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Abstract  

 

Objectives 

The reliable detection of peaks and troughs in physiological signals is essential to many 

investigative techniques in medicine and computational biology. Analysis of the intracranial 

pressure (ICP) waveform is a particular challenge due to multi-scale features, a changing 

morphology over time and signal-to-noise limitations. Here we present an efficient peak and 

trough detection algorithm that extends the scalogram approach of Scholkmann et al, and 

results in greatly improved algorithm runtime performance. 

 

Materials and Methods 

Our improved algorithm (Modified-Scholkmann) was developed and analysed in Matlab 

R2015b (MathWorks Inc., Massachusetts, USA). Synthesised waveforms (periodic, quasi-

periodic and chirp sinusoids) were degraded with white Gaussian noise to achieve signal-to-

noise ratios down to 5dB and were used to compare the performance of the Original-

Scholkmann and Modified-Scholkmann algorithms.  

 

Results 

Modified-Scholkmann has false positive (0%) and false negative (0%) detection rates 

identical to Original-Scholkmann when applied to our test suite. Actual compute time for a 

200-run Monte Carlo simulation over a multicomponent noisy test signal was 40.96 ± 0.020 

seconds (mean ± 95%CI) for Original-Scholkmann and 1.81 ± 0.003 seconds (mean ± 

95%CI) for Modified-Scholkmann, demonstrating the expected improvement in run time 

complexity from ! !!   to ! ! . 	

 



Conclusions 

The accurate interpretation of waveform data to identify peaks and troughs is crucial in signal 

parameterization, feature extraction and waveform identification tasks. Modification of a 

standard scalogram technique has produced a robust algorithm with linear computational 

complexity that is particularly suited to the challenges presented by large, noisy physiological 

datasets. The algorithm is optimised through a single parameter and can identify sub-

waveform features with minimal additional overhead, and is easily adapted to run in real-time 

on commodity hardware.  

 

  



Introduction 

The reliable detection of peaks and troughs in physiological signals is essential to 

investigative techniques in medicine and computational biology and a prerequisite to many 

signal processing tasks. The challenge of accurate peak detection [1–3] is not unique to 

physiological signals and many solutions have been proposed in the literature ranging from 

simple window-thresholding [4] and wavelet transform techniques [5] to Hidden Markov 

Models [6], k-means clustering [7] and entropy-based techniques [8]. 

 

In neuroscience data the analysis of the intracranial pressure (ICP) waveform is a particular 

challenge and a number of algorithms [9,10] have been proposed. In particular, algorithms 

suitable for ICP peak detection must be suited to multi-scale features, changing waveform 

morphology with time and poor signal-to-noise.  

 

There is a recognized trade-off between the generalizability of peak detection algorithms 

(degrees of freedom), accurate peak detection (false positive and false negative peak 

detection rates) and computational runtime performance [11]. For the most general 

algorithms to achieve a good domain-specific peak detection rate they usually require 

significant parameter optimisation and long computational runtimes. The converse is also 

generally true, with algorithms designed exclusively for a domain-specific problem 

producing a better peak detection performance. 

 

Scholkmann et al [11] introduce an efficient and elegant algorithm for the automatic detection 

of peaks in noisy periodic and quasi-periodic signals, driven by their requirement to find 

peaks in near-infrared spectroscopy data. The Scholkmann algorithm (Original-Scholkmann) 

does not require any parameters, is fairly robust against high and low frequency noise and 



accurately detects peaks in quasi-periodic signals (provided that the highest frequency of 

oscillation is less than or equal to four times the frequency of the lowest in the signal). The 

algorithm is well-suited to ICP waveform peak detection tasks, however it is hampered by an 

inefficient computational runtime and sizeable memory requirement.  

 

In this work we adapt the algorithm of Scholkmann et al (Modified-Scholkmann) to 

dramatically improve runtime performance and memory storage requirements. We compare 

the peak detection rate and runtime performance of Modified-Scholkmann against Original-

Scholkmann and provide further practical suggestions to improve performance when 

analysing ICP waveform data.  

 

Materials and Methods 

The Scholkmann Algorithm (Original-Scholkmann) 

The Original-Scholkmann algorithm begins by calculating a local maxima scalogram (LMS) 

over a linearly detrended signal ! of length N, where ! = !!  1 ≤ ! ≤ !}. The LMS is a 

matrix of  !!"# = !
! − 1 scales (rows) against ! columns. If the value at time ! ∈

{1…!} and scale ! ∈ {1… !!"#} is locally maximal the matrix contains 0, otherwise it 

contains ! + ! (where ! ∈  ℜ is a uniformly-distributed random variable and ! ∈  ℜ is a 

constant).  

 

The LMC can be visualised more readily as an !!"# x ! matrix that marks the location of 

maxima at each scale (level of zoom). At scale ! = 1 the matrix will encode a local maxima 

at time ! if the signal value !! is greater than the signal values at adjacent positions, i.e. 

!! > !!!! and !! > !!!!. Likewike at scale ! = 2 the matrix will encode a local maxima at 



time ! if the magnitude of the signal at position, !! is greater than the signals at times ! − 2 

and ! + 2. This pattern continues up to scale !!"#. 

 

The LMS extends from the first scale (! = 1, highest or “finest” resolution) to scale 

! = !
! − 1 (a “low resolution” of approximately half the signal length). However, it is 

subsequently cropped to include only scales from 1 to !!"#$$%&, where !!"#$$%& is the scale 

containing the greatest number of maxima. In the final step of the algorithm the column-wise 

standard deviation is calculated across scales, and time points with a standard deviation of 

zero identify the locations of maxima (peaks). 

 

 

Optimizations necessary to produce Modified-Scholkmann 

A number of observations are necessary to optimize Original-Scholkmann. Firstly, the 

problem of peak and trough finding are equivalent: Troughs are found by inverting the 

original signal and applying the peak-finding algorithm. Hence, trough-finding can occur 

simultaneously at minimal additional computational cost.  Secondly, calculation of the LMS 

is costly; computational runtime and memory requirements have an ! !!  upper complexity 

bound. Thirdly, under most circumstances calculation of the LMS using scales up to 

!!"# = !
! − 1 is unnecessary. An appropriate upper scale bound can be parameterised in 

the algorithm and chosen using domain-specific knowledge. For ICP waveform data the 

empirical maximum scale is equivalent to around one quarter signal wavelength, dramatically 

reducing the LMS search space. 

Fourthly, calculation of uniform random numbers to populate the LMS is computationally 

expensive – the random numbers are only used during the final stage of the algorithm in the 

calculation of column-wise standard deviations. At the location of peaks the corresponding 



column of the LMS will be a zero vector and can be found through linear search, rendering 

the calculation of column-wise standard deviations and pseudo-random numbers 

unnecessary.  Finally, the LMS should only be calculated once per signal and cached to allow 

subsequent runs of the algorithm to complete in !(!) time. This is extremely useful when 

working with ICP waveforms since recursive application of the algorithm can be employed to 

identify the ICP  waveform sub-peaks !! to !! in linear time. 

 

Comparing Original-Scholkmann to Modified-Scholkmann 

The Modified-Scholkmann algorithm was developed and analysed in Matlab R2015b 

(MathWorks Inc., Massachusetts, USA) on a sixteen core 3.3GHz Intel Xeon PC with 32GB 

RAM running Ubuntu Linux v12.04LTS. The algorithm code is found in Appendix 1.  

 

Using a technique similar to Scholkmann et al [11], synthesised waveforms (periodic, quasi-

periodic and chirp sinusoids) were degraded with white Gaussian noise to achieve a range of 

test waveforms with signal-to-noise ratios as low as 5dB.  The synthesised waveforms were 

used to determine algorithmic performance and false positive and false negative peak 

detection rates were compared. The Multicomponent Simulated Noisy Signal defined by 

Scholkmann et al [11] was used in a 200-run Monte Carlo simulation to quantify the mean 

compute time with 95% confidence intervals for both algorithms. Further verification was 

performed using high-resolution electrocardiogram, arterial blood pressure and intracranial 

pressure waveforms from a local neurointensive care waveform database. 

 

 

 

 



Results 

The Modified-Scholkmann algorithm applied to the test suite has false positive (0%) and 

false negative (0%) detection rates that are comparable to Original-Scholkmann (Figures 1 - 

2) provided a suitable maximum scale parameter is chosen (see Discussion for details). 

Actual compute time for a 200-run Monte Carlo simulation using the Multicomponent Noisy 

Test Signal was 40.96 ± 0.020 seconds (mean ± 95% CI) for Original-Scholkmann and 1.81 

± 0.003 seconds (mean ± 95% CI) for Modified-Scholkmann, showing the expected 

improvement in runtime complexity.  

 

Discussion 

In the test suites a substantial improvement in compute time is seen from 40.96s for Original-

Scholkmann to 1.81s for Modified-Scholkmann. The Modified-Scholkmann algorithm 

introduces a single parameter !!"#, the maximum scale at which the LMS is computed, 

rather than deriving !!"# from the signal data length. The LMS calculation in Original-

Scholkmann is the single most expensive computation and efficiency gains in the LMS 

calculation can lead to substantial gains in runtime performance. The improved performance 

in Modified-Scholkmann relies on the periodic or quasi-periodic nature of physiological 

waveform signals – due to the periodicity of the signal it is unnecessary to search the 

scalogram for peaks at a scale greater than one cycle length, allowing the limitation of !!"# 

to a range much less than the signal length !. In this work an empirical range for !!"# for 

ICP waveform data was found to be equivalent to one quarter the waveform period. This 

reduces the algorithm’s maxima search space, reducing space and time complexity from 

! !!   in Original-Scholkmann to ! !" ≡  !(!) in Modified-Scholkmann. An 

improvement in efficiency of this magnitude is necessary to support real-time or near teal-

time analysis of neurological waveform data. 



 

A widening edge artefact is seen in the LMS at increasing scales because there is insufficient 

data to identify the location of ‘local’ maxima. This is a limitation of both algorithms 

(Original-Scholkmann and Modified-Scholkmann); they both usually fail to identify the first 

and last peak or trough in the signal. The use of larger signal lengths and overlapping 

multiple windows can substantially mitigate this effect. 

 

The original and modified algorithms are resistant to noise and operate at SNRs as low as 

5dB. At low SNRs both algorithms identify the expected peaks but with reduced location 

accuracy. This results from the tendency of both algorithms to identify the most prominent 

local maxima in the expected sub-region of interest (which is a necessary constraint for 

quasi-periodic signals), allowing the algorithm to be misled by occasional high-magnitude 

noise. 

 

The calculation of LMS is deterministic and results in a unique matrix for each signal that is 

amenable to memory or disk caching for later reuse. This acts as a simple method to improve 

runtime performance. Peak finding over a previously analysed signal can occur in linear time 

using the cached LMS. 

 

An important benefit of the Modified-Scholkmann algorithm is the ability to identify sub-

features within a signal. An example is the recursive application of the algorithm to identify 

ICP sub-peaks (Figure 3) where Modified-Scholkmann is used firstly to identify all troughs 

allowing individual waveforms to be spliced, and Modified-Scholkmann is reapplied to each 

spliced waveform (which is efficient because of LMS caching) to identify the three largest 



sub-peaks !!to  !!. Here, the deliberate choice of a small maximum scale increases the false 

negative detection rate, increasing the algorithm’s sub-peak detection sensitivity. 

 

Conclusions 

The accurate interpretation of neuroscience waveform data to identify peaks and troughs is 

crucial in signal parameterization, feature extraction and waveform identification tasks. 

Modification of a standard scalogram technique has produced a robust algorithm with linear 

computational complexity that is particularly suited to the challenges presented by large, 

noisy physiological datasets. The algorithm can be tuned for specific applications by 

optimising the optional parameter, can identify sub-waveform features with minimal 

additional overhead, and is easily adapted to run in real-time on commodity hardware. 
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Appendix 1 

The Matlab implementation of the Modified-Scholkmann algorithm (new_peak_trough.m): 

% ---------- 

% Physiology Feature Extraction Toolkit 

% Dr Steven Bishop, 2015-16 

% Division of Anaesthesia, University of Cambridge, UK 

% Email: sbishop {AT} doctors.org.uk 

% ---------- 

% PEAK_TROUGH_FINDER 

% 

% Based upon the algorithm by (with updates and optimisations): 

% Scholkmann F, Boss J, Wolk M. An Efficient Algorithm for Automatic Peak 

% Detection in Noisy Periodic and Quasi-Periodic Signals. Algorithms 2012 

% (5), p588-603; doi:10.3390/a5040588 

% ---------- 

% [peaks,troughs,maximagram,minimagram] = PEAK_TROUGH_FINDER(data, {max-interval}) 

% data: input data as vector 

% sampling_frequency (optional): sampling frequency of input 

% Returns: vectors [peaks, troughs, maximagram, minimagram] containing   

%  indices of the peaks and troughs and the maxima/minima scalograms 

 

function [peaks,troughs,maximagram,minimagram] = new_peak_trough(data, varargin) 

    N = length(data); 

     

    if nargin == 2 

        L = ceil(varargin{1}/2) - 1; 

    else 

        L = ceil(N/2) - 1; 

    end 

     

    %Detrend the data 

    meanval = nanmean(data); 

    data(isnan(data)) = meanval; 

    data = detrend(data, 'linear'); 

     

    Mx = zeros(N, L); 

    Mn = zeros(N, L); 

     

    %Produce the local maxima scalogram 

    for j=1:L 



        k = j; 

        for i=k+2:N-k+1 

            if data(i-1) > data(i-k-1) && data(i-1) > data(i+k-1) 

                Mx(i-1,j) = true; 

            end 

            if data(i-1) < data(i-k-1) && data(i-1) < data(i+k-1) 

                Mn(i-1,j) = true; 

            end 

        end 

    end 

     

    maximagram = Mx; 

    minimagram = Mn; 

      

    %Form Y the column-wise count of where Mx is 0, a scale-dependent distribution of 

    %local maxima. Find d, the scale with the most maxima (== most number 

    %of zeros in row). Redimension Mx to contain only the first d scales 

    Y = sum(Mx==true, 1); 

    [~, d] = max(Y); 

    Mx = Mx(:,1:d); 

     

    %Form Y the column-wise count of where Mn is 0, a scale-dependent distribution of 

    %local minima. Find d, the scale with the most minima (== most number 

    %of zeros in row). Redimension Mn to contain only the first d scales 

    Y = sum(Mn==true, 1); 

    [~, d] = max(Y); 

    Mn = Mn(:,1:d); 

       

    %Form Zx and Zn the row-rise counts of Mx and Mn's non-zero elements. 

    %Any row with a zero count contains entirley zeros, thus indicating 

    %the presence of a peak or trough 

    Zx = sum(Mx==false, 2); 

    Zn = sum(Mn==false, 2); 

     

    %Find all the zeros in Zx and Zn. The indices of the zero counts 

    %correspond to the position of peaks and troughs respectively 

    peaks = find(~Zx); 

    troughs = find(~Zn);  

end 

  



Figure Captions 

 

Figure 1: Panels	A–D	(Modified-Scholkmann	algorithm):		Detection	of	peaks	(red	stars)	and	

troughs	(blue	crosses)	in	sinusoids	degraded	with	white	Gaussian	noise	to	achieve	signal-to-

noise	ratios	(SNRs)	down	to	5dB.	Note	that	the	algorithm	can	miss	the	first	and/or	last	

features	in	a	signal	due	to	edge	effects	in	the	computed	scalogram.		

	

 

Figure 2: Panels	A–D	(Modified-Scholkmann	algorithm):		Detection	of	peaks	(red	stars)	and	

troughs	(blue	crosses)	in	chirp	sinusoids	(frequency	range	1Hz	to	3.8Hz)	degraded	with	white	

Gaussian	noise	to	achieve	signal-to-noise	ratios	(SNRs)	down	to	5dB.	Note	that	the	

algorithm	can	miss	the	first	and/or	last	features	in	a	signal	due	to	edge	effects	in	the	

computed	scalogram.		

	

Figure 3:  

Panel	A	(Modified-Scholkmann	algorithm):	The	detection	of	systole	(red	stars)	and	diastole	

(blue	stars)	in	a	continuous	recording	of	intracranial	pressure	(ICP),	sampled	at	240Hz	via	a	

Codman	ICP	Express	Monitoring	System	(DePuySyntheses,	Massachusetts,	USA)	and	pre-

processed	with	an	unweighted	25ms	moving-average	filter.	A	sliding	window	technique	is	

used	to	mitigate	scalogram	edge	effects	and	ensure	that	all	peaks	and	troughs	are	

accurately	detected.		

Panel	B	(Modified-Scholkmann	algorithm):	Recursive	application	of	the	algorithm	to	

individual	ICP	waveforms	delineated	by	trough-trough	interval	(blue	stars)	demonstrates	the	

correct	identification	of	individual	ICP	sub-peaks	P1	to	P3	(red	stars).  
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Panel D: Sinusoid (5dB SNR)
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Panel A: Chirp Sinusoid (Original)
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Panel B: Chirp Sinusoid (25dB SNR)
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