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ABSTRACT: Mass spectrometry (MS) has become an accessible tool
for whole proteome quantitation with the ability to characterize
protein expression across thousands of proteins within a single
experiment. A subset of MS quantification methods (e.g., SILAC and
label-free) monitor the relative intensity of intact peptides, where
thousands of measurements can be made from a single mass spectrum.
An alternative approach, isobaric labeling, enables precise quantifica-
tion of multiple samples simultaneously through unique and sample
specific mass reporter ions. Consequently, in a single scan, the
quantitative signal comes from a limited number of spectral features
(≤11). The signal observed for these features is constrained by
automatic gain control, forcing codependence of concurrent signals.
The study of constrained outcomes primarily belongs to the field of compositional data analysis. We show experimentally that
isobaric tag proteomics data are inherently compositional and highlight the implications for data analysis and interpretation. We
present a new statistical model and accompanying software that improves estimation accuracy and the ability to detect changes in
protein abundance. Finally, we demonstrate a unique compositional effect on proteins with infinite changes. We conclude that
many infinite changes will appear small and that the magnitude of these estimates is highly dependent on experimental design.

KEYWORDS: tandem mass tags (TMT), isobaric tags for relative and absolute quantitation (iTRAQ),
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■ INTRODUCTION

The field of compositional data analysis was largely developed
by the mathematical geoscience community with major
contributions from Aitchison1 and Egozcue.2 Researchers
interested in studying the geochemical compositions of rocks
and sediment frequently converted raw measures of mineral
abundance to proportions or ratios. The quintessential feature
of compositional data is a constraint on the outcomes.
Consequently, increases in one component necessarily affect
the other components in order to satisfy the constraint.
Consider a measurement with four equal parts. In an
unconstrained scenario, doubling one part does not affect the
absolute amount of the remaining three parts (Figure 1a);
however, if the data are constrained, doubling one part will
decrease the absolute amount observed in each component
(Figure 1b).
Quantitative mass spectrometry is inherently compositional

because the population of ions that is measured for each
spectrum is constrained. This constraint is necessary to ensure
that gas phase ions respond to the electrical fields, while
trapped within a mass spectrometer, in a predictable manner.
The introduction of too many ions into a mass spectrometer

can lead to space-charging effects that disturb ion isolation and/
or mass analysis. Constraining the ion population number is
actualized by automatic gain control (AGC), which attempts to
allow a predictable number of ions into a mass spectrometer for
a single injection.
The compositional nature of quantitative MS data has not

been described, presumably because the effects are minimal in
many types of MS experiments. For example, SILAC or label-
free experiments quantify intact peptides from a spectrum that
contains hundreds of features. In this situation, doubling the
signal of one feature will decrease the signal for the remaining
features a negligible amount. Conversely, the compositional
nature of MS data has a much more profound effect when
utilizing isobaric labels for quantitation, e.g., tandem mass tags
(TMT),3 isobaric tags for relative and absolute quantitation
(iTRAQ).4 This is because the spatial constraint is imposed on
the isolated, prefragmented ion flow so that the signal is split
among a small number of features (≤11).
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In this article, we explore the effects of spatial constraints on

the analysis and interpretation of isobaric tag proteomics

experiments. We provide examples of comparisons that are

nonsensical from a compositional perspective that would have

been reasonable absent spatial constraints. We propose a

statistical model for compositional proteomics and evaluate its

performance in terms of accuracy, sensitivity, and specificity on

two separate ground truth experiments.
We also show how compositional constraints can have

different effects on experimental outcomes depending on the

experimental design. Specifically, we show that infinite changes

do not have to appear large and that changes in how samples

are multiplexed can have a predictable effect on the estimates of

infinite changes.

■ EXPERIMENTAL PROCEDURES

Compositional Data Analysis

While the compositional aspect of mass spectrometry is
theoretically explained by AGC constraints, it is another matter
to directly observe the effects. To demonstrate the composi-
tional nature of quantitative data resulting from isobaric tags a
synthetic peptide, AGLDNVDAESK, was labeled with three
quantitative channels of tandem mass tags (TMT-126, -128,
and -130), and two samples were constructed, mixed at ratios of
1:5:0 and 1:5:50. They were then analyzed separately utilizing
high-resolution MS.
The dependency between outcomes that we seek to show in

this experiment greatly complicates data analysis. Even basic
operations such as addition become inappropriate, as
alterations to single components can violate the constraint.
Fortunately, mathematical operations and probability distribu-

Figure 1. Isobaric tag proteomics data is inherently compositional. (A, B) The defining feature of compositional data is a constraint on the outcomes.
These bar plots show the difference between doubling a component of unconstrained (A) versus constrained (B) data. In the unconstrained case, the
measurements of each component are independent of one another so that doubling one quantity has no effect on the others. With constrained data,
doubling the amount of one component necessarily decreases the magnitude of one or more other components. (C) Spectra from peptide
AGLDNVDAESK. In the first run (top), only two channels were used, TMT126 and TMT128, at a ratio of 1:5, respectively. In the second run
(bottom), these channels were kept the same but we added the peptide in a third channel, TMT130, at 10× of TMT128. We show that while the
ratios of the values remain constant, the observed intensities of TMT126 and TMT128 were greatly reduced in the three-channel experiment. The
intensity in channel 128 decreased from approximately 30 000 in the two-channel experiment to approximately 10 000 when a third TMT channel
was added.
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tions have been created for statistical analysis on a constrained
sample space.5,6 Commonly used distributions include the
Dirichlet and Additive Log Normal.7 For all distributions, the
standard approach for analyzing compositional data is to
transform into an unconstrained space, perform an analysis, and
transform back as needed.
The concept of transforming our data out of compositional

space and then performing an analysis is the foundation of our
modeling efforts. However, much more is required to account
for the highly unbalanced and nested nature of the data. We
create a model that utilizes the additive log-normal trans-
formation (ALR), incorporates peptide level covariates to
improve estimation, and utilizes partially pooled variance
estimates8 to share information about the error structure across
the whole data set.
Partially pooled variance estimators are especially useful for

dealing with the unbalanced aspect of the data. In a model with
no pooling, every protein fold change would have its own
variance estimate. Unfortunately, for proteins with a small
number of peptides, these estimates will not be very reliable. A
potential solution to this problem is to use pooled variance so
that a single experimental error is estimated and used for all
proteins. While this is solves the problem of unreliable
estimates in proteins with few peptides, it creates a new
problem in that proteins with many peptides and little variation
will now have an overestimated variance. A model with partially
pooled variance components will yield estimates close to the
completely pooled experimental error when only a few data
points are observed. However, as the observations within a
protein increase, the estimate will converge to the result with
no pooling. Full model specifications and motivations are
provided in Supporting Information Methods and Discussion
S1.
The compositional transformation, peptide level covariate

adjustments, and partially pooled variance estimation are all
available in our R package, which contains precompiled Stan
models to make use of efficient Bayesian simulation
algorithms.9

Two-Proteome Ground Truth Experiments for Analyzing
Accuracy and Detectability

To evaluate the performance of our compositional modeling,
we used two separate two-proteome ground truth experiments.
The first experiment contains a wide range of changes from
yeast proteins mixed into a background of proteins extracted
from mouse brain tissue. This experiment provides us with the
opportunity to study small, large, and even infinite changes and
allows us to explore quantitative extremes that may occur in a
proteomics experiment. We will refer to this as the boundary
case experiment. Details of the experimental design and
procedure along with full data tables can be found in the
Supporting Information. A second ground truth experiment
(the common case experiment) targeted 2- and 3-fold changes
by mixing yeast at defined ratios within a background of human
proteins and was designed to closely mimic the proportion and
scale of changes found in common biological experiments. The
details of this experiment are shown in the Supporting
Information. Each experiment was analyzed with both FT-
MS2 and SPS-FTMS3 technologies10,11 (we will often
abbreviate these methods as MS2 and MS3, respectively).

Dual Multiplexed Viral Infection Experiment for Analyzing
Infinite Changes

To explore the effect of spatial constraints on infinite fold
changes, we reanalyzed samples from a time course in primary
human fetal foreskin fibroblasts (HFFFs) infected with
cytomegalovirus (HCMV), originally generated by Weekes et
al.12 In this experiment, we have duplicate uninfected samples
as well as infected samples after 6, 12, 18, 24, 48, 72, and 96 h.
We expect that the distribution of relative viral protein
estimates from the uninfected sample to the 48 h time point
will be different depending on what other time points are
coanalyzed in the mass spectrometer. To this end, we
reanalyzed aliquots from the original experiment as both a
10-plex and 2-plex containing only the untreated and 48 h time
point. Details of the experimental procedure are given in
Supporting Information Methods and Discussion S1.

■ RESULTS AND DISCUSSION

Compositional Nature of Isobaric Tag Proteomics Data

It is important emphasize that isobaric tag proteomics data are
compositional by their very nature. All types of data, when
converted to proportions or ratios, demonstrate the properties
of compositional data. However, with these data, the properties
can be seen prior to any sort of mathematical manipulation.
This was demonstrated by analyzing a synthetic peptide,
AGLDNVDAESK, in two different multiplexing configurations
(Figure 1C). Both runs 1 and 2 exhibited a 1:5 ratio between
channels 126 and 128; however, when channel 130 was added
in run 2, the intensity of channel 128 was dramatically reduced
from ∼30 000 to ∼10 000. This is the essence of compositional
data: adding to one channel necessarily reduces the signal in at
least one other channel. This dependence makes direct
comparison of TMT reporter ion intensities across separate
MS2 spectra unreliable.
Predictably, the effect shown in Figure 1C will only be seen

for scans where the AGC limit has been reached. In the absence
of the constraint on ion sampling, more ions can be collected
from a new channel without necessarily decreasing the signal
from the other channels. It should be noted that many factors
might contribute to a change in the signal-to-noise ratio for a
given reporter ion. However, there is nothing special about the
peptide shown in Figure 1C other than the fact that the AGC
limit was reached. The same behavior will be observed
whenever a lack of space necessitates a decrease in ion
injection time.
Not all scans will hit the AGC target, but ignoring the

measurements that do is not a viable option. In our boundary
case FT-MS2 experiment, the AGC limit was reached in 92% of
the scans. In the SPS-FTMS3 version of the experiment, the
limit was hit over 99% of the time. This difference in
percentages could be caused by the expanded isolation window
created by synchronous precursor selection. However, many
variables might affect the frequency of hitting the AGC target,
especially the complexity of peptide mixtures and the actual
abundance of a specific protein. In any case, the result is a data
set that is only partly compositional by nature.
To make matters more confusing, we cannot ever directly

“see” the constraint. This is because the constraint is imposed
on the isolated prefragmented ion flow. Variations in
fragmentation efficiency guarantee that the number of ions
that contribute to the reporter ion signals will not directly
match up to the number of ions that were constrained in the C-
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Trap. Furthermore, the number of species of ions in the MS2/
MS3 scan (including a large number of fragment ions) is not
reflective of the number of ion species that was initially
constrained (<11). In all cases, whether compositional by
nature or just by convenience, a compositional data analysis will
be appropriate since analyzing the proportions is sensible even
when it is not necessary.
Some of the consequences of compositional constraints are

obvious, while others are very subtle. Among the obvious
effects are complications that arise when comparing signals
from different plexes. In compositional data, only the set of
proportions that define the composition are pertinent. When
comparing different plexes, the signal intensities might
represent proportions from different wholes. For example, in
Figure 1c, the average of the signals from channel 128, across
plexes, is not a meaningful quantity. Interpreting a lower signal
in run 2 as evidence that less of the peptide was present would
be a severe mistake.

In the absence of the spatial constraint, we could assume
changes in signal intensity across plexes to be a function of ion
injection time. Accordingly, one might “normalize” the peptide
signals from each plex by the total signal intensities across all
channels. However, such strategies fail to account for the
compositional aspect. If the designs in each plex are not
equivalent, then increases in some channels will result in
decreases in others even when the total signals are equal.
Accordingly, a drop in signal across plexes still does not
necessarily imply a drop in abundance. Our modeling efforts,
based on principles of compositional data analysis, avoid these
problems by analyzing only the relevant ratio information from
each scan. Incorporating other peptide level information is
handled by adding covariates to our modeling.
For example, both isolation specificity (IS) (Figure 2B) and

summed signal-to-noise (SSN) (Figure 2C) are peptide level
statistics that have an observable effect on the MS2 intensity
ratios shown in Figure 2D,E. The scatterplot shows that large
ratios tend to be compressed as both isolation specificity and

Figure 2. Relationship between two peptide level covariates and ratio compression. (A) Diagram explaining the ratios and experimental design for
the data plotted in (D) and (E). We highlight here 1-, 4-, and 100-fold changes with MS2 quantification from the boundary case experiment. This is a
two species interference model with abundance of mouse proteins kept constant across channels and yeast proteins diluted at known ratios. (B)
Isolation specificity is a statistic that can be calculated for each peptide spectral match. With current technologies, the ability to accurately measure
mass exceeds our ability to isolate those masses. Consequently, the isolation window used to select a specific mass for MS2 analysis will usually
contain more than a single peak. The isolation specificity statistic is an attempt to quantify the proportion of signal belonging to the peak that we
intended to target. (C) Another peptide level statistic of interest is the total sum of signal-to-noise ratios. In the theory of compositional data, the
total amount of signal collected should be irrelevant given all of the ratio information. However, in proteomics experiments, the total amount of
signal may have an effect on the precision and accuracy of the ratios. (D, E) Scatterplots demonstrating the relationship between log ratio peptide
intensities and two peptide level statistics, isolation specificity (IS) (D) and summed signal-to-noise (SSN) (E). Both relationships show trends that
mimic the ratio compression that we expect to see from interfering ions. This suggests that either IS or SSN could be used as covariates in a
regression to somewhat mitigate the effects of compression. However, the slopes of the lines depend on the true change, greatly complicating
modeling efforts.
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summed signal-to-noise decrease. In theory, we should be able
to exploit relationships between intensity ratios and known
peptide level information to our advantage.
An example of how to perform such an analysis is shown in

Figure 3. The details of the analysis are given in Supporting

Information Methods and Discussion S1. The key aspect is that
we first conceptualize each scan as a composition (set of
proportions). The proper mathematical space for compositions
is the simplex (triangle of arbitrary dimensions), which is
graphically represented with a ternary diagram. We then
transform using the additive log ratio (ALR) transformation5

and fit regression lines in real space. At this point, we could

draw conclusions about the log ratios or convert back to the
simplex as needed.
In this ternary diagram, each point represents a three-part

composition with components labeled on the vertices. For a
given point, the proportion of an individual component is
determined by the shortest distance from the point to the side
of the triangle opposite the component’s vertex. This plot
graphically demonstrates the relative and constrained nature of
the data. All points in the simplex (triangle of arbitrary
dimension) must sum to 1, and increases in any one
component necessitate decreases in at least one other.
Converting back to the simplex and creating one simplicial

regression line reveals the effect of IS in the compositional
space. Interestingly, the line closely mimics the effect of MS2
compression as lower values of IS bring the composition closer
to unity and predicted values when IS = 1 are brought closer to
the true proportions.

Two-Proteome Ground Truth Experiments

We set out to create data with a wide range of known true fold
changes. To this end, we used two species models where
background proteins remained unchanged while proportions of
yeast proteins varied across channels (Figure 4A,D).
Performance of our compositional models was evaluated in

terms of accuracy, sensitivity, and specificity. Since we know the
true log2 fold changes from our ground truth experiments, we
can evaluate accuracy as the absolute deviation from the true
results. As expected, the MS3 data were inherently more
accurate than the MS2 data in both data sets (Figure 4B,E). In
each experiment, the compositional modeling of MS2 data,
using SSN, improved the accuracy of our estimates, but we
were never able to match the accuracy of the MS3 methods.
The compositional modeling had little effect on the accuracy

of MS3 experiments. This is expected because all of the
methods applied to MS3 data yield estimates of protein log
ratios that are similar to the average of observed peptide log
ratios within the protein; i.e., in all MS3 models, the expected
value of a peptide log ratio is the parameter that represents the
protein log ratio. Consequently, the methods all yield very
similar point estimates. However, the MS2 model does
something a bit different. In the MS2 model, we estimate a
parameter that determines the relationship between peptide
ratios and SSN. Consequently, the parameter for the protein
log ratio is defined as the expected value of the peptide log
ratios when SSN is at the 99th percentile. So, rather than taking
an average of observed peptide log ratios, we are actually
targeting a prediction of what the peptide ratios would have
been if the summed-signal-to-noise had been higher.
Regarding the ability to detect changes, we evaluate

performance in terms of both sensitivity (the probability of
detecting a change when it is real) and specificity (the
probability of ignoring signals that should be ignored). These
two aspects of signal detection must be evaluated together.
Perfect sensitivity can always be obtained by simply calling
everything “significant”. Receiver operating characteristics
(ROCs) put both aspects into one plot. Figure 4C,F shows
the ROC curves for 2-fold changes (plots for all of the other
magnitudes are shown in Figures S2−S4). In the boundary case
experiment, many proteins were quantified from only a single
peptide ratio (the common case experiment always has
replicates). For these cases, when using an ANOVA, standard
errors and p-values cannot be generated (this is not a problem
for the compositional model). To avoid making unfair

Figure 3. Workflow for a compositional data analysis. For a specific
peptide spectral match, we first convert reporter ion intensities to
proportions and plot them in a ternary diagram. This plot contains all
of the peptide measurements that belong to protein YER178W, found
in the MS2 boundary case experiment (other tags are excluded for
graphical simplicity). The appropriate geometric space for constrained
data is a simplex (triangle of arbitrary dimension), which motivates the
use of ternary diagrams. Each vertex represents one component, and
the inverse distance from a vertex to a point reflects the proportion of
the composition belonging to that vertex. The additive log ratio (ALR)
transformation is applied to each set of proportions, putting the data
into the usual Cartesian geometric space. Linear regressions between
the log ratios and isolation specificity (IS) are fit for each channel ratio.
The inverse additive log ratio transformation is then applied to these
results to create one simplicial regression. This regression line allows
us to project what the protein composition would have been if the
isolation specificity was equal to 1 (purple diamond). This value is
roughly halfway between an estimate obtained by just averaging each
peptide level proportion (green diamond) and the true protein level
proportion (blue dot). Notice that in this plot IS closely mimics the
effect of interference-induced compression, as values with lower IS are
closer to unity (the center of the triangle).
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comparisons, we took two approaches to generating ROC
plots: one where we remove proteins with only a single
observation and another where we use all proteins but assign a
p-value of 1 in cases where they cannot be computed. From a
signal detection framework, the latter might be preferable as
these are observed signals that will never be detected. ROC

plots generated from all available proteins are presented in
Figures S2−S4, and plots based on proteins with two or more
peptides are shown in the main text. Across all plots, clear
methodological advantages are demonstrated, with composi-
tional MS3 exhibiting the greatest ability to detect 2-fold
changes in both experiments.

Figure 4. Improved modeling of the data enhances the accuracy and detectability of protein fold changes. (A, D) Design of two gold standard
dilution experiments. In (A), we show the general setup for the boundary case experiment. A two proteome mixture was analyzed that supplemented
a constant amount of mouse background (gray) with varying amounts of yeast protein (green). The ratios were selected to enable an analysis that
pushes the boundaries of the type of changes seen in biological experiments, including small, large (100-fold), and infinite changes. In (D), we
describe the common case experiment, which was designed to resemble typical biological experiments. Once again, yeast was varied using dilutions
mixed into a human background. However, this time the changes were only 2- and 3-fold and the design contains multiple replicates. (B, E) In each
dilution experiment, we compared estimates for the log2 fold changes of yeast proteins from four different methods against the true values.
CompMS2 and CompMS3 represent the results from fitting the compositional models to MS2 and MS3 data, respectively. These box plots show the
distribution of the absolute deviation from true changes for each method in the (B) boundary case and (E) common case experiments. (C, F)
Receiver operating characteristic (ROC) plots of each dilution experiment. These ROC plots show the ability to detect 2-fold changed yeast
proteins. The area under each curve is the probability that a true signal would have a higher predictive value than a false signal.
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The effect of our modeling on the boundary case data
(Figure 4C) was profound, showing a clear ordering with better
detection with MS3 than MS2 data and better performance in
both technologies with compositional modeling. Interestingly,
the modeling was able to make signal detection on the less
precise MS2 data better than what was achieved with an
ANOVA on the MS3 data. The effect was less dramatic in the
common case data (Figure 4F) as the replicates improve signal
detection across all approaches. Nonetheless, the compositional
model still provides the greatest signal detection as can be more
clearly seen in the inset image magnifying the upper left corner
of the plot. The rank ordering of methodologies is the same in
both experiments, but it is important to note that the ROC
plots characterize signal detection performance on a per signal
basis.
An important element that cannot be assessed by ROC plots

alone is the number of proteins with altered abundance that
were detected by each method. These numbers are not very
meaningful in the boundary case data set, where they primarily
describe the number of dilution combinations, but in the
common case data, they reflect what a researcher might expect
to find in a real experiment. At a 1% false positive rate, using a
standard t-test methodology, we were able to detect 1281 and
1188 2-fold changes with MS2 and MS3 data, respectively. The
greater numbers for MS2, in spite of poorer performance in the
ROC curve, is expected as MS2 scans require less instrument
time than MS3, allowing more overall data to be collected.
Impressively, the improved detection of quantitative differences
enabled by the compositional model increases the number of
true positives to 1754 and 1301. Per signal, the compositional
modeling of MS3 data gave the best performance, but the depth
of discovery obtained with compositional MS2 (35% more true
positives than compositional MS3) provides a considerable
advantage. Similar results can be seen for the 3-fold changes in
Figure S5A.
It should be noted that the importance of methodology

diminished as the magnitude of true changes increased (all
methods perform well while detecting fold changes of 100).
However, a surprising and notable exception is shown in Figure
5A, where the ROC plots for infinite changes show substantial
differences between methodologies. The modeling benefit seen
here is similar to what we observed for relatively small changes.
This is explained by the fact that infinite changes frequently
appeared very small in the boundary case experiment (Figure
5B). As such, the type of model used in this experiment had a
large impact on our ability to detect infinite changes.
Methodologies that enhance our ability to detect small changes
also enhance our ability to detect infinite changes. This
surprising result is further explored in the viral time course
experiment.

Dual Multiplexed Viral Infection Experiment for Analyzing
Infinite Changes

The compositional aspect of isobaric tag proteomics data has a
special effect on infinite changes. We work with signal-to-noise
measurements, which cannot be less than 1, so even if no ions
are present in a given sample, we still observe some
measurement near the noise. Conceptually, for a two-channel
TMT experiment where one channel is empty, the mass
spectrometer will continually sample from the present channel
until the AGC is reached, resulting in a very large relative
measurement. However, more complicated designs could alter
this behavior.

Consider again the plot in Figure 1C. Adding a third channel
greatly reduced the number of ions that could be collected from
the first two channels. However, the compositional ion
reduction may have a different impact on empty channels.
Consequently, the relative measurement from an empty
channel to one that is present might change in magnitude
depending on the amount of ions from other channels.
Since spatial constraints reduce the number of ions collected

in a scan but have no effect on the noise, we hypothesized that
the distribution of infinite changes would be dependent on
experimental design. To test this, we considered a time course
experiment where a human fibroblast cell line is infected with
cytomegalovirus. The time course samples were split up and
multiplexed once with all 10 samples and separately with only 2
channels. We expected that constrained ion sampling in the 10-

Figure 5. Infinite changes can appear small. (A) Receiver operating
characteristic (ROC) plots for infinite changes in the boundary case
experiment. In this plot, proteins with <2 observed peptides were
removed since the ANOVA method cannot generate p-values with
only a single data point. An alternative is to give these proteins a p-
value of 1, since they were not detected, and compare signal detection
on the entire data set (Figure S4D). (B) Histogram of the estimates of
the log2 fold changes for proteins, which we know are truly infinite,
from the boundary case experiment. This shows that, contrary to
typical expectations, infinite changes in TMT experiments can appear
small.
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plex would result in lower true signals relative to the 2-plex.
Consequently, we predicted that the infinite changes would
appear larger in the 2-plex than the 10-plex. The distributions
of average log ratios (Figure 6B) are consistent with this
prediction.
As expected, the distribution of human protein estimates

remains virtually unchanged between experimental designs.
However, the viral proteins are clearly affected by design, with
the median estimate shifting by 0.78 on the log2 scale (Figure
6B). In these density plots, we show the distribution of the
average log2 peptide ratio, for each protein, from the untreated
sample to the sample 48 h after infection. We show the
distribution of average ratios as opposed to model-based
estimates to emphasize that this shift has nothing to do with
advanced statistical modeling. The two curves represent the
distribution of changes when we multiplex all 10 samples in the
time course versus multiplexing only the two samples of
interest. The distribution of human protein fold changes is
basically identical in both designs (top). However, the viral
proteins (infinite changes) are shifted (bottom).

Two example proteins are highlighted (Figure 6C), one
human (DDA1) and one viral (UL86). DDA1, which associates
with the Cullin-RING ligase 4 complex,13 had log2 fold change
estimates of 2.84 and 2.59 in the 10- and 2-plex, respectively.
Looking at an infinite change such as for UL86, the major
capsid protein in HCMV, the average log2 fold change estimate
shifts from 2.36 (∼5-fold) in the 10-plex up to 3.27 (nearly 10-
fold) in the 2-plex.
These plots show estimated log2 fold changes between the

untreated and 48 h time points. The colored boxes represent
80% credible intervals, whereas the black tails show 95%
credible intervals. Notice that while the estimated 10-plex fold
change for DDA1 is completely contained in the 95% interval
from the 2-plex, the intervals for the viral protein show
complete separation. In the full 10-plex, ions from the 48 h time
point have to compete with ions from the rest of the samples.
This decreases the magnitude of all real signals in such a way
that the proportions remain correct. However, no correspond-
ing reduction occurs in the truly empty channels. This implies
that compositional constraints do not necessarily affect

Figure 6. Space constraints combine with experimental design to predictably alter the appearance of infinite changes. (A) Workflow for our time
course experiment. After adding TMT to each peptide digest, we multiplexed the samples as both a 2- and 10-plex and analyzed each separately in
the mass spectrometer. (B) In these density plots, we show the distribution of the average log2 peptide ratio, for each protein, from the untreated
sample to the sample 48 h after infection. The two curves represent the distribution of changes when we multiplex all 10 samples in the time course
(red) versus multiplexing only the two samples of interest (blue). The distribution of human proteins fold changes is basically identical in both
designs (top). However, the viral proteins (infinite changes) are shifted (bottom). (C) Two example proteins are highlighted, one human (DDA1)
and one viral (UL86). These plots show estimated log2 fold changes between the untreated and 48 h time points. The colored boxes represent 80%
credible intervals, whereas the black tails show 95% credible intervals. In both cases, the intervals were generated with our Bayesian compositional
model. (D) ROC plots for two statistical methodologies in each of the multiplex designs. These ROC plots show the ability to detect infinite fold
changes from viral proteins (true positives) versus human proteins (true negatives), most of which should be unchanged.
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interfering ions in the same way as target ion populations.
Consequently, infinite fold changes in two-channel experiments
can appear larger than they would in more complicated designs.
Consistent with results from both the boundary case and

common case experiments, we once again see improved signal
detection capabilities when utilizing our compositional model.
ROC plots for two statistical methodologies in each of the
multiplexing designs show the ability to detect infinite fold
changes from viral proteins (true positives) versus human
proteins (true negatives), most of which should be unchanged
(Figure 6D). In addition to this computational improvement
we also see a substantial increase in detection ability as a
consequence of experimental design. This is expected since
infinite changes in the 2-plex experiment appear larger than
they do in the 10-plex. Once again, proteins with <2 peptides
were removed for the creation of this plot. The corresponding
plot for all proteins is provided in the Supporting Information
(Figure S5B).

■ CONCLUSIONS
We have demonstrated theoretically and experimentally that
isobaric tag proteomics data are inherently compositional. This
statement has profound implications for the analysis and
interpretation of experiments. Comparisons that would have
otherwise been sensible are no longer valid when considering
the compositional aspect, and any interpretation of the data
that relies on notions of absolute abundance are bound to be
misguided. However, the lessons are not merely cautionary.
Statistical models based on principles of compositional data

analysis can greatly improve the accuracy and detectability of
small and infinite fold changes. In terms of sensitivity and
specificity, our modeling was able to improve the detectability
of 2-fold changes in MS2 data enough to outperform standard
MS3 methods. On the basis of these results, we strongly
recommend that both MS2 and MS3 data should be analyzed
with our compositional models. Regarding the strengths of the
underlying technologies, researchers who are primarily
interested in the number of changed proteins discovered, at
equivalent false positive rates, should use FT-MS2 technologies
along with compositional modeling. For those who need either
improved accuracy or the best ability to detect a change, on a
per signal basis, SPS-FTMS3 with compositional modeling
provides the best results.
The modeling gains are greatest for small changes, which

may not be of great interest to some researchers. However,
understanding the compositional nature of these experiments
also led us to predict a previously unexplored behavior of mass
spectrometry. When spatial constraints limit the signal from a
target ion, the constraints do not necessarily have the same
effect on the amount of interference. Consequently, the
observed magnitude of infinite changes is a function of
experimental design. This lesson is important for two reasons.
One, infinite changes can appear small, which should be of
substantial importance to researchers interested in gene
activation/deactivation. Two, the methodological advantages
demonstrated with our modeling efforts apply to infinite as well
as small changes.
While the gains in accuracy and signal detection are

important, the primary reason to treat isobaric tag data as
compositional is not derived from these benefits. In our view,
models should be designed to provide the most faithful
representation of the data generating process possible. No
other model properly accounts for the dependencies created by

the spatial constraint, and any framework that does so properly
would be compositional by definition. We have done our best
to explore the benefits of accounting for the constraint and the
dangers of ignoring this aspect. However, our imaginations are
limited, and the consequences of compositional proteomics
very likely exceed what we have here presented.
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