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Abstract

Discrete dislocation plasticity (DDP) analysis of the high-temperature cyclic deformation of two-
phase composites comprising a plastic matrix and elastic precipitates is presented. Deformation of
the matrix is by climb-assisted glide of dislocations while the precipitates deform by a combination
of bulk elasticity and stress-driven interfacial diffusion. The DDP calculations predict a cyclically
softening response due to the formation of dislocation cell structures within the matrix. The
dislocation cell sizes decrease with decreasing size of the unit cell (or equivalently matrix channels)
and this results in an increased cyclic softening rate in composites with smaller unit cells. Interfacial
diffusion also enhances the formation of dislocation cell structures and thereby promotes cyclic
softening. These results are consistent with predictions of the creep behaviour that indicate that
the increase in the creep rate (i.e. tertiary creep) is also associated with the formation of dislocation
cell structures within the matrix.

Keywords: High-temperature composite, cyclic loading, interfacial diffusion, discrete dislocation
plasticity, size effects

1. Introduction

Nickel-based superalloys typically consist of a γ plastic matrix strengthened by over

50 vol.% of γ′ elastic precipitates. These composites often exhibit stress softening during

low cycle fatigue (LCF) at temperatures above ∼ 700◦C [1, 2, 3]. This softening has been

qualitatively associated with two critical micro-structural changes [4, 5]: (i) formation of
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dislocation networks in the γ phase and (ii) coarsening of the γ′ precipitates. During pro-

longed cycling, dislocations rearrange and react with each other to form networks comprising

primarily of edge dislocations. Concurrent with the formation of these dislocation structures

in the γ phase, the γ′ precipitates often coarsen at an accelerated rate. This coarsening is

thought to be due to enhanced diffusional transport at the γ/γ′ interfaces and postulated

to be the cause of cyclic stress softening in high-temperature LCF [6]. The central goal of

this study is to investigate via discrete dislocation plasticity (DDP) calculations the roles

of interfacial diffusion and dislocation cell structure formation in the cyclic softening of two

phase composites representative of nickel-based superalloys.

The low-temperature strength (i.e. when deformation is governed by the glide motion of

dislocations) of such composites has been extensively investigated via DDP and is well known

to be size dependent [7]; i.e. for a given volume fraction of elastic precipitates the strength

increases with decreasing size of the unit cell (or equivalently the size of the precipitates).

Modelling of the high-temperature behaviour of such composites has received less attention

but recent advances in DDP modelling approaches for the high-temperature deformation of

crystalline metals [8, 9] have aided such investigations. For example, Shishvan et al. [10] have

extended the high-temperature DDP frameworks and developed a DDP approach to model

the effect of stress-driven diffusion at the interfaces of multi-phase materials. Their study

demonstrated that dislocation climb and interfacial diffusion reduce the effect of precipitate

size on the high-temperature strength of such composites via the formation of low energy

dislocation structures in the matrix phase. The same framework was then also used to

demonstrate [11] that the formation of wavy γ/γ′ interfaces in nickel-based superalloys

triggers tertiary creep in these materials. The high-temperature DDP framework of Shishvan

et al. [10] which explicitly models not only the climb of the dislocations but also stress-driven

diffusion at the interfaces is ideally suited to test the various hypotheses for the mechanisms

of stress softening during LCF. This is the focus of this study where we investigate the strain-

controlled cyclic high-temperature response of composites akin to nickel-based superalloys.

The outline of the paper is as follows. We begin by briefly describing the DDP framework

for modelling composites including the effects of interfacial diffusion as well as discussing the
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material parameters used in the DDP calculations to represent the nickel-based superalloys.

We then proceed to present DDP predictions with an emphasis on the mechanisms that

govern the cyclically softening response of composites.
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Figure 1: (a) Sketch of the unit cell of the composite subjected to uniaxial cyclic loading in the x2 direction.

The two active slip systems within the matrix are illustrated along with the positive and negative edge

dislocations on these slip systems: the colours used to depict these dislocations are employed to illustrate

dislocation structures in the remainder of the paper. (b) The applied cyclic strain history as a function of

the normalised time |ε̇app| t. The circular symbols indicate the instants at which dislocation structures are

plotted in Fig. 5.

2. DDP modelling of composites

We consider an infinitely large periodic composite with a brick and mortar microstruc-

ture and a unit cell of dimensions w × h as sketched in Fig. 1a. This composite comprising

a percolated matrix and identical rectangular precipitates of dimensions w(p) × h(p) is sub-

jected to uniaxial loading in the x2 direction as sketched in Fig. 1a. Plane strain conditions

are assumed to apply with deformation constrained in the x1 − x2 plane. Both the pre-

cipitates and the matrix are elastically isotropic with Young’s modulus E and Poisson’s
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ratio ν. Deformation of the matrix phase is by a combination of glide and climb of edge

dislocations (dislocation lines parallel to x3) while the precipitates are assumed to undergo

deformation by a combination of bulk elasticity and stress-driven interfacial diffusion at

matrix/precipitate interfaces. Dislocation nucleation and motion within the matrix occurs

on the slip systems oriented at angles ϕ(1) = ϕ = 30o and ϕ(2) = 180o − ϕ with respect

to the x1 axis (cf. Fig. 1a) and to ensure periodicity of the glide planes of the dislocations

we set w = h/ tanϕ. The composite has a volume fraction Vf ≈ 46.6% of precipitates and

the aspect ratio of the precipitates was chosen to be h(p)/w(p) = 9/7 so as to ensure that

the vertical and horizontal matrix channels are of approximately equal widths. We note in

passing that dislocations cannot traverse the composite via pure glide without encountering

in the impenetrable precipitates.

In DDP, the edge dislocations are treated as line defects with Burgers vector magnitude

of b in an otherwise elastic continuum. Thus, plasticity is an outcome of the motion of

these dislocations by a combination of glide and climb. While the long-range interactions

of dislocations are captured by the linear elastic fields, the short-range interactions are

incorporated through a set of constitutive rules [12, 13]. These constitutive rules are governed

by the glide and climb components of the Peach-Koehler (P-K) force on each dislocation

I denoted by f
(I)
g and f

(I)
c , respectively. The glide velocity of dislocation I is defined by

a linear drag relation v
(I)
g = f

(I)
g /Bg where Bg is the (glide) drag coefficient. Further, in

line with previous investigations [13, 14, 15], we also assume a drag type relation for the

climb velocity, i.e. v
(I)
c = f

(I)
c /Bc where the climb drag coefficient Bc is approximated from

the Hirth and Lothe [16] estimate of the rate at which co-operatively climbing dislocations

spaced a distance ` apart exchange vacancies. Following Danas and Deshpande [13], Bc at

temperature T is specified as

Bc =
b2kT ln(`/b)

2πD(v)c0Ω2
(v)

, (1)

where D(v) and c0 are the vacancy diffusion coefficient and equilibrium vacancy concentra-

tion, respectively at temperature T , Ω(v) is the atomic vacancy volume and k the Boltzmann

constant. Dislocation dipoles are nucleated from a density ρnuc of point Frank-Read sources
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when the glide P-K force on these sources exceeds a magnitude τnucb over a nucleation time

tnuc. Annihilation of two opposite signed dislocations on the same slip system occurs when

they are within a material-dependent critical annihilation distance Le = 6b. Point obsta-

cles with a density ρobs are also randomly dispersed in the matrix with dislocations being

unpinned from these obstacles when the glide P-K force on the dislocations exceeds τobsb,

where τobs is the obstacle strength.

Spatial gradients in the normal stress σn along the interface between the precipitate and

matrix phases provide the driving force for diffusional mass transport (i.e. inter-diffusion of

Al in Ni for nickel-based superalloys) along the interface. The interfacial mass transport is

modelled as a normal velocity discontinuity across the interface specified by [17, 10]

∆vn = − ∂

∂ξ

(
D(i)

∂σn(ξ)

∂ξ

)
, (2)

where D(i) is the interfacial diffusion parameter and ξ is a local co-ordinate along the interface

(Fig. 1a); see Shishvan et al. [10] for further details. Perfect bonding is assumed between

the precipitates and the matrix so that there is no sliding across the interface and this DDP

boundary value problem is solved using the superposition scheme described in [10].

DDP simulations typically require time-steps on the order of 0.5 ns to resolve short-

range dislocation interactions. Thus, temporal scaling needs to be employed in order to

perform simulations that are representative of experimental strain rates that are on the

order ε̇EXP ≈ 10−7 s−1. At these slow strain rates, vacancy diffusion driving dislocation

climb and interfacial diffusion are the rate limiting deformation processes with dislocation

glide occuring at a much faster rate. Following Shishvan et al. [11], we thus define two non-

dimensional time scales: (i) the ratio of the vacancy diffusion to loading time-scale given by

τ̄(v) = `2ε̇EXP/D(v) and (ii) the ratio of the interfacial diffusion to loading time-scale given

by τ̄(i) = `3ε̇EXP/(D(i)E). In order to ensure that the dominant deformation mechanisms

in the scaled DDP calculations are the same as in the experiments, we require that both

τ̄(v) and τ̄(i) are equal in the experiments and DDP calculations. Since we only implement

a temporal scaling (i.e. no scaling of length scales and moduli), we use ` and E values in

the simulations appropriate for composites representing nickel-based superalloys. Thus, the
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scaling requirement reduces to DDDP
(v) /DEXP

(v) = ε̇DDP/ε̇EXP and DDDP
(i) /DEXP

(i) = ε̇DDP/ε̇EXP,

where the superscripts EXP and DDP denote the quantities in experiments on the composites

and in the DDP simulations, respectively. Therefore, λ ≡ ε̇DDP/ε̇EXP represents a speed-up

factor in the DDP simulations compared to the experiments and the time t in the DDP

calculations is related to time tEXP in the experiments via tEXP = λt.

2.1. Material parameters

The material parameters of the model are adapted from [10] and are representative

of nickel-based superalloys. The elastic constants of the matrix and precipitates are E =

100 GPa and ν = 0.37. The matrix is initially dislocation-free with a density ρnuc ' 300µm−2

of dislocation sources and a density ρobs ' 600µm−2 of obstacles. These sources and obstacles

were equally distributed on both slip systems and randomly located on slip planes spaced

a distance 100b apart. These densities were chosen so as to ensure that the matrix in the

absence of precipitates has negligible strain hardening for the unit cell sizes considered in

this study [18, 19, 10]. The strength of each source is selected from a Gaussian distribution

with an average of τ̄nuc = 50 MPa and standard deviation of 1 MPa while all obstacles have

a strength τobs = 150 MPa. The nucleation time for all sources is taken as tnuc = 10 ns. In

order to account for the inevitable statistical effects in DDP calculations, we present results

that are averages over three realisations of the dislocation source and obstacle distributions.

Dislocations on both slip systems have a Burgers vector of magnitude b = 0.25 nm and the

glide drag coefficient for dislocation motion is Bg = 10−4 Pa s. The climb drag coefficient

Bc requires the specification of the vacancy parameters as discussed subsequently.

Calculations are reported for composites at a temperature T ' 1000 ◦C with strain-

controlled cyclic loading carried out over applied strains between εapp = −0.01 and 0.01. The

atomic vacancy volume and c0 at T = 1000 ◦C for nickel-based superalloys are Ω(v) = 13.8×

10−12 µm3, c0 = 20 × 106 µm−3, respectively and we choose the representative dislocation

spacing ` to equal the slip plane spacing, i.e. ` = 100b. It now remains to specify D(v) in Eq.

(1). The calculations reported here were designed to represent cyclic experiments carried

out at an applied strain rate |ε̇EXP| = 2 × 10−7 s−1. In order to make these calculations

6



numerically feasible, we choose a speed-up factor λ = 1010 and thus the DDP calculations

were carried out at ε̇app = ε̇DDP with |ε̇DDP| = 2000 s−1. Consequently, we are also required

to scale the vacancy diffusion constant by λ. The vacancy diffusion coefficient at T ' 1000 ◦C

in nickel-based superalloy is D(v) = DEXP
(v) = 2×10−5 µm2s−1 which implies a scaled diffusion

constant DDDP
(v) = 2 × 105 µm2s−1. Substituting these values in Eq. (1) with D(v) replaced

by DDDP
(v) , we obtain Bc = 1 Pa s. Similarly, the interfacial diffusion constant which governs

the inter-diffusion of Al in Ni at T ' 1000 ◦C is DEXP
(i) = 5 × 10−7 µm5N−1s−1 [20, 11] and

this constant is also scaled by λ. Following [11] we report the effect of interfacial diffusion

in terms of the non-dimensional parameter

D =
D(i) E

D(v) `
, (3)

which specifies the ratio of the vacancy diffusion to interfacial diffusion time. Calculations

are reported for four cases, viz. composites with unit cell sizes h = 0.5 µm and h = 1 µm

with interfacial diffusion absent (D = 0) and the reference value of D = 0.1 that follows

from the experimental inter-diffusion constant of DEXP
(i) = 5× 10−7 µm5N−1s−1.

3. Results and discussion

DDP predictions of the cyclic response (5 cycles) of the h = 0.5µm and 1µm composites

are included in Figs. 2a and 2b, respectively for D = 0.1. These predictions are presented in

terms of the normalised stress σ̄app ≡ σapp/τ̄nuc versus εapp, where σapp is the work-conjugate

to εapp. Over the five cycles investigated here, the degree of cyclic softening is higher for

the smaller unit cell (h = 0.5 µm) composite. To better quantify this softening, we define a

peak stress σ̄p as the average of σ̄app over the applied strain levels 0.005 ≤ εapp ≤ 0.01 and

predictions of these peak stresses are included in Fig. 3 as a function of the cycle number.

Consistent with the well-established size effect [7, 10], the initial strength (i.e. σ̄p at the first

cycle) of the composite increases with decreasing unit cell size h due to an increase in the

density of geometrically necessary dislocations. Moreover, as discussed in Shishvan et al.

[10] the strength decreases as interfacial diffusion rate is increased from D = 0 to D = 0.1.

However, unlike monotonic loading where smaller unit cell composite display greater strain
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Figure 2: DDP predictions of the cyclic stress versus strain response for the (a) h = 0.5µm and (b) h = 1µm

composites with D = 0.1.

hardening [10], the cyclic softening rate increases with decreasing h and this is especially

evident in the D = 0.1 case. Thus, consistent with observations, the high-temperature DDP

calculations predict a cyclic softening response and we proceed to understand the origins of

this softening as well as its dependence on the unit cell size and interfacial diffusion.

Predictions of the evolution of the dislocation density ρdis within the matrix (i.e. the

number of dislocations per unit matrix area) are plotted in Fig. 4a as a function of the

normalised time |ε̇app|t. The fluctuations in the curves are a consequence of higher levels

of nucleations during the tensile loading phase and increased annihilations of dislocations

during the compressive loading phase. The overall dislocation density thus remains relatively

stable for all except the h = 0.5 µm composite with D = 0.1 in which case the dislocation
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Figure 3: Predictions of the peak cyclic stress σ̄p as a function of the number of cycles (lines are drawn as

a guide to the eye).

density increases with cycle number. To understand the effect of this increase in dislocation

density on the deformation, we define average strain measures

ε̄g =
1

A(m)

∫
A(m)

2∑
α=1

∣∣∣s(α)i Eijm
(α)
j

∣∣∣ dA, (4)

and

ε̄c =
1

A(m)

∫
A(m)

2∑
α=1

∣∣∣m(α)
i Eijm

(α)
j

∣∣∣ dA, (5)

to quantify the deformation within the matrix due to dislocation glide and climb, respec-

tively. Here, A(m) is the area of the matrix while s
(α)
i and m

(α)
i are unit vectors in the slip

direction and normal to the slip plane in slip system (α), respectively. The strain estimates

Eij = 0.5(ui,j +uj,i) are calculated by numerically differentiating the total displacement field

ui using the FE mesh comprising square bi-linear elements of size 0.01 µm. Predictions of

the temporal evolution of ε̄g and ε̄c are included in Figs. 4b and 4c, respectively, for all four

cases analysed here. While both the glide and climb strains show an increasing trend in all

cases, again a marked increase in the matrix strain rates is predicted for the h = 0.5 µm

composite with D = 0.1, starting at approximately the third loading cycle.

The increase in the strain rates ˙̄εg and ˙̄εc seen in Figs. 4b and 4c is better understood

by examining the dislocation structures in the h = 0.5 µm and h = 1 µm composites shown
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Figure 4: Temporal evolution of (a) dislocation density, (b) matrix strain due to dislocation glide and (c)

matrix strain due to dislocation climb. These temporal evolutions are shown for all four cases investigated

here as a function of the normalised time |ε̇app| t. The colours of different parts of the curves indicate the

cycle number using the colour coding indicated in Fig. 1b.
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in Figs. 5a and 5b, respectively. The dislocation structures in Fig. 5 are shown at the peak

strains in the first, third and fifth cycles (see Fig. 1b). The formation of dislocation cells

commences at the third cycle and we argue that the increase in the strain rates ˙̄εg and ˙̄εc

follow the formation of these cell structures. The dislocation arrays that form the cell walls

are pathways for fast vacancy diffusion and thus in turn increases the dislocation climb rates.

The higher dislocation climb rates then allow dislocations to circumvent the precipitates at

a higher rate which enhances the glide rate of the dislocations and results in softening. The

dislocation cell structures are constrained by the width of the matrix channels and thus

smaller cells form in the h = 0.5 µm composite. Therefore, the DDP calculations predict

higher climb rates and increased cyclic softening in the h = 0.5 µm composite compared to

the h = 1µm composite. We emphasise that the dislocation cell structures predicted by the

DDP calculations are consistent with a wide body of observations [4, 21, 22, 23] reported

for high-temperature LCF of nickel-based superalloys.

Dislocation cell structures also form during the creep of nickel-based superalloys [11] and

thus the role of load reversal in stress softening during high-temperature LCF has been the

topic of numerous experimental investigations [24, 25]. We now proceed to use the DDP

calculations to ascertain what role the reversal of the applied strain rates (i.e. cyclic loading)

plays in the development of dislocation cell structures and begin by reporting predictions of

the creep responses of the composite in the four cases considered here. The creep responses

are presented for a constant normalised applied stress Σ̄app = 2.95 and 2.75 for the h = 0.5µm

and 1 µm composites, respectively. These applied stresses are approximately the average

stresses during the tensile loading phase (i.e. Σ̄app ' 〈σ̄app〉 for ε̇app > 0) of the cyclic

response of these composites.

Predictions of the creep responses are included in Fig. 6 with the creep time defined

as tcr ≡ λ(t − tR), where tR is the time in the DDP calculations to ramp the applied

stress to attain the constant value Σ̄app and λ the temporal scaling constant. Thus, tcr

is representative of experimental time-scales and the creep strain εcr is the accumulated

strain over tcr ≥ 0. The creep strain rates ε̇cr in Fig. 6 are high from early in the time

history for the h = 1 µm composite. On the other hand, the creep strain rates of the
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Figure 5: The evolution of the dislocation structures in the (a) h = 0.5 µm and (b) h = 1 µm composites

(D = 0.1) during loading cycles 1, 3 and 5 as indicated by the circular markers in Fig. 1b. The deformation

of the central precipitate is indicated in each case with the displacements magnified by a factor of 5 and 10

in (a) and (b), respectively. The colours assigned to dislocations are defined in Fig. 1a and all dimensions

are in µm.
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h = 0.5µm composite increase significantly around tcr = 75 hrs and 200 hrs for the D = 0.1

and D = 0 cases, respectively. To better understand these creep responses, we include

in Figs. 7a and 7b the dislocation structures in the h = 0.5 µm composite with D = 0.1

at tcr = 0 and 75 hrs, respectively. Dislocation cell structures are clearly seen to form at

tcr = 75 hrs and the formation of these cell structures corresponds to the onset of high creep

strain rates under creep loading. This is analogous to the cyclic loading case where also the

formation of dislocation cell structures co-incides with the onset of stress softening. Now

recall that the third loading cycle (when cyclic softening is seen to initiate) also commences

at tEXP ≈ 100 hrs and we thus hypothesise that it is the formation of dislocation cells that

results in softening under both constant stress creep loading and strain-controlled cyclic

loading; i.e. the cyclic softerning is not dependent on the reversal of applied loading. Rather,

dislocation cells form given sufficient time for vacancy (and interfacial) diffusion and the

reversal of loading in the cyclic calculations does not change the mechanism significantly at

least over the five cycles computed here. This is in agreement with the findings in [25] where

increasing dwell time in creep-fatigue tests decreases the life of superalloy.
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Figure 6: DDP predictions of the creep responses for normalised applied stresses Σ̄app ' 2.95 and 2.75 for

h = 0.5 µm and h = 1 µm composites, respectively.

Finally, it is worth discussing the role of interfacial diffusion. Interfacial diffusion is

predicted to weaken the composites (increased softening under cyclic loading and higher
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creep rates under creep loading). However, unlike continuum plasticity predictions [26], this

weakening due to interfacial diffusion is not from enhanced large overall deformations of the

precipitates. To illustrate this, we include in Figs. 5 and 7 the deformed shapes of the central

precipitate. Clearly, the overall deformations of the precipitates are small. Instead interfacial

diffusion promotes the formation of wavy interfaces between the matrix and the precipites

with the amplitude of the waviness in the range 5b − 10b [11]. These local deformations

of the interface relax the stresses within the matrix allowing for continued nucleation of

dislocations. The continued nucleation of dislocations results in a high dislocation density

(cf. Fig. 4a) with dislocation climb enabling the arrangement of these dislocations into low

energy cell structures. Recall that these dislocation cell structures are the primary cause of

softening of the composite and thus it follows that interfacial diffusion promotes softening.
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Figure 7: The evolution of the dislocation structure in the h = 0.5µm composite (D = 0.1) under a constant

normalised applied stress Σ̄app ' 2.95 at times (a) tcr = 0 and (b) tcr = 75 hrs. The deformation of the

central precipitate is indicated in each case with the displacements magnified by a factor of 5. The colours

assigned to dislocations are defined in Fig. 1a and all dimensions are in µm.
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4. Conclusions

DDP calculations are presented for the high-temperature strain-controlled cyclic load-

ing of composites representative of nickel-based superalloys. The calculations confirm some

existing hypotheses [5, 2] that cyclic softening is a result of formation of dislocation cell

structures within the matrix phase. The formation of these cell structures is promoted by

interfacial diffusion along the precipitate/matrix interfaces although, at least in the five cy-

cles computed here, there was no coarsening of the precipitates due to global mass transport

along the interfaces. Similar dislocation cell structures also formed under constant stress

creep loading and therefore we hypothesise that the primary requirement for the formation

of these dislocation structures is time to allow vacancy diffusion and associated dislocation

climb rather than the load reversal that occurs during cyclic loading.
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