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Abstract Simulations of a pilot-stabilised flame in a uniformly dispersed ethanol spray are
performed using a Doubly Conditional Moment Closure (DCMC) model. The DCMC equa-
tion for spray combustion is derived, using the mixture fraction and the reaction progress
variable as conditioning variables, including droplet evaporation and differential diffusion
terms. A set of closure sub-models is suggested to allow for a first, preliminary applica-
tion of the DCMC model to the test case presented here. In particular, the DCMC model is
used to provide complete closure for the Favre-averaged spray terms in the mean and vari-
ance equations of the conditioning variables and the present test case is used to assess the
importance of each term. Comparison with experimental data shows a promising overall
agreement, whilst differences are related to modelling choices.

Keywords Conditional moment closure · Spray flames · Pre-vaporisation · Ethanol

1 Introduction

In a broad range of combustions devices, including most mobile applications such as aero-
engines and IC-engines, fuel is supplied in liquid form. Modelling of spray flames is
challenging, even when ignoring the difficulties related to dense sprays or the modelling
of atomisation. In particular, the complex interplay of droplet evaporation, turbulent mix-
ing and chemical reaction in the presence of large mixture inhomogeneities leads to a wide
variety of spray combustion regimes and phenomena [1].
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Many experimental and numerical studies have explored the propagation of flames
through disperse sprays. Whilst flame propagation in a mist of very small droplets was
similar to the case of a homogeneous mixture, larger droplets were found to have a pos-
itive effect on the burning velocity [2, 3]. Yet, an inverse correlation of burning velocity
with Sauter mean diameter was found above a certain droplet size [4]. In a numerical study
of flame propagation in quiescent sprays, Neophytou and Mastorakos [5] showed that the
effective equivalence ratio, as compared to the overall equivalence ratio, was an important
parameter with respect to the burning velocity. Direct numerical simulations (DNS) showed
that the flame propagation consisted of the successive ignition of flames engulfing individ-
ual droplets [6] and that premixed and non-premixed combustion modes co-exist in spray
flames [7–9].

In comparison to laminar flame propagating in a droplet mist, turbulent spray flames have
been studied less. In turbulent combustion, there is an additional need of modelling to take
turbulent-flame interaction into account appropriately. A short overview of the modelling
approaches for turbulent spray flames can be found in the review by Jenny et al. [1]. In order
to capture finite kinetic effects, pyrolysis and pollutant formation, an advanced combustion
model is required.

Conditional Moment Closure (CMC) is a statistical model for turbulent combustion,
making use of a strong correlation between the reacting scalars and the conditioning vari-
ables. It then provides a very simple closure for the highly non-linear reaction source term,
whilst its derivation only requires very light assumptions on the physics involved, such
that its application is a priori not limited to a specific combustion mode or regime [10,
11]. CMC was originally developed for non-premixed flames [10] but it has since been
extended to spray combustion [12, 13] and its applicability to premixed flames has also been
demonstrated [14, 15]. In all these models a single conditioning variable, either mixture
fraction of reaction progress variable, is used. However, this was found insufficient in cer-
tain flames, e.g. in the presence of significant extinction, and Kronenburg [16] demonstrated
the effectiveness of introducing a second conditioning variable to provide more accurate
CMC closure of the reaction source term.

This wide range of successful applications makes CMC an attractive candidate for the
modelling of flames that have both premixed and non-premixed features, in particular, by
pursuing the strategy of double conditioning. The present work focuses on the develop-
ment of a Doubly Conditional Moment Closure (DCMC) model for spray combustion. The
objectives of this paper are to (i) present the DCMC equation for spray flames, (ii) provide
closure by suggesting a set of sub-models, in order to (iii) apply the model in a first, prelim-
inary test to a pilot stabilised flame in a uniformly dispersed ethanol spray and (iv) compare
the simulation results with experimental data of this burner recently studied at the Univer-
sity of Cambridge [17]. This flame behaves as premixed due to pre-vaporisation but with
the flame still generating its own vapour and hence provides a relevant test case.

2 Methodology

2.1 Derivation of the DCMC equation

In the Conditional Moment Closure combustion model, transport equations are solved for
the conditional moments Qα(Zc; x, t) ≡ 〈Yα(x, t)|Yc(x, t) = Zc〉 of the reactive scalars
Yα , which are conditionally averaged on a subset of the space of all reactive scalars Yc ⊂ Y
[10]. The probability density function (pdf) of the conditioning variables is presumed and
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mean quantities of the reactive scalars are calculated by integrating the conditional moments
with the pdf. In contrast to conventional CMC, in the present DCMC approach the reactive
scalars are conditioned on two conditioning variables.

The DCMC model equation for spray flames is derived following the approach by
Mortensen and Bilger [12] who used a separated flow model to incorporated the effects of
spray evaporation. With a separated flow model the local instantaneous balance equations
for a multi-phase flow are written by introducing a phase indicator function θk(x, t), which
is unity in the region occupied by phase k and zero everywhere else [18, 19]; its governing
equation is as follows.

∂θk

∂t
+ uk · ∇θk = Πk (1)

Here Πk is the volumetric rate of phase change per unite volume. Then the continuity
equation and the species transport for the phase k take the following form [12],

∂θkρk

∂t
+ div(θkρkuk) = ρkΠk (2)

∂θkρkYk,α

∂t
+ div(θkρkYk,αuk) = div(θkρkDk,α∇Yk,α) + θkρkω̇k,α

+ρkYk,α(V̂k,α + Πk) (3)

where V̂k,α ≡ ∇θk · Vk,α = ∇θk · (−Dk,α/Yk,α)∇Yk,α is the diffusion velocity across the
phase interface. It can be related to Πk through the jump conditions at the interface [18, 19],

2∑

k=1

ρkΠk = 0 (4)

2∑

k=1

ρkYk,αΠk + ρkYk,αV̂k,α = 0 (5)

In this work the subscript k may only refer either to the gas or to the liquid phase and is,
therefore, omitted in further derivations.

The present DCMC approach uses the mixture fraction ξ and the reaction progress vari-
able c as conditioning variables. Whilst the mixture fraction is a passive scalar with respect
to chemical reaction, it is produced through droplet evaporation. It is defined to be 0 in air
and 1 in undiluted fuel vapour. For a pure liquid fuel the jump condition at the phase inter-
face (5) for the mixture fraction gives ξ V̂ξ = (1 − ξ)Π [12], which leads to the following
transport equation of the mixture fraction,

∂θρξ

∂t
+ div(θρξu) = div(θρDξ∇ξ) + ρΠ (6)

The progress variable is defined as a linear expression of one reactive scalar Yψ , normalised

by its un-reacted and equilibrium values, Y 0
ψ(ξ) and Y

Eq
ψ (ξ) respectively [20, 21].

c(x, t) = cψ(ξ(x, t), Yψ(x, t)) = Y 0
ψ(ξ(x, t)) − Yψ(x, t)

Y 0
ψ(ξ(x, t)) − Y

Eq
ψ (ξ(x, t))

(7)
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If Yψ is governed by an equation of the same form as Eq. 3, then the instantaneous transport
equation of the reaction progress variable c = cψ is,

∂θρc

∂t
+ div(θρcu) = div(θρDc∇c)

+ θρ

∂Yψ/∂c

[
ω̇ψ + Nξ

∂2Yψ

∂ξ2
+ 2Nξc

∂2Yψ

∂ξ∂c
+ Nc

∂2Yψ

∂c2

]

︸ ︷︷ ︸
θρω̇∗

c

+ ρ

∂Yψ/∂c

[
YψV̂ψ − ξ V̂ξ

∂Yψ

∂ξ

]

︸ ︷︷ ︸
ρC (ξ,c)Π

+ρcΠ (8)

where Nξ = Dξ∇ξ · ∇ξ , Nc = Dc∇c · ∇c and Nξc = D∇ξ · ∇c are the scalar dissipation
rates. The first and second line of Eq. 8 are identical with the original result by Bray et al.
[21], which was extended in the present work to include the spray source terms. Note that
in the derivation of Eq. 8 it is assumed that Dc = Dψ = Dξ . For the sake of brevity, the
entire term in the second line of Eq. 8 is written as θρω̇∗

c . The presence of an evaporation
source in the c-equation was discussed by Domingo et al. [7]. Using the jump conditions for
Yψ and ξ , the first term in the third line can be expressed as the product of the evaporation
mass source ρΠ and a function,

C (ξ, c) = 1

∂Yψ/∂c

[
δψ − Yψ − (1 − ξ)

∂Yψ

∂ξ

]
(9)

which can be evaluated for any ξ and c, since Yψ(ξ, c) is known from Eq. 7. In this expres-
sion δψ is the mass fraction of species ψ in the liquid phase, which is equals 1 if cψ was
based on the fuel and 0 otherwise. By grouping the terms in the Eq. 8, the c-equation finally
appears in a a very similar form compared to Eq. 3 with one term representing the apparent
reaction rate and two separate source terms due to evaporation.

The DCMC equation is the transport equation of the doubly conditional moments
Qα ≡ 〈Yα(x, t)|ξ(x, t) = η, c(x, t) = ζ 〉. It is derived using the joint-pdf method assum-
ing moderately high Reynolds number and invoking the primary closure hypothesis for the
diffusive fluxes in conditional space [10]. This leads to,

∂Qα

∂t
+ 〈u|η, ζ 〉 · ∇Qα = − 1

θ̄ ρ̄p̃
div

(
θ̄ ρ̄p̃〈u′′Y ′′

α |η, ζ 〉)

+Leξ

Leα

〈Nξ |η, ζ 〉∂2Qα

∂η2
+ Lec

Leα

〈Nc|η, ζ 〉∂2Qα

∂ζ 2

+
(
Leξ

Leα

+ Lec

Leα

)
〈Nξc|η, ζ 〉∂2Qα

∂η∂ζ

+〈ω̇α |η, ζ 〉 − 〈ω̇∗
c |η, ζ 〉∂Qα

∂ζ

+ (δα − Qα)
〈Π |η, ζ 〉

θ̄
−

[
(1 − η)

∂Qα

∂η
+ C (η, ζ )

∂Qα

∂ζ

] 〈Π |η, ζ 〉
θ̄

− 1

θ̄ ρ̄p̃

∂ ρ̄p̃(1 − η)〈Y ′′
α Π ′′|η, ζ 〉

∂η
− 1

θ̄ ρ̄p̃

∂ ρ̄p̃C (η, ζ )〈Y ′′
α Π ′′|η, ζ 〉

∂ζ

− 1

θ̄ ρ̄p̃

∂ θ̄ ρ̄p̃〈Y ′′
α ω̇∗′′

c |η, ζ 〉
∂ζ

+ DQα (10)
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where 〈·|η, ζ 〉 denotes density-weighted conditional averaging and p̃ is the density-weighted
pdf, defined as ρ̄ p̃(η) = 〈ρ|η, ζ 〉p. Moreover, θ̄ is the volume fraction of the gaseous
phase, which is ≈ 1 in a dilute spray, and δα signifies the species mass fraction in the liquid
phase, which is 1 for the liquid fuel species and 0 otherwise.

A similar transport equation can be derived for the conditional enthalpy Qh. This equa-
tion is presented in the Appendix and for completeness, the terms of molecular transport in
the Qh-equation are also shown. The analogue term is neglected in Eq. 10 due to the high
Reynolds number assumption.

In Eq. 10, ω̇∗
c represents the apparent reaction progress variable source term in a flow

with non-uniform mixture fraction. Since Yψ = Yψ(ξ, c), according to the definition in
Eq. 7, Y ′′

ψ = 0. Thus, the conditional apparent reaction rate is given as,

〈ω̇∗
c |η, ζ 〉 = 1

∂Qψ/∂ζ

[
〈ω̇ψ |η, ζ 〉 + 〈Nξ |η, ζ 〉∂

2Qψ

∂η2
+ 2〈Nξc|η, ζ 〉∂

2Qψ

∂η∂ζ

]
(11)

Lewis number effects have been argued to be important for CMC of premixed flames
[22]. Replacing the usual unity Lewis number assumption with the assumption of constant
Leα for each species, adds a factor to the scalar dissipation rate terms in Eq. 10 and also
adds a differential diffusion term,

DQα = 1

θ̄ ρ̄p̃

∂ θ̄ ρ̄p̃〈(Dα − Dξ)∇ξ · ∇ξ |η, ζ 〉
∂η

∂Qα

∂η

+ 1

θ̄ ρ̄p̃

∂ θ̄ ρ̄p̃〈(Dα − Dξ)∇ξ · ∇c|η, ζ 〉
∂ζ

∂Qα

∂η

+ 1

θ̄ ρ̄p̃

∂ θ̄ ρ̄p̃〈(Dα − Dc)∇ξ · ∇c|η, ζ 〉
∂η

∂Qα

∂ζ

+ 1

θ̄ ρ̄p̃

∂ θ̄ ρ̄p̃〈(Dα − Dc)∇c · ∇c|η, ζ 〉
∂ζ

∂Qα

∂ζ
(12)

whose influence on major species might be small however [22]. We recall that in the deriva-
tion of the c-equation (8), it was assumed that Lec = Leξ = Leψ . This constraint can only
be approximately valid in the general case of non-unity Lewis number and limits the choice
of progress variable to major species with a Lewis number similar to Leξ . If this limita-
tion is respected and Leψ is sufficiently close to Leξ , the error due this assumption will be
small compared to the effect of non-unity Leα which for minor species can be substantially
different from Leξ .

Considering the effects of liquid fuel evaporation adds several terms to the DCMC
equation (10), including doubly conditional terms equivalent to the terms first derived by
Mortensen and Bilger [12]. Additional new terms appear to account for the effects of evap-
oration on the reaction progress variable. These terms contain the function C (η, ζ ), which
is given by Eq. 9.

In the present derivation, the primary closure hypothesis is specifically applied to fluxes
of the reactive scalar in conditional space only. This is in line with the original derivation
[23], where it is clearly specified that closure is achieved by assuming a “first-order dif-
fusion relation” for these fluxes. Source terms from evaporation or the reaction progress
variable are not treated through this approximation, which leads to the appearance of
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terms containing the conditional correlations 〈Y ′′
α Π ′′|η, ζ 〉 and 〈Y ′′

α ω̇∗′′
c |η, ζ 〉. In this way,

Mortensen and Bilger [12] derived the conditional correlation term of mass fraction and
evaporation rate using the joint-pdf method, whilst it seems that this term does not appear
when the decomposition method is used. Indeed, the conditional correlation term of mass
fraction and reaction progress variable source does not occur in the CMC equation for pre-
mixed flames derived by Mantel and Bilger [24] using the decomposition method and it has
not been addressed in more recent work [22, 25] either. The effect of the conditional corre-
lation term of the evaporation rate has not been studied yet and it has been neglected so far
[13, 26].

2.2 Closure for the DCMC equation

Equation 10 represents the unclosed DCMC equation in its general form, whose derivation
only requires very light modelling assumptions, viz. the primary closure hypothesis, mod-
erate to high Reynolds number and constant Lewis numbers. Whilst the accuracy of first
order closure for the doubly conditional reaction source term has been demonstrated [16],
there is, in general, very little experience with the sub-models for DCMC. In some cases,
however, it might be possible to generalise models used in conventional CMC or to adapt
them from other combustion models that use a similar parametrisation, such as for instance
mixture fraction-progress variable flamelet models.

In order to apply the DCMC model to a preliminary test case, in the present work the
modelling choices detailed below are made. The selection of sub-models was partly driven
by their extremely limited availability. In this sense, the set of models proposed is a first
suggestion and more work will be necessary in the future to improve and validate sub-
models for DCMC.

Unity Lewis number is assumed for simplicity in this first application of the model. For
the transport in physical space the well-tested sub-models for conventional CMC can be
easily adopted. The diffusion approximation is used for 〈u′′Y ′′

α |η, ζ 〉 [10] and the condi-
tional velocity is modelled as 〈u|η, ζ 〉 = ũ, since gradients of ξ̃ are small. For the Favre
pdfs of the conditioning variables, β-pdfs are presumed and, assuming statistical indepen-
dence, the joint-pdf is computed as p̃(η, ζ ) = pβ(η; ξ̃ , ξ̃ ′2)pβ(ζ ; c̃, c̃′2). This assumption
is made for simplicity since accurate modelling of the joint-pdf in the present three-stream
mixing problem plus droplet evaporation would be very complex and is not attempted here.
The choice of sub-models for the doubly conditional scalar dissipation rates is very limited.
In the present work, we follow the suggestions by Nguyen et al. [27]. For the scalar dissipa-
tion rate of the mixture fraction they assumed that Nξ is primarily imposed by the mixing
with little dependence on chemistry and, thus, 〈Nξ |η, ζ 〉 ≈ 〈Nξ |η〉, which is modelled as a
bell curve given by the Amplitude Mapping Closure (AMC) model [28]. Again following
Nguyen et al. [27], 〈Nc|η, ζ 〉 is modelled as the product of two bell curves, b(η) centred on
the stoichiometric mixture fraction η = ξst and G(ζ), centred on ζ = 0.5; for η ≥ 2ξst it is
zero. This model is a simple approximation ofNc-values from premixed flamelet tabulation.
The conditional cross-scalar dissipation rate is not considered, in line with the assumption
of statistically independent conditioning variables in the modelling of the pdf. A dilute spray
is assumed, i.e. θ̄ ≈ 1 but the doubly conditional evaporation source terms are not included
in the DCMC equation. Finally radiation and wall heat losses are neglect. Together with
the unity Lewis number assumption and in the absence spray source terms, the transport
equation of the conditionally averaged enthalpy Qh becomes trivial and does not need to be
calculated. The conditional temperature QT is then calculated from Qh and the conditional
species mass fractions Qα .
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2.3 Flow field solver

The DCMC combustion model is coupled to the flow field solver. An Euler-Lagrangian
approach is followed, where the gaseous phase is computed through an unsteady Reynolds-
averaged Navier-Stokes (RANS) simulation with the standard k-ε turbulence model and
the parcels of liquid droplets are tracked as Lagrangian particles. The flow field solver
integrates the momentum equation as well as the Favre-mean and variance equations of the
conditioning variables, ξ and c. Note that (·)′ denotes the fluctuation around the Favre mean,
i.e. Y = Ỹ + Y ′, to distinguish it from the conditional fluctuation in the DCMC equation.
Here, the reaction progress variable is based on the mass fraction of carbon dioxide, Yψ =
YCO2 .

∂ρ̄ξ̃

∂t
+ div(ρ̄ξ̃ ũ) = div

(
ρ̄(DT + D)∇ ξ̃

) + ρ̄Π̃ (13)

∂ρ̄ξ̃ ′2
∂t

+ div(ρ̄ξ̃ ′2ũ) = div
(
ρ̄(DT + D)∇ ξ̃ ′2

)
− 2ρ̄

ε̃

k̃
ξ̃ ′2 + 2ρ̄DT ∇ ξ̃ · ∇ ξ̃

+2ρ̄(ξ̃Π − ξ̃ Π̃) − ρ̄(ξ̃2Π − ξ̃2Π̃) (14)

∂ρ̄c̃

∂t
+ div(ρ̄c̃̃u) = div (ρ̄(DT + D)∇ c̃) + ρ̄˜̇ω∗

c + ρ̄C̃ Π + ρ̄c̃Π (15)

∂ρ̄c̃′2
∂t

+ div(ρ̄c̃′2ũ) = div
(
ρ̄(DT + D)∇ c̃′2

)
− 2ρ̄ε̃c + 2ρ̄DT ∇ c̃ · ∇ c̃

+2ρ̄˜c′ω̇∗′
c + 2ρ̄(˜cC Π − c̃C̃ Π) + ρ̄(c̃2Π − 2̃cc̃Π + c̃2Π̃)(16)

The eddy diffusivity is calculated as DT = μT /(ρ̄ScT ), with a constant turbulent Schmidt
number ScT = 0.7; for the molecular diffusivity D = μ/(ρ̄Sc), with Sc = 0.7. In the
case of the mixture fraction, the scalar dissipation rate is modelled as for a passive scalar,
(̃ε/̃k) ξ̃ ′2 [29]. The scalar dissipation rate of c is closed using the model by Kolla et al. [30],

ε̃c = 1

β ′

[
(
2K∗

c − τ (̃ξ)C4
) S0

L(̃ξ)

δ0L(̃ξ)
+ C3

ε̃

k̃

]
c̃′2 (17)

where the model coefficients are set as described by Kolla and Swaminathan [31], notably
β ′ = 6.7 and K∗

c = 0.85τ . To account for non-uniform mixture τ , S0
L and δ0L are evaluated

at the local mean mixture fraction ξ̃ [32]. For this purpose, the laminar flame speed and the
thermal laminar flame thickness are pre-computed using the commercial software Cosilab
and tabulated as functions of mixture fraction, S0

L(ξ) and δ0L(ξ) respectively; τ (̃ξ) is calcu-
lated based on the conditional temperature QT (η, ζ ) with η = ξ̃ and the Karlovitz number
is Ka = [δ0L(̃ξ)/S0

L(̃ξ)]/√ν/̃ε.
The reaction source term in the mean and variance equation of the progress variable, ˜̇ω∗

c

and ˜c′ω̇∗′
c , are calculated by integrating 〈ω̇∗

c |η, ζ 〉 (11) with the pdf in the conditional space.

˜̇ω∗
c =

∫ 1

0

∫ 1

0
〈ω̇∗

c |η, ζ 〉 p̃(η, ζ ) dη dζ (18)

˜c′ω̇∗′
c =

∫ 1

0

∫ 1

0
ζ 〈ω̇∗

c |η, ζ 〉 p̃(η, ζ ) dη dζ − c̃ ˜̇ω∗
c (19)
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In this work an emphasis is put on the modelling of the spray combustion and we aim to
provide closure for the complete set of evaporation terms that appear in the Favre-averaged
transport equations of the conditioning variables. The mean evaporation source is computed
by summing over the evaporated mass of all droplets in a CFD cell,

Π̃ = 1

ρ̄V

Nd∑

i

ṁd,i (20)

where V represents the cell volume. The Favre-averaged transport equations contain sev-
eral other evaporation source terms, which require modelling. In particular, for the mixture
fraction variance equation, Giusti and Mastorakos [33] pointed out that both spray source
terms could have a significant effect in the inner flame region. In single-conditional CMC,
the terms ξ̃Π and ξ̃2Π are modelled either by summing ξk

s,iṁd,i (k = 1 or 2) for all droplets
in one cell [34] or, alternatively, by assuming that 〈Π |η〉 has the shape of a δ-function at
the average surface mixture fraction 〈ξs〉 [35]. In both cases, it is assumed that ξs ≈ YF,sat,
calculated for the droplet temperature Td . This assumption is, however, only correct if the
droplets evaporate upstream of the flame [13]. In general, YF,sat ≤ ξs ≤ Y−1

F,Eq(YF,sat),

where Y−1
F,Eq is the inverse function of the equilibrium fuel mass fraction YF,Eq(ξ). This

reflects the case of a droplet evaporating in burned gases where some reaction products
are present besides the fuel vapour at the droplet surface. In principle, this effect can be
accounted for by integrating the spray source term in doubly conditional space. For a
generic spray source term of the type F̃Π , Eq. 21 is exact if 〈F ′′Π ′′|η, ζ 〉 = 0, notably
for F = ξ or F = C (ξ, c) etc. Fig. 1 shows a contour plot of the spray source term
of the c̃-equation in conditional space, (C (η, ζ ) + ζ ), which can be directly evaluated
using the conditional moments from CMC. Considering the conditional evaporation term
shows that two necessary conditions for a source term of the progress variable are fulfilled:
first, droplet evaporation in unburned mixture does not impact the progress variable since
(C (η, ζ ) + ζ ) = 0 for ζ = 0 and, second, (C (η, ζ ) + ζ ) ≤ 1 for ζ = 1, which signifies c

is automatically bounded at 1 with respect to this term.
In order to devise a model for 〈Π |η, ζ 〉 it is recognised that the droplet temperature com-

puted by the evaporation model fixes the fuel mass fraction – not the mixture fraction –
on the droplet surface. This means that the droplet surface corresponds to the isoline of
QF (η, ζ ) = YFs in conditional space (represented by black lines in Fig. 1). Since evapora-
tion only happens on the droplet surface, 〈Π |η, ζ 〉 must be zero everywhere except on this
isoline and F̃Π can be calculated as a line integral. In Eq. 22, it was further assumed that

Fig. 1 Closure model for Favre-
averaged spray source terms. The
contour plot represents
(C (η, ζ ) + ζ ), which is overlaid
with black iso-lines of fuel mass
fraction YF . The range of
(C + ζ ) is cropped at −1 and +1
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Π(η, ζ ) is constant along this isoline. This is consistent with the evaporation model, where
ṁd is computed based on the droplet temperature and the temperature far from the droplet
surface, thus ignoring the exact temperature distribution in the near field.

F̃Π ≈
∫ 1

0

∫ 1

0
〈F |η, ζ 〉 〈Π |η, ζ 〉 p̃(η, ζ ) dη dζ (21)

≈ Π̃∫
C

p̃(η, ζ ) ds

∫

C

〈F |η, ζ 〉 p̃(η, ζ ) ds (22)

Note that the model of 〈Π |η, ζ 〉 presented above is only used to close the Favre-averaged
evaporation source terms, but it is not used as a sub-model in the DCMC equation (see
Section 2.2).

The evaporation of the Lagrangian droplets was computed according to the model by
Abramzon and Sirignano [36] with Stefan flow correction and non-unity Lewis number in
the film; for the liquid droplets, the approximation of infinite conductivity is made.

dmd

dt
= −ṁd = −πddρGDGSh

∗ ln(1 + BM) (23)

dTd

dt
= − 1

mdCpL

ṁdCpV

BT

(T̃ − Td) + 1

mdCpL

ṁdLV (24)

where BM and BT are the Spalding mass and heat transfer numbers respectively. Sh and Nu
are calculated using the Frössling correlation. The quantities ρG, CpG, CpV , μG, λG, DG

are evaluated at reference conditions for the gaseous boundary layer, computed according
to the 1/3 rule for temperature and species; ρL, CpL, latent heat LV and the fuel saturation
vapour pressure psat

F are computed at the droplet temperature Td . The droplet experiences
sphere drag and the impact of turbulence on the droplet motion is mimicked through stochas-
tic dispersion for isotropic turbulence. No model for secondary break-up of droplets was
used.

2.4 Chemistry

A detailed chemical mechanism for ethanol combustion [37] with 57 species and 383
reversible reactions is used. The mechanism performs well in predicting ignition delays and
laminar flame speeds at ambient pressure when compared to experimental data. It has been
successfully used in a CMC simulation by Giusti and Mastorakos [33].

2.5 Numerical set-up

The computational fluid dynamics toolbox OpenFOAM-2.3.0 is used to solve for the Favre-
averaged flow field variables, ũ, ξ̃ , ξ̃ ′2, c̃ and c̃′2 and to track the Lagrangian droplets.
The coupling of the flow field solver and the DCMC model is effectuated as shown in a
schematic in Ref. [38]. In addition to ρ̄ and T̃ , the DCMC model also returns ỸF , ˜̇ω∗

c , ˜c′ω̇∗′
c

and the Favre-averaged evaporation terms (22) to the flow field solver. The motion and
evaporation of the Lagrangian droplets are solved at the at beginning of each time step.
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Applying the closure models and simplifying assumptions presented in Section 2.2, the
DCMC equation (10) reduces to,

∂Qα

∂t
+ div (Qα ũ) = Qα div ũ + μT

ρ̄ScT

∇Qα

+〈Nξ |η, ζ 〉∂
2Qα

∂η2
+ 〈Nc|η, ζ 〉∂

2Qα

∂ζ 2

−∂Qα

∂ζ

1

∂Qψ/∂ζ

(
〈Nξ |η, ζ 〉∂

2Qψ

∂η2
+ 〈Nc|η, ζ 〉∂

2Qψ

∂ζ 2

)

+〈ω̇α|η, ζ 〉 − ∂Qα

∂ζ

1

∂Qψ/∂ζ
〈ω̇ψ |η, ζ 〉 (25)

Eq. 25 is integrated with a finite volume method whilst employing an operator splitting
procedure. The fractional step approach is well established in CMC modelling and the sig-
nificance of operator splitting errors in spray flames was investigated by Wright et al. [39].
The operator splitting approach allows for higher computational efficiency, since the stiff
chemistry term is decoupled from the non-stiff convective terms. First, the transport in phys-
ical space by advection and turbulent diffusion, as well as the dilatation term (terms 2, 3
and 4 in the first line of Eq. 25 respectively) are computed. An upwind scheme is used for
the advection term. Second, transport in conditional space (lines 2 and 3 in Eq. 25) is inte-
grated for every DCMC cell. Finally, the chemical reaction source is solved independently
for every (η, ζ )-node in every DCMC cell. For the second and the third sub-step the solver
VODPK is used. This operator splitting procedure automatically assures that Qψ conserves
its linear dependence on ζ according to the definition of the progress variable.

A 1D DCMC grid was used to discretise the physical domain with 35 DCMC cells along
the burner axis for 0 < z/d < 5. The transfer of data from the fine CFD mesh to the
coarse DCMC grid is achieved by integrating the conditional scalar dissipation rates over
the volume of the DCMC cell [40].

The conditional space, D = {(η, ζ ) ∈ R

2 : 0 ≤ η ≤ 1, 0 ≤ ζ ≤ 1}, is discretised
with 51 η-nodes, clustered around the stoichiometric mixture fraction η = ξst (for the reac-
tion of ethanol with air ξst ≈ 0.1006) and 41 ζ -nodes, which are more closely spaced at
ζ = 1. The derivatives in conditional space are discretised with second-order finite dif-
ferences apart from ∂/∂ζ , which is computed with an upwind scheme. Dirichlet boundary
conditions are set on all four sides of the conditional domain; mixing line and equilibrium
condition for ζ = 0 and 1 respectively, air at η = 0 and fuel vapour at the boiling point
at η = 1. The equilibrium condition was approximated by solving single-conditioned, non-
premixed “0D-CMC” equation, similar to the non-premixed flamelet equation, with a very
low scalar dissipation rate Nξ,max = 1 1/s, compared to the critical scalar dissipation rate
of approximately 367 1/s [41]. The initial condition for the doubly conditional moments in
the DCMC cells is computed by solving the 0D-DCMC equation, that is to say the DCMC
equation (25) with prescribed, fixed scalar dissipation rates and for a spatially homogeneous
case, i.e. without the terms that represent transport in physical space, until steady state is
reached. The solutions of this equation are similar to the results presented by Nguyen et al.
[27]. As DCMC initial condition a very weakly strained solution of the 0D-DCMC equation
was used; notably, Nξ,max = 1 1/s and Nc,max = 200 1/s. The set of conditional moments
used as inlet boundary condition is identical with the initial condition. Hence the condi-
tional moments in the DCMC cell located at z/d = 0, shown later in Figs. 4 and 5, are
representative of the DCMC initial condition.
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2.6 Experimental test case

The DCMC model is applied to a piloted ethanol spray flame recently studied experi-
mentally by Kariuki and Mastorakos [17]. The presence of droplet evaporation and, thus,
the existence of mixture inhomogeneities, combined with substantial pre-vaporisation and
premixing makes this flame a suitable candidate to test the present DCMC model.

In the experimental set-up, the ethanol spray is injected into the main flow of air≈ 38 cm
upstream of the nozzle with a diameter d = 42 mm. The flame is stabilised at the end of
the nozzle through an annular pilot of diameter ≈ 51 mm and width ≈ 6 mm. The pilot is a
open premixed methane-air flame with an approximately stoichiometric fuel-air ratio and a
cold volume flow rate of 33.5 L/min. In the present work, we consider two reacting cases
with overall equivalence ratios (liquid fuel to main air flow) φ = 0.62 and 0.82 (corresponds
to ξ ≈ 0.065 and 0.084 respectively) and a non-reacting case. In all three cases the air-flow
rate is 235 L/min and the liquid fuel mass injected in the cold case is the same as in the
richer flame. Hence, the flames have the character of a pilot-stabilised turbulent premixed
jet flames with a bulk velocity Ub ≈ 3.04 m/s, calculated using the area of the nozzle.

The three-dimensional computational domain stretches −1 < z/d < 19 along the burner
axis, where z = 0 is the position of the nozzle outlet and the pilot and the main flow inlet is
retracted by one nozzle diameter; the diameter of the entire domain is 33d . Turbulence levels
are set according to Laser Doppler Anemometry (LDA) measurements to u′/Ub ≈ 0.18
and estimating LT ≈ d/3. Since the degree of pre-vaporisation of the ethanol spray was not
measured in the experiment, the mixture fraction at the inlet had to be estimated. According
to a separate RANS simulation of the upstream part of the burner corresponding to the
richer flame and the cold case, the inlet boundary condition for the mixture fraction was
set to ξ̃ = 0.04 and ξ̃ ′2 = 0. Even though the injected amount of liquid fuel is smaller in
the leaner case, the same boundary condition is also used for the simulation of the flame
with φ = 0.62. This will allow us to explore the sensitivity of the simulation results to
the level of pre-vaporisation and premixing in the upstream region of a spray flame; in the
rich flame approximately half the fuel is pre-vaporised compared to two thirds in the leaner
flame. For the main flow, the inlet boundary condition for the reaction progress variable
upstream of the nozzle is set to c̃ = 0. For the purpose of the present paper whose aim is to
discuss the model and its application, the uncertainty related to the inlet boundary condition
is considered satisfactory.

The pilot is an open flame, which is not retracted relative to the main flow. Hence, dilata-
tion in the pilot flame does not lead to a significant increase of the mean axial velocity but
to an increase in width of the hot pilot stream as it is expected for a usual triangular flame.
Following a single mixture fraction based approach in the simulations, the pilot is mod-
elled as a premixed stoichiometric ethanol-air flame. The annular pilot flame itself is not
resolved but instead modelled as a uniform inlet boundary condition with a laminar inflow
of burnt gases, i.e. ξ̃ = ξst, ξ̃ ′2 = 0 and c̃ = 1, with a mass flow rate corresponding to the
experimental configuration. In the experimental rig the annulus that stabilises the pilot is
very narrow and the pilot flow is broadened by the dilatation across the flame. If the width
of the original annulus was used for the uniform inlet of hot gas, whilst the pilot mass flow
rate was kept equal to its value in the experiments, the axial velocity of the pilot flow would
be greatly over-estimated. Instead, the surface area of the pilot inlet is increased to assure
a realistic axial velocity for the pilot flow. For this purpose, the surface of the pilot inlet is
three times the surface area of the annulus in the rig.

A small, laminar co-flow of 0.1 m/s is set around the burner nozzle, where ξ̃ = 0 and
c̃ = 1. Walls are considered adiabatic.
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Fig. 2 Radial profiles of mean axial velocity, 〈uz〉, ũz for the cold flow and the flames; the mean gas phase
velocity from the RANS simulation (line –) is compared to PDA measurements of droplet velocity (symbols ◦)

3 Results and Discussion

Figure 2 shows the radial profiles of the mean axial velocity of the gas phase for cold flow and
the two flames considered here. The results are compared to Phase Doppler Anemometry
(PDA) measurements of the mean axial velocity of the droplets in the range 0 ≤ r/d ≤ 0.5,
not including the pilot stream, by Kariuki and Mastorakos [17]. In the cold case, the effect
of the pilot stream is small and the flow spreads like a turbulent jet with a radial profile
similar to a Gaussian bell curve. In contrast, for both flames studied, the axial mean velocity
is almost constant for r/d < 0.5. This feature is well reproduced by the simulation.

Next the droplet size information from the PDA measurements [17] is compared to sim-
ulation results. Figure 3 shows volume distributions of droplet size. The spray is injected
far upstream of the nozzle and experimental measurements show that the droplet distribu-
tions are very similar at different radial positions in the core of the main flow, even for
reacting cases. Thus, droplet distributions are only shown for different axial positions, con-
sidering the experimental data from all measurement points with r < 0.75 · (d/2). For the
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Fig. 3 Droplet volume distributions; the mean gas phase velocity from the RANS simulation (line –) is
compared to PDA measurements of droplet velocity (line with symbols ◦). The distributions are normalised
to integrate to one
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simulations, the droplet volume distributions at the inlet were set equal to the experimental
ones from the axial position z = 6 mm. In general, a reasonable agreement between the
experimental volume distributions and the simulation results is achieved. In both flames,
the droplet volume distribution flattens in the range of small droplets (d < 30 μm) whilst it
increases for larger droplets (40 μm < d < 70 μm). This can be explained by (i) a shorter
heating-up period and thus quicker evaporation of smaller droplets and (ii) a faster decrease
in diameter for smaller droplets when their temperature is nearly constant and d2 is known
to decrease approximately linearly in time. The phenomenon is slightly over-predicted in
the simulations but can also be observed in the PDA data, in particular, for the richer flame.

In Fig. 4 the conditional moments of CO2, OH, CH2O and temperature are shown for
two different DCMC cells of the richer flame. Due to the definition of the progress variable
based on the mass fraction of CO2, the conditional moment QCO2 is fixed for all DCMC
cells equal to its shape defined by Eq. 7. The DCMC cell at z/d = 0 is located at the
exit of the nozzle very close to the inlet and the scalar dissipation rates upstream of the
flame are low. Hence, the structure of a weakly strained flame is mostly influenced by the
advective term of the DCMC equation. The conditional moments shown here are almost
identical with the DCMC inlet boundary condition and the DCMC initial condition. For
η = ξst the temperature rises quickly for 0 ≤ ζ < 0.5 and then flattens out for higher ζ ,
slowly approaching the temperature at equilibrium condition. In contrast, the DCMC cell
at z/d = 1 contains the flame and thus experiences increased scalar dissipation rates. In
particular, a high Ñc diffuses reactants in conditional space. Consequently, QT rises almost
linearly from ζ = 0 to 1 at η = ξst. In the region further downstream of the flame Ñc = 0
and Ñξ decays. As a result, the conditional moments experience less straining due to the
scalar dissipation rates and slowly relax back to the structure of the weakly strained flame.

The conditional apparent reaction rates computed in the two DCMC cells previously
discussed are shown in Fig. 5. They are compared to ω̇c(η, ζ ) from unstrained premixed
flamelets, which were computed using the commercial software Cosilab. In the weakly
strained case at z/d = 0 the conditional reaction rate reaches significantly higher values
than for the DCMC cell located at z/d = 1. This shows how the conditional reaction rate
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Fig. 4 Conditional moments of YCO2 , T , YOH and YCH2O in two different DCMC cells for the φ = 0.82
flame. The DCMC cells are located at z/d = 0 and z/d = 1. The dashed line marks the stoichiometric
mixture fraction ξst ≈ 0.1005. Note that only the range 0 ≤ η ≤ 0.5 is shown, but the DCMC equation is
solved for all 0 ≤ η ≤ 1
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Fig. 5 Conditional reaction progress variable source term. From left to right: unstrained premixed flamelet
ω̇c , 〈ω̇∗

c |η, ζ 〉 in a DCMC cell at z/d = 0, and another DCMC cell at z/d = 1, as well as the non-premixed
contribution to 〈ω̇∗

c |η, ζ 〉 for the DCMC cell at z/d = 1. Simulation results for the case with φ = 0.82

adjusts as the scalar dissipation rates increase. Moreover, in the strained flame 〈ω̇∗
c |η, ζ 〉

also takes negative values. This is due to the contribution of the non-premixed term, which
is also shown in Fig. 5.

Next the shape of the flames is assessed. Figure 6 shows sample averaged OH planar
laser-induced fluorescence (OH-PLIF) images by Kariuki and Mastorakos [17], in com-
parison to ỸOH from the present simulations. Comparisons are qualitative and no scale is
shown for the mean OH PLIF intensity. On top of the simulation data c̃-isolines are plot-
ted to emphasis the position and width of the flame brush. They can be directly compared
to isolines of ensemble-averaged progress variable based on experimental data, even at a
quantitative level. For this purpose, the instantaneous field of progress variable was deter-
mined experimentally by tracking the flame front through a thresholding procedure applied
to the OH PLIF images [17]. For the richer flame with an overall equivalence ratio of
φ = 0.82 (Fig. 6, bottom), the mean flame brush is relatively broad, occupying the range
1 < z/d < 2.5 along the burner axis, where the mean progress variable increases from 0.1
to 0.9. The simulation predicts a slightly longer flame but a thinner flame brush, stretch-
ing over the range 2.1 < z/d < 2.8. Moreover, ỸOH in the burnt gases, downstream of the
flame is lower than in the pilot stream, whilst this trend is not observed in the OH PLIF
signal intensity. The simulation results also show that a significant proportion of fuel is not
burned and the presence of this fuel in the hot combustion products leads to the production
of CH2O downstream of the flame. The leaner flame (Fig. 6, top) with an overall equiv-
alence ratio of φ = 0.62 is longer and experiments showed that the mean flame brush is
present in the range 2.5 < z/d < 3.5 on the burner axis. This flame length is well predicted
by the simulation. Moreover, the simulation also predicts a lower ỸOH in the main flow
compared to the pilot stream. Indeed, this behaviour is also found in the OH PLIF signal of
the leaner flame. However, this feature is less pronounced in this case and the simulations,
unexpectedly, predict that the combustion products of the leaner flame contain more ỸOH
than in the case of the richer flame. Since the pre-vaporised fraction of fuel is different in
both cases, this feature can be directly related to the droplet terms in the transport equations
of the conditioning variables, which will be discussed next.

In the following, some information on the relative magnitude of the various terms in the
transport equations of ξ̃ , ξ̃ ′2, c̃, c̃′2 and the DCMC equation is given. Figure 7 shows the
field of the mean mixture fraction and its variance for the richer flame with φ = 0.82. The
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Fig. 6 Ensemble-averaged OH-PLIF measurements overlaid with experimentally computed mean progress
variable 〈c〉 isolines [17], compared to ỸOH and c̃-isolines from the simulations, for both flame cases. The
isolines are for the values 0.1, 0.5 and 0.9. Fields of ỸCH2O, ỸF, T̃ from the simulation are also shown. Note
the difference in the range of the x-axis and r-axis

mean mixture fractions set at the inlet, one nozzle diameter upstream of the burner exit, is
below the lean flammability limit of an ethanol air mixture (ξlean ≈ 0.05) to ξ̃ . Upstream
of the flame the mean temperature is low and the evaporation rate Π̃ is low. Nevertheless
ξ̃ increases along the burner axis, first slowly to ξ̃ ≈ 0.048 at z/d = 1 and then faster,
reaching 0.59 at z/d = 2 in the preheat zone of the flame. Even though the evaporation
rate is highest in the range of 0.5 < c̃ < 0.9, some droplets still exist downstream of the
flame brush and Π̃ takes significant values until z/d = 3.5. Droplet evaporation is also
the dominant source in the mixture fraction variance equation (14) and the production term
due to mean mixture fraction gradients is negligible in the flame investigated in this work.
In contrast to Π̃ , the mixture fraction variance source term is very small upstream of the
c̃ = 0.1 isoline because the droplets evaporating in this region have a low Td and thus ξs

is not much larger than ξ̃ . Consequently, ξ̃ ′2 rises significantly in the region of the mean
flame brush. In particular, this increase of ξ̃ ′2 is not directly counterbalanced by the scalar
dissipation rate term, since a model for passive scalar mixing [29], was used due to the
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Fig. 7 Fields of ξ̃ and ξ̃ ′2 as well as source/sink terms of their Favre-averaged transport equations for the
flame with φ = 0.82. Ṡ

ξ̃ ′2 represents the complete droplet source in the mixture fraction variance equation

and 2(̃ε/̃k)ξ̃ ′2 is the scalar dissipation rate term. Isolines of c̃ = 0.1, 0.5 and 0.9 mark the position of the
mean flame brush

lack of alternatives. Even though the scalar dissipation rate is globally of the same order
of magnitude as the droplet source of ξ̃ ′2, we note that ξ̃ ′2 is locally over-predicted. In
particular, this is the case in the core of the main flow for 2.5 < z/d < 3.5, where the
production of variance outweighs its destruction (Fig. 7).

This high level of mixture fraction variance in the post flame region of the richer flame
explains low levels of ỸOH in the main flow of the richer flame, compared to the pilot stream
(Fig. 6). For high ξ̃ ′2 a broad β-pdf is presumed and the probability of finding flammable
mixture that can react to form OH is low. This connection is also demonstrated by the
unexpected fact that the simulations show higher ỸOH for the leaner flame. Since the mass
fraction of prevaporised fuel is ξ̃ = 0.04 for both flames, in the lean case two thirds of
fuel mass are fully premixed. Hence, evaporation produces lower levels of ξ̃ ′2 in the lean
case leading to higher ỸOH. For the same reason ρ̄ is over-predicted leading to an under-
prediction of ũz at downstream locations.

Fields of c̃ and c̃′2 are shown in Fig. 8. In addition to the mean reaction source term, the c̃-
equation (8) also contains a droplet source term, which is computed as detailed in Eq. 22. As
previously discussed, this source term is zero as long as the droplets evaporate in unburned
mixture. On a global scale Ṡc̃ is also two orders of magnitude lower than the apparent
reaction rate ˜̇ω∗

c and, thus, it only has a small effect on the shape of the flame brush. The

same applies to the total evaporation variance source term Ṡ
c̃′2 compared to ˜c′ω̇∗′

c , such that

the effect of evaporation on the c̃′2-equation is negligible in the present case. In contrast, the
Ṡc̃ plays an important role in the region downstream of the flame, where it counter-balances
a large fraction of the decrease in c̃, otherwise caused by the evaporative mass source acting
on the mean density. For this purpose, a simplified model for this term can be proposed by
comparing Ṡc̃ to c̃Π̃ . Figure 9 shows that instead of using Eq. 22, a simplified model,

Ṡc̃ = C̃ Π + c̃Π ≈ c̃Π̃ (26)

can be used for this purpose.
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This leaves the reaction source ˜c′ω̇∗′
c and the production due to mean progress variable

gradients as the main source terms in the c̃′2-equation. Note that ˜c′ω̇∗′
c locally also takes the

role of an important variance sink term as the reaction reaches completion. On the side of the
sink terms Fig. 8 shows a comparison of the mean scalar dissipation rate ε̃c, as computed in
the present work using the model by Kolla et al. [30], and the model for a passive scalar [29]
applied to the reaction progress variable. The latter takes the largest values in the thinnest
part of the reacting shear layer that forms between the main flow and the pilot stream,
but takes much smaller values than ε̃c in the region where the flame closes. Indeed, in the
present simulations it was not possible to stabilise a flame using 2(̃ε/̃k)c̃′2 to model the
scalar dissipation rate, such that the model by Kolla et al. [30] was employed.

4 Conclusions

The CMC framework was used to build a new model for spray flames, which may feature
characteristics of both premixed and non-premixed combustion. The DCMC equation for
spray flames, conditioned on mixture fraction and reaction progress variable, was presented
in this work. In the derivation, spray evaporation terms in the transport equations of the reac-
tive scalar and both conditioning variables, including c, were explicitly considered, which
added new terms to the DCMC equation.

In a preliminary application, the model was used to simulate the behaviour of a piloted
ethanol spray flame with significant pre-vaporisation and strong premixing at two dif-
ferent, lean conditions. For this purpose, a set of sub-models was proposed to provide
closure for the DCMC model and an operator splitting procedure was suggested to solve
the model equation. The velocity field and the droplet distributions showed good agree-
ment with experimental data and the flame shape prediction was promising in revealing the
experimental trend due to overall equivalence ratio.

Using the conditional moments of the reactive scalars, available from DCMC, the
unclosed spray terms in the Favre-averaged transport equations of the conditioning vari-
ables were modelled. Droplet evaporation was the dominant source term in the mixture
fraction variance equation and had a large effect on the result, which had also been reported
in previous studies. At the same time, closure of the mixture fraction scalar dissipation rate
with a passive scalar mixing model seemed to be inadequate and main differences between
simulation and experiment could be related to this imbalance of variance source and sink
terms. The spray terms in the reaction progress variables equations were small compared
to the reaction source terms and, thus, had little effect on the shape and width of the mean
flame brush. This suggests that the effect of droplet evaporation can be neglected in the c̃′2-
equation. However, the evaporation source term should be included in the mean progress
variable equation, but it can be approximated with a simple model.
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Appendix

Qh-equation

The derivation of the local instantaneous transport equation of the enthalpy is detailed in
the text book by Poinsot and Veynante [42]. Using the Kataoka model [18] leads to the
h-equation for a two-phase flow,

∂θρh

∂t
+ div(θρhu) = div(θρλ∇T ) +

∑

α

div(θρhαDα∇Yα)

+θ
∂p

∂t
+ θu · ∇p + θq̇ + θτ : (∇u)ᵀ +

∑

α

ρfα · YαVα

−∇θ · λ∇T +
∑

α

ρhαYαV̂α + ρhΠ (27)

where q̇ is a heat source, for instance due to a spark or radiation and the third line represents
the source term due to droplet evaporation.

The DCMC equation for the conditional enthalpy Qh is as follows,

∂Qh

∂t
+ 〈u|η, ζ 〉 · ∇Qh = − 1

θ̄ ρ̄p̃
div

(
θ̄ ρ̄p̃〈u′′h′′|η, ζ 〉)

+ 1

ρ̄
〈∂p
∂t

|η, ζ 〉 + 1

ρ̄
〈u · ∇p|η, ζ 〉 + 1

ρ̄
〈τ : (∇u)ᵀ|η, ζ 〉 + 1

ρ̄
〈q̇|η, ζ 〉

+ 〈LeξNξ |η, ζ 〉∂
2Qh

∂η2
+ 〈LecNc|η, ζ 〉∂

2Qh

∂ζ 2

+ 〈(Leξ + Lec)Nξc|η, ζ 〉∂
2Qh

∂η∂ζ
− 〈ω̇∗

c |η, ζ 〉∂Qh

∂ζ

+ 〈hΠ |η, ζ 〉 +
Nα∑

α

〈hα(δα − h)Π |η, ζ 〉
θ̄

− 〈∇θ · λ∇T |η, ζ 〉
θ̄ ρ̄

−
[
(1 − η)

∂Qh

∂η
+ C (η, ζ )

∂Qh

∂ζ

] 〈Π |η, ζ 〉
θ̄

− 1

θ̄ ρ̄p̃

∂ ρ̄p̃(1 − η)〈h′′Π ′′|η, ζ 〉
∂η

− 1

θ̄ ρ̄p̃

∂ ρ̄p̃C (η, ζ )〈h′′Π ′′|η, ζ 〉
∂ζ

− 1

θ̄ ρ̄p̃

∂ θ̄ ρ̄p̃〈h′′ω̇∗′′
c |η, ζ 〉

∂ζ
+ DQh + DDh (28)
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In Eq. 28, DQh represents the differential diffusion term,

DQh = 1

θ̄ ρ̄p̃

∂ θ̄ ρ̄p̃〈(Leξ − 1)Dξ∇ξ · ∇ξ |η, ζ 〉
∂η

∂Qh

∂η

+ 1

θ̄ ρ̄p̃

∂ θ̄ ρ̄p̃〈(Leξ − 1)Dξ∇ξ · ∇c|η, ζ 〉
∂ζ

∂Qh

∂η

+ 1

θ̄ ρ̄p̃

∂ θ̄ ρ̄p̃〈(Lec − 1)Dc∇ξ · ∇c|η, ζ 〉
∂η

∂Qh

∂ζ

+ 1

θ̄ ρ̄p̃

∂ θ̄ ρ̄p̃〈(Lec − 1)Dc∇c · ∇c|η, ζ 〉
∂ζ

∂Qh

∂ζ

− 1

θ̄ ρ̄p̃

Nα∑

α

∂

∂η

(
θ̄ ρ̄p̃〈hα(Leα − 1)Dα∇ξ · ∇ξ |η, ζ 〉∂Qα

∂η

)

− 1

θ̄ ρ̄p̃

Nα∑

α

∂

∂η

(
θ̄ ρ̄p̃〈hα(Leα − 1)Dα∇ξ · ∇c|η, ζ 〉∂Qα

∂ζ

)

− 1

θ̄ ρ̄p̃

Nα∑

α

∂

∂ζ

(
θ̄ ρ̄p̃〈hα(Leα − 1)Dα∇ξ · ∇c|η, ζ 〉∂Qα

∂η

)

− 1

θ̄ ρ̄p̃

Nα∑

α

∂

∂ζ

(
θ̄ ρ̄p̃〈hα(Leα − 1)Dα∇c · ∇c|η, ζ 〉∂Qα

∂ζ

)
(29)

Without the high Reynolds number assumptions, the Qh-equation also contains molecular
diffusion terms DDh.

DDh = 1

θ̄ ρ̄p̃
div

(
θ̄ ρ̄p̃ 〈LeξDξ∇h|η, ζ 〉)

− 1

θ̄ ρ̄p̃

Nα∑

α

div
(
θ̄ ρ̄p̃〈hα(Leα − 1)Dα∇Yα|η, ζ 〉)

− 1

θ̄ ρ̄p̃

∂ div(θ̄ ρ̄p̃〈hDξ∇ξ |η, ζ 〉)
∂η

− 1

θ̄ ρ̄p̃

∂ div(θ̄ ρ̄p̃〈hDc∇c|η, ζ 〉)
∂ζ

+ Qh

θ̄ρ̄p̃

∂ div(θ̄ ρ̄p̃〈Dξ∇ξ |η, ζ 〉)
∂η

+ Qh

θ̄ρ̄p̃

∂ div(θ̄ ρ̄p̃〈Dc∇c|η, ζ 〉)
∂ζ

+ 1

θ̄ ρ̄p̃

∂ θ̄ ρ̄p̃〈(Leξ + 1)Dξ∇ξ |η, ζ 〉 · ∇Qh

∂η

+ 1

θ̄ ρ̄p̃

∂ θ̄ ρ̄p̃〈(Lec + 1)Dc∇c|η, ζ 〉 · ∇Qh

∂ζ

− 1

θ̄ ρ̄p̃

Nα∑

α

∂θ̄ ρ̄p̃〈hα(Leα − 1)Dα∇ξ |η, ζ 〉 · ∇Qα

∂η

− 1

θ̄ ρ̄p̃

Nα∑

α

∂θ̄ ρ̄p̃〈hα(Leα − 1)Dα∇c|η, ζ 〉 · ∇Qα

∂ζ
(30)

The analogue molecular diffusion term, as it would appear in the Qα-equation is shown
below.
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Molecular diffusion term of the Qα-equation

In Eq. 10 high Reynolds number was assumed and, thus, molecular transport was neglected
in the derivation. Without this assumption the following term would appear, which is
analogue to the DDh-term in the Qh-equation (30).

DDα = 1

θ̄ ρ̄p̃
div

(
θ̄ ρ̄p̃ 〈Dα∇Yα|η, ζ 〉)

− 1

θ̄ ρ̄p̃

∂ div(θ̄ ρ̄p̃〈YαDξ∇ξ |η, ζ 〉)
∂η

− 1

θ̄ ρ̄p̃

∂ div(θ̄ ρ̄p̃〈YαDc∇c|η, ζ 〉)
∂ζ

+ Qα

θ̄ρ̄p̃

∂ div(θ̄ ρ̄p̃〈Dξ∇ξ |η, ζ 〉)
∂η

+ Qα

θ̄ρ̄p̃

∂ div(θ̄ ρ̄p̃〈Dc∇c|η, ζ 〉)
∂ζ

+ 1

θ̄ ρ̄p̃

∂ θ̄ ρ̄p̃〈(Dα + Dξ)∇ξ |η, ζ 〉 · ∇Qα

∂η

+ 1

θ̄ ρ̄p̃

∂ θ̄ ρ̄p̃〈(Dα + Dc)∇c|η, ζ 〉 · ∇Qα

∂ζ
(31)

References

1. Jenny, P., Roekaerts, D., Beishuizen, N.: Modeling of turbulent dilute spray combustion. Prog. Energ.
Combust. 38, 846–887 (2012)

2. Burgoyne, J.H., Cohen, L.: The effect of drop size on flame propagation in liquid aerosols. P. Roy. Soc.
Lond. A Mat. 225, 375–392 (1954)

3. Hayashi, S., Kumagai, S., Sakai, T.: Propagation velocity and structure of flames in droplet-vapor-air
mixtures. Combust. Sci Technol. 15, 169–177 (1977)

4. Myers, G., Lefebvre, A.: Flame propagation in heterogeneous mixtures of fuel drops and air. Combust.
Flame 66, 193–210 (1986)

5. Neophytou, A., Mastorakos, E.: Simulations of laminar flame propagation in droplet mists. Combust.
Flame 156, 1627–1640 (2009)

6. Neophytou, A., Mastorakos, E., Cant, R.S.: The internal structure of igniting turbulent sprays as revealed
by complex chemistry DNS. Combust. Flame 159, 641–664 (2012)
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