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Abstract

Circular variables arise in a multitude of data-modelling con-
texts ranging from robotics to the social sciences, but they have
been largely overlooked by the machine learning community.
This paper partially redresses this imbalance by extending
some standard probabilistic modelling tools to the circular
domain. First we introduce a new multivariate distribution
over circular variables, called the multivariate Generalised
von Mises (mGvM) distribution. This distribution can be con-
structed by restricting and renormalising a general multivari-
ate Gaussian distribution to the unit hyper-torus. Previously
proposed multivariate circular distributions are shown to be
special cases of this construction. Second, we introduce a new
probabilistic model for circular regression inspired by Gaus-
sian Processes, and a method for probabilistic Principal Com-
ponent Analysis with circular hidden variables. These models
can leverage standard modelling tools (e.g. kernel functions
and automatic relevance determination). Third, we show that
the posterior distribution in these models is a mGvM distri-
bution which enables development of an efficient variational
free-energy scheme for performing approximate inference and
approximate maximum-likelihood learning.

1 Introduction
Many data modelling problems in science and engineering
involve circular variables. For example, the spatial configura-
tion of a molecule (Boomsma et al. 2008; Frellsen et al. 2009),
robot, or the human body (Chirikjian and Kyatkin 2000) can
be naturally described using a set of angles. Phase variables
arise in image and audio modelling scenarios (Wadhwa et
al. 2013), while directional fields are also present in fluid dy-
namics (Jona-Lasinio, Gelfand, and Jona-Lasinio 2012), and
neuroscience (Ben-Yishai, Bar-Or, and Sompolinsky 1995).
Phase-locking to periodic signals occurs in a multitude of
fields ranging from biology (Gao et al. 2010) to the social
sciences (Brunsdon and Corcoran 2006).

It is possible, at least in principle, to model circular vari-
ables using distributional assumptions that are appropriate for
variables that live in a standard Euclidean space. For exam-
ple, a naı̈ve application might represent a circular variable in
terms of its angle φ ∈ [0, 2π) and use a standard distribution
over this variable (presumably restricted to the valid domain).
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Such an approach would, however, ignore the topology of
the space e.g. that φ = 0 and φ = 2π are equivalent. Alter-
natively, the circular variable can be represented as a unit
vector in R2, x = [cos(φ), sin(φ)]>, and a standard bivariate
distribution used instead. This partially alleviates the afore-
mentioned topological problem, but standard distributions
place probability mass off the unit circle which adversely
affects learning, prediction and analysis.

In order to predict and analyse circular data it is therefore
key that machine learning practitioners have at their disposal
a suite of bespoke modelling, inference and learning meth-
ods that are specifically designed for circular data (Lebanon
2005). The fields of circular and directional statistics have
provided a toolbox of this sort (Mardia and Jupp 2000). How-
ever, the focus has been on fairly simple and small models
that are applied to small datasets enabling MCMC to be
tractably deployed for approximate inference.

The goal of this paper is to extend the existing toolbox pro-
vided by statistics, by leveraging modelling and approximate
inference methods from the probabilistic machine learning
field. Specifically, the paper makes three technical contribu-
tions. First, in section 3 it introduces a central multivariate
distribution for circular data—called the multivariate Gener-
alised von Mises distribution—that has elegant theoretical
properties and which can be combined in a plug-and-play
manner with existing probabilistic models. Second, in sec-
tion 4 it shows that this distribution arises in two novel mod-
els that are circular versions of Gaussian Process regression
and probabilistic Principal Component Analysis with circu-
lar hidden variables. Third, it develops efficient approximate
inference and learning techniques based on variational free-
energy methods as demonstrated on four datasets in section 6.

2 Circular distributions primer
In order to explain the context and rationale behind the con-
tributions made in this paper, it is necessary to know a little
background on circular distributions. Since multidimensional
circular distributions are not generally well-known in the
machine learning community, we present a brief review of
the main concepts related to these distributions in this section.
The expert reader can jump to section 3 where the multivari-
ate Generalised von Mises distribution is introduced.

A univariate circular distribution is a probability distri-
bution defined over the unit circle. Such distributions can

ar
X

iv
:1

60
2.

05
00

3v
6 

 [
st

at
.M

L
] 

 8
 A

ug
 2

01
7



be constructed by wrapping, marginalising or conditioning
standard distributions defined in Euclidean spaces and are
classified as wrapped, projected or intrinsic according to the
geometric interpretation of their construction.

More precisely, the wrapped approach consists of tak-
ing a univariate distribution p(x) defined on the real line,
parametrising any point x ∈ R as x = φ+ 2πk with k ∈ Z
and summing over all k so that p(x) is wrapped around
the unit circle. The most commonly used wrapped distri-
bution is the Wrapped Gaussian distribution (Ferrari 2009;
Jona-Lasinio, Gelfand, and Jona-Lasinio 2012).

An alternative approach takes a standard bivariate
distribution p(x, y) that places probability mass over
R2, transforms it to polar coordinates [x, y]> →
[r cosφ, r sinφ]> and marginalises out the radial component∫∞
0
p(r cosφ, r sinφ)rdr. This approach can be interpreted

as projecting all the probability mass that lies along a ray
from the origin onto the point where it crosses the unit cir-
cle. The most commonly used projected distribution is the
Projected Gaussian (Wang and Gelfand 2013).

Instead of marginalising the radial component, circular
distributions can be constructed by conditioning it to unity,
p(x, y|x2+y2 = 1). This can be interpreted as restricting the
original bivariate density to the unit circle and renormalising.
A distribution constructed in this way is called “intrinsic” (to
the unit circle). The construction has several elegant proper-
ties. First, the resulting distribution inherits desirable charac-
teristics of the base distribution, such as membership of the
exponential family. Second, the form of the resulting density
often affords more analytical tractability than those produced
by wrapping or projection. The most important intrinsic distri-
bution is the von Mises (vM), p(φ|µ, κ) ∝ exp(κ cos(φ−µ)),
which is obtained by conditioning an isotropic bivariate Gaus-
sian to the unit circle. The vM has two parameters, the mean
µ ∈ [0, 2π) and the concentration κ ∈ R+. If the covariance
matrix of the bivariate Gaussian is a general real positive
definite matrix, we obtain the Generalised von Mises (GvM)
distribution (Gatto and Jammalamadaka 2007)1

p(φ) ∝ exp(κ1 cos(φ− µ1) + κ2 cos(2(φ− µ2))) . (1)

The GvM has four parameters, two mean-like parameters
µi ∈ [0, 2π) and two concentration-like parameters κi ∈ R+

and is an exponential family distribution. The GvM is gen-
erally asymmetric. It has two modes when 4κ2 ≥ κ1, other-
wise it has one mode except when it is a uniform distribution
κ2 = κ1 = 0.

The GvM is arguably more tractable than the distributions
obtained by wrapping or projection as its unnormalised den-
sity takes a simple form. In comparison, the unnormalised
density of the wrapped normal involves an infinite sum and
that of the projected normal is complex and requires special
functions. However, the normalising constant of the GvM
(and its higher moments) are still complicated, containing
infinite sums of modified Bessel functions (Gatto 2008).

1To be precise, Gatto and Jammalamadaka define this to be a
Generalised von Mises of order 2, but since higher-order Gener-
alised von Mises distributions are more intractable and consequently
have found fewer applications, we use the shorthand throughout.

In this paper the focus will be on the extensions to vec-
tors of dependent circular variables that lie on a (hyper-)
torus (although similar methods can be applied to multivari-
ate hyper-spherical models). An example of a multivariate
distribution on the hyper-torus is the multivariate von Mises
(mvM) by Mardia et al. (2008)

mvM(φ) ∝ exp
{
κ> cos(φ) + sin(φ)>G sin(φ)

}
. (2)

The terms cos(φ) and sin(φ) denote element-wise applica-
tion of sine and cosine functions to the vector φ, κ is a
element-wise positive D-dimensional real vector, ν is a D-
dimensional vector whose entries take values on [0, 2π), and
G is a matrix whose diagonal entries are all zeros.

The mvM distribution draws its name from the its property
that the one dimensional conditionals, p(φd|φ 6=d), are von
Mises distributed. As shown in the Supplementary Material,
this distribution can be obtained by applying the intrinsic
construction to a 2D-dimensional Gaussian, mapping x→
(r cosφ>, r sinφ>)> and assuming its precision matrix has
the form

W = Σ−1 =

[
Λ A

A> Λ

]
(3)

where Λ is a diagonal D by D matrix and A is an antisym-
metric matrix. Other important facts about the mvM are that
it bears no simple closed analytic form for its normalising
constant, it has D + (D − 1)D/2 degrees of freedom in its
parameters and it is not closed under marginalisation.

We will now consider multi-dimensional extensions of the
GvM distribution.

3 The multivariate Generalised von Mises
In this section, we present the multivariate Generalised von
Mises (mGvM) distribution as an intrinsic circular distribu-
tion on the hyper-torus and relate it to existing distributions
in the literature. Following the construction of intrinsic dis-
tributions, the multivariate Generalised von Mises arises by
constraining a 2D-dimensional multivariate Gaussian with
arbitrary mean and covariance matrix to the D-dimensional
torus. This procedure yields the distribution

mGvM(φ;ν,κ,W ) ∝ exp
{
κ> cos(φ− ν)

− 1

2

[
cos(φ)
sin(φ)

]> [
W cc W cs

(W cs)> W ss

] [
cos(φ)
sin(φ)

]}
(4)

where W cc,W cs,W ss are the blocks of the underlying
Gaussian precision matrixW = Σ−1, ν is a D-dimensional
angle vector and κ is a D-dimensional concentration vector.
eq. (4) is over-parametrised with 2D + 3(D − 1)D/2 pa-
rameters, D more than the degrees of freedom of the most
succinct form of the mGvM given in Supplemental Material.

The mGvM distribution generalises the multivariate von
Mises by Mardia et al. (2008); it collapses to the mvM when
W has the form of eq. (3). Whereas the one-dimensional
conditionals of the mvM are von Mises and therefore uni-
modal and symmetric, those of the mGvM are generalised
von Mises and therefore can be bimodal and asymmetric.



The mGvM also captures a richer set of dependencies be-
tween the variables than the mvM, notice that the mvM is not
the most general form of mGvM that has vM conditionals.
The tractability of the one-dimensional conditionals of the
mGvM can be leveraged for approximate inference using
variational mean-field approximations and Gibbs sampling
(see section 5). The mGvM is a member of the exponen-
tial family and a maximum entropy distribution subject to
multidimensional first and second order circular moments
constraints. We will now show that the mGvM can be used
to build rich probabilistic models for circular data.

4 Some applications of the mGvM
In this section, we outline two novel and important proba-
bilistic models in which inference produces a posterior distri-
bution that is a mGvM. The first model is a circular analogue
of Gaussian Process regression and the second is a version of
Principal Component Analysis for circular latent variables.

4.1 Regression of circular data
Consider a regression problem in which a set of noisy out-
put circular variables {ψn}Nn=1 have been collected at a
number of input locations {sn}Nn=1. The treatment will ap-
ply to inputs that can be multi-dimensional and lie in any
space (e.g. they could be circular themselves). The goal is to
predict circular variables {ψ∗m}Mm=1 at unseen input points
{s∗m}Mm=1. Here we leverage the connection between the
mGvM distribution and the multivariate Gaussian in order
to produce a powerful class of probabilistic models for this
purpose based upon Gaussian Processes. In what follows the
outputs and inputs will be represented as vectors and matrices
respectively, that is ψ, S, ψ∗ and S∗.

In standard Gaussian Process regression (Rasmussen and
Williams 2006) a multivariate Gaussian prior is placed over
the underlying unknown function values at the input points
p(f |S) = GP(f ; 0,K(s, s′)), and a Gaussian noise model
is assumed to produce the observations at each input location,
p(yn|fn, sn) = N(yn; fn, σ

2
y). The prior over the function

values is specified using the Gaussian Process’s covariance
function K(s, s′) that encapsulates prior assumptions about
the properties of the underlying function, such as smoothness,
periodicity, stationarity etc. Prediction then involves forming
the posterior predictive distribution, p(f∗|y,S,S∗), which
also takes a Gaussian form due to conjugacy.

Here an analogous approach is taken. The circular un-
derlying function values and observations are denoted
φ and ψ. The prior over the underlying function is
given by a mGvM in overparametrised form p(φ|S) =
mGvM(φ; 0, 0,K(s, s′)−1) and the observations are as-
sumed to be von Mises noise corrupted versions of this func-
tion p(ψn|φn, sn) = vM(ψn;φn, κ). In order to construct
a sensible prior over circular function values we use a con-
struction that is inspired by a multi-output GP to produce
bivariate variables at each input location. We then leverage
the intrinsic construction of the mGvM to constrain each
regressed point to the unit circle to allow the mGvM to in-
herit the properties from the GP covariance function it was
built from. This is central to creating a flexible and powerful

mGvM regression framework, as GP covariance functions
that can handle exotic input variables such as circular vari-
ables, strings or graphs (Gärtner, Flach, and Wrobel 2003;
Duvenaud, Nickisch, and Rasmussen 2011).

Inference proceeds subtly differently to that in a GP due to
an important difference between multivariate Gaussian and
multivariate Generalised von Mises distributions. That is, the
former are consistent under marginalisation whilst the latter
are not: if a subset of mGvM variables are marginalised out,
the remaining variables are not distributed according to a
mGvM. Technically, this means that for analytic tractability
of inference we have to handle the joint posterior predictive
distribution p(φ,φ∗|ψ,S,S∗), which is a mGvM due to con-
jugacy, rather than p(φ∗|ψ,S,S∗), which is not. Whilst this
is somewhat less elegant than GP regression as it requires the
prediction locations to be known up front, in many applica-
tions this is not a great restriction. This model type is termed
transductive (Quiñonero-Candela and Rasmussen 2005).

4.2 Latent angles: dimensionality reduction and
representation learning

Next consider the task of learning the motion of an articulated
rigid body from noisy measurements on a Euclidean space.
Articulated rigid bodies can represent a large class of physical
problems including mechanical systems, human motion and
molecular interactions. The dynamics of rigid bodies can also
be fully described by rotations around a fixed point plus a
translation and, therefore, can be succinctly represented using
angles see (Chirikjian and Kyatkin 2000). For simplicity, we
will restrict our treatment to a rigid body with D articulations
on a 2-dimensional Euclidean space and rotations only, as the
discussion trivially generalises to higher dimensional spaces
and translations can be incorporated through an extra linear
term. Extensions for 3-dimensional models follow directly
from the 2-dimensional case, which can be seen as a first step
towards these more complex models.

The Euclidean components of any point on an articulated
rigid body can be described using the angles between each ar-
ticulation and their distances. More precisely, for an upright,
counter-clockwise coordinate system, the horizontal and ver-
tical components of a point in the d-th articulator can be writ-
ten as xd =

∑d
j=1 lj sin(ϕj) and yd = −

∑d
j=1 lj cos(ϕj),

where lj is the length of a link j to the next link or the marker.
Without loss of generality, we can model only the variation
around the mean angle for each joint, i.e. ϕd = φd − νd
which results in the general model for noisy measurements[

y
x

]
=

[
−L
L

] [
cos(ϕ)
sin(ϕ)

]
+ ε =

[
A
B

] [
cos(φ)
sin(φ)

]
+ ε (5)

where L is the matrix that encodes the distances between
joints,A andB are the distance matrix rotated by the vector
ν and ε ∼ N(0, σ2I). The prior over the joint angles can be
modelled by a multivariate Generalised von Mises. Here we
take inspiration from Principal Component Analysis, and use
independent von Mises distributions

p(φ1,...,N ) =
N∏
n=1

D∏
d=1

vM (φd,n; 0, κd) . (6)



Due to conjugacy, the posterior distribution over the latent an-
gles is a mGvM distribution. This can be informally verified
by noting that the priors on the latent angles φ are expo-
nentials of linear functions of sines and cosines, while the
likelihood is the exponential of a quadratic function in sine
and cosines. This leads to the posterior being an exponential
quadratic function of sines and cosines and, hence, mGvM.

The model can be extended to treat the parameters in
Bayesian way by including sparse priors over the coefficient
matrices A and B and the observation noise. A standard
choice for this task is to define Automatic Relevance Detec-
tion priors (MacKay 1994) over the columns of these matrices
defined as N(Am,d; 0, σ2

A,d) and N(Bm,d; 0, σ2
B,d) in order

to perform automatic structure learning. Additional Inverse
Gamma priors over σ2

A,d, σ2
B,d and σ2 are also employed.

The dimensionality of the latent angle space can be lower
than the dimensionality of the observed space, in which case
learning and inference perform dimensionality reduction that
maps real-valued data to a lower-dimensional torus. Besides
motion capture, toroidal manifolds can also prove useful
when modelling other relevant applications, such as electroen-
cephalogram (EEG) and audio signals (Turner and Sahani
2011a). Further connections between dimensionality reduc-
tion with the mGvM and Probabilistic Principal Component
Analysis (PPCA) proposed by Tipping and Bishop (1999) (in-
cluding limiting behaviour and geometrical relations between
these models) are explored in the Supplementary Material.
As a consequence of these similarities, we denote this model
as circular Principal Component Analysis (cPCA).

5 Approximate inference for the mGvM
The multivariate Generalised von Mises does not admit an
analytic expression for its normalizing constant, therefore
we need to resort to approximate inference techniques. This
section presents two approaches that exploit the tractable
univariate conditionals of the mGvM: Gibbs sampling and
mean-field variational inference.

5.1 Gibbs sampling
A Gibbs sampling procedure for sampling the mGvM of
Equation (4) can be derived leveraging the GvM form of
the one-dimensional mGvM conditionals. In particular, the
Gibbs sampler updates for the d-th conditional of the mGvM
will have the form

p(φd|φ6=d) = GvM(φd; κ̃1,d, κ2,d, ν̃1,d, ν2,d) (7)

where κ̃1,d and ν̃1,d are functions of κ, ν and φ6=d given in
the Supplementary Material.

The Gibbs sampler can be used to support approximate
maximum-likelihood learning by using it to compute the ex-
pectations required by the EM algorithm (Wei and Tanner
1990). However, it is well-known that Gibbs sampling be-
comes less effective as the joint distribution becomes more
correlated and the dimensionality grows. This is particularly
significant when using the distribution in high-dimensional
cases with rich correlational structure, such as those consid-
ered later in the paper.

5.2 Mean-field Variational inference
As a consequence of the problems encountered when using
Gibbs sampling, the variational inference framework emerges
as an attractive, scalable approach to handling inference in
when the posterior distribution is a mGvM.

The variational inference framework (Jordan et al. 1999)
aims to approximate an intractable posterior p(φ|ψ, θ) with
a distribution q(φ|ρ) by minimising the Kullback-Leiber
divergence from the distribution q to p. If the approximat-
ing distribution is chosen to be fully factored, i.e. q(φ) =∏d
d=1 qd(φd), the optimal functional form for qd(φd) can be

obtained analytically using calculus of variations. The func-
tional form of each mean-field factor is inherited from the
one-dimensional conditionals and consequently is a Gener-
alised von Mises of the form

qd(φd) = GvM(φd; κ̄1,d, κ2,d, ν̄1,d, ν2,d)

where the formulas for the parameters κ̄1,d and ν̄1,d are simi-
lar in nature to the Gibbs sampling update and given in the
Supplementary Material.

Furthermore, since the moments of the Generalised von
Mises can be computed through series approximations (Gatto
2008), the errors from series truncation are negligible if a
sufficiently large number of terms is considered. It is pos-
sible to obtain gradients of the variational free energy and
optimise it with standard optimisation methods such as Con-
jugate Gradient or Quasi-Newton methods instead of resort-
ing to coordinate-ascent under the variational Expectation-
Maximization algorithm which often is slow to converge.

Despite these improvements, we found empirically that
accurate calculations of the moments of a Generalised von
Mises distribution can become costly when the magnitude of
the concentration parameters exceeds ≈100 and the posterior
concentrates. This numerical instability occurs when the infi-
nite expansion for computing the moments contains a large
number of significant terms that have alternating signs lead-
ing to accumulation of numerical errors. It is possible to use
other approximate integrations schemes if these cases arise
during inference. An alternative way to alleviate this problem
is to consider a sub-optimal form of factorised approximating
distribution. An obvious choice is to use von Mises factors as
this results in tractable updates and requires simpler moment
calculations. A von Mises field can also be motivated as a
first order approximation to a GvM field by requiring that
the log approximating distribution is linear in sine and cosine
terms, as shown in the Supplementary Material.

In addition to inference, we can use the same variational
framework for learning in cases where the mGvM we wish to
approximate is a posterior of tractable likelihoods and priors,
as in the cPCA model. To achieve this, we form the varia-
tional free-energy lower bound on the log-marginal likelihood
as

log p(ψ|θ) ≥ F(q, θ) = 〈log p(ψ,φ|θ)〉q(φ|ρ) + H(q),

where H(q) is the entropy of the approximating distribution
and q(φ|ρ), p(φ,ψ|θ) is the model log-joint distribution,
F(q, θ, ρ) is the variational free-energy, θ are the model pa-
rameters and ρ represents the parameters of the approximat-
ing distribution. The same bound cannot be used directly



for doubly-intractable mGvM models, such as the circular
regression model, and it constitutes an area for further work.

6 Experimental results
To demonstrate approximate inference on the applications
outlined in section 4 we present experiments on synthetic and
real datasets. A comprehensive description and the data sets
used in the all experiments conducted are available at http:
//tinyurl.com/mgvm-release. Further experimental details are
also provided in the Supplementary Material.

6.1 Comparison to other circular distributions
For illustrative purposes we qualitatively compared multi-
variate Wrapped Gaussian and mvM approximations to a
base mGvM and mGvM approximations to these two distri-
butions. The approximations were obtained by numerically
minimising the KL divergence between the approximating
distribution and the base distributions. These experiments
were conducted on a two-dimensional setting in order to
render the computation of the normalising constant of the
mGvM and the mvM tractable by numerical integration. The
resulting distributions are shown in fig. 1.

In fig. 1, the mvM and the multivariate wrapped Gaus-
sian cannot capture the multimodality and asymmetry of
the mGvM. Moreover, these distributions approximate the
multiple modes by increasing their variance and assigning
high probability to the region of low-probability between the
modes of the mGvM. On the other hand, when the mvM
and the multivariate wrapped Gaussian are approximated
by the mGvM, the mGvM is able to approximate well the
high-probability zones of the wrapped Gaussian and its uni-
modality and fully recover the mvM.

We also compared the performance of Gibbs sampling and
variational inference for a bivariate GvM. To compare the
approximate inference procedures, we analysed the run time
for each method and the error it produced in terms of the KL
divergence between the true distribution and the approxima-
tions on a discretized grid. The Gibbs sampling procedure
required a total of 3466 samples and 3.1 s to achieve the same
level of error as the variational approximation achieved after
0.02 s. The variational approach was considerably more effi-
cient than Gibbs sampling, and theory suggests this behaviour
holds for higher dimensions, see David MacKay (2003).

6.2 Regression with the mGvM
In this section, we investigate the advantages of employing
the mGvM regression model discussed in section 4.1 over
two common approaches to handling circular data in machine
learning contexts.

The first approach is to ignore the circular nature of the data
and fit a non-circular model. This approach is not infrequent
as it is reasonable in contexts where angles are constrained to
a subset of the unit circle and there is no wrappping. A typical
example of the motivation for such models is the use of a
first-order Taylor approximation to the rate of change of an
angle as can be found in classical aircraft control applications.
To represent this approach to modeling, we will fit a one-
dimensional GP (1D-GP) to the data sets.

Table 1: Log-likelihood score for regression with the mGvM,
1D-GP and 2D-GP on validation data.

Data set mGvM 1D-GP 2D-GP

Toy 2.02 · 104 −1.62 · 103 8.28 · 102

Uber 3.29 · 104 −1.49 · 103 −2.83 · 102

Tides 1.25 · 104 −6.46 · 104 −8.41 · 101

Protein 1.42 · 105 −3.34 · 105 1.28 · 105

Yeast 1.33 · 102 −1.46 · 102 −1.65 · 101

The second approach tries to address the circular behaviour
by regressing the sine and cosine of the data. In this approach,
the angle can be extracted by taking the arc tangent of the
ratio between sine and cosine components. While this ap-
proach partially addresses the underlying topology of the
data, the uncertainty estimates for a non-circular model can
be poorly calibrated. Here, each data point is modeled by a
two-dimensional vector with the sine and cosine of each data
point using a two-dimensional GP (2D-GP).

Five data sets were used in this evaluation. A toy data
set generated by wrapping a Mexican hat function around
the unit circle, a dataset consisting Uber ride requests in
NYC in April 20142, the tide levels predictions from the
UK Hydrographic Office in 20163 as function of the latitude
and longitude of a given port, the first side chain angle of
aspartate as a function of backbone angles in proteins (Harder
et al. 2010), and yeast cell cycle phase as a function of gene
expression (Santos, Wernersson, and Jensen 2015).

To assess how well the fitted models approximate the dis-
tribution of the data, a subset of the data points was kept for
validation and the models scored in terms of the log likeli-
hood of the validation data set. To guarantee fairness in the
comparison, the likelihood of the 2D-GP was projected back
to the unit circle by marginalising the radial component of
the model for each point. This converts the 2D-GP into a
one-dimensional projected Gaussian distribution over angles.
The results are summarised in table 1.

The results shown in table 1 indicate that the mGvM pro-
vides a better overall fit than the 1D-GP and the 2D-GP in all
experiments. The 1D-GP approach performs poorly in every
case studied as it cannot account for the wrapping behaviour
of circular data. The 2D-GP performs better than the 1D-GP,
however in the Uber, Tides and Yeast datasets its performance
is substantially closer to the one presented by the 1D-GP case
rather than the mGvM. The toy dataset is examined in fig. 5,
showing the 2D-GP learns a different underlying function
and cannot capture bimodality.

6.3 Dimensionality reduction
To demonstrate the dimensionality reduction application, we
analysed two datasets: one motion capture dataset comprising
marker positions placed on a subject’s arm and captured
through a low resolution camera and another set comprising
of a noisy simulation of a 4-DOF robot arm under the same

2https://github.com/fivethirtyeight/uber-tlc-foil-response
3http://www.ukho.gov.uk/Easytide/easytide/SelectPort.aspx

http://tinyurl.com/mgvm-release
http://tinyurl.com/mgvm-release
https://github.com/fivethirtyeight/uber-tlc-foil-response
http://www.ukho.gov.uk/Easytide/easytide/SelectPort.aspx
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Figure 1: Circular distribution approximations: a base mGvM (a) and its optimal approximations using a multivariate wrapped
Gaussian (b) and the mvM (c). The mGvM approximation to the mWG (b) is presented in (d) and the mGvM approximation to
the mvM in (c) is presented in (e). Neither the multivariate wrapped Gaussian nor the mvM can accommodate for the asymmetries
and the multiple modes of the mGvM, however, the mGvM is able to approximate the mWG high-probability regions and fully
recover the mvM. Darker regions have higher probability than lighter regions.
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Figure 2: Regression on a toy data set using the mGvM (left)
and 2D GP (right): data points are denoted by crosses, the
true function by circles and predictions by solid dots.

motion capture conditions.
We compared the model using point estimates for the ma-

trices A and B, a variational Bayes approach by including
ARD priors forA andB, Probabilistic Principal Component
Analysis (PPCA) (Tipping and Bishop 1999) and the Gaus-
sian Process Latent Variable Model (GP-LVM) (Lawrence
2004) using a squared exponential kernel and a linear kernel.
The models using the mGvM require special attention to ini-
tialisation. To initialise the test, we used a greedy clustering
algorithm to estimate the matricesA andB. The variational
Bayes model was initialised using the learned parameters for
the point estimate model.

The performance of each model was assessed by denoising
the original dataset corrupted by additional Gaussian noise of
2.5, 5 and 10 pixels and comparing the signal-to-noise ratio
(SNR) on a test dataset. The best results after initializing the
models at 3 different initial starting points are summarized
in table 2 and additional experiments for a wider range of
noise levels are available in the Supplemental Material. In
table 2, the point estimate cPCA model performs best and is
followed by its variational Bayes version for both datasets
(the poor performance of the variational Bayes version is
likely to be due to biases that can affect variational methods
(Turner and Sahani 2011b)). In the motion capture dataset,
the latent angles are highly concentrated. Under these circum-
stances, the small-angle approximation for sine and cosine
provides good results and the cPCA model degenerates into
the PPCA model as shown in the Supplementary Material.

Table 2: Signal-to-noise ratio (dB) of the learned latent struc-
ture after denoising corrupted signals with by Gaussian noise.

Model Motion Capture Robot

2.5 5 10 2.5 5 10

cPCA-Point 29.6 23.5 17.6 33.5 30.0 24.9
cPCA-VB 24.6 21.9 17.6 33.2 29.8 24.8
PPCA 23.6 20.9 17.2 22.3 21.8 20.5
GPLVM-SE 8.6 8.5 8.2 21.8 15.7 15.2
GPLVM-L 11.0 7.5 8.1 24.0 16.6 15.9

This behaviour is reflected in the proximity of the PPCA and
cPCA signal to noise ratios in table 2. In the robot dataset, the
latent angles are less concentrated. As a result, the behaviour
of the PPCA and cPCA models is different which explains
the larger gap between the results obtained for these models.

7 Conclusions
In this paper we have introduced the multivariate Generalised
von Mises, a new circular distribution with novel applications
in circular regression and circular latent variable modelling
in a first attempt to close the gap between circular statistics
and the machine learning communities. We provided a brief
review of the construction of circular distributions including
the connections between the Gaussian distribution and the
multivariate Generalised von Mises. We provided a scalable
way to perform inference on the mGvM model through the
variational free energy framework and demonstrated the ad-
vantages of the mGvM over GP and mvM through a series of
experiments.
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A Supplementary Material for
The Multivariate Generalised von Mises
Distribution: Inference and application

A.1 Diagramatic view of circular distributions genesis

The discussion on circular distributions genesis on the main paper can be diagramatically sumarised as fig. 3.

Gaussian

Wrapped
Gaussian

Projected
Gaussian

Generalised
von Mises

Piece-wise linear
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Polar transformation
and conditioning on
unit radial component

Polar transformation
and marginalisation
of radial component

Distribution on a
Cartesian space

Circular
distribution

Transformation

Figure 3: Graphical summary of the genesis of circular distributions through transformations of Euclidean distributions.

A.2 Derivation of the Multivariate Generalised von Mises

The Multivariate Generalised von Mises distribution can be derived by applying the polar transformation to a 2D-dimensional
multivariate Gaussian distribution and conditioning D-pairs to the unit circle. Since order in which we conduct these two
operations is interchangeable, we will first condition its pairs to the unit circle and then apply the polar transformation.

More precisely, we assume that x ∈ R2D, such that x2d + x2D+d = 1 for d = 1, . . . , D. In this case, the polar transformation
of x allows us to write xd = cos(φd), xD+d = sin(φd). Furthermore, without loss of generality, the mean µ of a multivariate
Gaussian will also be constrained to the unit circle and can be parametrised in terms of angles ν so that µd = cos(νn),
µD+d = sin(νD+d).

Now let andW = Σ−1 be the inverse covariance matrix of a multivariate Gaussian. Using the parametrisation of x and µ in
terms of φ and ν, we can expand the quadratic in the exponential of the multivariate Gaussian into

[
cos(φ)− cos(ν)
sin(φ)− sin(ν)

]>
W

[
cos(φ)− cos(ν)
sin(φ)− sin(ν)

]
(8)

=

D∑
d=1

wd,d(cos(φd)− cos(νd))
2 + wD+n,D+d(sin(φd)− sin(νd))

2

+

D∑
d=1

d−1∑
j=1

wd,j(cos(φd)− cos(νd))(cos(φj)− cos(νj))

+

D∑
d=1

D∑
j=1

wd,D+j(cos(φd)− cos(νd))(sin(φj)− sin(νj))

+

D∑
d=1

D∑
j=1

wD+d,j(sin(φd)− sin(νd))(cos(φj)− cos(νj))

+

D∑
d=1

d−1∑
j=1

wD+d,D+j(sin(φd)− sin(νd))(sin(φj)− sin(νj)).



The sums on the RHS in Equation (8) can be expanded into
D∑
d=1

wd,d(cos(φd)
2 − 2 cos(φd) cos(νd)− cos(νd)

2) (9)

+

D∑
d=1

wD+n,D+d(sin(φd)
2 − 2 sin(φd) sin(νd)− sin(νd)

2)

+ 2

D∑
d=1

d−1∑
j=1

wd,j(cos(φd) cos(φj)− cos(νd) cos(φj)− cos(φd) cos(νj) + cos(νd) cos(νj))

+ 2

D∑
d=1

d−1∑
j=1

wD+d,D+j(sin(φd) sin(φj)− sin(νd) cos(φj)− sin(φd) sin(νj) + sin(νd) cos(νj))

+

D∑
d=1

D∑
j=1

wd,D+j(cos(φd) sin(φj)− cos(νd) sin(φj)− cos(φd) sin(νj) + cos(νd) sin(νj))

+

D∑
d=1

D∑
j=1

wD+d,j(sin(φd) cos(φj)− sin(νd) cos(φj)− sin(φd) cos(νj) + sin(νd) cos(νj)).

By aggregating all terms that are independent of φ and rearranging terms, Equation (9) becomes
D∑
d=1

D∑
j=1

wd,j cos(φd) cos(φj) + 2wd,D+j cos(φd) sin(φj) + wD+d,D+j sin(φd) sin(φj) (10)

− 2

D∑
d=1

D∑
j=1

wd,j cos(φd) cos(νj) + wd,D+j cos(φd) sin(νj)

− 2

D∑
d=1

D∑
j=1

wD+d,D+j sin(φd) sin(νj) + wD+d,j sin(φd) cos(νj)

These sums can be written in matrix notation as

κ>c cos(φ− ν) + κ>s sin(φ− ν)− 1

2

[
cos(φ)
sin(φ)

]> [
W cc W cs

(W cs)> W ss

] [
cos(φ)
sin(φ)

]
(11)

where κd = abs{zd} and νd = arg{zd} with the real and imaginary parts of zd such that

<{zd} = −2

D∑
j=1

wd,j cos(φd) cos(νj) + wd,D+j cos(φd) sin(νj)

and

={zd} = −2

D∑
j=1

wD+d,D+j sin(φd) sin(νj) + wD+d,j sin(φd) cos(νj).

Therefore, Equation (11) imples that a multivariate Gaussian distribution under radial transformation and conditionning to the
unit circle yields the log density

log p(φ) = const. + κ> cos(φ− ν)

− 1

2

(
cos(φ)>W cc cos(φ) + 2 cos(φ)>W cs sin(φ) + sin(φ)>W ss sin(φ)

)
(12)

which is the log density of a multivariate Generalised von Mises distribution in overparametrised form.
To obtain the minimal number of parameters for the mGvM, Equation (10) can be further simplified using trigonometric

identities to yield the minimal form of the mGvM distribution

log p(φ) = const. + exp
{
κ>1 cos(φ− ν1) + κ>2 cos(2(φ− ν2))

+
1

2

D∑
d=1

D∑
j=1

ud,j cos(φd − φj − αd,j) + vd,j cos(φd + φj − βd,j)
}
. (13)



where κ1 = κ and ν1 = ν given as before, while κ2,d = abs{zd} and ν2,d = 0.5arg{z2,d} with

zd =
1

4
(wd,d − wD+d,D+d) + i

1

2
(wd,D+d)

and the cross terms given by ud,j = abs{zUd,j}, αd,j = 0.5arg{zUd,j}, vd,j = abs{zVd,j}, βd,j = 0.5arg{zVd,j} where

zUd,j = (wd,j + wD+d,D+j) + i(wj,D+d − wd,D+j)

zVd,j = (wd,j − wD+d,D+j) + i(wj,D+d + wd,D+j).

A final point to make about the mGvM derivation is related to the distributions it generalises. Gatto and Jammalamadaka (2007)
discussed that the GvM could be constructed by conditioning a 2D Gaussian the unit circle, but were not aware of multivariate
generalisations. Mardia et al. (2008) constructed the multivariate mvM, which we show is a submodel of the mGvM, but did not
relate it to the a multivariate Gaussian nor to kernels.

A.3 Informal argument for mGvM being the maximum entropy distribution on the hyper-torus
The maximum entropy distribution p subject to specified covariance and the first and second moments is the solution for the
problem

minimizep

∫
p(x) log p(x)dφ (14)

subject to
∫
xmd p(φ)dφd = αd,m, d = 1, . . . , 2D;m = 0, . . . , 2 (15)

is the multivariate Gaussian distribution. If we further add the constraints to the maximum entropy problem that the distribution
must be under the unit circle, the problem becomes

minimizep

∫
p(x) log p(x)dφ (16)

subject to
∫
xmd p(φ)dφd = αd,m, d = 1, . . . , 2D;m = 0, . . . , 2 (17)

x2d + x2d+D = 1, d = 1, . . . , D; (18)
the solution of which is a multivariate Gaussian constrained to the unit hyper-torus, hence, a the mGvM distribution.

A.4 Conditionals of the mGvM: derivation and their relationship to inference algorithms
The conditionals of the mGvM can be found by expanding the terms containing cosine of the difference and sum of two circular
variables terms using sum-to-product relations. More precisely, if we partition the indexes of mGvM distributed circular vector φ
into two disjoint sets A and B,

p(φA|φB) ∝ exp
{
κ>1,A cos(φA − ν1)κ>1,B cos(φB − ν1)

+ κ>2,A cos(2(φA − ν2)) + κ>2,B cos(2(φB − ν2))

+
1

2

∑
d∈A

∑
j∈A

ud,j cos(φd − φj − αd,j) + vd,j cos(φd + φj − βd,j)

+
1

2

D∑
d∈A

D∑
j∈B

ud,j cos(φd − φj − αd,j) + vd,j cos(φd + φj − βd,j)

+
1

2

D∑
d∈B

D∑
j∈A

ud,j cos(φd − φj − αd,j) + vd,j cos(φd + φj − βd,j)

+
1

2

D∑
d∈B

D∑
j∈B

ud,j cos(φd − φj − αd,j) + vd,j cos(φd + φj − βd,j)
}
. (19)

If we consider that the variables whose indexes are in B are constant and note that the cross terms between variables in A and B
have the functional form of κ cos(φA − ν), we can rewrite the conditional using phasor arithmetic as

p(φA|φB) ∝ exp
{
κ̃>1 cos(φA − ν̃1) + κ>2,A cos(2(φA − ν2))

+
1

2

∑
d∈A

∑
j∈A

ud,j cos(φd − φj − αd,j) + vd,j cos(φd + φj − βd,j) (20)



where κ̃1,d = abs(zd), ν̃1,d = arg(zd) and

<(zd) = κ1,d cos(ν1,d) +
∑
j=1

ud,j cos(φj − αd,j)− vd,j cos(φj − βd,j)

=(zd) = κ1,d sin(ν1,d) +
∑
j=1

ud,j sin(φj − αd,j)− vd,j sin(φj − βd,j)

with <(z) denoting the real part of z and =(z) denoting the imaginary part of z.
In the particular case of the unidimensional conditional, the covariance term

+
1

2

∑
d∈A

∑
j∈A

ud,j cos(φd − φj − αd,j) + vd,j cos(φd + φj − βd,j)

will vanish as the diagonals of the parameter matrices U and V are zero.

Unidimensional conditionals and Gibbs sampling When the set A contains a single index, the expressions in the previous
section define how to obtain all unidimensional conditionals of the mGvM. These one-dimensional conditionals are the same
mentioned in the main paper for the Gibbs sampling, for which the parametric dependencies can be explicitly written as

κ̃1,d = abs(zd)ν̃1,d = arg(zd) (21)

where zd = is given by

<(zd) = κ1,d cos(ν1,d) +
∑
j=1

ud,j cos(φj − αd,j)− vd,j cos(φj − βd,j)

=(zd) = κ1,d sin(ν1,d) +
∑
j=1

ud,j sin(φj − αd,j)− vd,j sin(φj − βd,j)

with <(z) denoting the real part of z and =(z) denoting the imaginary part of z.

Unidimensional conditionals and mean field variational approximation To find the approximation q(φ|ρ) for a true poste-
rior p(φ|ψ, θ) that minimisesthe Kullback-Leiber divergence from q to p under the variational free energy framework (Jordan et
al. 1999), can equivalently maximise the variational free energy F(q, θp) by noting

KL(q(φ)||p(φ|ψ)) =

∫
q(φ|ρ) log

q(φ|ρ)

p(φ|ψ, θ)
dφ

= −
∫
q(φ|ρ) log p(φ|ψ, θ)dφ+

∫
q(φ|ρ) log q(φ|ρ)dφ

= −〈log p(φ,ψ|θ)〉q(φ|ρ) + log p(ψ|θ)−H(q)

= log p(ψ|θ)− F(q, θ, ρ).

By assuming a fully factored form for the distribution q, i.e., q(φ) =
∏D
d=1 qd(φd), we can use calculus of variations to obtain

analytically the functional form of the distributions qd, that is

δ

δq
F(q, θp)− λ

(∫
q(φ)dφ− 1

)
= 0 (22)

which implies

δ

δq`

[
〈log p(φ, ψ)〉∏D

d qd(φd)
−
∫ D∏

d=1

qd(φd)

(
D∑
d=1

log qd(φd)

)
dφ− λ

D∑
d=1

∫
qd(φd)dφd

]
= 0 (23)

and leads to the factors approximation

qd(φd) =
1

exp(λ+ 1)
exp

{
〈log p(φ, ψ)〉∏D

6=d q 6=d(φ6=d)

}
(24)

resulting in the set of distributions known as mean field approximation. This equation when applied to the mGvM yields GvM
distributions

q(φd|φ 6=d) = GvM(φd; κ̄1,d(κ,ν, 〈eiφ6=d〉q 6=d
, 〈eiφ6=d〉q6=d

), κ2,d, ν̄1,d(κ,ν, 〈eiφ6=d〉q 6=d
, 〈eiφ 6=d〉q6=d

), ν2,d) (25)



where 〈einφ〉 = 〈cos(nφ)〉+ i〈sin(nφ)〉, κ̄1,d = abs(zd) and ν̄1,d = arg(zd) with zd = given in overparametrised form by

<(zd) = κd cos(ν1,d)−
1

2

〈[
cos(φ 6=d)
sin(φ6=d)

]> [
W cc
6=d,d W cs

6=d,d
(W cs)>6=d,d W ss

6=d,d

] [
cos(φd)
sin(φd)

]〉
q 6=φd

=(zd) = κd sin(ν1,d)−
1

2

〈[
cos(φ 6=d)
sin(φ6=d)

]> [
W cc
6=d,d W cs

6=d,d
(W cs)>6=d,d W ss

6=d,d

] [
cos(φd)
sin(φd)

]〉
q 6=φd

with <(z) denoting the real part of z and =(z) denoting the imaginary part of z.

A.5 Higher order mGvM
As with the higher order GvM, the mGvM can also be expanded to include T cosine harmonics if the Gaussian genesis is cast
aside. In this case, a mGvM of order T can be defined as

mGvMT (φ;ν1:T ,κ1:T ,U ,V ,α,β) ∝ exp
{ T∑
t=1

κ>t cos(t(φ− νt))

+
1

2

D∑
i=1

D∑
j=1

ui,j cos(φi − φj − αi,j) + vi,j cos(φi + φj − βi, j)
}

(26)

which is a distribution whose conditionals allow up to T modes, but bears the same correlation correlation structure of the
‘standard’ order 2 mGvM.A is a single index, the

A.6 Assumptions over the precision matrix of the Gaussian that leads to a mvM
In this section the mvM is derived by conditioning a 4-dimensional multivariate Gaussian to highlight the assumptions made
regarding the precision matrix of the multivariate Gaussian. We take the 4D Gaussian to be zero mean without loss of generality
and, after applying the polar variable transformation and constraining the radial components to unity we obtain the distribution

p(φ1, φ2) ∝ exp

−
1

2

cos(φ1)
cos(φ2)
sin(φ1)
sin(φ2)


> a1,1 a1,2 a1,3 a1,4

a1,2 a2,2 a2,3 a2,4
a1,3 a2,3 a3,3 a3,4
a1,4 a2,4 a3,4 a4,4


cos(φ1)

cos(φ2)
sin(φ1)
sin(φ2)


 (27)

which can be expanded into

p(φ1, φ2) ∝ exp
{
− 1

2
(a1,1 cos(φ1)2 + a2,2 cos(φ2)2 + a3,3 sin(φ1)2 + a4,4 sin(φ2)2+

2a1,2 cos(φ1) cos(φ2) + 2a1,3 cos(φ1) sin(φ1) + 2a1,4 cos(φ1) sin(φ2)+

2a2,3 cos(φ2) sin(φ1) + 2a2,4 cos(φ2) sin(φ2) + 2a3,4 sin(φ1) sin(φ2))
}
.

Using the fundamental identity and double angle formulas, we can rewrite the last Equation as

p(φ1, φ2) ∝ exp
{
− 1

2
(a1,1 cos(φ1)2 + a2,2 cos(φ2)2 + a3,3(1− cos(φ1)2) + a4,4(1− cos(φ2)2)+

2a1,2 cos(φ1) cos(φ2) + a1,3 sin(2φ1) + 2a1,4 cos(φ1) sin(φ2) + 2a2,3 cos(φ2) sin(φ1)+

a2,4 sin(2φ2) + 2a3,4 sin(φ1) sin(φ2)))
}

Further simplifications arise from

p(φ1, φ2) ∝ exp
{
− 1

2
((a1,1 − a3,3) cos(2φ1 − 2ν1) + (a2,2 − a4,4) cos(2φ2 − 2ν2)+

2a1,2 cos(φ1) cos(φ2) + 2a1,4 cos(φ1) sin(φ2) + 2a2,3 cos(φ2) sin(φ1)+

2a3,4 sin(φ1) sin(φ2) + a1,3 sin(2φ1) + a2,4 sin(2φ2))
}
.

The product of sine and cosines can be also translated using product-to-sum formulas

p(φ1, φ2) ∝ exp
{
− 1

2
((a1,1 − a3,3) cos(2φ1 − 2ν1) + (a2,2 − a4,4) cos(2φ2 − 2ν2)+

a1,2 cos(φ1 − φ2) + a1,2 cos(φ1 + φ2) + a1,4 sin(φ1 + φ2)− a1,4 sin(φ1 − φ2)+

a2,3 sin(φ1 + φ2) + a2,3 sin(φ1 − φ2) + a3,4 cos(φ1 − φ2)− a3,4 cos(φ1 + φ2)+

a1,3 sin(2φ1) + a2,4 sin(2φ2))
}



grouping similar terms

p(φ1, φ2) ∝ exp
{
− 1

2
((a1,1 − a3,3) cos(2φ1 − 2ν1) + (a2,2 − a4,4) cos(2φ2 − 2ν2)+

a1,3 sin(2φ1) + a2,4 sin(2φ2)+

(a1,2 + a3,4) cos(φ1 − φ2) + (a1,2 − a3,4) cos(φ1 + φ2)+

(a2,3 − a1,4) sin(φ1 − φ2) + (a1,4 + a2,3) sin(φ1 + φ2))
}

Therefore, we can conclude that since the mvM has only the term sin(φ1 − φ2) from the equation above that a1,1 = a3,3,
a2,2 = a4,4, a1,3 = a2,4 = a1,2 = a3,4 = 0 and a1,4 = −a3,2. This leads to the precision matrix having the sparsity patterna1,1 0 0 a1,4

0 a2,2 −a1,4 0
0 −a1,4 a1,1 0
a1,4 0 0 a2,2

 .
A.7 Dimensionality reduction with the mGvM and Probabilistic Principal Component Analysis
In this section we discuss in greater detail dimensionality reduction with the Multivariate Generalised von Mises and its
relationship to Probabilistic Principal Component Analysis (PPCA) from (Tipping and Bishop 1999).

The PCA model is defined as
p(x) = N(x; 0, I)

p(y|x) = N(y;Wx, σ2I)
(28)

whereW is a matrix that encodes the linear mapping between hidden components x ∈ RD and data y ∈ RM , with M > D.
If we impose that each of the latent components xd is sinusoidal and may be parametrised by a hidden angle φd plus a phase

shift ϕd, we obtain the model
p(φd) = GvM(φ;κ1,d, κ2,d, ν1,d, ν2,d)

p(xd|φd) = δ(xd − sin(φd + ϕd))

p(y|x) = N(y;Wx, σ2I)

(29)

To obtain the relation directly between the data and the hidden angle, we integrate out the latent components x

p(y|φ) =

∫
δ(x− sin(φ+ϕ))N(y;Wx, σ2I)dx (30)

which results in the model used in the mGvM dimensionality reduction application.
Alternatively, it is also possible to show the limiting behaviour of the model arising fromthe mGvM dimensionality reduction

application becomes the PCA model, for mean angles ν → 0 and high concentration parameters. In this regime, the small angle
approximation

sinφ ≈ φ, cosφ ≈ 0 (31)
is valid and leads to the Generalised Von Mises priors simplification to

p(φ) ∝ exp {κ1 cos(φ− ν1) + κ2 cos(2(φ− ν2))}
∝ exp

{
−κ1 cos(ν2)φ2 + (κ1 sin(ν1) + 2κ2 sin(2ν2))φ

}
∝ exp

{
−κ1 cos(ν2)

[
φ− κ1 sin(ν1) + 2κ2 sin(2ν2)

2κ1 cos(ν2)

]2} (32)

which is proportional to a Gaussian distribution and shows that under the small angle regime, the coefficient matrixA is a good
approximation forW and the model collapses to PCA.

Another connection between the dimensionality reduction with the mGvM and PCA may be established geometrically. While
PCA describes the data in terms of hidden hyperplanes, the lower dimensional description of the data with mGvM occurs in
terms of hidden tori, as illustrated in fig. 4. The effect of priors in this systems is also highlighted by fig. 4. The mean angle and
concentration of each prior impacts the distribution of mass along the direction of the angular component on the hyper-torus.
High concentration values on the prior leads to dense regions around the mean angle, as presented in the middle graph of fig. 4
while low concentration leads to uniform mass distribution, shown in the right graph of fig. 4.

An analogy often used to describe this shape of the data in the PCA’s hidden space is a “fuzzy pancake”, as the Gaussian
noise induces the shape irregularity (“fuzzyness”), of the hidden plane (“pancake”). Likewise, for dimensionality reduction with
the mGvM the corresponding analogy would be a “fuzzy doughnut”, as the Gaussian noise also incur in irregularities over the
surface of a “doughnut”, which bears similar shape to a torus.



Figure 4: Plots of the model x = 2 cosφ1 + ε, y = 2 sinφ1 + 2 cosφ2 + ε, z = 2 sinφ2 + ε where φ1 ∼ vM(50, π/2) is a
peaked von Mises distribution, φ2 ∼ vM(0.1, 0) is an almost-uniform von Mises distribution and the noise is ε ∼ N(0, 0.01) to
exemplify a 3-dimensional Cartesian data set as a function of a 2-dimensional angular space: plot of samples from the model
(left), samples on the z = 0 plane, which is equivalent to fixing φ2 = ±π (middle), samples on the x = 0 plane, which is
equivalent to fixing φ1 = ±π/2 (right).

A.8 Supporting graphs and analysis for the experiments
Regression experiments The plots in figs. 5 and 6 help us understand the some reasons why the mGvM provides better
regression performance than the other models considered. The mGvM is able to accurately infer where the underlying function
wraps, and provides a reasonable estimate for both the expected value of the underlying function and variance on the unit
circle. The 1D-GP cannot account for the angular equivalences, therefore, it has assign this phenomenon to noise resulting in
flat predictions as shown in fig. 5. While the 2D-GP is able to cope with wrapping, it learns a different lengthscale parameter.
Furthermore, the 2D-GP cannot learn bimodal errors which can be accounted for by the mGvM as shown in fig. 6.

Dimensionality reduction experiments In this section, we provide additional experiments and noise values for the average
signal-to-noise ratio for motion capture and the simulation of motion capture of a robot arm. In the motion capture data sets, we
applied a colour filter to the resulting images to isolate each marker and then the marker position was found by calculating the
centre of mass of each marker as shown in Figure 7.

Additional experiments are given in fig. 8. The conclusions and discussion of these experimental results mirror the discussions
presented in the main paper.
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Figure 5: Regression on a one-dimensional a synthetic data set using the mGvM (left), 1D GP (center) and 2D GP (right): data
points are represented as balck crosses, the true function with circles and model predictions in solid dots. Best visualised in
colour.

Port locations mGvM 2D-GP

Figure 6: Tide time predictions on the UK coast: port location for a subset of the dataset (left), mGvM fit (left) and 2D-GP (right).
The ports whose data was supplied for training are displayed in magenta (darker) rose diagrams whereas the ports held out for
prediction are displayed in cyan (lighter). The regression model predictions are given as orange lines. Best visualised in colour.

Figure 7: Capturing 2D motion: the datasets was generated by recording the motion of a subject with markers on its body then
using a colour threshold algorithm and taking the location of the centre of mass of the filtered region.
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Figure 8: Signal-to-noise ratio with 3 standard deviations for the latent variable modelling datasets: filmed subject running(left),
fishing (middle) and synthetic dataset (right).
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