

warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/99207

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/99207
mailto:wrap@warwick.ac.uk

M
A

E
G
NS

I
T A T

MOLEM

U
N

IVERSITAS WARWICENSIS

Mining Previously Unknown Patterns in Time

Series Data

by

Zhuoer Gu

A thesis submitted to The University of Warwick

in partial fulfilment of the requirements

for admission to the degree of

Doctor of Philosophy

Department of Computer Science

The University of Warwick

September 2017

Abstract

The emerging importance of distributed computing systems raises the needs of

gaining a better understanding of system performance. As a major indicator of

system performance, analysing CPU host load helps evaluate system performance

in many ways. Discovering similar patterns in CPU host load is very useful since

many applications rely on the pattern mined from the CPU host load, such as

pattern-based prediction, classification and relative rule mining of CPU host

load.

Essentially, the problem of mining patterns in CPU host load is mining

the time series data. Due to the complexity of the problem, many traditional

mining techniques for time series data are not suitable anymore. Comparing

to mining known patterns in time series, mining unknown patterns is a much

more challenging task. In this thesis, we investigate the major difficulties of the

problem and develop the techniques for mining unknown patterns by extending

the traditional techniques of mining the known patterns.

In this thesis, we develop two different CPU host load discovery methods:

the segment-based method and the reduction-based method to optimize the

pattern discovery process. The segment-based method works by extracting

segment features while the reduction-based method works by reducing the size

of raw data. The segment-based pattern discovery method maps the CPU host

load segments to a 5-dimension space, then applies the DBSCAN clustering

method to discover similar segments. The reduction-based method reduces

the dimensionality and numerosity of the CPU host load to reduce the search

ii

space. A cascade method is proposed to support accurate pattern mining while

maintaining efficiency.

The investigations into the CPU host load data inspired us to further develop

a pattern mining algorithm for general time series data. The method filters out

the unlikely starting positions for reoccurring patterns at the early stage and

then iteratively locates all best-matching patterns. The results obtained by our

method do not contain any meaningless patterns, which has been a different

problematic issue for a long time. Comparing to the state of art techniques, our

method is more efficient and effective in most scenarios.

To my grandfather, Gu Youlai (1926 — 2017),

and to all who fought bravely for freedom in World War II.

Acknowledgements

Biggest thanks and gratitude go to my supervisor Dr. Ligang He, without whom

I would not have had the change to pursuing my research. His guidance will

always be my invaluable treasure.

Sincere thanks to my parents. It is their selfless care, support, and love that

make me who I am today.

Thanks to my fantastic lab-mates, Bo Gao, Chao Chen, Huanzhou Zhu,

Shenyuan Ren, Pengjiang, Junyu Li, Bo Wang, Mohammed Alghamdi and

Nentawe Gurumdimma who I shared fantastic time with. It has been a great

pleasure to work with them.

Special thanks to rainy Tocil Wood for teaching me a lesson that a tempting

path sometimes leads to nowhere, and you better head back before your shoes

stuck in mire.

v

Declarations

Parts of this thesis have been previously published by the author in the following:

• Z. Gu, C. Chang, L. He, and K. Li. Developing a pattern discovery model

for host load data. In Computational Science and Engineering (CSE), 2014

IEEE 17th International Conference on, pages 265–271. IEEE, 2014

• Z. Gu, L. He, C. Chang, J. Sun, H. Chen, and C. Huang. An efficient

method for motif discovery in cpu host load. In Fuzzy Systems and

Knowledge Discovery (FSKD), 2015 12th International Conference on,

pages 1027–1034. IEEE, 2015

• Z. Gu, L. He, C. Chang, J. Sun, H. Chen, and C. Huang. Developing

an efficient pattern discovery method for cpu utilizations of computers.

International Journal of Parallel Programming, pages 1–26, 2016. ISSN

1573-7640. doi: 10.1007/s10766-016-0439-0. URL http://dx.doi.org/

10.1007/s10766-016-0439-0

• S. Ren, L. He, H. Zhu, Z. Gu, W. Song, and J. Shang. Developing power-

aware scheduling mechanisms for computing systems virtualized by xen.

Concurrency and Computation: Practice and Experience, 29(3), 2017

In addition, the following works are either in progress:

• (Unsubmitted) Segmentation Clustering Based CPU Host Load Pattern

Discovery

vi

• (Unsubmitted) Exact Optimal Previous Unknown Time Series Pattern

Discovery

Sponsorship and Grants

• China Scholarship Council

viii

Abbreviations

CPU Central Processing Unit

DTW Dynamic Time Warping

DDTW Derivative Dynamic Time Warping

PAA Piecewise Aggregative Approximation

SAX Symbolic Aggregative approXimation

ASPL Approximate Similar Pattern Locating

AR AutoregRessive model

MA Moving Average model

ARMA AutoregRessive Moving Average model

ARIMA AutoRegressive Integrated Moving Average model

ARFIMA AutoRegressive Fractionally Integrated Moving Average model

HMM Hidden Markov Model

DFT Discrete Fourier Transform

DWT Discrete Wavelet Transform

LCSS Longest Common SubSequence

ECG Electrocardiograph

VM Virtual Machine

HPC High Performance Computing

PSR Phase Space Reconstruction

SVD Singular Value Decomposition

SAM Spatial Access Method

RIP Relative Important Point

ix

Contents

Abstract ii

Dedication iv

Acknowledgements v

Declarations vi

Sponsorship and Grants viii

Abbreviations ix

List of Figures xv

List of Tables xvi

1 Introduction 1

1.1 CPU Host Load, CPU Host Load Analysing, and Time Series

Unknown Pattern Discovery . 3

1.2 Challenges of Pattern Discovery in Time Series Data and CPU

Host Load . 5

1.3 Pattern Discovery in CPU Host Load and Time Series: Our

Contributions . 10

1.4 Thesis Organisation . 12

x

2 Literature review 14

2.1 Introduction . 14

2.2 CPU Host Load Analysis . 16

2.2.1 Statistical Features of CPU Host Load 16

2.2.2 Mining and Prediction of CPU Host Load 18

2.3 Time Series Data Mining Techniques 19

2.3.1 Similarity Measure . 19

2.3.2 Time Series Segmentation 22

2.3.3 Time Series Data Representation 24

2.3.4 Time Series Data Indexing 26

2.3.5 Time Series Clustering . 27

2.3.6 Similar Pattern Locating in Time Series Data 30

2.4 Summary . 31

3 Problem Formalisation 33

3.1 Definitions . 33

3.2 Similarity measure . 35

3.2.1 Euclidean Distance . 35

3.2.2 Dynamic Time Warping and Warping Path Constraint . . 35

3.3 The Similarity Inconsistency Problem 37

3.3.1 Similarity Inconsistency in Original Space 38

3.3.2 Consistent Similarity Measure 40

3.4 Noise Reduction of CPU host load 41

4 Clustering Based CPU Host Load Similar Pattern Discovery 43

4.1 Segmentation Based Data Representation 44

4.1.1 Noise reduction . 44

4.1.2 Segmentation . 44

4.1.3 Feature Extraction . 46

4.2 Pattern Discovery by Clustering 48

4.2.1 Clustering . 49

4.3 Experimental Evaluation . 50

4.3.1 Effectiveness of Pattern Discovery 51

4.3.2 The Choice of Parameters 53

4.3.3 Effectiveness of Distance Measure 56

4.4 Summary . 57

5 Reduction Based CPU Host Load Pattern Discovery 59

5.1 CPU Host Load Representation 60

5.1.1 Overview of PAA . 60

5.1.2 Overview of SAX . 62

5.1.3 The Refined Symbolic Aggregate Approximation Indexing 62

5.2 Similarity Measure . 65

5.3 Efficient Pattern Discovery . 68

5.3.1 Brute Force Pattern Discovery 68

5.3.2 Improved Pattern Discovery Algorithm 69

5.3.3 Cascade Pattern Discovery 70

5.4 Experimental Evaluation . 72

5.4.1 Mining patterns in Google Cluster Trace 73

5.4.2 Efficiency of Indexing . 73

5.4.3 Efficiency of Pattern Discovery 78

5.5 Summary . 80

6 Iterative Similar Pattern Discovery in Time Series Data 82

6.1 Creating Prior Knowledge for Patterns 83

6.2 Approximate Similar Pattern Position Locating 85

6.2.1 Naive Pattern Position Locating 85

6.2.2 Search Space Reduction 87

6.2.3 Invalid Results Reduction 89

6.3 Similar Pattern Discovery Based on Possible Starting Points . . . 91

6.3.1 Naive Similar Pattern Discovery 91

6.3.2 Iterative Exact Similar Pattern Discovery 93

6.4 Experimental Evaluation . 96

6.4.1 Locating Similar Patterns on Different Datasets 97

6.4.2 Performance . 103

6.5 Summary . 107

7 Conclusions and further work 108

7.1 Clustering Based CPU Host Load Pattern Discovery 109

7.2 Reduction Based CPU Host Load Pattern Discovery 110

7.3 Iterative Pattern Discovery of Time Series Data 111

7.4 Further Work . 112

Bibliography 114

List of Figures

1.1 Similar pattern discovery in two CPU host load 5

1.2 Four types of meaningless similar subsequences 7

1.3 Example of similarity inconsistency 8

1.4 Illustration of Gaussian filter retaining the tread of raw data . . 9

1.5 Illustration of noise impact . 11

1.6 The effect of noise on distance measure and effectiveness of Gaus-

sian filter . 12

2.1 A hierarchy of time series representations in the literature 24

3.1 Illustration of DTW distance . 38

3.2 Demonstration of similarity inconsistency 39

4.1 Physical meaning of feature vector 47

4.2 Typical cluster results of k-means clustering 52

4.3 Typical cluster results of top-down hierarchical clustering 53

4.4 Typical cluster results of DBSCAN clustering 54

4.5 Left: bottom-up hierarchical clustering result using our proposed

distance measure. Right: bottom-up hierarchical clustering result

using dynamic time warping. 57

5.1 A time series data reduced dimensionally by PAA and then sym-

bolised by SAX . 60

xiv

5.2 Normal probability plot of host load data 63

5.3 Cascade of different indexing technique for pattern discovery . . 71

5.4 Patterns discovered using host load a as reference 74

5.5 Indexing efficiency of three indexing methods with dimensional

reduce rate of 10 . 75

5.6 The proportional relation of efficiency between three indexing

methods with different dimensional reduction rates 77

5.7 The time spent by the two algorithms with different data sizes . 78

5.8 Time spent of cascade mining method under different patameter set 79

6.1 A visualization of algorithm 5 and 6 86

6.2 A visualization of algorithm 7 . 93

6.3 Cost matrix and local cost matrix of two example time series . . 94

6.4 Illustration of algorithm 8 . 95

6.5 A visualization of algorithm 9 . 97

6.6 Pattern discovery on inserted pattern dataset 100

6.7 Pattern discovery on RandomSines dataset 101

6.8 Pattern discovery on Web dataset 101

6.9 Pattern discovery on temperature dataset 102

6.10 Pattern discovery on CPU host load dataset 102

6.11 Pattern discovery on ECG dataset 103

6.12 Runtime of CrossMatch and our method on different datasets . . 104

6.13 Memory consumption of CrossMatch and our method on different

datasets . 105

6.14 Runtime comparison between CrossMatch and our method as a

function of dataset size . 106

6.15 Memory usage comparison between CrossMatch and our method

as a function of dataset size . 106

List of Tables

3.1 Distance of figure 1.3 case under our proposed consistent distance

measure . 41

4.1 Average Inner-cluster DTW Distance 55

4.2 Average Inter-cluster DTW Distance 55

5.1 Example of symbol distance look up table 66

6.1 Example of time series grouping compare 87

6.2 Parameter settings of each dataset 99

xvi

Chapter 1

Introduction

The last decade has been witnessing great changes in computing systems which

are gaining variety, availability, and performance rapidly. Types of computing

systems are now ranging from wearable and mobile devices like smartphones

and smartwatches to publicly available distributed computing systems such as

cloud platforms and clusters. Meanwhile, with the prevalence of mobile devices

and more accessible internet services, applications now tend to offload their

computations and even store data to servers. Cloud services are prevailing for

its cross-platform and device independent features due to the accessibility from

remote ends, despite the devices the clients are using.

Though the performance of modern computing systems is enhanced exponen-

tially on every aspect, the demands on these systems are also increased greatly

and the requirements to these systems are changed in many ways as well. With

a larger number and wider range of people employing local or remote computing

systems, the needs of exploiting potential from computing systems are gathering

consistent attention.

We focus on mining unknown patterns in CPU host load of cluster computing

system, which plays an important role in today’s real-world applications. Much

research has been conducted to enhance the performance of single machines,

distributed systems or clusters. An important approach to enhance the per-

1

1. Introduction

formance is analysing the features in the host load. In [43], Peter A. Dinda

defined the host load as the number of processes that are running or ready to

run. Later in [42], CPU host is the ratio of total time a CPU is occupied to the

measurement period. We adopt the latter definition as it matches with common

CPU usage measure method and intuitively more comprehensible.

Time series data are ubiquitous in the real world. Unlike static data that

mainly concern the values of the data, time series data are collected with time

and concern both values and changes of the data. The presence of time series

data ranges from stock market price chart to ECG, covers almost every aspect

of human activity. Not only a large portion of data collected in human history

is time series data, many static data mining problems can also be converted to

mining time series data to improve their efficiency or accuracy [155]. Therefore,

mining patterns in time series data is a more general and applicable task and

therefore, it has more potential value.

CPU host load is essentially time series data. Mining unknown patterns in

CPU host load closely relates to mining unknown patterns in time series data.

On the contrary, investigating pattern discovery in time series data helps many

time series pattern related applications including mining CPU host load. We

extend our interest to discover unknown patterns in time series data in later

part of this thesis. Though our work on mining CPU host load data can be

transferred to mining time series data with almost no effort, it is believed that

investigating time series pattern discovery has more significance.

The objectives of this thesis are two folds: we develop methods for mining

unknown patterns in CPU host load and propose novel methods for discovering

unknown patterns in time series data. In this chapter, we first introduce the

problem of mining unknown patterns in CPU host load data, then we extend

the discussion to time series data to reveal the necessity and difficulties of the

problem.

2

1. Introduction

1.1 CPU Host Load, CPU Host Load Analysing,

and Time Series Unknown Pattern Discov-

ery

As the major (if not the only) component that handles all the calculation, the

performance and usage of CPUs determine the performance of a computing

system to a great extent. In modern computing systems, performance evaluations

which partly rely on evaluating and estimating performance and usage of CPUs in

these systems are necessary for many applications. According to [8], performance

modelling has at least 4 applications:

1. System design. Systems designs vary when dealing with different types of

load, and distinguish these types often requires locating patterns in system

load.

2. System tuning. System load often involves different patterns which include

periodical subsequences, chaotic subsequences, and smooth subsequences.

In many cases, the occurrences of these subsequences are related in some

way. To analyse the relation to respond accordingly, pattern discovery

should be done in the first place.

3. Application tuning. Different applications bring different effects on the

system’s load, and these effects are likely to be in several different categories.

Analysing these patterns which are brought to CPU load can help gaining

performance for these applications.

4. System procurement. Analysing patterns in CPU host load helps to

understand the needs for a computing system which aids procuring systems

accordingly.

These applications all involve analysing and estimating CPU performance,

which depends on analysing CPU host load of the system. Existing work on

analysing CPU host load mainly concentrate on characterizing system workload

3

1. Introduction

and predicting CPU host load [41, 160]. The result can be useful for guid-

ing scheduling strategies to achieve high application performance and efficient

resource use [160].

However, locating patterns in CPU host load is less investigated. Discovery

of unknown patterns in CPU host load is the task that finds the start and

end positions of CPU host load subsequences that the two fond subsequences

are similar. Figure 1.1 is an example of CPU host load pattern discovery. It

is very useful to discover unknown repeated patterns in CPU host load of a

computing system. Essentially, the CPU host load is time series data [60]. Many

applications rely on pattern discovery in time series data [32], including:

1. The algorithms for mining association rules in time series data based on

pattern discovery [38, 74].

2. Classification algorithms that are based on building typical prototypes of

each class [70, 90].

3. Anomaly detection [39].

4. Finding periodic patterns [66].

Specifically, these applications of mining time series can easily find their

counterparts in mining CPU host load. The use of mining patterns in CPU host

load of a computing system includes but not limited to performance evaluation,

system tuning, job and task scheduling, power usage optimization, fault detection

and respond, CPU host load prediction and users’ using habit mining etc.

Time series data, include CPU host load data, are ubiquitous. As mentioned

previously, mining patterns in time series data is the subroutine of many real-

world time series data mining applications. In bioinformatics, DNA can be

regarded as time series data [9]. Patterns in DNA are often related to genes,

which dominates organisms’ characters. In astronomy, mined patterns from stars’

light intensity changes are used to classify these stars. In medical science, locating

abnormal ECG piece is based on the discovery of normal ECG subsequences in

4

1. Introduction

V
al

ue

x 104

1

0.5

0
0 3.724

 Length

(a) CPU host load 1

V
al

ue

x 104

1

0.5

0
0 3.724

 Length

(b) CPU host load 2

V
al

ue

2

 Length

2

0

-
1 340

(c) Found pattern in host load 1

V
al

ue

2

 Length

2

0

-
1 340

(d) Found pattern in host load 2

Figure 1.1: Similar pattern discovery in two CPU host load

ECG data. By mining regularity of location information series generated by a

smartphone user, a recommendation system is able to push accurate and useful

information such as traffic information or weather information to the user.

Locating patterns in time series data has attracted a lot of attention. However,

most of these existing work either require a predefined pattern and reduce the

problem to the time series indexing problem, or computationally expensive.

In reality, it is almost impossible for a domain expert to find all the patterns

in a large dataset by experience. Moreover, there exist some patterns which

are beyond the experts’ knowledge. Therefore, an algorithm is needed to find

unknown patterns automatically and efficiently. The algorithm should not require

either the prior knowledge of the length or shape of patterns.

1.2 Challenges of Pattern Discovery in Time Se-

ries Data and CPU Host Load

Comparing to mining patterns in CPU host load data, mining patterns in time

series data is a more general problem and, if there is such a method that can

discover unknown patterns in time series data, we can modify and apply it to

CPU host load. Due to the ubiquity of time series data, many real-life data

5

1. Introduction

mining tasks reduce to the tasks of mining time series data. These tasks often

relate to locating known patterns in time series data or discovering common

subsequences, or unknown patterns in time series data. Locating known patterns

in time series data has drawn much attention in the last decades and the problem

has been solved in many ways [2, 28, 57, 79]. However, the problem of discovering

previously unknown patterns in time series database remains less focused.

As mentioned in [108] and [32], many applications rely on discovery of

unknown patterns in time series data. In these applications, the task of locating

unknown patterns in time series data reduces to the basic problem of discovering

longest common subsequence pairs, also known as patterns, in two time series

data. Figure 1.1 illustrates the problem intuitively, figure 1.1c and figure 1.1d

are a pair of similar patterns found in time series 1 and time series 2 respectively.

Given the needs and importance of mining previously unknown patterns in

time series data, an obvious method is using nested loops to compare all possible

time series subsequences and find out those similar pairs. However, the time

complexity of this brute force algorithm is as high as O(n6) [60, 62]. Though

optimized by several methods [108], the approach is still unacceptable for mining

patterns on large datasets. The reasons for the high complexity of a naive

method should be owing to the fact that we do not have advance knowledge of

the pattern we are to discover. Specifically, they are:

1. Position of the pattern. If we are able to acknowledge the positions or

possible positions of patterns, the similarity measure can only be performed

on these positions to find out whether they are similar to avoid unnecessary

computation.

2. Length of the pattern. With the knowledge of pattern length, we can

also increase mining efficiency greatly by removing those longer or shorter

candidate subsequences from search space.

3. Shape of the pattern. If the shape of the pattern is known, the problem

will reduce to search best match content by a given query problem, which

6

1. Introduction

has been solved in many ways.

The brute force method also produces a large number of meaningless results.

Figure 1.2 illustrates four typical meaningless results. Figure 1.2a,1.2b and 1.2c

illustrate subsequences pairs that have relatively low distance value but are not

intuitively similar, and figure 1.2d shows one subsequence (blue) is similar to

two subsequences (red) from almost same positions of a time series. For the

brute force method, picking out useful and accurate results from all results is

even a more difficult task.

V
al

ue

 Length

3

2

1

0

-1

1 100

(a) Short similar subsequences

V
al

ue

 Length

3

2

1

0

-1

1 300

(b) Similar subsequences with extreme lengths
differnence

V
al

ue

 Length

3

2

1

0

-1

1 300

(c) Over-warped similar subsequences

V
al

ue

 Length

3

2

1

0

-1

1 300

(d) Trivial matches

Figure 1.2: Four types of meaningless similar subsequences

Another problem of finding patterns with arbitrary lengths of is that most

similarity measures are no longer practicable. For example, the two most

commonly used distance measures, Euclidean distance and Dynamic Time

Warping(DTW) distance tend to give higher distance value for the longer pair

7

1. Introduction

of time series being compared and lower distance value for the shorter pair of

time series being compared. We use a simple experiment to show the effect of

similarity bias as in figure 1.3.

V
al

u
e

V
al

u
e

V
al

u
e

TS128'

TS128

TS32'

TS32

 Length Length

 Length

2.5 2.5

2 2

1.5 1.5

1 1

0.5 0.5 TS64'

TS64
0 0

1 128 1 64

2.5

2

1.5

1

0.5

0
1 32

Length 128 64 32

Euclidean 4.20 2.80 1.89

DTW 2.10 1.45 1.15

Figure 1.3: Example of similarity inconsistency. Top left: similar time series of
length 128. Top right: similar time series of length 64. Bottom left: similar time
series of length 32. Bottom right: Euclidean and DTW distance of the 3 time
series.

In figure 1.3, we use a pair of similar time series as our example. The lengths

of the data are originally 128 (top left), and we downsample the data to produce

their shorter versions: top right with length 64 and bottom left with length

32. We measure the distance between the two time series in each pair with two

mostly used distance measures, Euclidean distance and Dynamic Time Warping

distance. Results show that though there is no obvious difference in similarity for

each pair, their distances vary significantly. The properties of traditional distance

measurements make mining patterns with different lengths almost impossible.

To summary, mining unknown patterns in time series data is a difficult

problem due to its nature of high complexity caused by lack of prior knowledge

8

1. Introduction

and the exponential increase of problem scale.

Given the difficulty, some work related to pattern discovery has been done

on time series data. However, mining CPU host load has its specific challenges.
C

P
U

 U
sa

ge

Raw Host
Load Data

Gaussian
Filtered
Data

40%

30%

20%

10%

0%
1 101 201 301 401

 Length

Figure 1.4: Illustration of Gaussian filter retaining the tread of raw data

CPU host load data are very noisy as shown in figure 1.4. The existence of

noise in host load data could compromise the effectiveness of many data mining

algorithms. Reduce or remove noise from data is necessary before any other

data analysing task. As shown in figure 1.5, although one can easily identify the

trend of a time series with noise, the presence of noise makes it very difficult for

traditional similarity measure to produce consistent results as shown in figure

1.6. In [32], the authors illustrate that the pulse noise greatly affects similarity

measure and casts difficulties in time series data mining. For similar reasons, the

continuous noise will also reduce the effectiveness of classic similarity measure.

We conducted experiments and compared two time series data using two

most classic similarity measures, Euclidean distance and Dynamic Time Warping

(aka. DTW) distance. These two distance measures are widely used in many

time series data mining techniques. The two selected time series data are three

periods of sine waves and its slightly shifted version. They have similar trends

and therefore should be considered as similar patterns. Figure 1.5 illustrates the

9

1. Introduction

experiment. Figure 1.5 a presents the two raw time series. Figure 1.5b is the

noisy version of the time series in figure 1.5a. In figure 1.5c we can see that the

original time series data are restored from the noisy data in figure 1.5b. The

results of distance measurements are shown in figure 1.6. By adding Gaussian

noise with the variance of σ2, the effectiveness of both DTW distance and

Euclidean distance measures are compromised severely. However, the Gaussian

smoothed data have almost the same distance as the distance of raw data. These

results indicate that when the noise is big enough, applying distance measure

to untreated noisy data can no longer identify any similarity between two time

series.

Another problem of discovering motifs for CPU host load is that the host

load data do not obey the Gaussian distribution. This property of host load data

weakens several effective indexing methods used for time series data. In [105],

Lin et al. propose a promising symbolic indexing method for the time series

data, which assumes that the time series data follow the Gaussian distribution.

However, our observation shows that CPU host load do not obey Gaussian

distribution. We compare the host load data with the Gaussian distribution in

figure 5.2. It can be seen that more host load data points are at the lower end

of the value range of the Gaussian distribution.

Given the challenges we are facing in mining time series patterns and CPU

host load patterns, it is clear that CPU host load mining methods should solve

these problems to present good results.

1.3 Pattern Discovery in CPU Host Load and

Time Series: Our Contributions

CPU host load pattern discovery is a fundamental problem of multiple computing

system applications. As stated previously, discovering patterns in CPU host load

faces several difficulties. Though much research has addressed these problems,

however, existing research either focuses on locating known patterns or requires

10

1. Introduction

Figure 1.5: Illustration of noise impact: a) Raw data, b) Raw data with noise,
c) Gaussian smoothed data

knowledge beyond one can provide in most scenarios.

In this thesis, we first extend the existing research and propose two different

methods for mining unknown patterns in CPU host load, then present a novel

method for mining unknown patterns in time series data.

The initial idea to discover patterns in CPU host load within a reasonable

time is to apply divide-and-conquer method. Specifically, to avoid the high

dimensionality problem of CPU host load data, a segmentation method is first

applied to the data and each segment is then regarded as the minimum unit

of CPU host load. By finding similarities of these segments using clustering

method, it is possible to discover patterns from CPU host load.

Given the fact that segmentation method may damage the continuity of CPU

host load and leads to the incapability of discovering all patterns, another effective

method is to reduce the dimensionality of CPU host load by representing the

data to a lower dimension. This concept motivates our dimensionality reduction

based method for discovering patterns in CPU host load data. By applying

several acceleration techniques we are able to find all patterns from CPU host

load in reasonable time.

Though the above-mentioned work can also be applied to other time series

11

1. Introduction

Figure 1.6: The effect of noise on distance measure and effectiveness of Gaussian
filter

data, their applications are limited to mining fluctuating time series data. With

the growing depth of our research, we find that it is necessary to propose a

general time series pattern discovery method which, to the best of our knowledge,

is neglected in the literature. Existing work in this field either requires prior-

knowledge of pattern length or is computationally expensive. Our proposed

method is able to discover unknown patterns of any lengths and shapes, and

requires only two parameters as input. The method is proved to be efficient and

robust to parameter settings.

More details of our work can be found in later chapters.

1.4 Thesis Organisation

This chapter provides a brief introduction to problems we are addressing as well

as challenges we are facing. The next chapter, Chapter 2 reviews related work

on distributed computing, data mining especially time series data mining and

related machine learning techniques.

Background knowledge lies in Chapter 3. This chapter not only introduces

some commonly used knowledge or notions in later chapters for the ease of

12

1. Introduction

further discussion, it also contains part of our work on solving general and basic

problems of CPU host load pattern discovery and time series pattern discovery.

Our contributions in this chapter are consistent similarity measure and CPU

host load noise reduction, which are applied many times in later chapters and

proved to be effective.

Chapter 4 proposed a CPU host load pattern discovery method based on

segments clustering in feature space. Chapter 5 resolves the host load pattern

discovery problem from a raw data reduction perspective. Lastly in Chapter 6

an exact and best-match unknown pattern mining method for time series data

is proposed.

Chapter 7 concludes our work and suggests further research directions.

13

Chapter 2

Literature review

2.1 Introduction

In the past decades, analysing the performance of computing systems has drawn

much attention. Specifically, performance modelling for a computing system can

be used to gain a greater understanding of the performance phenomena involved

and to project performance to other system/application combinations [8]. Mining

and analysing CPU host load is one of the major components of evaluating the

performance of a computing system. Much research has been conducted in this

area.

Much work has been done on characterizing workload which includes mod-

elling CPU host load [23, 33]. The existing work with respect to CPU host load

mainly focuses on predicting CPU host load of a variety of computing system

due to the needs (e.g. job scheduling, energy saving etc.) of knowing future

CPU host load [13, 16, 45, 103]. Many methods have been proposed to predict

CPU host load. The most used method is applying classic linear model like AR,

MA, ARMA, ARIMA, and ARFIMA [21]. Other methods include neuro-fuzzy

network, Bayesian model, Hidden Markov Model etc.

Though with the sheer volume of research addresses predicting host load,

mining unknown similar patterns in CPU host load remains less focused. As a

14

2. Literature review

subcategory of time series data, techniques and concepts proposed in time series

data mining can often be applied to mining CPU host load. Many techniques

for predicting time series are transferred to predicting CPU host load, however,

mining unknown similar patterns is barely investigated in the domain of time

series data mining. Existing research on time series data mining contains the

following aspects:

1. time series similarity measure [30]. Similarity measure compares two time

series and gives a value that represents the similarity of the two time series.

The similarity measure is of fundamental importance in time series data

mining and it attracts much attention.

2. Time series segmentation [157]. Given a long time series, it is often

necessary to segment the time series under different methods for further

processing e.g. indexing, clustering etc.

3. Time series data representation [105, 157]. Represent the original time

series data with another representation can reduce the storage needed,

remove noise and remain the features of time series in the meantime.

4. Time series indexing [105, 106]. Indexing time series is to respond to a

given time series query with the most similar time series or time series

subsequence in a time series database.

5. Time series clustering [84]. Clustering analysis of time series locates

different types of time series. Time series clustering methods involve

the method of similarity measure, time series representation, and data

clustering method itself.

6. Time series classification [90]. Time series classification methods investigate

how to label unlabelled time series data fast and accurately when given a

labelled time series dataset.

7. Similar pattern locating in time series [141]. Locating unknown subse-

quences from time series dataset is to find similar subsequences from

15

2. Literature review

different time series.

For our CPU host load pattern discovery propose, we concern time series simi-

larity measure, segmentation, representation, indexing, clustering and pattern

discovery. The rest of this chapter reviews two categories of current literature:

CPU host load analysis and time series data mining.

2.2 CPU Host Load Analysis

Performance estimation and optimization of computing systems has attracted

many researcher’s interest [64, 101, 102, 153]. Analysing and mining CPU host

load of a computing system are very important for further optimization tasks.

Much research has been conducted on CPU host load.

2.2.1 Statistical Features of CPU Host Load

In [43], Dinda analysed several statistical properties of CPU host load collected

from a working cluster. The analysis found several statistical properties of CPU

host load as follows:

1. The traces exhibit low means but very high standard deviations and

maximums. This implies that these machines have plenty of cycles to spare

to execute jobs, but the execution time of these jobs will vary drastically.

2. Absolute measures of variation are positively correlated with the mean

while relative measures are negatively correlated. This suggests that it

may not be unreasonable to map tasks to heavily loaded machines under

some performance metrics.

3. The traces have complex, rough, and often multimodal distributions that

are not well fitted by analytic distributions such as the normal or expo-

nential distributions, which are particularly inept at capturing the tail

of the distribution. This implies that modelling and simulation that as-

16

2. Literature review

sumes convenient analytical load distributions may be flawed. Trace-driven

simulation may be preferable.

4. Load is strongly correlated over time but has a broad, almost noise-

like frequency spectrum. This implies that history-based load prediction

schemes are feasible, but that linear methods may have difficulty. Realistic

load models should capture this dependence, or trace-driven simulation

should be used.

5. The traces are self-similar with relatively high Hurst parameters. This

means that load smoothing will decrease variance much more slowly than

expected. It may be preferable to migrate tasks in the face of adverse load

conditions instead of waiting for the adversity to be ameliorated over the

long term. Self-similarity also suggests certain modelling approaches such

as fractional ARIMA models and non-linear models which can capture the

self-similarity property.

6. The traces display epochal behaviour in that the local frequency content of

the load signal remains quite stable for long periods of time and changes

abruptly at the boundaries of such epochs. This suggests that the problem

of predicting load may be able to be decomposed into a sequence of smaller

subproblems.

In [41], Di et al. analysed some statistical properties of CPU host load data

in a Google cluster [149] and compared it to another grid system. According

to their research, Google hosts maximum CPU load is often close to the CPU

capacity, and the maximum memory usage is about 80% of the memory capacity.

The maximum load is actually controlled in the Google system for guaranteeing

the service level of requests in case of unexpected load spikes. In contrast,

Grid resources can be highly utilized without having a high risk of losing users

or customers. Meanwhile, CPU and memory usage changes every 6 minutes,

indicating again the volatility of load. CPUs are often idle, but memory usage

17

2. Literature review

is relatively high. CPU usage in Grids is higher and more stable. The noise of

CPU load in the Google cluster is 20 times as high as that in Grids.

Zhang et al. [160] found that host load exhibits the extremely periodical

patterns in short terms, while in a long period, the pattern of host load changes

dramatically.

2.2.2 Mining and Prediction of CPU Host Load

Mining and predicting CPU host load can help improving the performance of

a computing system in many ways and thus attracted much interest. Much

research has been done on the characterization of workload. Various models

have been proposed to characterise workload. Maria et al. [23] summarized

the modelling as 5 steps: 1) formulation, 2) collection of the parameters, 3)

statistical analyses of the measured data, and 4) representativeness.In [33], Cirne

et al. proposed a comprehensive model for supercomputer workload. Different

techniques of modelling workload to estimate performance of a computer system

are proposed [7, 10, 36, 48].

Khan et al. [94] identified different types of CPU work load of virtual machines

(VMs) of a cloud computing system. The authors applied a novel co-clustering

analysis to group VMs with different host load changing patterns. Predictions

of future system performance can be used to improve resource selection and

scheduling [160]. Much work has been proposed on predicting CPU host load.

Linear models are most used in predicting CPU host load. Specifically, these

models are AR, MA, ARMA, ARIMA, and ARFIMA which are commonly used

in predicting time series [21]. Peter A. Dinda tried to predict host load by using

linear models [45], which reveals that host load is strongly autocorrelated. The

author further evaluated all linear models for host load prediction in [44]. Their

study strongly shows that host load on a real system is predictable to a very

useful degree from pat behavior by using linear models. Zhang et al. [160, 161]

applied a modified polynomial fitting to CPU host load data with consideration

of sudden changes of CPU host load to reduce the error rate of prediction.

18

2. Literature review

Beside linear models, other prediction techniques are also applied to CPU

host load. Di et al. [42] proposed a Bayesian model-based method to predict

host load. Khan et al. [94] used Hidden Markov Model (HMM) and achieved

higher prediction accuracy. In [152], Yang et al. proposed a novel method for

CPU host load prediction. The method uses phase space reconstruction (PSR)

to extract features of CPU host load, and then uses the genetic algorithm to

optimize parameters of the phase space reconstruction process. In a distributed

computing system, the nature of CPU host load varies with different physical

machines. Bey et al. [13, 15, 16] tried to distinguish different types of CPU

host load using clustering method and then apply adaptive network based fuzzy

inference system to each individual cluster of host load to predict CPU host

load. Cao et al. [24] also addressed the problem of different host load types and

applied dynamic ensemble model to adjust prediction parameters dynamically. A

tendency based prediction method is proposed in [151] for one-step-ahead CPU

host load prediction. Another tendency based long-term prediction method is

proposed in [103].

2.3 Time Series Data Mining Techniques

In the last decades, many time series data mining techniques have been proposed.

The most fundamental tool is similarity measure. Much research also segments

time series for further processes to reduce the complexity of the problem. Sim-

ilarly, indexing time series and dimensional reduction of time series data also

help reduce the resource required of a time series data mining task. Clustering

methods are commonly used in time series classification and similarity detection.

2.3.1 Similarity Measure

Similarity measure, also known as distance measure, is of fundamental importance

for time series data mining. Similarity measure is a function d = D(x, y) where

d is a value that reflects how similar the time series x and y are. A large number

19

2. Literature review

of similarity measure methods have been proposed for general or specific time

series similarity measure.

According to [49], an ideal similarity measure should provide the following

properties:

1. It should provide a recognition of perceptually similar objects, even though

they are not mathematically identical.

2. It should be consistent with human intuition.

3. It should emphasize the most salient features on both local and global

scales.

4. A similarity measure should be universal in the sense that it allows to

identify or distinguish arbitrary objects, that is, no restrictions on time

series are assumed.

5. It should abstract from distortions and be invariant to a set of transforma-

tions.

The most well-known measure is Euclidean distance. Euclidean distance is a

simple similarity measure which has good applicability in many real-life problems.

Essentially, Euclidean distance is a Lp norm distance measure. Much research has

pointed out the defects of Lp norms [46, 83, 156]. Though with many drawbacks,

Euclidean distance is still widely adopted in many applications [32, 51, 87] and

can still produce reasonably good results due to its simplicity and efficiency.

Some techniques have been proposed to improve the robustness of Euclidean

distance. Golding et al. [59] proposed a preprocessing step to handle noise and

scaling problems under Euclidean distance.

Dynamic Time Warping (DTW) [14, 118, 148] are able to measure the

distance between different subsequences with different lengths. The method

elastically aligns peaks and valleys of time series despite their exact positions

are slightly different.

20

2. Literature review

DTW distance is robust and widely applicable, but its time and space

complexity is much higher than Euclidean distance [85]. Keogh et al. [85]

proposed a method to reduce its requirements to the computational resource.

Several constraint methods have been proposed to optimize DTW. Early in

the 1970s, Itakura et al. [76] and Sakoe et al. [133] proposed two constraint

methods respectively which can be applied to cost matrix of DTW to improve

its performance on speech recognition. Ratanamahatana et al. [129] proposed an

adaptive constraint to DTW for increasing accuracy in DTW based time series

classification.In [134], Salvador et al. proposed Fast DTW which first reduce

dimensionality of time series and apply DTW to acquire a guess of warping

path, then project the path to the original dimension of the two time series to

be measured, with further process to refine the path to make it close to the real

warping path. To prevent over-warping of DTW, DDTW [92] is proposed to

find the best alignment rather than the lowest cost alignment. In [116], DTW is

used for retrieve time series data.

Beside Euclidean distance and DTW distance which are shape based distance

measure, there are other types of distance measure: edit based distance measure,

feature based distance measure, structure based distance measure, model based

distance measure and compression based distance measure.

Edit based distance measure compares the minimum operations required

to transform one time series to another [49]. Longest Common SubSequence

(LCSS) [20, 37] is a typical edit based distance measure. This method measures

similarity by observing the extent of introducing outliers, scaling, translation,

adding or removing some data points to transform one time series to another.

Several improvements on LCSS were also proposed [114, 143, 144].

Feature based distance measure compares parameters which reflect some

features of time series data. Measuring similarity by comparing coefficients of

DFT [78, 139] or DWT transformed time series have been proposed. Zeng et

al. [157] also proposed a similarity measure based on extracting features from

segments of time series.

21

2. Literature review

Several other similarity measure methods are also proposed in recent decades.

Structure based similarity measure [104] aims to identify higher level similarity

among time series which overcomes the incapability of traditional Euclidean

distance and DTW distance. Model based similarity measure assumes time series

follow some underlying models. Once the model has been used to achieve best

fit to time series, measuring similarities are comparing the coefficients of that

model. These models include HMM [57, 150], ARIMA [150]. Compression based

similarity measure [40, 89] is rooted in the fact that the compressing ratio of

compressing similar data is higher than that of dissimilar data.

2.3.2 Time Series Segmentation

The continuity nature makes it difficult to manipulate and analyse the time series

data [55]. To find similar patterns in time series data, one feasible approach

is to classify the segmented data pieces, also known as subsequences, by their

similarities (i.e., distances). Major segmentation methods can be divided into

three categories: sliding window, top-down and bottom-up [88].

Sliding window segmentation

The sliding window method is among the most used methods [35, 68, 125, 146].

Under sliding window method, a segment of time series grows until certain

criteria are met citechen2005making. Though in [84] clustering width-fixed

sliding window segments is shown to be meaningless, however, many other sliding

widow segmentation methods are proved to be effective and efficient [34, 56].

[96] suggests that for some time series data, it is possible to speed up the

sliding window process by increasing the step length to a certain value rather than

1. Another optimization of sliding window segmentation is proposed by [145].

Vullings et al. [145] suggest that the window width can be given by estimating

the residual error of value at average segment length, then increase or decrease

to a better window width until the optimum is reached. This method accelerates

sliding window segmentation greatly.

22

2. Literature review

In [121] Park et al. proposed a novel method which segments time series by

their monotonicity. The method segments time series to subsequences which are

monotonously increasing or decreasing. Obviously, this method is applicable only

to smooth time series, as for noisy time series, the method will produce too many

very short subsequences unless a noise reduction step is applied beforehand.

In [157], a time series segmentation method based on relative important

point is proposed. Since relative important points are those local minimums

and maximums, where are also noise has the most influences on, so the method

cannot be applied to noisy data. Obviously, the method produces subsequences

with different lengths. Also, one segmenting algorithm cannot fit all data and

show satisfactory performance in all applications [83].

Several other sliding window segmentation algorithms are also popular in the

medical data domain for its online nature [75, 96, 145].

Top-down segmentation

The top-down segmentation partitions time series until some criteria are met.

In [47] Douglas et al. proposed a top-down segmentation algorithm which is

well-known in cartography. Ramer et al. proposed a similar algorithm in the

field of image processing to approximate curves with polygons [127].

[100] use top-down algorithm to give multiple abstractions of time series

data for data mining. In [139] Shatlay et al. use top-down segmentation method

to support time series indexing for large data set. In [119] Part et al. proposed a

segmentation method which first locates all local maximum and minimum data

points and then applies top-down segmentation for each segment.

Top-down segmentation can also be applied to text data [98] to discover the

effect of news to the financial market.

Bottom-up segmentation

Unlike the top-down method, the bottom-up segmentation merges data points

of a time series to form segments to met some stopping criteria.

23

2. Literature review

Time Series Representation

Data Adaptive Non Data Adaptive

Sorted
Coefficients

Singular
Value

Decomposition

Symbolic Trees Wavelets Random
Mappings

Spectral Piecewise
Aggregate

Approximation

Piecewise
Polynomial

Data Dictated Model Based

Hidden
Markov
Models

Statistical
Models

Clipped Data

Figure 2.1: A hierarchy of time series representations in the literature

[90, 91] tried to index time series data with bottom-up segmentation and

proposed a similarity measure based on the method to respond to the pathological

output traditional Euclidean distance can give. In [93], Keogh et al. proposed a

bottom-up linear segmentation method to probabilistically match patterns in

time series data. In the field of medical science bottom-up segmentation method

also used to represent medical data in higher level [73].

2.3.3 Time Series Data Representation

The problem of represent time series has attracted much attention in recent

decades [4, 71, 131, 137]. According to [105], time series representation methods

fall into several categories as shown in figure 2.1.

Essentially, representing time series data is transforming time series data to

another dimensional space, typically a lower dimensional space, from its original

space under a certain transform function. Represented time series can then be

used for further tasks like indexing, clustering, and classification. Different time

series representation methods are proposed for specific or general time series

data types. As in figure2.1, most of them can be classified into three categories:

data adaptive, non data adaptive and model based.

Non data adaptive representation remains the same parameters regardless

the type and value of data. Faloutsos [51] proposed a Discrete Fourier Transform

(DFT) based time series representation. Chan et al. proposed a Discrete Wavelet

Transform (DWT) based time series representation in [28]. A number of wavelets

24

2. Literature review

have been applied to DWT methods. Chan et al. proposed a representation uses

Haar wavelet [27] and [124] applied Daubechies wavelet. Coiflets wavelet also

used to represent time series [138]. These methods transform time series from

the time domain to frequency domain to utilize frequency information of time

series.

In [128] Ratanamahatana et al. proposed a time series representation which

uses bits to represent time series. The representation method can greatly reduce

the space required for some time series data mining tasks, however, for most time

series mining tasks, the representation is too coarse. Keogh et al. [87] proposed

Piecewise Aggregate Approximation(PAA) which represents each time series

subsequence of equal lengths with a constant value.

Data adaptive representation method changes its parameters adaptively with

different data. Several piecewise linear representation of time series data is

proposed in [58, 86, 139]. Adaptive Piecewise Constant Approximation method

which is extended from PAA represents time series time series subsequences

of varying lengths with constant values to gain accuracy. These methods have

been popular for their simplicity and efficiency. SAX [105] also extends PAA

to a data adaptive representation. The method uses symbols to represent time

series rather than values, each symbol denotes a range of values. The value

range of each symbol is adaptive to the change of time series data to guarantee

the approximately same occurrence probability of these symbols. However, as

suggested by [22], SAX representation does not guarantee the equiprobability

of symbol occurrences in the original space of the time series data. This defect

may further hamper the effectiveness of the representation method and any data

mining algorithms that are based on it.

Singular Value Decomposition (SVD) is also used for time series representa-

tion [86]. This method is able to filter out noise while maintaining the trend of

time series data.

Model based time series representation assumes that time series can be

produced by a proper model. This representation tries to find the best fit model

25

2. Literature review

of a time series and represent the time series by parameters under that model.

Kalpakis et al. [79] applied ARIMA model to time series. Markov Chains [136]

and Hidden Markov Model [117] are also used to represent time series.

2.3.4 Time Series Data Indexing

Indexing time series data relates closely to represent time series data. Indexing

time series is retrieving the most similar time series or time series subsequence

from a time series database with a given time series query. Many time series

indexing methods have been proposed in the literature [11, 12, 105].

According to [51] and [87], an indexing method should be much faster than

sequential scanning, require little space overhead, able to handle queries of

various lengths, allowing insertions and deletions without rebuilding the index,

no false negative reports and able to adapt to different distance measures.

A time series with n data points can be regarded as a point in an n-dimensional

space. This concept leads to indexing time series with Spatial Access Methods

(SAM) such as B-trees [11] and R-tree [12]. These methods are not designed

specifically for high dimensional and sequential data which are nature of time

series data, thus their effectivities are greatly degraded when dealing with time

series data [19, 26].

A suffix tree [65] based indexing method is proposed by Part et al. [120].

The method is based on the fact that distance computation compares the prefix

firstly, then suffix. Though this method is efficient and effective in some way,

it is difficult to index long time series or similar time series with little distance

differences. The GEMINI [51] method is compatible with any dimensionality

reduction method to speed up indexing process. Similarly [156] proposed an

indexing method that can use arbitrary Lp norms distance measure.

[85] introduced the concept of lower bounding for time series indexing method.

The lower-bounding feature of an indexing method can provide exact indexing.

A symbolic aggregate approximation (SAX) representation proposed by Lin

et al. [105]. The method reduces the time series dimensionality by applying

26

2. Literature review

Piecewise Aggregate Approximation (PAA) [87], and then symbolises each PAA

segment to obtain a discrete representation. The method provides quick indexing

speed and requires little space. This method is lower-bounded which guarantees

no false-positive matches.

Agrawal et al. [2] adopted Discrete Fourier Transformation to index time

series data which indexes the frequency information of time series rather than

time domain. Keogh et al. proposed adaptive piecewise constant approximation

in [86] to index large time series database. The method approximates each

time series by a set of constant value segments of varying lengths such that

their individual reconstruction errors are minimal. In [87] a dimensionality

reduction method, piecewise aggregate approximation is proposed. The method

reduces time series dimensionality by resampling time series data. Keogh et

al. [85] proposed an index method which adopts DTW distance while maintaining

indexing speed. A fast indexing method which is capable to mine trillions of

time series subsequences under DTW distance is proposed in [126]. In this work,

many acceleration methods are developed to improve the speed of DTW measure

and indexing.

In [90], the influence of noise on mining time series data is shown. Some

noise resistant mining algorithms are proposed [106] to work with time series

data with heavy noise.

2.3.5 Time Series Clustering

Clustering is the process of finding natural groups, called clusters, in a dataset [49].

The aim of clustering time series is to find time series that share the similar

properties and are distinctive from other time series. Naturally, one can either

cluster whole time series or time series subsequences in a time series dataset.

Though as mentioned clustering sliding window segmented time series [29] has

shown meaningless [84], clustering of whole time series or non-sliding window

segments still produces meaningful and applicable results.

Clustering is an unsupervised machine learning technique. As a generic data

27

2. Literature review

mining technique, many clustering methods have been proposed [53, 54, 80, 99].

According to [67], clustering algorithms can be classified into five categories:

partitioning methods, hierarchical methods, density-based methods, grid-based

methods and model based methods. The brief explanation of each category is as

follows.

Given a dataset with n data elements, a partition-based clustering method

assign each data element into k groups where k ≤ n so that each group contains

at least one element. Among all these partition-based clustering methods, hard

clustering methods assign an object exactly to one group and soft clustering

assign an object a label which records how much degree the object belongs

to each group. k-means [110] is a typical partition-based algorithm. k cluster

centres are given at the beginning of the algorithm, and each data element is

then allocated to its nearest cluster centre. The position of each cluster centre is

adjusted to the centre of data elements which are allocated to it. The process

keeps looping until all cluster centre convergent to a certain position. Instead

of using a centre position as the centre of a cluster, k-medoids [82] uses the

most central data element as the representation of the cluster centre. Fuzzy

c-means [17] and fuzzy c-medoids [97] algorithm are soft-clustering counterparts

of k-means and k-medoids. These algorithms work well for discovering spherical

clusters, however, their performance is compromised when the natural groups in

a dataset are not spherical. Meanwhile, these methods require users to decide

the number of clusters and their initial positions in the data space, which is

critical to the final results of clustering. In [123], Pelleg et al. proposed a method

which estimates the value of k to address the problem.

Hierarchical clustering methods group data elements into a tree of clusters.

According to the different method of growing the tree, there are two types of

hierarchical clustering, top-down (divisive) clustering method and bottom-up

(agglomerative) clustering method. Top-down method regards the whole dataset

as a cluster, and then divide the cluster into two most unrelated clusters. The

process iteratively divides clusters until each cluster contains only one data

28

2. Literature review

element. Bottom-up method, on the contrary, regards each data element as a

cluster, and merge the most related data elements until all data elements are in

the same cluster. The defect of hierarchical clustering is that a cluster is not

adjustable once merged or divided. The natural cluster can be mistakenly divided

or merged in many cases. Chameleon [81] and CURE [63] tried to measure

linkage of objects to improve the performance of hierarchical clustering, and

BIRCH [158] optimize the method by relocating results iteratively. CLUBS [112]

also addressed the defect by analysing the clustering results and reallocating

clusters. In [132], Rodrigues et al. also proposed a hierarchical clustering method

specifically for streaming data.

Density based clustering method groups data elements based on their dis-

tances to their nearby data elements, i.e. density. Apparently, this method

is capable of finding clusters of different shapes and sizes. DBSCAN [50] and

OPTICS [5] are two typical algorithms among density based clustering methods.

Density based methods require the user to define a proper density value as their

only parameter and do not group all data elements (data elements in sparse

areas). These features make the method robust and simple.

Grid-based method [3, 135] embed a grid into data space to provide either

multi-resolution clustering results or fast clustering. STING [147] is a typical

grid clustering algorithm. The method partition data space with rectangles of

different sizes based on the number of data elements they contain. The grid

contains different levels of rectangular cells correspond to different resolutions,

allowing multi-resolution queries.

Model based methods fit models to each cluster to achieve the lowest error.

AutoClass [1] uses Bayesian model to estimate the number of clusters in a

dataset. ART [25] and self-organizing map [55, 95] use neural network approach

to cluster dataset.

29

2. Literature review

2.3.6 Similar Pattern Locating in Time Series Data

Locating unknown similar subsequence in time series data has attracted less

interest. However, some research has been conducted on the problem of locating

similar subsequences in a single time series, also known as motif discovery.

Patel et al. [122] defined motif formally as typical nonoverlapping subse-

quences. Two motif discovering algorithms are proposed in [122]. The methods

first reduce dimensionality and numerosity of time series and then apply motif dis-

covery algorithms. In [108], Lin et al. developed a symbolic representation-based

motif discovery algorithm to find the kth most similar motif. A probabilistic

method for motif discovery is proposed in [32] to accelerate the process. The

method tries to match arbitrary subsequence of one time series to an arbitrary

subsequence of another time series and analysis the statistical pattern of a result

matrix to locate the position of patterns. This method requires the length

of pattern to be known in advance. In [142], a motif discovery method for

multi-dimensional data is proposed. These methods consider finding motifs from

generic raw data. [115] presented a method of discovering exact motifs (the

length and the shape of the motif are known in advance). The method gives a

possible way to find exact motifs from short time series in a reasonable time.

However, the time complexity of the method is still very high, which makes it not

practical to work with long time series. Ferreira et al. [52] proposed a method

that extracts approximate motifs. Liu et al. [107] formalize the motif discovery

algorithm as a continuous top-k motif balls problem in an m-dimensional space.

Heuristic approaches are applied to their motif discovery method to improve the

quality of results. Bhaskar et al. [18] addressed the top-k motif problem under a

sensitive-data scenario.

These methods above requires the length of the motif to be predefined, which

is difficult to acquire for an unknown dataset. Tang et al. [140] addressed the

problem by extending k-motif algorithm to discover motifs with random length

and occurrence. Toyoda et al. [141] proposed a novel method to discover motifs

in time series. The method creates two matrices, score matrix and position

30

2. Literature review

matrix respectively. The score matrix locates the end position of the found

pattern, and the position matrix uses the information collected from the process

of computing score matrix to calculate the start position of the pattern. This

method is able to find patterns of any length and shape without producing

abundant results and reduces required time and space complexity greatly in

the meantime. Moreover, this method only needs 3 parameters and does not

require prior knowledge of the patterns to be found. However, this method is

still lack of scalability thanks to the exponential increase of matrix size with the

accumulation of time series. The unconstrained application of DTW can also

result in producing over-warped patterns.

Many contributions have been made to current motif mining algorithms.

Yankov et al. [154] applied uniform scaling to discover motif of different lengths.

Mohammad et al. [113] tried to introduce prior knowledge to mine motifs.

Zhang et al. [159] applied motifs to time series classification to accelerate the

classification process.

2.4 Summary

In this chapter, we carefully reviewed related work on CPU host load analysis

and time series data mining. These work comprehensively addressed statistical

features of CPU host load and characterization of the workload of a computing

system, and further mining CPU host load mainly by transferring techniques

in time series data mining. Researcher in time series data mining domain also

proposed outstanding work in different time series data mining aspects which

provide a rich source of knowledge to utilize to mining CPU host load.

Though much work has been done and many problems in these areas are

carefully presented and solved in many ways, the defects of these work still exist.

Moreover, the lack of attention in mining patterns in CPU host load makes it

necessary to propose novel methods in the specific domain in contrast to the

importance of the host load pattern mining problem. In the meantime, the fact

31

2. Literature review

that less research is conducted in mining unknown similar patterns in time series

data also hampers applying time series data mining methods to CPU host load

pattern discovery problem. This situation raises the necessity of investigating

in a more general problem of locating unknown similar patterns in time series

data.

32

Chapter 3

Problem Formalisation

In this chapter we present background knowledge including definitions, similarity

measures and some of our fundamental work for the ease of further discussion.

Section 3.1 introduces some necessary notions and definitions relate to our

study. Section 3.2 introduces similarity measures we adopted and later in Section

3.3 we points out the similarity inconsistency problem and gives our solution.

Lastly in Section 3.4 we introduce the noise problem of CPU host load and our

noise reduction method.

3.1 Definitions

In this section we introduce necessary definitions briefly.

Definition 1. (Time Series) A time series T = {t1, · · · , tm} is an ordered set

of m real-valued variables [108].

Definition 2. (CPU Host Load Data) A CPU host load data is a time series

data, T = {t1, · · · , tm}, where 0 ≤ ti ≤ 1. ti is the ratio of clock cycles CPU

where is occupied to the total clock cycles in period i.

Definition 3. (Subsequence) Given a time series of length m, {T = t1, · · · , tm},

a subsequence of T is a time series in T , S = {ti, · · · , tj}, where 1 ≤ i < j ≤ m.

33

3. Problem Formalisation

Definition 4. (Time Series Indexing) Given a time series dataset D that

contains a set of time series data and a querying time series data Q, a time

series indexing method I is a method that returns such a subset N of D that for

every time series data Ni in N , Distance(Ni, Q) ≤ R, where R is a predefined

distance value.

Definition 5. (Match) Given two time series P and Q with length of m and of n

respectively, if P and Q match then Distance(P,Q) ≤ R, where Disntance(X,Y)

is the similarity function between two time series data and R is a predefined

similarity value.

Definition 6. (Optimal Match) Suppose two subsequence R = {pi, pi+1, · · · , pj}

from time series P = {p1, p2, · · · , pm} and S = {qk, qk+1, · · · , ql} from time

series Q = {q1, q2, · · · , qn} where 1 ≤ i ≤ j ≤ m and 1 ≤ k ≤ l ≤ n are an

optimal match if and only if

1. (Similarity condition) R and S match.

2. (Non-trivial condition) There does not exist an integer a make subsequences

R′ and S′ where R′ = {pi + a, pi+a+1, · · · , pj+a} from P and S′ = {qk +

a, qk+a+1, · · · , ql+a} from Q and 1 ≤ i+a ≤ j+a ≤ m, 1 ≤ k+a ≤ l+a ≤ n

satisfy all the conditions below:

(a) R′ and S′ match.

(b) Distance(R′, S′) < Distance(R,S).

3. (Longest-possible condition) There do not exist non-negative integers a and

b make subsequences R′ and S′ where R′ = {pi−a, pi−a+1, · · · , pj+b} from

P and S′ = {qk − a, qk−a+1, · · · , ql+b} from Q and 1 ≤ i − a ≤ i ≤ j ≤

j + b ≤ m, 1 ≤ k − a ≤ k ≤ l ≤ l + b ≤ n satisfy all the conditions below:

(a) R′ and S′ match.

(b) Distance(R′, S′) < Distance(R,S).

34

3. Problem Formalisation

3.2 Similarity measure

In this section we introduce two similarity measures we use: Euclidean distance

and DTW distance.

3.2.1 Euclidean Distance

Euclidean distance is widely used in many time series applications. Euclidean

distance is defined as follows:

Definition 7. (Euclidean Distance) For two time series T1 = {x1, x2 · · ·xn}

and T2 = {y1, y2 · · · yn} with length n, the Euclidean distance between T1 and T2

is defined as:

d(T1, T2) =

√√√√ n∑
i=1

(xi − yi)2 (3.1)

Intuitively, the distance measure maps two time series of length n to two

points in n-dimensional space and calculate their distance in the space. The

one-to-one alignment strategy of Euclidean distance raise the problem that it

is unable to handle distorted or noisy time series, as well as time series with

different length. However, Euclidean distance measure is simple and effective

for many applications as long as being used properly. Meanwhile, Lp-norm

distance measure like Euclidean distance considers two time series as two points

in corresponding dimensional space, which also helps understanding the similarity

inconsistency phenomenon. This will be described later in this chapter.

3.2.2 Dynamic Time Warping and Warping Path Con-

straint

Dynamic time warping distance is also used in part of our work. DTW is selected

for several reasons. First, DTW is an elastic distance measure which allows

measuring time series of different lengths. This feature will be especially useful

in our proposed method, which will be illustrated in the next section. The

elastic nature of DTW also makes it a robust distance measure. Though we

35

3. Problem Formalisation

suggested in Chapter 1 that comparing subsequences with very different lengths

is mostly meaningless, however, constraint can be applied to DTW to allow slight

differences in lengths. It is necessary to review DTW briefly as an important

background method.

Definition 8. (Dynamic time warping) Giving two time series, X = {x1, x2, · · · , xm}

of length m and Y = {y1, y2, · · · , yn} of length n. To calculate DTW distance,

an (m+ 1)× (n+ 1) cost matrix D is created as follow:

d(0, 0) = 0

d(i, 0) = d(0, j) =∞

d(i, j) =|| xi − yj || +min

d(xi−1, yj)

d(xi, yj−1)

d(xi−1, yj−1)

D(X,Y) = d(m,n)

(3.2)

Where i = 1, 2, · · · ,m and j = 1, 2, · · · , n and D(X,Y) is the DTW distance

between X and Y .

|| xi − yj || is the distance between xi and yj, which can be (xi − yj)2 or

simply | xi − yj |, or other possible measures.

DTW distance does not require one-to-one alignment. This distance measure

allows time series to be ”warped” to produce minimum distance value. Obviously,

there exist many possible alignments for two given time series. We call each of

these alignment a warping path:

Definition 9. (Warping path) Giving two time series, X = {x1, x2, · · · , xm}

of length m and Y = {y1, y2, · · · , yn} of length n, and D is their DTW cost

matrix. The warping path is a sequence of cells w = a1, · · · , ai, · · · , al in D,where

ai = (x, y) denotes cell (x, y) in D satisfying the following conditions:

1. Boundary condition: a1 = (1, 1) and al = (m,n)

36

3. Problem Formalisation

2. Monotonicity and continuity condition: ifai = (x, y) and i 6= 1, then ai+1

must be one of (x+ 1, y), (x, y + 1) or (x+ 1, y + 1)

DTW algorithm [14] dynamically finds the optimal warping path that has

minimal
∑l
i=1Dai .

We can visualize this algorithm by plotting matrix D. As shown in figure

3.1a, DTW dynamically finds a path which can align two time series at the lowest

cost. Plotting the cost matrix of DTW (figure 3.1b) can help understanding the

algorithm. As shown in figure 3.1b, the optimal warping path (red dash line)

goes from top left corner of the matrix to the bottom right of the matrix to

aligned the start and end point of the time series, while the rest of the optimal

warping path curves in a way to make sure the sum of cells it passes by is

minimized.

An obvious observation of figure 6.11 is that too many data points of blue

(round mark) time series are aligned to only several points of red (square mark)

time series. As a result, the optimal warping path in figure 3.1b warps too much.

We can apply Sakoe-Chiba band [133] to limit the maximum warp as shown

in figure 3.1c and 3.1d. Constraint not only helps to prevent over-warping, it

also improves the performance of DTW since calculation is only performed on

constrained part of the cost matrix.

3.3 The Similarity Inconsistency Problem

As in Chapter 1 the problem of similarity inconsistency is introduced. Similarity

inconsistency results in a difficult situation that for time series subsequences

with different lengths, it is impossible to decide whether any two subsequences

are similar or not with a given threshold. In the case we show in figure 1.3, if

we set the threshold of similarity to be 3 under Euclidean distance or 2 under

DTW distance, traditional method will not be able to find longer patterns such

as the 128 data points pair. On contrary, the threshold could be too large for

shorter time series such as the 32 data points ones. In this situation, long similar

37

3. Problem Formalisation

0 5 10 15
0

2

4

6

8

10

12

(a)

2

4

6

8

10

12

14

510

2 4 6 8 10 12 14
0

5

20

40

60

80

100

(b)

0 5 10 15
0

2

4

6

8

10

12

(c)

2

4

6

8

10

12

14

510

2 4 6 8 10 12 14
0

5

20

40

60

80

100

(d)

Figure 3.1: Illustration of DTW distance. Figure a shows how data points
in one time series are measured with diffent datapoints of another time series
under DTW distance. Figure b shows cost matrix and warping path of DTW
distance. Figure c and d illustrate the situation when Sakoe-Chiba constraint
with width = 2 (coloured area in figure d) is applied.

patterns are ignored and short dissimilar time series are picked up as patterns.

We take Euclidean distance to explain the problem.

3.3.1 Similarity Inconsistency in Original Space

Let us begin with the simplest example. Assume we have all the subsequences

with 2 data points as TS1 and TS2 in figure 3.2a. We plot these time series in

points in a 2 dimension rectangular coordinate system in figure 3.2b as they all

have only two data points. As the definition of Euclidean distance, Euclidean

distance between time series TS1 and TS2 in figure 3.2a is the length between

38

3. Problem Formalisation

the two points TS1 and TS2 in figure 3.2b. Then we extend time series TS1

and TS2 with one more data point as in figure 3.2c. Similarly, the Euclidean

distance between TS1′ and TS2′ is the length between points TS1′ and TS2′

in figure 3.2d. Note that the projection of points TS1′ and TS2′ in figure 3.2d

on X − Y plane is TS1 and TS2 in original space as in figure 3.2b. Thus, as

we add a dimension for TS1 and TS2, the length from TS1′ to TS2′ in figure

3.2d must be no less than the length from TS1 toTS2 in figure 3.2b, since in

figure 3.2d line segment TS1− TS2 constructs the cathetus and line segment

TS1′ − TS2′ constructs the hypotenuse. Though for both time series pairs in

figure 3.2a and figure3.2c, we can lift TS1 and TS1′ by 0.2 to make them the

same time series as TS2 and TS2′ respectively, the similarity under Euclidean

distance measure of the two pairs changes when the length of time series grow.

(a) 2 Data Points Time Series (b) 2 Data Points Time Series in Original Space

(c) 3 Data Points Time Series (d) 3 Data Points Time Series in Original Space

Figure 3.2: Demonstration of similarity inconsistency

We can develop the simplest case to longer time series pairs in a higher

dimensional space and derive the same result, that is for any two pairs of time

39

3. Problem Formalisation

series with different time series in each pair, if they have the same similarity

visually, the longer pair will always have larger Euclidean distance. Further more,

we can confidently deduce that for any distance measure, if the measurement

is carried out on spaces with different dimensions for different time series, the

distance measure can not guarantee similarity consistency. This conclusion

reveals that for discovering arbitrary length of similar patterns in time series

data, it is necessary to make the distance measure being applied on a fixed

dimensional space.

3.3.2 Consistent Similarity Measure

As illustrated above, the increase of dimensions is the reason of similarity incon-

sistency. An intuitive method to produce consistent similarity is to interpolate

time series to a dimensional space with fixed number of dimensions. Chapter 4

adopted this method. In that chapter, we interpolate time series subsequences

to a 5-dimensional space to achieve consistent similarity measure. Details can

be found in Chapter 4.

Another simple but effective method is to average result distance values to

eliminate the effect of dimension increase. This method maintains features of

original distance measure and is wide applicable. We present the method as

follows:

dconsistent(T1, T2) =

√∑n
i=1 (xi − yi)2

n
(3.3)

In the above equation, the terms are averaged to eliminate the effect of

distance accumulation. Similarly for the DTW distance, the number of terms

is the length of warping path. The similarity consistent DTW distance can be

calculated by:

DTWconsistent(T1, T2) =

√∑n
k=1 wk
K

(3.4)

Where K is the length of warping path.

40

3. Problem Formalisation

Table 3.1: Distance of figure 1.3 case under our proposed consistent distance
measure

Series Length 128 64 32
Consistent Euclidean Distance 0.37 0.35 0.33
Consistent DTW 0.14 0.14 0.18

Both methods average original distance value with the number of alignments.

For Euclidean distance the number of alignments is the length of time series

being measured, and for DTW distance the number is the length of warping

path. The effectiveness of the two similarity consistent distance measurements

can be validated using the case study shown in figure 1.3. Table 3.1 shows the

distance values of the 3 pairs of motifs shown in figure 1.3 under our proposed

distance measure. It is clear that our similarity consistent distance measure is

length-invariant.

3.4 Noise Reduction of CPU host load

As shown in figure 1.6 and also in [32], noise is a non-trivial problem in time

series data mining. In [160], Zhang et al. found that CPU host load data present

a frequent periodical peak pattern in short terms. Although the property casts a

light on short-term prediction, noise can dominate the distance measure between

two similar host loads for the long-term pattern discovery, which will cause them

to be deemed different based on the distance measure. As the process goes on,

the noise may often be amplified and deteriorate the situation.

Fortunately the high frequency noise can be smoothed by applying several

low-pass filters. Gaussian smoother is one of these filters. Gaussian filter has

been used in image processing to remove high frequency noise of an image. As

in [72], Gaussian filter has a direct relation with neurophysiological findings

in animals and psychophysics in human, which supports our assumption that

time series smoothed by Gaussian filter can maintain the major trend similar

to human intuition. This finding provides the ideas of designing a method that

can maintain intuitive pattern of time series data without losing important

41

3. Problem Formalisation

information.

For a single CPU, its host load can be considered as a function f(t), where t

is time. Therefore, we can apply 1-dimension Gaussian filter defined as follows.

G(x) =
1√
2πσ

e−
x2

2σ2 (3.5)

The effect of a Gaussian filter is a convolution of Gaussian function g(x) and

signal f(t)

(f ∗ g)(τ) =

∫
f(τ)g(x− τ)dτ (3.6)

The discrete implementation of Gaussian filter can be found in various

literature. Theoretically a Gaussian smoother has infinite length. However,

one can easily calculate that the elements within 3σ accounts for 99.73% of

all elements, where σ is the standard deviation of the Gaussian function. For

applicability and without sacrificing much accuracy, we only examine the elements

within 3σ.

Figure 1.6 shows the effectiveness of a Gaussian filter. The original distance

of two time series data is restored excellently from the highly noisy versions of

them. Figure 1.4 shows how the Gaussian filter removes pulse noise and high

frequency noise intuitively. It is clear in the figure that the filter retains the

intuitive trend of host load data.

42

Chapter 4

Clustering Based CPU Host

Load Similar Pattern

Discovery

As mentioned in previous chapters, the most difficult problem lies in front of

mining unknown similar patterns is the scale of time series data, which makes

brute force algorithm impossible for its high time complexity. To reduce the

time complexity required, we present a method that compares CPU host load

data segment-to-segment rather than point-to-point.

In this chapter we investigate segmentation based similar pattern discovery

in CPU host load data. In our proposed method, CPU host load data is first

segmented and then each segment is represented as a 5-dimension vector. Thus

the data are embedded into a 5-dimension space. To find similar patterns, a

clustering method is applied to the data. Specifically, our method has five steps:

noise reduction, segmentation, feature extraction and clustering.

As suggested in Chapter 1, it is necessary to reduce the noise of CPU host

load. We use Gaussian filter presented in Chapter 3 to reduce the noise of CPU

host load. Treated raw data are then segmented using the Relative Important

43

4. Clustering Based CPU Host Load Similar Pattern Discovery

Point segmentation method [157]. To further reduce the dimensionality of each

segment, feature extraction is then applied to represent each segment to five

parameters. Similar patterns are finally captured by clustering method which

identifies similar segments. This method greatly reduces time complexity of

mining patterns in CPU host load data.

4.1 Segmentation Based Data Representation

Because of the continuity of time series data, it is difficult to split the data

without loss of information. In this section we propose a representation for

highly fluctuating time series data. We first segment the series into subsequences

and then describe subsequences with feature vectors. This method efficiently

represents the time series data and greatly reduces the data volume, which can

save a lot of storage resource and computing time in later processes.

4.1.1 Noise reduction

As shown in figure 1.4, CPU host load data is very noisy, which could severely

affect the decision of segmenting position host load. A noise reduction step is

first applied to CPU host load data. The major term of CPU host load data is

high-frequency noise which can be eliminated by using low-pass filters. We use

the Gaussian filter to reduce the noise of CPU host load data as presented in

Section 3.4.

4.1.2 Segmentation

Our segmenting algorithm is based on the fact that the host load data fluctuate

considerably. The method provides different segmentation scales which controls

what extent of change should be considered significant and thus should be

segmented. For the task of mining patterns in CPU host load data, we concentrate

on the trend of the data. The segmentation algorithm proposed in [157] segments

time series data by observing their trend changes.

44

4. Clustering Based CPU Host Load Similar Pattern Discovery

The segmentation method proposed in this work introduces the notion of

important point. The important point is defined below:

Definition 10 (Important Minimum Point). Given a constant R(R > 1) and

time series {< x1 = (v1, t1), · · · , xn = (vn, tn) >}, if a data point xm(1 ≤ m ≤ n)

is called an Important Minimum Point, it must satisfy one of the following

conditions:

1) if 1 < m < n, there are subscripts i, j(1 ≤ i < m < j ≤ n) which makes

(i) vm the minimum among vm, · · · , vj and (ii) vi − vm ≥ R and vj − vm ≥ R;

2) if m = 1, then xm is the first data point of the time series. There is a

subscript j(m < j ≤ n), which makes (i) vm the minimum among vm, · · · , vj ,

and vj/vm ≥ R;

3) if m = n, then xm is the last data point of the time series. There is a

subscript i(1 ≤ i < m), which makes (i) vm the minimum among vi, ..., vm, (ii)

vi/vm ≥ R.

On the definition of Important Maximum Point. Intuitively, the method

searches local maximum and minimum points alternately with a parameter R

input by users. R decides the significance of value change to be considered as

important. According to the definition, the algorithm for searching the important

points in the data series is proposed below.

Algorithm 1: Find Important Points

input : Time series data TS with length L(TS), R
output : Important Points Series(PS)
find first important point in TS;
if first important point is maximum then

find next minimum points;

while Not at the last point of TS do
find next important maximum point;
if Not at the last point of TS then

find next important maximum point;

This method has a time complexity of O(n). By applying this method, the

host load is efficiently divided into short pieces, each represents a major increase

45

4. Clustering Based CPU Host Load Similar Pattern Discovery

or decrease in host load.

4.1.3 Feature Extraction

Segmentation has greatly reduced the complexity of the pattern discovery prob-

lem. The presented segmentation method also unifies the result segments to

simple increase or decrease pieces. This property provides us with the possi-

bility of further dimension reduction without much loss of original information

contained in raw data. Given the simplicity of result segments and for the ease

of further processing, we propose a uniform representation method for each

segment, called feature vector, which allows fast clustering of the data series

that contain the major features of subsequences.

Definition 11 (Feature Vector). Given a time series data subsequence {< x1 =

(v1, t1), · · · , xl = (vl, tl) >}, the feature vector of a subsequence is defined as a

five-tuple as follows, where l is the length of the subsequence; v1 is the first value

of the subsequence; vd is the difference between the first and last value of the

subsequence; σ is the maximum deviation of the raw data from the straight line

between the first and last point in the sequence and σ̄ is the mean deviation.

(l, v1, vd, σ, σ̄)

vd, σ and σ̄ can be calculated by the following equations, where 1 ≤ i ≤ l,

i ∈ N and Extremum is the maximum or minimum value the sequence deviates

from the line between first and last value.

vd = vl − v1 (4.1)

σ = Extremum(vi − (
(ti − t1)(vl − v1)

tl − t1
+ v1)) (4.2)

46

4. Clustering Based CPU Host Load Similar Pattern Discovery

𝑙

𝑣1

𝑣𝑑
𝜎

𝜎

Figure 4.1: Physical meaning of feature vector

σ̄ =

l∑
i=1

(vi − (
(ti − t1)(vl − v1)

l(tl − t1)
+
v1
l

)) (4.3)

Figure 4.1 shows the physical meaning of each feature value. It can be

observed that the feature values preserve the main character of a subsequence

regardless of the noise. The first and last value, v1, and the deviation from the

first value, vd, depict the initial value of a sequence and how much the sequence

changes. Then σ̄ presents the average fluctuation of a subsequence. To maintain

the trend of a sequence, σ shows how the data in subsequence vary, that is, its

concavity and convexity. Also, we concern the length of a time series l, which is

another important attribute.

It is important to note that this representation method works well not only

for short sequences, but also for long time series. When we want to study

longer patterns, we change the observation scale by giving a greater segmenting

parameter R introduced in Section 4. Then longer subsequences will be produced.

Given a greater observation scale, the representation method will also represent

the subsequence in a coarser way. Therefore, the good scalability of the proposed

segmentation method guarantees the good scalability and the effectiveness of

the proposed representation method.

47

4. Clustering Based CPU Host Load Similar Pattern Discovery

4.2 Pattern Discovery by Clustering

Similar subsequences in time series data comprise a pattern. We use the clustering

analysis to discover the similar subsequences in a subsequence set that are

segmented from a host load dataset. We first give our consistent distance

measure for clustering. then we describe how DBSCAN is applied for the pattern

discovery of host load.

Consistent Similarity Measure in Interpolated Space

As mentioned in Section 4, for all host load subsequence we extract their features

as a 5 dimension vector. Thus all time series are interpolated into a 5 dimension

space. If similarity inconsistency also exists in interpolated space, we will not be

able to find patterns with arbitrary length with the proposed feature vector.

In section 4 we defined the feature vector as below:

(l, v1, vd, σ, σ̄)

To eliminate the effect of similarity inconsistency mentioned in Section 3.3,

the represented vector should be length-independent when distance measure is

applied. According to the definition of each element in feature vector, v1, vd

and σ is length irrelevant. v1 and vd are independent of length themselves, and

any variable or constant used to calculate σ is independent of length. For σ̄, the

effect of length is eliminated by average l terms.

The element l is the length itself and will change its value when we have

different length of time series. However, when calculating similarity, the effect of

length to similarity is eliminated by the term
√

(l1 − l2)2 · · · under Euclidean

distance in interpolated space. So we can confidently say only the difference of

length between two time series affects their similarity, and that is what we need

because a long time series is less likely to be similar with a short one.

In the proposed method, the patterns in the host load are discovered by

DBSCAN clustering. In Section 4, the host load data are segmented and

48

4. Clustering Based CPU Host Load Similar Pattern Discovery

represented as a set of 5-tuple vectors. In order to apply the clustering method,

the distance measurement should be defined first. The distance between two

vectors can be easily defined on a vector set. As discussed in Section 5.3, applying

traditional distance measure on raw time series with different lengths will result

in the problem of similarity inconsistency. Only in the interpolated space with

fixed dimensions we can apply traditional distance measure.

As the original segments have been interpolated to a 5-dimension space, the

distance of feature vectors can be simply defined with Euclidean distance:

EuclideanDistance =

√√√√ n∑
i=1

(xi − yi)2 (4.4)

In our case, the distance of two feature vectors (l1, v11, vd1, σ1, σ̄1) and

(l2, v12, vd2, σ2, σ̄2) can be calculated by:

Distance =
√

(l2 − l1)2 + · · ·+ (σ̄2 − σ̄1)2 (4.5)

Since the distance measurement is defined, we can apply the clustering

algorithm to the data set.

4.2.1 Clustering

DBSCAN is a density-based clustering algorithm proposed in [50]. The algorithm

does not require the users to determine the quantity of the resulting clusters

beforehand, which is very difficult to be determined in many cases and has a

crucial impact on the clustering quality. Meanwhile, considering the existence of

outlying data, those clustering algorithms which require all data to be clustered

are not satisfactory. Moreover, the algorithm has the benefit of discovering dense

clusters of any shapes and effectively removing noisy points.

The algorithm finds dense clusters by searching for density connected points.

As in [50], the fundamental concepts and steps of DBSCAN are shown below.

Definition 12 (Eps-neighborhood of a point). The Eps-neighborhood of a point

49

4. Clustering Based CPU Host Load Similar Pattern Discovery

p, denoted by NEps(P), is defined by NEps(p) = {q ∈ D|dist(p, q) ≤ Eps}.

Definition 13 (directly density-reachable). A point p is directly density-reachable

from a point q with radius Eps and the minimum inner points MinPts, if

1) p ∈ NEps(q)

2) |NEps(q)| > MinPts (core point condition).

Definition 14 (density-reachable). A point p is density reachable from a point

q with Eps and MinPts, if there is a chain of points p1 · · · pn, p1 = q, pn = p

such that pi+1 is directly density-reachable from pi.

With the chain of points that are directly density-reachable in succession, we

have a chain of relatively close points. If we find all the chains, we have a point

set with high density. The point set forms a cluster. The two parameters Eps

and MinPts control the clustering range and accuracy, which is very important

and will be discussed in Section 4.3.

Considering most datasets have very clear density difference between natural

clusters and noise, one can roughly estimate the values of Eps and MinPts by

repeatedly running the algorithm on a small test data set. In addition, the two

parameters can also control the scale of clusters.

4.3 Experimental Evaluation

We applied our model on host load data trace produced by Google [149]. Google

traced the data of a Google cluster with about 11,000 machines. We transformed

the resource usage of 7 randomly selected machines into the average CPU load

spanning 18,605 minutes. In this section, we will evaluate the effectiveness of the

pattern discovery framework proposed in this paper and the choice of parameters

based on the randomly selected datasets.

50

4. Clustering Based CPU Host Load Similar Pattern Discovery

4.3.1 Effectiveness of Pattern Discovery

Pattern discovery aims to find similar patterns among the data sequences. We

apply the DBSCAN clustering algorithm to find patterns since DBSCAN is able

to deal with the outlying points and achieve higher intra-similarity in a cluster,

which is what other clustering methods fail or have difficulty to reach. In order

to reveal the benefit of DBSCAN, we compared our method with two of the most

popular and classic clustering methods, k-means [69] and top-down hierarchical

clustering [132]. In the evaluation, the three clustering algorithms are run on the

datasets. After obtaining the clustering results, we randomly pick 4 subsequences

from one cluster and another 4 subsequences from different clusters for each

clustering algorithm. We compare the intra-cluster subsequences as well as

the inter-cluster subsequences. A good clustering result should produce highly

similar intra-cluster subsequences and very different inter-cluster subsequences.

The results obtained by k -means, top-down hierarchical and DBSCAN are shown

in figure 4.2, 4.3 and 4.4, respectively.

As Shown in figure 4.2a, intra-cluster subsequences produced by k-means

algorithm have less similarity, compared with the results by other two algorithms.

Although subsequence S1 is very similar to S2, S3 and S4 are totally different

from each other. In figure 4.2b, Sequence S1 and S2 are similar (note Si in 4.2b

is not Si in figure 4.2a), although they are picked from different clusters.

In figure 4.3a, all 4 subsequences have relatively high similarity, while figure

4.3b shows that the subsequences from different clusters also resemble each other.

As can be observed in figure 4.4, the intra-cluster similarity obtained by

DBSCAN is very high and the inter-cluster subsequences have much less similarity.

From the results obtained by DBSCAN, we can conclude that we have discovered

a pattern from this cluster shown in figure 4.4a, and that we have discovered

four different patterns shown in figure 4.4b.

The reasons for these above results can be explained as follows. k-means

tries to cluster every data points into specific clusters, which may result in less

intra-similarity because there may be many outlying points in the data sets which

51

4. Clustering Based CPU Host Load Similar Pattern Discovery

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

C
P

U
 U

sa
ge

Sampling Points

S1

S2

S3

S4

(a) Intra-cluster data

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

C
P

U
 U

sa
ge

Sampling Points

S1

S2

S3

S4

(b) Inter-cluster data

Figure 4.2: Typical cluster results of k-means clustering

do not bear similarity with other subsequences. Furthermore, those points which

are far from all cluster centres could be relatively close to each other. However,

they may be assigned to different clusters. Also, without prior knowledge, it is

difficult to find the right k and initial points.

As for the top-down hierarchical clustering algorithm in figure 4.3, the intra-

cluster similarity seems not bad, but the inter-cluster similarity is not satisfactory.

The culprit is the dividing process in the hierarchical clustering. Although this

method can effectively pick out the noise points which are far away from any

clusters, these outlying points could result in the division of natural cluster.

However, as shown in figure 4.4, since DBSCAN requires a particular density

52

4. Clustering Based CPU Host Load Similar Pattern Discovery

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

C
P

U
 U

sa
ge

Sampling Points

S1

S2

S3

S4

(a) Intra-cluster data

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

C
P

U
 U

sa
ge

Sampling Points

S1

S2

S3

S4

(b) Inter-cluster data

Figure 4.3: Typical cluster results of top-down hierarchical clustering

for data in clusters, there is a considerably high intra-cluster similarity. With

the minimum requirements of MinPts, the method can exclude any outlying

points from the clusters. Owing to the special nature of DBSCAN, the better

results are produced in discovering the patterns for host load.

4.3.2 The Choice of Parameters

In Section 4.2.1 we have presented the meaning of the segmentation parameter

R. Generally, the greater value R is, the longer subsequences will be produced

and longer patterns will be found from them. By contrast, a smaller value of

53

4. Clustering Based CPU Host Load Similar Pattern Discovery

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C
P

U
 U

sa
ge

Sampling Points

S1

S2

S3

S4

(a) Intra-cluster data

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

C
P

U
 U

sa
ge

Sampling Points

S1

S2

S3

S4

(b) Inter-cluster data

Figure 4.4: Typical cluster results of DBSCAN clustering

R produces shorter subsequences and it is more likely to find short patterns.

Depending on the scale of the patterns we want to discover, there is typically no

”optimal” R. However, a too large or too small R often leads to a segmentation

fault. That is, either the entire set of data is regarded as a segment, or every

single line between two neighbouring nodes is segmented. To tackle this problem,

a simple but effective way is to try the R value on a small test data. The

selections of MinPts and Eps have been discussed in [50]. However, the pattern

discovery task requires higher inner-cluster similarity. If the elements in a cluster

vary too much, it will be much more difficult to conclude a uniform pattern

featuring the cluster.

54

4. Clustering Based CPU Host Load Similar Pattern Discovery

Table 4.1: Average Inner-cluster DTW Distance
MinPts/Eps 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
2 0.004 0.047 0.159 0.3 1.236 4.385 11.444 13.116 25.36 22.377
4 - 0.114 0.562 0.794 2.351 12.469 20.435 62.738 111.841 117.486
8 - 0.183 0.331 1.764 1.675 3.783 28.844 70.841 58.124 107.083
16 - - - - 1.664 3.724 5.318 34.122 52.063 81.605
32 - - - - - - 2.087 4.106 7.779 35.512

Table 4.2: Average Inter-cluster DTW Distance
MinPts/Eps 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
2 1.389 5.566 14.418 24.543 33.27 25.455 25.441 32.675 23.808 22
4 - 0.533 0.844 3.198 6.796 4.353 5.642 1.858 1.42 1.47
8 - - - 0.376 0.421 3.227 1.395 1.058 2.128 1.346
16 - - - - - 0.35 1.045 0.837 0.974 1.109
32 - - - - - - - 0.398 1.147 0.774

As in [77], one of the main tasks in clustering is to minimize local error

and maximize global error. We measured average inner-cluster distance and

inter-cluster distance for different values of MinPts and Eps, with R = 0.1. The

results for inner-cluster distance and inter-cluster distance are shown in table

4.1 and 4.2 respectively.

The results in table 4.1 and 4.2 show that small changes in the two parameters

can cause great differences in the clustering results. Note that in the DBSCAN

algorithm, although high Eps and small MinPts will produce very low inner-

cluster average distance, they will also produce much fewer clusters and similar

patterns, causing many meaningful patterns excluded. Conversely, small Eps

and large MinPts are likely to produce more clusters and more patterns in a

cluster. However, this will also bring in dissimilar patterns.

We evaluated the combinations of the parameters in table 4.1 and 4.2. When

Eps = 0.04 and MinPts = 2, we obtained a preferable parameter. However,

this is just a simple analysis method for the determination of the clustering

parameters. The optimum varies with the choice of segmentation parameter and

features of different CPU host load.

55

4. Clustering Based CPU Host Load Similar Pattern Discovery

4.3.3 Effectiveness of Distance Measure

We show the problem of similarity inconsistency in Section 3.3 pointing out that

any distance measure which applies directly to time series data with arbitrary

lengths will inevitably lead to similarity inconsistency. Here we compare our

proposed distance measure to DTW distance measure to show the effectiveness

of our proposed distance measure.

We use the bottom-up hierarchical clustering algorithm to classify 7 randomly

selected CPU host load subsequences obtained from the Google cluster trace [149].

The dendrogram that the clustering method builds can help us visualise the

clustering process and the level of similarity between any pair of subsequences [90].

For any clustering algorithm, distance measure is the key to determine whether

two data should be in a cluster or not. We can utilise this property of clustering

algorithms to have a glimpse of how the distance measure work.

In figure 4.5, we can see two dendrograms built by bottom-up clustering.

Figure 4.5 left is the clustering results of our proposed distance measure. We

use the Euclidean distance measure in 5-dimension interpolated space. The

increasing subsequences are very well separated from those decreasing ones on

the root node, and the most similar pieces of data are perfectly joined in groups.

It is also notable that the subsequence which is most dissimilar to all others is

far from all other data.

As a comparison, we also evaluated the effectiveness of DTW distance on

the same dataset as in figure 4.5 right. We can clearly see how DTW based

clustering influenced by lengths of subsequences. Under the situation of arbitrary

length of time series, the length of time series dominates the distance value of

DTW. In figure 4.5 right, the clustering result is more likely to be length based

rather than similarity based. Though the top two time series and the bottom

two have the same increasing trend, they are separated to the two ends of the

dendrogram because the length of the two pairs is different.

56

4. Clustering Based CPU Host Load Similar Pattern Discovery

Figure 4.5: Left: bottom-up hierarchical clustering result using our proposed
distance measure. Right: bottom-up hierarchical clustering result using dynamic
time warping.

4.4 Summary

In this chapter, we proposed a novel method to discover unknown similar patterns

in CPU host load data. The method features mining patterns on segmented CPU

host load data rather than on raw data, which is more intuitive and efficient.

An important point based segmentation method is chosen to segment CPU

host load for its particular compatibility with fluctuating time series which are

unable to be properly segmented by other linear segmentation methods. We

utilize the segments’ uniform shapes the segmentation method provide, segments

are further reduced to 5-tuple vectors which have experimentally shown to be

representative, robust and distinguishing by a bottom-up clustering test.

In order to locate similar patterns, a clustering method, DBSCAN is de-

liberately chosen for its independence of prior knowledge of cluster quantity,

ability to discover clusters of any shapes and capability of eliminating outlying

data. Experiments compared the method and several other clustering methods,

proved the method to be strikingly effective in both finding similar host load

subsequences and distinguishing different types of host load subsequences.

57

4. Clustering Based CPU Host Load Similar Pattern Discovery

In summary, this method solves the time complexity problem faced by mining

unknown patterns in CPU host load by both divide-and-conquer method and

dimensionality reduction methods at a small cost of accuracy, and is widely

applicable to other types of time series data which fluctuation and change of

trends are the major concerned features.

58

Chapter 5

Reduction Based CPU Host

Load Pattern Discovery

In some cases, we need to discover exact patterns from CPU host load data,

which produces all similar patterns without any loss. In this case, the segments

clustering method are not capable of producing no false-negative errors. In the

previous chapter, we have proposed a segments clustering based method for

pattern discovery in CPU host load.

To discover patterns in CPU host load within a reasonable time and to

achieve exact discovery, a proper CPU host load representation method should

be applied. The method should satisfy following properties:

1. The representation is lower-bounded.

2. The representation reduces dimensionality or numerosity of the original

data.

The lower-bounding property guarantees the distance of the same subsequences

in represented space is greater than in original space, which ensures all possible

patterns can be found in represented space without false-negative errors. Since

the high time complexity of locating patterns in raw data, it is also necessary to

have original data reduced.

59

5. Reduction Based CPU Host Load Pattern Discovery

In this chapter, we develop a method which discovers exact patterns in CPU

host load. The method first reduces dimensionality and numerosity of CPU

host load by using PAA and SAX representation, then apply a cascade search

algorithm to find patterns efficiently.

5.1 CPU Host Load Representation

Represent time series data to a different dimensional space is an efficient way to

reduce search space and accelerate pattern discovery. In this section we briefly

overview the SAX indexing method proposed in [105] and then present our

improved method.

5.1.1 Overview of PAA

Piecewise Aggregate Approximation (PAA) [86] is a non data-adaptive dimension

reduction method for time series data. In [105], Lin et al. proposed symbolic

aggregate approximation (SAX) representation based on PAA which transforms

time series into symbol series. We first introduce the PAA method.

Figure 5.1: A time series data reduced dimensionally by PAA and then symbolised
by SAX

A time series C of length n can be represented in a w -dimension space by a

60

5. Reduction Based CPU Host Load Pattern Discovery

vector C̄ = c̄1, · · · , c̄w. The ith element of C̄ is

c̄i =
w

n

n
w i∑

j= n
w (i−1)+1

cj (5.1)

That is, the PAA method segments time series into n
w parts of equal lengths

and represents each part with a new value which averages all old values in that

part. Hence, the presented time series is reduced to w
n dimension. Now we can

have the definition of dimensional reduction rate:

Definition 15. (Dimensional Reduction Rate) Given a time series T with length

n, if T is represented with length w in a indexing method I, then the dimensional

reduction rate of I is n
w .

Figure 5.1 shows how the PAA representation works. In this case, a time

series with the length of 128 data points is reduced to a PAA representation

with 8 data points. In other words, PAA averages over every 16 consecutive

points to generate a new value.

The benefits of PAA is that the method provides effective dimensional

reduction with time complexity O(n). Meanwhile, PAA provides lower bounding

which ensures that for two time series data P and Q, the distance between

them in the representation space will be no more than that in the original space.

Namely, the following equation holds.

DistanceRepresentationSpace(P,Q) ≤ Distance(P,Q) (5.2)

Lower bounding ensures the real distance between two time series will not

be underestimated. The benefits of this property are that for a given query time

series data Q, one can find all the possible results in the representation space.

More specifically for the pattern discovery task, lower bounding enables one

to find all possible patterns and reduce the time complexity by applying the

techniques such as early abandon.

61

5. Reduction Based CPU Host Load Pattern Discovery

5.1.2 Overview of SAX

After the dimension of a time series data has been reduced using PAA, we can

then discretize the time series data symbolically. The basic idea of symbolizing

time series data is proposed in [105]. We briefly review SAX representation.

Symbolic Aggregate Approximation, also known as SAX, divides the value

range of a time series dataset into a given number of areas with equal sizes

under the Gaussian distribution. If we use m symbols to discretize these values,

it is preferable to assign these symbols in a equal probability way to achieve

best encoding efficiency, which means these symbols occur similar number of

times in the discretized time series [6, 109]. Assume normalized time series data

values obey Gaussian distribution N(0, 1), to achieve this, the range of values

(Smin, Smax) of any two symbols S1 and S2 represent should satisfy following

equation [111]:

∫ S1
max

S1
min

1√
2π
e−

1
2x

2

=

∫ S2
max

S2
min

1√
2π
e−

1
2x

2

(5.3)

In the case shown in figure 5.1, the value range is divided into three area, i.e.

the area above the top dash line, the area between the top and bottom dash line

and the area below the bottom dash line. We assign a symbol to each area and

then all the values which fall into an area in a time series data are represented

by the symbol assigned to that area. Such a symbol assignment method ensures

that all symbols are assigned in an equiprobable way. It is easy to know that

given a limited number of symbols, the even symbol assignment across data

points maximizes the representation effectiveness, since each symbol carries the

same volume of information to avoid unnecessary information loss.

5.1.3 The Refined Symbolic Aggregate Approximation In-

dexing

The original work which invented SAX assumes time series data values are

governed by the Gaussian distribution. This is a correct assumption as to

62

5. Reduction Based CPU Host Load Pattern Discovery

Figure 5.2: Normal probability plot of host load data

most real-world time series, however, CPU host load data disobey Gaussian

distribution. We use a normal probability plot shown in figure 5.2 to illustrate

this. In the plot, the vertical axis is the probability of a data point to be less than

the value shown in the horizontal axis. Note that the values of the vertical axis

are plotted under the cumulative distribution function of values in horizontal axis

rather than linearly. In this way, a dataset which obeys Gaussian distribution

should be plotted along a straight line rather than a curve. In figure 5.2, data are

plotted as a curve which far deviates from the red reference line. This indicates

that the data do not follow the Gaussian distribution. Therefore, assuming

that host load fluctuate following the Gaussian distribution will greatly hamper

the efficiency of the SAX indexing method. With the Gaussian distribution,

the number of symbols assigned to greater values is approximately the same as

those to lower values. However, the data with lower values actually occur more

frequently.

Moreover, as pointed out by [22], the PAA representation also compromises

equiprobability. Since PAA uses the average over a certain number of consecutive

raw data points, the raw data represented by PAA may embody a different

63

5. Reduction Based CPU Host Load Pattern Discovery

probability distribution. The inequality in assigning symbols may cause over-

fitting by assigning more than enough symbols to those data points that are

rarely observed, while the parts of a time series that occur more frequently and

therefore potentially contain the fundamental patterns are not represented with

an adequate number of symbols.

Our strategy is simple but effective. We measure the actual distribution

of a data set before the SAX indexing. A real-world dataset can be very

large, especially under the ”Big Data” context. However, we can always take

a reasonable amount of data as our sampling data. The sampling methods

have been used for a long time in many different fields and its validity has been

theoretically and practically verified.

Let us assume that m symbols are assigned to a time series at the dimension

reduction rate n. We arbitrarily take a number of time series to form a sample

set S = {T1, · · · , Tn}. The number of values in the set, denoted by Q, is

Q =

n∑
i=0

Lengthof(Ti) (5.4)

The raw data are first represented by PAA. These PAA values are then

sorted in the ascending order. Because of the limited size of the sample set, this

process can be completed quickly. As we are assigning m symbols, we create a

bucket with the volume of V = Q
m . Next, we sequentially put the sorted values

into the bucket. When the bucket is full, we record the last value that was

put, which represents the upper bound of the values that are put in this round.

After this, the bucket is cleared and then refilled by the remaining data values.

After all values are put, m values are recorded, each of which corresponds to

the maximum value in each bucket. Compared to the sample dataset, the entire

dataset always has a wider value range. To make sure every value in the whole

dataset can be assigned with a symbol, we do not use the maximum value of the

last bucket but use the previous m− 1 values as the dividing points of m data

intervals, which are used to determine which interval a raw data is located and

64

5. Reduction Based CPU Host Load Pattern Discovery

therefore determine which symbol should be assigned to the data. This method

may cause the first and last intervals to have slightly more values than other

intervals. However, this will not compromise the statistical equality of each value

interval because of the strong representativeness of the sample dataset. This

way we transform the dimensionally reduced time series data into a string of

symbols, based on which we can further apply discretization.

5.2 Similarity Measure

Since our data are represented by PAA and refined SAX successively, similarity

measures based on original data space are no longer feasible. We introduce

Euclidean and DTW similarity measure under PAA and SAX respectively.

PAA simply reduce dimensionality of time series by average a fixed length of

data series, it is easy to define the two similarity measures under PAA. Given

two time series Q of length m and C of length n, window width w, their PAA

represented version Q̄ and C̄, their Euclidean distance is as follow:

DReuc(Q̄, C̄) =

√√√√w ∗
n
w∑
i=1

(q̄i − c̄i)2 (5.5)

Iff. n = m.

Their DTW distance is as follow:

d(0, 0) = 0

d(i, 0) = d(0, j) =∞

d(i, j) = (q̄i − c̄j)2 +min

d(q̄i−1, c̄j)

d(q̄i, c̄j−1)

d(q̄i−1, c̄j−1)

DRdtw(Q̄, C̄) =

√
w ∗ d(

m

w
,
n

w
)

(5.6)

Where i = 1, 2, · · · , mw and j = 1, 2, · · · , nw and, q̄i, c̄i are values of each data

65

5. Reduction Based CPU Host Load Pattern Discovery

point under PAA representation.

We have introduced the similarity inconsistency problem in Section 3.3, we

need to introduce consistent similarity measures under PAA as well:

DRCeuc(Q̄, C̄) =
DReuc(Q̄, C̄)

n
(5.7)

And consist DTW distance:

DRCdtw(Q̄, C̄) =
DRdtw(Q̄, C̄)

w ∗ K̄
(5.8)

Where K̄ is the length of warping path of Q̄ and C̄.

Measuring similarity under SAX representation is slightly more complex than

that under PAA because SAX represent data by symbols rather than values. In

SAX, each symbol Si represent a range of values:

Simin ≤ Si < Simax (5.9)

To provide lower bounding, the SAX represented data should be considered

representing the loosest case of the original data, which means we need to take

the lowest value to represent the value of a symbol for positive values and highest

value for negative values. Hence, the distance between each symbol forms a

distance table:

Table 5.1: Example of symbol distance look up table
S1 S2 S3 S4

a b c d
S1 a 0 0 0.67 1.34
S2 b 0 0 0 0.67
S3 c 0.67 0 0 0
S4 d 1.34 0.67 0 0

Value of each cell (Sr, Sc) can be calculated by the following equation:

66

5. Reduction Based CPU Host Load Pattern Discovery

Sr − Sc = Sc − Sr =

0, if | r − c |≤ 1

max(Srmax, S
c
max)−min(Srmin, S

c
min), otherwise

(5.10)

Distance of any two symbols can be aquired by looking up the table. Now

we can define Euclidean distance measures under SAX:

MINDISTeuc(Q̂, Ĉ) =

√√√√w ∗
n
w∑
i=1

(q̂i − ĉi)2 (5.11)

Iff. n = m. There DTW distance can also be defined:

d(0, 0) = 0

d(i, 0) = d(0, j) =∞

d(i, j) = (q̂i − ĉj)2 +min

d(q̂i−1, ĉj)

d(q̂i, ĉj−1)

d(q̂i−1, ĉj−1)

MINDISTdtw(Q̂, Ĉ) =

√
w ∗ d(

m

w
,
n

w
)

(5.12)

Where i = 1, 2, · · · , mw and j = 1, 2, · · · , nw . Consider the similarity inconsistency

problem, we have their consistent version:

MINDISTCeuc(Q̂, Ĉ) =
MINDISTeuc(Q̂, Ĉ)

n
(5.13)

And consist DTW distance:

MINDISTCdtw(Q̂, Ĉ) =
MINDISTdtw(Q̂, Ĉ)

w ∗ K̂
(5.14)

Where K̂ is the length of warping path of Q̂ and Ĉ. Both Euclidean and DTW

distance measures and their consistent versions can be calculated incrementally

67

5. Reduction Based CPU Host Load Pattern Discovery

by storing previous similarity value for Euclidean distance and by storing DTW

matrix for DTW distance.

5.3 Efficient Pattern Discovery

By applying SAX representation, we can reduce dimensionality and numerosity

of a given series of CPU host load which reduces search space greatly. In this

section, we start from brute force algorithm, then present its improved algorithms

as our pattern discovery algorithm.

5.3.1 Brute Force Pattern Discovery

One of the pattern discovery methods in the SAX representation is the brute

force algorithm. For two CPU host load data P and Q, a brute force algorithm

finds all possible subsequences in P and try to match each subsequence to Q.

The pseudo code of brute force algorithm is as Algorithm 2.

Algorithm 2: Brute force pattern discovery algorithm

input : CPU host load: P, Q;
Maximum allowed distance: R;

output : Set of patterns
foreach

HostLoadSubsequenceP in P

foreach
HostLoadSubsequenceQ in Q

if ConsisDistance(subsequenceP, subsequenceQ) < R then
patternSet.add(subsequenceP, subsequenceQ);

In this algorithm, finding all similar subsequences in a CPU host load is a

very computational expensive task. The time complexity of each brute force

subsequence is O(n!), which is unbearable in reality. Moreover, the algorithm

finds all patterns without considering the length of them. In other words, most

of the patterns found by this algorithm are very short (e.g., containing two

data points), which are meaningless compared to longer ones. In this work, an

improved algorithm is proposed to find potentially long patterns.

68

5. Reduction Based CPU Host Load Pattern Discovery

5.3.2 Improved Pattern Discovery Algorithm

Our first improvement technique modifies the brute force to find longest possible

patterns and does not require search all subsequences. The algorithm is outlined

in algorithm 3. Once a pattern is located, the algorithm keeps calculating

distance for following data points until the distance value grows larger than the

threshold. This algorithm reduces the number of iterations greatly. However, in

the worst case, the algorithm still has the time complexity of O((nm)2).

Algorithm 3: Longest possible pattern discovery algorithm

input : CPU host load: P, Q;
Maximum allowed distance: R;

output : Set of patterns
for i = 0; i < P.length; i+ + do

for j = 0; j < Q.length; j + + do
if |P [i]−Q[j]| < R then

disntance = |P [i]−Q[j]|;
cnt = 1 while Dconsistent(P [i : i+ cnt]), Q[j : j + cnt] < R do

cnt+ +;

patternSet.add(P [i : i+ cnt− 1], Q[j : j + cnt− 1]);

However, though the algorithm eliminated short repeated patterns, it still

produces long trivial matches. We now define trivial match formally as definition

16.

As in definition 16 and figure 1.2d, trivial matches are essentially same

patterns which are slightly different. Lin et al. suggest that trivial matches

occur more often in smooth time series [84]. Since the noise reduction method

smoothed our host load data, many trivial matches can be found which slow down

the patterns discovery process. A simple method is recording the increment of

distance when searching a time series data. Typically when the distance between

a pattern series and a time series data reaches a local minimum, the current

match is possibly the best match. Certainly, this method will take more time.

To balance the performance and matching quality, this work develops a simple

but efficient algorithm, which is outlined in algorithm 4.

69

5. Reduction Based CPU Host Load Pattern Discovery

Definition 16. (Trivial Match) In a time series data, given a subsequence C

beginning at position p, a matching subsequence M beginning at q and a distance

R, we claim that M is a trivial match to C of order R, if either p = q or there

does not exist a subsequence M ′ beginning at q′ such that D(C,M ′) > R, and

either q < q′ < p or p < q′ < q.

Algorithm 4: Trivial match skip algorithm

input : CPU host load: P, Q;
Maximum allowed distance: R;

output : Set of patterns
for i = 0; i < P.length; i+ + do

for j = 0; j < Q.length; j + + do
if P [i] /∈ patternSet || Q[j] /∈ patternSet then

if |P [i]−Q[j]| < R then
disntance = |P [i]−Q[j]|;
cnt = 1 while Dconsistent(P [i : i+ cnt]), Q[j : j + cnt] < R
do

cnt+ +;

patternSet.add(P [i : i+ cnt− 1], Q[j : j + cnt− 1]);

Algorithm 4 eliminates trivial results by not comparing subsequences that

start from found patterns. Since trivial matches are abandoned before calculation,

this algorithm speeds up the search process even further.

5.3.3 Cascade Pattern Discovery

To further accelerate pattern discovery process, it is necessary to represent CPU

host load using representation methods introduced in Section 5.1. The lower

bounding property of representation methods we use allow us to skip most of

the dissimilar patterns which account for a very high proportion of search space

as early as possible. Considering the rarity of true patterns, this cascade method

can greatly reduce distance measurements in original space.

For a pattern pair which considered to be similar, their distance under both

raw data space and indexed space are sure to be at least lower than the threshold

given, and we only know the pair are similar after we measured their distance

70

5. Reduction Based CPU Host Load Pattern Discovery

under raw data space. But another case is, a pair of patterns are similar under

indexed space, but not actually similar under raw data space. In this case, we

waste time on measuring the true distance between a pair of dissimilar patterns.

The latter case is what we stress on, that is, to skip as much as dissimilar pairs

as possible before they have to be calculated under raw data space.

In the field of mining known patterns in time series data, Rakthanmanon et

al. [126] applied a cascading method to accelerate mining process. Similarly, we

can transplant the idea to mining unknown patters.

Similar
under
SAX?

Similar
under
PAA?

Similar
under
Raw?

Discard pair

Pattern
discovered

Pair of indexed
host load

subsequences

Y

N

N

N

Y

Y

Figure 5.3: Cascade of different indexing technique for pattern discovery

Figure 5.3 shows how cascade indexed pattern discovery improves the effi-

ciency of the algorithm. Initially, two series of CPU host load data are indexed

with SAX, under the same length of dimensional reduction rate. Meanwhile,

we also have PAA indexed version of the two host load, as well as raw data.

We apply our trivial match skip algorithm to find possible patterns. Since

SAX indexing guarantees lower-bounding, we can confidently say all unqualified

71

5. Reduction Based CPU Host Load Pattern Discovery

pattern pair candidates are removed and the remaining host load subsequence

pairs contains all possible patterns. Then, we retrieve PAA indexed version

of qualified candidates under SAX representation and apply trivial match skip

algorithm to the data. Again, PAA also lower bounds Euclidean distance, and all

candidate pattern pairs measured greater distance than the given threshold are

disposed. Since the tightness of PAA lower bounding is higher than that of SAX,

now we have only a small part of remaining candidates compared to qualified

candidates under SAX representation. For this small part of candidates, we will

have to compare their real distance by retrieving raw data correspond to them.

However, we have eliminated most of the unqualified candidates by applying

pattern discovery algorithm on reduced search space and avoided unnecessary

calculation to the best we can.

5.4 Experimental Evaluation

We performed an experimental evaluation of the effectiveness of our proposed

method. The experiments were conducted on an Intel Core i5 4-core 3.2-GHz

machine with 16GB memory. Our experiments aim to answer the following

questions:

1 The effectiveness of our pattern discovery algorithm.

2 The efficiency of pattern discovery.

3 How PAA and SAX representation effects pattern discovery efficiency.

4 How much efficiency cascade method can perform than mining raw data.

The experiments we conduct are based on Google cluster trace, which records

the resource usage of 12,000 machines of a real-world cluster, spanning 30 days.

We reorganised the dataset to gather CPU host load of each machine. All the

data are z-normalized to eliminate the negative effect of scaling and vertical

shift.

72

5. Reduction Based CPU Host Load Pattern Discovery

5.4.1 Mining patterns in Google Cluster Trace

To illustrate the effectiveness of our proposed pattern discovery method, we start

with showing some discovered patterns in the whole dataset.

As discussed earlier, the aim of our algorithm is to locate similar subsequences

in different CPU host load series. Figure 5.4 shows patterns found in the Google

cluster trace dataset. The 5 host load series, a, b, c, d and e are collected from 5

different machines in a Google cluster. To show the effectiveness of our method,

we discover subsequences in host load b, c, d and e that are similar to subsequences

in host load a. Once a pattern is found, we cover the pattern with a coloured

rectangle to show its position in both host load a, the query host load, and the

content load where the pattern is located in.

As shown in figure 5.4, each of host load b, c, d and e has one subsequence

that is similar with part of host load a. In host load b, the subsequence covered

with the blue rectangle is similar to that covered with the blue rectangle in host

load a. Similarly, in host load a and c the red rectangle covered subsequences

are similar. In d, the green rectangle covered subsequence is similar to that in

a and purple rectangle covered subsequence in e is similar to that in a as well.

This intuitive experiment shows that our method finds patterns effectively. It is

clear that host load b, c and d have similar periodicity as host load a, giving the

fact that in this dataset periodical CPU host load are relatively rare. This result

strongly suggests that host load which share same similar patterns are more

likely to be the same type, which indicates the possibility of using discovered

patterns to achieve better classification for CPU host load.

5.4.2 Efficiency of Indexing

Although the efficiency of indexing methods have been compared in various

papers [105, 108], we still want to investigate whether the performance results

follow the similar trend when they are applied for the pattern discovery in

the host load. As it has been shown in [83], different types of datasets can

73

5. Reduction Based CPU Host Load Pattern Discovery

Figure 5.4: Patterns discovered using host load a as reference

74

5. Reduction Based CPU Host Load Pattern Discovery

dramatically affect the efficiency of the indexing methods.

The efficiency of an indexing method can be defined as follows.

Definition 17. (Indexing Efficiency) Given an indexing method I with the

dimensional reduction rate R, the indexing efficiency of I is the time spent in

indexing with the reduction rate R.

Figure 5.5: Indexing efficiency of three indexing methods with dimensional
reduce rate of 10

We conducted the experiments to compare the indexing efficiency among raw

data indexing, PAA indexing and SAX indexing methods. We take 1MB, 10MB,

100MB and 1000MB of test dataset from the whole dataset. In each dataset, we

take a host load series as our query. By linearly searching the test dataset, all

host load within R from the query should be found according to the definition.

It can be seen from figure 5.5 that PAA and SAX reduce the time consumption

greatly, and the SAX indexing is even faster than the PAA indexing. It is

notable that the PAA indexing is approximately 10 times faster than the raw

data indexing, which is expected as we use 1 PAA data point to represent 10

raw data points, namely the reduction rate is 10. As for the SAX indexing, since

its distance measure comes from looking up a distance table, it is slightly faster

than PAA.

75

5. Reduction Based CPU Host Load Pattern Discovery

As mentioned above, the reduction rate is the fundamental factor that affects

the efficiency of indexing. Meanwhile, it also increases the probability of incorrect

indexing.

Definition 18. (False-positive indexing result) Given an indexing method S =

I(Q), where S is the resulting data of a query data Q. a false-positive indexing

result is a time series Twrong in S where the distance between Twrong and Q

under I is less than R, but the distance under raw data indexing is greater than

R.

The solution of the false-positive indexing problem is simple. We can deploy

a cascade indexing method, in which the lower level of the indexing method

returns a dataset of possible results, while the higher level identifies and throws

away the false-positive indexing results. The requirement for a cascade indexing

method is that the lower level indexing should be fast and provide the lower

bound of the real distance, while the higher level of indexing should return the

exact distance. If the lower level indexing is unable to determine the lower

bound of the distance measure, it is possible that the indexing method misses a

qualified result. Our carefully selected indexing method, namely SAX and PAA,

provide lower bounding.

In [105], the authors give the notion of the tightness of lower bounding to

indicate how accurately the distance in the representation space can represent the

real distance. Theoretically, the more dimensional reduction in the representation

space, the less tightness the lower bounding is. Although higher dimensional

reduction rate can accelerate the searching process, the later exact search may

slow the whole process down. To show the numerical relation between indexing

efficiency and dimensional reduction rate, we conducted the experiments and

plot the results in figure 5.6.

In the experiments, we used the three indexing methods on a 1000MB

dataset with different dimensional reduction rate and recorded the average time

of returning the result from a query. As shown in figure 5.6, the ratio of efficiency

76

5. Reduction Based CPU Host Load Pattern Discovery

Figure 5.6: The proportional relation of efficiency between three indexing

methods with different dimensional reduction rates. A = t(SmoothedRawData)
t(SAX) ,

B = t(SmoothedRawData)
t(PAA) , C = t(PAA)

t(SAX) , where t(X) is the time spent with the

indexing method X

between raw data and SAX increase linearly with the dimensional reduction

rate. The same trend is also observed for the PAA indexing. Therefore, we

can conclude that the efficiency of each indexing method can be deduced from

equation 5.15, where I is the PAA or SAX indexing method, Raw data is raw

data indexing and a is a constant coefficient.

Efficiency(I) =
Efficiency(Raw data)

Dimensinal reduction rate ∗ a
(5.15)

According to the experimental results in figure 5.6, we can determine the

coefficient a is 0.82 and 1.5 for the PAA indexing and the SAX indexing, re-

spectively. Therefore, the PAA indexing is 0.82 ∗ dimensional reduction rate

times faster than the raw data indexing, while the SAX indexing is 1.5 ∗

dimensional reduction rate times faster. We can also deduce that the SAX

indexing is 1.8 times faster than the PAA indexing. This result strongly supports

the hierarchy structure of our cascade discovery method, where the most efficient

indexing method designed to be on the top and the most inefficient indexing

method on the bottom.

77

5. Reduction Based CPU Host Load Pattern Discovery

5.4.3 Efficiency of Pattern Discovery

In Section 5.3, we presented three pattern discovery methods and a cascade

discovery framework to further accelerate the process. Theoretically, the brute

force method is expected to be the slowest, while the trivial match skip method is

the fastest and can produce the best result. We start with comparing how much

trivial match skip algorithm improved efficiency of the other two algorithms,

and then we evaluate the performance of cascade accelerating method.

Figure 5.7: The time spent by the two algorithms with different data sizes; the
dimensional reduction rate is 20

As shown in figure 5.7, as the dataset size increases, the time spent by the

second algorithm (i.e., the method to discover the longest possible pattern)

increases very fast. By contrasting our improved algorithm which skips the

trivial matches can still finish in a reasonable time. The brute force algorithm is

unable to produce any result in an acceptable time.

To evaluate the efficiency of pattern discovery under cascade framework under

different settings of parameters, we mine patterns hide in an arbitrarily selected

host load in a 1.20GB dataset contains more than 12,000 CPU host load come

from different machines in a cluster of Google. The experiment is repeated for

30 times to acquire average value. For each selected host load, we mine patterns

78

5. Reduction Based CPU Host Load Pattern Discovery

by setting a variety of PAA dimensional reduction rate ranging from 5 to 50,

and the number of symbols used in SAX representation, ranging from 30 to 110.

The result is shown in figure 5.8.

Figure 5.8: Time spent of cascade mining method under different patameter set

As in figure 5.8, It is clear that the number of symbols assigned to SAX

representation decides how fast the algorithm process. When more symbols are

assigned to a host load, distance measure under SAX representation bounds

more tightly to the true distance of the raw data, thus unqualified pattern pair

candidates can be easier eliminated before proceed to retrieve PAA indexing.

However, when the number of symbols assigned increase, the benefits the algo-

rithm takes is lessened. Assigning more symbols than enough, in this case, 30,

will not result in notable improvements in efficiency.

Another factor influences time consumption of cascade pattern discovery

method is dimensional reduction rate of PAA. When the rate is 1, PAA indexing

simply degrades to raw data, which result in the absence of the middle level

of our cascade method, and all unqualified candidates which are unable to be

picked out by SAX indexing will be handed over directly to raw data pattern

discovery, which is much less efficient. However, when the dimension reduction

79

5. Reduction Based CPU Host Load Pattern Discovery

rate is greater than a certain value, the efficiency of the cascade framework

will also be reduced. The reason is given by [22]. When dimensional reduction

rate increase, the PAA indexed time series tend to have less average value and

standard deviation, result in poor tightness of lower bounding. In this case, the

ability to identify unqualified pattern pair candidates of the middle level of our

cascade model is weakened.

5.5 Summary

In this chapter we present a host load reduction based pattern discovery method.

This method applied two levels of reduction steps, PAA representation and

refined SAX representation. To increase efficiency while maintaining accuracy, a

cascade discovery method is proposed.

To find exact patterns, it is important to reduce dimensionality and nu-

merosity of CPU host load. This chapter discussed the effectiveness of SAX

representation and suggested that the original work does not guarantee equal

probability of symbol assigning when representing CPU host load. The defect is

fixed by measuring the actual distribution of CPU host load data.

We developed DTW distance on both PAA and SAX representation, as well

as their similarity consistent version. This contribution makes unknown similar

pattern discovery under the two representation possible and can be extended to

other time series data mining applications.

Though brute force pattern discovery algorithm has shown to be infeasible,

we achieved efficient discovering by improving brute force method. The major

problems of brute force method are high time complexity and producing meaning-

less results as shown in Chapter 1. By applying reduction methods, the raw data

are reduced to a reasonable amount. Our method also eliminated overlapped

patterns and trivial match patterns by finding longest possible patterns and

trivial match detection. The two techniques also increase the efficiency of the

discovering process by avoiding repeated calculation.

80

5. Reduction Based CPU Host Load Pattern Discovery

To find patterns accurately and efficiently, a cascade discovering method is

proposed in this chapter. The lower bounding property of both PAA and SAX

ensure all patterns can be found in CPU host load. Experimental results indicate

the method is efficient and effective.

81

Chapter 6

Iterative Similar Pattern

Discovery in Time Series

Data

CPU host load is essentially time series data. Previously presented pattern

mining methods for CPU host load can also be applied to some time series data.

On the other hand, a time series pattern discovery method can be immediately

applied to mining patterns in CPU host load.

The two methods proposed for mining patterns in CPU host load in Chapter

4 and 5 discover patterns in CPU host load either efficiently or less efficient

but accurately. However, the two methods have their limitations when being

applied to other time series data. The segments clustering method proposed in

Chapter 4 requires time series that have smooth and undulant trends. Though

the method proposed in Chapter 5 has fewer requirements to the input data, it

still prefers smooth data that have long-term trends. These requirements reduced

the applicability of the two methods. A universal time series pattern mining

method that covers most time series data types not only addresses the subject

of mining time series patterns which has been less focused in the literature, but

82

6. Iterative Similar Pattern Discovery in Time Series Data

also helps discover CPU host load patterns in a more fundamental point of view.

In this chapter, we investigate mining patterns in time series data from a

higher and more essential level to develop a general method for discovering

previously unknown patterns in time series data. The method has two steps:

approximate pattern position locating and exact pattern discovery. Section 6.1

presents how we transfer expectations for patterns to prior knowledge of patterns

to help to propose an efficient pattern discovery method. In Section 6.2 we

propose a method to find approximate pattern positions. Then in Section 6.3

we utilise the found possible locations to refine the result iteratively. Finally in

Section 6.4 experiments are conducted to illustrate the effectiveness and efficiency

of the method.

6.1 Creating Prior Knowledge for Patterns

As illustrated in Section 1.2, the difficulties we are facing is that we do not have

prior knowledge of the patterns we are mining. Though little knowledge about

the pattern can be extracted from the data, we still have our expectation on

the patterns to be discovered. A pattern mining algorithm is expected to find

patterns that have following characteristics:

1. The first and most obvious feature of a pattern is that it contains two

similar time series subsequences. In other words, the distance of the two

time series subsequences should be lower than a given similarity threshold.

2. Patterns should have moderate lengths. One of the reasons why the brute

force method is not feasible is that the method produces many results

which have only a few data points for each of them. These very short

patterns contain little information and are often not understandable due

to their limited lengths. Moreover, short time series data subsequences

are more likely to have low distance value because the higher probability

for fewer data points to fall into the same range of values. Imagine the

task is to find whether two pieces of music contain similar melody, it is not

83

6. Iterative Similar Pattern Discovery in Time Series Data

possible to support the decision by two 1 second clips, though the pitch of

the sound clips is the same.

3. Subsequences of a pattern should have similar lengths. The difference

in lengths of subsequences indicates their difference in time spans, which

often generated by different types of events. A specific case of whether two

similar subsequences should have similar lengths is often argued against

for the fact that time series data can be collected by sensors with different

sampling rates [141]. However, the sampling rate problem can be solved

simply by resample the shorter time series to the length of the longer ones

before mining process rather than allowing subsequences with huge length

difference to be comparable, which could also bring in false positive results.

4. A pattern should not be a part of another pattern. The motive of discover-

ing the longest possible pattern is to avoid the pattern containing problem.

If we have two matching time series, the subsequences of corresponding

time slot will match as well, and will be considered to be a pattern in

brute force algorithm. However, this shorter pattern is a redundant result

because information of the shorter pattern is already contained in the

longer one.

5. The subsequences of a pattern should not come from trivial matches. The

concept of trivial match has been proposed in [84]. The original work

points out that given a similarity threshold, the subsequences around the

best match subsequence of a given query also similar to the query. We can

generalize the idea to pattern discovery as shown in figure 1.2d. Giving a

similarity threshold, the similarity of subsequences pairs around the best

match subsequence pair are tend to be less than the threshold as well.

Essentially, trivial matches are repeats of the best match subsequence and

are also redundant results.

We can utilize the requirements of patterns as prior knowledge to design an

algorithm which is able to perform fast and accurate similar pattern discovery.

84

6. Iterative Similar Pattern Discovery in Time Series Data

6.2 Approximate Similar Pattern Position Lo-

cating

In this section, we illustrate the first phase of our proposed method, Approximate

Similar Pattern Locating algorithm (ASPL). This phase locates the approximate

positions of possible patterns. Provided with the position information, we can

then apply accurate pattern search algorithm in phase two of our proposed

method. We start introducing ASPL by introducing a naive method, and then

introduce ASPL by improving the naive algorithm.

6.2.1 Naive Pattern Position Locating

As presented above, one of the difficulties of time series unknown pattern discovery

is that we have little knowledge of the pattern we are to find. However, from

definition 5 we can deduce an obvious theorem:

Theorem 1. Giving two time series subsequences R = {pi, pi+1, · · · , px, · · · , pj}

and S = {qk, qk+1, · · · , qy, · · · , ql} and distance threshold τ , if R and S match,

then there exist px and qy where i ≤ x ≤ j and k ≤ y ≤ l make || px − qy ||≤ τ .

We can utilize this property to estimate the starting indices [i, j] of a similar

pattern starting form ith and jth data points of the two time series respectively.

The naive method uses nested loops to compare each possible pair of data points

in each time series. We present the algorithm briefly:

Algorithm 5: Naive pattern starting position locating algorithm

input : Time Series P = {p1, · · · , pn}, Q = {q1, · · · , qm}
output : List of positions
for i← 1 to n do

for j ← 1 to m do
if || pi − qj ||≤ τ then

Add [i, j] to position list;

This algorithm finds all positions where the distance of corresponding time

series data points less than τ . Physically, the algorithm generates cells of a

85

6. Iterative Similar Pattern Discovery in Time Series Data

Candidate
areas

Starting
points

[0,0]

[50,50]

Match

Figure 6.1: A visualization of algorithm 5 and 6. The central matrix is the
imagined matrix produced by algorithm 5. Green cells are ”candidate areas”
where || pi − qj ||≤ τ found by algorithm 5. The light green cells are part of
possible starting positions found by algorithm 6.

m by n matrix (note that this matrix only exists in imagination for the ease

of discussion), each cell represents a distance value of the corresponding data

points of each time series. Then the algorithm cut off cells where their values

are greater than τ . The remained cells are typically very close or neighbouring

to each other because of the existence of trivial matches. We call a set of

neighbouring cells which satisfy || pi − qj ||≤ τ a ”candidate area” of all possible

starting positions. The concept is illustrated in figure 6.1. The two gray-shaded

subsequences in figure 6.1 are a match under τ = 0.11 in this example. Knowing

the two subsequences are a match, the drawbacks of this naive algorithm are

obvious. First, this algorithm produces too many abundant positions. Each

candidate area indicates a possible pattern across it. Similarity measurement of

two subsequences starts either from their first data points or their last data points,

therefore, only one cell for each candidate area is required to locate a match.

However, with all cells in candidate areas to be considered, we have to repeat the

86

6. Iterative Similar Pattern Discovery in Time Series Data

Table 6.1: Example of time series grouping compare

Time 1 2 3 4 5 6 7 8 9 10
A 1 2 3 6 2 4 5 1 2 6
B 2 3 3 1 5 3 2 5 5 1

(a) Time series A and B

Group A1 A2 A3

Time 1 2 5 8 9 3 6 4 7 10
A 1 2 2 1 2 3 4 6 5 6

(b) Groups of time series A,τ = 2

Group B1 B2 B3

Time 1 4 7 10 2 3 6 5 8 9
B 2 1 2 1 3 3 3 5 5 5

(c) Groups of time series B,τ = 2

measurement for each of these positions, which will be a time-consuming process.

Second, the time complexity of this algorithm is O(mn), which is too high for

a scalable method. Actually, state of the art [141] can already find all optimal

matches under the same time complexity. We improve this naive method in two

ways: search space reduction and invalid results reduction.

6.2.2 Search Space Reduction

The first improvement of the naive algorithm is reducing the search space required

to accelerate the algorithm.

From figure 6.1 we can observe that the white area occupies most space of

the matrix. In fact, notable matches are relatively sparse for most time series

data. For two time series, we can group their data points by their values so that

only data points in neighbouring groups are possible to be similar.

For conciseness of discussion, we assume that all data points in each time

series are non-negative in the discussion of this subsection. It is easy to extent

the method and conclusion to real number time series.

We use a simple example to illustrate this method. Suppose two time series

A = {1, 2, 3, 6, 2, 4, 5, 1, 2, 6} and B = {2, 3, 3, 1, 5, 3, 2, 5, 5, 1} as in table 6.2a.

We set the similarity threshold to be τ = 2. Each data point xi is assigned to

the wth group where w is calculated by following equation:

87

6. Iterative Similar Pattern Discovery in Time Series Data

w =

dxiτ e, xi 6= 0

1, xi = 0

(6.1)

In our example shown in table 6.2b, data points of time series A are assigned

to 3 groups: A1, A2 and A3. Similarly, in table 6.2c, data points of time series

B are assigned to B1,B2 and B3. Because this method rearranges the original

temporal order of time series, it is necessary to record time stamp of each data

point (second row of table 6.2b and 6.2c) when manipulating. In this example,

we can see that data points in group A1 and B1, A2 and B2, A3 and B3 are

similar. Data points in A2 only need to be compared with data points in B1 and

B3, and data points in A1 only need to be compared with data points in B2.

We can draw a conclusion that giving two time series A and B, data points

in wth group of time series A must be similar with the wth of group B, data

points of the wth group of time series A are only possible to be similar with

data points of the (w − 1)th and (w + 1)th group of time series B. Therefore,

for each group Aw in time series A, we only need to compare its data points to

data points in Bw−1 and Bw+1. The total comparison c conforms the following

equation:

c =

i∑
w=1

| Aw | ×(| Bw−1 | + | Bw+1 |) (6.2)

where | X | is the number of data points in group X and i is the number of total

groups which can be calculated by the equation below:

i = dmax(A ∪B)−min(A ∪B)

τ
e (6.3)

According to equation 6.2, the total comparison needed for example shown in

table 6.2a is 38, by contrast this value is 100 in naive algorithm. In practical, τ is

typically a very small value, so the total comparisons needed can be considerably

reduced by several orders of magnitude of that required by the naive algorithm.

88

6. Iterative Similar Pattern Discovery in Time Series Data

6.2.3 Invalid Results Reduction

To decide which cell is the best cell to start searching optimal match is as difficult

as locating the exact position of the optimal match itself. However, as shown

in Section 6.3 our proposed search algorithm is capable of locating the exact

position of nearest optimal match of any given starting points. The closer the

given point is to the actual start point of an optimal match, the faster our

algorithm will find the actual position. By knowing this, we should now concern

two questions: how to ensure we can find all optimal matches and how to find

cells near the actual optimal match.

The answer to the first question is that we need at least one cell for each

candidate area. candidate areas are the cells where || pi − qj ||≤ τ and for

an optimal match, its optimal warping path must satisfy ||
∑l
i=1Dai ||≤ τ .

Therefore, the warping path of any optimal match will cross at least one candidate

area. Searching all candidate areas will guarantee all optimal matches are found.

Definition 6 indicates that optimal match is the longest possible match with

its similarity less than τ . Typically, a candidate area is a rectangle-like polygon

and covers up to one pattern. An usual case is that the warping path of a pattern

starts from the near corner (closer to [0, 0] of of the cost matrix) of a candidate

area , and ends at the far corner (closer to [m,n] of the cost matrix) of another

candidate area. Without knowing the location of the optimal warping path, it

is natural that we start searching from the near corner cell of a candidate area.

However, determining which cell of a polygon candidate area is closer to [0, 0]

requires knowing the exact shape of the candidate area, which is another time-

consuming task. Instead of doing this, we introduce the concept of ”qualified

cell” as below:

Definition 19 (Qualified cell). Giving two time series X = {x1, x2, · · · , xi, · · · , xm}

of length m and Y = {y1, y2, · · · , yj · · · , yn} of length n and similarity threshold

τ , (xi, yj) is a qualified cell if and only if:

1. || xi − yj ||≤ τ

89

6. Iterative Similar Pattern Discovery in Time Series Data

2. if at least one of (xi+1, yj),(xi, yj+1) and (xi+1, yj+1) exist, they must

satisfy one of || xi+1 − yj ||≤ τ , || xi − yj+1 ||≤ τ and || xi+1 − yj+1 ||≤ τ

3. If at least one of (xi−1, yj),(xi, yj−1) and (xi−1, yj−1) exist, they must

satisfy all of || xi−1 − yj ||> τ , || xi − yj−1 ||> τ and || xi+1 − yj+1 ||> τ

Intuitively, we simply record any cell which has no candidate cells on its

left, top and top-left neighbours, but has candidate cells on its right, bottom or

bottom-right neighbour. The benefit of doing so is that we do not need to search

all the candidate area to ascertain the most promising starting points. The stand-

alone cells can also be eliminated where D[i, j] ≤ τ but has no neighbouring

candidate cells. In this way, one candidate area may have several cells recorded

rather than only one.

Having our improvements introduced, the fast pattern locating algorithm is

described as algorithm 6.

Algorithm 6: Fast pattern locating algorithm

input : Time Series: P = {p1, · · · , pn}
Q = {q1, · · · , qm}
Similarity threshold: τ

output : List of positions
for i← 1 to n do

if pi == 0 then
Add pi to groupP[1];

else
Add pi to groupP[dpiτ e];

for j ← 1 to m do
if qj == 0 then

Add qj to groupQ[1];
else

Add qj to groupQ[d qjτ e];

for w ← 1 to groupCount do
foreach pa in groupP[w]

foreach qb in groupQ[w±1]
if Qualified(pa,pb) then

Add [a, b] to position list;

90

6. Iterative Similar Pattern Discovery in Time Series Data

6.3 Similar Pattern Discovery Based on Possible

Starting Points

In section 6.2 we have found a set of approximate potential positions as initial

starting positions of locating exact similar patterns, but yet we know the length

of the similar patterns. In other words, we also need to ascertain the ending

positions similar patterns. In this section we introduce our exact optimal match

locating algorithm. We begin with a naive match locating algorithm to present

the distance measure we used as well as the necessity of iterative locating, then

we introduce our proposed exact similar pattern discovery algorithm.

6.3.1 Naive Similar Pattern Discovery

Giving two time series P = {p1, · · · pi, · · · , pn} and Q = {q1, · · · , qj , · · · , qm} and

a n-by-m matrix D is the DTW cost matrix of P and Q. According to definition

8, D[i, j] is the distance value of subsequences {p1, · · · , pi} and {q1, · · · , qj}. In

other words, the cost matrix contains all distance value of any two subsequences

start at p1 and q1 respectively. It is natural to start measuring DTW distance

starts at starting positions found by method shown in section 6.2 to locate the

proper end position of a match. Since the similarity measure we use (equation

3.4) requires the length of warping path for each cell in D, we propose the

dynamic warping path length K calculate method as below:

K(0, 0) = 0

K(i, j) = 1 +K(a, b)

where

D(a, b) = min

d(xi−1, yj)

d(xi, yj−1)

d(xi−1, yj−1)

(6.4)

91

6. Iterative Similar Pattern Discovery in Time Series Data

For each cell of cost matrix we calculate DTWconsis(Pi, Qj) = D(i,j)
K(i,j) as shown

in equation 3.4. If DTWconsis(Pi, Qj) is greater than similarity threshold τ , we

return the corresponding position as the end position of minimum value of last

row calculated Min(D[i− 1, ∗]). The algorithm is shown in 7.

Algorithm 7: Naive pattern searching algorithm

input : Time Series: P = {p1, · · · , pn}
Q = {q1, · · · , qm}
Similarity threshold: τ
DTW window width: w
Starting position: C = (s, t)

output : Ending position: E = (x, y)
prevMin = (1, 1);
// Initialize previous minimum distance cell position

while row i← 1 to end do

if Min(D(i,∗))
K(index of(Min(D(i,∗)))) > τ then

return (prevMin);
else

prevMin = index of(Min(D(i, ∗)));

As shown in figure 6.2, the algorithm searches for similar subsequences from

each starting point. The algorithm measures DTW starting from a starting

point, and a DTW cost matrix is then built and a Sakoe-Chiba constraint is

applied to the matrix to save computational resource and avoid over-warping.

Once the minimum distance value in a row of cost matrix is greater than distance

threshold τ , the algorithm returns the cell of the last row with minimum distance

value as the ending position of the match.

Apparently, algorithm 7 does not find optimal matches, since the starting

points given by algorithm 6 is not guaranteed to be optimal starting points. Also,

the algorithm is not capable of avoiding repeated match. In figure 6.2, several

other starting points (green cells) can be observed around the one we selected.

By comparing this figure to figure 6.1, it is obvious that matches starting from

these starting points will eventually turn out to be trivial matches of the one we

show in figure 6.2 as they share the same parts of candidate areas. The existence

of trivial matches is not only a waste of computational resources but also cause

92

6. Iterative Similar Pattern Discovery in Time Series Data

Starting
point

[0,0]

[50,50]

Match

Ending point

6

0

Figure 6.2: A visualization of algorithm 7. The search starts from a staring
point and continuously builds DTW cost matrix until the similarity is greater
than τ . Note that a constraint window is applied to DTW.

an unnecessary process of picking out the most representative match from a

bunch of similar trivial match results.

6.3.2 Iterative Exact Similar Pattern Discovery

Our proposed exact similar pattern discovery algorithm is based on the fact that

the optimal warping path of an optimal match always extends along the ”valley”

area (where values are lower) of the DTW cost matrix built by the optimal

match to achieve lowest total cost as shown in figure 6.3a. It is natural thinking

of detecting these ”valley” areas on cost matrix to locate similar subsequences,

but the dynamic programming natural of DTW makes it impossible because

cost matrices are different for each starting point [i, j]. Different from Eu-

clidean distance which guarantees for time series X = {x1, · · · , xi, · · · , xm} and

Y = {y1, · · · , yj , · · · , yn} there will always be DEuc(X,Y) = DEuc(X1:i, B1:j) +

DEuc(Xi:m, Yj:n), elastic distance measure, like DTW, does not possess this prop-

93

6. Iterative Similar Pattern Discovery in Time Series Data

[0,0]

[50,50]

High

Low

(a)

[0,0]

[50,50]

High

Low

(b)

Figure 6.3: Cost matrix (left) and local cost matrix (right) of two example time
series. The optimal warping path is plotted in red dash line.

erty, causing difficulties in extracting distance values of arbitrary subsequences

pair from single cost matrix.

We can plot a local cost matrix where cell [i, j] denotes || xi − yj || of

corresponding time series X = {x1, · · · , xm} and Y = Y {y1, · · · , yn}, as shown

in figure 6.3b.The warping path of two given subsequences respectively from

X and Y can be regarded as a path which starts from a starting position and

sums up all the values of cells it goes through then ends at an ending position.

Particularly, the optimal warping path is one of all warping paths that has the

minimum sum of these values. The optimal warping path tends to go through

cells where values are low. Unlike on cost matrix where optimal warping paths

always span across ”valley”, to achieve minimum total cost, optimal warping

paths may go through cells with higher values on local cost matrix.

Our similar pattern discovery method works in an iterative way. First, the

algorithm is given an arbitrary starting position [a, b]. Open-end consistent

DTW starts measuring DTW distance for time series {xa, xa+1, · · · , xm} and

{yb, yb+1, · · · , yn} until the distance value is greater than threshold τ as naive

search algorithm does. The cell where measuring stops is marked as current

ending position, say, [c, d]. Obviously in many cases, subsequences {Xa:b}, and

{Yb:d} starts to be less similar before position [c, d] as shown in figure 6.4 because

94

6. Iterative Similar Pattern Discovery in Time Series Data

Trimmed

 Length

(a) Two match subsequences under τ = 0.37.
Data on right side of the dash line are obviously
not similar.

1 220
−2

−1

0

1

2

3

4

5

6

7

8

 Length

V
al

ue

(b) Trimmed subsequences using algorithm 8.

Figure 6.4: Illustration of algorithm 8

when two subsequences are similar, their succeeding data points are the cause of

major increase of similarity value. The algorithm then traces back along warping

path of current end position to trim dissimilar parts and updates current end

position as shown in algorithm 8. This process makes sure the ending position

of warping path closer to the warping path of the optimal match and hence

results in a faster convergence. Then the algorithm takes this end position as

its new starting position, and measures DTW distance in the same procedures

but reversely from latter data points in time series to former data points in time

series values. The two steps repeat until the starting position or end position

converge. A step limit σ is given to remove short results. Since a Sakoe-Chiba

band is applied to the measurement, the warping path of each measurement is

restricted in the constraint window. The concept of this algorithm is shown in

figure 6.5.

The iterative pattern locating algorithm is able to produce local optimal

matches near given starting positions. As discussed in the former section, once

a starting position is given for each candidate area, all optimal matches will be

guaranteed to be found. But the original iterative discovery algorithm still suffers

from producing repeated results. Because for each candidate area, algorithm

95

6. Iterative Similar Pattern Discovery in Time Series Data

Algorithm 8: Dissimilar section trimming algorithm

input : Cost Matrix: D
Starting position [x, y]
Current ending position [a, b]
Similarity threshold: τ

output : Updated current ending position: [a′, b′]
[a′, b′] = [a, b];
// Initialization

while [a, b]! = [x, y]
if ConsisDistance([a, b], [a′, b′]) ≤ τ then

[a, b] = GetPreviousPoint(D, [a′, b′]);
else

[a, b] = GetPreviousPoint(D, [a′, b′]);
[a′, b′] = [a, b];

return [a′, b′];

6 may produce more then one starting position, and even if we have only one

starting position for each candidate area, an optimal match may probably

span cross several candidate areas, making starting positions of these candidate

areas reduce to the same optimal match. This phenomenon pollutes results

with repeated matches and wastes computational resources. When iteratively

searching for an optimal match from a starting position, we mark cells which

warping paths of the iterative algorithm go by as a visited cell. If warping paths

of another iterative search start from a different starting position overlap with a

went-by cell, the search stops and the algorithm moves on to the next starting

position on the list. If the two searches’ warping paths share same cells, they

will result in finding same optimal matches because the warping path has been

proved to be global optimal by the first search. The algorithm is shown in

algorithm 9.

6.4 Experimental Evaluation

Experiments are performed to evaluate the effectiveness and efficiency of our

proposed method. The experiments are conducted on a 3.2-GHz Intel Core

i5 machine with 16 GB of memory running Windows 7. The experiments are

96

6. Iterative Similar Pattern Discovery in Time Series Data

[7,12]

High

Low

[28,33]

Starting point A

Starting point B

Constraint window

� � � � � � �

(a) Measure of DTW distance starts at
starting point A and ends at the cell where
DTWconsist > τ . Trim result and report new
ending position.

High

Low

[28,33]

Constraint window

[7,12]

� � � � � � �

Starting point A

Starting point B

(b) Measure DTW distance reversely from pre-
vious ending cell and produce a new starting
point.

High

Low

[28,33]

[7,12]

Starting point A

Starting point B

(c) Process (a) and (b) repeat iteratively until
warping path converges.

High

Low

[28,33]

[7,12]

Path overlap

Starting point A

Starting point B

(d) Search starts from starting point B (yel-
low) overlaps with warping path (red) of
search starts from starting point A, search
stopped.

Figure 6.5: A visualization of algorithm 9

designed to respond these concern:

1. The effectiveness of the method.

2. The efficiency of the method.

3. Scalability of the method.

6.4.1 Locating Similar Patterns on Different Datasets

We use two synthetic datasets and four real-world datasets to validate the

effectiveness of our proposed method. For each test dataset, we plot their time

97

6. Iterative Similar Pattern Discovery in Time Series Data

Algorithm 9: Iterative exact pattern searching algorithm

input : Time Series: P = {p1, · · · , pn}
Q = {q1, · · · , qm}
Similarity threshold: τ
DTW window width: w
Starting position list: C = {(si, ti)}
Step limit σ

output : Optimal match list: E = {[sxj , syj], [exj , eyj]}
foreach (si, ti) in Starting position list

while true
startPoint = (si, ti);
endPoint = FwardDTW (startPoint, w, τ);
// open end forward DTW without constrain of end point

if TraceBack(endPoint) == overlap then
break;

// If warping path overlap then break

newStartPoint = RevDTW (endPoint, w, τ);
// open end reverse DTW without constrain of end point

and update start point

if TraceBack(newStartPoint) == overlap then
break;

if startPoint == newStartPoint & steps ≥ σ then
add (newStartPoint, endPoint) to MatchList;
break;

else
startPoint = newStartPoint;
continue;

series in blue lines in each figure respectively. To show the patterns’ spans and

positions, we plot the cost matrix for each pair of time series and highlight the

start position, end position and warping path of each pattern with red lines.

The details of parameter settings for each dataset is shown as below.

Inserted pattern

This dataset is a synthesis of CPU usage data from three different machines of a

cluster, each data point indicates the average usage of CPU in 5 minutes. two

parts of a periodical CPU usage series of a single machine (figure 6.6c and 6.6d)

are inserted into two relatively chaotic CPU usage of two different machines

(figure 6.6a and 6.6b) on time tick 2000 and 1000 respectively. The data are

98

6. Iterative Similar Pattern Discovery in Time Series Data

Table 6.2: Parameter settings of each dataset

Datasets
Sequence
length 1

Sequence
length 2

Similarity Constraint
Step
limit

Z-normalized?

Inserted pattern 4625 4625 0.2 50 300 Yes

RandomSines 25000 25000 0.5 100 1000 Yes

Web 32000 32000 0.3 500 1000 Yes

Temperature 28000 24000 0.5 500 3000 No

CPU Hostload 37240 37240 0.2 30 300 Yes

ECG5000 630000 70000 0.07 5 140 Yes

normalized individually to the same mean value and standard error. As shown

in figure 6.6, there is no statistical difference between inserted patterns and

the being-inserted time series. In figure 6.6g, the red line in the centre denotes

the major pattern that starts from time tick 2000 in inserted host load 1 and

1000 in inserted host load 2 and ends at time tick 2901 and 1901 respectively,

corresponds to series 0 to 901 in figure 6.6c and series 0 to 901 in figure 6.6d.

The two shorter red lines beside the centre line indicate two minor patterns.

One of them corresponds to series 300 to 901 in figure 6.6c and 0 to 600 in figure

6.6d, the other corresponds to series 0 to 600 in figure 6.6c and 300 to 901 in

figure 6.6d. The result shows our method finds inserted pattern precisely.

RandomSines

This dataset contains sine waves with different period and white noise(see

figs. 6.7a and 6.7b). As we set the constraint to 100, the warping paths are

limited, patterns are located within given constraint. In figure 6.7c, it is clear

that subsequences pair with large period differences is not recognized as patterns,

but subsequences with similar periods remain.

Web

The web dataset includes access amount of blog sites and mail sites (see figs. 6.8a

and 6.8b). The data are z-normalized to remove their statistical characteristics.

This operation is proved to be effective in reducing computational expense and

maintaining the accuracy of pattern locating in later part of this section. As in

figure 6.8, the two time series have similar trends but with different scales on

99

6. Iterative Similar Pattern Discovery in Time Series Data

0 3724
−2
0
2
4
6
8

 Length

V
al

ue

(a) CPU hostload 1

0 3724
−2
0
2
4
6
8

 Length

V
al

ue

(b) CPU hostload 2

0 901
−2
0
2
4
6
8

 Length

V
al

ue

(c) CPU hostload pattern 1

0 901
−2
0
2
4
6
8

 Length

V
al

ue

(d) CPU hostload pattern 2

0 4625
−2
0
2
4
6
8

 Length

V
al

ue

(e) Hostload 1, pattern 1 inserted

0 4625
−2
0
2
4
6
8

 Length

V
al

ue

(f) Hostload 2, pattern 2 inserted

Time tick (Time series 1)

T
im

e
tic

k
(T

im
e

se
rie

s
2)

1 4625

1

4625

(g) Patterns found

Figure 6.6: Pattern discovery on inserted pattern dataset

their values. When the data are z-normalized, their scale on values are unified,

and we can locate patterns with smaller constraint to increase efficiency and

locate patterns effectively.

Temperature

The temperature dataset records temperature of rooms from small sensors to

identify whether the rooms are occupied (see figs. 6.9a and 6.9b). This dataset

contains missing measurements. As in figure 6.9, our proposed method also able

to locate patterns with the presence of missing values and variable periods.

100

6. Iterative Similar Pattern Discovery in Time Series Data

0 2.5

x 10
4

−2

0

2

 Length

V
al

ue

(a) Random sine wave 1

0 2.5

x 10
4

−2

0

2

 Length

V
al

ue

(b) Random sine wave 2
Time tick (Time series 1)

T
im

e
tic

k
(T

im
e

se
rie

s
2)

1 25000

1

25000

(c) Patterns found

Figure 6.7: Pattern discovery on RandomSines dataset

0 3.2

x 10
4

0

500

1000

1500

 Length

V
al

ue

(a) Blog site visit

0 3.2

x 10
4

0

500

1000

1500

 Length

V
al

ue

(b) Mail site visit

Time tick (Time series 1)

T
im

e
tic

k
(T

im
e

se
rie

s
2)

1 32000

1

32000

(c) Patterns found

Figure 6.8: Pattern discovery on Web dataset

Cluster CPU host load

This dataset consists of CPU host load collected from a cluster of Google [149].

To find similar host load subsequences of 10 machines in host load of another

10 machines, CPU usage of the 20 machines a separated into 2 groups with 10

machines in each group, and their host load are z-normalized individually and

concatenated (see figs. 6.10a and 6.10b). the result shows that our proposed

method is capable to locate short patterns in much longer time series.

101

6. Iterative Similar Pattern Discovery in Time Series Data

0 2.8

x 10
4

10

20

30

40

 Length

V
al

ue

(a) Temerature 1

0 2.4

x 10
4

10

20

30

40

 Length

V
al

ue

(b) Temerature 2
Time tick (Time series 1)

T
im

e
tic

k
(T

im
e

se
rie

s
2)

1 28000

1

24000

(c) Patterns found

Figure 6.9: Pattern discovery on temperature dataset

V
al

ue

x 104

1

0.5

0
0 3.724

 Length

(a) Concatenated CPU hostload 1

V
al

ue

x 104

1

0.5

0
0 3.724

 Length

(b) Concatenated CPU hostload 2

Time tick (Time series 1)

T
im

e
tic

k
(T

im
e

se
rie

s
2)

1 37240

1

37240

(c) Patterns found

Figure 6.10: Pattern discovery on CPU host load dataset

ECG

The ECG5000 dataset is available on [31], containing electrocardiograms of 5,000

subjects. Each individual data element contains a piece of ECG with 140 data

points. Figure 6.11c shows an example of one piece of ECG. The dataset has

a training set and a test set with 500 subjects and 4,500 subjects respectively.

The dataset is collected for machine learning, so data elements have labels

ranging from 1 to 5, denoting different classifications. To use the data for our

pattern locating purpose, we connected data elements in training set and test

set respectively, trying to identify similar patterns between test dataset and

training dataset(see figs. 6.11a and 6.11b). When the data are connected, the

102

6. Iterative Similar Pattern Discovery in Time Series Data

training set becomes a time series with 70,000 data points and test set becomes

a time series with 630,000 data points. The result (figure 6.11d) shows that our

proposed method divide ECG subsequences into two different parts. The two

parts correspond exactly to class 1 ECG pieces and non class 1 ECG pieces. This

example illustrates the accuracy of our method and suggests a great number of

potential applications.

0 7

x 10
4

−5

0

5

 Length

V
al

ue

(a) Concatenated training set

0 6.3

x 10
5

−5

0

5

 Length

V
al

ue

(b) Concatenated test set

0 140
−5

0

5

 Length
V

al
ue

(c) Example of 1 piece of ECG

Time tick (Time series 1)

T
im

e
tic

k
(T

im
e

se
rie

s
2)

1 630000

1

70000

(d) Patterns found

Figure 6.11: Pattern discovery on ECG dataset

6.4.2 Performance

We compared computation time and memory usage of our method to a state of

art method, CrossMatch, for each test dataset. The source code of CrossMatch

algorithm is not provided, we implement the algorithm carefully according to

pseudo code in [141]. As our proposed method discovers similar subsequences

regardless of their positions, for the sake of fairness, we do not specify a global

constraint to CrossMatch. In this case, its time complexity is O(mn) and space

complexity is O(n).

Algorithm time complexity

As shown in figure 6.12, our proposed method outperforms CrossMatch on all

tested dataset. Our method is notably faster than CrossMatch on the Inserted

103

6. Iterative Similar Pattern Discovery in Time Series Data

In
s
e
r
t
e
d

p
a
t
t
e
r
n

H
o
s
t
lo

a
d

E
C
G

R
a
n
d
o
m

S
in

e
s

W
e
b

T
e
m

p
e
r
a
t
u
r
e

101

102

103

104

105

7
.2

5

1
,1

8
7

1
7
,6

0
1

6
2
5 1
,0

3
3

2
1
8

3
.0

2

3
3

9
,7

1
3

4
3
3 9

1
3

1
0
2

R
u
n
t
im

e
(
s
e
c
o
n
d
s
)

CrossMatch

Our method

Figure 6.12: Runtime of CrossMatch and our method on different datasets

pattern, Host load, ECG dataset. When patterns are rare in time series, our

proposed method can reduce search space greatly. By contrast, CrossMatch

searches the whole dataset regardless of the rarity of patterns.

The time complexity of our proposed method subject to the rarity and length

of patterns, which varies for different data and parameter settings. Imagine

a worst case scenario. In this scenario, the candidate starting positions are

maximized and patterns are very dense in search space. As for each candidate

area, we only keep one point as starting position, so the worst case starting

points must not be neighbouring. A typical and extreme case is that any two

starting positions are only separated by one non-starting position. For two time

series with n and m data points respectively, we have dm2 ed
n
2 e starting positions.

The length of patterns is set to 1 to achieve the extreme density of patterns in

the two time series. In this case, the time complexity of our method is O(mn).

Another worst case scenario is when the candidate starting positions are

sparse in two time series, but for each starting position, it requires many iterations

to make the result pattern locations converge. Assume the whole sequences of

the two time series are similar. In this case, the warping path of the pattern goes

diagonally from the [0, 0] to [m,n] of the cost matrix. The starting positions

104

6. Iterative Similar Pattern Discovery in Time Series Data

In
s
e
r
t
e
d

p
a
t
t
e
r
n

H
o
s
t
lo

a
d

E
C
G

R
a
n
d
o
m

S
in

e
s

W
e
b

T
e
m

p
e
r
a
t
u
r
e

0

50

100

150

3
8

5
4

1
0
0

4
2

3
9 4

6

3
5 4
0 4
2

4
0

1
1
2

4
0

M
e
m

o
r
y
(
M

B
)

CrossMatch

Our method

Figure 6.13: Memory consumption of CrossMatch and our method on different
datasets

are far from the warping path of the pattern and the constraint are set to 1,

the minimum possible value. There are two farthest possible starting positions,

which locate at [0, n] and [m, 0] respectively. These two positions take n2+n
2 or

m2+m
2 calculations. The warping path of all other starting positions will collide

immediately with the warping path of the farthest two starting positions. To

sum up, the time complexity of this case is O(n2) or O(m2).

Algorithm space complexity

Figure 6.13 shows the memory usage for each dataset of CrossMatch and our

proposed method. There is no major difference in memory usage between the

two methods. CrossMatch stores candidate locations which consumes most space

of its memory usage, and our method also stores paths for each search process.

In extreme cases, both the storage of candidate locations and the storage of

warping paths can have space complexity up to O(mn). However, the minimum

space complexity for CrossMatch is O(n) where n is the length of time series and

our proposed method has space complexity of O(s) where s is the max length of

patterns which is smaller than n and typically a relatively small value.

105

6. Iterative Similar Pattern Discovery in Time Series Data

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·105

2,000

4,000

6,000

Time series length

T
im

e
(
s
e
c
o
n
d
)

CrossMatch

Our method

Figure 6.14: Runtime comparison between CrossMatch and our method as a
function of dataset size

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·105

100

200

300

400

Time series length

M
e
m

o
r
y

u
s
a
g
e

(
M

B
)

CrossMatch

Our method

Figure 6.15: Memory usage comparison between CrossMatch and our method as
a function of dataset size

Scalability

Figure 6.14 and 6.15 show the runtime and memory usage of our method and

CrossMatch. Given the same dataset, our method returns results much faster

then CrossMatch, and the runtime increase of our method is also much slower

the CrossMatch. The memory usage, however, for our method is greater than

that of CrossMatch when the dataset size increase. Considering the difference is

not significantly high in memory usage, and the fact that memory resource is

typically more sufficient and cheap for most computer systems and application

scenarios, our method does have great advantages for its efficiency.

106

6. Iterative Similar Pattern Discovery in Time Series Data

6.5 Summary

Locating previously unknown similar patterns in time series data not only helps

discover patterns CPU host load data as discussed in earlier chapters, but also

has great importance for any time series data mining task that depends on mined

patterns, such as time series clustering which uses different patterns to measure

their similarities, time series classification that uses pattern as the label of each

class, association rule discovery of mined patterns etc.

In this chapter we proposed a novel method to discover unknown patterns

in time series data. We start by creating prior knowledge for patterns from

the characteristics that patterns should have. With these prior knowledge, the

theoretical search space of patterns is greatly reduced. Then several techniques

are used to further reduce the search space.

Firstly the method efficiently locates possible locations of patterns to avoid

searching in a large volume of impossible positions. When searching in these

positions where patterns are highly likely starting from, an iterative search

method is proposed so that the exact positions of patterns are quickly converged

to from their possible positions. The search paths are then ”locked” to block

other search processes which are searching for the same pattern. To further

increase the accuracy of the proposed method to locate optimal matches, the

abundant segment of each pattern is trimmed off.

This proposed method is accurate and efficient. The result patterns are

guaranteed to be optimal matches, which can be immediately used to any

pattern-based time series data mining tasks. Its efficiency also enables a pattern-

based time series data mining programme to apply it as a subroutine.

Experiment results have illustrated the method is more efficient in most cases.

The method is also tested on multiple datasets to show its effectiveness. These

test datasets of different types and sources also suggest a great potential of the

method’s applicability.

107

Chapter 7

Conclusions and further

work

This thesis has addressed discovering previously unknown patterns in CPU host

load data and time series data. The recent decade has seen significant growth

in the number of applications of distributed computing as well as the emerging

interests of improving the performance of computing systems on both efficiency

and robustness. As one of the most important and fundamental performance

indicator, CPU host load contains a substantial amount of knowledge ranges

from users’ behaviour to early warning of a system fault. This knowledge can

help improve the performance of the computing system in many ways. Repeated

patterns in CPU host load are obviously notable for the fact that these similar

patterns are often produced by the same underlying cause. Given the importance

of mining similar patterns in CPU host load and the fact that many methods

have applied patterns in CPU host load to improve or analyse computing systems,

little work has been done on mining patterns in CPU host load. this thesis

proposed two different methods to discover previously unknown patterns in CPU

host load.

CPU host load data are time series data. The investigation on mining patterns

108

7. Conclusions and further work

in CPU host load data raises our interest of proposing a more general method to

discover patterns in time series data. Several works have been proposed in the

literature on this specific field, however, existing methods are either inaccurate

or computationally too expensive. We formally defined the problem of mining

previously unknown patterns in time series data to provide a solid base for

further study. We proposed a recursive method which utilises the feature of

DTW to accurately and efficiently locate similar patterns in time series data.

Major contributions for each technical chapters are summarised in the first

four sections of this chapter, the discussion of further work is in section 7.4.

7.1 Clustering Based CPU Host Load Pattern

Discovery

The complexity of pattern discovery in time series data is very high. The reason

underlying the high time complexity is an algorithm needs to compare every

possible subsequence of two time series. By contrast, comparing segments of

time series data greatly reduce the search space.

In Chapter 4, a RIP based data-adaptive segmentation method is introduced.

This segmentation method is specifically suitable for discovering peak-valley-

peak patterns which abound in CPU host load. The segmentation method

produces segments between locally notable peaks and valleys, each segment is

then either uptrend or downtrend, providing enough abundant information for

further reduction.

Depending on the parameter set, segments can have very different lengths.

To make them comparable efficiently, each segment is reduced to a 5-dimensional

feature vector. Owe to the high uniformity of segments, the feature vector

which maintains initial value, trend, crookedness and fluctuation can properly

distinguish different segments. In this way, the original data is embedded into a

5-dimension feature space. Experimental results have shown distance measure

on feature space is more effective than DTW distance on original space.

109

7. Conclusions and further work

A deliberately chosen clustering algorithm, DBSCAN is used to locate similar

segments in reduced space. The clustering algorithm finds clusters of any shape

and can effectively eliminate outlying points with less dependency on choose of

parameters. Due to the embedded space has fixed dimensions, distance measure

in the reduced space is fast and consistent for different lengths of segments.

We experimentally examined the effectiveness of DBSCAN with two most used

clustering algorithm, k-means and hierarchical clustering, showing DBSCAN

outperforms other methods remarkably.

7.2 Reduction Based CPU Host Load Pattern

Discovery

In Chapter 5 a CPU host load pattern discovery method is developed from a

time series reduction perspective. The core of an efficient time series pattern

discovery method is the reduction of search space. Other than in Chapter 4

which applies segmentation and feature extraction methods, we propose a time

series reduction method in this work for discovering patterns in CPU host load.

The reduction based method applied PAA representation and refined SAX

representation by assigning symbols according to the true distribution of CPU

host load. To find exact patterns while maintaining efficiency, a cascade dis-

covering method is proposed to filter out unqualified subsequences at minimum

cost.

The proposed pattern mining algorithm is able to find longest possible

patterns without trivial matches. The effectiveness of the algorithm has been

sown experimentally.

The parameters of representation methods have critical effects on the efficiency

of pattern mining. We conducted experiments with different parameter sets to

show the optimal parameters for mining CPU host load data.

110

7. Conclusions and further work

7.3 Iterative Pattern Discovery of Time Series

Data

By investigating CPU host load data, we find that there are emerging needs on

developing a pattern discovery method for time series data which has not been

addressed very much in the literature. Our proposed CPU host load pattern

discovery algorithms are dependent more or less on the specific features of CPU

host load, which limited its generalization.

Our proposed time series pattern mining method is based on the fact that

any similar pattern must contain shorter patterns. By utilizing the property,

we presented an approximate similar pattern position locating algorithm. The

algorithm filters out a large number of subsequences efficiently.

To find optimal matches, we need to refine approximate pattern positions

to exact pattern positions. An iterative home-coming algorithm is proposed to

achieve this goal. The algorithm utilizes open-end DTW distance measure to

iteratively approach the optimal match.

The iterative pattern discovery method can discover all patterns exist in two

time series. The great advantage of our method is it produces only optimal

matches, which means the result patterns are of reasonable lengths and are the

best and longest possible matches among all possible matches. This feature

allows the method to be applied to any application that requires found patterns

in time series as a preprocessing step.

Experiments have been conducted on multiple datasets to illustrate the

effectiveness and efficiency. The results show that in most cases, our proposed

method can outperform the state of the art method greatly in efficiency while

maintaining similar space complexity.

111

7. Conclusions and further work

7.4 Further Work

The high time complexity nature of mining patterns in CPU host load or general

time series data draws the attention of the efficiency of pattern mining methods.

The direction of speed up the mining process is either the further reduction of

search space or developing parallel mining algorithm. Based on our current work,

there is great potential for further development.

The iterative mining method proposed in Chapter 6 can be parallelized since

the iterative mining for each approximate pattern position is independent. The

ASPL algorithm can also be parallelized easily and thus make it a fully parallel

method.

In Chapter 5 we introduced two time series representation methods that

can lower bound Euclidean distance. However, currently there is no time series

representation that can lower bound DTW distance. With a DTW lower bounded

representation, it is possible to reduce search space for iterative mining method

of Chapter 6 without losing its advantageous exact optimal match discovery

feature.

With the popularity of mobile computing and the explosion of time series

data sources, multiple and co-evolving time series data have attracted more

attention than ever. Though we can apply two time series mining methods

to this field, the patterns of co-evolving time series data cannot be defined by

traditional similarity measure in many cases. Pattern mining on multiple time

series or co-evolving time series is also an emerging research topic that worth

investigating.

Finally, The field of time series unknown pattern mining has been looking

forward to a high-level formalization for a long time. Current research on this par-

ticular problem stays at applying traditional methods or their modified versions,

causing bottlenecks of both the performance and the ability of generalization.

Investigating on formalizing the problem of mining unknown patterns in time

series data mathematically will guide researchers in the relevant field to a clear

112

7. Conclusions and further work

and traceable direction. The study on mining unknown patterns in time series

will also be put forward greatly.

113

Bibliography

[1] R. ACS. Bayesian classification (autoclass): Theory and results. 1996.

[2] R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in

sequence databases. Springer, 1993.

[3] R. Agrawal, J. E. Gehrke, D. Gunopulos, and P. Raghavan. Automatic

subspace clustering of high dimensional data for data mining applications,

Dec. 14 1999. US Patent 6,003,029.

[4] H. André-Jönsson and D. Z. Badal. Using signature files for querying

time-series data. In European Symposium on Principles of Data Mining

and Knowledge Discovery, pages 211–220. Springer, 1997.

[5] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. Optics: order-

ing points to identify the clustering structure. In ACM Sigmod record,

volume 28, pages 49–60. ACM, 1999.

[6] A. Apostolico, M. E. Bock, and S. Lonardi. Monotony of surprise and

large-scale quest for unusual words. Journal of Computational Biology, 10

(3-4):283–311, 2003.

[7] M. F. Arlitt and C. L. Williamson. Web server workload characterization:

The search for invariants. ACM SIGMETRICS Performance Evaluation

Review, 24(1):126–137, 1996.

[8] D. H. Bailey and A. Snavely. Performance modeling: Understanding

114

BIBLIOGRAPHY

the past and predicting the future. In European Conference on Parallel

Processing, pages 185–195. Springer, 2005.

[9] Z. Bar-Joseph, G. Gerber, D. K. Gifford, T. S. Jaakkola, and I. Simon. A

new approach to analyzing gene expression time series data. In Proceedings

of the sixth annual international conference on Computational biology,

pages 39–48. ACM, 2002.

[10] P. Barford and M. Crovella. Generating representative web workloads

for network and server performance evaluation. In ACM SIGMETRICS

Performance Evaluation Review, volume 26, pages 151–160. ACM, 1998.

[11] R. Bayer and E. McCreight. Organization and maintenance of large ordered

indexes. In Software pioneers, pages 245–262. Springer, 2002.

[12] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The r*-tree:

an efficient and robust access method for points and rectangles. In Acm

Sigmod Record, volume 19, pages 322–331. ACM, 1990.

[13] F. Benhammadi, Z. Gessoum, A. Mokhtari, et al. Cpu load prediction using

neuro-fuzzy and bayesian inferences. Neurocomputing, 74(10):1606–1616,

2011.

[14] D. J. Berndt and J. Clifford. Using dynamic time warping to find patterns

in time series. In Proceedings of the 3rd International Conference on Knowl-

edge Discovery and Data Mining, AAAIWS’94, pages 359–370. AAAI Press,

1994. URL http://dl.acm.org/citation.cfm?id=3000850.3000887.

[15] K. B. Bey, F. Benhammadi, A. Mokhtari, and Z. Guessoum. Cpu load

prediction model for distributed computing. In Parallel and Distributed

Computing, 2009. ISPDC’09. Eighth International Symposium on, pages

39–45. IEEE, 2009.

[16] K. B. Bey, F. Benhammadi, A. Mokhtari, and Z. Gessoum. Mixture of anfis

115

BIBLIOGRAPHY

systems for cpu load prediction in metacomputing environment. Future

Generation Computer Systems, 26(7):1003–1011, 2010.

[17] J. C. Bezdek. Pattern recognition with fuzzy objective function algorithms.

Springer Science & Business Media, 2013.

[18] R. Bhaskar, S. Laxman, A. Smith, and A. Thakurta. Discovering frequent

patterns in sensitive data. In Proceedings of the 16th ACM SIGKDD

international conference on Knowledge discovery and data mining, pages

503–512. ACM, 2010.

[19] C. Böhm, S. Berchtold, and D. A. Keim. Searching in high-dimensional

spaces: Index structures for improving the performance of multimedia

databases. ACM Computing Surveys (CSUR), 33(3):322–373, 2001.

[20] B. Bollobás, G. Das, D. Gunopulos, and H. Mannila. Time-series similarity

problems and well-separated geometric sets. In Proceedings of the thirteenth

annual symposium on Computational geometry, pages 454–456. ACM, 1997.

[21] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung. Time series

analysis: forecasting and control. John Wiley & Sons, 2015.

[22] M. Butler and D. Kazakov. Sax discretization does not guarantee equiprob-

able symbols. Knowledge and Data Engineering, IEEE Transactions on,

27(4):1162–1166, April 2015. ISSN 1041-4347. doi: 10.1109/TKDE.2014.

2382882.

[23] M. Calzarossa and G. Serazzi. Workload characterization: A survey.

Proceedings of the IEEE, 81(8):1136–1150, 1993.

[24] J. Cao, J. Fu, M. Li, and J. Chen. Cpu load prediction for cloud environment

based on a dynamic ensemble model. Software: Practice and Experience,

44(7):793–804, 2014.

[25] G. A. Carpenter and S. Grossberg. A massively parallel architecture for

116

BIBLIOGRAPHY

a self-organizing neural pattern recognition machine. Computer vision,

graphics, and image processing, 37(1):54–115, 1987.

[26] K. Chakrabarti and S. Mehrotra. The hybrid tree: An index structure for

high dimensional feature spaces. In Data Engineering, 1999. Proceedings.,

15th International Conference on, pages 440–447. IEEE, 1999.

[27] F.-P. Chan, A.-C. Fu, and C. Yu. Haar wavelets for efficient similarity

search of time-series: with and without time warping. IEEE Transactions

on knowledge and data engineering, 15(3):686–705, 2003.

[28] K.-P. Chan and A.-C. Fu. Efficient time series matching by wavelets. In

Data Engineering, 1999. Proceedings., 15th International Conference on,

pages 126–133. IEEE, 1999.

[29] J. R. Chen. Making subsequence time series clustering meaningful. In

Data mining, fifth IEEE international conference on, pages 8–pp. IEEE,

2005.

[30] Y. Chen, B. Hu, E. Keogh, and G. E. Batista. Dtw-d: Time series semi-

supervised learning from a single example. In Proceedings of the 19th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, Knowledge Discovery and Data Mining, pages 383–391, New York,

NY, USA, 2013. ACM. ISBN 978-1-4503-2174-7. doi: 10.1145/2487575.

2487633. URL http://doi.acm.org/10.1145/2487575.2487633.

[31] Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, and G. Batista.

The ucr time series classification archive, July 2015. URL www.cs.ucr.

edu/~eamonn/time_series_data/.

[32] B. Chiu, E. Keogh, and S. Lonardi. Probabilistic discovery of time series

motifs. In Proceedings of the ninth ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 493–498. ACM, 2003.

117

BIBLIOGRAPHY

[33] W. Cirne and F. Berman. A comprehensive model of the supercomputer

workload. In Proceedings of the Fourth Annual IEEE International Work-

shop on Workload Characterization. WWC-4 (Cat. No.01EX538), pages

140–148, Dec 2001. doi: 10.1109/WWC.2001.990753.

[34] P. Cotofrei and K. Stoffel. Classification Rules + Time = Temporal

Rules, pages 572–581. Springer Berlin Heidelberg, Berlin, Heidelberg,

2002. ISBN 978-3-540-46043-5. doi: 10.1007/3-540-46043-8 58. URL

https://doi.org/10.1007/3-540-46043-8_58.

[35] P. Cotofrei and K. Stoffel. Rule extraction from time series databases

using classification trees. In APPLIED INFORMATICS-PROCEEDINGS-,

number 2, pages 327–332. UNKNOWN, 2002.

[36] M. E. Crovella. Performance evaluation with heavy tailed distributions.

Lecture Notes in Computer Science, 1786:1–9, 2000.

[37] G. Das, D. Gunopulos, and H. Mannila. Finding similar time series.

In European Symposium on Principles of Data Mining and Knowledge

Discovery, pages 88–100. Springer, 1997.

[38] G. Das, K. ip Lin, H. Mannila, G. Renganathan, and P. Smyth. Rule

discovery from time series. In In Proceedings of the 1997 ACM SIGKDD

International Conference, ACM SIGKDD, 1997.

[39] D. Dasgupta and S. Forrest. Novelty detection in time series data using

ideas from immunology. In Proceedings of the international conference on

intelligent systems, pages 82–87, 1996.

[40] M. Degli Esposti, C. Farinelli, and G. Menconi. Sequence distance via

parsing complexity: Heartbeat signals. Chaos, Solitons & Fractals, 39(3):

991–999, 2009.

[41] S. Di, D. Kondo, and W. Cirne. Characterization and comparison of cloud

118

BIBLIOGRAPHY

versus grid workloads. In Cluster Computing (CLUSTER), 2012 IEEE

International Conference on, pages 230–238. IEEE, 2012.

[42] S. Di, D. Kondo, and W. Cirne. Host load prediction in a google compute

cloud with a bayesian model. In Proceedings of the International Confer-

ence on High Performance Computing, Networking, Storage and Analysis,

page 21. IEEE Computer Society Press, 2012.

[43] P. A. Dinda. The statistical properties of host load. Scientific Programming,

7(3):211–229, 1999.

[44] P. A. Dinda and D. R. O’Hallaron. An evaluation of linear models for

host load prediction. In High Performance Distributed Computing, 1999.

Proceedings. The Eighth International Symposium on, pages 87–96. IEEE,

1999.

[45] P. A. Dinda and D. R. O’hallaron. Host load prediction using linear models.

Cluster Computing, 3(4):265–280, 2000.

[46] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh. Querying

and mining of time series data: Experimental comparison of representations

and distance measures. Proc. Very Large Data Bases Endow., 1(2):1542–

1552, Aug. 2008. ISSN 2150-8097. doi: 10.14778/1454159.1454226. URL

http://dx.doi.org/10.14778/1454159.1454226.

[47] D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the

number of points required to represent a digitized line or its caricature.

Cartographica: The International Journal for Geographic Information and

Geovisualization, 10(2):112–122, 1973.

[48] A. B. Downey and D. G. Feitelson. The elusive goal of workload charac-

terization. ACM SIGMETRICS Performance Evaluation Review, 26(4):

14–29, 1999.

119

BIBLIOGRAPHY

[49] P. Esling and C. Agon. Time-series data mining. ACM Comput. Surv., 45

(1):12:1–12:34, Dec. 2012. ISSN 0360-0300. doi: 10.1145/2379776.2379788.

URL http://doi.acm.org/10.1145/2379776.2379788.

[50] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm

for discovering clusters in large spatial databases with noise. In Kdd,

volume 96, pages 226–231, 1996.

[51] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence

matching in time-series databases, volume 23. ACM, 1994.

[52] P. G. Ferreira, P. J. Azevedo, C. G. Silva, and R. M. Brito. Mining

approximate motifs in time series. In Discovery Science, volume 4265,

pages 89–101. Springer, 2006.

[53] A. L. Fred and A. K. Jain. Data clustering using evidence accumulation.

In Pattern Recognition, 2002. Proceedings. 16th International Conference

on, volume 4, pages 276–280. IEEE, 2002.

[54] A. L. Fred and A. K. Jain. Combining multiple clusterings using evi-

dence accumulation. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 27(6):835–850, 2005.

[55] T.-c. Fu, F.-l. Chung, V. Ng, and R. Luk. Pattern discovery from stock

time series using self-organizing maps. In Workshop Notes of KDD2001

Workshop on Temporal Data Mining, pages 26–29, 2001.

[56] M. Gavrilov, D. Anguelov, P. Indyk, and R. Motwani. Mining the stock

market (extended abstract): which measure is best? In Proceedings of the

sixth ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 487–496. ACM, 2000.

[57] X. Ge and P. Smyth. Deformable markov model templates for time-series

pattern matching. In Proceedings of the sixth ACM SIGKDD international

120

BIBLIOGRAPHY

conference on Knowledge discovery and data mining, pages 81–90. ACM,

2000.

[58] P. Geurts. Pattern extraction for time series classification. In PKDD,

volume 1, pages 115–127. Springer, 2001.

[59] D. Q. Goldin and P. C. Kanellakis. On similarity queries for time-series data:

constraint specification and implementation. In International Conference

on Principles and Practice of Constraint Programming, pages 137–153.

Springer, 1995.

[60] Z. Gu, C. Chang, L. He, and K. Li. Developing a pattern discovery model

for host load data. In Computational Science and Engineering (CSE), 2014

IEEE 17th International Conference on, pages 265–271. IEEE, 2014.

[61] Z. Gu, L. He, C. Chang, J. Sun, H. Chen, and C. Huang. An efficient

method for motif discovery in cpu host load. In Fuzzy Systems and

Knowledge Discovery (FSKD), 2015 12th International Conference on,

pages 1027–1034. IEEE, 2015.

[62] Z. Gu, L. He, C. Chang, J. Sun, H. Chen, and C. Huang. Developing

an efficient pattern discovery method for cpu utilizations of computers.

International Journal of Parallel Programming, pages 1–26, 2016. ISSN

1573-7640. doi: 10.1007/s10766-016-0439-0. URL http://dx.doi.org/

10.1007/s10766-016-0439-0.

[63] S. Guha, R. Rastogi, and K. Shim. Cure: an efficient clustering algorithm

for large databases. In ACM Sigmod Record, volume 27, pages 73–84. ACM,

1998.

[64] P. Guo, L. Wang, and P. Chen. A performance modeling and optimization

analysis tool for sparse matrix-vector multiplication on gpus. IEEE Trans-

actions on Parallel and Distributed Systems, 25(5):1112–1123, May 2014.

ISSN 1045-9219. doi: 10.1109/TPDS.2013.123.

121

BIBLIOGRAPHY

[65] D. Gusfield. Algorithms on strings, trees and sequences: computer science

and computational biology. Cambridge university press, 1997.

[66] J. Han, G. Dong, and Y. Yin. Efficient mining of partial periodic patterns

in time series database. In Data Engineering, 1999. Proceedings., 15th

International Conference on, pages 106–115. IEEE, 1999.

[67] J. Han, J. Pei, and M. Kamber. Data mining: concepts and techniques.

Elsevier, 2011.

[68] S. Harms, J. Deogun, and T. Tadesse. Discovering sequential association

rules with constraints and time lags in multiple sequences. Foundations of

Intelligent Systems, pages 373–376, 2002.

[69] J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering

algorithm. Applied statistics, pages 100–108, 1979.

[70] M. Hegland, W. Clarke, and M. Kahn. Mining the macho dataset. Com-

puter Physics Communications, 142(1):22–28, 2001.

[71] Y.-W. Huang and P. S. Yu. Adaptive query processing for time-series

data. In Proceedings of the fifth ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 282–286. ACM, 1999.

[72] D. H. Hubel. Eye, brain, and vision, volume 22. Scientific American

Library New York, 1988.

[73] J. Hunter and N. McIntosh. Knowledge-based event detection in complex

time series data. In Joint European Conference on Artificial Intelligence

in Medicine and Medical Decision Making, pages 271–280. Springer, 1999.

[74] F. Hppner. Discovery of temporal patterns. In L. De Raedt and A. Siebes,

editors, Principles of Data Mining and Knowledge Discovery, volume 2168

of Lecture Notes in Computer Science, pages 192–203. Springer Berlin

Heidelberg, 2001. ISBN 978-3-540-42534-2. doi: 10.1007/3-540-44794-6 16.

URL http://dx.doi.org/10.1007/3-540-44794-6_16.

122

BIBLIOGRAPHY

[75] M. Ishijima, S.-B. Shin, G. H. Hostetter, and J. Sklansky. Scan-along

polygonal approximation for data compression of electrocardiograms. IEEE

Transactions on Biomedical Engineering, (11):723–729, 1983.

[76] F. Itakura. Minimum prediction residual principle applied to speech recog-

nition. IEEE Transactions on Acoustics, Speech, and Signal Processing,

23(1):67–72, 1975.

[77] A. K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition

Letters, 31(8):651–666, 2010.

[78] G. J. Janacek, A. J. Bagnall, and M. Powell. A likelihood ratio distance

measure for the similarity between the fourier transform of time series. In

Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages

737–743. Springer, 2005.

[79] K. Kalpakis, D. Gada, and V. Puttagunta. Distance measures for effec-

tive clustering of arima time-series. In Data Mining, 2001. ICDM 2001,

Proceedings IEEE International Conference on, pages 273–280. IEEE, 2001.

[80] D. Karaboga and C. Ozturk. A novel clustering approach: Artificial bee

colony (abc) algorithm. Applied Soft Computing, 11(1):652–657, 2011.

[81] G. Karypis, E.-H. Han, and V. Kumar. Chameleon: Hierarchical clustering

using dynamic modeling. Computer, 32(8):68–75, 1999.

[82] L. Kaufman and P. J. Rousseeuw. Finding groups in data: an introduction

to cluster analysis, volume 344. John Wiley & Sons, 2009.

[83] E. Keogh and S. Kasetty. On the need for time series data mining bench-

marks: a survey and empirical demonstration. Data Mining and knowledge

discovery, 7(4):349–371, 2003.

[84] E. Keogh and J. Lin. Clustering of time-series subsequences is meaningless:

implications for previous and future research. Knowledge and information

systems, 8(2):154–177, 2005.

123

BIBLIOGRAPHY

[85] E. Keogh and C. A. Ratanamahatana. Exact indexing of dynamic time

warping. Knowledge and information systems, 7(3):358–386, 2005.

[86] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Locally adaptive

dimensionality reduction for indexing large time series databases. SIGMOD

Rec., 30(2):151–162, May 2001. ISSN 0163-5808. doi: 10.1145/376284.

375680. URL http://doi.acm.org/10.1145/376284.375680.

[87] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Dimensionality

reduction for fast similarity search in large time series databases. Knowledge

and information Systems, 3(3):263–286, 2001.

[88] E. Keogh, S. Chu, D. Hart, and M. Pazzani. An online algorithm for

segmenting time series. In Data Mining, 2001. ICDM 2001, Proceedings

IEEE International Conference on, pages 289–296, 2001. doi: 10.1109/

ICDM.2001.989531.

[89] E. Keogh, S. Lonardi, and C. A. Ratanamahatana. Towards parameter-free

data mining. In Proceedings of the tenth ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 206–215. ACM,

2004.

[90] E. J. Keogh and M. J. Pazzani. An enhanced representation of time

series which allows fast and accurate classification, clustering and relevance

feedback. In Knowledge Discovery and Data Mining, volume 98, pages

239–243, 1998.

[91] E. J. Keogh and M. J. Pazzani. Relevance feedback retrieval of time

series data. In Proceedings of the 22nd annual international ACM SIGIR

conference on Research and development in information retrieval, pages

183–190. ACM, 1999.

[92] E. J. Keogh and M. J. Pazzani. Derivative dynamic time warping. In

Proceedings of the 2001 SIAM International Conference on Data Mining,

pages 1–11. SIAM, 2001.

124

BIBLIOGRAPHY

[93] E. J. Keogh and P. Smyth. A probabilistic approach to fast pattern

matching in time series databases. In Knowledge Discovery and Data

Mining, volume 1997, pages 24–30, 1997.

[94] A. Khan, X. Yan, S. Tao, and N. Anerousis. Workload characterization

and prediction in the cloud: A multiple time series approach. In Network

Operations and Management Symposium (NOMS), 2012 IEEE, pages 1287–

1294. IEEE, 2012.

[95] T. Kohonen. The self-organizing map. Neurocomputing, 21(1):1–6, 1998.

[96] A. Koski, M. Juhola, and M. Meriste. Syntactic recognition of ecg signals

by attributed finite automata. Pattern Recognition, 28(12):1927–1940,

1995.

[97] R. Krishnapuram, A. Joshi, O. Nasraoui, and L. Yi. Low-complexity fuzzy

relational clustering algorithms for web mining. IEEE transactions on

Fuzzy Systems, 9(4):595–607, 2001.

[98] V. Lavrenko, M. Schmill, D. Lawrie, P. Ogilvie, D. Jensen, and J. Allan.

Mining of concurrent text and time series. In KDD-2000 Workshop on

Text Mining, volume 2000, pages 37–44, 2000.

[99] Y. Leung, J.-S. Zhang, and Z.-B. Xu. Clustering by scale-space filtering.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 22(12):

1396–1410, 2000.

[100] C.-S. Li, P. S. Yu, and V. Castelli. Malm: A framework for mining sequence

database at multiple abstraction levels. In Proceedings of the seventh

international conference on Information and knowledge management, pages

267–272. ACM, 1998.

[101] K. Li, X. Tang, B. Veeravalli, and K. Li. Scheduling precedence constrained

stochastic tasks on heterogeneous cluster systems. Computers, IEEE

Transactions on, 64(1):191–204, 2015.

125

BIBLIOGRAPHY

[102] K. Li, W. Yang, and K. Li. Performance analysis and optimization for spmv

on gpu using probabilistic modeling. Parallel and Distributed Systems,

IEEE Transactions on, 26(1):196–205, 2015.

[103] J. Liang, J. Cao, J. Wang, and Y. Xu. Long-term cpu load prediction. In

Dependable, Autonomic and Secure Computing (DASC), 2011 IEEE Ninth

International Conference on, pages 23–26. IEEE, 2011.

[104] J. Lin and Y. Li. Finding structural similarity in time series data us-

ing bag-of-patterns representation. In Scientific and statistical database

management, pages 461–477. Springer, 2009.

[105] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representation of

time series, with implications for streaming algorithms. In Proceedings of

the 8th ACM SIGMOD workshop on Research issues in data mining and

knowledge discovery, pages 2–11. ACM, 2003.

[106] R. A. K.-l. Lin and H. S. S. K. Shim. Fast similarity search in the presence

of noise, scaling, and translation in time-series databases. In Proceeding

of the 21th International Conference on Very Large Data Bases, pages

490–501, 1995.

[107] Z. Liu, J. X. Yu, X. Lin, H. Lu, and W. Wang. Locating motifs in time-

series data. In Pacific-Asia Conference on Knowledge Discovery and Data

Mining, pages 343–353. Springer, 2005.

[108] J. L. E. K. S. Lonardi and P. Patel. Finding motifs in time series. In Proc.

of the 2nd Workshop on Temporal Data Mining, pages 53–68, 2002.

[109] S. Lonardi and A. Apostolico. Global detectors of unusual words: design,

implementation, and applications to pattern discovery in biosequences.

Department of Computer Sciences, Purdue University, 2001.

[110] J. MacQueen et al. Some methods for classification and analysis of multi-

variate observations. In Proceedings of the fifth Berkeley symposium on

126

BIBLIOGRAPHY

mathematical statistics and probability, volume 1, pages 281–297. Oakland,

CA, USA., 1967.

[111] M. L. Marx and R. J. Larsen. Introduction to mathematical statistics and

its applications. Pearson/Prentice Hall, 2006.

[112] E. Masciari, G. M. Mazzeo, and C. Zaniolo. A new, fast and accurate

algorithm for hierarchical clustering on euclidean distances. In Advances

in Knowledge Discovery and Data Mining, pages 111–122. Springer, 2013.

[113] Y. Mohammad and T. Nishida. Constrained motif discovery in time series.

New Generation Computing, 27(4):319, 2009.

[114] M. D. Morse and J. M. Patel. An efficient and accurate method for

evaluating time series similarity. In Proceedings of the 2007 ACM SIGMOD

international conference on Management of data, pages 569–580. ACM,

2007.

[115] A. Mueen, E. J. Keogh, Q. Zhu, S. Cash, and M. B. Westover. Exact

discovery of time series motifs. In SDM, pages 473–484. SIAM, 2009.

[116] M. Müller. Dynamic time warping. Information retrieval for music and

motion, pages 69–84, 2007.

[117] A. Panuccio, M. Bicego, and V. Murino. A hidden markov model-based

approach to sequential data clustering. Structural, Syntactic, and Statistical

Pattern Recognition, pages 734–743, 2002.

[118] P. Papapetrou, V. Athitsos, M. Potamias, G. Kollios, and D. Gunopulos.

Embedding-based subsequence matching in time-series databases. ACM

Transactions on Database Systems (TODS), 36(3):17, 2011.

[119] S. Park, D. Lee, and W. W. Chu. Fast retrieval of similar subsequences in

long sequence databases. In Knowledge and Data Engineering Exchange,

1999.(KDEX’99) Proceedings. 1999 Workshop on, pages 60–67. IEEE,

1999.

127

BIBLIOGRAPHY

[120] S. Park, W. W. Chu, J. Yoon, and C. Hsu. Efficient searches for similar

subsequences of different lengths in sequence databases. In Data Engi-

neering, 2000. Proceedings. 16th International Conference on, pages 23–32.

IEEE, 2000.

[121] S. Park, S.-W. Kim, and W. W. Chu. Segment-based approach for subse-

quence searches in sequence databases. In Proceedings of the 2001 ACM

symposium on Applied computing, pages 248–252. ACM, 2001.

[122] P. Patel, E. Keogh, J. Lin, and S. Lonardi. Mining motifs in massive time

series databases. In Data Mining, 2002. ICDM 2003. Proceedings. 2002

IEEE International Conference on, pages 370–377. IEEE, 2002.

[123] D. Pelleg, A. W. Moore, et al. X-means: Extending k-means with efficient

estimation of the number of clusters. In International Conference on

Machine Learning, pages 727–734, 2000.

[124] I. Popivanov and R. J. Miller. Similarity search over time-series data

using wavelets. In Data Engineering, 2002. Proceedings. 18th International

Conference on, pages 212–221. IEEE, 2002.

[125] Y. Qu, C. Wang, and X. S. Wang. Supporting fast search in time series

for movement patterns in multiple scales. In Proceedings of the Seventh

International Conference on Information and Knowledge Management,

Conference on Information and Knowledge Management ’98, pages 251–

258, New York, NY, USA, 1998. ACM. ISBN 1-58113-061-9. doi: 10.1145/

288627.288664. URL http://doi.acm.org/10.1145/288627.288664.

[126] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover,

Q. Zhu, J. Zakaria, and E. Keogh. Searching and mining trillions of time

series subsequences under dynamic time warping. In Proceedings of the

18th ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 262–270. ACM, 2012.

128

BIBLIOGRAPHY

[127] U. Ramer. An iterative procedure for the polygonal approximation of plane

curves. Computer graphics and image processing, 1(3):244–256, 1972.

[128] C. Ratanamahatana, E. Keogh, A. J. Bagnall, and S. Lonardi. A novel bit

level time series representation with implication of similarity search and

clustering. In Advances in knowledge discovery and data mining, pages

771–777. Springer, 2005.

[129] C. A. Ratanamahatana and E. Keogh. Making time-series classification

more accurate using learned constraints. In Proceedings of the 2004 SIAM

International Conference on Data Mining, pages 11–22. SIAM, 2004.

[130] S. Ren, L. He, H. Zhu, Z. Gu, W. Song, and J. Shang. Developing power-

aware scheduling mechanisms for computing systems virtualized by xen.

Concurrency and Computation: Practice and Experience, 29(3), 2017.

[131] J. F. Roddick, K. Hornsby, and M. Spiliopoulou. An updated bibliography

of temporal, spatial, and spatio-temporal data mining research. In Tempo-

ral, Spatial, and Spatio-Temporal Data Mining, pages 147–163. Springer,

2001.

[132] P. P. Rodrigues, J. Gama, and J. P. Pedroso. Hierarchical clustering

of time-series data streams. Knowledge and Data Engineering, IEEE

Transactions on, 20(5):615–627, 2008.

[133] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization

for spoken word recognition. IEEE transactions on acoustics, speech, and

signal processing, 26(1):43–49, 1978.

[134] S. Salvador and P. Chan. Toward accurate dynamic time warping in linear

time and space. Intell. Data Anal., 11(5):561–580, Oct. 2007. ISSN 1088-

467X. URL http://dl.acm.org/citation.cfm?id=1367985.1367993.

[135] E. Schikuta. Grid-clustering: An efficient hierarchical clustering method

129

BIBLIOGRAPHY

for very large data sets. In Pattern Recognition, 1996., Proceedings of the

13th International Conference on, volume 2, pages 101–105. IEEE, 1996.

[136] P. Sebastiani, M. Ramoni, P. Cohen, J. Warwick, and J. Davis. Discovering

dynamics using bayesian clustering. Advances in intelligent data analysis,

pages 199–209, 1999.

[137] C. Shahabi, X. Tian, and W. Zhao. Tsa-tree: A wavelet-based approach

to improve the efficiency of multi-level surprise and trend queries on time-

series data. In Scientific and Statistical Database Management, 2000.

Proceedings. 12th International Conference on, pages 55–68. IEEE, 2000.

[138] D. Shasha and Y. Zhu. High performance discovery in time series: Tech-

niques and case studies (monographs in computer science). 2004.

[139] H. Shatkay and S. B. Zdonik. Approximate queries and representations

for large data sequences. In Data Engineering, 1996. Proceedings of the

Twelfth International Conference on, pages 536–545. IEEE, 1996.

[140] H. Tang and S. S. Liao. Discovering original motifs with different lengths

from time series. Knowledge-Based Systems, 21(7):666–671, 2008.

[141] M. Toyoda, Y. Sakurai, and Y. Ishikawa. Pattern discovery in data streams

under the time warping distance. The Very Large Data Bases Journal, 22

(3):295–318, 2013.

[142] A. Vahdatpour, N. Amini, and M. Sarrafzadeh. Toward unsupervised

activity discovery using multi-dimensional motif detection in time series.

In IJCAI, volume 9, pages 1261–1266, 2009.

[143] M. Vlachos, G. Kollios, and D. Gunopulos. Discovering similar multi-

dimensional trajectories. In Data Engineering, 2002. Proceedings. 18th

International Conference on, pages 673–684. IEEE, 2002.

[144] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. Keogh. Indexing

130

BIBLIOGRAPHY

multidimensional time-series. The VLDB JournalThe International Journal

on Very Large Data Bases, 15(1):1–20, 2006.

[145] H. Vullings, M. Verhaegen, and H. B. Verbruggen. Ecg segmentation using

time-warping. In Advances in Intelligent Data Analysis. Reasoning about

Data: Second International Symposium, IDA-97, London, UK, August

1997. Proceedings, page 275. Springer, 1997.

[146] C. Wang and X. S. Wang. Supporting content-based searches on time

series via approximation. In Proceedings. 12th International Conference

on Scientific and Statistica Database Management, pages 69–81, 2000. doi:

10.1109/SSDM.2000.869779.

[147] W. Wang, J. Yang, R. Muntz, et al. Sting: A statistical information grid

approach to spatial data mining. In Very Large Data Bases, volume 97,

pages 186–195, 1997.

[148] L. Wei, E. Keogh, H. Van Herle, A. Mafra-Neto, and R. J. Abbott. Efficient

query filtering for streaming time series with applications to semisupervised

learning of time series classifiers. Knowledge and Information Systems, 11

(3):313–344, 2007. ISSN 0219-3116. doi: 10.1007/s10115-006-0033-7. URL

http://dx.doi.org/10.1007/s10115-006-0033-7.

[149] J. Wilkes. More Google cluster data. Google research blog, Nov.

2011. Posted athttp://googleresearch.blogspot.com/2011/11/more-google-

cluster-data.html,.

[150] Y. Xiong and D.-Y. Yeung. Time series clustering with arma mixtures.

Pattern Recognition, 37(8):1675–1689, 2004.

[151] L. Yang, I. Foster, and J. M. Schopf. Homeostatic and tendency-based

cpu load predictions. In Parallel and Distributed Processing Symposium,

2003. Proceedings. International, pages 9–pp. IEEE, 2003.

131

BIBLIOGRAPHY

[152] Q. Yang, C. Peng, H. Zhao, Y. Yu, Y. Zhou, Z. Wang, and S. Du. A

new method based on psr and ea-gmdh for host load prediction in cloud

computing system. The Journal of Supercomputing, 68(3):1402–1417, 2014.

[153] W. Yang, K. Li, Z. Mo, and K. Li. Performance optimization using parti-

tioned spmv on gpus and multicore cpus. Computers, IEEE Transactions

on, 64(9):2623–2636, 2015.

[154] D. Yankov, E. Keogh, J. Medina, B. Chiu, and V. Zordan. Detecting

time series motifs under uniform scaling. In Proceedings of the 13th ACM

SIGKDD international conference on Knowledge discovery and data mining,

pages 844–853. ACM, 2007.

[155] L. Ye and E. Keogh. Time series shapelets: a novel technique that allows

accurate, interpretable and fast classification. Data mining and knowledge

discovery, 22(1):149–182, 2011.

[156] B.-K. Yi and C. Faloutsos. Fast time sequence indexing for arbitrary lp

norms. Very Large Data Bases, 2000.

[157] H. Zeng, Z. Shen, and Y. Hu. Mining sequence pattern from time series

based on inter-relevant successive trees model. In G. Wang, Q. Liu, Y. Yao,

and A. Skowron, editors, Rough Sets, Fuzzy Sets, Data Mining, and

Granular Computing, volume 2639 of Lecture Notes in Computer Science,

pages 734–737. Springer Berlin Heidelberg, 2003. ISBN 978-3-540-14040-

5. doi: 10.1007/3-540-39205-X 127. URL http://dx.doi.org/10.1007/

3-540-39205-X_127.

[158] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: an efficient data

clustering method for very large databases. In ACM Sigmod Record,

volume 25, pages 103–114. ACM, 1996.

[159] X. Zhang, J. Wu, X. Yang, H. Ou, and T. Lv. A novel pattern extraction

method for time series classification. Optimization and Engineering, 10(2):

253–271, 2009.

132

BIBLIOGRAPHY

[160] Y. Zhang, S. Wei, and Y. Inoguchi. Cpu load predictions on the computa-

tional grid. IEICE TRANSACTIONS on Information and Systems, 90(1):

40–47, 2007.

[161] Y. Zhang, W. Sun, and Y. Inoguchi. Predict task running time in grid

environments based on cpu load predictions. Future Generation Computer

Systems, 24(6):489–497, 2008.

133

