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ABSTRACT 428 

Body fat distribution is a heritable risk factor for a range of adverse health consequences, 429 

including hyperlipidemia and type 2 diabetes. To identify protein-coding variants associated with body 430 

fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, we analyzed 246,328 431 

predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five 432 

major ancestries for discovery and 132,177 independent European-ancestry individuals for validation. 433 

We identified 15 common (minor allele frequency, MAF ≥ 5%) and 9 low frequency or rare (MAF < 5%) 434 

coding variants that have not been reported previously. Pathway/gene set enrichment analyses of all 435 

associated variants highlight lipid particle, adiponectin level, abnormal white adipose tissue physiology, 436 

and bone development and morphology as processes affecting fat distribution and body shape. 437 

Furthermore, the cross-trait associations and the analyses of variant and gene function highlight a 438 

strong connection to lipids, cardiovascular traits, and type 2 diabetes. In functional follow-up analyses, 439 

specifically in Drosophila RNAi-knockdown crosses, we observed a significant increase in the total body 440 

triglyceride levels for two genes (DNAH10 and PLXND1). By examining variants often poorly tagged or 441 

entirely missed by genome-wide association studies, we implicate novel genes in fat distribution, 442 

stressing the importance of interrogating low-frequency and protein-coding variants. 443 

 444 

 445 

 446 

 447 

 448 

449 
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Body fat distribution, as assessed by waist-to-hip ratio (WHR), is a heritable trait and a well-450 

established risk factor for adverse metabolic outcomes1-6. A high WHR often indicates a large presence 451 

of intra-abdominal fat whereas a low WHR is correlated with a greater accumulation of gluteofemoral 452 

fat. Lower values of WHR have been consistently associated with lower risk of cardiometabolic diseases 453 

like type 2 diabetes (T2D)7,8, or differences in bone structure and gluteal muscle mass9. These 454 

epidemiological associations are consistent with the results of our previously reported genome-wide 455 

association study (GWAS) of 49 loci associated with WHR (after adjusting for body mass index, 456 

WHRadjBMI)10. Notably, a genetic predisposition to higher WHRadjBMI is associated with increased risk 457 

of T2D and coronary heart disease (CHD), and this association appears to be causal9. 458 

More recently, large-scale genetic studies have identified ~125 common loci for central obesity, 459 

primarily non-coding variants of relatively modest effect, for different measures of body fat 460 

distribution10-16. Large scale interrogation of both common (minor allele frequency [MAF]≥5%) and low 461 

frequency or rare (MAF<5%) coding and splice site variation may lead to additional insights into the 462 

genetic and biological etiology of central obesity by narrowing in on causal genes contributing to trait 463 

variance. Thus, we set out to identify protein-coding and splice site variants associated with WHRadjBMI 464 

using exome array data and to explore their contribution to variation in WHRadjBMI through multiple 465 

follow-up analyses. 466 

RESULTS 467 

Protein-coding and splice site variation associated with body fat distribution 468 

We conducted a 2-stage fixed-effects meta-analysis testing both additive and recessive models 469 

in order to detect protein-coding genetic variants that influence WHRadjBMI (Online Methods, Figure 470 

1). Our stage 1 meta-analysis included up to 246,328 variants (218,195 with MAF<5%) from up to 471 

344,369 individuals from 74 studies of European (N=288,492), South Asian (N=29,315), African 472 
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(N=15,687), East Asian (N=6,800) and Hispanic/Latino (N=4,075) descent, genotyped with an ExomeChip 473 

array (Supplementary Tables 1-3). For stage 2, we assessed 70 suggestively significant (P<2x10-6) 474 

variants from stage 1 (Online Methods, Supplementary Data 1-3) in two independent cohorts from the 475 

United Kingdom [UK Biobank (UKBB), N=119,572] and Iceland (deCODE, N=12,605) (Online Methods, 476 

Supplementary Data 1-3) for a total stage 1+2 sample size of 476,546 (88% European). Variants were 477 

considered statistically significant in the total meta-analyzed sample (stage 1+2) when they achieved a 478 

significance threshold of P<2x10-7 after Bonferroni correction for multiple testing (0.05/246,328 variants 479 

tested), and considered novel if they were greater than one megabase (Mb) from a previously-identified 480 

WHRadjBMI lead SNP10-16.  481 

In stages 1 and 2 combined all ancestry meta-analyses, we identified 48 coding variants (16 482 

novel) across 43 genes, 47 identified assuming an additive model, and one more variant under a 483 

recessive model (Table 1). Due to the possible heterogeneity introduced by combining multiple 484 

ancestries17, we also performed a European-only meta-analysis. Here, four additional coding variants 485 

were significant (three novel) assuming an additive model. Of these 52 significant variants (48 from the 486 

all ancestry and 4 from the European-only analyses), eleven were of low frequency, including seven 487 

novel variants in RAPGEF3, FGFR2, R3HDML, HIST1H1T, PCNXL3, ACVR1C, and DARS2 (Table 1, 488 

Supplementary Figures 1-7). These low frequency variants tended to display larger effect estimates than 489 

any of the previously reported common variants (Figure 2)10. In general, variants with MAF<1% had 490 

effect sizes approximately three times greater than those of common variants (MAF>5%). There are 491 

likely additional rare variants with smaller effects sizes that we are underpowered to detect. However, 492 

in the absence of common variants with similarly large effects, our results point to the importance of 493 

investigating rare and low frequency variants to identify variants with large effects (Figure 2).  494 

Given the established differences in the genetic underpinnings between sexes for 495 

WHRadjBMI10,11, we also performed sex-stratified analyses and report variants that were array-wide 496 
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significant (P<2x10-7) in at least one sex stratum and exhibit significant sex-specific effects 497 

(Psexhet<7.14x10-4, see Online Methods). We found four additional novel variants that were not identified 498 

in the sex-combined meta-analyses (in UGGT2 and MMP14 for men only; and DSTYK and ANGPTL4 for 499 

women only) (Table 2, Supplementary Figures 7-11). Variants in UGGT2 and ANGPTL4 were of low 500 

frequency (MAFmen=0.6% and MAFwomen=1.9%, respectively). Additionally, 14 variants from the sex-501 

combined meta-analyses displayed stronger effects in women, including the novel, low frequency 502 

variant in ACVR1C (rs55920843, MAF=1.1%). Overall, 19 of the 56 variants (32%) identified across all 503 

meta-analyses (48 from all ancestry, 4 from European-only and 4 from sex-stratified analyses) showed 504 

significant sex-specific effects on WHRadjBMI (Figure 1): 16 variants with significantly stronger effects in 505 

women, and three in men (Figure 1).  506 

In summary, we identified 56 array-wide significant coding variants (P<2.0x10-7); 43 common (14 507 

novel) and 13 low frequency or rare variants (9 novel). For all 55 significant variants from the additive 508 

model only (47 from all ancestry, 4 from European-only, and 4 from sex-specific analyses), we examined 509 

potential collider bias, i.e. potential bias in effect estimates caused by adjusting for a correlated and 510 

heritable covariate like BMI, for the relevant sex stratum and ancestry (Online Methods, Supplementary 511 

Table 7, Supplementary Note 1). Overall, 38 of the 55 variants were robust against collider bias18,19 512 

across all primary and secondary meta-analyses (P<2x10-7 following correction), and an additional three 513 

variants were robust against collider bias in the women-only analysis but not in the sex-combined. The 514 

effect estimates of the remaining 14 variants (Supplementary Table 7, Supplementary Note 1) did not 515 

remain array-wide significant following correction. Thus, these 14 variants warrant further functional 516 

investigations to quantify their impact on WHR, as a true association may still exist, although the effect 517 

may be slightly overestimated in the current analysis. 518 

Using stage 1 meta-analysis results, we then aggregated low frequency variants across genes 519 

and tested their joint effect with both SKAT and burden tests20 (Supplementary Table 8, Online 520 
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Methods). We identified five genes that reached array-wide significance (P<2.5x10-6, 0.05/16,222 genes 521 

tested), RAPGEF3, ACVR1C, ANGPTL4, DNAI1, and NOP2. However, while all genes analyzed included 522 

more than one variant, none remained significant after conditioning on the single variant with the most 523 

significant p-value, suggesting these associations are driven by a single variant. 524 

 525 

Conditional analyses 526 

 We next implemented conditional analyses to determine (1) the number of independent 527 

association signals the 56 array-wide significant coding (23 novel) variants represent, and (2) whether 528 

the 33 variants near known GWAS association signals (<+/- 1Mb) represented independent novel 529 

association signals. To determine if these variants were independent association signals, we used 530 

approximate joint conditional analyses to test for independence in stage 1 (Online Methods; 531 

Supplementary Table 4)20. Only the RSPO3-KIAA0408 locus contains two independent variants 291 Kb 532 

apart, rs1892172 in RSPO3 (MAF=46.1%, Pconditional=4.37x10-23 in the combined sexes, and 533 

Pconditional=2.4x10-20 in women) and rs139745911 in KIAA0408 (MAF=0.9%, Pconditional=3.68x10-11 in the 534 

combined sexes, and Pconditional=1.46x10-11 in women; Figure 3).  535 

Further, 33 of our significant variants are within one Mb of previously identified GWAS tag SNPs 536 

for WHRadjBMI. We again used approximate joint conditional analysis to test for independence in the 537 

stage 1 meta-analysis dataset and obtained further complementary evidence from the UKBB dataset 538 

where necessary (Online Methods). We identified one coding variant representing a novel independent 539 

signal in a known locus [RREB1; stage1 meta-analysis, rs1334576, EAF = 0.44, Pconditional= 3.06x10-7, 540 

(Supplementary Table 5, Figure 3 [B]); UKBB analysis, rs1334576, RREB1, Pconditional= 1.24x10-8, 541 

(Supplementary Table 6) in the sex-combined analysis.  542 
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In summary, we identified a total of 56 WHRadjBMI-associated coding variants in 41 543 

independent association signals. Of these 41 independent association signals, 24 are new or 544 

independent of known GWAS-identified tag SNPs (either >1MB +/- or array-wide significant following 545 

conditional analyses) (Figure 1). The remaining non-GWAS-independent variants may assist in narrowing 546 

in on the causal variant or gene underlying these established association signals. 547 

Gene set and pathway enrichment analysis 548 

To determine if the significant coding variants highlight novel biological pathways and/or 549 

provide additional support for previously identified biological pathways, we applied two complementary 550 

pathway analysis methods using the EC-DEPICT (ExomeChip Data-driven Expression Prioritized 551 

Integration for Complex Traits) pathway analysis tool,21,22 and PASCAL23 (Online Methods). We examined 552 

361 variants with suggestive significance (P<5x10-4)10,17 from the combined ancestries and combined 553 

sexes analysis, as well as variants that exhibited significant sex-specific effects (Psexhet<5x10-4).  554 

The sex-combined analyses identified 49 significantly enriched gene sets (FDR<0.05) that 555 

grouped into 25 meta-gene sets (Supplementary Note 2, Supplementary Data 4-5). We noted a cluster 556 

of meta-gene sets with direct relevance to metabolic aspects of obesity (“enhanced lipolysis,” 557 

“abnormal glucose homeostasis,” “increased circulating insulin level,” and “decreased susceptibility to 558 

diet-induced obesity”). While these pathway groups had previously been identified in the GWAS DEPICT 559 

analysis (Figure 4), many of the individual gene sets within these meta-gene sets were not significant in 560 

the previous GWAS analysis, such as “insulin resistance,” “abnormal white adipose tissue physiology,” 561 

and “abnormal fat cell morphology” (Supplementary Data 4, Figure 4, Supplementary Figure 12a), but 562 

represent similar biological underpinnings implied by the shared meta-gene sets. These analyses 563 

highlight novel genes that fall outside known GWAS loci, based on their strong contribution to the 564 

significantly enriched gene sets related to adipocyte and insulin biology (Figure 4).  565 
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To focus on novel findings, we conducted pathway analyses after excluding variants from 566 

previous WHRadjBMI analyses10 (Supplemental Note 2). Seventy-five loci/genes were included in the 567 

DEPICT analysis, and we identified 26 significantly enriched gene sets (13 meta-gene sets). Here, all but 568 

one gene set, “lipid particle size”, were related to skeletal biology. This result likely reflects an effect on 569 

the pelvic skeleton (hip circumference), shared signaling pathways between bone and fat (such as TGF-570 

beta) and shared developmental origin24 (Supplementary Data 5, Supplementary Figure 12b).  571 

We used PASCAL (Online Methods) to further distinguish between enrichment based on coding-572 

only variant associations (this study) and regulatory-only variant associations (up to 20 kb upstream of 573 

the gene from a previous GIANT study10). For completeness, we also compared the coding pathways to 574 

those that could be identified in the total previous GWAS effort (using both coding and regulatory 575 

variants) by PASCAL. The analysis revealed 109 significantly enriched coding pathways (FDR<0.05; 576 

Supplementary Table 9). A total of 111 gene sets were identified only in the coding+regulatory analysis 577 

that included ExomeChip data. Thus, while we observed high concordance in the -log10 (p-values) 578 

between ExomeChip and GWAS gene set enrichment (Pearson's r (coding vs regulatory only) = 0.38, 579 

P<10-300; Pearson's r (coding vs coding+regulatory) = 0.51, P<10-300), there are gene sets that seem to be 580 

enriched specifically for variants in coding regions (e.g., decreased susceptibility to diet-induced obesity, 581 

abnormal skeletal morphology) or unique to variants in regulatory regions (e.g. transcriptional 582 

regulation of white adipocytes) (Supplementary Figure 13).  583 

Cross-trait associations 584 

To assess the relevance of our identified variants with cardiometabolic (lipids, diabetes-related, 585 

blood pressure), anthropometric (height and BMI), and reproductive traits (age at menopause and 586 

menarche), we conducted association lookups from existing ExomeChip studies of 15 traits 587 

(Supplementary Data 6, Supplementary Figure 14). We found that variants in STAB1 and PLCB3 display 588 

the greatest number of significant cross-trait associations, each with seven different traits (P<9.8x10-4, 589 
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0.05/51 variants tested). Of note, these two genes cluster together with RSPO3, DNAH10, MNS1, 590 

COBLL1, CCDC92, and ITIH3. The WHR-increasing allele in this cluster of variants exhibit a pattern of 591 

increased cardiometabolic risk (e.g. increased fasting insulin [FI], two-hour glucose [TwoHGlu], and 592 

triglycerides [TG]; and decreased high-density lipoprotein cholesterol [HDL]), but also decreased BMI 593 

(Supplementary Data 6, Supplementary Figure 14). Among the traits we examined, height (19 variants), 594 

HDL (18 variants), and BMI (16 variants) have the greatest number of significant associations with 595 

WHRadjBMI-associated ExomeChip variants. Many of our novel variants exhibit significant associations 596 

with lipid-related traits, including variants in DAGLB (HDL), MGA (HDL, TG), RASIP1 (low-density 597 

lipoprotein cholesterol [LDL], TG, total cholesterol [TC]), and IZUMO1 (LDL, TG, TC). Further, significant 598 

cross-trait associations are consistent with expected direction of effect for several traits, i.e. the WHR-599 

increasing allele is associated with higher values of TG, DBP, fasting insulin, TC , LDL and T2D when 600 

compared to the WHR across all significant variants (P<9.8x10-4). The WHR-increasing allele decreases 601 

HDL for 89% of significantly associated variants (Supplementary Data 6, Supplementary Figure 14).  602 

Given the established correlation between total body fat percentage and WHR (R= 0.052 to 603 

0.483)25-27, we examined the association of our top exome variants with both total body fat percentage 604 

and truncal fat percentage available in a sub-sample of up to 118,160 participants of UKBB 605 

(Supplementary Tables 10-11). Seven of the common novel variants were significantly associated 606 

(P<0.001, 0.05/48 variants examined) with both total body and truncal fat percentage in the sexes-607 

combined analysis (COBLL1, UHRF1BP1, WSCD2, CCDC92, IFI30, MPV17L2, IZUMO1). Only one of our tag 608 

SNPs, rs7607980 in COBLL1, is nearby a known total body fat percentage GWAS locus (rs6738627; 609 

R2=0.1989, distance=6751 bp, with our tag SNP)28. Two additional variants, rs62266958 in EFCAB12 and 610 

rs224331 in GDF5, were significantly associated with truncal fat in the women-only analysis. Of the nine 611 

SNPs associated with at least one of these two traits, all variants displayed much greater magnitude of 612 

effect on truncal fat compared to total body fat (Supplementary Figure 15).  613 



  

  27 

Previous studies have demonstrated the importance of examining common and rare variants 614 

within genes with mutations known to cause monogenic diseases29,30. We assessed enrichment of our 615 

WHRadjBMI within genes that cause monogenic forms of lipodystrophy) and/or insulin resistance 616 

(Supplementary Data 7). No significant enrichment was observed (Supplementary Figure 16). For 617 

lipodystrophy, the lack of significant findings may be due in part to the small number of implicated 618 

genes and the relatively small number of variants in monogenic disease causing genes, reflecting their 619 

intolerance of variation.  620 

Genetic architecture of WHRadjBMI coding variants 621 

We used summary statistics from our stage 1 results to estimate the phenotypic variance 622 

explained by ExomeChip coding variants. We calculated the variance explained by subsets of SNPs across 623 

various significance thresholds (P< 2x10-7 to 0.2) and conservatively estimated using only independent 624 

tag SNPs (Supplementary Table 12, Online Methods, and Supplementary Figure 17). The 22 625 

independent significant coding SNPs in stage 1 account for 0.28% of phenotypic variance in WHRadjBMI. 626 

For independent variants that reached suggestive significance in stage 1 (P<2x10-6), 33 SNPs explain 627 

0.38% of the variation; however, the 1,786 independent SNPs with a liberal threshold of P<0.02 explain 628 

13 times more variation (5.12%). While these large effect estimates may be subject to winner’s curse, 629 

for array-wide significant variants, we detected a consistent relationship between effect magnitude and 630 

MAF in our stage 2 analyses in UK Biobank and deCODE (Supplementary Data 1-3). Notably, the 631 

Exomechip coding variants explained less of the phenotypic variance than in our previous GIANT 632 

investigation, wherein 49 significant SNPs explained 1.4% of the variance in WHRadjBMI. When 633 

considering all coding variants on the ExomeChip in men and women together, 46 SNPs with a P<2x10-6 634 

and 5,917 SNPs with a P<0.02 explain 0.51% and 13.75% of the variance in WHRadjBMI, respectively. As 635 

expected given the design of the ExomeChip, the majority of the variance explained is attributable to 636 

rare and low frequency coding variants (independent SNPs with MAF<1% and MAF<5% explain 5.18% 637 
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and 5.58%, respectively). However, for rare and low frequency variants, those that passed significance in 638 

stage 1 explain only 0.10% of the variance in WHRadjBMI. As in Figure 2, these results also indicate that 639 

there are additional coding variants associated with WHRadjBMI that remain to be discovered, 640 

particularly rare and low frequency variants with larger effects than common variants. Due to observed 641 

differences in association strength between women and men, we estimated variance explained for the 642 

same set of SNPs in women and men separately. As observed in previous studies10, there was 643 

significantly (PRsqDiff<0.002=0.05/21, Bonferroni-corrected threshold) more variance explained in women 644 

compared to men at each significance threshold considered (differences ranged from 0.24% to 0.91%).  645 

To better understand the potential clinical impact of WHRadjBMI associated variants, we 646 

conducted penetrance analysis using the UKBB population (both sexes combined, and men- and women-647 

only). We compared the number of carriers and non-carriers of the minor allele for each of our 648 

significant variants in centrally obese and non-obese individuals to determine if there is a significant 649 

accumulation of the minor allele in either the centrally obese or non-obese groups (Online Methods). 650 

Three rare and low frequency variants (MAF ≤ 1%) with larger effect sizes (effect size > 0.90) were 651 

included in the penetrance analysis using World Health Organization (WHO- obese women WHR>0.85 652 

and obese men WHR>0.90) WHR cut-offs for central obesity. Of these, one SNV (rs55920843-ACVR1C; 653 

Psex-combined=9.25x10-5; Pwomen=4.85x10-5) showed a statistically significant difference in the number of 654 

carriers and non-carriers of the minor allele when the two strata were compared (sex-combined obese 655 

carriers=2.2%; non-obese carriers=2.6%; women obese carriers=2.1%; non-obese women carriers=2.6% 656 

(Supplementary Table 13, Supplementary Figure 18). These differences were significant in women, but 657 

not in men (Pmen<5.5x10-3 after Bonferroni correction for 9 tests) and agree with our overall meta-658 

analysis results, where the minor allele (G) was significantly associated with higher WHRadjBMI in 659 

women only (Tables 1 and 2). 660 
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Evidence for functional role of significant variants 661 

Drosophila Knockdown 662 

Considering the genetic evidence of adipose and insulin biology in determining body fat 663 

distribution10, and the lipid signature of the variants described here, we examined whole-body 664 

triglycerides levels in adult Drosophila, a model organism in which the fat body is an organ functionally 665 

analogous to mammalian liver and adipose tissue and triglycerides are the major source of fat storage31. 666 

Of the 51 genes harboring our 56 significantly associated variants, we identified 27 with Drosophila 667 

orthologues for functional follow-up analyses. In order to prioritize genes for follow-up, we selected 668 

genes with large changes in triglyceride storage levels (> 20% increase or > 40% decrease, as chance 669 

alone is unlikely to cause changes of this magnitude, although some decrease is expected) after 670 

considering each corresponding orthologue in an existing large-scale screen for adipose with ≤2 671 

replicates per knockdown strain.31 Two orthologues, for PLXND1 and DNAH10, from two separate loci 672 

met these criteria. For these two genes, we conducted additional knockdown experiments with ≥5 673 

replicates using tissue-specific drivers (fat body [cg-Gal4] and neuronal [elav-Gal4] specific RNAi-674 

knockdowns) (Supplementary Table 14). A significant (P<0.025, 0.05/2 orthologues) increase in the total 675 

body triglyceride levels was observed in DNAH10 orthologue knockdown strains for both the fat body 676 

and neuronal drivers. However, only the neuronal driver knockdown for PLXND1 produced a significant 677 

change in triglyceride storage. DNAH10 and PLXND1 both lie within previous GWAS identified regions 678 

(Box 1). Adjacent genes have been highlighted as likely candidates for the DNAH10 association region, 679 

including CCDC92 and ZNF664 based on eQTL evidence. However, our fly knockdown results support 680 

DNAH10 as the causal genes underlying this association. Of note, rs11057353 in DNAH10 showed 681 

suggestive significance after conditioning on the known GWAS variants in nearby CCDC92 (sex-combined 682 

Pconditional=7.56x10-7; women-only rs11057353 Pconditional= 5.86x10-7, Supplementary Table 6; thus 683 

providing some evidence of multiple causal variants/genes underlying this association signal. Further 684 



  

  30 

analyses are needed to determine whether the implicated coding variants from the current analysis are 685 

the putatively functional variants. 686 

eQTL Lookups  687 

To gain a better understanding of the potential functionality of novel and low frequency 688 

variants, we examined the cis-association of the identified variants with expression level of nearby genes 689 

in subcutaneous adipose tissue, visceral omental adipose tissue, skeletal muscle and pancreas from 690 

GTEx32, and assessed whether the exome and eQTL associations implicated the same signal (Online 691 

Methods, Supplementary Data 8-9, Supplementary Table 15). The lead exome variant was associated 692 

with expression level of the coding gene itself for DAGLB, MLXIPL, CCDC92, MAPKBP1, LRRC36 and 693 

UQCC1. However, at three of these loci (MLXIPL, MAPKBP1, and LRRC36), the lead exome variant is also 694 

associated with expression level of additional nearby genes, and at three additional loci, the lead exome 695 

variant is only associated with expression level of nearby genes (HEMK1 at C3orf18; NT5DC2, SMIM4 696 

and TMEM110 at STAB1/ITIH3; and C6orf106 at UHRF1BP1). Although detected with a missense variant, 697 

these loci are also consistent with a regulatory mechanism of effect as they are significantly associated 698 

with expression levels of genes, and the association signal may well be due to LD with nearby regulatory 699 

variants.  700 

Some of the coding genes implicated by eQTL analyses are known to be involved in adipocyte 701 

differentiation or insulin sensitivity: e. g. for MLXIPL, the encoded carbohydrate responsive element 702 

binding protein is a transcription factor, regulating glucose-mediated induction of de novo lipogenesis in 703 

adipose tissue, and expression of its beta-isoform in adipose tissue is positively correlated with adipose 704 

insulin sensitivity33,34. For CCDC92, the reduced adipocyte lipid accumulation upon knockdown 705 

confirmed the involvement of its encoded protein in adipose differentiation35.  706 
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Biological Curation 707 

To gain further insight into the possible functional role of the identified variants, we conducted 708 

thorough searches of the literature and publicly available bioinformatics databases (Supplementary 709 

Data 9-10, Box 1, Online Method). Many of our novel low frequency variants are in genes that are 710 

intolerant of nonsynonymous mutations (e.g. ACVR1C, DARS2, FGFR2; ExAC Constraint Scores >0.5). Like 711 

previously identified GWAS variants, several of our novel coding variants lie within genes that are 712 

involved in glucose homeostasis (e.g. ACVR1C, UGGT2, ANGPTL4), angiogenesis (RASIP1), adipogenesis 713 

(RAPGEF3), and lipid biology (ANGPTL4, DAGLB) (Supplementary Data 9, Box 1).  714 

 715 

DISCUSSION  716 

Our two-staged approach to analysis of coding variants from ExomeChip data in up to 476,546 717 

individuals identified a total of 56 array-wide significant variants in 41 independent association signals, 718 

including 24 newly identified (23 novel and one independent of known GWAS signals) that influence 719 

WHRadjBMI. Nine of these variants were low frequency or rare, indicating an important role for low 720 

frequency variants in the polygenic architecture of fat distribution and providing further insights into its 721 

underlying etiology. While, due to their rarity, these coding variants only explain a small proportion of 722 

the trait variance at a population level, they may, given their predicted role, be more functionally 723 

tractable than non-coding variants and have a critical impact at the individual and clinical level. For 724 

instance, the association between a low frequency variant (rs11209026; R381Q; MAF<5% in ExAC) 725 

located in the IL23R gene encoding a subunit of the interleukin 23 (IL23) receptor and multiple 726 

inflammatory diseases (such as psoriasis36, rheumatoid arthritis37, ankylosing spondylitis38, and 727 

inflammatory bowel diseases39) led to the development of new therapies, targeting IL23 and IL12 in the 728 

same pathway (reviewed in 40-42). Although a large proportion of variance at the population level still 729 
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needs to be accounted for in these inflammatory diseases, the contribution of this association to 730 

understanding disease mechanisms and the development of new therapies has been tremendous 731 

(reviewed in 41,42). Thus, we are encouraged that our associated low frequency coding variants displayed 732 

large effect sizes; all but one of the nine novel low frequency variants had an effect size larger than the 733 

49 SNPs reported in Shungin et al. 2015, and some of these effect sizes were up to 7-fold larger than 734 

those previously reported for GWAS. This finding mirrors results for other cardiometabolic traits43, and 735 

suggests variants of possible clinical significance with even larger effect and lower frequency variants 736 

will likely be detected through larger additional genome-wide scans of many more individuals. 737 

We continue to observe sexual dimorphism in the genetic architecture of WHRadjBMI11. Overall, 738 

we identified 19 coding variants that display significant sex differences, of which 16 (84%) display larger 739 

effects in women compared to men. Of the variants outside of GWAS loci, we reported three (two with 740 

MAF<5%) that show a significantly stronger effect in women and two (one with MAF<5%) that show a 741 

stronger effect in men. Additionally, genetic variants continue to explain a higher proportion of the 742 

phenotypic variation in body fat distribution in women compared to men10,11. Of the novel female 743 

(DSTYK and ANGPTL4) and male (UGGT2 and MMP14) specific signals, only ANGPTL4 implicated fat 744 

distribution related biology associated with both lipid biology and cardiovascular traits (Box 1). Sexual 745 

dimorphism in fat distribution is apparent from childhood and throughout adult life44-46, and at sexually 746 

dimorphic loci, hormones with different levels in men and women may interact with genomic and 747 

epigenomic factors to regulate gene activity, though this remains to be experimentally documented. 748 

Dissecting the underlying molecular mechanisms of the sexual dimorphism in body fat distribution, and 749 

also how it is correlated with – and causing – important comorbidities like T2D and cardiovascular 750 

diseases will be crucial for improved understanding of disease risk and pathogenesis. 751 

Overall, we observe fewer significant associations between WHRadjBMI and coding variants on 752 

the ExomeChip than Turcot et al. (In press) examining the association of low frequency and rare coding 753 
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variants with BMI. In line with these observations, we identify fewer pathways and cross-trait 754 

associations. One reason for fewer WHRadjBMI implicated variants and pathways may be smaller 755 

sample size (NWHRadjBMI = 476,546, NBMI = 718,639), and thus, lower statistical power. Power, however, is 756 

likely not the only contributing factor. For example, Turcot et al. (In Press) have comparative sample 757 

sizes between BMI and that of Marouli et al.22 studying height (Nheight = 711,428). However, greater than 758 

seven times the number of coding variants are identified for height than for BMI, indicating that perhaps 759 

a number of other factors, including trait architecture, heritability (possibly overestimated in some 760 

phenotypes), and phenotype precision, likely all contribute to our study’s capacity to identify low 761 

frequency and rare variants with large effects. Further, it is possible that the comparative lack of 762 

significant findings for WHRadjBMI and BMI compared to height may be a result of higher selective 763 

pressure against genetic predisposition to cardiometabolic phenotypes, such as BMI and WHR. As 764 

evolutionary theory predicts that harmful alleles will be low frequency47, we may need larger sample 765 

sizes to detect rare variants that have so far escaped selective pressures. Lastly, the ExomeChip is 766 

limited by the variants that are present on the chip, which was largely dictated by sequencing studies in 767 

European-ancestry populations and a MAF detection criteria of ~0.012%. It is likely that though an 768 

increased sample size, use of chips designed to detect variation across a range of continental ancestries, 769 

and/or alternative study designs, future studies will detect additional variation from the entire allele 770 

frequency spectrum that contributes to fat distribution phenotypes. 771 

The collected genetic and epidemiologic evidence has now demonstrated that fat distribution 772 

(as measured by increased WHRadjBMI) is correlated with increased risk of T2D and CVD, and that this 773 

association is likely causal with potential mediation through blood pressure, triglyceride-rich 774 

lipoproteins, glucose, and insulin9. This observation yields an immediate follow-up question: Which 775 

mechanisms regulate depot-specific fat accumulation and are risks for disease, driven by increased 776 

visceral or decreased subcutaneous adipose tissue mass (or both)? Pathway analysis identified several 777 
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novel pathways and gene sets related to metabolism and adipose regulation, bone growth and 778 

development. Similarly, expression/eQTL results support the function and relevance of adipogenesis, 779 

adipocyte biology, and insulin signaling, supporting our previous findings for WHRadjBMI10. We also 780 

provide evidence suggesting known biological functions and pathways contributing to body fat 781 

distribution (e.g., diet-induced obesity, angiogenesis, bone growth and morphology, and enhanced 782 

lipolysis). 783 

A seminal finding from this study is the importance of lipid metabolism for body fat distribution. 784 

In fact, pathway analyses that highlight enhanced lipolysis, cross-trait associations with circulating lipid 785 

levels, existing biological evidence from the literature, and knockdown experiments in Drosophila 786 

examining triglyceride storage point to novel candidate genes (ANGPTL4, ACVR1C, DAGLB, MGA, RASIP1, 787 

and IZUMO1) and new candidates in known regions (DNAH1010 and MLXIPL14) related to lipid biology 788 

and its role in fat storage. Newly implicated genes of interest include ACVR1C, MLXIPL, and ANGPTL4, all 789 

of which are involved in lipid homeostasis; all are excellent candidate genes for central adiposity. 790 

Carriers of inactivating mutations in ANGPTL4 (Angiopoietin Like 4), for example, display low triglyceride 791 

levels and low risk of coronary artery disease48. ACVR1C encodes the activin receptor-like kinase 7 792 

protein (ALK7), a receptor for the transcription factor TGFB-1, well known for its central role in growth 793 

and development in general49-53, and adipocyte development in particular53. ACVR1C exhibits the highest 794 

expression in adipose tissue, but is also highly expressed in the brain54-56. In mice, decreased activity of 795 

ACVR1C upregulates PPARγ and C/EBPα pathways and increases lipolysis in adipocytes, thus decreasing 796 

weight and diabetes in mice54,57,58. Such activity is suggestive of a role for ALK7 in adipose tissue 797 

signaling and therefore for therapeutic targets for human obesity. MLXIPL, also important for lipid 798 

metabolism and postnatal cellular growth, is a transcription factor which activates triglyceride synthesis 799 

genes in a glucose-dependent manner59,60. The lead exome variant in this gene is highly conserved, most 800 

likely damaging, and is associated with reduced MLXIPL expression in adipose tissue. Furthermore, in a 801 
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recent longitudinal, in vitro transcriptome analysis of adipogenesis in human adipose-derived stromal 802 

cells, gene expression of MLXIPL was up-regulated during the maturation of adipocytes, suggesting a 803 

critical role in the regulation of adipocyte size and accumulation61.  804 

Taken together, our 24 novel variants for WHRadjBMI offer new biology, highlighting the 805 

importance of lipid metabolism in the genetic underpinnings of body fat distribution. We continue to 806 

demonstrate the critical role of adipocyte biology and insulin resistance for central obesity and offer 807 

support for potentially causal genes underlying previously identified fat distribution GWAS loci. Notably, 808 

our findings offer potential new therapeutic targets for intervention in the risks associated with 809 

abdominal fat accumulation, and represents a major advance in our understanding of the underlying 810 

biology and genetic architecture of central adiposity. 811 
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TLE, AG, AM, MIM; Gene-set enrichment analyses: SB, RSF, JNH, ZK, DL, THP; eQTL analyses: CKR, YL, 982 

KLM; Monogenic and syndromic gene enrichment analyses: HMH, AKM; Fly Obesity Screen: AL, JAP; 983 

Overseeing of contributing studies: (1958 Birth Cohort) PD; (Airwave) PE; (AMC PAS) GKH; (Amish) 984 

JRO'C; (ARIC) EB; (ARIC, Add Health) KEN; (BRAVE) EDA, RC; (BRIGHT) PBM; (CARDIA) MF, PJS; (Cebu 985 

Longitudinal Health and Nutrition Survey) KLM; (CHD Exome + Consortium) ASB, JMMH, DFR, JD; (CHES) 986 

RV; (Clear/eMERGE (Seattle)) GPJ; (CROATIA_Korcula) VV, OP, IR; (deCODE) KS, UT; (DHS) DWB; 987 

(DIACORE) CAB; (DPS) JT, JL, MU; (DRSEXTRA) TAL, RR; (EFSOCH) ATH, TMF; (EGCUT) TE; (eMERGE 988 

(Seattle)) EBL; (EPIC-Potsdam) MBS, HB; (EpiHealth) EI, PWF; (EXTEND) ATH, TMF; (Family Heart Study) 989 

IBB; (Fenland, EPIC) RAS; (Fenland, EPIC, InterAct) NJW, CL; (FINRISK) SM; (FINRISK 2007 (T2D) ) PJ, VS; 990 

(Framingham Heart Study) LAC; (FUSION) MB, FSC; (FVG) PG; (Generation Scotland) CH, BHS; (Genetic 991 

Epidemiology Network of Arteriopathy (GENOA)) SLRK; (GRAPHIC) NJS; (GSK-STABILITY) DMW, LW, 992 



  

  43 

HDW; (Health) AL; (HELIC MANOLIS) EZ, GD; (HELIC Pomak) EZ, GD; (HUNT-MI) KH, CJW; (Inter99) TH, TJ; 993 

(IRASFS) LEW, EKS; (Jackson Heart Study (JHS)) JGW; (KORA S4) KS, IMH; (Leipzig-Adults) MB, PK; 994 

(LOLIPOP-Exome) JCC, JSK; (LOLIPOP-OmniEE) JCC, JSK; (MESA) JIR, XG; (METSIM) JK, ML; (MONICA-995 

Brianza) GC; (Montreal Heart Institute Biobank (MHIBB)) MPD, GL, SdD, JCT; (MORGAM Central 996 

Laboratory) MP; (MORGAM Data Centre) KK; (OBB) FK; (PCOS) APM, CML; (PIVUS) CML, LL; (PRIME - 997 

Belfast) FK; (PRIME - Lille) PA; (PRIME - Strasbourg) MM; (PRIME - Toulouse) JF; (PROMIS) DS; (QC) MAR; 998 

(RISC) BB, EF, MW; (Rotterdam Study I) AGU, MAI; (SEARCH) AMD; (SHIP/SHIP-Trend) MD; (SIBS) DFE; 999 

(SOLID TIMI-52) DMW; (SORBS) APM, MS, AT; (The Mount Sinai BioMe Biobank) EPB, RJFL; (The NEO 1000 

Study) DOMK; (The NHAPC study, The GBTDS study) XL; (The Western Australian Pregnancy Cohort 1001 

(Raine) Study) CEP, SM; (TwinsUK) TDS; (ULSAM) APM; (Vejle Biobank) IB, CC, OP; (WGHS) DIC, PMR; 1002 

(Women's Health Initiative) PLA; (WTCCC-UKT2D) MIM, KRO; (YFS) TL, OTRa; Genotyping of contributing 1003 

studies: (1958 Birth Cohort) KES; (Airwave) EE, MPSL; (AMC PAS) SS; (Amish) LMYA, JAP; (ARIC) EWD, 1004 

MG; (BBMRI-NL) SHV, LB, CMvD, PIWdB; (BRAVE) EDA; (Cambridge Cancer Studies) JGD; (CARDIA) MF; 1005 

(CHD Exome + Consortium) ASB, JMMH, DFR, JD, RY(Clear/eMERGE (Seattle)) GPJ; (CROATIA_Korcula) 1006 

VV; (DIACORE) CAB, MG; (DPS) AUJ, JL; (DRSEXTRA) PK; (EGCUT) TE; (EPIC-Potsdam) MBS, KM; 1007 

(EpiHealth) EI, PWF; (Family Heart Study) KDT; (Fenland, EPIC) RAS; (Fenland, EPIC, InterAct) NJW, CL; 1008 

(FUSION) NN; (FVG) IG, AM; (Generation Scotland) CH; (Genetic Epidemiology Network of Arteriopathy 1009 

(GENOA)) SLRK, JAS; (GRAPHIC) NJS; (GSK-STABILITY) DMW; (Health) JBJ; (HELIC MANOLIS) LS; (HELIC 1010 

Pomak) LS; (Inter99) TH, NG; (KORA) MMN; (KORA S4) KS, HG; (Leipzig-Adults) AM; (LOLIPOP-Exome) 1011 

JCC, JSK; (LOLIPOP-OmniEE) JCC, JSK; (MESA) JIR, YDIC, KDT; (METSIM) JK, ML; (Montreal Heart Institute 1012 

Biobank (MHIBB)) MPD; (OBB) FK; (PCOS) APM; (PIVUS) CML; (Rotterdam Study I) AGU, CMG, FR; (SDC) 1013 

JMJ, HV; (SEARCH) AlMD; (SOLID TIMI-52) DMW; (SORBS) APM; (The Mount Sinai BioMe Biobank) EPB, 1014 

RJFL, YL, CS; (The NEO Study) RLG; (The NHAPC study, The GBTDS study) XL, HL, YH; (The Western 1015 

Australian Pregnancy Cohort (Raine) Study) CEP, SM; (TUDR) ZA; (TwinsUK) APM; (ULSAM) APM; (WGHS) 1016 
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DIC, AYC; (Women's Health Initiative) APR; (WTCCC-UKT2D) MIM; (YFS) TL, LPL; Phenotyping of 1017 

contributing studies: (Airwave) EE; (AMC PAS) SS; (Amish) LM YA; (ARIC) EWD; (ARIC, Add Health) KEN; 1018 

(BBMRI-NL) SHV; (BRAVE) EDA; (BRIGHT) MJC; (CARL) AR, GG; (Cebu Longitudinal Health and Nutrition 1019 

Survey) NRL; (CHES) RV, MT; (Clear/eMERGE (Seattle)) GPJ, AAB; (CROATIA_Korcula) OP, IR; (DIACORE) 1020 

CAB, BKK; (DPS) AUJ, JL; (EFSOCH) ATH; (EGCUT) EM; (EPIC-Potsdam) HB; (EpiHealth) EI; (EXTEND) ATH; 1021 

(Family Heart Study) MFF; (Fenland, EPIC, InterAct) NJW; (FIN-D2D 2007) LM, MV; (FINRISK) SM; 1022 

(FINRISK 2007 (T2D)) PJ, HS; (Framingham Heart Study) CSF; (Generation Scotland) CH, BHS; (Genetic 1023 

Epidemiology Network of Arteriopathy (GENOA)) SLRK, JAS; (GRAPHIC) NJS; (GSK-STABILITY) LW, HDW; 1024 

(Health) AL, BHT; (HELIC MANOLIS) LS, AEF, ET; (HELIC Pomak) LS, AEF, MK; (HUNT-MI) KH, OH; (Inter99) 1025 

TJ, NG; (IRASFS) LEW, BK; (KORA) MMN; (LASA (BBMRI-NL)) KMAS; (Leipzig-Adults) MB, PK; (LOLIPOP-1026 

Exome) JCC, JSK; (LOLIPOP-OmniEE) JCC, JSK; (MESA) MA; (Montreal Heart Institute Biobank (MHIBB)) 1027 

GL, KSL, VT; (MORGAM Data Centre) KK; (OBB) FK, MN; (PCOS) CML; (PIVUS) LL; (PRIME - Belfast) FK; 1028 

(PRIME - Lille) PA; (PRIME - Strasbourg) MM; (PRIME - Toulouse) JF; (RISC) BB, EF; (Rotterdam Study I) 1029 

MAI, CMGFR, MCZ; (SHIP/SHIP-Trend) NF; (SORBS) MS, AT; (The Mount Sinai BioMe Biobank) EPB, YL, 1030 

CS; (The NEO Study) RdM; (The NHAPC study, The GBTDS study) XL, HL, LS, FW; (The Western Australian 1031 

Pregnancy Cohort (Raine) Study) CEP; (TUDR) YJH, WJL; (TwinsUK) TDS, KSS; (ULSAM) VG; (WGHS) DIC, 1032 

PMR; (Women's Health Initiative) APR; (WTCCC-UKT2D) MIM, KRO; (YFS) TL, OTR; Data analysis of 1033 

contributing studies: (1958 Birth Cohort) KES, IN; (Airwave) EE, MPSL; (AMC PAS) SS; (Amish) JRO'C, 1034 

LMYA, JAP; (ARIC, Add Health) KEN, KLY, MG; (BBMRI-NL) LB; (BRAVE) RC, DSA; (BRIGHT) HRW; 1035 

(Cambridge Cancer Studies) JGD, AP, DJT; (CARDIA) MF, LAL; (CARL) AR, DV; (Cebu Longitudinal Health 1036 

and Nutrition Survey) YW; (CHD Exome + Consortium) ASB, JMMH, DFR, RY, PS; (CHES) YJ; 1037 

(CROATIA_Korcula) VV; (deCODE) VS, GT; (DHS) AJC, PM, MCYN; (DIACORE) CAB, MG; (EFSOCH) HY; 1038 

(EGCUT) TE, RM; (eMERGE (Seattle)) DSC; (ENDO) TK; (EPIC) JHZ; (EPIC-Potsdam) KM; (EpiHealth) SG; 1039 

(EXTEND) HY; (Family Heart Study) MFF; (Fenland) JaL; (Fenland, EPIC) RAS; (Fenland, InterAct) SMW; 1040 
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(Finrisk Extremes and QC) SV; (Framingham Heart Study) CTL, NLHC; (FVG) IG; (Generation Scotland) CH, 1041 

JM; (Genetic Epidemiology Network of Arteriopathy (GENOA)) LFB; (GIANT-Analyst) AEJ; (GRAPHIC) NJS, 1042 

NGDM, CPN; (GSK-STABILITY) DMW, AS; (Health) JBJ; (HELIC MANOLIS) LS; (HELIC Pomak) LS; (HUNT-MI) 1043 

WZ; (Inter99) NG; (IRASFS) BK; (Jackson Heart Study (JHS)) LAL, JL; (KORA S4) TWW; (LASA (BBMRI-NL)) 1044 

KMAS; (Leipzig-Adults) AM; (LOLIPOP-Exome) JCC, JSK, WZ; (LOLIPOP-OmniEE) JCC, JSK, WZ; (MESA) JIR, 1045 

XG, JY; (METSIM) XS; (Montreal Heart Institute Biobank (MHIBB)) JCT, GL, KSL, VT; (OBB) AM; (PCOS) 1046 

APM, TK; (PIVUS) NR; (PROMIS) AR, WZ; (QC GoT2D/T2D-GENES (FUSION, METSIM, etc)) AEL; (RISC) HY; 1047 

(Rotterdam Study I) CMG, FR; (SHIP/SHIP-Trend) AT; (SOLID TIMI-52) DMW, AS; (SORBS) APM; (The 1048 

Mount Sinai BioMe Biobank) YL, CS; (The NEO Study) RLG; (The NHAPC study, The GBTDS study) XL, HL, 1049 

YH; (The Western Australian Pregnancy Cohort (Raine) Study) CAW; (UK Biobank) ARW; (ULSAM) APM, 1050 

AM; (WGHS) DIC, AYC; (Women's Health Initiative) PLA, JH; (WTCCC-UKT2D) WG; (YFS) LPL. 1051 

 1052 

METHODS  1053 

Studies 1054 

Stage 1 consisted of 74 studies (12 case/control studies, 59 population-based studies, and five 1055 

family studies) comprising 344,369 adult individuals of the following ancestries: 1) European descent (N= 1056 

288,492), 2) African (N= 15,687), 3) South Asian (N= 29,315), 4) East Asian (N=6,800), and 5) Hispanic 1057 

(N=4,075). Stage 1 meta-analyses were carried out in each ancestry separately and in the all ancestries 1058 

group, for both sex-combined and sex-specific analyses. Follow-up analyses were undertaken in 132,177 1059 

individuals of European ancestry from the deCODE anthropometric study and UK Biobank 1060 

(Supplementary Tables 1-3). Conditional analyses were performed in the all ancestries and European 1061 

descent groups. 1062 

Phenotypes 1063 
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For each study, WHR (waist circumference divided by hip circumference) was corrected for age, 1064 

BMI, and the genomic principal components (derived from GWAS data, the variants with MAF >1% on 1065 

the ExomeChip, and ancestry informative markers available on the ExomeChip), as well as any additional 1066 

study-specific covariates (e.g. recruiting center), in a linear regression model. For studies with non-1067 

related individuals, residuals were calculated separately by sex, whereas for family-based studies sex 1068 

was included as a covariate in models with both men and women. Additionally, residuals for 1069 

case/control studies were calculated separately. Finally, residuals were inverse normal transformed and 1070 

used as the outcome in association analyses. Phenotype descriptives by study are shown in 1071 

Supplementary Table 3. 1072 

Genotypes and QC 1073 

The majority of studies followed a standardized protocol and performed genotype calling using 1074 

the algorithms indicated in Supplementary Table 2, which typically included zCall3. For 10 studies 1075 

participating in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) 1076 

Consortium, the raw intensity data for the samples from seven genotyping centers were assembled into 1077 

a single project for joint calling4. Study-specific quality control (QC) measures of the genotyped variants 1078 

were implemented before association analysis (Supplementary Tables 1-2).  1079 

Study-level statistical analyses 1080 

Individual cohorts were analyzed for each ancestry separately, in sex-combined and sex-specific 1081 

groups, with either RAREMETALWORKER (http://genome.sph.umich.edu/wiki/RAREMETALWORKER) or 1082 

RVTESTs (http://zhanxw.github.io/rvtests/), to associate inverse normal transformed WHRadjBMI with 1083 

genotype accounting for cryptic relatedness (kinship matrix) in a linear mixed model. These software 1084 

programs are designed to perform score-statistic based rare-variant association analysis, can 1085 

accommodate both unrelated and related individuals, and provide single-variant results and variance-1086 

https://paperpile.com/c/1z4cgJ/2cuM
https://paperpile.com/c/1z4cgJ/mk4x
http://genome.sph.umich.edu/wiki/RAREMETALWORKER
http://zhanxw.github.io/rvtests/
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covariance matrices. The covariance matrix captures linkage disequilibrium (LD) relationships between 1087 

markers within 1 Mb, which is used for gene-level meta-analyses and conditional analyses62,63. Single-1088 

variant analyses were performed for both additive and recessive models.  1089 

Centralized quality-control 1090 

Individual cohorts identified ancestry population outliers based on 1000 Genome Project phase 1091 

1 ancestry reference populations. A centralized quality-control procedure implemented in EasyQC64 was 1092 

applied to individual cohort association summary statistics to identify cohort-specific problems: (1) 1093 

assessment of possible errors in phenotype residual transformation; (2) comparison of allele frequency 1094 

alignment against 1000 Genomes Project phase 1 reference data to pinpoint any potential strand issues, 1095 

and (3) examination of quantile-quantile (QQ) plots per study to identify any inflation arising from 1096 

population stratification, cryptic relatedness and genotype biases.  1097 

Meta-analyses 1098 

Meta-analyses were carried out in parallel by two different analysts at two sites using 1099 

RAREMETAL62. During the meta-analyses, we excluded variants if they had call rate <95%, Hardy-1100 

Weinberg equilibrium P-value <1x10-7, or large allele frequency deviations from reference populations 1101 

(>0.6 for all ancestries analyses and >0.3 for ancestry-specific population analyses). We also excluded 1102 

from downstream analyses markers not present on the Illumina ExomeChip array 1.0, variants on the Y-1103 

chromosome or the mitochondrial genome, indels, multiallelic variants, and problematic variants based 1104 

on the Blat-based sequence alignment analyses. Significance for single-variant analyses was defined at 1105 

an array-wide level (P<2x10-7). For all suggestive significant variants from Stage 1, we tested for 1106 

significant sex differences. We calculated Psexhet for each SNP, testing for difference between women-1107 

specific and men-specific beta estimates and standard errors using EasyStrata11,65 Each SNP that reached 1108 

Psexhet<0.05/# of variants tested was considered significant. 1109 
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For the gene-based analyses, we applied two sets of criteria to select variants with a MAF<5% 1110 

within each ancestry based on coding variant annotation from five prediction algorithms (PolyPhen2, 1111 

HumDiv and HumVar, LRT, MutationTaster and SIFT)65,66. Our broad gene-based tests included nonsense, 1112 

stop-loss, splice site, and missense variants annotated as damaging by at least one algorithm mentioned 1113 

above. Our strict gene-based tests included only nonsense, stop-loss, splice site, and missense variants 1114 

annotated as damaging by all five algorithms. These analyses were performed using the sequence kernel 1115 

association test (SKAT) and variable threshold (VT) methods. Statistical significance for gene-based tests 1116 

was set at a Bonferroni-corrected threshold of P<2.5x10-6. All gene-based tests were performed in 1117 

RAREMETAL62. 1118 

Genomic inflation 1119 

We observed a marked genomic inflation of the test statistics even after controlling for 1120 

population stratification (linear mixed model) arising mainly from common markers; λGC in the primary 1121 

meta-analysis (combined ancestries and combined sexes) was 1.08 and 1.43 for all and only common 1122 

markers, respectively (Supplementary Figures 4 and 7 and Supplementary Table 16). Such inflation is 1123 

expected for a highly polygenic trait like WHRadjBMI, for studies using a non-random set of variants 1124 

across the genome, and is consistent with our very large sample size64,67,68. 1125 

Conditional analyses 1126 

The RAREMETAL R-package62 was used to identify independent WHRadjBMI association signals 1127 

across all ancestries and European meta-analysis results. RAREMETAL performs conditional analyses by 1128 

using covariance matrices to distinguish true signals from the shadows of adjacent significant variants in 1129 

LD. First, we identified the lead variants (P<2x10-7) based on a 1Mb window centered on the most 1130 

significantly associated variant. We then conditioned on the lead variants in RAREMETAL and kept new 1131 
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lead signals at P<2x10-7 for conditioning in a second round of analysis. The process was repeated until no 1132 

additional signal emerged below the pre-specified P-value threshold (P<2x10-7). 1133 

To test if the associations detected were independent of the previously published WHRadjBMI 1134 

variants 10,14,16, we performed conditional analyses in the stage 1 discovery set if the GWAS variant or its 1135 

proxy (r20.8) was present on the ExomeChip using RAREMETAL62. All variants identified in our meta-1136 

analysis and the previously published variants were also present in the UK Biobank dataset69. This 1137 

dataset was used as a replacement dataset if a good proxy was not present on the ExomeChip as well as 1138 

a replication dataset for the variants present on the ExomeChip. All conditional analyses in the UK 1139 

Biobank dataset were performed using SNPTEST70-72. The conditional analyses were carried out 1140 

reciprocally, conditioning on the exome chip variant and then the previously published variant. An 1141 

association was considered independent of the previously published association if there was a 1142 

statistically significant association detected prior to the conditional analysis (P<2x10-7) with both the 1143 

exome chip variant and the previously published variant, and the observed association with both or 1144 

either of the variants disappeared upon conditional analysis (P>0.05). A conditional p-value between 1145 

9x10-6 and 0.05 was considered inconclusive. However, a conditional p-value < 9x10-6 was also 1146 

considered suggestive. 1147 

 1148 

Stage 2 meta-analyses 1149 

In our Stage 2, we sought to validate a total of 70 variants from Stage 1 that met P<2x10-6 in two 1150 

independent studies, the UK Biobank (Release 169) and Iceland (deCODE), comprising 119,572 and 1151 

12,605 individuals, respectively (Supplementary Tables 1-3). The same QC and analytical methodology 1152 

were used for these studies. Genotyping, study descriptions and phenotype descriptives are provided in 1153 

Supplementary Tables 11, 12 and 13. For the combined analysis of Stage 1 plus 2, we used the inverse-1154 

variance weighted fixed effects meta-analysis method. Significant associations were defined as those 1155 
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nominally significant (P<0.05) in the Stage 2 study and for the combined meta-analysis (Stage 1 plus 1156 

Stage 2) significance was set at P<2x10-7. 1157 

Pathway enrichment analyses: DEPICT 1158 

We adapted DEPICT, a gene set enrichment analysis method for GWAS data, for use with the 1159 

ExomeChip (‘EC-DEPICT’); this method is also described in a companion manuscript22. DEPICT’s primary 1160 

innovation is the use of “reconstituted” gene sets, where many different types of gene sets (e.g. 1161 

canonical pathways, protein-protein interaction networks, and mouse phenotypes) were extended 1162 

through the use of large-scale microarray data (see Pers et al.21 for details). EC-DEPICT computes p-1163 

values based on Swedish ExomeChip data (Malmö Diet and Cancer (MDC), All New Diabetics in Scania 1164 

(ANDIS), and Scania Diabetes Registry (SDR) cohorts, N=11,899) and, unlike DEPICT, takes as input only 1165 

the genes directly containing the significant (coding) variants rather than all genes within a specified 1166 

amount of linkage disequilibrium (see Supplementary Note 2). 1167 

Two analyses were performed for WHRadjBMI ExomeChip: one with all variants p<5x10-4 (49 1168 

significant gene sets in 25 meta-gene sets, FDR <0.05) and one with all variants > 1 Mb from known 1169 

GWAS loci 10 (26 significant gene sets in 13 meta-gene sets, FDR <0.05). Affinity propagation clustering73 1170 

was used to group highly correlated gene sets into “meta-gene sets”; for each meta-gene set, the 1171 

member gene set with the best p-value was used as representative for purposes of visualization (see 1172 

Supplementary Note). DEPICT for ExomeChip was written using the Python programming language, and 1173 

the code can be found at https://github.com/RebeccaFine/obesity-ec-depict. 1174 

Pathway enrichment analyses: PASCAL 1175 

We also applied the PASCAL pathway analysis tool23 to exome-wide association summary 1176 

statistics from Stage 1 for all coding variants. The method derives gene-based scores (both SUM and 1177 

MAX statistics) and subsequently tests for over-representation of high gene scores in predefined 1178 
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biological pathways. We used standard pathway libraries from KEGG, REACTOME and BIOCARTA, and 1179 

also added dichotomized (Z-score>3) reconstituted gene sets from DEPICT21. To accurately estimate 1180 

SNP-by-SNP correlations even for rare variants, we used the UK10K data (TwinsUK74 and ALSPAC75 1181 

studies , N=3781). In order to separate the contribution of regulatory variants from the coding variants, 1182 

we also applied PASCAL to association summary statistics of only regulatory variants (20 kb upstream) 1183 

and regulatory+coding variants from the Shungin et al10 study. In this way, we could comment on what is 1184 

gained by analyzing coding variants available on ExomeChip arrays. We performed both MAX and SUM 1185 

estimations for pathway enrichment. MAX is more sensitive to genesets driven primarily by a single 1186 

signal, while SUM is better when there are multiple variant associations in the same gene.  1187 

Monogenic obesity enrichment analyses 1188 

We compiled two lists consisting of 31 genes with strong evidence that disruption causes 1189 

monogenic forms of insulin resistance or diabetes; and 8 genes with evidence that disruption causes 1190 

monogenic forms of lipodystrophy. To test for enrichment of association, we conducted simulations by 1191 

matching each gene with others based on gene length and number of variants tested, to create a 1192 

matched set of genes. We generated 1,000 matched gene sets from our data, and assessed how often 1193 

the number of variants exceeding set significance thresholds was greater than in our monogenic obesity 1194 

gene set.  1195 

Variance explained 1196 

We estimated the phenotypic variance explained by the association signals in Stage 1 all 1197 

ancestries analyses for men, women, and combined sexes76. For each associated region, we pruned 1198 

subsets of SNPs within 500 kb, as this threshold was comparable with previous studies, of the SNPs with 1199 

the lowest P-value and used varying P value thresholds (ranging from 2x10-7 to 0.02) from the combined 1200 

sexes results. Additionally, we examined all variants and independent variants across a range of MAF 1201 
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thresholds. The variance explained by each subset of SNPs in each strata was estimated by summing the 1202 

variance explained by the individual top coding variants. For the comparison of variance explained 1203 

between men and women, we tested for the significance of the differences assuming that the weighted 1204 

sum of chi-squared distributed variables tend to a Gaussian distribution ensured by Lyapunov’s central 1205 

limit theorem.76,77 1206 

Cross-trait lookups 1207 

To carefully explore the relationship between WHRadjBMI and related cardiometabolic, 1208 

anthropometric, and reproductive traits, association results for the 51 WHRadjBMI coding SNPs were 1209 

requested from existing or on-going meta-analyses from 7 consortia, including ExomeChip data from 1210 

GIANT (BMI, height), Global Lipids Genetics Consortium Results (GLGC) (total cholesterol, triglycerides, 1211 

HDL-cholesterol, LDL-cholesterol), International Consortium for Blood Pressure (IBPC)78 (systolic and 1212 

diastolic blood pressure), Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) 1213 

(glycemic traits), and DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) consortium (type 2 1214 

diabetes). For coronary artery disease, we accessed 1000 Genomes Project-imputed GWAS data 1215 

released by CARDIoGRAMplusC4D79 and for the ReproGen consortium (age at menarche and 1216 

menopause) we used a combination of ExomeChip and 1000 Genomes Project-Imputed GWAS data. 1217 

Heatmaps were generated in R v3.3.2 using gplots (https://CRAN.R-project.org/package=gplots). We 1218 

used Euclidean distance based on p-value and direction of effect and complete linkage clustering for the 1219 

dendrograms. 1220 

Body-fat percentage associations 1221 

We performed body fat percent and truncal fat percent look-up of 48 of the 56 identified 1222 

variants (tables 1 and 2) that were available in the UK Biobank, Release 169, data (notably some of the 1223 

rare variants in table 1 and 2 were not available) to further characterize their effects on WHRadjBMI. 1224 
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Genome-wide association analyses for body fat percent and truncal fat percent were carried out in the 1225 

UK Biobank. Prior to analysis, phenotype data were filtered to exclude pregnant or possibly pregnant 1226 

women, individuals with body mass index < 15, and without genetically confirmed European ancestry, 1227 

resulting in a sample size of 120,286. Estimated measures of body fat percent and truncal fat percent 1228 

were obtained using the Tanita BC418MA body composition analyzer (Tanita, Tokyo, Japan). Individuals 1229 

were not required to fast and did not follow any specific instructions prior to the bioimpedance 1230 

measurements. SNPTEST was used to perform the analyses based on residuals adjusted for age, 15 1231 

principle components, assessment center and the genotyping chip70.  1232 

Collider bias 1233 

In order to evaluate SNPs for possible collider bias, we used results from an ongoing association 1234 

analysis from GIANT on BMI to first identify SNPs with effects in the opposite direction between 1235 

WHRadjBMI and BMI and with P<0.05 for BMI. For each SNP that met these criteria, WHRadjBMI 1236 

associations were adjusted for the correlation between the two traits to obtain new effect estimates 1237 

using the following equations: 1238 

𝛽corrected =  𝛽𝑊𝐻𝑅𝑎𝑑𝑗𝐵𝑀𝐼 +  𝛽𝐵𝑀𝐼  ×  𝜌 1239 

 1240 

,and 1241 

𝑆𝐸𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =  √(𝑆𝐸𝑊𝐻𝑅𝑎𝑑𝑗𝐵𝑀𝐼
2 +  𝜌2  × 𝑆𝐸𝐵𝑀𝐼

2   1242 

 1243 

where 𝜌 is the phenotypic correlation between WHR and BMI (0.49).  1244 

Drosophila RNAi knockdown experiments  1245 

For each gene in which coding variants were associated with WHRadjBMI in the final combined 1246 

meta-analysis (P < 2×10-7), its corresponding Drosophila orthologues were identified in the Ensembl 1247 
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ortholog database (www.ensembl.org), when available. Drosophila triglyceride content values were 1248 

mined from a publicly available genome-wide fat screen data set 31 to identify potential genes for follow-1249 

up knockdowns. Estimated values represent fractional changes in triglyceride content in adult male flies. 1250 

Data are from male progeny resulting from crosses of male UAS-RNAi flies from the Vienna Drosophila 1251 

Resource Center (VDRC) and Hsp70-GAL4; Tub-GAL8ts virgin females. Two-to-five-day-old males were 1252 

sorted into groups of 20 and subjected to two one-hour wet heatshocks four days apart. On the seventh 1253 

day, flies were picked in groups of eight, manually crushed and sonicated, and the lysates heat-1254 

inactivated for 10 min in a thermocycler at 95 °C. Centrifuge-cleared supernatants were then used for 1255 

triglyceride (GPO Trinder, Sigma) and protein (Pierce) determination. Triglyceride values from these 1256 

adult-induced ubiquitous RNAi knockdown individuals were normalized to those obtained in parallel 1257 

from non-heatshocked progeny from the very same crosses. The screen comprised one to three 1258 

biological replicates. We followed up each gene with a >0.2 increase or >0.4 decrease in triglyceride 1259 

content.  1260 

Orthologues for two genes were brought forward for follow-up, DNAH10 and PLXND1. For both 1261 

genes, we generated adipose tissue (cg-Gal4) and neuronal (elav-Gal4) specific RNAi-knockdown crosses, 1262 

leveraging upstream activation sequence (UAS)-inducible short-hairpin knockdown lines, available 1263 

through the VDRC (Vienna Drosophila Resource Center). We crossed male UAS-RNAi flies and elav-GAL4 1264 

or CG-GAL4 virgin female flies. All fly experiments were carried out at 25°C. Five-to-seven-day-old males 1265 

were sorted into groups of 20, weighed and homogenated in PBS with 0.05% Tween with Lysing Matrix 1266 

D in a beadshaker. The homogenate was heat-inactivated for 10 min in a thermocycler at 70°C. 10μl of 1267 

the homogenate was subsequently used in a triglyceride assay (Sigma, Serum Triglyceride Determination 1268 

Kit) which was carried out in duplicate according to protocol, with one alteration: the samples were 1269 

cleared of residual particulate debris by centrifugation before absorbance reading. Resulting triglyceride 1270 

https://mail.mhi-rc.org/owa/redir.aspx?C=ms-mu2hJDkG74AmexeSk-Qu73fl9fdMIUbgoFf08eYzAY1dlgcqb81BHnMgu_Y4cMEn-cMis2Z4.&URL=http%3a%2f%2fwww.ensembl.org
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values were normalized to fly weight and larval/population density. We used the non-parametric 1271 

Kruskall-Wallis test to compare wild type with knockdown lines. 1272 

Expression quantitative trait loci (eQTLs) analysis 1273 

We queried the significant variant (Exome coding SNPs)-gene pairs associated with eGenes 1274 

across five metabolically relevant tissues (skeletal muscle, subcutaneous adipose, visceral adipose, liver 1275 

and pancreas) with at least 70 samples in the GTEx database32. For each tissue, variants were selected 1276 

based on the following thresholds: the minor allele was observed in at least 10 samples, and the minor 1277 

allele frequency was ≥ 0.01. eGenes, genes with a significant eQTL, are defined on a false discovery rate 1278 

(FDR)80 threshold of ≤0.05 of beta distribution-adjusted empirical p-value from FastQTL. Nominal p-1279 

values were generated for each variant-gene pair by testing the alternative hypothesis that the slope of 1280 

a linear regression model between genotype and expression deviates from 0. To identify the list of all 1281 

significant variant-gene pairs associated with eGenes, a genome-wide empirical p-value threshold64, pt, 1282 

was defined as the empirical p-value of the gene closest to the 0.05 FDR threshold. pt was then used to 1283 

calculate a nominal p-value threshold for each gene based on the beta distribution model (from 1284 

FastQTL) of the minimum p-value distribution f(pmin) obtained from the permutations for the gene. For 1285 

each gene, variants with a nominal p-value below the gene-level threshold were considered significant 1286 

and included in the final list of variant-gene pairs64. For each eGene, we also listed the most significantly 1287 

associated variants (eSNP). Only these exome SNPs with r2 > 0.8 with eSNPs were considered for the 1288 

biological interpretation (Supplementary eQTL GTEx). 1289 

We also performed cis-eQTL analysis in 770 METSIM subcutaneous adipose tissue samples as 1290 

described in Civelek, et al.81 A false discovery rate (FDR) was calculated using all p-values from the cis-1291 

eQTL detection in the q-value package in R. Variants associated with nearby genes at an FDR less than 1292 

1% were considered to be significant (equivalent p-value < 2.46 × 10−4).  1293 
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For loci with more than one microarray probeset of the same gene associated with the exome 1294 

variant, we selected the probeset that provided the strongest LD r2 between the exome variant and the 1295 

eSNP. In reciprocal conditional analysis, we conditioned on the lead exome variant by including it as a 1296 

covariate in the cis-eQTL detection and reporting the p-value of the eSNP and vice versa. We considered 1297 

the signals to be coincident if both the lead exome variant and the eSNP were no longer significant after 1298 

conditioning on the other and the variants were in high pairwise LD (r2 > 0.80). 1299 

For loci that also harbored reported GWAS variants, we performed reciprocal conditional 1300 

analysis between the GWAS lead variant and the lead eSNP. For loci with more than one reported GWAS 1301 

variant, the GWAS lead variant with the strongest LD r2 with the lead eSNP was reported. 1302 

Penetrance analysis 1303 

Phenotype and genotype data from the UK Biobank (UKBB) were used for the penetrance 1304 

analysis. Three of 16 rare and low frequency variants (MAF ≤ 1%) detected in the final Stage 1 plus 2 1305 

meta-analysis were available in the UKBB and had relatively larger effect sizes (>0.90). The phenotype 1306 

data for these three variants were stratified with respect to waist-to-hip ratio (WHR) using the World 1307 

Health Organization (WHO) guidelines. These guidelines consider women and men with WHR greater 1308 

than 0.85 and 0.90 as obese, respectively. Genotype and allele counts were obtained for the available 1309 

variants and these were used to calculate the number of carriers of the minor allele. The number of 1310 

carriers for women, men and all combined was then compared between two strata (obese vs. non-1311 

obese) using a χ2 test. The significance threshold was determined by using a Bonferroni correction for 1312 

the number of tests performed (0.05/9=5.5x10-3)).  1313 

DATA AVAILABILITY  1314 

Summary statistics of all analyses are available at https://www.broadinstitute.org/collaboration/giant/. 1315 

  1316 
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BOXES 1317 

Box 1. Genes of biological interest harboring WHR-associated variants 

PLXND1- (3:129284818, rs2625973, known locus) The major allele of a common non-synonymous 

variant in Plexin D1 (L1412V, MAF=26.7%) is associated with increased WHRadjBMI (β (SE)= 0.0156 

(0.0024), P-value=9.16E-11). PLXND1 is a semaphorin class 3 and 4 receptor gene, and therefore, is 

involved in cell to cell signaling and regulation of growth in development for a number of different cell 

and tissue types, including those in the cardiovascular system, skeleton, kidneys, and the central 

nervous system82-86. Mutations in this gene are associated with Moebius syndrome87-90, and persistent 

truncus arteriosus84,91. PLXND1 is involved in angiogenesis as part of the SEMA and VEGF signalling 

pathways92-95. PLXND1 was implicated in the development of T2D through its interaction with SEMA3E in 

mice. SEMA3E and PLXND1 are upregulated in adipose tissue in response to diet-induced obesity, 

creating a cascade of adipose inflammation, insulin resistance, and diabetes mellitus86. PLXND1 is highly 

expressed in adipose (both subcutaneous and visceral) (GTeX). PLXND1 is highly intolerant of mutations 

and therefore highly conserved (Supplementary Table 12). Last, our lead variant is predicted as 

damaging or possibly damaging for all algorithms examined (SIFT, Polyphen2/HDIV, Polyphen2/HVAR, 

LRT, MutationTaster).  

 

ACVR1C– (2:158412701, rs55920843, novel locus) The major allele of a low frequency non-synonymous 

variant in activin A receptor type 1C (rs55920843, N150H, MAF=1.1%) is associated with increased 

WHRadjBMI (β (SE)= 0.0652 (0.0105), P-value= 4.81E-10). ACVR1C, also called Activin receptor-like 

kinase 7 (ALK7), is a type I receptor for TGFB (Transforming Growth Factor, Beta-1), and is integral for 

the activation of SMAD transcription factors; therefore, ACVR1C plays an important role in cellular 

growth and differentiation49-53, including adipocytes53. Mouse Acvr1c decreases secretion of insulin and 
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is involved in lipid storage96. Mouse Acvr1c decreases secretion of insulin and is involved in lipid 

storage54,57,58. ACVR1C exhibits the highest expression in adipose tissue, but is also highly expressed in 

the brain54-56. Expression is associated with body fat, carbohydrate metabolism and lipids in both obese 

and lean individuals55. ACVR1C is moderately tolerant of variants (EXaC Constraint Scores: synonymous= 

-0.86, nonsynonymous = 1.25, LoF = 0.04). Last, our lead variant is predicted as damaging for two of five 

algorithms examined (LRT and MutationTaster). 

 

FGFR2– (10:123279643, rs138315382, novel locus) The minor allele of a rare synonymous variant in 

Fibroblast Growth Factor Receptor 2 (rs138315382, MAF=0.09%) is associated with increased 

WHRadjBMI (β (SE) = 0.258 (0.049), P-value= 1.38E-07). The extracellular portion of the FGFR2 protein 

binds with fibroblast growth factors, influencing mitogenesis and differentiation. Mutations in this gene 

have been associated with many rare monogenic disorders, including skeletal deformities, 

craniosynostosis, eye abnormalities, and LADD syndrome, as well as several cancers including breast, 

lung, and gastric cancer. Methylation of FGFR2 is associated with high birth weight percentile97. FGFR2 is 

tolerant of synonymous mutations, but highly intolerant of missense and loss-of-function mutations 

(ExAC Constraint scores: synonymous=-0.9, missense=2.74, LoF=1.0) (Supplementary Table 13). Last, 

this variant is not predicted to be damaging based on any of the 5 algorithms tested. 

 

ANGPTL4 – (19:8429323, rs116843064, novel locus) The major allele of a nonsynonymous low frequency 

variant in Angiopoietin Like 4 (rs116843064, E40K, EAF=98.1%) is associated with increased WHRadjBMI 

(β (SE) = 0.064 (0.011) P-value= 1.20E-09). ANGPTL4 encodes a glycosylated, secreted protein containing 

a C-terminal fibrinogen domain. The encoded protein is induced by peroxisome proliferation activators 

and functions as a serum hormone that regulates glucose homeostasis, triglyceride metabolism98,99, and 

insulin sensitivity100. Angptl4-deficient mice have hypotriglyceridemia and increased lipoprotein lipase 
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(LPL) activity, while transgenic mice overexpressing Angplt4 in the liver have higher plasma triglyceride 

levels and decreased LPL activity101. The major allele of rs116843064 has been previously associated 

with increased risk of coronary heart disease and increased TG48. ANGPTL4 is moderately tolerant of 

mutations (ExAC constraint scores synonymous=1.18, missense=0.21, LoF=0.0). Last, our lead variant is 

predicted damaging for four of five algorithms (SIFT, Polyphen 2/HDIV, Polyphen2/HVAR, and 

MutationTaster). 

 

RREB1- (6:7211818, rs1334576, novel association signal) The major allele of a common non-synonymous 

variant in the Ras responsive element binding protein 1 (rs1334576, G195R, EAF=56%) is associated with 

increased WHRadjBMI (β (SE)=0.017 (0.002), P-value=3.9x10-15). This variant is independent of the 

previously reported GWAS signal in the RREB1 region (rs1294410; 6:673875210). The protein encoded by 

this gene is a zinc finger transcription factor that binds to RAS-responsive elements (RREs) of gene 

promoters. It has been shown that the calcitonin gene promoter contains an RRE and that the encoded 

protein binds there and increases expression of calcitonin, which may be involved in Ras/Raf-mediated 

cell differentiation102-104. The ras responsive transcription factor RREB1 is a candidate gene for type 2 

diabetes associated end-stage kidney disease103. This variant is highly intolerant to loss of function (ExAC 

constraint score LoF = 1). 

 

DAGLB- (7:6449496, rs2303361, novel locus) The minor allele of a common non-synonymous variant 

(rs2303361,Q664R, MAF=22%) in DAGLB (Diacylglycerol lipase beta) is associated with increased 

WHRadjBMI (β (SE)= 0.0136 (0.0025), P-value=6.24x10-8). DAGLB is a diacylglycerol (DAG) lipase that 

catalyzes the hydrolysis of DAG to 2-arachidonoyl-glycerol, the most abundant endocannabinoid in 

tissues. In the brain, DAGL activity is required for axonal growth during development and for retrograde 

synaptic signaling at mature synapses (2-AG)105. The DAGLB rs702485 (7:6449272, r2= 0.306 and D’=1 
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with rs2303361) variant has been previously associated with high-density lipoprotein cholesterol (HDL) 

previously. Pathway analysis indicate a role in the triglyceride lipase activity pathway 106. DAGLB is 

tolerant of synonymous mutations, but intolerant of missense and loss of function mutations (ExAC 

Constraint scores: synonymous=-0.76, missense=1.07, LoF=0.94). Last, this variant is not predicted to be 

damaging by any of the algorithms tested.  

 

MLXIPL (7:73012042, rs35332062 and 7:73020337, rs3812316, known locus) The major alleles of two 

common non-synonymous variants (A358V, MAF=12%; Q241H, MAF=12%) in MLXIPL (MLX interacting 

protein like) are associated with increased WHRadjBMI (β (SE)= 0.02 (0.0033), P-value=1.78x10-9; β (SE)= 

0.0213 (0.0034), P-value=1.98x10-10). These variants are in strong linkage disequilibrium (r2=1.00, 

D’=1.00, 1000 Genomes CEU). This gene encodes a basic helix-loop-helix leucine zipper transcription 

factor of the Myc/Max/Mad superfamily. This protein forms a heterodimeric complex and binds and 

activates carbohydrate response element (ChoRE) motifs in the promoters of triglyceride synthesis 

genes in a glucose-dependent manner59,60. This gene is possibly involved in the growth hormone 

signaling pathway and lipid metabolism. The WHRadjBMI-associated variant in this gene has been 

associated with the levels, risk of non-alcoholic fatty liver disease and coronary artery disease . This gene 

possibly involved in the growth hormone signaling pathway and lipid metabolism. The WHRadjBMI-

associated variant rs3812316 in this gene has been associated with the levels, risk of non-alcoholic fatty 

liver disease and coronary artery disease59,107,108. Furthermore, Williams-Beuren syndrome (an 

autosomal dominant disorder characterized by short stature, abnormal weight gain, various 

cardiovascular defects, and mental retardation) is caused by a deletion of about 26 genes from the long 

arm of chromosome 7 including MLXIPL. MLXIPL is generally intolerant to variation, and therefore 

conserved (ExAC Constraint scores: synonymous = 0.48, missense=1.16, LoF=0.68). Last, both variants 

reported here are predicted as possible or probably damaging by one of the algorithms tested 
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(PolyPhen).  

 

RAPGEF3 (12:48143315, rs145878042, novel locus) The major allele of a low frequency non-synonymous 

variant in Rap Guanine-Nucleotide-Exchange Factor (GEF) 3 (rs145878042, L300P, MAF=1.1%) is 

associated with increased WHRadjBMI (β (SE)=0.085 (0.010), P-value = 7.15E-17). RAPGEF3 is an 

intracellular cAMP sensor, also known as Epac (the Exchange Protein directly Activated by Cyclic AMP). 

Among its many known functions, RAPGEF3 regulates the ATP sensitivity of the KATP channel involved in 

insulin secretion109, may be important in regulating adipocyte differentiation110-112, and plays an 

important role in regulating adiposity and energy balance113, and plays an important role in regulating 

adiposity and energy balance113. RAPGEF3 is tolerant of mutations (ExAC Constraint Scores: synonymous 

= -0.47, nonsynonymous = 0.32, LoF = 0). Last, our lead variant is predicted as damaging or possibly 

damaging for all five algorithms examined herein (SIFT, Polyphen2/HDIV, Polyphen2/HVAR, LRT, 

MutationTaster).  

 

TBX15 (1:119427467, rs61730011, known locus) The major allele of a low frequency non-synonymous 

variant in T-box 15 (rs61730011, M460R, MAF=4.3%) is associated with increased WHRadjBMI 

(β(SE)=0.041(0.005)). T-box 15 (TBX15) is a developmental transcription factor expressed in adipose 

tissue, but with higher expression in visceral adipose tissue than in subcutaneous adipose tissue, and 

strongly downregulated in overweight and obese individuals114. TBX15 negatively controls depot-specific 

adipocyte differentiation and function115 and regulates glycolytic myofiber identity and muscle 

metabolism116. TBX15 is moderately intolerant of mutations and therefore conserved (ExAC Constraint 

Scores: synonymous = 0.42, nonsynonymous = 0.65, LoF = 0.88). Last, our lead variant is predicted as 

damaging or possibly damaging for four algorithms (Polyphen2/HDIV, Polyphen2/HVAR, LRT, 

MutationTaster). 
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FIGURES 1580 

Figure 1. Summary of meta-analysis study design and workflow. Abbreviations: 1581 

EUR- European, AFR- African, SAS- South Asian, EAS- East Asian, and HIS- Hispanic/Latino ancestry. 1582 

Figure 2. Minor allele frequency compared to estimated effect. This scatter plot displays the relationship 1583 

between minor allele frequency (MAF) and the estimated effect (β) for each significant coding variant in 1584 

our meta-analyses. All novel WHRadjBMI variants are highlighted in orange, and variants identified only 1585 

in models that assume recessive inheritance are denoted by diamonds and only in sex-specific analyses 1586 

by triangles. Eighty percent power was calculated based on the total sample size in the Stage 1+2 meta-1587 

analysis and P=2x10-7. Estimated effects are shown in original units (cm/cm) calculated by using effect 1588 

sizes in standard deviation (SD) units times SD of WHR in the ARIC study (sexes combined=0.067, 1589 

men=0.052, women=0.080).  1590 

Figure 3. Regional association plots for known loci with novel coding signals. Point color reflects r2 1591 

calculated from the ARIC dataset. In a) there are two independent variants in RSPO3 and KIAA0408, as 1592 

shown by conditional analysis. In b) we have a variant in RREB1 that is independent of the GWAS variant 1593 

rs1294421. 1594 

Figure 4. Heat maps showing DEPICT gene set enrichment results. For any given square, the color 1595 

indicates how strongly the corresponding gene (shown on the x-axis) is predicted to belong to the 1596 

reconstituted gene set (y-axis). This value is based on the gene’s z-score for gene set inclusion in 1597 

DEPICT’s reconstituted gene sets, where red indicates a higher and blue a lower z-score. To visually 1598 

reduce redundancy and increase clarity, we chose one representative "meta-gene set" for each group of 1599 

highly correlated gene sets based on affinity propagation clustering (Online Methods, Supplementary 1600 

Information). Heatmap intensity and DEPICT P-values (see P-values in Supplementary Data 4-5) 1601 

correspond to the most significantly enriched gene set within the meta-gene set. Annotations for the 1602 
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genes indicate (1) the minor allele frequency of the significant ExomeChip (EC) variant (shades of blue; if 1603 

multiple variants, the lowest-frequency variant was kept), (2) whether the variant’s P-value reached 1604 

array-wide significance (<2x10-7) or suggestive significance (<5x10-4) (shades of purple), (3) whether the 1605 

variant was novel, overlapping “relaxed” GWAS signals from Shungin et al.10 (GWAS P<5x10-4), or 1606 

overlapping “stringent” GWAS signals (GWAS P<5x10-8) (shades of pink), and (4) whether the gene was 1607 

included in the gene set enrichment analysis or excluded by filters (shades of brown/orange) (Online 1608 

Methods and Supplementary Information). Annotations for the gene sets indicate if the meta-gene set 1609 

was found significant (shades of green; FDR <0.01, <0.05, or not significant) in the DEPICT analysis of 1610 

GWAS results from Shungin et al. 1611 

 1612 
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TABLES 1614 

Table 1. Association results for Combined Sexes. Association results based on an additive or recessive model for coding variants that met array-wide significance (P<2x10-07) in the sex-1615 

combined meta-analyses. 1616 

 1617 

Locus (+/-
1Mb of a 
given 
variant) 

Chr:Position 
(GRCh37)b 

rsID 
Effect  
Allele 

Other 
Allele 

Genec 
Amino Acid 
Changec 

If locus is known, 
nearby (< 1 MB) 
published 
variant(s) d 

N 
Effect Allele 
Frequency 

Effect sizee 
(SD/allele) 

SE P-value 
P-value for Sex-
heterogeneityf 

Variants in Novel Loci 

All Ancestry Additive model Sex-combined analyses 

1 2:158412701 rs55920843 T G ACVR1C N150H - 455,526 0.989 0.065 0.011 4.8E-10 1.7E-07 

2 3:50597092 rs1034405 G A C3orf18 A162V - 455,424 0.135 0.016 0.003 1.9E-07 8.8E-01 

3 4:120528327 rs3733526 G A PDE5A A41V - 461,521 0.187 0.015 0.003 2.6E-08 5.2E-03 

4 6:26108117 rs146860658 T C HIST1H1T A69T - 217,995 0.001 0.229 0.042 4.3E-08 6.3E-01 

5 7:6449496 rs2303361 C T DAGLB Q664R - 475,748 0.221 0.014 0.003 6.2E-08 3.4E-03 

6 10:123279643 rs138315382 T C FGFR2 synonymous - 236,962 0.001 0.258 0.049 1.4E-07 1.1E-01 

7 11:65403651 rs7114037 C A PCNXL3 H1822Q - 448,861 0.954 0.029 0.005 1.8E-08 4.4E-01 

8 12:48143315 rs145878042 A G RAPGEF3 L300P - 470,513 0.990 0.085 0.010 7.2E-17 7.3E-03 

9 12:108618630 rs3764002 C T WSCD2 T266I - 474,637 0.737 0.014 0.002 9.8E-10 5.5E-01 

10 15:42032383 rs17677991 G C MGA P1523A - 469,874 0.345 0.015 0.002 3.5E-11 9.1E-01 

11 

16:4432029 rs3810818 A C VASN E384A - 424,163 0.231 0.016 0.003 2.0E-09 3.3E-01 

16:4445327 rs3747579 C T CORO7 R193Q - 453,078 0.299 0.018 0.002 2.2E-13 4.3E-02 

16:4484396 rs1139653 A T DNAJA3 N75Y - 434,331 0.284 0.015 0.002 4.3E-10 1.4E-01 
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12 
19:49232226 rs2287922 A G RASIP1 R601C - 430,272 0.494 0.014 0.002 1.6E-09 3.7E-02 

19:49244220 rs2307019 G A IZUMO1 A333V - 476,147 0.558 0.012 0.002 4.7E-08 3.9E-02 

13 20:42965811 rs144098855 T C R3HDML P5L - 428,768 0.001 0.172 0.032 9.7E-08 1.0E+00 

European Ancestry Additive model Sex-combined analyses   

14 1:173802608 rs35515638 G A DARS2 K196R - 352,646 0.001 0.201 0.038 1.4E-07 6.0E-02 

15 14:58838668 rs1051860 A G ARID4A synonymous - 367,079 0.411 0.013 0.002 2.2E-08 1.3E-01 

16 15:42115747 rs3959569 C G MAPKBP1 R1240H - 253,703 0.349 0.017 0.003 2.0E-08 6.3E-01 

Variants in Previously Identified Loci 

All Ancestry Additive model Sex-combined analyses 

1 

1:119427467 rs61730011 A C 

TBX15 

M566R 
rs2645294, 
rs12731372, 
rs12143789, 
rs1106529 

441,461 0.957 0.041 0.005 2.2E-14 6.7E-01 

1:119469188 rs10494217 T G H156N 472,259 0.174 0.018 0.003 1.4E-10 6.0E-01 

2 1:154987704 rs141845046 C T ZBTB7B P190S rs905938 476,440 0.976 0.037 0.007 3.8E-08 7.9E-07 

3 2:165551201 rs7607980 T C COBLL1 N941D 

rs1128249, 
rs10195252, 
rs12692737, 
rs12692738, 
rs17185198 

389,883 0.879 0.026 0.004 1.6E-13 3.0E-30 

4 2:188343497 rs7586970 T C TFPI N221S rs1569135 452,638 0.697 0.016 0.002 3.0E-12 6.3E-01 

5 
3:52558008 rs13303 T C STAB1 M113T 

rs2276824 
470,111 0.445 0.019 0.002 5.5E-18 6.7E-02 

3:52833805 rs3617 C A ITIH3 Q315K 452,150 0.541 0.015 0.002 1.6E-12 4.0E-01 

6 
3:129137188 rs62266958 C T EFCAB12 R197H 

rs10804591 
476,382 0.936 0.036 0.004 8.3E-17 9.3E-05 

3:129284818 rs2625973 A C PLXND1 L1412V 476,338 0.733 0.016 0.002 9.2E-11 1.6E-05 

7 
4:89625427 rs1804080 G C HERC3 E946Q 

rs9991328 
446,080 0.838 0.021 0.003 1.5E-12 4.1E-06 

4:89668859 rs7657817 C T FAM13A V443I 476,383 0.815 0.016 0.003 5.0E-09 9.6E-05 

8 5:176516631 rs1966265 A G FGFR4 V10I rs6556301 455,246 0.236 0.023 0.003 1.7E-19 2.1E-01 

9 6:7211818 rs1334576g G A RREB1 G195R rs1294410 451,044 0.565 0.017 0.002 3.9E-15 1.5E-01 

10 6:34827085 rs9469913 A T UHRF1BP1 Q984H rs1776897 309,684 0.847 0.021 0.004 1.2E-08 2.7E-01 
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11 
6:127476516 rs1892172 A G RSPO3 synonymous rs11961815, 

rs72959041, 
rs1936805 

476,358 0.543 0.031 0.002 2.6E-47 7.7E-09 

6:127767954 rs139745911 g A G KIAA0408 P504S 391,469 0.010 0.103 0.012 6.8E-19 2.0E-04 

12 
7:73012042 rs35332062 G A 

MLXIPL 
A358V 

rs6976930 
451,158 0.880 0.020 0.003 1.8E-09 1.5E-01 

7:73020337 rs3812316 C G Q241H 454,738 0.881 0.021 0.003 2.0E-10 5.8E-02 

13 10:95931087 rs17417407 T G PLCE1 R240L rs10786152 476,475 0.173 0.018 0.003 2.5E-11 5.9E-01 

14 11:64031241 rs35169799 T C PLCB3 S778L rs11231693 476,457 0.061 0.034 0.004 9.1E-15 1.3E-04 

15 

12:123444507 rs58843120 G T ABDB9 F92L 

rs4765219, 
rs863750 

466,498 0.987 0.053 0.009 1.3E-08 3.5E-01 

12:124265687 rs11057353 T C 
DNAH10 

S228P 476,360 0.373 0.018 0.002 2.1E-16 2.7E-08 

12:124330311 rs34934281 C T T1785M 476,395 0.889 0.025 0.003 2.9E-14 3.1E-08 

12:124427306 rs11057401 T A CCDC92 S53C 467,649 0.695 0.029 0.002 7.3E-37 5.5E-11 

16 15:56756285 rs1715919 G T MNS1 Q55P rs8030605 476,274 0.096 0.023 0.004 8.8E-11 2.7E-02 

17 
16:67397580 rs9922085 G C 

LRRC36 
R101P 

rs6499129 
469,474 0.938 0.034 0.005 3.8E-13 5.9E-01 

16:67409180 rs8052655 G A G388S 474,035 0.939 0.034 0.005 5.5E-13 4.0E-01 

18 
19:18285944 rs11554159 A G IFI30  R76Q 

rs12608504 
476,389 0.257 0.015 0.002 3.5E-10 3.1E-03 

19:18304700 rs874628 G A MPV17L2 M72V 476,388 0.271 0.015 0.002 1.2E-10 2.5E-03 

19 
20:33971914 rs4911494 T C UQCC1 R51Q 

rs224333 
451,064 0.602 0.018 0.002 2.5E-16 1.5E-03 

20:34022387 rs224331 A C GDF5 S276A 345,805 0.644 0.017 0.003 1.8E-11 3.2E-03 

All Ancestry Recessive model Sex-combined analyses   

20 17:17425631 rs897453 C T PEMT V58L rs4646404 476,546 0.569 0.025 0.004 4.1E-11 8.2E-01 

European Ancestry Additive model Sex-combined analyses   

6 3:129293256 rs2255703 T C PLXND1 M870V rs10804591 420,520 0.620 0.014 0.002 3.1E-09 1.6E-04 

Abbreviations: GRCh37=human genome assembly build            37;rsID=based on dbSNP; VEP=Ensembl Variant Effect Predictor toolset; 1618 

GTEx=Genotype-Tissue Expression project;SD=standard deviation; SE=standard error;N=sample size  1619 

a Coding variants refer to variants located in the exons and splicing junction regions.          1620 

b Variant positions are reported according to Human assembly build 37 and their alleles are coded based on the positive strand.  1621 

c The gene the variant falls in and amino acid change from the most abundant coding transcript is shown (protein annotation is based on VEP toolset and transcript abundance from GTEx database).  1622 

d Previously published variants within +/-1Mb are from Shungin et al.10, except for rs6976930 and rs10786152 from Graff et al.14 and rs6499129 from Ng. et al 16. 1623 
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e Effect size is based on standard deviation (SD) per effect allele  1624 

f P-value for sex heterogeneity, testing for difference between women-specific and men-specific beta estimates and standard errors, was calculated using  EasyStrata: Winkler, T.W. et al. EasyStrata: evaluation and visualization of 1625 

stratified genome-wide association meta-analysis data. Bioinformatics 2015: 31, 259-61.PMID: 25260699. Bolded P-values met significance threshold after bonferonni correction (P-value<7.14E-04; i.e. 0.05/70 variants).  1626 

g rs1334576 in RREB1 is a new signal in a known locus that is independent from the known signal, rs1294410; rs139745911 in KIAA0408 is a new signal in a known locus that is independent from all known signals rs11961815, 1627 

rs72959041, rs1936805, in a known locus (see Supplementary 8A/B).             1628 

1629 
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Table 2. Association results for Sex-stratified analyses. Association results based on an additive or recessive model for coding variants that met array-wide significance (P<2x10-07) in the sex-1630 

specific meta-analyses and reach bonferonni corrected P-value for sex hetergeneity (Psexhet<7.14E-04). 1631 

Locus (+/-
1Mb of a 
given 
variant) 

Chr:Position 
(GRCh37)c 

rsID 
Effect 
Allele 

Other 
Allele 

Gened 
Amino Acid 
Changed 

Identified in 
sex-
combined 
analysese 

If locus is 
known, nearby 
(< 1 MB) 
published 
variant(s) f 

Psexhet 

Men Women 

N EAF 
Effecth 
(SD/ allele) 

SE P N EAF 
Effecth 
(SD/ 
allele) 

SE P 

Variants in Novel Loci 

All Ancestry Additive model Men only analyses 

1 13:96665697 rs148108950 A G UGGT2 P175L No - 1.5E-06 203,009 0.006 0.130 0.024 6.1E-08 221,390 0.004 -0.044 0.027 1.1E-01 

2 14:23312594 rs1042704 A G MMP14 D273N No - 2.6E-04 226,646 0.202 0.021 0.004 2.6E-08 250,018 0.197 0.002 0.004 6.1E-01 

All Ancestry Additive model Women only analyses 

3 1:205130413 rs3851294 G A DSTYK C641R No - 9.8E-08 225,803 0.914 -0.005 0.005 3.4E-01 249,471 0.912 0.034 0.005 4.5E-11 

4 2:158412701 rs55920843 T G ACVR1C N150H Yes - 1.7E-07 210,071 0.989 0.006 0.015 7.2E-01 245,808 0.989 0.113 0.014 1.7E-15 

5 19:8429323 rs116843064 G A ANGPTL4 E40K No - 1.3E-07 203,098 0.981 -0.017 0.011 1.4E-01 243,351 0.981 0.064 0.011 1.2E-09 

Variants in Previously Identified Loci 

All Ancestry Additive model Women only analyses 

1 1:154987704 rs141845046 C T ZBTB7B P190S Yes rs905938 7.9E-07 226,709 0.975 0.004 0.010 6.9E-01 250,084 0.977 0.070 0.010 2.3E-13 

2 2:165551201 rs7607980 T C COBLL1 N941D Yes 

rs1128249, 
rs10195252, 
rs12692737, 
rs12692738, 
rs17185198 

3.0E-30 173,600 0.880 -0.018 0.005 5.8E-04 216,636 0.878 0.062 0.005 6.7E-39 

3 

3:129137188 rs62266958 C T EFCAB12 R197H Yes 

rs10804591 

9.3E-05 226,690 0.937 0.018 0.006 3.1E-03 250,045 0.936 0.051 0.006 8.1E-18 

3:129284818 rs2625973 A C 
 PLXND1 

L1412V Yes 1.6E-05 226,650 0.736 0.005 0.003 1.9E-01 250,023 0.730 0.025 0.003 8.2E-14 

3:129293256 rs2255703 T C M870V Yes 5.0E-04 226,681 0.609 0.003 0.003 3.1E-01 250,069 0.602 0.018 0.003 1.9E-09 

4 
4:89625427 rs1804080 G C HERC3 E946Q Yes 

rs9991328 
4.1E-06 222,556 0.839 0.008 0.004 6.6E-02 223,877 0.837 0.034 0.004 2.1E-16 

4:89668859 rs7657817 C T FAM13A V443I Yes 9.6E-05 226,680 0.816 0.006 0.004 1.5E-01 242,970 0.815 0.026 0.004 5.9E-12 
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5 
6:127476516 rs1892172 A G RSPO3 synonymous Yes rs11961815, 

rs72959041, 
rs1936805 

7.7E-09 226,677 0.541 0.018 0.003 5.6E-10 250,034 0.545 0.042 0.003 3.4E-48 

6:127767954 rs139745911i A G KIAA0408 P504S Yes 2.0E-04 188,079 0.010 0.057 0.017 6.8E-04 205,203 0.010 0.143 0.016 5.9E-19 

6 11:64031241 rs35169799 T C PLCB3 S778L Yes rs11231693 1.3E-04 226,713 0.061 0.016 0.006 9.6E-03 250,097 0.061 0.049 0.006 6.7E-16 

7 

12:12426568
7 

rs11057353 T C 
DNAH10 

S228P Yes 

rs4765219, 
rs863750 

2.7E-08 226,659 0.370 0.005 0.003 8.3E-02 250,054 0.376 0.029 0.003 3.1E-22 

12:12433031
1 

rs34934281 C T T1785M Yes 3.1E-08 226,682 0.891 0.006 0.005 1.9E-01 250,066 0.887 0.043 0.005 1.4E-20 

12:12442730
6 

rs11057401 T A CCDC92 S53C Yes 5.5E-11 223,324 0.701 0.013 0.003 4.3E-05 244,678 0.689 0.043 0.003 1.0E-41 

Abbreviations: GRCh37=human genome assembly build 37;rsID=based on dbSNP; VEP=Ensembl Variant Effect Predictor toolset; GTEx=Genotype-Tissue Expression project;SD=standard deviation; SE=standard error;N=sample size 
a Coding variants           refer to variants located in the exons and splicing junction regions.  
b Bonferonni corrected Pvalue for the number of SNPs tested for sex-heterogeneity is <7.14E-04 i.e. 0.05/70 variants. 
c Variant positions are reported according to Human assembly build 37 and their alleles are coded based on the positive strand.  
d The gene the variant falls in and amino acid change from the most abundant coding transcript is shown (protein annotation is based on VEP toolset and transcript abundance from GTEx database). 
e Variant was also identified as array-wide significant in the sex-combined analyses.             
f Previously published variants within +/-1Mb are from Shungin D et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 2015; 518, 187–196 doi:10.1038/nature14132 (PMID 25673412). 
g P-value for sex heterogeneity, testing for difference between women-specific and men-specific beta estimates and standard errors, was calculated using EasyStrata: Winkler, T.W. et al. EasyStrata: evaluation and visualization of stratified genome-wide association meta-analysis data. 
Bioinformatics 2015: 31, 259-61. PMID: 25260699. 
h Effect size is based on standard deviation (SD) per effect allele 
i rs139745911 in KIAA0408 is a new signal in a known locus that is independent from all known signals rs11961815, rs72959041, rs1936805, in a known locus (see Supplementary 8A/B).  

 1632 


