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Acid-sensing ion channels (ASICs) form both homotrimeric
and heterotrimeric ion channels that are activated by extracel-
lular protons and are involved in a wide range of physiological
and pathophysiological processes, including pain and anxiety.
ASIC proteins can form both homotrimeric and heterotrimeric
ion channels. The ASIC3 subunit has been shown to be of par-
ticular importance in the peripheral nervous system with phar-
macological and genetic manipulations demonstrating a role in
pain. Naked mole-rats, despite having functional ASICs, are
insensitive to acid as a noxious stimulus and show diminished
avoidance of acidic fumes, ammonia, and carbon dioxide. Here
we cloned naked mole-rat ASIC3 (nmrASIC3) and used a cell-
surface biotinylation assay to demonstrate that it traffics to the
plasma membrane, but using whole-cell patch clamp electro-
physiology we observed that nmrASIC3 is insensitive to both
protons and the non-proton ASIC3 agonist 2-guanidine-4-
methylquinazoline. However, in line with previous reports of
ASIC3 mRNA expression in dorsal root ganglia neurons, we
found that the ASIC3 antagonist APETx2 reversibly inhibits
ASIC-like currents in naked mole-rat dorsal root ganglia neu-
rons. We further show that like the proton-insensitive ASIC2b
and ASIC4, nmrASIC3 forms functional, proton-sensitive het-
eromers with other ASIC subunits. An amino acid alignment of
ASIC3s between 9 relevant rodent species and human identified
unique sequence differences that might underlie the proton
insensitivity of nmrASIC3. However, introducing nmrASIC3
differences into rat ASIC3 (rASIC3) produced only minor dif-
ferences in channel function, and replacing the nmrASIC3
sequence with that of rASIC3 did not produce a proton-sensitive
ion channel. Our observation that nmrASIC3 forms nonfunc-
tional homomers may reflect a further adaptation of the naked
mole-rat to living in an environment with high-carbon dioxide
levels.

Acid-sensing ion channels (ASICs)5 are part of the epithelial
sodium channel/degenerin superfamily of ion channels and are
implicated in a diverse range of physiological and pathophysi-
ological processes, ranging from learning and memory to
mechanosensation and pain (1). In mammals, there are 4 ASIC
encoding genes, which generate 6 distinct ASIC subunits due to
splice variants in the ACCN2 and ACCN1 genes producing a
and b variants of the ASIC1 and ASIC2 subunits, respectively:
ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3, and ASIC4. The
crystal structure of ASIC1 demonstrated that ASICs form tri-
meric ion channels (2) and although evidence exists for the
formation of ASIC/epithelial sodium channel heteromers (3, 4),
it is largely thought that functional ASICs are the result of either
homo- or heterotrimeric arrangement of ASIC subunits.

Unlike transient receptor potential vanilloid 1 (TRPV1) that
produces a sustained inward current in response to extracellu-
lar protons (5), ASICs produce a transient inward current (6).
However, being trimeric, the subunit configuration dictates the
biophysical characteristics, such as the proton sensitivity for
activation, the inactivation time constant, and the magnitude of
the sustained current in subunit configurations where the cur-
rent does not completely inactivate in the continued presence
of agonist (7). Moreover, the sensitivity to different antagonists
is also affected by subunit configuration. For example, the
ASIC3 antagonist APETx2 inhibits ASIC3 homomers, as well as
heteromers of ASIC3 with ASIC1a, ASIC1b, and ASIC2b, but
does not inhibit ASIC2a � ASIC3 heteromers (8); APETx2 also
relieves hyperalgesia in inflammatory pain models (9, 10). Fur-
thermore, the non-proton ASIC3 agonist 2-guanidine-4-meth-
ylquinazoline (GMQ) causes ASIC3 activation at neutral pH
(11), but also modulates the acid sensitivity of other ASIC sub-
units (12).

Of the 6 ASIC subunits, neither ASIC2b (13) nor ASIC4 (14,
15) form functional homomers, but they are able to form func-
tional heteromers and modulate channel function (7, 13, 16), as
can ASIC subunits that have been mutated to make them insen-
sitive to protons as homomers (17, 18). The crystal structure of
chicken ASIC1 (cASIC1) identified an acidic pocket region
containing three carboxylate pairs (Asp238–Asp350, Glu239–
Asp346, and Glu220–Asp408; cASIC1 numbering), which was
suggested to be the primary site for proton sensing by ASICs
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(2). However, ASIC2a lacks Asp350 and is still functional,
whereas ASIC2b also only lacks the Asp350 carboxylate of the
acidic pocket and is not activated by protons (13, 17), results
suggest that regions outside of the acidic pocket must be impor-
tant for proton activation of ASICs. Indeed, we and others have
identified a range of residues on ASIC1a and ASIC2a that when
mutated alter proton sensitivity (17–21) and more recently we
have shown that the first 87 amino acids of the extracellular
domain of rat ASIC2a are required for its proton sensitivity (22).

Understanding the structure-function of ASIC3 is of partic-
ular interest because there is substantial evidence supporting
involvement of ASIC3 in pain (9, 23–28), as well itch (29),
mechanosensation (23, 30), and anxiety (31). Although ASIC3
expression was initially thought to be restricted to the periph-
eral nervous system (and hence its original name, dorsal root
ganglia acid-sensing ion channel (DRASIC) (32)), we and others
have demonstrated that ASIC3 is also expressed in both the
spinal cord and numerous brain regions (33, 34), which makes it
even more important to understand how ASIC3 functions because
any potential drug that targets ASIC3 for the treatment of pain
may also produce side effects with the central nervous system.

Here we investigated the function of ASIC3 cloned from the
naked mole-rat, a species that we have previously shown to
produce no behavioral response to acid as a noxious stimulus
(35). This behavioral indifference to acid is not due to a lack of
ASIC-like or TRPV1-like proton-gated currents in sensory
neurons, but rather due to an amino acid variation in the volt-
age-gated Na� channel NaV1.7 that confers enhanced acid
block, such that acid acts like an anesthetic, rather than activa-
tor of naked mole-rat sensory neurons (36). This is likely a
result of adaptation to living in a hypercapnic environment that
may induce tissue acidosis (37) and indeed naked mole-rats also
show reduced avoidance of ammonia and acid fumes (38, 39), as
well as decreased aversion to CO2, absence of CO2-induced
pulmonary edema, and enhanced ability to buffer against CO2-
induced systemic acidosis (40). Although naked mole-rats can
more efficiently buffer CO2, our previous data regarding the
inability of acid to evoke action potentials in an ex vivo prepa-
ration (35) that arises from an amino acid variation in NaV1.7
(36) demonstrates that there are likely multiple adaptations to
living in a hypercapnic environment. We recently compared
ASIC expression between mice and naked mole-rats, finding that
although ASIC4 is highly abundant in mouse tissues it is the most
lowly expressed ASIC transcript in naked mole-rat tissues; the
expression pattern of ASIC3 was similar between species (33). At a
functional level, we have previously shown that naked mole-rat
ASIC1a, ASIC1b, and TRPV1 are largely indistinguishable from
the mouse orthologs (36, 41) and here we set out to explore the
function of naked mole-rat ASIC3 considering its importance to a
physiological and pathophysiological processes.

Results

Naked mole-rat ASIC3 is insensitive to protons

Primers for cloning mouse ASIC3 (mASIC3) and naked
mole-rat ASIC3 (nmrASIC3) were designed based upon the
published genome sequences and constructs were made using
pIRES2-EGFP or pTarget vectors; rat ASIC3 (rASIC3 in

pTracer) was a kind gift from G. Lewin. All constructs were
expressed in Chinese hamster ovary (CHO) cells that lack
endogenous ASICs (17), and whole-cell patch clamp electro-
physiology was used to measure responses to a pH 4.0 stimulus
from a starting pH of pH 7.4. Although mASIC3 and rASIC3
robustly responded to protons with a stereotypical transient
ASIC-like current (mASIC3: 69 � 13 pA/pF, n � 26, Fig. 1A,
and rASIC3: 627 � 92 pA/pF, n � 18, Fig. 1B), nmrASIC3 failed
to respond with an ASIC-like response to protons, even using a
pH 3.0 stimulus, but rather produced a very small, non-inacti-
vating response, similar to that which we have observed previ-
ously in non-transfected CHO cells (17) and in CHO cells trans-
fected with the proton-insensitive ASIC2b (22) (pH 4.0, n � 24
and pH 3.0, n � 13, 7 separate transfections, Fig. 1C); a sum-
mary of all data are given in Table 1. We also investigated
whether the non-proton ASIC3 agonist GMQ could activate
nmrASIC3, but whereas we observed GMQ-mediated inward
currents in cells expressing mASIC3 (Fig. 1D, 14.5 � 3.0 pA/pF,
6 of 18 pH-sensitive cells responded) and rASIC3 (Fig. 1E,
180.6 � 55.1 pA/pF, n � 8, all pH-sensitive cells responded),
nmrASIC3 failed to respond (Fig. 1F, n � 11 cells from 4 trans-
fections). One possibility is that nmrASIC3 is retained in the
endoplasmic reticulum, as has been proposed for the proton-
insensitive mASIC2b, which only gets to the plasma membrane
when coexpressed with the proton-sensitive ASIC2a (42).
However, using a biotinylation assay to determine plasma
membrane expression of mASIC3 and nmrASIC3, trans-
fected either alone, or with rASIC2a, we observed that
nmrASIC3 traffics to the plasma membrane, regardless of
whether it is transfected alone or with rASIC2a, just like
mASIC3 (Fig. 1G, a second experiment showed the same
plasma membrane trafficking of nmrASIC3). Therefore,
the insensitivity of nmrASIC3 to protons and GMQ cannot
be explained by a lack of membrane expression.

nmrASIC3 is functional in dorsal root ganglion neurons

We have previously demonstrated that naked mole-rat dor-
sal root ganglion (DRG) neurons produce ASIC-like currents in
response to acid (36) and that these neurons express nmrASIC3
mRNA (33, 36) and thus we used APETx2, an inhibitor of most
ASIC3-containing ASIC trimers, to determine whether nmrA-
SIC3 contributes to acid-sensitivity of these neurons. A pH 5.0
stimulus evoked two types of inward currents in naked mole-rat
DRG neurons: rapidly-inactivating, ASIC-like currents and
sustained, TRPV1-like currents (Fig. 2, A and B). Exposure to 2
�M APETx2 for 30 s caused a significant decrease in the ampli-
tude of the ASIC-like responses evoked by a second pH 5.0
stimulus (61 � 16 pA/pF versus 33 � 10 pA/pF, n � 8, p � 0.05,
Fig. 2, A and C), but had no effect upon TRPV1-like responses
5 � 2 versus 4 � 1 pA/pF, n � 14, Fig. 2, B and C); the inhibition
of ASIC-like responses was reversible (47 � 11 pA/pF, p �
0.05). Considering that APETx2 is selective for ASIC3 homom-
ers and most ASIC3 heteromers (8), and that nmrASIC3 does
not form proton-sensitive homomers (Fig. 1), these results sug-
gest that nmrASIC3 can form proton-sensitive heteromers
with other ASIC subunits, much like the other proton-insensi-
tive ASIC subunits ASIC2b and ASIC4 (13, 16).
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nmrASIC3 forms functional ASIC heteromers with other ASIC
subunits

To determine whether nmrASIC3 can form proton-sensitive
heteromers with other ASIC subunits as DRG neuron data
would suggest, we cotransfected either nmrASIC3 or mASIC3
with nmrASIC1b and compared the properties of currents

recorded from these cotransfected cells with those only trans-
fected with either mASIC3 or nmrASIC1b. Using a pH 4.0 stim-
ulus, currents recorded from cells transfected with mASIC3
had a peak current density of 69 � 13 pA/pF (n � 26), an
inactivation time constant of 202 � 12 ms (n � 23) and Isus/
Ipeak, the sustained current as a percentage of the peak current,

Figure 1. Representative traces of currents recorded during stimulation with low pH and GMQ. Currents recorded from CHO cells expressing mASIC3 (A),
rASIC3 (B), or nmrASIC3 (C) stimulated with either pH 4.0 or 3.0 solution, and stimulated with 1 mM GMQ (D–F). G, Western blot of whole cell lysates (input) and
biotinylated surface fraction from cells transfected with mASIC3, nmrASIC3, or co-transfected with m/nmrASIC3 and rASIC2a and stained with anti-ASIC3
antibody, anti-ASIC2 antibody, or anti-�-Actin antibody.

Table 1
Summary data of peak current density, Isus/Ipeak, EC50, and Hill coefficient for all constructs tested
Numbers in parentheses refer to number of cells tested, details of statistical comparisons are not included for clarity, refer to graphs.

Peak current density
at pH 4.0

Isus/Ipeak at
pH 4.0

Inactivation time
constant at pH 4.0 pH EC50

pH Hill
coefficient

Peak current density
GMQ (1 mM)

pA/pF % ms pA/pF
nmrASIC1b 20 � 3 (21) 12 � 2 (17) 118 � 7 (21) 6.02 � 0.02 (8) 1.42 � 0.1 NDa

nmrASIC3 � nmrASIC1b 67 � 13 (18) 34 � 5 (18) 125 � 7 (17) 5.58 � 0.07 (12) 0.89 � 0.09 ND
nmrASIC3 � rASIC2a 455 � 217 (10) 19 � 4 (6) 1637 � 62 4.39 � 0.17 (11) 1.17 � 0.16 ND
mASIC3 69 � 13 (26) 48 � 4 (23) 202 � 12 (23) 6.01 � 0.14 (9) 0.68 � 0.1 14 � 3 (6)
mASIC3-ATG 109 � 51 (8) ND 352 � 31 (9) 6.02 � 0.14 (10) 0.65 � 0.07 ND
mASIC3 � nmrASIC1b 193 � 48 (14) 31 � 4 (15) 93 � 5 (14) 5.66 � 0.08 (8) 0.96 � 0.09 ND
mASIC3 � rASIC2a 129 � 23 (13) 141 � 25 (13) 80 � 10 (4) 4.45 � 0.15 (15) 0.72 � 0.06 ND
rASIC3 627 � 92 (18) 35 � 5 (18) 387 � 52 (12) 6.39 � 0.17 (10) 0.91 � 0.18 181 � 55 (8)
rASIC3-A62E 705 � 219 (7) 43 � 31 (7) 343 � 47 (13) 5.91 � 0.20 (6) 0.76 � 0.07 ND
rASIC3-A62E/R102H 673 � 213 (8) 26 � 6 (8) 191 � 14 (8) 6.15 � 0.13 (7) 0.72 � 0.06 ND
rASIC2a 421 � 58 (50) 29 � 6 (8) 1220 � 108 (17) 4.44 � 0.08 (14) 1.62 � 0.51 ND

a ND, not determined.
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was 48 � 4% (n � 23, Fig. 3, A–D). Currents recorded from cells
transfected with nmrASIC1b had a peak current density of 20 �
3 pA/pF, an inactivation time constant of 118 � 7 ms (n � 21),
and Isus/Ipeak was 12 � 2% (n � 17, Fig. 3, A–D). In cells cotrans-
fected with nmrASIC1b and nmrASIC3, currents were
recorded in all instances suggesting that nmrASIC3 does not
have a dominant-negative effect. Properties of nmrASIC3 �
nmrASIC1b currents were as follows: peak current density,
67 � 13 pA/pF (n � 18), inactivation time constant, 125 � 7 ms
(n � 17), and Isus/Ipeak was 34 � 5% (n � 18, Fig. 3, A–D).
Similar currents were observed in cells expressing mASIC3 �
nmrASIC1b: peak current density, 193 � 48 pA/pF (n � 14, p �
0.001 versus nmrASIC3 � nmrASIC1b), inactivation time con-
stant, 93 � 5 ms (n � 14), and Isus/Ipeak 31 � 4% (n � 15, Fig. 3,
A–D). The inactivation time constant of mASIC3 was sig-
nificantly slower than the inactivation time constants of
nmrASIC1b and both mASIC3 � nmrASIC1b and nmrASIC3 �
nmrASIC1b (p � 0.001, Fig. 3C). Importantly, for both
nmrASIC3 � nmrASIC1b- and mASIC3 � nmrASIC1b-medi-
ated currents, the Isus/Ipeak was significantly greater than that of
nmrASIC1b homomers (p � 0.01 and p � 0.05, respectively,
Fig. 3D; the Isus/Ipeak mASIC3 � nmrASIC1b was significantly

less than that of mASIC3 homomers, p � 0.05, respectively, but
for nmrASIC3 � nmrASIC1b there was no significant differ-
ence compared with mASIC3 homomers Fig. 3D). These results
suggest that both nmrASIC3 and mASIC3 form heteromers
with nmrASIC1b to produce currents with a substantial sus-
tained component. Although the large sustained component
measured in cells expressing mASIC3 and nmrASIC1b could be
the result of measuring a mixture of mASIC3 homomeric cur-
rents (large Isus/Ipeak) and nmrASIC1b homomers (small Isus/
Ipeak) this cannot explain the large Isus/Ipeak measured in cells
expressing nmrASIC3 and nmrASIC1b because nmrASIC3
does not form proton-sensitive homomers and thus it is likely
that ASIC3 and ASIC1b form heteromers that have a substan-
tial Isus/Ipeak as has been shown by others for rASIC3 �
rASIC1b (7). A second piece of evidence suggesting that nmrA-
SIC3 can form functional ASIC heteromers is that pH-response
curves show that the effective concentration 50 (EC50) for
mASIC3 � nmrASIC1b heteromers was not significantly dif-
ferent from that of nmrASIC3 � nmrASIC1b (pH 5.66 � 0.08,
n � 8, versus pH 5.58 � 0.07, n � 12, p � 0.91), however,
heteromers of nmrASIC3 � nmrASIC1b were significantly dif-
ferent from the EC50 of either mASIC3 or nmrASIC1b homom-
ers (mASIC3, pH 6.01 � 0.14, n � 9 and nmrASIC1b, pH 6.03 �
0.02, n � 9, p � 0.01 Fig. 3E), but not mASIC3 � nmrASIC1b
(p � 0.053 and 0.05, respectively).

We also investigated the ability of mASIC3 and nmrASIC3 to
form heteromers with rASIC2a and found that as shown previ-
ously (7, 43) coexpression of mASIC3 and rASIC2a resulted in
currents with an Isus/Ipeak that was significantly greater than
that produced by either mASIC3 or rASIC2a homomers
(mASIC3 � rASIC2a: 141 � 25, n � 13 versus mASIC3: 48 �
4%, n � 23, p � 0.001 and rASIC2a 29 � 6%, n � 8, p � 0.001,
Fig. 4, A and D). By contrast, cells expressing nmrASIC3 and
rASIC2a produced currents that did not produce a large Isus/
Ipeak (Fig. 4A and D) and appeared largely indistinguishable
from rASIC2a homomers; the lack of a large sustained current
in cells expressing nmrASIC3 � rASIC2a in response to pro-
tons is not necessarily a sign that heteromers are not formed
because rASIC2a � rASIC3 heteromers have been reported to
have an Isus/Ipeak of �30% (28), not to dissimilar to the 19 � 4%
observed here. Moreover, a small, but significant difference in
the inactivation time constant was observed suggesting that
heteromers may be formed: nmrASIC3 � rASIC2a heteromers
inactivated significantly more slowly than mASIC3 � rASIC2a
heteromers and homomers of either rASIC2a or mASIC3
(nmrASIC3 � rASIC2a, 1637 � 62 ms, n � 9 versus mASIC3 �
rASIC2a, 80 � 10 ms, n � 4, p � 0.001, versus rASIC2a, 1220 �
108 ms, n � 17, p � 0.05, and versus mASIC3, 202 � 12 ms, n �
23, p � 0.001, Fig. 4C). Currents mediated by nmrASIC3 �
rASIC2a were of significantly greater magnitude than those
mediated by mASIC3 (nmrASIC3 � rASIC2a 455 � 217
pA/pF, n � 10, versus 69 � 13 pA/pF, n � 26, p � 0.05), whereas
those mediated by rASIC2a were significantly greater than
those mediated by mASIC3 � rASIC2a and mASIC3 (421 � 58
pA/pF, n � 50, versus mASIC3 � rASIC2a, 129 � 23 pA/pF,
n � 13, p � 0.05, and 69 � 13 pA/pF, n � 26, p � 0.001,
respectively, Fig. 4B). Examination of pH-response curves
showed that both mASIC3 � rASIC2a and nmrASIC3 �

Figure 2. APETx2 blocks transient currents in naked mole-rat DRG neu-
rons. Representative ASIC-like (A) or TRPV1-like (B) current traces recorded
from DRG neurons stimulated with pH 5.0 before APETx2 application, imme-
diately after application of 2 �M APETx2 for 30 s, and after 30 s wash at pH 7.4.
C, quantification of results showing that ASIC-like transient currents were
significantly and reversibly inhibited by APETx2, whereas TRPV1-like sus-
tained currents were not affected. Bars represent mean � S.E. Data were
analyzed by paired t test. **, p � 0.01.
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rASIC2a produced currents that were significantly less sensi-
tive to protons than mASIC3, but not significantly different
from each other (EC50s: mASIC3 � rASIC2a, pH 4.45 � 0.15,
n � 15, versus nmrASIC3 � rASIC2a, pH 4.39 � 0.17, n � 13,
p � 0.98, and versus mASIC3, pH 6.01 � 0.12, n � 10, p �
0.0001, Fig. 4E), and these were also indistinguishable from that
of rASIC2a (EC50: rASIC2a, pH 4.44 � 0.05, n � 14, p � 0.99
and p � 0.99, respectively). In summary, based upon biophysi-
cal characterization, nmrASIC3 forms functional heteromers
with nmrASIC1b (Fig. 3), but the evidence is less clear for het-
eromeric formation with rASIC2a (Fig. 4) although these two
subunits are both present at the plasma membrane when
cotransfected (Fig. 1G) and the fact that ASIC-like currents are
sensitive to inhibition by APETx2 in DRG neurons from naked
mole-rats (Fig. 2) strongly supports the premise that although
nmrASIC3 produces proton-insensitive homomers it can form
functional heteromers in vivo.

Amino acid variations specific to nmrASIC3 do not account for
homomeric proton-insensitivity

To determine the molecular basis for proton-insensitivity of
nmrASIC3, we aligned the nmrASIC3 amino acid sequence
with that of 9 other species (Fig. 5, A–C). We found only three
instances where naked mole-rat residues differed in a region
otherwise conserved in all species. Importantly, we included
guinea pig, a rodent more closely related to naked mole-rat than
mouse or rat, and guinea pig sensory neurons are activated by
the non-proton agonist of ASIC3, GMQ demonstrating the
functionality of ASIC3 in this species (27). We first identified
that nmrASIC3 is missing the first methionine of the protein
sequence, having instead a methionine at position 7 (Fig. 5A).
We thus created a version of mASIC3 lacking the initial ATG
and further mutated position 7 leucine for methionine (L7M),
termed mASIC3-ATG, and an nmrASIC3 with an added methi-

Figure 3. Characterization of CHO cells co-expressing nmrASIC1b and mASIC3 or nmrASIC3. A, currents recorded from CHO cells expressing mASIC3,
nmrASIC1b, mASIC3 � nmrASIC1b, or nmrASIC3 � nmrASIC1b. B–D, quantification of log10 peak current density (B), inactivation time constant (C), and Isus/Ipeak
(D). Bars represent mean � S.E. E, pH-response curves of mASIC3, nmrASIC1b, mASIC3 � nmrASIC1b, and nmrASIC3 � nmrASIC1b. Data were analyzed by
ANOVA with Tukey’s multiple comparison test. ***, p � 0.001; **, p � 0.01 comparing all conditions.
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onine at position 1 and an M7L mutation termed nmrASIC3 �
ATG. mASIC3-ATG responded to low pH and the EC50 was
6.02 � 0.14 (n � 10), not significantly different than that of
wildtype mASIC3 (p � 0.97, Fig. 5D). By contrast, nmrASIC3 �
ATG, like wildtype nmrASIC3, did not respond to acid. Varia-
tion in the initial 7 amino acids of nmrASIC3 cannot therefore
explain its proton insensitivity.

A second difference exclusive to nmrASIC3 in the compari-
son made was replacement of alanine at position 62 with gluta-
mate (A62E, Fig. 5B), a residue likely within transmembrane
domain 1, but close to the start of the extracellular domain (2).
Because rASIC3 produced larger currents than mASIC3, we
used this construct from this point onwards to determine
whether mutations altered pH sensitivity. A pH 4.0 stimulus
produced inward currents of a similar amplitude in cells
expressing either rASIC3A62E or rASIC3 (rASIC3A62E: 705 �
219 pA/pF, n � 7, and rASIC3: 499 � 145, n � 10), but currents
inactivated significantly more rapidly (rASIC3A62E: 343 � 47

ms, n � 13 versus rASIC3: 580 � 33 ms, n � 5, p � 0.001). The
pH-response curve was slightly, but nonsignificantly, shifted to
the right (rASIC3A62E: pH 5.91 � 0.2, n � 6, and rASIC3:
6.39 � 0.17, n � 10, p � 0.09, Fig. 5E).

A third amino acid variation was identified at residue 102, a
conserved arginine being replaced in both the naked mole-rat
and Damaraland mole-rat with histidine (Fig. 5C) and thus
rASIC3-A62E was further mutated to produce rASIC3-A62E/
R102H. The pH-response curve for the double mutant rASIC3-
A62E/R102H was not significantly different than that of
rASIC3 (pH 6.15 � 0.13, n � 7, p � 0.33, Fig. 5E). As for
rASIC3-A62E, currents mediated by rASIC3-A62E/R102H
inactivated significantly faster than wildtype rASIC3 (rASIC3-
A62E/R102H, 191 � 14 ms, n � 8, p � 0.001). Thus, it would
appear that neither Ala62 nor Arg102 are of crucial importance
in proton activation of ASIC3 and indeed when expressed in
CHO cells neither nmrASIC3-E62A nor nmrASIC3-H102R
resulted in the rescuing of nmrASIC3 proton-sensitivity.

Figure 4. Characterization of CHO cells co-expressing rASIC2a and mASIC3 or nmrASIC3. A, currents recorded from CHO cells expressing mASIC3, rASIC2a,
mASIC3 � rASIC2a, or nmrASIC3 � rASIC2a. B–D, quantification of log10 peak current density (B), inactivation time constant (C), and sustained current in
proportion to peak current (D). Bars represent mean � S.E. E, pH-response curves of mASIC3, rASIC2a, mASIC3 � rASIC2a, and nmrASIC3 � rASIC2a. Data were
analyzed by ANOVA with Tukey’s multiple comparison test. ***, p � 0.001 comparing all conditions.
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Discussion

Sensitivity to acid as a noxious stimulus is largely conserved
throughout the animal kingdom (44), but the naked mole-rat is
behavioral insensitive to acid (35) due to a variation in NaV1.7,
which results in acid anesthetizing, rather than activating,
naked mole-rat sensory neurons (36). Moreover, naked mole-
rats show behavioral indifference to both ammonia and acid
fumes (38, 39), as well as CO2 (40) at levels producing avoidance
in mice. All of these findings demonstrate likely adaptations to
having evolved in a subterranean, hypoxic/hypercapnic envi-
ronment (45, 46). Here we undertook to investigate the prop-
erties of nmrASIC3 because evidence supports a role for ASIC3
in a wide variety of situations, including: pain (9, 23–26), as
well itch (29), mechanosensation (23, 30), and anxiety (31).
Although nmrASIC3 displays a similar expression profile to
mASIC3 (33), we show here that it is insensitive to both protons
and the non-proton agonist GMQ when expressed in CHO
cells, even though it traffics to the plasma membrane. Consid-
ering the 82.7% identity with mASIC3 and 81.6% rASIC3 at the
amino acid level, including 95% similarity of the EC domain
(EMBOSS matcher algorithm) (47), these findings were unex-
pected. Much like ASIC2b and ASIC4, which are also insensi-
tive to protons (13, 16), we have produced pharmacological
evidence that nmrASIC3 contributes to heteromeric ASIC for-
mation in DRG neurons, such that the ASIC3 subunit contain-
ing antagonist APETx2 reversibly inhibits ASIC-like currents,
but has no effect on TRPV1-like currents, recorded from naked
mole-rat DRG neurons. It has been well characterized that
although homomeric ASIC currents can occur in both periph-
eral and central neurons (9, 48), it is perhaps more common for
ASICs to form heteromers (9, 49) and variations of the ASIC

subunit configuration has a significant effect upon the sensitiv-
ity of channels to protons, their inactivation time constants,
and sensitivity to different pharmacological agents (7, 8, 50, 51).
As well as the reversible inhibition of proton-gated currents in
DRG neurons by APETx2, in a heterologous expression system
we observed that nmrASIC3 appears to form heteromers with
both ASIC1b and ASIC2a, which would suggest that in vivo it
acts to modulate ASIC currents, just like ASIC2b and ASIC4.

With regard to understanding the basis of nmrASIC3 pro-
ton-insensitivity, manipulation of the few amino acid variations
that we identified from a multiple sequence alignment neither
abolished rASIC3 proton-sensitivity, nor rescued nmrASIC3
proton-sensitivity and thus it remains unclear why nmrASIC3
fails to respond to protons. Of the 3 carboxylate pairs contained
within the acidic pocket identified from the crystal structure of
cASIC1 that were proposed to be critical for proton activation
of ASICs (Asp238–Asp350, Glu239–Asp346, and Glu220–Asp408;
cASIC1a numbering) (2), Asp238 is replaced by glutamate and
Asp346 is actually replaced by a serine in mASIC3 and rASIC3.
Lacking the full set of carboxylates in the proton-sensitive
mASIC3 and rASIC3 confirms earlier results from ourselves
and others highlighting that although the acidic pocket is
involved in proton activation of ASICs, it alone is not responsi-
ble for proton activation of ASICs (17–22). In nmrASIC3,
Glu220 becomes Asp210, Glu239 becomes Asp229, and Asp346 is
actually retained Asp352, thus nmrASIC3 actually has a full set
of carboxylates in the acidic pocket, and although two glutama-
tes are replaced by aspartates, which would have a different pKa,
they are still protonatable residues. A series of mutations have
been made in rASIC3, two of which were similar to those in this
study, E63A and R102A, and although EC50 values for these

Figure 5. Multiple sequence alignment of rodent and human ASIC3 protein including species closely related to naked mole-rat or living in similarly
hypoxic/hypercapnic habitats. A, amino acids 1–10, methionine is missing in the naked mole-rat (arrow). B, amino acids 55– 69, change of alanine 62 to
glutamate in naked mole-rat (arrow). C, amino acids 99 –112, change of arginine to histidine in naked mole-rat and Damaraland mole-rat (arrow). D, pH-re-
sponse curves of mASIC3 and mASIC3-ATG. E, pH-response curves of rASIC3, rASIC3-A62E, rASIC3-A62E/R102H. Data were analyzed by a t test.
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mutants are not reported, both responded to protons and E63A
was observed to slow down the rate of inactivation (52),
whereas here we observed that the inactivation time constant
was more rapid in rASIC3-E62A. However, Cushman et al. (52)
stimulated using pH 6.0 from a starting point of pH 8.0, whereas
here we stimulated using pH 4.0 from a starting point of pH 7.4,
which may explain the difference observed. Taken together,
from the results presented here it remains unclear why nmrA-
SIC3 is proton-insensitive; there are further nmrASIC3 amino
acid variations that remain to be tested, which may yet account
for the proton-insensitivity observed, although these are far less
species specific than those tested here.

Considering the varied physiology with which ASIC3 is con-
cerned, the fact that nmrASIC3 forms non-functional homom-
ers may be a further adaptation to living in a hypercapnic envi-
ronment. Future experiments determining the role of ASIC3 in
different brain regions of the naked mole-rat will be required to
understand just how the proton insensitivity of nmrASIC3
influences brain function.

Experimental procedures

Animals

All experiments were conducted in accordance with the
United Kingdom Animal (Scientific Procedures) Act 1986
Amendment Regulations 2012 under a Project License (70/
7705) granted to E. St. J. S. by the Home Office; the University of
Cambridge Animal Welfare Ethical Review Body also approved
procedures. Young adult naked mole-rats were used in this
study: 2 males and 1 female aged between 3.5 and 4.5 years.
Animals were maintained in a custom-made caging system
with conventional mouse/rat cages connected by different
lengths of tunnel. Bedding and nesting material were provided
along with a running wheel. The room was warmed to 28 °C,
with a heat cable to provide extra warmth running under 2–3
cages, and red lighting (08:00 –16:00) was used.

Chinese hamster ovary cell culture and transfection

CHO cells (Sigma) were grown using standard procedures in
the following medium: Ham’s F-12 Nutrient Mixture (Life
Technologies), 10% fetal bovine serum (Sigma), 1% penicillin/
streptomycin, 100 units/ml (Life Technologies). 24 h before
transfecting cells, 35-mm dishes (Fisher) were coated with 100
�g/ml of poly-L-lysine (Sigma) and cells from a 70 – 80% con-
fluent flask were trypsinized, resuspended in 5 ml of CHO
medium, and a volume was taken to seed cells at a 1:10 dilution,
2 ml/dish. For transfections, an EGFP expression vector was
used to enable identification of transfected cells and DNA was
transfected at a ratio of 10:1, ASICx:GFP, or 5:5:1 in c-transfec-
tion experiments, using 0.9 �g of ASICx DNA and 0.09 �g of
EGFP DNA (2 �g of DNA was used for nmrASIC3); the trans-
fection reagent Lipofectamine LTX (Life Technologies) was
used according to the manufacturer’s protocol.

Cloning and mutagenesis

mASIC3 and nmrASIC3 was amplified from mouse and
naked mole-rat whole brain cDNA, respectively, using forward
(fw, mASIC3, atgaaacctccctcaggactgga; nmrASIC3, aagagc-

cctcgggatggagga) and reverse primers (rv, mASIC3, ctagagcct-
tgtcacgaggtaaca; nmrASIC3, ctagaatcactagtttgcccgggat), cloned
into pIRES or pTarget expression plasmid and confirmed by
sequencing. Rat ASIC2a cDNA in a pCI expression plasmid and
nmrASIC1b in pEGFP-N3 have been previously described (22,
36). Mutations were inserted with the FastCloning method (53)
using primer pairs specific to the construct (mASIC3-ATG, fw,
aaacctccctcaggatggagga, rv, cattcctgagggaggttttaccgtcgactgca-
gaattcga; nmrASIC3 � ATG, fw, AAGAGCCCCTCGGGGC-
TGGAGGAGGCTCGGAGAA; rv, CCGAGGGGCTCTTCA-
TGCTAGCGGAT; rASIC3-A62E, fw, tctaccaggtggaggagcggg-
ttcg, rv, cctggtagaggaaggccgccagcga; rASIC3-A62E/R102H, fw,
cccactgcgccgctcaca, tk;2rv, gtgaggtgtgagcggcgca; nmrASIC3-
E62A, fw, ctaccaggtggctgagcgggtacgcta, rv, acctggtagaggaaggc-
tgccagcga; nmrASIC3-H102R, fw, cgctcacgcctcactcccaacga, rv,
cgtgagcggcgcagcgggttgatgtt).

Biotinylation

CHO cells were transfected using polyethylenimine (PEI).
The cells cultured in 75 cm2 flasks were �75% confluent. For
transfection, to 1 ml of serum-free DMEM, 25 �g of total plas-
mid DNA encoding mASIC3, nmrASIC3, or rASIC2a was
mixed with 15 �l of 7.5 mM polyethylenimine. When a combi-
nation of plasmids was to be transfected, the concentration of
plasmids was split equally. This transfection mixture was incu-
bated for 10 min at room temperature and added drop-by-drop
to the flask that was replaced with fresh growth media prior to
addition of the transfection mixture. For isolation of cell-sur-
face biotinylated proteins, 48-h post-transfection, the growth
medium was removed from cells. Ice-cold HEPES buffer saline
(HBS) (140 mM NaCl, 1.5 mM Na2HPO4�2H2O, 50 mM HEPES,
pH 7.05) containing 0.2 mg/ml of biotin-sulfo-NHS (Thermo
Fisher Scientific, catalog number 21331) was added to cells and
incubation was carried out for 60 min on ice. Subsequently,
biotin containing HBS was removed and cells were washed at
least 3 times with 15 ml of Tris-buffered-saline (25 mM Tris-
HCl, 150 mM NaCl, 10 mM EDTA, pH 7.4). Cells were collected
in the same buffer, pelleted at 1,000 � g for 5 min at 4 ºC. The
pellet was solubilized in solubilization buffer (25 mM Tris-HCl,
150 mM NaCl, 10 mM EDTA, 1% Triton X-100, and 1 mg/ml of
protease inhibitor (Roche Applied Science)) for 60 min at 4 °C
with continuous mixing. This lysis mixture was centrifuged at
50,000 � g for 60 min at 4 °C and the supernatant was incubated
with 50 �l of monomeric avidin-coated agarose beads (Thermo
Fisher Scientific) for 2 h at 4 °C with continuous mixing. The
protein– bead complexes were collected by centrifugation at
20,800 � g for 10 min, washed with solubilization buffer at least
3 times with a mixing time of 5 min between washes. The pro-
tein was eluted from the beads using 50 �l of Laemmli buffer for
immunoblotting. For electrophoresis, 20 �l of the protein/
Laemmli buffer mixture was loaded in the lanes of 10%
acrylamide and SDS-PAGE was carried out. Proteins were
then transferred onto a polyvinylidene difluoride membrane,
blocked with 5% milk/TBS/Tween 20 solution for 60 min at
room temperature, probed with primary antibody at 4 °C over-
night (anti-ASIC2, Abcam, ab77384 (1:250), and anti-ASIC3,
Boster, PA1938 (1:250)), washed with 5% milk/TBS/Tween 20
solution and incubated with secondary antibody (anti-mouse
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horseradish peroxidase, used at 1:1000, Thermo Fisher Scien-
tific, catalog number 31430; anti-rabbit horseradish peroxi-
dase, used at 1:1000, Bio-Rad, catalog number 1706515) for 2 h
at room temperature. Blots were washed in distilled water and
then developed with West Pico Chemiluminescent Substrate
(Thermo Fisher Scientific). Protein samples from beads were
checked for any “biotin-permeabilization” by probing for actin
(negative control, A2228, 1:500, Sigma).

Electrophysiology

DRG neurons were cultured as described previously (36, 41).
Whole-cell patch clamp recordings from CHO cells were per-
formed at room temperature 24 h after transfection and record-
ings from DRG neurons 24 h after culturing. For all ASIC exper-
iments, the intracellular solution contained 110 mM KCl, 10 mM

NaCl, 1 mM MgCl2, 1 mM EGTA, 10 mM HEPES, 2 mM Na2ATP,
0.5 mM Na2GTP in MilliQ water; pH was set to pH 7.3 by adding
KOH, and the osmolality was adjusted to 310 –315 mosmol
with sucrose. The extracellular solution contained 140 mM

NaCl, 4 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 10 mM HEPES
(solutions � pH 6) or MES (solutions � pH 6), 4 mM glucose in
MilliQ water; osmolality was adjusted to 300 –310 mosmol with
sucrose and pH was adjusted with NaOH and HCl; unless stated
otherwise, e.g. for test pH solutions, the extracellular solution
was pH 7.4. Patch pipettes were pulled from glass capillaries
(Hilgenberg) using a model P-97, Flaming/Brown puller (Sutter
Instruments) and had a resistance of 4 –10 megohms. Data were
acquired using an EPC10 amplifier (HEKA) and Patchmaster
software (HEKA). 2 �M APETx2 were added to the pH 7.4 solu-
tion for DRG neuron experiments and solutions containing the
synthetic ASIC3 agonist GMQ (Sigma) in pH 7.4 were diluted
from a stock solution of 50 mM dissolved in DMSO. For mea-
surement of current amplitude and inactivation time constant,
a protocol of 5 s of pH 7.4 followed by a 5-s stimulus with pH 3
or 4, then a return to pH 7.4 solution for 5 s was used; the
holding potential was 	60 mV for both DRG neurons and CHO
cells. For pH-response curves, a 2.5-s stimuli between pH 3 and
6 (ASIC2) or 1-s stimuli between pH 4 and 7.2 (ASIC1, ASIC3)
were applied in random order with 30 s of bath solution
between stimuli to minimize desensitization, although this is
not a prominent feature of ASIC1b, ASIC2a, or ASIC3 (22, 54).

Data analysis

Statistical analysis was performed in Prism (GraphPad),
which was also used to plot data. Peak current density was ana-
lyzed by measuring the size of the peak current compared with
the baseline current (average current measured over 4 s prior to
stimulation). The absolute current size was then divided by
capacitance of the cell to result in normalized peak current
density (pA/pF). Peak current density data were transformed
using yi � log10(xi). The inactivation time constant, �, was mea-
sured using a built-in function of Fitmaster. Statistical analysis
was performed in GraphPad Prism using repeated measures
analysis of variance (ANOVA) with Tukey’s multiple compari-
sons for DRG neuron data or ordinary one-way ANOVA and
Tukey’s multiple comparisons, comparing data from each con-
struct with every other construct of the same experiment for
transformed peak current density data and inactivation data of

CHO cell experiments. Results are expressed as mean � S.E.,
unless otherwise stated; this might, however, not necessarily
represent the statistical differences for peak current density
data, which were transformed as above. Sustained current to
transient current ratio was calculated by measuring the size of
the sustained current at the end of the stimulus compared with
the baseline current and dividing this value by the peak current
(Isus/Ipeak � 100). For pH-response curves, all measurements
were transformed to percent of the maximum peak current
(I/Imax � 100) for each cell. The EC50 and Hill coefficient were
determined by plotting individual pH-response curves for every
cell using GraphPad Prism. Outliers were identified using
Prism’s ROUT method with Q � 1% and those cells were elim-
inated from the dataset. The mean EC50 and Hill coefficient for
each condition were then used to calculate an average curve
using the Hill equation, which was plotted along with the mean
� S.E. of measured values. Figures were made using Adobe
Illustrator.

Multiple sequence alignment

ASIC3 protein sequences were obtained from the NCBI
genome database or ENSEMBL (mouse NM_183000, naked
mole-rat PREHGLG00000022115, rat NM_173135.1, guinea
pig ENSCPOT00000020999, blind mole-rat XM_008847215.1,
Damaraland mole-rat XM_010637570.1, rabbit ENSRNOG
00000058308, human ENSG00000213199, large flying fox
ENSPVAG00000007091, little brown bat ENSMLUG0000
0028175). Naked mole-rat sequences that were not previously
annotated were identified using NCBI’s basic local alignment
search tool (BLAST) online. Sequences were aligned using
MAFFT version 7 using default settings with an unalignment
factor of 0.8. Sequences were visualized and manipulated in
Jalview. Alignments are shaded by BLOSUM62 score, which
indicates the likelihood that two amino acids are aligned
because they are homologous (55). Dark blue indicates that the
residues agree with the consensus sequence (�80% homology),
medium blue that they have a positive BLOSUM62 score (cor-
responding to �62% likelihood of homology), light blue repre-
sents �40% homology and white residues are not homologous
(�40% homology).
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