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Abstract 

The indentation response of a three-dimensional (3D) non-interlaced composite 

comprising three sets of orthogonal carbon fibre tows in an epoxy matrix is 

investigated and the deformation/failure modes analysed by a combination of X-ray 

tomography and optical microscopy. The 3D composites have a near isotropic and 

ductile indentation response. The deformation mode includes the formation of 

multiple kink bands in the tows aligned with the indentation direction and shearing of 

the orthogonally oriented tows. This contrasts with the highly anisotropic response of 

traditional cross-ply composites where indentation results in either brittle tensile 

fracture of the plies or delamination failure depending on the indentation direction. 

Finite element (FE) calculations are also reported wherein tows in only one direction 

are explicitly modelled with the other two sets of orthogonal tows and the matrix 

pockets treated as an effective homogenous medium. The calculations are shown to 

capture the indentation response in the direction of the explicitly modelled tows with 

excellent fidelity but they under-predict the indentation strength in the other 

directions. This study has highlighted that in contrast to anisotropic and brittle 

laminated composites, 3D non-interlaced composites have a near isotropic and ductile 

indentation response. This makes them strong candidates for application as materials 

to resist impact loading.  
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1. Introduction 

Composite materials such as carbon fibre reinforced polymer (CFRP) composites 

made by laminating unidirectionally reinforced plies are extensively used in civil and 

aircraft structures due to their high specific strength and stiffness, superior corrosion 

resistance and improved fatigue resistance compared to conventional engineering 

materials such as aluminium and steel1-3. However, such materials are susceptible to 

interply delamination4,5, which traditionally has limited their use in situations where 

impact loading can occur. Nevertheless, lightweighting programs for transportation 

structures are driving renewed interest in composite materials for impact protection 

systems. For example, military vehicles are required to resist projectile impacts while 

in civilian aircraft applications the engines and airframes must be able to resist 

impacts from hail, bird strikes and impact by other foreign objects. In most cases, the 

structure needs to be able to retain its structural integrity after impact loading, which 

presents a serious challenge for traditional laminated composites. 

 

Impact loads induce a range of damage modes in composites that seriously degrade 

their mechanical performance. These damage modes include matrix cracks, 

delamination between plies and fibre fracture. Delamination under impact loading is a 

particularly critical damage mode as it results in a significant reduction in the 

mechanical performance of the composite in spite of the fact that the fibres remain 

intact. A number of approaches have been proposed to tailor the fibre/tow 

architectures to enhance the delamination resistance. These include Z-pinning6,7, 

stitching8,9 and knitting10 but these methods have had only marginal success as the 

reinforcements are unable to withstand the large out-of-plane stresses that are 

generated under impact loading. More recently, a range of methods have been 

developed to manufacture three-dimensional (3D) fibre preforms wherein tows are 

present in at-least three orthogonal directions; see Khokar11 for a detailed review of 

these techniques. These 3D fibre preforms can be broadly classified into three 

categories: (i) 2D woven 3D fabrics produced by usual 2D weaving methods with 

mono-directional shedding; (ii) 3D woven 3D fabrics produced by a dual-direction 

shedding system and (iii) non-woven 3D fabrics without interlacing or interweaving 

produced by a technique known as “noobing” that is described in Section 2. This 

emerging ability to independently manipulate the volume fractions of fibre in three 

directions not only allows tailoring of the multi-axial properties of composites12 but it 

also greatly reduces their susceptibility to delamination, and improves the impact 

resistance of CFRPs13-15. However, a key drawback of 3D composites compared to 

laminated counterparts is their reduced elastic modulus due to significant fibre 

waviness. This waviness also reduces compressive strength. For example, Kuo and 

Ko16 modified a conventional weaving machine to produce 3D composites with 

orthogonal non-woven yarns. Although the composite showed high ductility in 

compression, the inherent fibre waviness resulting from their modified weaving 

process, significantly reduced the compressive strength.  

 

Impacts by hail particles or bird strikes against aircraft structures are typically 

categorised as relatively low velocity impacts. Nevertheless, visualisation of their 

damage modes is hindered by the difficulty of observing internal failure modes via 

methods like in-situ X-ray tomography (XCT) during impact events. Even 

interrupting the test to characterize damage modes can change the deformation/failure 

modes. Thus, damage visualisation in low velocity impact tests is typically restricted 

to post-mortem inspections. However, since stress waves travel and reflect multiple 

times from the edges of a target during the time over which the projectile is in contact 
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with the target17,18, low velocity impacts can be well approximated to be quasi-static. 

Hence, quasi-static indentation tests are often employed to develop an initial 

understanding of the low velocity impact response of composites19 and a number of 

studies20,21 have demonstrated the equivalence between low velocity impact and 

quasi-static indentation tests.  

 

This study reports the quasi-static indentation response of a 3D non-woven carbon 

fibre/epoxy composites manufactured by the noobing process. The uniaxial 

compressive response of this composite was recently studied by Das et al.22 and here 

we extend the understanding of the mechanical properties of this composite by 

investigating the indentation response. Both measurements and finite element 

simulations are reported and the indentation mechanisms of this 3D composite are 

contrasted with those of traditional cross-ply laminates in order to assess the 

suitability of 3D noobed composites for impact protection applications. 

 

 

2. Materials and manufacture 

The study primarily focuses on 3D noobed1 composites in which three linear sets of 

orthogonal yarns are bound/tied together to produce a layerless 3D fabric. In order to 

put the behavior of such noobed composites in context, we also report the equivalent 

responses of a two-dimensional (2D) cross-ply composite. The details of these two 

materials including their manufacture are described in this section.  

2.1 Manufacture and structure of the noobed composites 

Dry 3D fabrics were produced in block form using the noobing method developed by 

Khokar24 where readers can find details of the device used for its automated 

manufacture. With (𝑋, 𝑌, 𝑍) forming a Cartesian co-ordinate system, the composite 

comprises an array of 𝑍-yarns bound together by 𝑋 and 𝑌-yarns that traverse the rows 

and columns of the grid formed by the 𝑍-yarns. These yarns loop as shown in Fig. 1a 

and externally bind the preform together (for clarity we do not show the looping of 

the 𝑍 yarns in Fig. 1a). This preform is therefore produced by a process that does not 

involve shedding as in a weaving process and results in structure consisting of three 

orthogonal non-interlaced 𝑋, 𝑌 and 𝑍-yarns. Infusion of a polymer matrix was 

performed via a resin transfer molding process (RTM) to produce the 3D composite 

material. 

The 3D noobed composites made for this study used Toray T700S 12k carbon fibre 

tows (non-twisted carbon fibre yarns are usually referred to as tows) in a NM 

FW3070 epoxy matrix 2 . The carbon fibres were approximately 𝑑 = 7.2 μm  in 

diameter and the 3D composite was anisotropic with 20% of the total number of tows 

in the 𝑍-direction and 40% each in the 𝑋 and 𝑌-directions. Blocks of the 3D noobed 

composites of size 175 (𝑋)mm ×  103 (𝑌)mm × 45 (𝑍)mm  were manufactured 

and specimens of required dimensions were cut from these blocks using a diamond 

band saw. X-ray computed tomography (XCT) images of the interior of the specimens 

on three orthogonal planes are included in Fig. 1b. These images clearly show that 

while the 𝑍-direction tows have an approximately square cross-section the 𝑋 and 𝑌-

direction tows are flattened in the 𝑍-direction during the RTM process. Moreover, due 

to the orthogonal arrangement of the tows, pockets of pure matrix (in addition to the 

                                                      
1 The acronym NOOB stands for Non-interlacing, Orientating Orthogonally and Binding23 
2 Nils Malmgren AB, P.O.Box 2039 S-442 02 Ytterby Sweden. 
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matrix that exists between fibres within each tow) are regularly interspersed in the 

composite. The periodic unit cell as inferred from these XCT images is sketched in 

Fig. 1c (an average unit cell based on measurements at 30 different locations in the 

XCT images) and includes all the relevant dimensions of the tows and matrix pockets. 

The composite comprises four principal phases: the 𝑋, 𝑌 and 𝑍-direction tows and the 

matrix pockets. Based on the unit cell with dimensions sketched in Fig. 1c, the 𝑋 and 

𝑌-direction tows comprise a volume fraction 𝑣𝑋 = 𝑣𝑌 ≈ 29% of the composite while 

the 𝑍 -direction tows occupy a volume fraction 𝑣𝑍 ≈ 17%  of the composite. The 

remainder 𝑣𝑀 = 25% of the volume is occupied by the matrix pockets. To specify the 

overall carbon fibre volume fraction within the composite, recall that each tow 

comprises 12k fibres of diameter 7.2 μm. Based on the tow cross-sectional areas from 

Fig. 1c the fibre volume fractions in the 𝑋 and 𝑌-direction tows are 𝑓𝑋 = 𝑓𝑌 ≈ 68% 

while the 𝑍 -direction tow comprises 𝑓𝑍 ≈ 30%  fibres. The overall fibre volume 

fraction in the composite then follows as 𝑓 = 2𝑣𝑋𝑓𝑋 + 𝑣𝑍𝑓𝑍 ≈ 45%.  

 

 
Fig. 1: (a) Sketch of the orthogonal non-woven yarns in the 3D noobed fabric that is infused 

with a polymer matrix to give the composite. (b) X-ray tomographic (XCT) scans of the 3D 

noobed composite showing sections on three orthogonal planes. The (𝑋, 𝑌, 𝑍)  co-ordinate 

system is indicated in (a). (c) Sketch of the unit cell of the 3D noobed composite employed in 

this study. The unit cell is inferred from the XCT images in (b). 

 

2.2 The cross-ply 2D composite 

The performance of the 3D noobed composite was compared with a standard 

laminated (2D) carbon fibre composite with constituent properties as close to those of 

the 3D noobed composite as possible. A cross-ply composite comprising 66% by 

volume IM7 fibres in a Hexply 8552 matrix was manufactured from prepregs 

supplied by Hexcel composites (ply thickness 125 μm ). Unlike the 3D noobed 

composite, 45 mm thick laminated composites typically are not manufactured from 

prepregs but in order to mimic the 3D composite as closely as possible, we 

constructed a 25 mm thick composite sheet with lay-up (0/90)100. The mechanical 
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properties of this standard laminate are well established; see for example the Hexcel 

datasheet25 and Russell et al.26. We use a Cartesian co-ordinate system for the 

laminated system such that the 𝑍-direction is perpendicular to the plane of the plies 

and the 𝑋  and 𝑌 -directions are aligned with the fibre directions in the cross-ply 

composite. 

 

 

3. Experimental protocol and measurements 

The aims of the experimental study are (i) to measure the indentation response of the 

3D noobed composites; (ii) investigate the deformation/failure mechanisms; and (iii) 

contrast the performance of the 3D composite with cross-ply laminated composite. 

We first describe the measurement protocols and then proceed to discuss the 

observations. 

 

3.1 Measurement protocol 

Back-supported indentation of the noobed composites in the 𝑋 and 𝑍-directions was 

carried out on cuboidal specimens of dimension ~45 mm × 45 mm × 20 mm (the 

blocks were 20 mm in the 𝑋 and 𝑍-directions for indentations carried out in those 

respective directions).  Since the 𝑌-direction is indentical to the 𝑋-direction, results in 

only one of these directions are presented. The specimens were cut from the infused 

noobed composite blocks first with a diamond band-saw and then milled to the final 

dimensions to ensure parallel sides. Indentation was carried out in a screw-driven test 

machine using a hardened steel, flat-bottomed circular indenter of diameter 𝐷 =
8 mm. The indenter diameter was chosen so that at-least two 𝑍-direction tows were 

aligned along the diameter of the indenter for indentation in the 𝑍-direction (since the 

cross-section of the 𝑋-direction tows is smaller, at-least nine 𝑋-direction tows lay 

along this indenter diameter for indentation in the 𝑋-direction). The indentation was 

performed at the centre of the 45 mm × 45 mm cross-sectional area of the specimen 

with the indentation load 𝑃 measured from the load cell of the test machine and the 

indentation displacement 𝛿  measured via a laser extensometer. The indentation 

response is quantified in terms of the indentation stress 𝜎𝐼 ≡ 𝑃/𝐴 versus the measure 

of indentation strain27 𝜀𝐼 ≡ 𝛿/√𝐴, where 𝐴 = 𝜋𝐷2/4 is the cross-sectional area of the 

indenter. All indentations were carried out at an applied displacement rate 𝛿̇ =
0.2 mm min−1.  
 

The indentation tests were periodically interrupted to enable XCT visualisation of the 

deformation/damage evolution under the indenter. At high indentation displacements, 

the indenter was embedded in the specimen and could not be removed without 

causing additional damage. In these cases, the XCT was performed with the steel 

indenter still within the specimen and this resulted in relatively poor quality XCT 

images. In addition to these XCT images, high-resolution optical imaging of the 

interior of the specimens immediately under the indenter was also conducted at the 

end of the indentation experiment. The optical imaging involved polishing of the 

specimen to expose the specimen interior as follows. The unloaded specimen was 

polished with SiC abrasive paper first using a coarse-grit (P220-P400) until 

approximately the mid-section of the specimen was exposed. Then, another 1 mm or 

so of the specimen was further abraded using a fine-grit (P800-P4000) paper in order 

to obtain a clean and smooth surface for imaging. In order to maximise the resolution 

of the images while still imaging a large enough area to clearly expose the 

deformation/failure modes, the imaged area was divided into a grid comprising 
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approximately 200 squares. Each of these squares was imaged separately and the 

entire imaged section was then reconstructed by stitching together these sub-images. 

 

Indentation for the cross-ply composites in the 𝑍-direction was conducted using the 

same protocol. However, recall that cross-ply composite plates were only 25 mm 

thick in the 𝑍-direction. Thus, indentation in the 𝑋-direction was carried out using a 

half-scale geometrically similar setup compared to all the other tests, i.e. the specimen 

and indenter dimensions as well as the indentation rate were decreased by a factor of 

two. The deformation/failure of the cross-ply specimens was visualised only using 

XCT.  

 

3.2 Indentation of the noobed composite in the Z-direction 

The measured 𝜎𝐼  versus 𝜀𝐼  response of the noobed composite in the 𝑍-direction is 

plotted in Fig. 2a. After an initial elastic response, the composite displays an 

approximately linearly hardening response. Unloading was performed from the three 

instants A, B and C marked on the 𝜎𝐼−𝜀𝐼  curve in Fig. 2a (unloading followed 

approximately the initial elastic slope and thus the unloading curves are omitted from 

Fig. 2a for the sake of clarity). XCT images of a section of the specimen after 

unloading from A, B and C are shown in Fig. 2b. These images are of sections lying 

in the diametrical plane of the indenter and show views of the 𝑋 − 𝑍 plane. At the 

onset of nonlinearity (A) nearly no permanent deformation or failure is observed. 

Further along the hardening curves, shear bands orientated at approximately ±45o to 

the axis of loading, emanate from the edge of the indenter as seen in the images B and 

C in Fig. 2b. These bands are associated with shearing of the 𝑋-direction tows and 

kinking within the compressed 𝑍-direction tows, although the kinking is not clearly 

visible within the resolution of the XCT images. The optical micrograph 

corresponding to the XCT image C in Fig. 2b is included in Fig. 2c. Multiple and 

reflected kinks are now clearly visible in the 𝑍-direction tows, and the deformation is 

reminiscent of that observed during uniaxial compression of the same noobed 

composite in the 𝑍 -direction22. It is thus instructive to compare the uniaxial 

compression and indentation responses.  
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Fig. 2: (a) The measured 𝑍-direction indentation (𝜎𝐼 − 𝜀𝐼) and uniaxial compression (𝜎𝑛 −
𝜀𝑛) responses of the 3D noobed and cross-ply composites. The inset shows a zoom-in of the 

early part of the loading history. (b) XCT images of the noobed composite showing the 

deformation under the indenter after unloading from locations A, B, and C marked in (a). (c) 

An optical micrograph of the deformation under the indenter of the noobed composite after 

completion of loading. (d) XCT image of the deformation/failure of the cross-ply specimen 

after completion of the indentation loading. 

 

The 𝑍 -direction uniaxial nominal compressive stress 𝜎𝑛  versus nominal strain 𝜀𝑛 

response of the noobed composite from Das et al.22 is included in Fig. 2a: the 

compressive ductility of the noobed composite in the 𝑍-direction was about 10% and 

hence for the sake of clarity it is included in an inset that shows an enlarged view of 

the early part of the indentation response. We briefly summarise the compression 

results of Das et al.22 so as to enable us to contrast them with the indentation response 

measured here. The noobed composite has an elastic response until the onset of 

kinking, and then displays a hardening response when further kinks (some of which 

zig-zag) form within the 𝑍-direction tows. Final collapse of the composite occurs by 
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tensile failure of the 𝑋 and 𝑌- direction tows via the indirect tension28 mechanism. In 

comparing the indentation and uniaxial compression responses we emphasize that 

while it is meaningful to compare the stress levels 𝜎𝐼 and 𝜎𝑛, the indentation strain 𝜀𝐼 
as defined by Sargent and Ashby27 is only an approximate measure of the strain under 

the indenter and thus may not be directly comparable to 𝜀𝑛. Keeping this in mind we 

observe that the two main differences between the indentation and uniaxial 

compressive response are: (i) the onset of non-linearity associated with the formation 

of the first kink-band in the 𝑍-direction tow occurs at a lower stress level under 

uniaxial compression and (ii) the specimen under uniaxial compression fails at 𝜎𝑛 ≈
580 MPa while a continued hardening indentation response is observed even at an 

indentation stress 𝜎𝐼 ≈ 1600 MPa. These differences are best understood by recalling 

that under indentation loading the stress state under the indenter has a significant 

hydrostatic component that stabilises the formation of kinks and increases the stress 

level required for the formation of the first kink band. Subsequently, continued 

deformation occurs by the formation of multiple kinks within the 𝑍-direction tow and 

the shear deformation of the 𝑋  and 𝑌 -direction tows. The continuing build-up of 

hydrostatic stress results in the high hardening observed under indentation loading 

while the overall hydrostatic stress remains low under uniaxial compression. 

 

3.3 Indentation of the noobed composite in the X-direction 

The measured 𝜎𝐼 versus 𝜀𝐼 response for indentation of the noobed composite in the 𝑋- 

direction is plotted in Fig. 3a with the corresponding uniaxial compressive response in 

the 𝑋 -direction from Das et al.22 again included in the inset. Now, unlike for 

indentation in the 𝑍 -direction, there is negligible hardening with continued 

indentation occurring at a constant stress 𝜎𝐼 ≈ 1200 MPa. Further, there is no sign of 

loss of load carrying capacity even at 𝜀𝐼 ≈ 0.8 and this is in stark contrast with the 𝑋-

direction uniaxial compression response where the noobed composite underwent 

catastrophic failure at 𝜎𝑛 ≈ 500 MPa with a compressive ductility of about 2%; see 

inset in Fig. 3a. XCT images of the deformation immediately under the indenter after 

unloading from 𝜀𝐼 ≈ 0.8 are included in Figs. 3b and 3c: these images show views of 

the 𝑋 − 𝑌 and 𝑋 − 𝑍 planes for sections lying in the diametrical plane of the indenter. 

The 𝑍  and 𝑌 -direction tows are seen to undergo large shear strains but the XCT 

images do not have the resolution to clearly show the deformation/failure mechanisms 

within the 𝑋-direction tows. Optical micrographs of the section in Fig. 3c are included 

in Fig. 4 with multiple levels of magnification that clearly illustrate the kink bands 

within the 𝑋-direction tows. Similar to the 𝑍-direction tows in Fig. 2c we observe 

multiple and reflected kink-bands in the 𝑋 -direction tows. Thus, while the 

deformation mechanisms for indentation in the 𝑋  and 𝑍-directions are similar, the 

reduced hardening for indentation in the 𝑋-direction is presumably due to the lower 

fibre volume fractions in the 𝑍-direction tows, which makes them easier to shear. We 

emphasize that under indentation loading these shear bands are confined under the 

indenter and thus do not cause catastrophic failure.  

 

Page 8 of 22Journal of Materials Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 9 

 
Fig. 3: (a) The measured 𝑋-direction indentation (𝜎𝐼 − 𝜀𝐼) and uniaxial compression (𝜎𝑛 −
𝜀𝑛) responses of the 3D noobed and cross-ply composites. The inset shows a zoom-in of the 

early part of the loading history. (b-c) XCT images of the noobed composite that show the 

deformation under the indenter after unloading from a strain level 𝜀𝐼 ≈ 0.8. (d) XCT image of 

the deformation/failure of the cross-ply specimen after completion of the indentation loading. 
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Fig. 4: Optical micrograph of the XCT section in Fig. 3c for the 𝑋-direction indentation of the 

noobed composite. Images at varying levels of magnification are included to illustrate the 

kink-bands within the 𝑋-direction tows. 

 

3.4 Comparison with the indentation response of cross-ply composites 

Measurements of the 𝑍-direction indentation response of the cross-ply laminates and 

the corresponding uniaxial compressive response are included in Fig. 2a. Under 

uniaxial compression in the 𝑍 -direction, the cross-ply laminates fail by indirect 

tension28,29 resulting in the elastic-brittle behaviour seen in Fig. 2a. The indentation 

behaviour is also dominated by indirect tension with the peak indentation and uniaxial 

compression strength being approximately equal (i.e. there is no enhancement of the 

indentation strength over the uniaxial compression strength as observed in the noobed 

composite). However, under indentation loading there is no catastrophic failure. 

Rather, the failure is progressive with significant load drops associated with the 

failure of plies immediately under the indenter. This is followed by a more gradual 

increase in the load, as the indenter compressively loads undamaged plies. Since the 

plies fail by the indirect tension mechanism, they recoil into the surrounding 

composite upon tensile failure, resulting in delamination as seen in the XCT image 

included in Fig. 2d (this image was taken at the end of the loading response shown in 

Fig. 2a). Similar behaviour has previously been reported for other cross-ply laminates 

including ultra high molecular weight polyethylene composites28,30. The comparison 

in Fig. 2a indicates that the 𝑍-direction indentation responses of the noobed and cross-

ply composites are similar except that the cross-ply composite has a serrated response 

associated with ply failure while the noobed composite has a relatively smooth 

hardening curve. 

 

While the cross-ply and noobed composites have reasonably similar 𝑍 -direction 

indentation responses, their 𝑋-direction indentation behaviours are markedly different 
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as seen in Fig. 3a. Catastrophic failure of the cross-ply specimen occurs at an 

indentation strain 𝜀𝐼 ≈ 0.09 while the noobed composite exhibits a ductile indentation 

response with no loss of load carrying capacity even at 𝜀𝐼 ≈ 0.8. The failure of the 

cross-ply specimen is a result of delamination that emanates from the indented region 

as seen in the XCT image in Fig. 3d. This delamination is triggered by kink-band 

formation in the plies with fibres aligned along the 𝑋-direction. This hypothesis is 

consistent with the observation that the peak 𝑋-direction strength and corresponding 

uniaxial compression strengths of the cross-ply composites are approximately equal; 

see Fig. 3a. 

 

The comparisons between the indentation responses of the noobed and cross-ply 

composites suggest that the noobed composites perform at-least on-par with cross-ply 

composites in the 𝑍-direction but have a greatly superior response in other directions. 

The noobed composites have an indentation response reminiscent of a ductile metal, 

albeit at significantly lower density. This combined with the absence of delamination 

is expected to make 3D noobed composites attractive for impact and ballistic 

protection applications where the direction of loading is uncertain and spall resistance 

is an important requirement. 

 

 

4. Finite element modelling of the indentation response 
In order to better understand the experimentally observed deformation and failure 

modes of the noobed composites, FE calculations of the indentation responses in the 

𝑍 and 𝑋-directions were performed. The discrete microstructure comprising fibres and 

matrix is not modelled explicitly. Rather, we use the homogenised model developed 

by Das et al.22 which was shown to capture the uniaxial compressive response with 

reasonable fidelity. In this approach the noobed composite was modelled as a two-

phase material comprising 𝑍 -direction tows within a homogenised matrix that 

represents the smeared-out properties of the matrix pockets along with the 𝑋 and 𝑌-

direction tows. 

 

4.1 Material model 

Two anisotropic materials are used to model the 𝑍 -direction tows and the 

homogenised matrix. Here we detail the material properties used to describe both 

these materials. Both materials are modelled as anisotropic elastic, perfectly plastic 

materials with the anisotropic plasticity described by the Hill31 anisotropic plasticity 

model. In the following, all the relevant anisotropic properties will be stated using the 

global co-ordinate system. For example, 𝐸𝑍
𝑍  and 𝐸𝑋

𝑍  denote the longitudinal and 

transverse moduli, respectively of the 𝑍-direction tow (the superscript specifies that 

these properties relate to the 𝑍-direction tow while the subscripts specify the direction 

of the property). Similarly, 𝐸𝑋
𝑋  and 𝐸𝑍

𝑋  are the longitudinal and transverse moduli, 

respectively of the 𝑋 -direction tow while 𝐸𝑋
ℎ  and 𝐸𝑍

ℎ  are the moduli of the 

homogenised matrix in the 𝑋 and 𝑍-directions, respectively. 

 

First consider the 𝑍-direction tow. We model it as a transversely isotropic medium 

with the 𝑍  or fibre direction being normal to the plane of isotropy. Then the elastic 

strains 𝜀𝑖𝑗
𝑒  are related to the stresses 𝜎𝑖𝑗  in the (𝑋, 𝑌, 𝑍)  co-ordinate system via 5 

independent elastic constants as 
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(

 
 
 
 

𝜀𝑋𝑋
𝑒

𝜀𝑌𝑌
𝑒

𝜀𝑍𝑍
𝑒

𝜀𝑌𝑍
𝑒

𝜀𝑋𝑍
𝑒

𝜀𝑋𝑌
𝑒 )

 
 
 
 

=

(

 
 
 
 
 

1/𝐸𝑋
𝑍 −𝜈𝑌𝑋

𝑍 /𝐸𝑋
𝑍 −𝜈𝑍𝑋

𝑍 /𝐸𝑍
𝑍 0 0 0

−𝜈𝑋𝑌/𝐸𝑋
𝑍 1/𝐸𝑋

𝑍 −𝜈𝑍𝑋
𝑍 /𝐸𝑍

𝑍 0 0 0

−𝜈𝑋𝑍
𝑍 /𝐸𝑋

𝑍 −𝜈𝑋𝑍
𝑍 /𝐸𝑋

𝑍 1/𝐸𝑍
𝑍 0 0 0

0 0 0 1/(2𝐺𝑌𝑍
𝑍 ) 0 0

0 0 0 0 1/(2𝐺𝑌𝑍
𝑍 ) 0

0 0 0 0 0 (1 + 𝜈𝑋𝑌
𝑍 )/𝐸𝑋

𝑍
)

 
 
 
 
 

(

 
 
 

𝜎𝑋𝑋
𝜎𝑌𝑌
𝜎𝑍𝑍
𝜎𝑌𝑍
𝜎𝑋𝑍
𝜎𝑋𝑌)

 
 
 
. (4.1) 

 

Here, the symbols 𝐺 and 𝜈 denote the shear modulus and Poisson’s ratio, respectively 

while the subscripts denote the directions of the property and the superscript 𝑍 

denotes that these properties refer to the 𝑍-direction tow (i.e. notation analogous to 

that for the Young’s modulus 𝐸). The total strain rate is then written as the sum of the 

elastic and plastic strain rates such that  

 𝜀𝑖̇𝑗 = 𝜀𝑖̇𝑗
𝑒 + 𝜀𝑖̇𝑗

𝑝 , (4.2) 

with the plastic strain rate given by the associated flow rule  

 𝜀𝑖̇𝑗
𝑝 = 𝜆̇

𝜕𝛷

𝜕𝜎𝑖𝑗
, (4.3) 

in terms of the plastic multiplier 𝜆̇ and the Hill yield potential 𝛷. This potential is 

specified in terms of the constants 𝐹, 𝐺, 𝐻, 𝐿,𝑀 and 𝑁 as 

 
2𝛷 ≡ 𝐹(𝜎𝑌𝑌 − 𝜎𝑍𝑍)

2 + 𝐺(𝜎𝑍𝑍 − 𝜎𝑋𝑋)
2 + 𝐻(𝜎𝑋𝑋 − 𝜎𝑌𝑌)

2

+ 2𝐿𝜎𝑌𝑍
2 + 2𝑀𝜎𝑍𝑋

2 + 2𝑁𝜎𝑋𝑌
2 , 

(4.4) 

such that continued plastic flow occurs with 𝛷 = 1/2. The six constants 𝐹, 𝐺, 𝐻, 𝐿,𝑀 

and 𝑁 then follow from six strengths with respect to the principal axes of anisotropy, 

i.e. 

 𝐺 + 𝐻 =
1

(𝑌𝑋
𝑍)2

,    𝐹 + 𝐻 =
1

(𝑌𝑌
𝑍)2

   and   𝐺 + 𝐹 =
1

(𝑌𝑍
𝑍)2
,    (4.5) 

where 𝑌𝑋
𝑍 , 𝑌𝑌

𝑍  and 𝑌𝑍
𝑍  are the tensile strengths in the 𝑋 , 𝑌  and 𝑍 -directions, 

respectively (note that the Hill model assumes equal compressive and tensile 

strengths). Similarly, the shear strengths 𝑌𝑌𝑍
𝑍 , 𝑌𝑍𝑋

𝑍  and 𝑌𝑋𝑌
𝑍  give the remaining 

constants via 

 𝐿 =
1

2(𝑌𝑌𝑍
𝑍 )2

,    𝑀 =
1

2(𝑌𝑍𝑋
𝑍 )2

   and   𝑁 =
1

2(𝑌𝑋𝑌
𝑍 )2

.   (4.6) 

The material surrounding the 𝑍-direction tows comprises the 𝑋 and 𝑌-direction tows 

as well as the matrix pockets. This material is modelled as a single effective medium 

labelled the homogenised matrix. Based on the symmetries of the micro-structure of 

this material, Das et al.22 modelled this homogenised matrix also as a transversely 

isotropic medium with the 𝑍-direction being normal to the plane of isotropy. Thus, 

again we use an elastic law of the form Eq. (4.1) with plastic flow modelled via Hill’s 

anisotropic plastic model. Derivations of the elastic and plastic properties of this 

effective medium are given in the Supplementary Information using the 

homogenisation procedure developed by Das et al.22. The elastic and plastic properties 

of the 𝑍-direction tows and the homogenised matrix are summarised in Tables 1 

and 2, respectively; these completely specify the elastic law and can also be used to 

determine the 6 constants of the Hill model. 
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𝑍-direction 
tow 

𝐸𝑍
𝑍 = 65 𝐸𝑋

𝑍 = 𝐸𝑌
𝑍

= 4.2 
𝜈𝑍𝑋
𝑍 = 0.25 𝜈𝑋𝑌

𝑍 = 0.25 𝐺𝑋𝑍
𝑍 = 𝐺𝑌𝑍

𝑍

= 1.7 

homogenised 
matrix 

𝐸𝑍
ℎ = 7.1 𝐸𝑋

ℎ = 𝐸𝑌
ℎ

= 54 
𝜈𝑍𝑋
ℎ = 0.25 𝜈𝑋𝑌

ℎ = 0.25 𝐺𝑋𝑍
ℎ = 𝐺𝑌𝑍

ℎ

= 2.8 

 
Table 1: The elastic properties of the transversely isotropic 𝑍 -direction tows and the 

homogenised matrix in the 3D noobed composite. All the moduli are given in GPa. 

 

 

𝑍-direction 
tow 

𝑌𝑍
𝑍 = 1300 𝑌𝑋

𝑍 = 𝑌𝑌
𝑍

= 170 
𝑌𝑋𝑌
𝑍 = 𝑌𝑋𝑍

𝑍

= 𝑌𝑍𝑌
𝑍 = 85 

Homogenised 
matrix 

𝑌𝑍
ℎ = 1260 𝑌𝑋

ℎ = 𝑌𝑌
ℎ

= 940 
𝑌𝑍𝑋
ℎ = 𝑌𝑍𝑌

ℎ

= 𝑌𝑋𝑌
ℎ = 92 

 
Table 2: The plastic/failure strengths of the 𝑍-direction tows and the homogenised matrix in 

the 3D noobed composite. In this table, all the strengths are in MPa. 

 

4.2 Description of the boundary value problem 

The finite element (FE) calculations were performed using the commercial FE 

package ABAQUS. In order to reduce the size of the computation, cubic specimens 

comprising a grid of 16 × 16 𝑍-direction tows were employed (Fig. 5a). In these 

specimens, the 𝑍 -direction tows had cross-sectional dimensions 1.25 mm ×
 1.25 mm and were arranged in a cubic grid with a centre-to-center tow spacing of 

3.06 mm consistent with the unit cell sketched in Fig. 1c. The same specimen was 

used for both the 𝑍  and 𝑋 -direction indentation calculations with the specimen 

discretised using 8-noded linear brick elements (C3D8R in the ABAQUS notation) of 

size ~ 0.05 mm. Perfect bonding was assumed between the homogenised matrix and 

the 𝑍-direction tows but an imperfection to trigger the formation of a kink-band was 

introduced into the 𝑍-directions tows (this imperfection influences the predictions of 

the 𝑍-direction indentation response but has virtually no effect on the 𝑋-direction 

indentation behaviour). The imperfection is sketched in Fig. 5b and comprised a 

region within which fibres were assumed to be misaligned. This imperfect region was 

located at mid-height in all the 𝑍-directions tows, had a width 𝑤 = 200 μm and was 

inclined at an angle 𝛽 = 20o with respect to the 𝑋-direction. The misalignment was 

specified by rotating the principal axes of the material anisotropy such that the 

material 𝑍-direction was at an angle 𝜙 with respect to the global 𝑍-direction in the 

𝑋 − 𝑍 plane as shown in Fig. 5b. Such a prescription of the initial imperfection to 

initiate a kink-band is commonly employed32,33 and consistent with a range of 

experimental observations34.  

 

The boundary conditions for simulating indentation were as follows. Employing 

symmetry of the problem we analysed a quarter of the specimen and employed 

symmetry boundary conditions on two perpendicular planes that intersect along the 

axis of the cylindrical indenter; see sketch in Fig. 5a for the setup for simulating the 

𝑍-direction indentation response. Displacements in the direction of indentation were 

completely restrained on the bottom of the surface of the specimen with the specimen 

sides specified to be traction-free. The circular flat-bottomed indenter was modelled 

as a rigid body with the general contact option in ABAQUS used to model contact 

between the indenter and the specimen. Loading was specified by applying an 

indentation displacement to the indenter: the applied displacement and resulting 
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work-conjugate load were used to define 𝜀𝐼  and 𝜎𝐼  in a manner analogous to the 

experiments. The FE analysis was conducted using the large deformation/non-linear 

geometry option. 

 

 
Fig. 5: (a) Sketch of the quarter specimen used in the FE analysis of the 𝑍 -direction 

indentation. (b) An illustration of the geometric imperfection included in the 𝑍-direction tows.  

 

4.3 Numerical predictions of the indentation response 

Predictions of the 𝑍 and 𝑋-direction indentation responses of the noobed composites 

are included in Figs. 6a and 6b, respectively. First consider the case of indentation in 

the 𝑍 -direction. The maximum applied displacements in the FE calculations 

corresponded to an indentation strain 𝜀𝐼 ≈ 0.3 as mesh distortion prevented the FE 

calculations from being carried out any further. Excellent agreement is observed 

between measurements and predictions over the range of displacements computed in 

the FE analysis including an accurate prediction of the onset of non-linearity and the 

subsequent hardening rate. Corresponding predictions of the deformation modes 

under the indenter at instants P, Q, and R marked in Fig. 6a are shown in Fig. 6c. In 

Fig. 6c we show contours of the plastic strain 𝜀𝑍𝑋
𝑝

 on a plane that sections the 

specimen along the 𝑋 − 𝑍 diametrical plane of the indenter. Here we see that very 

early in the deformation history (P) a kink-band has formed in a centrally located 𝑍-

direction tow with the development of plasticity at the edge of the indenter. However, 

this plasticity causes no significant non-linearity in the overall indentation response. 

Multiple and reflected kink-bands developed within the 𝑍 -direction tows with 

increasing indentation displacement, and at the end of the calculation (R) we see 

extensive zig-zagged kink-band formation along as well as bands of plasticity, 

emanating from the edges of the indenter, reminiscent of the shear bands seen in 

Fig. 2c. 

 

On the other hand, the results in Fig. 6b show that the FE calculations grossly under-

predict the 𝑋-direction indentation strength. The associated predicted deformations at 

points L, M and N marked in Fig. 6b are shown in Fig. 6d. The deformations here are 
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shown on a section through the specimen along the 𝑋 − 𝑌 diametrical plane of the 

indenter with contours of the plastic strain 𝜀𝑋𝑌
𝑝

 included in Fig. 6d. The FE 

calculations correctly predict the development of shear bands emanating from the 

edge of the indenter that shear the 𝑍-directions tows. However, the 𝑋 and 𝑌-direction 

tows are not explicitly modelled here and thus the approach does not include 

predictions of kink-bands in the 𝑋-direction tows as seen in Fig. 4. We associate the 

poor fidelity of the FE model of Das et al.22 in this case to the fact that the 𝑋-direction 

tows are not explicitly modelled, i.e. this study suggests that a more comprehensive 

model which explicitly includes tows in all directions is required to capture the full 

multi-axial response of the noobed composites. 

 

 

5. Concluding remarks 

The quasi-static indentation response of a 3D noobed (the acronym NOOB stands for 

Non-interlacing, Orientating Orthogonally and Binding) composite comprising carbon 

fibre tows in an epoxy matrix has been investigated. The measurements indicate that 

the indentation response is ductile with continued indentation occurring by a 

combination of kink-band propagation in the tows aligned with the indentation 

direction and shearing of the tows in the orthogonal directions. Importantly, the 

response is nearly isotropic with the indentation strength being approximately equal in 

three orthogonal directions. By contrast, the out-of-plane indentation of a traditional 

cross-ply carbon fibre laminate occurs by progressive tensile ply failure resulting in a 

serrated load versus displacement curve. Nevertheless, the average indentation 

strength in this direction is approximately equal to that of the 3D noobed composite. 

However, cross-ply composites delaminate when indented in the in-plane direction 

resulting in an elastic-brittle response.  

 

A finite element (FE) analysis of the indentation response of the noobed composites is 

also presented wherein only one set of tows is explicitly modelled while the other two 

sets of orthogonal tows and the matrix pockets are homogenized into an effective 

medium. This simplified approach accurately captures the indentation response in the 

direction of the tows that are explicitly modelled but under-predicts the indentation 

strength in the other directions. The modelling study suggests that all tows of the 3D 

composite need to be explicitly considered to capture the multi-axial response of these 

composites with adequate fidelity. 

 

Traditional cross-ply carbon fibre laminates and state-of-the-art ultra high molecular 

weight polyethylene composites35 have a saw-tooth indentation load versus 

displacement curve for indentation perpendicular to the plane of the plies. Moreover, 

these composites are extremely brittle with delamination limiting the energy 

absorption for indentation along the ply directions. We have demonstrated here that 

3D noobed composites not only have smooth load-displacement curves that are 

reminiscent to those of ductile metals for indentation in all directions, but also 

undergo no delamination. This is all achieved at densities significantly lower than 

structural metals that display equivalent ductility. These noobed composites are thus 

strong candidates for applications such as impact protection where the loading 

direction is not known a-priori and spall resistance is an important requirement.  
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Fig. 6: Comparison between the measured and FE predictions of the (a) 𝑍-direction and (b) 

𝑋 -direction indentation responses of the noobed composites. The corresponding FE 

predictions of the deformation along with distributions of the plastic strain are shown in (c) 

for 𝑍-direction and in (d) 𝑋-direction indentation. The columns in (c) and squares in (d) 

indicate the 𝑍-direction tows. 
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Supplementary information 

 

Estimates of the effective properties of the tows and homogenised matrix 

The 3D noobed composite comprised Toray T700S 12k carbon fibre tows in a NM 

FW3070 epoxy matrix. The properties of these two constituents as given by the fibre 

and matrix manufacturers are: 

(i) The fibre Young’s modulus and Poisson’s ratio are 𝐸𝑓 = 210 GPa and 𝜈𝑓 = 0.25, 

respectively while the tensile strength of the fibres, 𝜎𝑓 = 4 GPa. 

(ii) The matrix Young’s modulus and Poisson’s ratio are 𝐸𝑚 = 3 GPa and 𝜈𝑚 = 0.25, 

respectively while the matrix tensile yield strength, 𝜎𝑚 = 140 MPa. 
 

Here we summarise the procedure developed by Das et al.S1 to use these properties of 

the constituents to derive estimates of the effective properties of the different phases 

in the 3D noobed composite comprised of four phases. The 𝑍-direction tows have a 

significantly larger cross-sectional area compared to the 𝑋  and 𝑌 -direction tows. 

Thus, in the finite element (FE) calculations in Section 4 we explicitly considered the 

𝑍-direction tows but modelled the 𝑋 and 𝑌-direction tows and the matrix pockets that 

surround the 𝑍 -direction tows as a single effective medium referred to as the 

homogenised matrix. We shall thus first derive effective properties for the tows and 

then use them to estimate properties of the homogenised matrix. All the relevant 

anisotropic properties will be stated using the global co-ordinate system. For example, 

𝐸𝑍
𝑍  and 𝐸𝑋

𝑍  denote the longitudinal and transverse moduli, respectively of the 𝑍 -

direction tow (the superscript specifies that these properties relate to the 𝑍-direction 

tow while the subscripts specify the direction of the property). Similarly, 𝐸𝑋
𝑋 and 𝐸𝑍

𝑋 

are the longitudinal and transverse moduli, respectively of the 𝑋-direction tow while 

𝐸𝑋
ℎ  and 𝐸𝑍

ℎ  are the moduli of the homogenised matrix in the 𝑋  and 𝑍 -directions, 

respectively. 

 

S1. Elastic properties 

The tows are assumed to be transversely isotropic with the fibre direction normal to 

the plane of isotropy. We first consider the 𝑍 -direction tows. The longitudinal 

modulus 𝐸𝑍
𝑍  is given by the Voigt bound as 𝐸𝑍

𝑍 = 𝑓𝑍𝐸𝑓 + (1 − 𝑓𝑍)𝐸𝑚  while the 

transverse moduli 𝐸𝑋
𝑍 = 𝐸𝑌

𝑍  are given by the equivalent Reuss bound. Since the 

Poisson’s ratios of the matrix and fibres are assumed equal, we take 𝜈𝑍𝑋
𝑍 = 𝜈𝑋𝑌

𝑍 = 𝜈𝑚 

and the shear modulus 𝐺𝑋𝑍
𝑍  is estimated from a Reuss bound such that 

 
1

𝐺𝑋𝑍
𝑍 =

2(1 + 𝜈𝑓)𝑓𝑍

𝐸𝑓
+
2(1 + 𝜈𝑚)(1 − 𝑓𝑍)

𝐸𝑚
. (S1.1) 

The five independent elastic constants required to describe the elastic properties of the 

transversely isotropic 𝑍-direction tows are listed in Table S1. Equivalent estimates can 

be evaluated for the 𝑋 (or 𝑌)-direction tows with 𝑓𝑍 replaced by 𝑓𝑋. These properties 

are also listed in Table 1 for the 𝑋-direction tow. Note that the 𝑋-direction is normal 

to the plane of isotropy for the 𝑋-direction tow and hence the components of the 

elasticity tensor listed in Table 1 differ for the 𝑋 and 𝑍-direction tows. 

 

We proceed to calculate the properties of the homogenised matrix that surrounds the 

𝑍 -direction tows. From the unit cell sketched in Fig. 1c it is clear that this 

homogenised matrix is an orthotropic effective material with Young’s moduli equal in 

the 𝑋 and 𝑌-directions. Thus, in order to simplify the constitutive description it is 
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reasonable to assume that this homogenised matrix is also transversely isotropic with 

the 𝑍-direction being normal to the plane of isotropy. Again, since all the constituents 

have equal Poisson’s ratios it is reasonable to take 𝜈𝑍𝑋
ℎ = 𝜈𝑋𝑌

ℎ = 𝜈𝑚 . The Voigt 

estimate for the moduli 𝐸𝑋
ℎ = 𝐸𝑌

ℎ is given as 

 𝐸𝑋
ℎ =

𝑣𝑋(𝐸𝑋
𝑋 + 𝐸𝑌

𝑋) + 𝑣𝑚𝐸𝑚
2𝑣𝑋 + 𝑣𝑚

, (S1.2) 

while that for modulus 𝐸𝑍
ℎ is 

 𝐸𝑍
ℎ =

2𝑣𝑋𝐸𝑌
𝑋 + 𝑣𝑚𝐸𝑚

2𝑣𝑋 + 𝑣𝑚
. (S1.3) 

Similarly, the shear modulus 𝐺𝑋𝑍
ℎ  is given by the Voigt bound as 

 𝐺𝑋𝑍
ℎ  =

𝑣𝑋(𝐺𝑌𝑍
𝑋 + 𝐺𝑋𝑍

𝑋 ) + 𝑣𝑚
𝐸𝑚

2(1 + 𝜈𝑚)

2𝑣𝑋 + 𝑣𝑚
, (S1.4) 

where 𝐺𝑌𝑍
𝑋 = 0.5𝐸𝑌

𝑋/(1 + 𝜈𝑍𝑌
𝑋 ) . The five independent elastic constants for this 

effective medium are listed in Table S1. 

 

 

 
Figure S1: (a) Sketch of the homogenised matrix within the unit cell with the constituents of 

the homogenised matrix also indicated. The three regions A, B and C into which the 

homogenised matrix within the unit cell is divided for the analysis of the effective properties 

are also indicated. (b) Sketch of the indirect tension mechanism operative during the 

compression of region B in the 𝑍-direction. 

 

 

𝑍-direction 
tow 

𝐸𝑍
𝑍 = 65 𝐸𝑋

𝑍 = 𝐸𝑌
𝑍

= 4.2 
𝜈𝑍𝑋
𝑍 = 0.25 𝜈𝑋𝑌

𝑍 = 0.25 𝐺𝑋𝑍
𝑍 = 𝐺𝑌𝑍

𝑍

= 1.7 

𝑋-direction 
tow 

𝐸𝑍
𝑋 = 𝐸𝑌

𝑋

= 8.8 
𝐸𝑋
𝑋 = 142 𝜈𝑋𝑍

𝑋 = 0.25 𝜈𝑍𝑌
𝑋 = 0.25 𝐺𝑋𝑍

𝑋 = 𝐺𝑋𝑌
𝑋

= 3.6 

homogenised 
matrix 

𝐸𝑍
ℎ = 7.1 𝐸𝑋

ℎ = 𝐸𝑌
ℎ

= 54 
𝜈𝑍𝑋
ℎ = 0.25 𝜈𝑋𝑌

ℎ = 0.25 𝐺𝑋𝑍
ℎ = 𝐺𝑌𝑍

ℎ

= 2.8 

 
Table S1: The elastic properties of the transversely isotropic tows and the homogenised 

matrix in the 3D noobed composite. The 𝑋 and 𝑌 -direction tows have identical properties 

with the super/subscript 𝑋 replaced by 𝑌. All the moduli are given in GPa. 
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S1.2 Plastic/failure strengths 

In estimating the plastic/failure strengths of the different phases we note that the 

strength for tensile loading along the fibre direction is limited by the failure strength 

𝜎𝑓 of the fibres while loading in other directions (e.g. transverse or shear loading) is 

limited by flow of the matrix around fibres. Since the fibre strength is significantly 

greater than the matrix strength, the fibres may be assumed to be rigid for the 

purposes of analysis of strength in matrix flow governed regimes. With this 

understanding we proceed to develop estimates for the anisotropic strengths of the 

tows and the homogenised matrix. 

 

First consider the 𝑍-direction tow. The longitudinal tensile strength is limited by fibre 

fracture and directly given by a Voigt estimate as 𝑌𝑍
𝑍 = 𝑓𝑍𝜎𝑓 + (1 − 𝑓𝑍)𝜎𝑚 . The 

calculation of the transverse strength is more complex. A Reuss estimate assuming 

rigid fibres will specify that the transverse strength is equal to that of the matrix which 

is a poor estimate as the rigid fibres constrain the flow of the matrix and enhance the 

strength. Bele and DeshpandeS2 provided a simple analytical estimate (verified via FE 

calculations) for the transverse strength of a composite comprising rigid cylinders 

dispersed in a plastic matrix. Here we use that prescription to estimate the transverse 

and shear strengths of the tow. The HashinS3 lower bound for the Young’s modulus 𝐸 

of a composite comprising a volume fraction 𝑓𝑍  of rigid inclusions in an 

incompressible matrix of modulus 𝐸𝑚 is 

 
𝐸

𝐸𝑚
= 1 +

5𝑓𝑍
2(1 − 𝑓𝑍)

. (S2.1) 

This linear bound can be transformed to an estimate of the strength using the method 

proposed by SuquetS4 by using the bound (S2.1) as the properties of a fictitious linear 

comparison composite. The transverse strength is then given as 

 𝑌𝑋
𝑍 = 𝑌𝑌

𝑍 = 𝜎𝑚√
𝐸

𝐸𝑚
(1 − 𝑓𝑍), (S2.2) 

with 𝐸/𝐸𝑚 given by Eq. (S2.1). The shear strengths are assumed to be related to the 

transverse strength via a Tresca yield criterion such that 𝑌𝑋𝑌
𝑍 = 𝑌𝑋𝑍

𝑍 = 𝑌𝑍𝑌
𝑍 = 𝑌𝑋

𝑍/2. 

These properties of the 𝑍-direction tow are listed in Table S2. The plastic/failures 

strengths for the 𝑋-direction tow can also be estimated in an analogous manner and 

these predictions are also listed in Table S2.  

 

Next consider the homogenised matrix sketched in Fig. S1a. Uniaxial loading in the 

𝑋-direction results in longitudinal and transverse loading of the 𝑋-direction and 𝑌-

direction tows, respectively as well as loading of the matrix pockets. The average 

stress sustained by this homogenised material at failure then follows as 

 𝑌𝑋
ℎ = 𝐴̅𝑍𝑌

𝑋 (𝑌𝑋
𝑋 + 𝜎𝑚) + 0.5𝐴̅𝑍𝑌

𝑍 (𝜎𝑚 + 𝑌𝑌
𝑋), (S2.3) 

with 𝑌𝑌
ℎ = 𝑌𝑋

ℎ. In order to calculate the strength 𝑌𝑍
ℎ it is convenient to divide the 𝑋 −

𝑌 plane of the homogenised matrix into three regions A, B and C as shown in Fig. 

S1a. The uniaxial stress in the 𝑍-direction over regions A and C is limited to the 

matrix yield strength 𝜎𝑚  while compression of region B is equivalent to the 

compression of a cross-ply laminate. The out-of-plane compression of a cross-ply 

laminate results in the development of tensile stresses in the fibres due to the 

anisotropic Poisson expansion of the cross-plies; see Fig. S1b. This so-called indirect 
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tension mechanism was analysed by Attwood et al.S5 who showed that the 

compressive strength of cross-ply laminates approximately equals the in-plane tensile 

strength 𝑌𝑋
𝑋 of each lamina. The strength 𝑌𝑍

ℎ  then is given by the average over the 

three regions such that 

 𝑌𝑍
ℎ =

2𝐴̅𝑋𝑌
𝑚 𝜎𝑚 + (1 − 𝐴̅𝑋𝑌

𝑍 − 2𝐴̅𝑋𝑌
𝑚 )𝑌𝑋

𝑋

1 − 𝐴̅𝑋𝑌
𝑍 , (S2.4) 

where 𝐴̅𝑋𝑌
𝑚  is the area fraction that the matrix pockets occupy in the 𝑋 − 𝑌 plane on 

the surface of the unit cell (it is equal to the ratio of the area of region A to the area 

(1.81 + 1.25)2 mm2 of the unit cell projected on the 𝑋 − 𝑌 plane). We assume all 

shear strengths to be equal (𝑌𝑍𝑋
ℎ = 𝑌𝑍𝑌

ℎ = 𝑌𝑋𝑌
ℎ ) and given by a Voigt bound such that  

 𝑌𝑍𝑋
ℎ =

2𝑣𝑋𝑌𝑋𝑌
𝑋 + 𝑣𝑚𝜎𝑚/2

2𝑣𝑋 + 𝑣𝑚
, (S2.5) 

where we have assumed that the matrix shear strength is 𝜎𝑚/2  (Tresca yield 

criterion). These plastic collapse and failure strengths are listed in Table S2.  

 

 

𝑍-direction 
tow 

𝑌𝑍
𝑍 = 1300 𝑌𝑋

𝑍 = 𝑌𝑌
𝑍

= 170 
𝑌𝑋𝑌
𝑍 = 𝑌𝑋𝑍

𝑍

= 𝑌𝑍𝑌
𝑍 = 85 

𝑋-direction 
tow 

𝑌𝑋
𝑋 = 2800 𝑌𝑍

𝑋 = 𝑌𝑌
𝑋

= 200 
𝑌𝑋𝑌
𝑋 = 𝑌𝑋𝑍

𝑋

= 𝑌𝑍𝑌
𝑋 = 100 

Homogenised 
matrix 

𝑌𝑍
ℎ = 1260 𝑌𝑋

ℎ = 𝑌𝑌
ℎ

= 940 
𝑌𝑍𝑋
ℎ = 𝑌𝑍𝑌

ℎ

= 𝑌𝑋𝑌
ℎ = 92 

 
Table S2: The plastic/failure strengths of the tows and the homogenised matrix in the 3D 

noobed composite. In this table all the strengths are in MPa. 
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