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Abstract

We study the cosmological effects of adding terms of higher-order in the usual energy-momentum

tensor to the matter lagrangian of general relativity. This is in contrast to most studies of higher-

order gravity which focus on generalising the Einstein-Hilbert curvature contribution to the la-

grangian. The resulting cosmological theories give rise to field equations of similar form to several

particular theories with different fundamental bases, including bulk viscous cosmology, loop quan-

tum gravity, K-essence, and brane-world cosmologies. We find a range of exact solutions for

isotropic universes, discuss their behaviours with reference to the early and late-time evolution,

accelerated expansion, and the occurrence or avoidance of singularities. We briefly discuss exten-

sions to anisotropic cosmologies and delineate the situations where the higher-order matter terms

will dominate over anisotropies on approach to cosmological singularities.
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I. INTRODUCTION

The twin challenges of naturally explaining two periods of accelerated expansion during

the history of the universe engage the attentions of many contemporary cosmologists. The

first period may have had a beginning and necessarily came to an end when the universe was

young and hot: it is called a period of ‘inflation’ and it leaves observable traces in the cosmic

microwave background radiation that are believed to have been detected. The second period

of acceleration began only a few billion years ago and is observed in the Hubble flow traced

by Type IA supernovae; it is not known if it will ever come to an end or is changing in any

way. There are separate non-unique mathematical descriptions of each of these periods of

acceleration but there is no single explanation of both of them both, nor any insight into

whether or not they are related, or even random, occurrences. For these reasons, there is

continuing interest in all the different ways in which expanding universes can undergo periods

of accelerated expansion. In the case of late-time acceleration the simplest description of

an effectively anti-gravitating stress, known as ‘dark energy’, is provided by introducing a

cosmological constant (Λ) into general relativity with a value arbitrarily chosen to match

observations.

The best-fit theory of this sort is dubbed ΛCDM and in its simplest form is defined by six

constants (which determine Λ) that can be fixed by observation. One of those parameters

is Λ and its required value is difficult to explain: it requires a theory that contributes

an effective vacuum stress of magnitude Λ ∼ (tpl/t0)2 ∼ 10−120 at a time of observation

t0 ∼ 1017s, where tpl ∼ 10−43s is the Planck time [1]. Other descriptions that lead to

slowly evolving scalar fields in place of a constant Λ have also been explored, together with

a range of modified gravity theories that contribute anti-gravitating stresses. There are

many such modifications and extensions of Einstein’s general relativity and they can be

tuned to provide acceleration at early or late times. So far, almost all of these modifications

to general relativity have focussed on generalising the gravitational lagrangian away from

the linear function of the spacetime curvature, R, responsible for the Einstein tensor in

Einstein’s equations. A much-studied family of theories of this sort are those deriving from

a lagrangian of the form F (R), where F is some analytic function. By contrast, in this paper

we will explore some of the consequences of generalising the form of the matter lagrangian

in a nonlinear way, to some analytic function of TµνT
µν , where Tµν is the energy-momentum
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tensor of the matter stresses. This is more radical that simply introducing new forms of

fluid stress, like bulk viscosity or scalar fields, into the Einstein equations in order to drive

acceleration in FRLW universes.

In II we discuss and motivate higher order contributions to gravity from matter terms.

In III we derive the equations of motion for a generic F (R, TµνT
µν) modification of the

action with bare cosmological constant, before specialising to the case F (R, TµνT
µν) = R+

η(TµνT
µν)n. We then investigate several features of the isotropic cosmology in this theory

IV and, finally, move to the anisotropic Bianchi Type I setting in V.

II. BACKGROUND

A. Field equations

Einstein’s theory of general relativity (GR) with cosmological constant Λ can be derived

from the variation of the action,

S =
1

2κ

∫ √
−g(R− 2Λ)d4x+

∫ √
−gLmd4x, (1)

where κ = 8πG and Lm is the matter lagrangian, that we will take to describe a perfect

fluid; R ≡ Ra
a, where Ra

b is the Ricci tensor, and g is the determinant of the metric itself.

Here, and in all that follows, we use units in which c = 1.

An isotropic and homogeneous universe may be described by the Friedmann-Lemâıtre-

Robertson-Walker (FLRW) metric:

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

))
, (2)

where k, the curvature parameter, takes the values {−1, 0, +1} corresponding to open, flat

and closed 3-spaces, respectively; t is the comoving proper time and a(t) is the expansion

scale factor.

There are many proposals to modify or extend the ΛCDM cosmological picture. These

fall broadly into two categories, depending on which side of the Einstein field equations is

modified. We can modify the right-hand side of the Einstein equations by adding new forms

of matter that will drive expansion either at early times, as in the theory of inflation, or at

late times, such as in quintessence or K-essence scenarios [2]. Alternatively, we can modify
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the left-hand side of the Einstein equations in order to modify the effect of gravity itself.

There are several ways to do this, including F (R) theories [3] in which the Ricci scalar

in (1) is replaced by some function f(R), so called F (T ) theories in which we modify the

teleparallel equivalent of general relativity [7], or scalar-tensor theories in which a scalar

field is coupled to the Ricci scalar.

B. Higher-order Matter Contributions

The type of generalisation of general relativity we will explore in this paper looks to

include higher-order contributions to the right-hand side of the Einstein equations, where

the material stresses appear. This results in field equations that include new terms that enter

at high densities and pressures, which may be anti-gravitational in their effects. Typically,

they affect the cosmological model at high densities and may alter the conclusions regarding

the appearance of spacetime singularities in the finite cosmological past. Conversely, we

might expect their effects at late times and low cosmological densities to be very small.

Even within general relativity, there is scope to include high-order matter contributions,

as the Einstein equations have almost no content unless some prescription or constraint is

given on the forms of matter stress. Thus, in the general-relativistic Friedmann models, we

can introduce non-linear stresses defined by relations between pressure, p, and density, ρ,

of the form ρ + p = γρn, [13], or f(ρ), [14], with γ ≥ 0 and n constants, or include a bulk

viscous stress into the equation of state of the standard form p = (γ − 1)ρ− 3Hς(ρ),where

H is the Hubble expansion rate and ς ≥ 0 is the bulk viscosity coefficient [15]. The so

called Chaplygin and generalised Chaplygin gases are just special cases of these bulk viscous

models, and choices of n or ς ∝ ρm introduce higher-order matter corrections. Similarly,

the choice of self-interaction potential V (φ) for a scalar field can also introduce higher-order

matter effects into cosmology. Analogously, in scalar-tensor theories like Brans-Dicke (BD)

which are defined by a constant BD coupling constant, ω, generalisations are possible to

the cases where ω becomes a function of the BD scalar field. In all these extensions of

the standard relativistic perfect fluid cosmology there will be several critical observational

tests which will constrain them. In particular, in higher-order matter theories the inevitable

deviations that can occur from the standard thermal history in the early radiation era will

change the predicted abundances of helium-4 and deuterium and alter the detailed structure
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of the microwave background power spectrum. Also, as we studied for Brans-Dicke theory

[33, 34], changes in the cold dark matter dominated era evolution can shift the time when

matter and radiation densities are equal. This is the epoch when matter perturbations

begin to grow and sensitively determines the peak of the matter power spectrum. At a

letter nonlinear stage of the evolution, higher-order gravity theories will effect the formation

of galactic halos. This has been investigated for bulk viscous cosmologies by Li and Barrow

[25]. These observational constraints will form the subject of a further paper and will not

be discussed here.

If we depart from general relativity, then various simple quantum gravitational correc-

tions are possible, and have been explored. The most well known are the Loop Quantum

Gravity (LQG) [16] and brane-world [22] scenarios that contribute new quadratic terms

to the Friedmann equation for isotropic cosmologies by replacing ρ by ρ(1 ± O(ρ2)) in the

Friedmann equation, where the − contribution is from LQG and the + in brane worlds. The

impact on anisotropic cosmological models is more complicated and not straightforward to

calculate [23, 24]. In particular, we find that simple forms of anisotropic stress are no longer

equivalent to a p = ρ fluid as we are used to finding in general relativity. Our study will be

of a type of higher-order matter corrections which modify the Friedmann equations in ways

that include both of the aforementioned types of phenomenological modification to the form

of the Friedmann equations, although the underlying physical theory does not incorporate

the LQC or Braneworld models or reduce to them in a limiting case.

Standard F (R) theories of gravity [3] can be generalised to include a dependence of the

form

S =
1

2κ

∫ √
−gF (R,Lm)d4x. (3)

This is in some sense an extremal extension of the Einstein-Hilbert action, as discussed in

[9]. If the coupling between matter and gravity is non-minimal, then there will be an extra

force exerted on matter, resulting in non-geodesic motion and a violation of the equivalence

principle. This type of modification has been investigated in several contexts, particularly

when the additional dependence on the matter lagrangian arises from F taking the form

F (R, T ) where T is the trace of the energy-momentum tensor [10].

A theory, closely related to F (R, T ) gravity, that allows the gravitational lagrangian to

depend on a more complicated scalar formed from the energy-momentum tensor is provided
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by F (R,T2), where T2 ≡ TµνT
µν is the scalar formed from the square of the energy-

momentum tensor. This was first discussed in [11], and the special case with

F (R,T2) = R + ηT2, (4)

where η is a constant, was also discussed in [12], where the authors investigated the possibility

of a bounce at early times when η < 0 (although in that paper they used the opposite sign

convention to us for η), and also found an exact solution for charged black holes in the

extended theory. In [31] a similar form, with additional cross terms between the Ricci

and Energy-momentum tensors, was discussed as arising from quantum fluctuations of the

metric tensor. Recently [32] investigated the late time acceleration of universes described

by this model in the dust-only case, as well as using observations of the Hubble parameter

to constrain the parameters of the theory.

We would expect the theory derived from (4) to provide different physics to the F (R, T )

case. Indeed, one example of this is the case of a perfect fluid with equation of state p = −1
3
ρ.

The additional terms in F (R, T ) will vanish as T = 0, but in the F (R,T2) theory the extra

terms in T2 will not vanish and we will find new cosmological behaviour. In section III, we

will investigate the cosmological solutions in a more general setting, where the T2 term may

be raised to an arbitrary power.

III. FIELD EQUATIONS FOR F (R, TµνT
µν) GRAVITY WITH COSMOLOGICAL

CONSTANT

In [12] the Friedmann equations were derived in the case where F is given by (4), for a flat

FLRW cosmology. A ‘bare’ cosmological constant was also included on the left-hand side of

the field equations (rather than as an effective energy-momentum tensor for the vacuum). In

[11], the field equations were derived without a cosmological constant and specialised to two

particular models. We first derive the equations of motion with a cosmological constant for

general F , before specialising to theories where the additional term takes the form (T2)
n
,

and determining the FLRW equations with general curvature. In GR, the cosmological

constant can be considered to be, equivalently, either a ‘bare’ constant on the left-hand side

of the Einstein equations, or part of the matter lagrangian. As discussed in [12], the two are

no longer equivalent in this theory, due to the non-minimal nature of the curvature-matter
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couplings. A similar inequivalence also occurs in other models that introduce non-linear

matter terms, including Loop Quantum Cosmology. We will assume that the cosmological

constant arises in its bare form as part of the gravitational action. This gives the modified

action

S =
1

2κ

∫ √
−g(F (R, T µνTµν)− 2Λ) d4x+

∫
Lm
√
−g d4x, (5)

where Lm is taken to be the same as the matter component contributed by Tµν . Since

the gravitational lagrangian now depends on T2, we note that the new terms in the variation

of the action will arise from the variation of this square, via δ(TµνT
µν). To calculate this,

we define Tµν by

Tµν = − 2√
−g

δ(
√
−gLm)

δgµν
. (6)

We enforce the condition that Lm depends only on the metric components, and not on

their derivatives, to find

Tµν = gµνLm − 2
∂Lm
∂gµν

. (7)

Varying with respect to the inverse metric, we define

θµν ≡
δ(TαβT

αβ)

δgµν
= −2Lm(Tµν −

1

2
gµνT )− TTµν + 2Tαµ Tνα − 4Tαβ

∂2Lm
∂gµν∂gαβ

, (8)

where T is the trace of the energy-momentum tensor. Varying the action in this way, we

find

δS =
1

2κ

∫
{FRδR + FT 2δ(TµνT

µν)− 1

2
gµνFδg

µν + Λ +
1√
−g

δ(
√
−gLm)}d4x, (9)

where subscripts denote differentiation with respect to R and T2, respectively.

From this variation we obtain the field equations:

FRRµν −
1

2
Fgµν + Λgµν + (gµν∇α∇α −∇µ∇ν)FR = κ(Tµν −

1

κ
FT2θµν). (10)

These reduce, as expected, to the field equations for F (R) gravity in the special case

where F (R,T2) = F (R) [3] and to the Einstein equations with a cosmological constant

when F (R,T2) = R.

We will assume that the matter component can be described by a perfect fluid,

Tµν = (ρ+ p)uµuν + pgµν , (11)

7



where ρ is the energy density and p the pressure; hence

TµνT
µν = ρ2 + 3p2. (12)

Furthermore, we take the lagrangian Lm = p. This means that the final term in the

definition of θµν vanishes and allows us to calculate the form of θµν independently of the

function F . Substituting (11) into (8), we find

θµν = −(ρ2 + 4pρ+ 3p2)uµuν . (13)

We now proceed to specify a particular form for F (R,T2) which includes and generalises

the models used in [11] and for energy-momentum-squared gravity in [12] (EMSG). This

form is

F (R, TµνT
µν) = R + η(TµνT

µν)n, (14)

where n need not be an integer. This corresponds to EMSG in the case n = 1, and

to Models A and B of [11] when n = 1/2 and n = 1/4, respectively; it reduces the field

equations to

Rµν −
1

2
Rgµν + Λgµν = κ(Tµν +

η

κ
(TαβT

αβ)n−1

[
1

2
(TαβT

αβ)gµν − nθµν
]
), (15)

which we rewrite as

Gµν + Λgµν = κT eff
µν , (16)

whereGµν is the Einstein tensor, to show the relationship to general relativity. Continuing

with the perfect fluid form of the energy-momentum tensor, this expands to give:

Gµν + Λgµν = κ((ρ+ p)uµuν + pgµν)

+ η(ρ2 + 3p2)n−1

[
1

2
(ρ2 + 3p2)gµν + n(ρ+ p)(ρ+ 3p)uµuν

]
.

(17)

IV. ISOTROPIC COSMOLOGY

If we assume a FLRW universe with curvature parameter k, we find the generalised

Friedmann equation,(
ȧ

a

)2

+
k

a2
=

Λ

3
+ κ

ρ

3
+
η

3
(ρ2 + 3p2)n−1

[
(n− 1

2
)(ρ2 + 3p2) + 4nρp

]
, (18)
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and acceleration equation

ä

a
= −κρ+ 3p

6
+

Λ

3
− η

3
(ρ2 + 3p2)n−1

[
n+ 1

2
(ρ2 + 3p2) + 2nρp

]
. (19)

If the matter field obeys a barotropic equation of state, p = wρ with w constant, then

the non-GR terms are all of the form ρ2n multiplied by a constant. Thus, the generalised

Friedmann equation becomes

(
ȧ

a

)2

+
k

a2
=

Λ

3
+ κ

ρ

3
+
ηρ2n

3
A(n,w), (20)

where A is a constant depending on the choice of n and w, given by

A(n,w) ≡ (1 + 3w2)n−1

[
(n− 1

2
)(1 + 3w2) + 4nw

]
, (21)

and the acceleration equation becomes

ä

a
= −κ1 + 3w

6
ρ+

Λ

3
− ηρ2n

3
B(n,w), (22)

where B a constant given by

B(n,w) ≡ (1 + 3w2)n−1

[
n+ 1

2
(1 + 3w2) + 2nw

]
. (23)

Finally, we determine the generalised continuity equation, by differentiating the gener-

alised Friedmann equation,

ρ̇ = −3
ȧ

a
ρ(1 + w)

[
κ+ ηρ2n−1n(1 + 3w)

κ+ 2ηρ2n−1A(n,w)

]
, (24)

where we have written it in a form that makes clear the generalisation of the GR case.

We can see immediately that there is an interesting difference between the FLRW equa-

tions in GR and in EMSG. When η = 0 there are solutions with finite a, ȧ,and ρ but infinite

values of p and ä. These are called sudden singularities [4–6] and can be constructed explic-

itly. In EMSG, where η 6= 0, the appearance of the pressure, p, explicitly in the Friedmann

equation changes the structure of the equations and the same type of sudden singularity is

no longer possible at this order in derivatives of a.
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A. Integrating the Continuity Equation

We now attempt to determine the cosmological behaviour of some cases where the mod-

ified continuity equation can be integrated exactly. We find four simply integrable cases:

two of these are for fixed w independent of the value of n, the other two occur for specific

values of w dependent on the choice of n, although we note that some of these integrable

cases may coincide, depending on our choice of the exponent, n.

The first case that can be integrated is for the equation of state corresponding to dark

energy, w = −1, where the entire right-hand side of (24) vanishes, and so ρ ≡ ρ0, a constant.

In this case we expect to find a solution to the modified Friedmann equation that is the same

as the solution in GR except with altered constants, which results in a de Sitter solution

where H ≡ ȧ
a

= constant, and the universe expands exponentially.

Next, we consider the case w = −1
3
, which corresponds to an effective perfect fluid

representing a negative curvature, so the numerator in the modified continuity equation

becomes simply κ, and we can integrate (24) since

ρ̇

(
1

ρ
+

2ηA(n,−1
3
)

κ
ρ2n−2

)
=− 2

ȧ

a
, (25)

d

dt

(
ln ρ−

η
(

4
3

)n
(2n− 1)κ

ρ2n−1

)
=

d

dt
(ln a−2), (26)

ρ exp

(
−

η
(

4
3

)n
(2n− 1)κ

ρ2n−1

)
= Ca−2, (27)

with C > 0 a constant of integration.

We can also integrate the continuity equation when the correction factor in (24) is equal

to 1, which occurs when

n(1 + 3w) = 2A(n,w). (28)

The continuity equation then reduces to the standard GR form for these special values,

w = w∗, and so we have

ρ = Ca−3(1+w∗). (29)

The final possibility that we consider is when

A(n,w) = n2(1 + 3w), (30)
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in which case we can write (24) as

d

dt
(ln(κρ+ nηρ2n(1 + 3w∗))) =

d

dt
(ln a−3(1+w∗)), (31)

which integrates to

κρ+ nηρ2n(1 + 3w∗) = Ca−3(1+w∗). (32)

We note that, depending on the choice of exponent n, some of the second pair of solutions

may exist for multiple choices of w, or may coincide with each other, or with the w = −1,

w = −1
3

cases. Also, for some choices of n, there may be no solutions at all.

Finally, note that only one of these solutions allows easy integration of the modified

Friedmann equation (20). This is the case when w = −1 and so ρ = ρ0. In this case the

Friedmann-like equation becomes (
ȧ

a

)2

+
k

a2
= α(Λ, n), (33)

where α is a constant given by

α(Λ, n) ≡ Λ

3
+ κ

ρ0

3
− ηρ2n

0

6
4n. (34)

The solution to the modified Friedmann equation is then given by

a(t) =
1

2
√
α

(C
√
α +

k

C
√
α

) cosh(
√
αt)± (C

√
α− k

C
√
α

) sinh(
√
αt) (35)

where C is a new constant of integration. Equivalently, we can write this solution in terms

of exponentials as

a(t) =
1

2
√
α

(
C
√
αe
√
αt +

k

C
√
α
e−
√
αt

)
(36)

as well as its time reversal, t → −t. Assuming α > 0, we can see that this reduces to the

expected de Sitter solution from general relativity in the case k = 0, as we would expect. If

α < 0 then, writing instead α → −α, there is a real solution only for negative curvature,

where we must choose k = −C2α, giving the anti-de Sitter solution

a(t) = C cos(
√
αt). (37)

It is important to note that because of the form of α, unlike in the unmodified case, we

do not necessarily require a negative cosmological constant to find this solution. We would
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expect this anti-de Sitter analogue to appear whenever η > 0, for suitable choices of ρ0 and

n.

This solution is very similar to the case of w = −1 in GR, where we can rewrite the

cosmological constant as a perfect fluid with this equation of state. This is possible in

GR because the continuity equations for non-interacting multi-component fluids decouple,

allowing us to treat them independently. Unfortunately, because of the additional non-

linear terms arising in these F (R,T2) models (except in the special case n = 1/2), we

cannot decouple different fluids in this way and then subsequently superpose them in our

Friedmann-like equations. This means that we cannot replace the curvature or cosmological

constant terms with perfect fluids with w = −1/3 and −1 as in classical GR. However, for

some choices of n and η, the correction terms can themselves provide an additional late-time

or early inflationary repulsive force, removing the need for an explicit cosmological constant.

B. Energy-momentum-squared gravity: the case n = 1

If we fix our choice of n, then we can say more about the behaviour of the specific

solutions that arise. In what follows we consider primarily the case n = 1 which was

originally discussed in [12], under the name ‘energy-momentum squared gravity’. After

specialising to n = 1, we can say more about the solutions to the continuity equation found

in the previous section, and investigate the modified Friedmann equations. The form of the

Friedmann equations, after setting n = 1 in (20), (22) and (24), are:(
ȧ

a

)2

+
k

a2
=

Λ

3
+ κ

ρ

3
+
ηρ2

6
(3w2 + 8w + 1) (38)

ä

a
=

Λ

3
− κ1 + 3w

6
ρ− ηρ2

3
(3w2 + 2w + 1) (39)

ρ̇ =− 3
ȧ

a
ρ(1 + w)

κ+ ηρ(1 + 3w)

κ+ ηρ(3w2 + 8w + 1)
(40)

The new terms in the Friedmann equations are quadratic in the energy density, which we

would expect to dominate in the very early universe as ρ → ∞. Additionally, if we choose

η < 0, then the modified Friedmann equations in this model are similar to the effective

Friedmann equations arising in Loop Quantum Cosmology, [16], where(
ȧ

a

)
=
κ

3
ρ

(
1− ρ

ρcrit

)
, (41)
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which may warrant further investigation. An analogous higher-order effect occurs in brane

world cosmologies, where there is an effective equation of state with [18–21]

peff =
1

2λ
(ρ2 + 2pρ);λ > 0 constant. (42)

We briefly summarise the values of w for which the results of the previous section allow

us to integrate the Friedmann equation and find the values of w that satisfy equations (28)

and (30). If we set n = 1 then (28) reduces to

3w2 + 5w = 0, (43)

which has solutions w = −5
3

and w = 0. The w = 0 solution describes ‘dust’ matter. The

case w = −5/3 corresponds to some form of phantom energy, which will result in a Big Rip

singularity, [17], at finite future time.

Alternatively, solving (30) for n = 1 gives

3w2 + 2w − 1 = 0, (44)

which has solutions w = −1 and w = 1
3
. The first of these has already been found for

all n as the first case above, whilst the second gives a solution corresponding to black

body radiation. Hence, we have exact solutions to the continuity equation for the cases

w = {−5
3
,−1,−1

3
, 0, 1

3
} which include the physically important cases of dust and radiation.

The equation of state p = 0 corresponds to pressureless dust or non-relativistic cold dark

matter, and as shown above, we recover the same dependence of energy density on the scale

factor as in the GR case,

ρ = Ca−3. (45)

If we combine this with the modified acceleration and Friedmann equations for w = 0 we

find

aä+ 2ȧ2 + k =
Λ

2
a2 +

κ

4C
a−1. (46)

If we consider only flat space (k = 0) then we find

a(t) = (4Λ)−
1
3 ((C2 +D + 1) cosh

(√
3Λ

2
t

)
+ (C2 +D − 1) sinh

(√
3Λ

2
t

)
− 2C)

1
3 , (47)

where D is a constant of integration, and we have eliminated a further constant by a

covariant translation of the time coordinate. We can then find ρ explicitly, using (45). We
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can see, however, that this form of the solution does not capture the case Λ = 0. In this

case, instead we find the solution

a(t) =

(
3

8C

) 1
3

(C2t2 − 16D)
1
3 , (48)

which we gives the GR dust behaviour of a ∼ t
2
3 at large t.

In the case of w = −1
3
, we can write

ρ exp

(
−4η

3κ
ρ

)
= Ca−2. (49)

After differentiation and multiplication by a2, we can write

ȧ

a
=
ρ̇

ρ
(1− 4η

3κ
ρ) (50)

and so in the case k = 0 we can write the Friedmann equation in terms of ρ without any

exponentials, as

(
ρ̇

ρ

)2

(1− 4η

3κ
ρ)2 1

4C2
=

Λ

3
+
κ

3
ρ− 2η

9
ρ2. (51)

Finally, in the case of w = 1
3
, which corresponds to radiation, [12] gave a solution in the case

of flat space, a(t) ∝
√

cosh(αt) where α ≡
√

4Λ
3

. We see that in this case we can write the

continuity equation as

κρ+ 2ηρ2 = Ca−4, (52)

and that in the Friedmann and acceleration equations, the density terms are of equal mag-

nitude but opposite sign. We can then sum the two to find our equation for a(t)(
ȧ

a

)2

+
ä

a
+
k

a2
=

2Λ

3
, (53)

which we solve by use of the substitution y = a2 to find

a2(t) =
1

4Λ
((1 + 9k2 − 12ΛD) cosh(αt) + (1− 9k2 + 12ΛD) sinh(αt) + 6k) (54)

for all Λ, k non-zero, with α ≡
√

4Λ
3
, as above. In the Λ = 0 subcase, we find the solutions

a2(t) =


Dt− kt2 k 6= 0

Dt k = 0 . (55)
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C. De Sitter-like solutions

De Sitter solutions arise in EMSG theory. They have constant density and Hubble pa-

rameter, which includes the case w = −1. In ΛCDM we expect this to arise in two situations.

The first is when we have ρ ≡ 0, that is an empty universe whose expansion is controlled

solely by Λ, and the second is the similar dark-energy equation of state w = −1 for which

the perfect fluid behaves as a cosmological constant. In EMSG we find there is an extra

family of de Sitter solutions. We describe them first for general n, then specialise to EMSG.

Since we are searching for solutions with H ≡ H0 and ρ ≡ ρ0, from (20) we must have

k = 0, and the Friedmann equation then reduces to an algebraic one for H2 in terms of ρ0.

Similarly, since Ḣ = 0, (22) reduces to another relation for H2. Equating the two to remove

H2 and simplifying, we find that ρ0 must satisfy

ρ0(1 + w)(κ+ nη(1 + 3w2)n−1(1 + 3w)ρ2n−1
0 ) = 0. (56)

There are the two standard solutions, w = −1 and ρ0 = 0, but the additional factor gives

us another family of solutions, with

ρ2n−1
0 = − κ

nη(1 + 3w2)n−1(1 + 3w)
. (57)

In the case of EMSG, when we choose n = 1, this condition reduces to

ρ0 = − κ

η(1 + 3w)
(58)

which gives us a constant density, exponentially expanding solution for every equation of

state, w, excluding w = −1
3
, for an appropriate sign of η. The existence of this extra de

Sitter solution is reminiscent of its appearance in GR cosmologies with bulk viscosity [15]

This unusual situation suggests that we investigate the stability of these n = 1 solutions.

We consider a linear perturbation about the constant density solution by writing

ρ =ρ0(1 + δ), (59)

H =H0(1 + ε), (60)

The perturbed continuity equation is then given by

ρ0δ̇ = −3(1 + w)H0(1 + ε)ρ0(1 + δ)
κ+ ηρ0(1 + δ)(1 + 3w)

κ+ ηρ0(1 + δ)(3w2 + 8w + 1)
, (61)

15



If we use the expression for ρ0 given in (58), we can reduce this to

δ̇ = −3(1 + w)(1 + 3w)H0(1 + ε)(1 + δ)δ
1

(3w2 + 5w)(1 + 3w2+8w+1
3w2+5w

δ)
. (62)

From the perturbation of the modified Friedmann equation we find that ε ∼ δ which

means that after expanding to first order in δ, we have

δ̇ = −3H0δ
(1 + w)(1 + 3w)

(3w + 5)w
, (63)

so small perturbations evolve as

δ ∝ exp

(
−3H0

(1 + w)(1 + 3w)

(3w + 5)w

)
(64)

−3 −2 −1−1 1 2 3

−3

−2

−1

1

2

3

w

log(δ)
3H0

FIG. 1. The plot shows the value of the exponent, and hence the stability of the solutions, in (64)

(where we have divided by 3H0). The asymptotes are found at w = −5
3 and w = 0, whilst the

zeroes are at w = −1 and w = −1
3 . The solutions will be stable for values of w where the graph is

negative, and unstable otherwise.

The exponent in (64) is plotted in Figure 1, where we can see that these de Sitter-like

solutions are indeed stable for a wide range of w values. This gives us an exponentially
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expanding universe for (almost) any equation of state as long as we set the density to the

correct constant value. In particular, these solutions will be stable for w < −5
3
, −1 < w < −1

3

and w > 0, and unstable for −5
3
< w < −1 and −1

3
< w < 0. It is also the case that,

depending on the sign of the parameter η, some of these solutions will be unphysical, as

they require negative energy density. For η < 0, there will be no physical solutions for

w < −1
3
, whilst for η > 0 there will be no solutions for w > −1

3
.

D. Early times: the bounce and high-density limits

Examining the modified Friedmann equation (38) in the case k ≥ 0, we can see that as

the left-hand side of the equation is a sum of positive terms, we must have

Λ + κρ+ ηρ2A(1, w) ≥ 0, (65)

which can be split into two cases, for ηA(1, w) < 0 and ηA(1, w) > 0, respectively. The

first case occurs for

η < 0 and {w < α− or w > α+}, (66)

η > 0 and {α− < w < α+}, (67)

where

α± = −−4±
√

13

3
(68)

are the roots of

A(1, w) ≡ 3w2 + 8w + 1 = 0. (69)

In this case we have a maximum possible density given by

ρmax =
κ

2A(1, w)η

(
−1 +

√
1− 4ηΛA(1, w)

κ2

)
, (70)

indicating that a bounce occurs in this case, avoiding an initial singularity. In the second

case, where ηA(1, w) > 0, there is no bounce and no maximum energy density.

We now consider the solutions when k = 0 in the high-density limit, where we assume

the correction terms dominate over the ρ and Λ terms. We consider the case of general n,

17



and find an analytic solution. The Friedmann and acceleration equations reduce to(
ȧ

a

)2

=
η

3
ρ2nA(n,w), (71)

ä

a
=− η

3
ρ2nB(n,w). (72)

From these, we can eliminate ρ to find(
ȧ

a

)2

+
A(n,w)

B(n,w)

ä

a
= 0. (73)

which has the solution

a(t) = D[(A+B)t− C]
A

A+B (74)

where C and D are new constants of integration. We can then solve for the density:

ρ(t) =

(
3A

η

) 1
2n

((A+B)t− C))−
1
n . (75)

This solution is real (and thus not unphysical) only if A(n,w)/η is positive. In the case of

EMSG, this condition reduces to the requirement that η and 3w2 + 8w + 1 must have the

same sign. So, the two regions where this solution exists are,

η > 0 and {w < α− or w > α+}, (76)

η < 0 and {α− < w < α+}, (77)

where

α± = −−4±
√

13

3
(78)

are the roots of 3w2 + 8w+ 1. These are complementary to the conditions for the bounce to

occur, as previously discussed. This is as we would expect, with the high-density approxi-

mation failing at a maximum density, as in the case of a bounce.

V. ANISOTROPIC COSMOLOGY

There are several ways of introducing anisotropy into our cosmological models. We will

consider the simplest generalisation of FLRW, in which we have a flat, spatially homogeneous

universe, with anisotropic scale factors. This is the Bianchi type I universe, with metric

given by [28]

ds2 = −dt2 + a2(t)dx2 + b2(t)dy2 + c2(t)dz2, (79)
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where a(t), b(t) and c(t) are the expansion scale factors in the x, y and z directions, respec-

tively.

Assuming that the energy-momentum tensor takes the form of a perfect fluid with prin-

cipal pressures, p1, p2 and p3, so Lm = 1
3
(p1 + p2 + p3), we can derive the field equations for

Bianchi I universes in our higher-order matter theories:

ȧḃ

ab
+
ḃċ

bc
+
ċȧ

ca
= κρ+

η

6
(ρ2 +

3∑
i=1

p2
i )
n−1

[
(6n− 3)ρ2 + 8nρ

3∑
i=1

pi + 2n(
3∑
i=1

pi)
2 − 3

3∑
i=1

p2
i

]
,

(80)

ḃċ

bc
+
b̈

b
+
c̈

c
= −κp1 +

η

6
(ρ2 +

3∑
i=1

p2
i )
n−1

[
2n(ρ+ p1 − p2 − p3)(2p1 − p2 − p3)− 3

3∑
i=1

p2
i

]
,

(81)

ċȧ

ca
+
c̈

c
+
ä

a
= −κp2 +

η

6
(ρ2 +

3∑
i=1

p2
i )
n−1

[
2n(ρ+ p2 − p3 − p1)(2p2 − p3 − p1)− 3

3∑
i=1

p2
i

]
,

(82)

ȧḃ

ab
+
ä

a
+
b̈

b
= −κp3 +

η

6
(ρ2 +

3∑
i=1

p2
i )
n−1

[
2n(ρ+ p3 − p1 − p2)(2p3 − p1 − p2)− 3

3∑
i=1

p2
i

]
.

(83)

In the case of an isotropic pressure fluid (p1 = p2 = p3 = p):

ȧḃ

ab
+
ḃċ

bc
+
ċȧ

ca
= κρ+

η

2
(ρ2 + 3p2)n−1((2n− 1)ρ2 + 8nρp+ (6n− 3)p2), (84)

ḃċ

bc
+
b̈

b
+
c̈

c
= −κp− η

2
(ρ2 + 3p2)n−13p2, (85)

ċȧ

ca
+
c̈

c
+
ä

a
= −κp− η

2
(ρ2 + 3p2)n−13p2, (86)

ȧḃ

ab
+
ä

a
+
b̈

b
= −κp− η

2
(ρ2 + 3p2)n−13p2. (87)

The first of these is the generalised Friedmann equation.

19



Qualitatively, we expect that the higher-order density and pressure terms will dominate

at early times to modify or remove (depending on the sign of η) the initial singularity when

n > 1/2, but will have negligible effects at late times, when the dynamics will approach

the flat isotropic FLRW model. At early times, we know that in GR the singularity will

be anisotropic and dominated by shear anisotropy whenever −ρ/3 < p < ρ. In order to

determine the dominant effects as t→ 0 we will simplify to the case of isotropic perfect fluid

pressures (p1 = p2 = p3 = wρ). Now, we determine the dependence of the highest-order

matter terms on the scale factors, a, b and c from the generalisation of the conservation

equation (24) with an anisotropic metric (79). For the case with general n, this is

ρ̇ = −

(
ȧ

a
+
ḃ

b
+
ċ

c

)
ρ(1 + w)

[
κ+ ηρ2n−1n(1 + 3w)

κ+ 2ηρ2n−1A(n,w)

]
, (88)

and so the behaviour of the density is just

ρ ∝ (abc)−Γ, (89)

where

Γ(n,w) = (1 + w)

[
κ+ ηρ2n−1n(1 + 3w)

κ+ 2ηρ2n−1A(n,w)

]
. (90)

The higher-order density terms will dominate the evolution at early times when n > 1/2

and we see that, in these cases, Γ is independent of ρ and η as ρ→∞,since in this limit,

Γ(n,w)→ n(1 + 3w)(1 + w)

2A(n,w)
. (91)

In the cosmology obtained by setting n = 1 in (80)-(83) we will have domination by

the nonlinear matter terms, which will drive the expansion towards isotropy as t → 0 if

ρ2 diverges faster than (abc)−2 as abc → 0. Thus, the condition for an isotropic initial

singularity in n = 1 theories is that Γ(1, w) > 2, or

(1 + 3w)(1 + w)

2A(1, w)
> 2 (92)

When this condition holds as t → 0, the dynamics will approach the flat FLRW metric

with

a(t) ∝ b(t) ∝ c(t) ∝ t2/Γ(1,w). (93)
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When Γ(1, w) < 2, the dynamics will approach the vacuum Kasner metric with

(a, b, c) = (tq1 , tq2 , tq3), (94)
3∑
i=1

qi =
3∑
i=1

q2
i = 1. (95)

This condition simplifies to four cases:

w > 0 anisotropic singularity

α+ < w < 0 isotropic singularity

α− < w < α+ anisotropic singularity

w < α− isotropic singularity

Here, the constants α+ and α− take the values determined earlier in (78)).

In general, for arbitrary n, the higher-order correction terms on the right-hand side of

the field equations (17) are proportional to ηρ2n when p = wρ, and so the condition for an

isotropic singularity as t→ 0 becomes

Γ(n,w) > 2n, (96)

and the dynamics approach

a(t) ∝ b(t) ∝ c(t) ∝ t2/Γ(n,w). (97)

The case for general n and w is problematic to simplify succinctly due to the exponential

dependence on n. However, we can consider specific physically relevant equations of state

individually.

For dark energy (w = −1) and curvature (w = −1
3
) ‘fluids’, we find that Γ(n) = 0, for

all n, and so the condition for an isotropic initial singularity will depend only on whether n

itself is positive or negative.

For w = 0, dust, we find

Γ(n, 0) =
n

2n− 1
, (98)

for n 6= 1
2
. which leads to isotropy only when 1

2
< n < 3

4
.

For radiation, w = 1
3
, an isotropic singularity will occur if

n

(4
3
)n−1(2n− 1

2
)
> 2n, (99)
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whilst for w = 1 we find that the condition for isotropy is

n

4n−1(2n− 1
2
)
> 2n. (100)

In both the latter cases, we require n 6= 1
4
.

A similar effect will occur in more general anisotropic universes, like those of Bianchi

type V IIh or IX, which are the most general containing open and closed FLRW models,

respectively. In type IX, the higher-order matter terms will prevent the occurrence of chaotic

behaviour with w < 1 fluids on approach to an initial or final singularity in a T2n theory when

n > 1. Thus we see that in these theories the general cosmological behaviour on approach

to an initial and (in type IX universes) final singularity is expected to be isotropic in the

wide range cases we have determined, when Γ(n,w) > 2n. This simplifying effect of adding

higher-order effects can also be found in the study of other modifications to GR, for example

those produced by the addition of quadratic RabR
ab terms to the gravitational lagrangian,

[29, 30]. These also render isotropic singularities stable for normal matter (unlike in GR). If

Tab is not perfect fluid but has anisotropic terms (for example, because of a magnetic field

or free streaming gravitons [27]) they will add higher-order anisotropic stresses.

VI. CONCLUSIONS

We have considered a class of theories which generalise general relativity by adding higher-

order terms of the form (T µνTµν)
n to the matter lagrangian, in contrast to theories which

add higher-order curvature terms to the Einstein-Hilbert lagrangians, as in f(R) gravity

theories. The family of theories which lead phenomenologically to higher-order matter con-

tributions to the classical gravitation field equations of the sort studied here includes loop

quantum gravity, and bulk viscous fluids, K-essence, or brane-world cosmologies in GR.

This generalisation of the matter stresses is expected to create changes in the evolution of

simple cosmological models at times when the density or pressure is high but to recover the

predictions of general relativistic cosmology at late times in ever-expanding universes where

the density is small. However, we find that there is a richer structure of behaviour if we gen-

eralise GR by adding arbitrary powers of the scalar square of the energy-momentum tensor

to the action. In particular, we find a range of exact solutions for isotropic universes, discuss

their behaviours with reference to the early and late-time evolution, accelerated expansion,
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and the occurrence or avoidance of singularities. Finally, we discuss extensions to the sim-

plest anisotropic cosmologies and delineated the situations where the higher-order matter

terms will dominate over the anisotropic stresses on approach to cosmological singularities.

This leads to a situation where the general cosmological solutions of the field equations for

our higher-order matter theories are seen to contain isotropically expanding universes, in

complete contrast to the situation in general relativistic cosmologies. In future work we will

discuss the observational consequences of higher-order stresses for astrophysics.
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