>550) in the MRC psycholin-
guistic database (Wilson, 1988), and from the category
norms developed by Van Overschelde, Rawson, and
Dunlosky (2004). One of the shortfalls of norms is the
presence of unique and highly distinctive features that are
not truly unique in the real world. Therefore, wherever
possible, we tried to decrease the possibility of creating
spurious unique properties by ensuring that all concepts
had at least one other related concept in the list. For
example, in the original McRae norms, the concept dan-
delion is the only flower and, therefore, has many unique
features, including is a flower. We added other flowers
(e.g., buttercup, daisy, sunflower, pansy ) to accompany
dandelion . Similar to McRae et al. (2005), we tried to
avoid ambiguous concepts. Where the concept label was
an ambiguous word, we provided a disambiguating term in
parenthesis [e.g. “seal (animal)” and “organ (musical in-
strument)”]. There are 638 completed concepts in the cur-
rent set, with data collection ongoing. A list of the concepts
and their categories is included in the Appendix. These 638
concepts, their features, and feature variants constitute
version 1 of the CSLB norms, available online at www.
csl.psychol.cam.ac.uk/propertynorms. As additional
concepts are completed, they will be incorporated into
later versions of the norms, which will be made available
on the Web site.

Norm collection

Participants from the CSLB subject pool completed the norms
anonymously online by responding to an e-mail invitation.
This took them to the online normWeb page, where they gave
consent to participate in the study. A screen of instructions
then appeared. The method of providing features was de-
scribed, and a short video showing examples of how to fill
in the norms was shown. Once they had seen the video, the
participants began the main part of the study.

Participants were presented with a concept word (e.g.,
zebra) and space to add their features (see Fig. 1). The
participants were asked to add a relation word chosen from a
drop down menu. The relation words were is , has , does ,
made of , and “…” (participants were instructed to use “…”
when they wished to use any other relation). Participants were
asked to complete the features in the space provided and to
generate at least five features per concept. Concepts were
pseudorandomly selected to avoid consecutive presentation
of concepts from the same category (e.g., animals, clothing)
and to ensure that each concept was presented to 30 partici-
pants. Once the participants had completed their session, their
data were saved to a text file for further analysis. In line with
ethical considerations, participants were given the opportunity
to withdraw from the study at any time, including before they
had completed the 30 concepts in a session.

Data analysis

Within concept

As far as possible, we automated the process of compiling lists
of normalized features for each concept. Data from the 30
participants for each concept were concatenated, giving a
single long list. This list then underwent various stages of
processing, all of which related to the features provided by the
participants and left the relation words untouched.
Preprocessing removed specified adverbs, such as really and
very, following the procedure used by McRae et al. (2005).
The aim of this stage was to increase the level of consistency

Fig. 1 Screen shot of the norming Web page showing how the features
were collected
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across participants to allow as high a proportion of features to
be automatically collated as possible. In additional preprocess-
ing, the terms in the features were tagged using the part-of-
speech tagger in RASP, an automatic parser (Briscoe, Carroll,
& Watson, 2006) and morphologically decomposed using
Morpha (Minnen, Carroll, & Pearce, 2001). Thus, individual
words in the features were tagged for part-of-speech, and
morphologically complex words (past tense words, plurals,
etc.) were decomposed into a stem and affix format (wings→
wing+s; sings→ sing+s; attached→ attach +ed; ran→ run +
ed). Finally, individual pieces of information were extracted
by feature-splitting rules, automating methodology described
by McRae et al. (2005). For example, a feature such as has a
long neck was rewritten as has a long neck and has a neck . At
all stages in the development and use of the preprocessing
system, rules were checked manually and corrected if necessary,
to guard against overgeneralized modification of the features.

The resulting preprocessed features were then automatical-
ly collapsed, with a record of which participant had provided
input into which feature. Table 1 shows a subset of the features
given for the concept turtle.

This automatically generated output was then worked on
by hand. Features that result from the automatic feature-
splitting process but make no sense were removed—for ex-
ample, in the turtle example, “does lay” (which, while literally
true, is not a distinct component action of the original feature
“does lay eggs”). Spelling mistakes were corrected, and fea-
tures where the wrong relation word had been selected (e.g.,
“does in the sea”) were also corrected when the intention was
clear (“is in the sea”). Then the process of extracting units of
information (e.g., decomposing “lays eggs on the beach” into
“lays eggs on the beach” and “lays eggs”) was completed,
following the McRae et al. (2005) methodology for feature
normalization. Further synonyms were also identified and
collapsed (e.g., “does kill”; “is lethal” became does kill ).
Features were collapsed as synonyms when the number of
overlapping participants was minimal. For example, “made of
cloth,” “made of material,” and “made of fabric” have been
collapsed into a single feature (made of fabric_cloth_material),

Table 1 A subset of the preprocessed features for the concept turtle
(only a sample of uncollapsed features is shown)

PF Relation Feature Participant list

23 has a shell p15 17 18 24 28 30 39 45 48 50 52
55 56 58 59 60 61 63 64 88 132
133 135

18 does swim p15 18 28 30 45 48 52 55 56 58 59
60 62 88 113 131 131 133

16 does lay p15 17 24 28 39 55 56 59 59 60 62
87 88 113 132 133

14 does live p18 24 30 45 45 52 52 52 55 59 60
62 64 133

10 is a reptile p18 45 50 56 58 60 64 113 132 134

10 is an animal p28 39 45 48 50 53 132 133 134 135

9 does lay egg+s p15 24 60 62 87 88 113 132 133

8 is green p24 30 45 48 55 59 60 134

7 is slow p24 28 48 50 57 61 64

5 has four leg+s p52 55 62 88 133

5 does have p62 87 87 87 87

5 does swim in sea+s p28 56 59 131 133

4 is endanger+ed p39 45 55 58

4 has a tail p39 63 64 88

4 has flipper+s p60 113 131 134

4 has skin p24 28 58 63

3 does eat p52 60 88

3 does live in sea+s p18 59 60

3 does live in water p24 52 62

3 does move p17 52 62

3 has a beak p18 24 45

2 does crawl p52 60

2 has small head p30 57

2 does lay egg+s on the beach p28 39

2 has scaly skin p24 58

2 does travel p60 133

2 does look p17 45

2 is old p57 61

2 has head p30 57

2 … be+s endanger+ed p24 87

2 does have a hard shell p62 87

2 has scale+s p18 52

2 is shy p15 52

2 is graceful p15 134

2 does live a long time p45 52

1 does live in shell+s p52

1 … can live on land or sea p87

1 has a little tail p24

1 is cold-blooded p132

1 is not+ dangerous p28

1 is crawl+s p57

1 has tough skin p63

1 is big p50

1 does lay egg+s on beach+s p55

1 does move slowly on land
and quick in the sea

p17

1 does return p17

1 does look like tortoise+s p17

Preprocessing maintains a record of which participants have provided
input into which feature. PF, production frequency

Table 2 Means (and standard deviations; SDs) of number of features
(NOF), number of shared (NOsF) and distinctive (NOdF) features, and
mean distinctiveness (MeanD) for the new CSLB norms and for the
McRae norms and their respective correlations across concepts

NOF NOsF NOdF MeanD

McRae Mean 12.2 8.2 4.1 0.35

SD 3.3 3 2.6 0.16

CSLB Mean 14.4 11 3.4 0.26

SD 3.3 3.2 2.4 0.13

Diff 2.2 2.8 -0.7 −0.1
Correlation .35 .51 .5 .63
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because these feature labels were generated by nonoverlapping
sets of participants, indicating that participants had the same
semantic feature inmind but used different labels to verbalize it.
Occasionally, a single participant would produce two syno-
nyms, but this tended to be for the less familiar concepts,
where it might be difficult to generate five or more features.
The process of collapsing across features that had been gen-
erated by the participants continued until no further synonyms
could be identified. After these stages, all the concepts were
considered together for the final stage of normalization.

Between concepts

The final stage of data analysis attempted to ensure that
features are consistent across concepts. This is helped by the

three processes that are part of the automatic procedure:
synonym mapping, morphological decomposition, and quali-
fier removal. Once the concepts have been collated, they are
placed in a list and sorted by keyword. When there are
variations in the expression of a feature, these are standard-
ized. For example, the features “is used in archery” and “is
used by archers”were collapsed together as is used in archery.
The features “does live in packs” and “does live in groups”
were collapsed to make does live in groups . In order to obtain
a heuristic for identifying synonymous feature pairs such as
these, we performed latent semantic analysis (LSA; Landauer,
McNamara, Dennis, & Kintsch, 2007) on the production
frequency data. LSA is more typically applied to corpus
data—specifically, a frequency matrix where rows correspond
to words and columns correspond to documents (or contexts)
and where each element of the matrix gives the frequency with
which a particular word occurs in a particular document.
Singular value decomposition of the frequency matrix is used
to express the semantics of words in a lower dimensional
space. Distances in this space reflect the degree of relatedness
between words; two words are close in this space if they tend
to occur in similar documents. Importantly, a pair of words
need not occur together in the same documents in order to be
similar; for example, the words “human” and “user” might
never occur in the same documents but will be similar if they
tend to occur in similar kinds of documents (Landauer, Foltz,
& Laham, 1998). We exploit this principle of LSA here. We
perform singular value decomposition on the feature ×

Table 3 Intercorrelational density (ICD), mean correlational strength
(Corrstr), number of significantly correlated property pairs (CPPs), and
percentage of feature pairs that are significantly correlated (%CPPs) for
the 415 items in the McRae and CSLB norms, and their respective
correlations across concepts

ICD Corrstr CPPs %CPPs

McRae Mean 177 .26 8 23

SD 208 .08 9 17

CSLB Mean 298 .25 15 24

SD 246 0.06 11 13

Correlation .61 .36 .58 .35

(a) CSLB norms (b) McRae norms
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Fig. 2 Similarity structure for 48 items in common for CSLB and McRae norms
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concept production frequency matrix (with features as rows),
to reduce the dimensionality of feature representations to 50.
Similarity between pairs of features was calculated as the
cosine between them, and we identified pairs of features that

were highly similar but were not necessarily listed together in
the same concepts (e.g., is absorbent and does absorb). In this
way, we could identify pairs that should potentially be nor-
malized to the same feature label.

Fig. 3 Similarity structure for the 49 “land animal” items appearing in both the CLSB andMcRae norms. Rows and columns of the similarity matrix are
ordered by a complete-linkage hierarchical clustering solution
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Results

We report here the results from 638 completed concepts. For all
the results reported in this section, we have removed the taxo-
nomic features (e.g., is a bird; is furniture). Taxonomic features
refer to a superordinate category and are not normally regarded
as true semantic features in studies of conceptual representation
(Grondin et al., 2009; McRae et al., 2005; Pexman, Hargreaves,
Siakaluk, Bodner, & Pope, 2008; Taylor et al., 2012). The files
that we make available include the taxonomic features, and
taxonomic features are tagged as being such.

Comparison with the McRae norms

The work by McRae and his colleagues has provided the
current gold standard in the production of property norms. It
is therefore important to determine whether our norms have a
high degree of comparability with the McRae norms (while
providing additional information and flexibility, which we feel
is the additional strength of our norms). We compared our
norms with the McRae norms for a subset of measures report-
ed in McRae et al. (2005). To ensure the best comparison, we
used the same production frequency cutoff of five. There are
currently 415 concepts in common between the CSLB norms
and the McRae norms, which are the items analyzed here.

Table 2 shows that our participants generated, on average,
2.15 features per concept more than McRae’s participants.
This was significant, t (414) = 11.70, p < .001. Our norms
have significantly more shared features (i.e. features occurring
in three ormore concepts), t(414) = 18.96, p < .001, and fewer
distinctive features (i.e. features occurring in 1 or 2 concepts),
t (414) = −5.57, p < .001, than do the McRae norms. In line
with this, the mean distinctiveness of concepts in the CSLB
norms is lower than the McRae norms, t (414) = −14.03,
p < .001. High scores on mean distinctiveness indicate a
higher proportion of distinctive features.

Despite the differences between the two sets, they are
highly correlated (all ps < .001; for Pearson correlation values,

see Table 2), indicating that those concepts that generated
many features in the McRae set also generated many features
in the CSLB set and that the overall pattern of distribution of
distinctive properties is similar.

Comparison of feature correlations

McRae et al. (2005) measured feature correlation with
intercorrelational density. This is the sum of squared correla-
tions of all highly correlated (>6.5 % shared variance) prop-
erty pairs within a concept. Tyler and colleagues (see Taylor
et al., 2012, for a rationale) used a slightly different measure,
mean correlational strength, which is the mean of the correla-
tions of all significantly correlated property pairs within a
concept. We calculated both of these measures for the 415
items in common between the two sets of norms, as well as the
number of significantly correlated property pairs (CPPs) and
the percentage of possible CPPs that are significantly corre-
lated. Table 3 shows that all measures are highly correlated.

We also calculated the mean correlational strength of each
shared feature with all other features in the norms (using only
significant CPPs). The CSLB norms have 598 features that are
produced 3 or more times, and the McRae norms have 446.
There were 341 shared features that were the same in both
sets. The correlational strengths of these features are also
highly correlated, r = .512, p < .001. This again indicates that
participants produced very similar sets of features.

Category structure and semantic similarity

One important aspect of feature-based accounts of conceptual
representation is that shared information forms the basis of
category organization. A category is formed when a set of
features reliably co-occurs over a number of concepts. For
example, we can tell that a swan is from the category of birds
because it possesses the shared, correlated features of birds
(has wings , has feathers , lays eggs , flies , does nest ). A
measure of the effectiveness of the norms that we have

Fig. 4 Within-category similarity for the McRae and CSLB norms. Size: the number of items common to both sets of norms in each category
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produced is the extent to which concepts from the same
category are similar. The similarity of two concepts was
calculated as the cosine between their two production frequen-
cy vectors (McRae et al., 2005). We calculated similarity
matrices and hierarchical clustering solutions (excluding tax-
onomic features) and compared these for the McRae and
CSLB norms, again using the production frequency cutoff of
5. The second-order similarity (i.e., correlation between
pairwise cosine similarity matrices) between the McRae
norms and the CSLB norms is highly significant (Spearman
rho; for all 415 items, rho = .624, p < .0001). Figures 2 and 3
illustrate the similarity structure. For clarity, rather than depict
the full similarity structure for 415 items, we show the simi-
larity structure for 48 items (6 items drawn at random from the
eight most common categories; Fig. 2).

The CSLB matrix has more intracategory pairs with high
similarity (cooler colors) than the McRae matrix, indicating a
tighter category structure (see also Fig. 4). We also report the
full similarity structure and hierarchical clustering solution for
all 49 items from the most common category (“land animals”).
Here, there is clear organization by semantic similarity, for
both the McRae and CLSB norms, with highly similar pairs of
items (moose and buffalo; sheep and lamb) clustering togeth-
er. In particular, for both sets of norms, amphibians and
reptiles separate from the other animals. Similarity within
the animal category is higher for the CSLB norms than for
the McRae norms (cooler colors). More generally, Fig. 4
presents the average within-category similarity for the 10
largest semantic categories that we identified. For every cate-
gory, within-category similarity is higher for the CSLB norms
than for the McRae norms (all ps < .001, Wilcoxon signed-
rank test on pairwise similarity values, Bonferroni-corrected
for the number of categories tested). This tighter category
structure may have arisen because we ensured, as far as
possible, that all concepts had close semantic relatives in the
set and through the automatic collation of features, which
helps to ensure that synonyms are identified and, so, fewer
spurious distinctive features remain.

Conclusion

The number of large-scale property norms available for use in
research into conceptual knowledge remains small, and there is
an increasing awareness of the need to provide more informa-
tion in the data sets (Buchanan et al., 2013). We offer here a
new set of 638 norms and show that these norms have a large
degree of overlap with the norms ofMcRae et al. (2005), which
currently provide the gold standard for norm production.

Using the methods described here, we have developed a
semiautomated pipeline for the collection and collation of
large sets of norms. Our norms are able to offer a wider range
of information than is currently available in other sets of

norms. As well as the production frequency, researchers have
access to the linguistic variations that have been collapsed to
create any given normalized feature. Variations in the syntax
of a feature, as well as synonyms, are available. This gives
researchers the opportunity to manipulate and modify the
norms, further collapsing or separating features depending
on the requirements of a particular research goal. We antici-
pate that these norms will be particularly useful for researchers
who wish to use the variations that people provide when
listing features to train computational systems to create auto-
matically generated norms.

The scope of these norms has the potential to support
researchers in developing more detailed models of conceptual
knowledge and their underlying representations.
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