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ABSTRACT: The productive use of toxic waste materials derived from industrial processes is 

one of the main goals of modern chemical research to increase sustainability of the large scale 

production. Here we devise a simple and robust strategy for the utilization of trifluoromethane, 

obtained in large quantities from polytetrafluoroethylene (PTFE) manufacture, and the 

conversion of this greenhouse gas into valuable fluorinated compounds. The generation of the 

trifluoromethyl carbanion and its direct and complete consumption through trapping with a 

number of electrophiles were achieved by a fully contained flow reactor setup. The adoption of 

modern in-line analytical tools, such as portable FT-IR and NMR devices, allowed the accurate 

reagent dosing with considerable benefits in terms of controlling the environmental impact 

during this continuous process. The advantages of the method, with respect to the batch 

procedure, will be discussed and demonstrated experimentally. 
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INTRODUCTION 

There is a clear need to develop modern synthetic strategies which employ renewable starting 

materials. Furthermore, there is also a need to convert waste materials derived from certain 

industrial processes into valuable synthetic compounds improving the sustainability of large 

scale production.
1-3

 A case in point is the industrial manufacture of PTFE which generates very 

large amounts of trifluoromethane (CF3H) as a by-product.
4
 CF3H is listed as a potent 

greenhouse gas, with a lifetime of 270 years, which is the approximate amount of time it would 

take for CF3H concentration to return to its natural level.
5
 Its disposal requires expensive 

procedures, such as high temperature incineration. Consequently there is interest in the 

development of affordable transformations which utilize CF3H for the direct generation of useful 

functional fluorinated compounds,
6-12

 which are endowed with improved medicinal or physical 

chemical properties.
13-15

 In particular, significant advances have been achieved during the last 

decade in the development of new reagents and general approaches for trifluoromethylation, 

including electrophilic, radical and nucleophilic reactions.
16-24

 Among these methods, the use of 

CF3H for installing directly the trifluoromethyl moiety into an organic compound remains an 

appealing approach, in terms of raw material availability and atom-economy. Nevertheless, as a 

greenhouse gas, CF3H must not be dispersed into the atmosphere. Thus, an accurate 

determination of CF3H is vital during the usage of this reagent to make it eco-sustainable and 

chemically efficient. The recent introduction of flow technologies into modern laboratory 

practice has enabled the improved performance of gas-liquid reactions by expediting the mass 
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transfer between the two phases.
25-32

 In particular, membrane-based reactors have been 

successfully applied to enable the gas-liquid contact, avoiding the occurrence of biphasic flow 

regime, which may lead to less efficient and controllable dosing of the gas.
33

 Few years ago we 

contributed to the development of a tube-in-tube reactor for gas–liquid reactions, consisting of a 

pair of concentric capillaries in which the central capillary functions as a gas-permeable 

membrane (Teflon AF-2400).
34,35

 This system has been applied to several synthetic programs, 

exploiting the permeability of Teflon AF-2400 to a range of gases (carbon monoxide, hydrogen, 

ozone, carbon dioxide, oxygen, ammonia, ethylene and diazomethane).
36-42

 More importantly, 

the advent of a number of innovative in-line analytical tools has greatly advanced reaction 

monitoring and subsequent adjustment of reaction conditions.
43-46

 In this context, an increasing 

number of new applications have been reported on the use of portable flow IR devices
47-50

 and 

bench-top low field NMR equipment,
51-56

 which greatly enabled real-time monitoring of 

continuous flow chemistry.  

The generation of the carbanion from trifluoromethane by deprotonation has been extensively 

investigated and numerous reports on the lifetime of this intermediate suggest that it is prone to 

rapid fluoride atom loss and conversion into the extremely reactive difluorocarbene 

intermediate.
57-62

 Despite the increasing interest in the cost-efficient and sustainable use of CF3H 

as trifluoromethylating reagent, there are still concerns relating to its clean applications and 

interception in organic synthesis programs. 

Here we describe a continuous chemical approach for the use of CF3H as a source of 

trifluoromethanide anion, and its direct use as a nucleophile to react with a range of carbonyl 

compounds and chlorosilanes. We demonstrate the practical benefits derived from the 

introduction of the Infrared (FT-IR) and the Nuclear Magnetic Resonance (NMR) in-line analytic 



 4 

tools for the accurate dosing of CF3H gas and the quantitative trapping of the highly reactive and 

unstable trifluoromethanide anion intermediate.  

RESULTS AND DISCUSSION 

A first screening of conditions highlighted that the temperature, residence time, pressure and 

mixing were all crucial reaction parameters. The process setup resulted particularly pivotal in 

order to reach the optimum reagent stoichiometry and avoid collateral reactions due to the 

decomposition of the trifluoromethanide anion (Figure 1a). A 4-way cross connection valve for 

high pressure was installed to allow efficient mixing of the three reaction streams (flow rate 0.2 

ml/min each) containing respectively the base, the electrophile and the CF3H solution. The 

resulting mixture was then passed through a PTFE coil reactor (14 ml). Both the mixing zone 

and the reaction zone were maintained at a controlled temperature (-20 °C) by using a cooling 

device (Polar Bear Plus from Cambridge Reactor Design). The gas was introduced into the 

system using the tube-in-tube reactor, which is reported as a simple and efficient method to 

afford homogeneous solutions of reactive gases in flow (Figure 1b).  
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Figure 1. a) Schematic of the flow reactor setup using three pumps (FRA=FRB=FRC= 0.2 

ml/min), a tube-in-tube reactor (1.0 m of AF-2400 tubing), a PTFE coil reactor (14 ml), a cooling 

device (-20 °C), a FT-IR instrument and a bench-top NMR machine (43 MHz). b) Picture of the 

apparatus. 

First, it was verified that the Teflon AF-2400 membrane of the inner tube, containing THF, 

was permeable to CF3H. For this purpose, an in-line FT-IR instrument (FlowIR
TM

 from Mettler 

Toledo) was used and the signal at 1129 cm
-1

 was monitored (Figure 2a) until the steady state 

was reached (Figure 2b).  
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Figure 2. a) In-line FT-IR monitoring. b) Trend of the signal at 1128 cm
-1

 assigned to CF3H. 

Aiming to quantify the concentration of CF3H in the efflux stream from the coil reactor (-20 

°C), a solution of PhCF3 in THF (0.3 M) was used as internal standard, and, thus, pumped 

through the stream C (flow rate 0.2 ml/min). The signal at 1328 cm
-1

 in the corresponding FT-IR 

spectrum was monitored until the steady state was reached (Figure 3a). At this point a 
19

F NMR 

spectrum was recorded (Figure 3b), using the in-line bench-top NMR machine (43 MHz, 

Spinsolve from Magritek) installed soon after the in-line FT-IR device. Comparing the integral 

values of the signals assigned respectively to PhCF3 (singlet at -63.46 ppm) and to CF3H 

(doublet at -79.49 ppm), it was determined the concentration of the gas dissolved in the solution 

under these conditions, equated to 0.738 M. 
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Figure 3. a) In-line FT-IR monitoring the signals respectively at 1129 cm
-1

 (CF3H) and at 1328 

cm
-1

 (PhCF3). b) In-line 
19

F NMR spectrum of the solution containing PhCF3 as internal standard 

(-63.46 ppm) and CF3H (-79.49 ppm). 

Once the exact amount of CF3H in the reaction mixture was known, we could then optimize 

the concentrations of the other reagents involved in the CF3H deprotonation / electrophile 

trapping sequence. The activation of fluoroform with KHMDS and addition of the formed 

trifluoromethanide anion to carbonyl compounds in batch mode was described by Prakash et al. 

The resulting fluorinated products were obtained with modest to good yields (10 – 81% yields), 

depending on the substrates.
60

 The addition of CF3H was realized by bubbling the gas into the 

reaction mixture over different time and with different flow rates. The amount of the total gas 

was calculated according to the difference in the weight of the gas cylinder before and after the 

addition. Aiming to demonstrate the importance of the accurate dosing of CF3H on the 

productivity of the reaction, a screening of the optimum reagent concentrations was conducted, 

using potassium bis(trimethylsilyl)amide (KHMDS) as a base with benzophenone 2a as an 

electrophile (Table 1). When an excess of CF3H (2.46 equiv) was reacted with benzophenone 
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(1.0 equiv) and KHMDS (1.16 equiv) the alcohol 3a was obtained smoothly (93% conversion) in 

30 minutes (Table 1, entry 1). When the concentration of the electrophile and the base were both 

increased (1.0 M), keeping constant the concentration of CF3H (0.738 M), full conversion to the 

alcohol 3a was observed (Table 1, entry 2; conversion 99%). Interestingly, the formation of O-

protected alcohol 4a was detected when an excess of base was used with respect to 

benzophenone and CF3H. Increasing the concentration of KHMDS led to increased formation of 

4a (Table 1, entries 3-4). Bis(trimethylsilyl)amine (HMDS), which is formed during the 

deprotonation step of CF3H by KHMDS, is reported to be a weak trimethylsilyl donor. In an 

effort to study its role in the formation of the trimethylsilyl ether 4a, HMDS (0.8 M) was added 

to the reaction mixture. In this case a selective formation of 3a was observed, together with only 

traces (0.1%) of 4a (Table 1, entry 5). By contrast, the trimethylsilyl ether 4a was formed 

exclusively when a strong trimethylsilyl donor, such as chlorotrimethylsilane (TMSCl), was used 

as additive (Table 1, entry 6). Literature data from magnetic resonance experiments of KHMDS 

suggest it exists in THF solution as a polymeric THF-solvate [(KHMDS)2(THF)2]∞ where 

molecules of solvent can be displaced by Lewis donors, causing the monomerization of the 

complex.
63

 It is likely that when an excess of KHMDS is present in the reaction mixture a 

polymeric THF-solvate [(KHMDS)2(THF)2]∞ exists and, spontaneously, leads to the transfer of 

the trimethylsilyl moiety to oxygen, due to a proximity effect. The presence of HMDS could then 

cause the decomplexation of the polymeric THF-solvate. 

Table 1. Screening of the optimum reagent concentrations during the trifluoromethyl carbanion 

generation and in situ trapping with benzophenone 2a. Conversions were determined by NMR, 

using PhCF3 as internal standard.  
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The real-time 
19

F NMR monitoring provided important information concerning the reaction 

progress under the conditions described in Table 1 - entry 3, where a mix of 3a and 4a (ratio 

58:42) was observed in the crude reaction mixture. According to the NMR spectra recorded in-

line, compound 4a should be generated first (Figure 4b). The formation of the alcohol 3a is 

delayed respect to 4a and could be ascribed to the progressive decomplexation of the polymeric 

THF-solvate [(KHMDS)2(THF)2]∞ induced by the formation of HMDS during the CF3H 

deprotonation. This would give rise to the gradual formation of 3a (see Table 1, entry 5). Also 

the hypothesis of a progressive cleavage of the trimethylsilyl group from 4a was taken into 

account, whereby the fluoride anion, derived hypothetically from the decomposition of the 

trifluoromethanide anion, would be responsible. According to this explanation, 

fluorotrimethylsilane (TMSF) would be formed simultaneously (Figure 4a). However, no signal 

in the 
19

F NMR spectra could be assigned to this compound (Figure 4b). 
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Figure 4. a) Possible reaction pathways of trifluoromethane (CF3H) with benzophenone 

(PhCOPh) in presence of KHMDS. b) In-line 
19

F NMR monitoring of the reaction mixture over 

the time containing 4a (at -73.06 ppm), 3a (-73.30 ppm) and CF3H (-79.49 ppm). 

The protocol which has been developed for the generation of trifluoromethyl carbanion and its 

in situ trapping with benzophenone (Table 1, entry 2) resulted beneficial with respect to the 

corresponding batch method,
60

 in terms of reaction time (23 minutes vs 12 hours), accurate 

control of CF3H dosing, productivity (4.6 mmol/h vs 0.225 mmol/h), and, more importantly, 

complete consumption of the CF3H used in the process. 

The insertion of a fourth stream containing a solution of TMSCl in THF (0.3 M; pump D: flow 

rate 0.6 ml/min; Chart 1) and the introduction of a further PTFE coil reactor (16 ml) permitted 

the in-line derivatization of the alcohols 3, and therefore gave access to a number of substituted 

trimethylsilyl ethers 4a-4f with excellent yields (isolated yields after chromatographic 

purification 71 – 95%) and in a relative short time (1.15 h). 
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Chart 1. Synthesis of O-trimethylsilyl fluorinated ethers 4a-4f by an intensified process 

(trifluoromethyanide carbanion – nucleophilic addition to ketones 2a-2f – product derivatization) 

with in-line FT-IR and NMR monitoring. 

Next, the preparation of trifluoromethyl carbinols 6a-6g starting from a number of aldehydes 

was explored. Shibata et al. reported on the use of sterically hindered organo-superbases to 

stabilize the naked trifluoromethanide carbanion and enable the trapping with aldehydes.
59

 

Aiming to develop a more sustainable process for large scale production, we investigated the use 

of a less expensive non-nucleophilic strong base (weaker than amide bases), such as potassium 

tert-butoxide (t-BuOK). While this reaction is reported to perform well in dimethylformamide 

(DMF), which acts as trifluoromethylanion reservoir,
64

 the conversion to the corresponding 

fluorinated products occurs in modest yields when the same reaction is performed in pure THF.
60

  

Similar moderate results were obtained when a mixture of CF3H, t-BuOK and benzaldehyde 5a 

was reacted in flow, using the same flow setup developed for the nucleophilic 

trifluoromethylation of the ketones 2. A screening of the reaction conditions and the process 

design, demonstrated that a noticeably improved result could be obtained when a solution of 



 12 

aldehyde 5 in DMF (0.3 M) was mixed at -20 °C with two streams containing respectively CF3H 

(0.738 M in THF) and t-BuOK (1.0 M in THF). The resulting mixture, reacting at -20 °C within 

a PTFE reactor coil (16 ml, residence time 27 minutes), gave the corresponding fluorinated 

carbinols 6a-6g with excellent results (Chart 2; yields after chromatographic purification 75 – 

97%). Importantly, the real-time 
19

F NMR monitoring confirmed that no fluorinated by-product 

was formed under these reaction conditions and that complete consumption of CF3H was 

achieved. 

 

Chart 2. Synthesis of fluorinated carbinols 6a-6g via generation of trifluoromethanide carbanion 

and in situ trapping with aldehydes 5a-5g with in-line FT-IR and NMR monitoring. 

Finally, we extended our study to the development of a continuous scalable production of 

fluorinated organosilicon compounds, which are extensively applied in organic synthesis as 

fluoroalkylation reagents.
65

 There is a growing interest in developing more environmentally 

benign methods for their large scale production, which would circumvent the use of the ozone-

depleting bromotrifluoromethane (CF3Br) as starting material.
66

 In particular, we turned our 
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efforts to the preparation of trifluoromethyltriethylsilane 8, which is widely used as a 

trifluoromethyl precursor.
67,68

 The reaction conditions were accurately investigated, taking 

advantage of the real-time monitoring of the reaction mixture. It was found that a lower 

temperature (-40 °C) and longer residence time (57 minutes) were crucial parameters to succeed 

in the formation of 8. The concentration of CF3H in the solution under the new flow setup 

(Figure 5a; T = -40 °C; FRA = FRB = FRC = 0.1 ml/min) was measured by using the in-line 
19

F 

NMR analysis (figure 5b; , , -trifluorotoluene as internal standard, 0.3 M; [CF3H] = 0.732).  

 

Figure 5. a) Schematic of the flow reactor setup for the synthesis of trifluoromethyltriethylsilane 

8 using three pumps (FRA=FRB=FRC= 0.1 ml/min), a tube-in-tube reactor (1.0 m of AF-2400 
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tubing), a PTFE coil reactor (14 ml), a cooling device (-40 °C), a FT-IR instrument and a bench-

top NMR machine (43 MHz). b) In-line 
19

F NMR spectrum of the solution containing PhCF3 as 

internal standard (-63.46 ppm) and CF3H (-79.49 ppm) at -40 °C. c) In-line FT-IR analysis by 

monitoring the trend of CF3H and Et3Si CF3. c) In-line 
19

F NMR analysis by monitoring the 

trends of CF3H and Et3Si CF3. 

The reaction was continuously monitored by FT-IR (Figure 5c) and by 
19

F NMR (Figure 5d), 

discovering that an excess of chlorotriethylsilane (Et3SiCl, 2M), used as electrophile, was crucial 

to suppress the formation of triethylsilyl fluoride (Et3SiF; signal at -151.02 ppm in the 
19

F NMR 

spectrum) as by-product. Under these reaction conditions, full consumption of CF3H was 

observed (Figure 5c, blue line, trend of the peak at 1132 cm
-1

; Figure 5d, disappearance of the 

doublet at -79.49 ppm) and clean formation of compound 8 was detected (Figure 5d, green line, 

trend of the peak at 1251 cm
-1

; Figure 5d, appearance of the singlet at -61.44 ppm). 

CONCLUSION 

In conclusion a synthetic approach which allows the safe utilization of a potent greenhouse 

gas, such as trifluoromethane, has been developed. Exploiting the discovered permeability of the 

Teflon AF-2400 membrane to CF3H, a controlled introduction of this gas into the reaction 

mixture was achieved. The real-time spectroscopic analysis (FT-IR and NMR) enhanced the 

precise measurement of CF3H in the solution, with clear benefits on the selectivity in the 

products formation. The process described was fully contained and any possible dispersion of 

fluoroform into the atmosphere was accurately controlled and minimized. The fast and complete 

interception of the trifluoromethyl carbanion intermediate by ketones, aldehydes and 

chlorosilanes gave access to functional fluorinated products with high yields. The spontaneous 

decomposition of the trifluoromethyl carbanion intermediate to difluorocarbene was completely 



 15 

suppressed, resulting in simpler downstream processing. The successful production of 

trifluoromethyltriethylsilane, as trifluoromethylation reagent, also could extend applications of 

the flow reactor setup to the trifluoromethylation of enolizable carbonyl compounds, which were 

not suitable substrates in this work. The reactor design and the real-time analytical tools adopted 

in this work could find application in other similar synthesis programs. 
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