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Abstract

A computational framework is proposed for the linear modal and nonmodal analysis of fluid

systems consisting of a periodic array of n identical units. A formulation in either time or frequency

domain is sought, and the resulting block-circulant global system matrix is analyzed using roots-of-

unity techniques which reduce the computational effort to only one unit while still accounting for

the coupling to linked components. Modal characteristics as well as non-modal features are treated

within the same framework, as are initial-value problems and direct-adjoint looping. The simple

and efficient formalism is demonstrated on selected applications, ranging from a Ginzburg-Landau

equation with an n-periodic growth function to interacting wakes, to incompressible flow through

a linear cascade consisting of 54 blades. The techniques showcased here are readily applicable

to large-scale flow configurations consisting of n-periodic arrays of identical and coupled fluid

components, as can be found, for example, in turbomachinery, ring flame-holders or nozzle exit

corrugations. Only minor corrections to existing solvers have to be implemented to allow this

present type of analysis.
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I. INTRODUCTION

Fluid systems consisting of an array of identical sub-units are common in many industrial

configurations. Prominent among them are high-performance axial or radial turbines, com-

pressors or pumps where a specific number of blades are mounted on a circular hub. Other

applications that fall under the same category are ring flame-holders in combustion cham-

bers, injection devices in afterburners, or the corrugated aircraft-engine nacelles intended to

diminish jet-induced noise. In these configurations the geometry of each individual sub-unit

is identical, and so is the flow behavior in it (see figure 1 for an example and a sketch). Conse-

quently, it seems tempting to analyze the flow through a single unit in isolation and account

for the influence of neighboring components via periodic boundary conditions. While this

practice has been widely applied, it is easy to demonstrate that it cannot capture a range

of fluid motion (in particular, multi-modal fluid instabilities) that may be important for the

safe and efficient operation of an n-periodic fluid device. More specifically, modal solutions

that are periodic over the entire n units, but non-periodic over individual or multiple units,

are excluded by a one-unit analysis with periodic boundary conditions.

A global analysis, i.e., treating the entire n-component geometry, would remedy this

shortcoming, but would yield a discretized system of excessive, or even prohibitive, size.

Although we will start our development from a formulation of the full global system, we

will exploit its block-circulant structure to reduce it to a modified single-unit system, thus

achieving the computational cost of isolated-unit periodic analyses while correctly modelling

the full interaction with all n− 1 sub-components. In addition, the breakdown into a single

sub-unit and its subsequent linear analysis exhibits ideal scalability on a parallel computer

architecture, demonstrating additional benefits for this type of analysis.

The ubiquity of fluid systems characterized by an n-periodic arrangement of identical

units or by multi-periodic geometric features has spawned a great deal of analyses and

simulations: flow in wavy or grooved channels [9, 15, 16, 40] or past arrays of roughness

elements and vortex generators [6], acoustics in periodic wave-guides [1], energy extraction

from an buoy array [12] and, of course, flow in turbomachines [8, 13, 14, 20, 23, 24, 30]

and combustors [5, 28, 29, 31, 38, 39, 45] are but a few examples that fall under this

category. Not surprisingly, specific analysis and simulation techniques that efficiently ad-

dress this periodicity have been developed, in particular for turbomachinery applications,
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FIG. 1. (a) Example of an n-periodic fluid system: a gas-stove burner. (b) Sketch of an n-

periodic fluid system consisting of n identical sub-units described by the respective state vector

qj , j = 0, . . . , n− 1. (c) Analysis of a single unit with imposed periodic boundary conditions.

typically describing blade-to-blade dynamics, aeroelastic properties, and rotor-stator inter-

actions. Among the proposed and frequently employed techniques are the harmonic-balance

method [7, 17] which treats time-periodic flow as a sequence of matched frequencies, the

phase-lagged boundary condition method [8] which employs phase-shifted flow variables on

the interface between individual sub-units and, closely related, the chorochronic bound-

ary condition method [13, 14, 23, 24] which generalizes the former techniques to multiple

(and distinct) periodicity by an appropriate time-shift. In particular, the phase-lagged and

chorochronic boundary conditions are commonly used in time-periodic flow, for example, in

the periodic forcing of a turbomachinery blade passage by upstream stators or rotors. In

this case, the implemented phase-shifts account for the time-delay in the forcing that the

boundaries experience. The above techniques deal with a variety of geometric configura-

tions and flow situations that exhibit a spatial (commonly azimuthal or discrete-rotational)

periodicity, time-periodicity, or both.

Closest to the framework used in this article is the analysis of periodic systems using

Bloch waves [4]. In a Bloch-wave formalism a relation between the solution in each sub-unit

in the form of a geometric series is presumed. The geometric factor can be interpreted

as a phase shift between solutions in various units, and is related to a cross-unit Bloch

wavenumber. Substituting this ansatz into the governing equations yields a parameterized

sequence of equations for the fundamental solution in a single unit [1, 28]; the parameter is

the Bloch wavenumber.

In this article, we alternatively propose and use a linear-algebra approch, taking advan-
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tage of the block-circulant nature of the linearized governing equations, for spectral analysis

or initial-value problems. Among the well-known properties of block-circulant matrices is

the analytic nature of the symbol curve [44], which takes on a particularly compact form

for nearest-neighbor couplings that are often encountered in physical and engineering ap-

plications. This symbol curve can be computed without a priori committing to a specific

number of individual sub-units. It is then discretized along its arclength according to the

number n of sub-units which subsequently yields the spectrum of the n-periodic system.

The discretized symbol curve represents the mapping of roots of unity under the respective

block-matrices, where the indices of the roots correspond to the associated Bloch wavenum-

ber. In addition to spectral (modal) properties, which mirror their equivalents in Bloch-wave

theory, appropriate matrix functions, as used in a nonmodal stability/receptivity analysis,

can also be formulated in a very compact manner, and the interaction between any two sub-

units can be quantified and assessed, giving a measure of perturbation propagation across

sub-units. The direct application of the formalism to matrix functions avoids the recasting

into an eigenvalue problem, involving the adjoint operator. Lastly, rather than a reformu-

lation of the governing equations using Bloch-wave theory, the proposed formalism can be

straightforwardly implemented in existing simulation codes with little effort and minimal

modifications.

The article is organized as follows. Starting from a full global description of an n-periodic

fluid system, section II will introduce practical tools to arrive at a single-unit problem and to

recover the complete global dynamics from solutions of this single unit. A range of analysis

tools will be treated for modal (§ II A) and non-modal stability analyses (§ II B), impulse

response, frequency response and inter-unit analyses (§ II C) and direct-adjoint looping

(§ II D). Implementation strategies and access details to software used in this article are given

in § II E. Section III gives demonstrations of the presented tools, starting with simple model

equations and advancing to more complex and realistic configurations: a one-dimensional

Ginzburg-Landau equation with an n-periodic growth potential (§ III A), a periodic array of

interacting Bickley wakes (§ III B), and incompressible flow through an array of compressor

blades (§ III C). In each application, particular attention is directed towards low-frequency

organized motion and synchronization across multipe sub-units, which is contrasted to flow

behavior periodic over one single unit. Lastly, section IV presents conclusions, extensions

and an outlook for future applications.
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II. MATHEMATICAL FRAMEWORK

We consider a general, nonlinear evolution problem of the form

∂Q

∂t
= f(x, y, z, t; Q) (1)

where Q is a vector field that fully describes the state of our fluid system. We further assume

periodicity over n identical units, which we representatively take in the z-coordinate. This

periodicity is mathematically expressed in the form f(x, y, z, t; Q) = f(x, y, z + n`, t; Q)

with ` as the z-extent of a single unit. After spatially discretizing the above equations and

linearizing about an equilibrium point Q̄, with Q = Q̄ + εq, we arrive, for O(ε), at an

evolution equation for the small perturbations q which reads

d

dt
q = Aq, (2)

with A = ∂f/∂Q|Q̄ associated with (1). The specific n-periodic shape of the governing

equations (1) results in a block-circulant form of the Jacobian A with

d

dt



q0

q1

...

qn−2

qn−1


=



A0 A1 · · · An−2 An−1

An−1 A0 · · · An−3 An−2

An−2 An−1 · · · An−4 An−3

...
...

...
...

A1 A2 · · · An−1 A0


︸ ︷︷ ︸

A



q0

q1

...

qn−2

qn−1


︸ ︷︷ ︸

q

. (3)

In the above expression, the discretized state vector q is partitioned into n components

qj, j = 0, . . . , n− 1, each of which fully describing the flow in the jth unit. By formulating

the linearized problem in the form (3), we have tacitly assumed a coloring scheme for the

state vector q that aligns all variables unit-by-unit and identically from unit to unit. De-

pending on the original formulation of (1) or the chosen time-stepping scheme an appropriate

permutation of the state-vector variables may be required to bring the associated linearized

system matrix A into block-circulant form; examples will be given in later sections.

It is important to note that formulation (3) allows interactions between a given unit j with

any of the remaining units i 6= j. The matrix A0 ∈ CN×N , along the diagonal of A describes

the dynamics within the specific unit and is identical for each unit; the matrices A1,...,n−1 ∈
CN×N , in the off-diagonal positions of A represent the interaction with the other units. The
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number of degrees of freedom in each sub-unit is denoted by N (commonly, the number of

grid points times the number of state variables). Owing to the n-periodic configuration,

the global matrix A is block circulant. This specific shape will have consequences on the

analysis and simulation of n-periodic fluid systems and will be further exploited in the

following sections.

First and foremost, we are interested in bringing the block-circulant matrix A into block-

diagonal form. Recalling that block-circulant matrices represent special cases of block-

Toeplitz matrices whose spectrum can be described by its associated symbol [44], we form

the matrix J ∈ Cn×n defined as Jj+1,k+1 = ρkj/
√
n with j, k = 0, 1, . . . , n − 1, and ρj as the

nth-roots of unity according to

ρj = exp(ijϑ) with ϑ =
2π

n
and j = 0, 1, . . . , n− 1. (4)

Based on the matrix J we compose the unitary matrix P ∈ CnN×nN according to

P = J⊗ IN×N (5)

where ⊗ denotes the Kronecker product of two matrices and IN×N stands for the N × N

identity matrix. With these definitions, it can easily be shown [18, 34] that a similarity

transformation based on P block-diagonalizes the block-circulant matrix A according to

PHAP =


Â0

Â1

. . .

Ân−1

 ≡ Â (6)

with Âj ∈ CN×N denoting the decoupled subsystem matrices and the superscript H repre-

senting the transconjugate (Hermitian) operation. More importantly, this expression can be

employed to efficiently evaluate any matrix function f(A) for a block-circulant A. We have

PHf(A)P =


f(Â0)

f(Â1)
. . .

f(Ân−1)

 = f(Â), (7)

which will be helpful in forming various matrix operators arising in the temporal and fre-

quential analysis of n-periodic fluid systems (see below).
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We can already state at this point that the evaluation of matrix functions – a key compo-

nent in the analysis of fluid systems – has been reduced to a corresponding and independent

analysis of n smaller subsystem matrices Â0,...,n−1 by exploiting the block-circulant structure

of the global system matrix A.

It is interesting to point out that only bn
2
c, rather than n, computations are necessary, if

the coupling matrices Aj 6=0 satisfy a symmetry condition of the form

AH
j = An−j, j = 1, . . . , n− 1. (8)

In this case, the influence of neighboring sub-units on each side of the central unit is equal.

The symmetry condition (8) is often encountered in physical systems and is worth exploiting

for computational efficiency.

In the above section and in what follows, we use the following notation for our system

matrices: matrices associated with the full n-periodic (global) system will be denoted simply

by a symbol, e.g., the matrix A; the various blocks of this block-circulant matrix will be

denoted by a subscript j, such as in Aj; once brought into block diagonal form via the

matrix P, the transformed matrix will be marked by a caret, such as Â, and its diagonal

blocks will be indicated by Âj.

A. Modal solutions of the global matrix

A first step in our analysis is the assessment of the asymptotic (t → ∞) stability of the

global system matrix A, given by its spectrum. The block-diagonalization from the previous

section suggests the spectral analysis of the diagonal blocks Âj, which can be accomplished

independently and in parallel. The unitary similarity transformation (5) based on P is

equivalent to the expression

Âj = A0 + ρjA1 + ρ2
jA2 + · · ·+ ρn−1

j An−1 (9)

for the decoupled subsystem matrices Âj with the root-of-unity factor ρj introduced

in (4) [42]. The spectrum of the global stability matrix A is then simply the union of

the n spectra of Âj for j = 0, . . . , n− 1.

By repeated multiplication by ρj of the eigenvalue problem associated with (3), it is not

difficult to show that the compound vector of the form

7



q̃ =



vj

ρjvj

ρ2
jvj
...

ρn−1
j vj


j = 0, . . . , n− 1 (10)

constitutes an eigenvector of A ∈ CnN×nN i.e.,

Aq̃ = λ̃q̃, (11)

provided that the vector vj ∈ CN in (10) satisfies the smaller (N ×N) eigenvalue problem,

involving the subsystem matrices Âj,

Âjvj = λvj. (12)

The geometric sequence for the eigenvector components, starting with a fundamental solu-

tion vj, is equivalent to the underlying assumption of Bloch-wave analysis.

We thus have a procedure to compute the full global spectrum without forming or de-

composing the full global stability matrix A. For a given number n of identical sub-units,

we start by computing the nth-roots of unity ρj, j = 0, . . . , n − 1. For each of these roots,

we form the matrix Âj following (9) and solve for its eigenvalues Λj = diag{λ1, . . . , λN} and

eigenvectors Vj = {v1, . . . ,vN}. We then form the global eigenvectors q̃ from each v1,...,N

according to (10); the eigenvalues λ1,...,N for our specific value of ρj are already part of the

global spectrum. As we repeat this procedure for all remaining roots-of-unity ρj, we recover

the full global spectrum of A. However, only eigenvalue problems of the size of one individual

unit (with N degrees of freedom) had to be solved, albeit multiple times. For large-scale

applications, this latter feature becomes advantageous in a massively parallel computing

environment.

The analysis of a single sub-unit with periodic boundary conditions amounts to an analysis

of the stability matrix Â0 with ρ0 = 1, i.e.,

Â0 =
n∑
i=1

Ai. (13)

Before proceeding it is important to recall that circulant matrices have orthogonal eigen-

vectors and are thus normal [44]. Consequently, the norm of any matrix function is deter-

mined by the least stable eigenvalue. For block-circulant matrices, as in our case, transient

8



effects can arise due to nonnormality of each individual sub-unit dynamics, but no additional

transient effects arise from the superposition of different values of ρj as the eigenvectors of

block-circulant matrices are block-orthogonal. This latter statement can easily be verified

by forming the scalar product of two eigenvectors of the form (10). We assume that the two

eigenvectors stem from two different values of ρ, which we take as ρj and ρk with j 6= k.

Denoting by vj an eigenvector of Âj and by vk an eigenvector of Âk we arrive at

q̃Hj Qq̃k =



vj

ρjvj

ρ2
jvj
...

ρn−1
j vj



H
Q0

Q0

. . .

Q0





vk

ρkvk

ρ2
kvk
...

ρn−1
k vk


(14a)

= (1 + ξ + ξ2 + · · ·+ ξn−1) vHj Q0vk (14b)

=
1− ξn
1− ξ vHj Q0vk (14c)

with ξ = ρ∗jρk = exp(2πi(k − j)/n), and Q0 representing a positive definite weight matrix

defined over one sub-unit with Q = diag{Q0, . . . ,Q0}. Recalling that ξn = 1 for j 6= k, we

conclude that two global eigenvectors corresponding to two different root-of-unity values are

mutually Q0-orthogonal. This eigenvector structure for block-circulant matrices A will be

important for the nonmodal analysis in the next section.

B. Nonmodal solutions of the global matrix

Even though a spectral analysis of the n-periodic system gives insight into long-time

stability properties, we are even more interested in the short- or finite-time dynamics that

arises from a superposition of modal solutions. Two cases emerge: (i) the superposition of

modal solutions within a single sub-unit, governed by the eigenstructure of Âj, and (ii) the

superposition of modal solutions from all sub-units, taking into account the eigenstructures

of Âj, j = 0, . . . , n−1. The latter case is of particular interest, as it may described cross-unit

dynamics which is absent in the former case.

A nonmodal analysis avoids the assumption of an exponential time-dependence exp(λt)

and, instead, considers the initial-value problem (2) or its driven counterpart [36]. We have

9



d

dt
q = Aq,

d

dt
q = Aq + f ,

q(0) = q0, q(0) = 0.
(15)

We define the maximum amplification G(t) and the optimal frequency response R(ω) as

follows

G(t) = max
q0

‖q(t)‖
‖q0‖

= ‖ exp(tA)‖ R(ω) = max
f̂

‖q̂‖
‖f̂‖

= ‖(iωI− A)−1‖ (16)

with f = f̂ exp(iωt) and analogously for q̂. The matrix exponential norm determines the

optimal amplification (in the chosen norm), starting from an optimal initial condition, over

a user-defined time horizon [0, t]. The resolvent norm, in contrast, measures the optimal

response (again, based on the chosen norm) to a harmonic forcing at a given frequency ω; the

spatial shape of the optimal driving is given by f̂ . Either analysis captures effects due to a

potential non-orthogonality of the eigenvector structure or, equivalently, the non-normality

of the underlying linearized evolution operator A.

In general, we have to evaluate the norm of a matrix function ‖f(A)‖ (either f(z) =

exp(tz) or f(z) = (iω − z)−1 in our case) for block-circulant arguments A. An eigenvalue

decomposition of A, using its block-circulant structure, will be used to accomplish this.

First, we recall the weight matrix Q0 ∈ RN×N , defined identically over each sub-unit, which

expresses a particular, and physically meaningful, measure of state-vector size, as well as

the matrix Q = diag{Q0, . . . ,Q0} as the block-diagonal matrix consisting of the n indi-

vidual weight matrices Q0. The latter matrix is used to express the norm of the global

state vector according to ‖q‖2
Q = qHQq. This weighted vector norm induces the corre-

sponding matrix norm as follows: the positive definite matrix Q0 is Cholesky-decomposed

into Q0 = FH0 F0, and block-diagonal matrices are formed according to F = diag{F0, . . . ,F0}
and F−1 = diag{F−1

0 , . . . ,F−1
0 }. The global matrix norm, applied to f(A), is then given as

‖f(A)‖Q = ‖Ff(A)F−1‖2, with the subscript 2 indicating the standard 2-norm [37]. We pro-

ceed by bringing the global matrix function of the block-circulant A into block-diagonal form

using the unitary transformation P, as introduced in (5). We then deduce for the (weighted)

Q-norm of the global matrix function f(A)

‖f(A)‖Q = ‖FPf(Â)PHF−1‖2 = max
j
‖F0Vjf(Λj)V−1

j F−1
0 ‖2, j = 0, . . . , n− 1. (17)

10



The eigenvalues and eigenvectors in (17) satisfy ÂjVj = VjΛj. The rightmost expression

in (17) contains only matrices that are defined on a sub-unit, and equation (17) thus states

that the Q-weighted norm of the global matrix function is simply the maximum over all

sub-unit matrix-norm calculations. This general expression can now be applied to f(A) =

exp(tA) to treat initial-value problems, or to f(A) = (iω− A)−1 to investigate harmonically

driven systems.

Besides the maximum energy amplification of an initial condition, or the maximum energy

response due to harmonic forcing, we are often interested in the shapes of the optimal

initial and terminal conditions, or, more importantly, the shapes of the optimal forcing and

excited response. For linear time-invariant problems, this computation is often performed

by a singular value decomposition of the matrix exponential (evaluated at a given time

t∗) or the resolvent norm (evaluated at a given frequency ω∗). As before, we can take

advantage of the block-circulant structure of the underlying matrix and apply the singular-

value decomposition (or, parenthetically, any other matrix decomposition) of f(A) to each

of the n blocks f(Âj) individually, taking into account the weighting by the matrices F0 and

F−1
0 . Introducing the singular-value decomposition of the decoupled blocks as UjΣjW

H
j =

svd(F0f(Âj)F−1
0 ), we can cast the principal left and right singular vectors u and w of the

(global) matrix f(A) in the form

u =



uj

ρjuj

ρ2
juj
...

ρn−1
j uj


w =



wj

ρjwj

ρ2
jwj

...

ρn−1
j wj


(18)

with uj and wj as the principal left and right singular vectors of f(Âj) and j chosen as

j = argmaxjσj with σj as the largest singular value of Σj. In other words, we select j as

the index that yields the largest norm (maximum singular value) of f(Âj) over all its values

j = 0, . . . , n − 1. The above expressions then provide a procedure to compute the optimal

perturbation and the optimal frequency response of the global n-periodic system by solving

for the principal singular vectors of the n local subsystems. Moreover, the computations for

the n subsystems are independent and can be readily parallelized.
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C. Input-output analysis and cross-unit dynamics

It is often advantageous and instructive to assess the input-output behavior of a complex

system. To this end, forcing is applied only to a specific subdomain of the flow or to only

a particular state variable; likewise, only limited and user-specified output quantities are

measured and assessed. In this manner, the strength and characteristics of a link between

an input and output quantity can be probed, leading to more physical insight into the fluid

system [22]. For example, the influence of fuel-mixture fluctuations in the feedpipe on the

acoustic far-field output of a premixed flame could be quantified, to name a representative

case from combustion dynamics for this type of analysis.

Within our block-circulant analysis framework, we are interested in evaluating the general

expression, formulated for the global system,

K = ‖Cf(A)B‖Q (19)

where B and C represent masking matrices that select and construct specific input and

output quantities, respectively, from the global state vector. The matrix function f(A) is

either linked to an initial-value problem (via a fundamental solution operator or, for a linear

time-invariant system, a matrix exponential) or a driven problem; see above. Exploiting the

block-circulant structure of A we can bring the global matrix function into block-diagonal

form using (5). We can write

K = ‖FCPf(Â)PHBF−1‖2 (20)

with Â = diag{Â0, . . . , Ân−1}. At this stage we will be more specific and investigate the

perturbation propagation across sub-units by choosing the block-diagonal masking matrices

B and C to be non-zero in a specific sub-unit and zero elsewhere. More specifically, we

study the dynamics between the single (input) sub-unit p and the single (output) sub-unit

q. Within these sub-units we introduce the local masking matrices as Bp ∈ CN×N and

Cq ∈ CN×N , respectively. The global masking matrices (in block-diagonal notation) are

then given as

12



B =


0p−1

Bp

0n−p

 , C =


0q−1

Cq

0n−q

 (21)

where 0k denotes a kN × kN matrix of zeros. We further recall the definition (5) of the

matrix P in terms of a Kronecker product which allows a more explicit formulation of PHB

and CP by considering only nonzero contributions. We introduce the notation M:,p and Mq,:

to denote the p-th block-column or q-th block-row of a matrix M consisting of n× n blocks

of size N ×N. We have

(PHB):, 6=p = 01 (PHB):,p = Bp(ρ
p−1
k )∗/

√
n k = 0, . . . , n− 1, (22a)

(CP)6=q,: = 01 (CP)q,: = Cqρ
k
q−1/
√
n k = 0, . . . , n− 1. (22b)

Substituting this last expression into (20) yields the compact formula for the norm of a

function f(z), describing the trans-unit dynamics between unit p and q, according to

Kpq = ‖FCPf(Â)PHBF−1‖2 = ‖F0Cq

(
1

n

n−1∑
j=0

ζjf(Âj)

)
BpF

−1
0 ‖2 (23)

with ζj = exp(2πij(q− p)/n). As before, the final expression contains only components that

describe single-unit characteristics; they can be evaluated efficiently and independently. At

the same time, global effects spanning multiple units are captured by the above formula.

D. Direct-adjoint analysis

The previous algorithms for the computation of optimal initial condition and frequency

response, using the respective matrix function f(A), via a singular-value decomposition

holds for linear time-invariant systems. Deviating from this restriction requires a more

general approach, commonly involving direct and adjoint equations [36]. In this approach,

we state a cost functional J to be optimized, such as optimal energy amplification, maximal

response to forcing or optimal suppression of instabilities, among many other options. In

general, the cost functional depends on the (global) state vector q and a control variable f

(e.g., modeling boundary forcing); mathematically, we have J = J (q, f). Our optimization

problem J → opt is constrained by our governing equation (3) which we augment on the

left by f which represents the application of control efforts. It can then be restated as an

13



unconstrained problem by introducing Lagrange multipliers or adjoint variables, denoted by

q+, which will enforce the constraint from our governing equation. We obtain an augmented

Lagrangian L in the form

L(q,q+, f) = J (q, f)−
〈

q+,
d

dt
q− Aq− f

〉
(24)

with 〈f1, f2〉 =
∫ T

0
fH1 f2 dt as the chosen inner product. Rendering zero the first variations of

L with respect to q,q+ and f , respectively, results in a system of three equations:

d

dt
q = Aq + f , − d

dt
q+ = AHq+ +

δJ
δq

,
δJ
δf

= q+. (25)

The first equation restates our original governing system, while the second equation repre-

sents an evolution equation for the adjoint variable q+. The third part of (25) produces an

expression for the gradient of our cost functional J with respect to the control variable f

and is referred to as the optimality condition. These three equations need to be satisfied for

an optimal solution. Instead of solving the system of equations (25) simultaneously, we em-

ploy an iterative scheme: starting with an initial guess for f , we solve the direct and adjoint

equations in (25); the resulting solution is used to evaluate the optimality condition and,

via the gradient expression, determine an improved guess for f for a subsequent iteration.

The iterative scheme terminates after a user-defined convergence criterion is satisfied. For

further details on the algorithmic steps, the reader is referred to [36] or [25].

Again, taking advantage of the block-circulant structure of A and AH we can decouple

the sub-units by using the transformation P from (5). Applying this transformation, we

arrive at systems of three equations – the direct and adjoint evolution equation, as well as

the optimality condition – for each of our sub-units. We obtain

d

dt
qj = Âjqj + fj, − d

dt
q+
j = ÂH

j q+
j +

δJ
δqj

,
δJ
δfj

= q+
j (26)

with (f0, . . . , fn−1) = PHf . As before, these systems are best treated iteratively: the direct

and adjoint evolution equations are solved for a given control fj (a guess for the first itera-

tion), after which the gradient expression is used to update/improve the control fj for the

next iteration. Once more, the global problem breaks down into n local problems, which

can be solved independently.

14



E. Implementation for large-scale applications

The computational formalism for the analysis of n-periodic fluid systems based on the

spectral properties of block-circulant matrices has been formulated for a first-order temporal

evolution problem. Time-discretization by higher-order stepping schemes, however, typically

introduces multiple time-levels of state vector. In this case, the corresponding spectral

problem is polynomial in the eigenvalue, and the solution algorithm for the eigenvalues and

eigenvectors has to be adjusted accordingly [27, 43]. It also has to be kept in mind that,

in this case, the state vector has to be reordered to yield a unit-by-unit composition; the

same reordering will bring the global system matrices into block-circulant form. An example

where this modification is necessary is included below (see § III C).

For large-scale problems, the linearization step resulting in (2) can most conveniently

be accomplished using techniques such as the complex-step derivative [26] combined with a

tiling method based on the decoupling of grid-points beyond the maximum stencil width [32].

Automatic differentiation techniques (see [19]) can also be applied to access linearized or

adjoint information, as can alternative techniques (see, e.g., [10]).

The case of nearest-neighbor coupling is rather common in many applications. In this

case, only a three-unit system needs to be discretized and processed — independent of the

final configuration and periodicity of interest. In other words, only the system matrices

A0, A1 and A2 (from the 3-periodic system) have to be formed and stored. Stability and

receptivity properties of different configurations with a varying number of sub-units do

not require additional computations beyond the initial three system matrices A0,1,2. Their

superposition and weighting with ρj according to

Âj = A0 + ρjA1 + A2/ρj (27)

determine the block-diagonalized sub-unit matrices Âj that enter the expressions for the

analysis of n-periodic systems given above. In more mathematical terms, the symbol curve

is given as [44]

Â(z) = A0 + zA1 + A2/z (28)

for z = exp(iθ) and θ ∈ [0, 2π], and θ-parameterized line-spectra can be computed as

eig(Â(θ)). The spectra for specific n-periodic configurations consist simply of discretizations

of the unit circle exp(iθ) into n points, i.e. exp(iθj) with θj = 2πj/n, and a subsequent
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mapping onto the line-spectra (see figure 2 for a sketch). In this manner, it is straightforward

to quantify the sensitivity of spectral properties to the removal (n→ n−1) or augmentation

(n→ n + 1) by a sub-unit. Treating the change in n as a matrix perturbation problem for

Â(exp(iθ)), we can link, to first order, a change in θ to a change in an eigenvalue of Â

according to

δλk = iwH
k (A1 exp(iθ)− A2 exp(−iθ)) vk δθ (29)

where wk,vk denote the left and right eigenvectors, respectively, of Â(exp(iθ)) corresponding

to the eigenvalue λk and satisfying the normalization condition wH
k vk = 1. For the special

case of changing the number of sub-units from n to n + ∆, we obtain for a user-defined

root-of-unity j the expression δθj/θj = −∆/(n+ ∆). From the above we can determine, for

example, the change in growth rate of the k-th eigenvalue for a specific j by considering the

real part of (29).

In an effort to encourage experimentation with the proposed computational framework

and to facilitate the analysis of n-periodic fluid systems, the codes underlying the examples

in this article (see § III) will be made available, together with a brief documentation.

III. APPLICATIONS

The methodology introduced above is now applied to n-periodic fluid systems of increasing

complexity, starting from a simple model equation to the analysis of a 54-blade passage. In

each subsection, various aspects of the formalism are demonstrated and special emphasis is

directed towards effects stemming from a synchronization across multiple sub-units and the

description of lock-in processes.

A. A simple model: the Ginzburg-Landau equation with periodic potential

In this first section, we will consider the linearized Ginzburg-Landau equation with a

n-periodic potential or growth function. This equation models physical processes commonly

encountered in more complex fluid systems, such as convection, dissipation, dispersion and

localized amplification of perturbations. We have

∂u

∂t
= −U ∂u

∂x
+ ν

∂2u

∂x2
+ µ(x)u (30)
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FIG. 2. Sketch of the spectrum of a block-circulant matrix. (a,b) The spectrum is continuously

parameterized by θ; it is given by the map of the unit circle under eig(Â). N curves (in our

sketch, N = 3) result, with Â ∈ CN×N . (c,d) The spectrum for a 5-periodic configuration, with

block-matrices A0,1,n−1 as in (a,b), follows from a discretization of the continuous curve (only the

dominant branch is shown). (e,f) The spectrum for a 6-periodic configuration, with block-matrices

A0,1,n−1 as in (a,b). Notice the increase in growth rate of the least stable mode (circled symbol),

as one more unit is added to the 5-periodic configuration. The eigenvalue corresponding to θ = 0

is indicated in blue and is independent of the number n of sub-units.

with U as the advection speed, ν as the (potentially complex) viscosity and µ = − cos(2πx)

as the growth/decay function. We consider the interval x ∈ [0, 1] for each sub-unit, but

align n such units before periodic boundary conditions link the n-th unit back to the first

one. The global problem thus spans the spatial interval x ∈ [0, n]. The continuous equation

is discretized in space using finite differences, with N = 100 points per sub-unit interval. For

the case presented below, we have chosen eleven identical sub-units, i.e., n = 11 (see figure 3

for a sketch of the global growth/decay function). The remaining governing parameters are

U = 10 and ν = 10−4. This configuration models, for example, shear flow over a grooved
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wall, where each shallow cavity acts as an amplifier of local instabilities. Of interest in

this case is the global behavior of flow over an array of grooves, in particular the rise of

synchronized motion linking multiple cavity units.

x
q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

U

µ(x)

FIG. 3. Sketch of the 11-periodic potential (growth/decay function) used in the example of the

Ginzburg-Landau equation, modelling the flow over a grooved wall (see bottom). The remaining

parameters are U = 10 and ν = 10−4. Each of the 11 sub-units has been discretized by N = 100

mesh points.

First, we compute the spectrum, illustrated in figure 4(a). It shows an eigenvalue distri-

bution typical of an advection-diffusion equation. Marked in figure 4(a) are the eigenvalues

of the global problem, i.e., the eigenvalues of A, in blue symbols; they have been included to

validate the collective eigenvalues of the submatrices Âj, j = 0, . . . , 10; see the small black

symbols. In addition, the eigenvalues of the matrix Â0 are included as red symbols. The

latter eigenvalues represent the dynamics of the 1-periodic system: these eigenvalues result

from considering a single sub-unit with periodic boundary conditions. We observe that the

Â0-eigenvalues are more damped; the most unstable modes of the system, however, do not

belong to the spectrum of the 1-periodic system.

An even more striking picture emerges from considering the response of the global and

1-periodic system to external harmonic forcing, see figure 4(b). We observe strong pseudo-

resonance behavior for lower frequencies (e.g., −20 . ω . 20), where the 1-periodic solution

(in red) predicts an only modest response. We conclude that the inclusion of additional

eigenvalues in the global spectrum is responsible for a slow-motion dynamics that spans and

couples multiple sub-units — and thus is absent in the 1-periodic system.
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FIG. 4. Block-circulant complex Ginzburg-Landau system with N = 100 (discretization points

per period), ν = 10−4, U = 10 and µ(x) = − cos(2πx) with x ∈ [0, 1]. Eleven periods have

been considered (n = 11). (a) Spectrum of the Ginzburg-Landau operator; the blue/black symbols

indicate the global spectrum, computed globally (blue circles) and using the root-of-unity formalism

(black dots). The red symbols correspond to the 1-periodic system (ρ0 = 1), where periodic

boundary conditions are enforced over one single sub-unit. (b) Resolvent norm R versus the

forcing frequency ω; the black curves stem from the analysis of the subsystems for different ρj . The

maximum over all curves corresponds to the global 11-periodic solution. The red curve corresponds

to the choice ρ0 = 1.

B. An n-periodic array of wakes

Whereas the periodicity of the previous example has been in the coordinate direction that

is aligned with the mean advection, we will next consider the effect of a transverse periodicity

on the collective behavior of n identical sub-units. Configurations with this type of multiple,

but identical units are common in many fluid devices: spray nozzles, fuel injection systems,

heat exchangers and screens are examples of this kind. Also, many geometric modifications

to standard configurations, such as, e.g., the chevron-type corrugations of engine nacelles

in commercial airliners to reduce noise, introduce a transverse periodicity of the mean-flow

profiles.

In an attempt to model transverse periodic arrays of fluid systems we consider the linear

stability of a row of wakes, where each individual unit is modelled as a Bickley wake with a

base profiles given by

U(y) = 1− A sech2

[
a

(
y − 1

2

)]
(31)

with 0 ≤ y ≤ 1. The parameter a controls the width of the wake; the parameter A determines
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FIG. 5. Sketch of a 7-periodic configuration of Bickley wakes.

the velocity deficit. Both parameters can be used to model the streamwise evolution of the

wake profile behind bluff bodies. In the examples below, we select a = 10 and A = 0.75.

A global configuration consisting of n linked sub-units will be considered; a sketch of the

configuration (for n = 7) is given in figure 5.

The temporal evolution of two-dimensional perturbations superimposed on this base flow

is governed by the Orr-Sommerfeld equation given by

λ

(
d2

dy2
− α2

)
v = −iαU

(
d2

dy2
− α2

)
v + iαU ′′v +

1

Re

(
d2

dy2
− α2

)2

v (32)

with v as the normal velocity, α as the streamwise wavenumber, Re as the Reynolds number

based on the freestream velocity and the distance between the individual wakes, and λ

as the eigenvalue whose real part constitutes the exponential growth or decay rate. The

perturbation is assumed in the form v(y) exp[iαx] exp[λt]. Formulating the stability problem

for a global problem consisting of n sub-units, a block-circulant global stability matrix

results. As before, we are interested in contrasting the dynamics of perturbations over one

sub-unit against the disturbance dynamics over multiple units. To this end, we deduce

the entries in the block-circulant global matrix with nearest-neighbor coupling, i.e., A0, A1

and An−1, where A0 describes the dynamics of the individual sub-unit while A1 and An−1

account for the coupling to adjacent units. We use fourth-order compact difference schemes

to discretize equation (32) in the cross-stream coordinate direction.

First, we choose a Reynolds number of Re = 200, a streamwise wavenumber of α = 1 and

consider a configuration with three identical units. The spectrum is shown in figure 6(a) and

indicates an asymptotic instability at these parameter values, with the least stable eigenvalue

at λ = 0.0993 + 0.9012i. The eigenvalues are colored by the index j with j = 0 (representing

a fully periodic state, ρ0 = 1) in grey and j = 1 (representing a cross-unit periodicity,
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FIG. 6. (a) Spectrum of a three-unit configuration of Bickley wakes (a = 10, A = 0.75) with α = 1

and Re = 200; in grey: ρ0 = 1, in blue ρ1 = exp(2πi/3). (b) Norm of the matrix exponential

(maximal amplification) for the three-unit configuration. (c) Norm of the matrix exponential for

a thirteen-unit configuration for α = 1 and Re = 200 for ρj , j = 0, . . . , 6.

ρ1 = exp(2πi/3)) in blue. We observe that the strongest instability is of the fully-periodic

type; a nearly neutral, multi-unit-periodic mode, at a higher phase velocity λi/α, is the

second-most amplified mode. For higher modes the spectrum displays the typical Y-shape

of viscous shear flows: mean-modes aligned with the average base-flow velocity (Ū ≈ 0.82),

which divide the spectrum into slower and faster modes. Modes with different periodicity

interlace.

Depicting the modal shapes of the first six least stable modes gives more insight into

the perturbation dynamics of the coupled three-wake configuration. This dynamic becomes

more lucid by integrating streak-lines based on the six separate normal-velocity fields to

indicate the cross-stream displacement of the perturbations. To this effect, an equispaced

(in the y-direction) array of particles is released and tracked through the respective modal

velocity field. The results are displayed in figure 7. For the least stable mode (figure 7(a)),

we observe a synchronized oscillatory motion of the wake, depicted over a full period given by

the respective eigenvalue (and ignoring the small imaginary part). The next most unstable

mode (figure 7(b)), however, displays a non-synchronized behavior where the three wakes

repeatedly diverge from and converge towards the adjacent units. This break in cross-stream

symmetry continues for the next mode (figure 7(c)), but returns to symmetry for the fourth

and fifth mode (figures 7(d,e)). The sixth mode in this sequence (figure 7(f)) again shows
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FIG. 7. Modal shapes of the first six least stable modes of the three-wake configuration, visualized

by streak-lines integrated in the cross-stream velocity field. In grey: synchronized motion for

ρ0 = 1; in blue: unsynchronized motion for ρ1 = exp(2πi/3). In all cases, a full period T , given

by the respective phase velocity is shown; the real part of the eigenvalue has been ignored in the

computation of the streak-lines.

unsynchronized sub-units.

While our analysis of the modal structures identifies the strongest instability for a syn-

chronized motion (i.e., a mode with ρ0 = 1), the finite-time analysis based on the matrix

exponential norm shows (see figure 6(b)) that, for short times (t . 4.5), maximum amplifi-

cation is achieved by an unsynchronized perturbation dynamics; for larger times (t & 4.5),

however, the synchronized motion prevails. The same graph demonstrates that unsyn-

chronized transient amplification over two convective time units reaches energy levels that

synchronized motion reaches only after more than six convective time units. Whether this

disparity in amplification is sufficient for a selection principle and the observation of preferred

(unsynchronized) structures requires additional consideration.

To further demonstrate the rise and importance of cross-unit motion, we extend the above

analysis to a configuration with 13 units. This type of geometry may describe fluid motion

past cylinder bundles or mesh screens. A modal analysis still confirms the least stable

mode as a synchronized mode (with ρ0 = 1, see figure 8(a)), the two subsequent modes,

however, show the locking of adjacent units in groups (as displayed in figure 8(b,c) by streak-

lines). The nonmodal analysis of the 13-wake configuration (figure 6(c)) based on the matrix

exponential norm even more strongly asserts the fact that unsynchronized motion dominates

the short-time dynamics of the 13-periodic array of Bickley wakes. For our parameter values,
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FIG. 8. Modal shapes of the first three least stable modes of a thirteen-wake configuration, visual-

ized by streak-lines integrated in the cross-stream velocity field. In grey: synchronized motion for

ρ0 = 1; in blue: unsynchronized motion for ρ1 = exp(2πi/13) and ρ2 = exp(4πi/13). In all cases, a

full period T , given by the respective phase velocity is shown; the real part of the eigenvalue has

been ignored in the computation of the streak-lines.

the perturbation energy amplification from synchronized motion dominates only after more

than 15 convective time units.

In closing, we stress that, besides considering the above temporal stability problem for the

periodic array of Bickley wakes, the corresponding spatial stability problem can be treated

within the same framework. In this case, a fourth-degree polynomial eigenvalue problem

for the complex streamwise wavenumber α can be formulated that, after an appropriate

reordering of the global state-vector q, can be recast in block-circulant form.
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C. Flow through a 54-periodic blade row

As a final example, we demonstrate the analysis of n-periodic fluid systems presented in

this paper on a more complicated flow configuration of interest in turbomachinery applica-

tions. To this end, we consider the stability characteristics of incompressible flow through a

periodic linear cascade.

Throughout this example we use a numerical solver for the two-dimensional Navier–Stokes

equations that implements the projection-based immersed boundary method [41]. Based on

this technique, the governing equations in nondimensional form formulated for a domain D
read [33]

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u +

∫
C
f(s)δ(x− ξ(s)) ds, (33)

∇ · u = 0, (34)

u(ξ(s)) =

∫
D

u(x)δ(ξ(s)− x) dx = uB(s) s ∈ C, (35)

where the pressure p and the distributed momentum sources f(s) along the boundary of the

obstacle C act as a set of Lagrange multipliers that enforce, respectively, the incompressibility

constraint and the no-slip boundary condition. The above equations are discretized using a

staggered-mesh finite-volume formulation; the viscous terms are discretized using the implicit

Crank–Nicolson method, the advection terms are discretized using the explicit second-order

Adams–Bashforth scheme, and the integrals involving the delta functions are discretized

using a mollified delta function [35]. At this point, the flow field at a given time step Qk+1

and the value of the Lagrange multiplier λ are obtained from the flow fields at the two

previous time steps, denoted Qk and Qk−1. Flow field boundary conditions bc1 and bc2 are

imposed, and the following system of equations is solved: A Q

QT 0

Qk+1

λ

 =

BQk − 3
2
N (Qk) + 1

2
N (Qk−1) + bc1

r2

 . (36)

The reader is referred to [41] for the various definitions of the matrices A, B and Q, the

nonlinear function N (·) and the vectors bc1,bc2 and r2.

We now consider a two-dimensional periodic linear cascade consisting of 54 NACA E3

Rotor B airfoils (see [3, 11] for a description of the blade geometry) with a pitch-to-chord

ratio of σ = H/C = 0.92936 and a stagger angle of 56.6◦. The governing equations are then
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solved in the reference frame of the cascade; the velocity of the unperturbed incoming flow

and the blade chord are taken, respectively, as the reference speed and reference length scale.

The angle of attack, defined as the angle between the unperturbed incoming flow direction

and the blade chord, is taken as 11.1◦, and the Reynolds number Re, based on chord, is

700. The computational domain for one blade passage is defined for −6.56 ≤ x ≤ 6.56

and −0.465 ≤ y ≤ 0.465. Upstream of the blade passages we impose a Dirichlet boundary

condition for the velocity components, while a convective outflow boundary condition is

implemented downstream. In the horizontal direction, the numerical grid is uniform for

−0.55 ≤ x ≤ 0.55, with ∆x = 0.0036, and is stretched upstream and downstream until the

maximum spacing is ∆x = 0.03; in the vertical direction the numerical grid has a constant

spacing equal to ∆y = 0.0036. The time step has been taken as ∆t = 0.0018 and the

resulting numerical grid has 766 cells in the horizontal direction and 258 cells per blade

passage in the vertical direction.

Following the remark in § II E about the efficient composition of the necessary matrices

for nearest-neighbor configurations, we consider a three-blade passage to extract the sub-unit

matrices required in our analysis.

First, the flow configuration presented above is found to be globally stable, and the base

flow Q̄, depicted in figure 9 by the vertical velocity component, has been computed simply

by marching in time the governing equations from a given initial condition. Note that the

base flow is periodic over one blade passage.

The above nonlinear equations are linearized about the base flow presented above, yielding

the following system of linear equations for the temporal advancement of a small perturba-

tion q over one time step A Q

QT 0

qk+1

λ

 =

(B− 3
2
N)qk + 1

2
Nqk−1

0

 , (37)

where N = (∂N (Q)/∂Q)|Q̄ represents the linearized advection terms about the base flow Q̄.

By introducing the following definition

x̃k =

q

λ

k

, M̃ =

 A Q

QT 0

 , C̃ =

−B + 3
2
N 0

0 0

 and K̃ =

−1
2
N 0

0 0

 , (38)

the temporal advancement over one time step reads

M̃x̃k+1 + C̃x̃k + K̃x̃k−1 = 0. (39)
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FIG. 9. Base flow for a linear cascade consisting of NACA E3 Rotor B blade profiles with a pitch-

to-chord ratio of σ = H/C = 0.92936 and a stagger angle of 56.6◦. The angle of attack is 11.1◦

and the chord-based Reynolds number is Re = 700. The flow is visualized by the vertical velocity

component. See text for details on the numerical grid.

Considering (38), we note that while the matrix entries A,Q,B,N are individually block-

circulant, the matrices M̃, C̃, K̃ are not. A final row reordering, which we introduce as a

permutation G of a 3N × 3N identity matrix, brings the state vector x̃ into a unit-by-unit

configuration, according to x = Gx̃. Applied to (38), we arrive at

xk = Gx̃k, M = GM̃GT , C = GC̃GT and K = GK̃GT , (40)

and the temporal advancement over one time step (now in block-circulant form) reads

Mxk+1 + Cxk + Kxk−1 = 0. (41)

Following section II, we assess the long-time stability of the linearized dynamics by com-

puting modal solutions of the global matrix. Introducing x = x̂eλt into equation (41), we

arrive at the following quadratic eigenvalue problem

(σ2M + σC + K)x̂ = 0 σ = eλ∆t. (42)
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As stated before, the matrices M, C and K are block-circulant; therefore we introduce the

nth roots-of-unity ρj and express the eigenvector of the full system x̂ as

x̂ =



x̂j

ρjx̂j
...

ρn−2
j x̂j

ρn−1
j x̂j


, (43)

where x̂j satisfies a quadratic eigenvalue problem for a modified unit given by(
σ2M̂j + σĈj + K̂j

)
x̂j = 0 j = 0, . . . , n− 1, (44)

and

M̂j = M0 + ρjM1 + M2/ρj (45a)

Ĉj = C0 + ρjC1 + C2/ρj (45b)

K̂j = K0 + ρjK1 + K2/ρj (45c)

with M0,1,2,C0,1,2,K0,1,2 extracted from the 3-periodic system (40).

The above eigenvalue problems have been solved using the software package SLEPc [21] to-

gether with the sparse direct solver MUMPS [2] and the shift–invert technique. The spectrum of

the operator has been computed for different shift values and is shown in figure 10(a–c). More

specifically, we display the continuously parameterized symbol curves, as defined by equa-

tion (28). These curves describe the spectrum in the limit of an infinite system, without any

a priori decision on a specific number of individual units. The computations are performed

on a three-blade passage system. Figure 10(a) clearly displays line spectra, parameterized

by an angle θ ∈ [0, 2π], which represent the mapping of the unit circle z = exp(iθ) under

the nearest-neighbor coupled system. The largest modal growth is achieved for frequencies

of λi ∼ 4.8, but a preference of very low-frequency modes (λi ∼ 0.1) is also expected due to

a weak damping of these structures. Figures 10(b,c) highlight these important parts of the

spectrum, and show a “discretization” of these continuously parameterized, spectral lines

– given by selecting n = 54 units. Based on the line spectra, we can assess the sensitivity

of the system to the number of individual units, estimate the number of units for weakest

modal damping (or largest modal amplification) and predict the Bloch wavelength (root of

unity) of this least-damped/most-amplified structure.
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FIG. 10. Continuously parameterized spectrum describing the dynamics of perturbations for a

linear cascade; the vertical axis represents the temporal growth rate λr and the horizontal axis

indicates the angular frequency λi. (a) The line spectra are colored by the angle θ ∈ [0, 2π],

parameterizing the unit circle z = exp(iθ) in equation (28). (b,c) Zoom-in on the least-damped

regions, and discretization of the continuously parameterized symbol curves by selecting n = 54

blade passages (depicted in full circles).

As an example of a nonmodal analysis in n-periodic fluid systems we consider the input-

output analysis described in section II C. First, we introduce a harmonic forcing in the

momentum equation f = f̂eiωt; the asymptotic response x = x̂eiωt is then given by x̂ =

R(ω)Bf̂ with

R(ω) = (Meiω∆t + C + Ke−iω∆t)−1 e
iω∆t − 1

iω
. (46)

The matrix R(ω) is the resolvent operator and the matrix B is defined such that the forcing

terms are only introduced in the momentum equation. For a given angular frequency ω we

then maximize the gain by optimizing over all harmonic forcings f̂ ; this optimal gain can be

expressed in terms of the singular value decomposition of R(ω)B according to

G∗(ω) = max
f̂

‖R(ω)Bf̂‖
‖f̂‖

= ‖R(ω)B‖ = σ1(R(ω)B), (47)

with σ1 denoting the leading singular value. As before, the computational cost associated

with the above calculation can be simplified by exploiting the block-circulant structure of
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the resolvent operator. We thus compute optimal gain G∗ as

G∗(ω) = max
j
‖R̂j(ω)B̂0‖ (48)

where

R̂j(ω) =
(

M̂je
iω∆t + Ĉj + K̂je

−iω∆t
)−1 eiω∆t − 1

iω
and B̂0 =

 I

0

 . (49)
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FIG. 11. Optimal gains for varying angular frequency. The curves have been colored according to

their corresponding root of unity. The optimal gain for j = 0 is displayed in red. In (b) and (c) a

closer view is presented, respectively, in the range of amplified wake instabilities and low-frequency

dynamics.

In figure 11, we present the singular values of the operator R̂j(ω)B̂0 as a function of the

angular frequency ω. The singular values for the fully periodic case, i.e., j = 0, are indicated

in red, whereas the remaining curves are colored according to their corresponding root of

unity: the case j = 1 is shown in dark blue, the case j = 53 in yellow; starting from these

two cases, the color scheme for higher and lower values of j gradually tends to green. It

is apparent from the figure that the maximum amplification at most frequencies is reached

for cases that are not purely periodic; only at rather narrow frequency windows (ω ≈ 9.5,

ω ≈ 4.9, ω ≈ 0.85 and ω ≈ 0.55) does response behavior with single-sub-unit periodicity

(i.e., with j = 0) constitute the optimal gain to harmonic forcing.
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FIG. 12. Optimal forcing and response flow fields from a nonmodal resolvent analysis of a 54-

periodic linear blade cascade for selected (low) frequencies. The periodicity j, at which the maximal

gain has been obtained, is indicated on top of the subplots, together with the chosen forcing

frequency.
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Exploring the lower frequencies more closely, we recover the optimal forcing f̂ and re-

sulting optimal response x̂ in the 54-blade linear cascade for a given frequency. This is

accomplished using the singular value decomposition of the sub-unit matrices R̂j(ω)B̂j : the

principal singular vectors, evaluated for the value of j that constitutes the maximal gain

G∗(ω), represent the spatial fields of the optimal harmonic input and output structures, once

they have been restored to the global domain using (18). For selected low frequencies they

are displayed in figure 12.

As the maximal gain for a given frequency is achieved for different values of j, the as-

sociated spatial structures reflect the respective periodicity along the linear 54-blade cas-

cade. For a very low forcing frequency of ω = 0.09 the (j = 1)-subproblem constitutes

the maximum response of the 54-periodic system, and both the forcing and the response are

characterized by a modulation along the transverse direction that links and synchronizes the

motion across many blades. This modulation, on top of a blade-geometry induced periodic-

ity, is clearly visible in figure 12 for (j, ω) = (1, 0.09), (1, 0.35) and (53, 0.51), in particular in

the response fields. This multi-periodic trend is continued for higher frequencies, as shown

in figure 12 for (j, ω) = (46, 0.15) and (38, 0.27), where synchronized groups of four and two

blades, respectively, dominate the optimal forcing and response flow fields. In this case, the

1-periodic structures induced by the blade geometry are far less discernible.

From this analysis, it can be concluded that forcing at low frequencies favors and induces

large-scale motion that yields a locked dynamics across multiple blade passages, resulting

in traveling structures with transverse wavelengths that exceed the periodicity imposed by

the blade geometry.

As we progress to higher forcing frequencies, the appearance of periodicity other than

the one associated with j = 0 is still noticeable, although to a lesser extent. Figure 13

depicts a selection of optimal forcing and response structures for frequencies above ω ≈ 0.5.

For the frequencies ω = 0.52, 1.75 and 2.59 (with associated optimal root-of-unity values

of j = 30, 46 and again 30) we observe a clear lower-frequency modulation imposed on

the periodic structures forced by the blade geometry. For a forcing frequency of ω = 4.91

we obtain a fully periodic (j = 0) structure; however, the range of frequencies where this

structure is dominant is rather narrow, as can be seen in figure 11. For slightly larger (or

smaller) frequencies, periodicities other than the (j = 0)-case are favored, even though their

contribution to the forcing and response flow field is smaller (see the rightmost panel in
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FIG. 13. Optimal forcing and response flow fields from a nonmodal resolvent analysis of a 54-

periodic linear blade cascade for selected (higher) frequencies. The periodicity j, at which the

maximal gain has been obtained, is indicated on top of the subplots, together with the chosen

forcing frequency.
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figure 13 for (j, ω) = (46, 5.32)).

IV. CONCLUSIONS

A computational framework for the analysis of fluid systems that consist of n identical

units with nearest-neighbor or global coupling has been presented and demonstrated on a

range of problems. This framework is based on the fact that the block-circulant nature

of the global system matrices yields simplified expressions and associated algorithms that

only contain matrices that describe the dynamics of a single unit and its coupling to other

(identical) units. The analysis of n-periodic fluid systems can thus be formulated and per-

formed efficiently at the cost of single-unit computations and executed in parallel, while still

capturing the global dynamics and fluid structures that span multiple sub-units.

While the framework is closely linked to Floquet theory, Bloch-wave methodology and

related techniques for modified boundary conditions, it provides simple and efficient tech-

niques that require minimally invasive modifications of computer codes to enable the type

of investigations presented in this study. Compact expressions for the analysis of modal

and nonmodal flow characteristics, for the response to impulses or to harmonic forcing, for

the quantification of input-output behavior and cross-unit dynamics, and for direct-adjoint

techniques have been given. They furnish tools for the investigation of fluid systems that

contain periodicity in the form of geometric features or as an assembly of identical units.

The framework has been showcased on various problems of increasing complexity, from

a simple model problem describing flow along a grooved wall to interacting arrays of wakes

(as for example encountered in heat exchangers), to the incompressible flow through a linear

blade cascade. The full set of tools has been applied, and a common feature of the analyses

has been the presence – and often dominance – of large-scale motion that spans more than

one sub-unit and would be missed by an analysis that imposes periodic boundary conditions

over one sub-unit. For example, the flow over a spanwise array of roughness elements is

often modeled by a fundamental computational box that contains one roughness element

and enforces periodic boundary conditions in the spanwise direction. Similarly, instabilities

that show a preference for a specific spanwise scale are commonly studied by concentrating

on a fundamental wavelength in the spanwise direction together with periodic boundary

conditions. The examples in this article clearly demonstrate that, in both cases, geometries
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that consist of multiple copies of this fundamental computational box could support motion

and instabilities that span several sub-units, but that are not captured by a fully periodic

assumption across one sub-unit.

It is hoped that the computational techniques presented in this article will help in the

proper analysis of n-periodic fluid systems arising in a wide range of applications from science

and engineering.
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