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Abstract

The majority of model-based clustering techniques is based on multivariate Normal
models and their variants. In this paper copulas are used for the construction of flex-
ible families of models for clustering applications. The use of copulas in model-based
clustering offers two direct advantages over current methods: i) the appropriate choice
of copulas provides the ability to obtain a range of exotic shapes for the clusters, and
ii) the explicit choice of marginal distributions for the clusters allows the modelling
of multivariate data of various modes (either discrete or continuous) in a natural way.
This paper introduces and studies the framework of copula-based finite mixture mod-
els for clustering applications. Estimation in the general case can be performed using
standard EM, and, depending on the mode of the data, more efficient procedures are
provided that can fully exploit the copula structure. The closure properties of the mix-
ture models under marginalization are discussed, and for continuous, real-valued data
parametric rotations in the sample space are introduced, with a parallel discussion on
parameter identifiability depending on the choice of copulas for the components. The
exposition of the methodology is accompanied and motivated by the analysis of real
and artificial data.
Keywords: mixture models; dependence modelling; parametric rotations; multivariate
discrete data; mixed-domain data.

1 Introduction

1.1 Finite Mixture models for real-valued data

The use of finite mixture models in clustering is finding a large number of applications,
mainly because it allows standard statistical modelling tools to be used in order to assess
and evaluate the clustering. The density or probability mass function of a finite mixture
model is defined as

h(x;θ,π) =
k∑
j=1

πjfj(x;θj) (x ∈ <p) , (1)
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where θ = (θ>1 , . . . ,θ
>
k )> ∈ Θ1 × . . . × Θk, and πj ∈ (0, 1) with

∑k
j=1 πj = 1. Appropriate

choices of fj(x;θj) can result in flexible models of small complexity. Banfield and Raftery
(1993) and the book of McLachlan and Peel (2000) provide a detailed treatment of the
framework of finite mixture modelling for clustering.

For continuous data, a common choice for the component densities fj(x;θj) (j = 1, . . . , k)
is the density of the multivariate Normal distribution. This is mainly because of the conve-
nience it offers in estimation (closed-form maximization steps in the EM algorithm) and in-
terpretation (easy marginalization for visualising fitted components and the mixture density).
The resultant clusters, though, are limited to be elliptical in shape, and as is demonstrated
in Hennig (2010), one may need more than one multivariate Normal components, in order to
fit a single non-elliptical cluster.

Such restrictions of multivariate Normal finite mixtures have resulted in an expanding
literature where other special component distributions are considered. Prominent exam-
ples of alternative component densities include multivariate t distributions (see, Andrews
and McNicholas, 2011), multivariate skew-Normal and skew-t distribution (see, for example,
Frühwirth-Schnatter and Pyne, 2010; Lee and McLachlan, 2014), multivatiate skew student-
t-Normal distributions (Lin et al., 2014), multivariate Normal inverse Gaussian distributions
(Karlis and Santourian, 2009). Other attempts can be found in Forbes and Wraith (2014)
for finite mixtures of multivariate scaled Normal distributions and (Morris and McNicholas,
2013) for mixtures of shifted asymmetric Laplace distributions. The results of such studies
indicate that the introduction of heavy tails and/or skewness allows the construction of more
parsimonious models than multivariate Normal mixtures, which can also bridge the gap be-
tween the number of clusters present in the data and the number of components used in the
mixture.

Despite the added flexibility that such mixture models offer, all of them force the data
to obey very specific marginal properties, and they are not appropriate, for example, in
cases where the simultaneous treatment of real-valued observations, strictly positive and
observations in (0, 1) is needed. In such cases one needs to either ignore the range of the
variables and treat them as real-valued or apply appropriate transformations that map the
original range of the observations on the real line. Furthermore, even for real-valued variables,
as Example 1.1 illustrates, current methods can fail to capture certain dependence structures.

Example 1.1: Consider the artificial data set shown in the top left plot of Figure 1. The
data set is formed by four distinct clusters of observations each shown in a different colour
on the plot. A Clayton and a survival Clayton copula with Normal marginals has been used
for generating Groups 3 and 4, and then an exact copy of the latter has been translated
appropriately in order to form Groups 1 and 2.

In an attempt to reconstruct the true groups, the data set was fitted using a bivariate
Normal mixture model, a bivariate skew-Normal mixture model, and a bivariate skew-t mix-
ture model. All fitting procedures were initialized by the best k-means clustering in four
clusters after 1000 random starting points. The resulting classification plots are shown in
Figure 1. Each plot also provides the value of the Bayesian Information Criterion (BIC) for
each model and the corresponding misclassification rate. As is apparent none of the three
models performs well in detecting the true shape of the underlying clusters with the misclas-
sification rates ranging between 22.12% to 30.5% and adjusted Rand index (ARI) between
0.45 and 0.51.

The challenge with the artificial data set in Figure 1 is the tail behaviour that the true
groups demonstrate. If we restrict the number of components to four, the demonstrated
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Figure 1: An artificial data set with observations on two continuous variables (top left),
a fitted mixture of four 2-dimensional Normal distributions (top right), a fitted mixture
of four 2-dimensional skew-Normal distributions (bottom left) and a fitted mixture of four
2-dimensional skew-t distributions (bottom right).

extreme tail dependence and the small distances between the true groups makes models
based on elliptical components (like Normal mixtures) incapable of capturing the true shape
of the clusters. Moreover, in this example, models that are based on non-elliptical components
(like skew-Normal and skew-t distributions) seem to be not flexible enough to capture the
true characteristics of the data.

3



1.2 Finite mixture models for clustering non-continuous data

For non-continuous data, one needs to specify fj(x;θj) (j = 1, . . . , k) in (1) through prob-
ability mass functions. While there is a wealth of choices for univariate non-continuous dis-
tributions, the use of multivariate non-continuous distributions for the definition of mixture
models is limited due to the difficulty in constructing easy to work with models that allow
practical flexibility on the dependence structure. Some successful, but limited in application
examples, are finite mixtures of multivariate Poisson distributions (Karlis and Meligkotsidou,
2007), finite mixtures of multinomial distributions (Jorgensen, 2004) and models based on
conditionally independent Poisson distributions (see, for example Alfo et al., 2011). Mixture
models with latent structures have been considered in Browne and McNicholas (2012), but
these can have limitations because of assumptions like conditional independence.

1.3 Setting and fitting flexible finite mixture models

Subsections 1.1 and 1.2 highlight the need for a new framework for setting and fitting mixture
models, which can i) match the flexibility that current proposals offer, and ii) can accommo-
date the modelling of data with either continuous or non-continuous domains.

Copulas offer the means for constructing such a framework; their extensive use in the
modelling of applications with multivariate data is due to the flexibility they offer in de-
scribing dependence and in that they allow the construction of multivariate models with
prescribed marginals. Nelsen (2006) provides an introduction to the concept of copulas.
Moreover, specifically for continuous data, common dependence measures like Kendall’s τ
and Spearman’s ρ are marginal-free and depend solely on the copula. This fact allows the
easy construction of multivariate mixture models for continuous data by first selecting the
marginal properties of the variables involved and then the dependence structure implied by
the mixture components.

A few attempts have already been made in the direction of facilitating the flexibility that
copulas offer in model-based clustering (see, for example Jajuga and Papla, 2006; Di Lascio
and Giannerini, 2012; Vrac et al., 2012). The current paper sets a thorough framework for
constructing mixture models using copulas, highlighting the benefits but also the challenges
of their use in practice. The ingredients for constructing copula-based mixture models are
described in Section 2. Section 3 provides the details for maximum likelihood estimation
through Expectation-Maximization (EM) algorithm and proposes relevant procedures for
obtaining starting values from the combination of a partitioning algorithm (like k-medoids)
and of component-wise applications of the Inference Functions from Margins (IFM) method
of Joe (1997, Chapter 10). Section 4 focuses on the case of modelling continuous multivariate
data. The special structure of the complete-data log-likelihood is exploited for producing
more efficient and stable variants of the Maximization step of the EM algorithm. Topics like
the modelling of mixed-domain continuous data are discussed and a novel extension of the
standard copula-based mixture model is presented that applies parametric component-wise
rotations in the sample space and has effortless implementation. Section 5 examines the
property of closure under marginalisation for copula-based mixture models and Section 6
provides a description of the use of the framework for modelling multivariate discrete data.
The challenges in estimation and model specification compared to the continuous case are
discussed. The exposition of the methodology is accompanied and motivated by the analysis
of real and artificial data. The paper concludes in Section 7 with a discussion including
descriptions of new research directions that the current work offers.
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2 A flexible specification of mixture models

2.1 Mixture models through copulas

A copula C(u1, . . . , up) is a distribution function with uniform marginals. The importance of
copulas in statistical modelling stems from Sklar’s theorem (see, Nelsen, 2006, §2.3), which
shows that every multivariate distribution can be represented via the choice of an appropriate
copula and, more importantly, it provides a general mechanism to construct new multivariate
models in a straightforward manner.

The copula-based mixture model is defined as in (1) but now θj is partitioned as (γ>j ,ψ
>
j )>

and fj(x;θj) is the density (or probability mass function) corresponding to a distribution
function

Fj(x;ψj,γj) = Cj(G1(x1;γj1), . . . , Gp(xp;γjp);ψj) (j = 1, . . . , k) , (2)

where G1, . . . , Gp are univariate marginal cumulative distribution functions. As far as the
model parameters are concerned, γj contains the parameter vectors γjt for all marginals for
jth component (t = 1, . . . , p) and ψj contains the parameters of the copula used for the j-th
component.

2.2 Construction of mixture models for any type of marginals

The definition of the component density Fj through the choice of a copula Cj and the choice
of marginal distributions G1, . . . , Gp leads to a flexible framework for model-based clustering
that according to Sklar’s theorem necessarily encompasses all known mixture models and
allows the convenient construction of new mixture models that can handle any of continuous,
discrete data.

Temporarily omitting the component index and suppressing the dependence on the pa-
rameters, assume that the density of the copula C(u1, . . . , up) exists and is c(u1, . . . , up) =
∂pC(u1, . . . , up)/∂u1 . . . ∂up. Then the component density for continuous marginals is

f(x) = c(G1(x1), . . . , Gp(xp))

p∏
t=1

gt(xt) ,

where gt(x) = dGt(x)/dx is the density function for the tth marginal distribution. For discrete
data, the probability mass function is given in Panagiotelis et al. (2012, expression (1.2)),
and results from finite differences of the distribution function as

P (x) =
∑
d

sgn(d)C(G1(d1), . . . , Gp(dp)) , (3)

with d = (d1, . . . , dp) vertices, where each dt is equal to either xt or xt− 1 (t = 1, . . . , p), and

sgn(d) =

{
1 , if dt = xt − 1 for an even number of t’s
−1 , if dt = xt − 1 for an odd number of t’s

.

The model defined from (1) and (2) being a finite mixture allows for inferential procedures
based on the standard theory of finite mixtures, like use of the EM algorithm for maximum
likelihood estimation and the use of model selection criteria.

5



3 Model fitting

3.1 Full Expectation Maximization algorithm

Suppose that a sample of n p-vectors x1, . . . ,xn is available, which are assumed to be re-
alizations of independent random variables X1, . . . ,Xn each with distribution with density
or probability mass function as defined by (1) and (2). The maximization of the likelihood
function based on that sample can be performed using the EM algorithm. At the `th iteration
of the algorithm:

• E-step: Calculate

w
(`+1)
ij =

π
(`)
j fj(xi;θ

(`)
j )∑k

j=1 π
(`)
j fj(xi;θj

(`))
(i = 1, . . . , n; j = 1, . . . , k) .

• M-step 1: Set π
(`+1)
j =

∑n
i=1w

(`+1)
ij /n (j = 1, . . . , k).

• M-step 2: Maximize
k∑
j=1

n∑
i=1

w
(`+1)
ij log {fj(xi;θj)} ,

with respect to θ to obtain an updated value θ(`+1) for the copula and marginal pa-
rameters.

The algorithm iterates between the E-step and the M-step until some convergence criterion
is satisfied. In all the examples in the current paper the termination criterion that is used
is that the relative increase {l(θ(`+1), π(`+1)) − l(θ(`), π(`))}/l(θ(`), π(`)) of the log-likelihood
l(θ, π) in two successive iterations is less than ε = 10−8.

3.2 Computational details

3.2.1 Maximization step

For the general model defined by (1) and (2), M-step 2 of the EM iteration is generally
not available in closed-form and needs to be performed numerically. At the current level of
generality, it is recommended to take advantage of the separable form of the complete-data
log-likelihood for mixture models, which allows to break down the maximization task into k
independent maximizations of weighted likelihoods

θ
(`+1)
j = arg max

Θj

n∑
i=1

w
(`+1)
ij log {fj(xi;θj)} (j = 1, . . . , k) ,

that can be performed in parallel.

3.2.2 Starting values

For calculating the starting values for π and θ the following procedure is proposed which takes
into account both the copula and the marginal specification of each component in the mixture
model. The procedure is an application of the Inference Functions from Margins (IFM)

6



method (Joe, 1997, Chapter 10) for each component, and relies on an initial classification
vector that partitions the observation indices A = {1, . . . , n} into exclusive subsets S1, . . . , Sk,
with ∪kj=1Sj = A, of cardinality N1, . . . , Nk, respectively. More specifically, the procedure for
obtaining starting values consists of the following steps:

S1 Set the starting values for πj using π∗j = Nj/n (j = 1, . . . , k).

S2 Use maximum likelihood to fit the marginal gt on data xit for i ∈ Sj in order to obtain
starting values γ∗jt for γjt (t = 1, . . . , p).

S3 Use maximum likelihood to fit the copula Cj(u1, . . . , up;ψj) on observations uit =
Gt(xit;γ

∗
jt) (i ∈ Sj; t = 1, . . . , p), in order to get starting values ψ∗j for the copula

parameters ψj.

The initial classification vector can be obtained either using a hard-partitioning distance-
based algorithm (like k-means for continuous data or k-medoids more generally) or by ran-
domly sampling k observations and using the minimum distance of each to all other obser-
vations in order to form S1, . . . , Sk.

3.2.3 Choice of component ordering

The possibility of using different copulas for the components of the mixture model defined by
(1) and (2), and the fact that the likelihood function for mixture models generally has local
maxima, make the solution of the EM algorithm to depend on the order that the copulas
appear in the mixture.

A solution to this problem is to fit all models that result from all possible permutations of
the component copulas. Then, for each one of the unique permutations of the components,
the procedure in Subsection 3.2.2 is applied, taking care to use the same initial classification
vector (and labelling) for A across permutations. Then the fitted model with the largest
value for the maximized log-likelihood is chosen. Example 4.1 below, uses this procedure
for the choice of component ordering. Subsection 4.3.2 presents an alternative, less intensive
solution, which can give rise to flexible mixture models without the need of considering many
different candidate copulas for the components. That solution is based on extending the
specification of the mixture model by allowing for component-wise parametric rotations.

If the same copula is used across the components of the mixture model, then the sensitivity
that the result of the EM algorithm can have on the starting values can be alleviated by
trying several of those. This can be done by choosing a number of sets of k randomly
sampled observations, and construct distinct classification vectors by minimum distance, as
described in Subsection 3.2.2. Then, for each vector, component-wise IFM is used to get the
corresponding set of starting values and initialize the EM iterations. The model fit with the
largest maximized log-likelihood is the one that is kept. The above process is used to carry
out the analyses in Example 4.2 and Example 6.1.

4 Continuous data

4.1 Maximization step

For the analysis of continuous data, M-step 2 in Subsection 3.1 takes the form

7



• M-step 2: Maximize the log-likelihood

k∑
j=1

n∑
i=1

w
(`+1)
ij

[
log cj(G1(xi1;γj1), . . . , Gp(xip;γjp);ψj) +

p∑
t=1

log gt(xit;γjt)

]
, (4)

with respect to ψ1, . . . ,ψk,γ11, . . . ,γ1p,γk1, . . . ,γkp, where γjt is the vector of parameters of
the tth marginal distribution for the jth component of the mixture (t = 1, . . . , p; j = 1, . . . , k).

As is apparent from (4) the only necessary ingredients for implementing the EM algorithm
for mixtures of copulas for continuous data are the specification of the copula densities
c1, . . . , ck and the specification of the marginal density and distribution functions g1, . . . , gp
and G1, . . . , Gp , respectively.

The particular form of the complete data log-likelihood for continuous data allows here
the use of the Expectation/Conditional Maximization (ECM) algorithm of Meng and Rubin
(1993), where the full maximization of the complete data log-likelihood is relaxed to max-
imization in blocks; first with respect to the marginal parameters given the current value
of the copula parameter and then with respect to the copula parameter given the updated
values for the marginal parameters. In mathematical notation, M-step 2 in Subsection 3.1 is
replaced by the steps

• CM-step 1: Maximize

k∑
j=1

n∑
i=1

w
(`+1)
ij

[
log cj(G1(xi1;γj1), . . . , Gp(xip;γjp);ψ

(`)
j ) +

p∑
t=1

log gt(xit;γjt)

]
, (5)

with respect to γ11, . . ., γ1p, γk1, . . ., γkp to obtain updated values γ
(`+1)
11 , . . ., γ

(`+1)
1p ,

γ
(`+1)
k1 , . . ., γ

(`+1)
kp for the marginal parameters.

• CM-step 2: Maximize

k∑
j=1

n∑
i=1

w
(`+1)
ij

[
log cj(G1(xi1;γ

(`+1)
j1 ), . . . , Gp(xip;γ

(`+1)
jp );ψj)

]
, (6)

with respect to ψ1, . . . ,ψk to obtain updated values ψ
(`+1)
1 , . . . ,ψ

(`+1)
k for the copula

parameters.

According to the definitions and results in Meng and Rubin (1993), the ECM algorithm
that results by replacing M-step 2 with the pair CM-step 1 and CM-step 2 shares all the
convergence properties of the full EM algorithm, and, in this particular case, is more com-
putationally efficient and stable, because CM-step 2 consists of a simple maximization with
respect to the copula parameters. Furthermore, CM-step 1 and CM-step 2 can each be bro-
ken down into parallel optimizations across components, as in the case of the full EM in
Subsection 3.2, which significantly reduces computation time in multicore systems.

The pair of CM-step 1 and CM-step 2 is similar to the IFM method for fitting the com-
plete data likelihood. Their difference lies in CM-step 1 where instead of maximizing the
weighted sum of marginal log-likelihoods, a valid ECM algorithm requires the maximization
of a penalized version of it where the penalty depends on the log copula density at the current
value for the copula parameter.
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Example 4.1: Consider the setting of Example 1.1. The Normal mixture model failed to
capture the dependence structure that is apparent in the true groups because of the strict
elliptical shape of the component densities. Furthermore, two of the fashionable methods
that allow non-elliptical clusters (mixtures of skew-Normals and skew-t distributions) were
not able to recover the dependence structure of the groups in the artificial data.

The Gumbel copula and the Clayton copula can capture varying degrees of upper and
lower tail dependence respectively and for the purposes of this example we consider a mixture
model of two Gumbel copulas and two Clayton copulas with Normal marginals. The Gumbel
copula is defined as

C(G)(u1, u2;ψ) = exp
[
−
{

(− log u1)ψ + (− log u2)ψ
}1/ψ

]
, ψ ∈ [1,∞) , (7)

and the Clayton copula is defined as

C(C)(u1, u2;ψ) =
(
u−ψ1 + u−ψ2 − 1

)−1/ψ

, ψ ∈ (0,∞) . (8)

The associated densities c(G)(u1, u2;ψ) and c(C)(u1, u2;ψ) can be obtained by direct differ-
entiation of C(G)(u1, u2;ψ) and C(C)(u1, u2;ψ), respectively. The closed form expressions of
those copula densities are given in Hofert et al. (2012, Corollary 1) along with the correspond-
ing expressions for other Archimedean copulas of arbitrary dimension. Then the density of
the bivariate mixture model with two Gumbel and two Clayton components and Normal
marginal distributions can be written as

h(x;θ,π) =
2∑
j=1

πjc
(G)

{
Φ

(
x1 − µj1
σj1

)
,Φ

(
x2 − µj2
σj2

)
;ψj

} 2∏
t=1

1

σjt
φ

(
xt − µjt
σjt

)
(9)

+
4∑
j=3

πjc
(C)

{
Φ

(
x1 − µj1
σj1

)
,Φ

(
x2 − µj2
σj2

)
;ψj

} 2∏
t=1

1

σjt
φ

(
xt − µjt
σjt

)
,

where θ = (µ11, σ11, µ12, σ12, ψ1, . . . , µ41, σ41, µ42, σ42, ψ4)> and π = (π1, . . . , π4)> with∑4
j=1 πj = 1. The functions Φ(.), φ(.) are the distribution and density function of a standard

Normal random variable, respectively.
Then M-step 2 of the maximization step at the `th iteration of the EM algorithm in

Subsection 3.1 consists of the maximization of each one of

n∑
i=1

w
(`+1)
ir

[
log c

{
Φ

(
xi1 − µr1
σr1

)
,Φ

(
xi2 − µr2
σr2

)
;ψr

}
−

2∑
t=1

log σrt +
1

2

2∑
t=1

(
xit − µrt
σrt

)2
]

(10)
for r ∈ {1, 2, 3, 4}, where c ≡ c(G) for r ∈ {1, 2} and c ≡ c(C) for r ∈ {3, 4}. For deriving the
ECM algorithm in Subsection 4.1, each of those maximizations should be replaced by the
maximization of the function given in (10), firstly on with respect to µr1, σr1, µr2, σr2 at the

current value ψ
(`)
r of the copula parameter, in order to obtain updated marginal parameters

µ
(`+1)
r1 , σ

(`+1)
r1 , µ

(`+1)
r2 , σ

(`+1)
r2 , and, then, the maximization of

n∑
i=1

w
(`+1)
ir log c

{
Φ

(
xi1 − µ(`+1)

r1

σ
(`+1)
r1

)
,Φ

(
xi2 − µ(`+1)

r2

σ
(`+1)
r2

)
;ψr

}
,
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Component 1 Component 2 Component 3 Component 4

Gumbel Gumbel Clayton Clayton

Mixing probabilities π̂1 = 0.24 π̂2 = 0.24 π̂3 = 0.25 π̂4 = 0.27

Marginal parameters

µ̂11 = 2.31 µ̂21 = 0.35 µ̂31 = 2.79 µ̂41 = 0.78
σ̂11 = 0.95 σ̂21 = 0.97 σ̂31 = 1.00 σ̂41 = 1.02
µ̂12 = 2.73 µ̂22 = 3.76 µ̂32 = 4.77 µ̂42 = 5.77
σ̂12 = 1.03 σ̂22 = 1.05 σ̂32 = 1.05 σ̂42 = 1.07

Copula parameters ψ̂1 = 2.86 ψ̂2 = 2.85 ψ̂3 = 3.56 ψ̂4 = 3.24

Table 1: Maximum likelihood estimates for the parameters for the mixture (9).

with respect to ψr to obtain an updated value ψ
(`+1)
r for the copula parameter. The latter is

simply a maximization with respect to the scalar parameter ψr and can be performed using
line search in the domain of definition of the copula parameter.

In the current example, the possible permutations of the copulas for the components
are {G,G,C,C}, {G,C,G,C}, {G,C,C,G}, {C,G,G,C}, {C,G,C,G}, and {C,C,G,G},
where G and C stand for Gumbel and Clayton, respectively. Table 1 shows the estimates
for the parameters for that permutation of copulas which resulted in the largest maximized
log-likelihood.

The resulting classification plot is shown in Figure 2. As is apparent the copula-based
mixture model is performing very well in capturing the shape of the original clusters; the
misclassification rate is 9.5% and the BIC value (5598.74) has greatly improved from the
models in Figure 1. The resultant clustering has ARI of 0.77 which dominates the clusterings
obtained in 1.1.

4.2 Bounded- and mixed-domain variables

The decoupling of the dependence properties from the marginal ones allows the easy construc-
tion of multivariate mixture models for bounded-domain data (like percentages or strictly
positive variables).

Mixture models for such data are usually formed from component densities defined by the
product of independent univariate densities of appropriate support. Those models imply that
the univariate marginal distributions of the component densities are independent conditional
on the component membership. In effect, such models attempt to capture the dependence in
the data only through the mixing probabilities. For example, Dean and Nugent (2013) define
multivariate Beta mixture models in this way, and use them highlighting that the implied
conditional independence assumption can be rather restrictive in practice.

Under the current framework, models with more complex dependence can be defined by
simply setting the component copula densities cj in (4), and choosing marginals with the
required support.

More importantly, the current methodology can be used to construct multivariate mixture
models for mixed-domain marginals. Example 4.2 below considers a mixture model with
components that have seven Beta and one Gamma marginal distributions each.
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Misclassification: 9.5%
ARI: 0.77
BIC:  5598.74

Figure 2: The artificial data set of Example 1.1 (left) and the contours of the fitted mixture
of the bivariate mixture model with two Gumbel and two Clayton components and Normal
marginal distributions (right).

Example 4.2: Hoopdata.com is a website that was launched in 2009 and provides an exten-
sive database for NBA statistics. We used Hoopdata.com’s database to gather data for the
scoring behaviour of the 493 NBA players that had more than 24 minutes game time (which
accounts for half a game played in full) in the 2011-2012 season. For each player, the data
has observations for the season free throws percentage (“FTper”), the field goals percentage
(“FGper”), the three point percentage (“ThreePper”), the percentage of field goals assisted,
the percentage blocked, the percentage of “And1” field goals, and the total points scored in
hundreds (“PointsHun”). The aim of the analysis is to form groups of players in terms of
their performance.

For all players that had observation 0% or 100% in any of the percentages, the observation
is replaced by 0.01% and 99.99%, respectively. After making the substitutions, the free
throws, the field goals and the three point percentages take values in (0, 1). Furthermore, the
points scored are all positive. Plausible marginal specifications are a Beta distribution for
modelling each of the percentage variables and a Gamma distribution for modelling the points
scored. Then we use a 7-variate Gaussian copula for modelling the dependence between the
7 variables.

The multivariate Gaussian copula with correlation matrix R is defined as

C(N)(u1, . . . , up;R) = Φp(Ψ(u1), . . . ,Ψ(up);R) , (11)

where Φp(., . . . , .) is the distribution function of a standard p-variate Normal distribution
with correlation matrix R and Ψ(.) = Φ−1

1 (.) is the inverse distribution function of a standard
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Normal distribution. The matrix R has the general form

R =


1 ρ12 . . . ρ1p

ρ12 1 . . . ρ2p
...

...
. . .

...
ρ1p ρ2p . . . 1

 , (12)

where ρtt′ ∈ [−1, 1] is the correlation between the tth and t′th variable (t, t′ ∈ {1, . . . , p}; t 6=
t′).

For the current case the density of the mixture model to be fitted is

k∑
j=1

πjφ7 [Ψ {Gj1(x1)} , . . . ,Ψ {Gj7(x7)} ;Rj]
7∏
t=1

gjt(xt)

φ1[Ψ{Gjt(xt)}]
, (13)

where φp is the density of a p-dimensional standard Normal distribution and gjt(x) =
∂Gjt(x)/∂x, where for t ∈ {1, . . . , 6}, Gjt(x) is the distribution function of a Beta ran-
dom variable with shape parameters αjt, and Gj7(x) is the distribution function of a Gamma
random variable with shape parameter κj and scale 1/λj. More specifically, the density
functions for the marginals are

gjt(z) =


zαjt−1(1− z)βjt−1

B(αjt, βjt)
, t ∈ {1, . . . , 6}

λ
κj
j

Γ(κj)
zκj−1 exp(−λjz) , t = 7

(j = 1, . . . , k) .

The matrix Rj has exactly the same structure as the matrix R in (12) but the correlations
depend on j ensuring that each component in the mixture can accommodate different corre-
lation structures. Hence, the parameters to be estimated are αj1, βj1, . . ., αj6, βj6, κj and
λj for the marginals of the jth component, ρ12,j, . . ., ρ17,j, . . ., ρ67,j for the copula of the jth
component (j = 1, . . . , k) and the mixing proportions π1, . . . , πk−1. Hence, the model in (13)
has q = 36k − 1 free parameters. The number of free parameters can be further reduced by
fitting models nested to (13) that have a structured correlation matrix. For example, a nested
model to (13) with 16k−1 parameters can be formed by considering exchangeable correlation
for each component where all correlations appearing in Rj are equal to ρj (j = 1, . . . , k).

For k = 2, . . . , 9, density (13) is fitted to the data on the NBA players with both unstruc-
tured and exchangeable correlation. For the models with exchangeable correlation and for
each k, 15 sets of starting values were obtained by selecting 15 sets of k randomly selected
observations for the intialization of the component-wise IFM procedure in Subsection 3.2.2.
Then the model with the highest log-likelihood was chosen and was also used to initialise the
model with unstructured correlation.

Furthermore, we restricted the variance of each of the Beta marginals involved in the
mixture to be greater than 10−4. In this way, unbounded likelihood values relating to obser-
vations with the same percentage value can be avoided.

Table 2 lists the maximized log-likelihood, the number of parameters q and the BIC value
for the best 18 fitted mixtures. The model with exchangeable correlation matrix and k = 6
has the lowest BIC value.

The maximum of the weights wi1, . . . , wik at the last iteration of the EM algorithm (see
step E1 in 3.1) is used to determine the cluster membership of each observation. For the
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k Log-likelihood q BIC Log-likelihood q BIC

Exchangeable correlation Unstructured correlation

1 2414.56 15 −4736.12 2614.84 35 −5012.65
2 3146.45 31 −6100.68 3491.12 71 −6542.00
3 3734.31 47 −7177.19 3990.00 107 −7316.55
4 3900.49 63 −7410.34 4119.53 143 −7352.40 (?)
5 4002.73 79 −7515.62 4218.24 179 −7326.59
6 4053.61 95 −7518.17 (??) 4267.97 215 −7202.83
7 4073.36 111 −7458.47 4270.47 251 −6984.62
8 4146.57 127 −7505.68 4365.99 287 −6952.43
9 4159.01 143 −7431.35 4387.43 323 −6772.09

Table 2: Maximum likelihood fits of the density (13) for the data on the NBA players with
k ∈ {2, . . . , 9} components for both unstructured and exchangeable correlation structure. A
(?) denotes the best BIC for each copula specification and a (??) the best BIC overall.

model with exchangeable correlation matrices and k = 6, Figure 3 shows the marginal his-
tograms of the observations within each cluster along with the marginal densities gjt(.) at
the maximum likelihood estimates for each cluster-variable combination. The agreement of
the fitted marginals with the histograms of the variables indicates a good fit. Furthermore,
Figure 3 shows that the fit has achieved some separation between the clusters, especially for
“PointsHun”.

A “true classification” of the players in terms of performance is not generally available,
so it is hard to check how good the resultant classification is. However, there is a wealth
of metrics that attempt to capture different characteristics of the player. A few representa-
tive metrics include the NBA Efficiency rating (“EFF”), the Usage Rate (“USG”), the True
Shooting percentage (“TSper”), John Hollinger’s Player Efficiency Rating (“PER”) and Al-
ternative Win Score (“AWS”). Hoopdata.com provides the values for these metrics for each
player in the 2011-2012 season and we use these values to assess the comparative performance
of the copula-based mixture model to that of a Normal mixture fitted using the mclust (Fra-
ley et al., 2012) R package as follows: each metric is broken into I intervals, whose endpoints
are calculated using the empirical quantiles at I + 1 equidistant probabilities ranging from 0
to 1. For each metric and for I ∈ {2, . . . , 30}, we calculate the ARI of the clustering with 6
Beta and 1 Gamma marginal, and the ARI of the clustering from the Normal mixture model
with the lowest BIC (4 components with VEV parameterization with BIC −5026.44; VEV
stands for “variable volume, equal shape, variable orientation” and characterizes a particular
parameterization for the variance-covariance matrix of the multivariate Normal distribution
for the component distributions; see, Fraley et al. 2012 for the VEV and the other param-
eterizations that mclust uses). Figure 4 shows the results for each metric. Despite the low
ARI’s for both fits, all points fall below the 45o line and, hence, the clustering from the
copula-based mixture model clearly dominates the one from the optimal Normal mixture
model with regards to those metrics.

As a reviewer correctly pointed out, another way to handle clustering of bounded- or
mixed-domain data is to first appropriately transform the data and then use standard mix-
ture models for continuous data, such as Normal mixtures. Dean and Nugent (2013) con-
sider such an approach by taking the arcsine transformation of data in [0, 1] and then fitting
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Figure 3: Mixture of 6 7-dimensional Gaussian copulas with exchangeable correlation matri-
ces and 6 Beta and 1 Gamma marginals each. The plots show the marginal histograms of
the observations within each cluster along with the fitted marginal densities for each cluster-
variable combination. The fitted mixing proportions π̂i (i = 1, . . . , 6) are also reported.
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Figure 4: Clustering quality of best copula-based mixture model versus the best Normal
mixture model. The dashed line is the 45o line from the origin.
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Normal mixture models on the transformed data. Their results indicate that treating the
bounded-domain data with distributions that are defined on that domain produces better
results (see, for example Dean and Nugent, 2013, Table 1, for the results of the simulation
study). Another important reason for working with the bounded-domain data directly is for
avoiding the arbitrariness of choice of transformation before fitting a mixture model. Sec-
tion 1 of the supplementary material extends Example 4.2 to illustrate that distinct sensible,
transformations can lead to different results.

4.3 Real-valued variables

4.3.1 Invariance with respect to affine transformations

Suppose that the n vectors x1, . . . ,xn of observations have real-valued components. Then,
the fit of a copula-based mixture model with marginal distributions in the location-scale
family (like Normal, skew-Normal, Cauchy, t, logistic and so on) is invariant with respect to
the translation and component-wise scaling of x1, . . . ,xn. This is because the location and
scale of the components are determined only by the marginal distributions.

More formally, suppose that all marginals support the real line and that the fitted marginal
means and variances of the jth component based on data x1, . . . ,xn are µ̂j1, . . . , µ̂jp and
σ̂2
j1, . . . , σ̂

2
jp (j = 1, . . . , k), respectively. Then, if zi = a + Bxi (i = 1, . . . , n), where B is

a diagonal matrix with non-zero diagonal entries, the fitted marginal means and variances
of the jth component based on data z1, . . . ,zn will simply be a + B11µ̂j1, . . . , a + Bppµ̂jp
and B2

11σ̂
2
j1, . . . , B

2
ppσ̂

2
jp (j = 1, . . . , k), respectively. This follows directly from the invariance

properties of the maximum likelihood estimator.
However, depending on the choice of copulas, the same mixture will generally produce a

different clustering for general affine transformations of the form zi = a+Bxi (i = 1, . . . , n),
where B is a general real-valued p× p matrix. This is because a copula-defined distribution
is not necessarily closed under general affine transformations (for example rotations). In
contrast closure under general affine transformations is satisfied for all mixture models that
are based on elliptical distributions such as Normal and t mixtures (Fang et al., 2002).

4.3.2 Rotated copulas

In two dimensions, the survival version of any copula C(u1, u2) is C180(u1, u2) = u1 +u2−1+
C(u1, u2), where “180” denotes that the survival copula is a rotated version of C(u1, u2) by
180o clockwise. Similarly, counter-clockwise rotated versions of C(u1, u2) by 90o and 270o can
be defined as functions of C(u1, u2) and u1, u2. Expression for those are given in Brechmann
and Schepsmeier (2013). Hence, one can select an initial dictionary of copulas to be used
and then to further enrich this dictionary with the rotated versions of the copulas.

Example 4.3: In Example 4.1 we chose the copulas for the components by recognising
the need for mixture components that can accommodate extreme tail dependence through
inspection of the scatterplot of the data. In this respect, we chose to have two mixture
components based on the Gumbel copula which exhibits upper tail dependence and two
components based on the Clayton copula which exhibits lower tail-dependence. Since a
rotated version of the Clayton copula by 180o (survival Clayton) would exhibit upper tail
dependence one might argue that a mixture model that uses the rotated version of the Clayton
instead of Gumbel would have produced a fit of comparable quality. Indeed that is the case;
fitting a model with two Clayton and two survival Clayton components gives misclassification
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error of 9.875% and a BIC value of 5561.73. Similarly, fitting a model with two Gumbel and
two survival Gumbel components gives misclassification error of 11.25% and a BIC value of
5644.36.

As is illustrated in Example 4.3, the ability to construct new copula families from known
ones certainly adds great flexibility when constructing copula-based mixture models for clus-
tering. However, it certainly does not simplify model selection in a mixture model framework;
if we limit ourselves to a dictionary of d copulas, then for finding the best model amongst
the models with k components we need to fit and select the best model from

(
d+k−1
k

)
models.

Furthermore, if the number of components is also considered as part of the model selection
exercise, then one needs to fit and compare

∑K
k=1

(
d+k−1
k

)
where K is a preset maximum num-

ber of components. Both these numbers increase quickly as either K or d increase possibly
making the model selection exercise impractical.

4.3.3 Component-wise parametric rotations

Subsections 4.3.1 and 4.3.2 show that the added flexibility from the use of mixture of copulas
may come with the price of two shortcomings from a practitioners point of view: the general
lack of invariance with respect to general affine transformations of the data, and the fact that
completely different copulas can result in fits of comparable quality. The latter issue is not
so serious provided that the computational resources are enough for fitting many models and
keeping in mind the target of the analysis is to find a good model. Though it certainly points
towards the direction that if one had a more flexible specification for the mixture components,
the number

∑K
k=1

(
d+k−1
k

)
of models that need to be fitted is significantly decreased because

d can be drastically reduced. The invariance issue is harder to tackle. However, a flexible
enough model could alleviate some of the invariance issues by maintaining the translation
and scaling invariance of the component densities, and by allowing the component densities
to rotate based on the observations.

Consider the mixture of copulas specified by (1) and (2) with p = 2. Temporarily omitting
the component index, each component density has the form

f(x∗;γ,ψ) = c(G1(x∗1;γ1), G2(x∗2;γ2);ψ)g1(x∗1;γ1)g2(x∗2;γ2) , x∗ ∈ <2 .

Now consider the transformation X = O(ω)X∗, where O(ω) is the rotation matrix

O(ω) =

[
cosω − sinω
sinω cosω

]
,

with ω ∈ (0, 2π]. Then X is a counter-clockwise rotation of X∗ at an angle ω and the density
function of X is simply

f ∗(x;γ,ψ, ω) = f(O(ω)>x;γ,ψ) , x ∈ <2 , (14)

because for any rotation matrix O(ω)−1 = O(ω)> (O(ω) is orthonormal) and | detO(ω)| = 1.
Hence, the contours of f ∗ will be a counter-clockwise rotation of the contours of f at an angle
ω. Hence, in the two-dimensional case, an extended mixture model can be defined that has
the form

h(x;θ,ω) =
k∑
j=1

πjf
∗
j (x;γj,ψj,ωj) . (15)
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The difference of the latter specification from the mixture model in (1) and (2) is that
there are an extra k rotation angles to be estimated, but the added flexibility is enormous.
The practitioner can now select the marginals and a much smaller dictionary of copulas;
notice that all versions of the rotated copulas by 90o, 180o and 270o are special cases for the
components of model (15) for specific values of ω1, . . . , ωk and that other exotic bivariate
distributions may result for arbitrary angles.

The mixture model (15) can be fitted using the EM algorithm; the only modification from
the general iteration in Subsection 3.1 is that at M-step 2 of the `th iteration, the function

k∑
j=1

n∑
i=1

w
(`+1)
ij

[
log cj(G1(zi1(ωj);γj1), . . . , Gp(zip(ωj);γjp);ψj) +

p∑
t=1

log gt(zit(ωj);γjt)

]
,

(16)
is maximized with respect to γ11, . . . ,γ1p, . . . ,γk1, . . . ,γkp,ψ1, . . . ,ψk, ω1, . . . , ωk. In (16),
zi(ωj) = O(ωj)

>xi where zi(ωj) = (zi1(ωj), . . . , zip(ωj))
> (i = 1, . . . , n; j = 1, . . . , k). This

M-step can also be broken down into k independent optimizations.
In order to avoid maximization over a large parameter space, the ECM algorithm in

Subsection 4.1 can be extended for handling parametric rotations i) by replacing xit with

zit(ω
(`)
j ) (t = 1, . . . , p) in CM-step 1 and CM-step 2, and ii) by including an additional last

step to update the angles at the values of the marginal and copula parameters from CM-step
1 and CM-step 2. In that last step the objective

k∑
j=1

n∑
i=1

w
(`+1)
ij

[
log cj(G1(zi1(ωj);γ

(`+1)
j1 ), . . . , Gp(zip(ωj);γ

(`+1)
jp );ψ

(`+1)
j ) (17)

+

p∑
t=1

log gt(zit(ωj);γ
(`+1)
jt )

]
,

is maximized with respect to ω1, . . . , ωk to obtain updated values ω
(`+1)
1 , . . . , ω

(`+1)
k . As is

the case for CM-step 1 and CM-step 2, this last step can also be broken down into parallel
optimizations across components, each of which consists of a one-dimensional maximization
with respect to the respective angle.

Example 4.4: As is illustrated in Example 4.3 one can fit a mixture of two Clayton and
two survival Clayton, or a mixture of two Gumbel and two survival Gumbel, or a mixture
of two Gumbel and two Clayton copulas to the artificial data of Example 1.1 and obtain
comparable fits in all cases. Hence, we have considered the combinations of four different
copulas for the components so far. The whole modelling exercise is much easier if we pick
just one copula which exhibits tail-dependence (upper or lower), and Normal marginals and
use those for setting up the mixture density (15).

For example, using the Clayton copula one obtains the estimated angles ω̂1 = 180.41,
ω̂2 = 180.78, ω̂3 = 7.13, ω̂4 = 359.99 and a misclassification error of 9.875%. Figure 5
shows the contours of the fitted component densities across the iterations of the ECM algo-
rithm and demonstrates the enormous flexibility that parametric rotations offer when setting
copula-based mixture models. Iteration 0 (top left) refers to the starting values for the ECM
algorithm. The BIC value for the fit that allows parametric rotations is 5585.372 which is
larger the 5561.73 of the mixture with two Clayton and two survival Clayton in Example 4.3.
This slight inflation is due to the 4 extra parameters included in the model that allows for
component-wise parametric rotations.
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Figure 5: The contours of the fitted component densities across the iterations of the ECM
algorithm when allowing for parametric rotations. The value of the component angles at the
depicted iterations is given in the top of each plot. Iteration 0 (top left) refers to the starting
values for the ECM algorithm.

4.3.4 Identifiability of rotations for elliptical distributions

It should be noted that when at least one of the component distributions is elliptical then
the corresponding angles in (15) are not identifiable. To show that, suppose that X∗ has
density f(x∗;γ,ψ) with mean µ∗ and variance-covariance matrix Σ∗. If X has density (14),
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the variance-covariance matrix of X is

Var(X) = Ef∗
[
{X − µ(ω)} {X − µ(ω)}>

]
= Ef

{
O(ω)(X∗ − µ∗)(X∗ − µ∗)>O(ω)>

}
= O(ω)Σ∗O(ω)> .

The variance-covariance matrix Σ∗ admits the eigen-decomposition Σ∗ = QjΛjQj where Qj

is an orthogonal matrix. Noting that the product of two-orthogonal matrices is orthogonal
O(ω)Σ∗O(ω) is also a variance covariance-matrix and given that we can only identify vari-
ances and covariances, the angle ω is not identifiable. For example, if Normal marginals are
considered, then using a Gaussian copula for one of the components of (15) will result to
identifiability issues.

4.3.5 Local rotation unidentifiability for general copulas

Furthermore, as is discussed in Nelsen (2006, Section 4.3), many Archimedean copulas have
the product copula C(u, v) = uv as a special case for specific values of their parameters (for
example, the Clayton copula for ψ → 0, the Gumbel for ψ → 1, the Frank for ψ → 0, and
so on). The use of parametric rotations poses local identifiability problems, for those specific
boundary values of the copula parameter.

5 Closure under marginalization

A desirable property that well-used mixture models such as mixtures of multivariate Nor-
mal, multivariate skew-Normal and multivariate skew-t distributions share is closure under
marginalization. Such a property guarantees that the marginal of any dimension of the
component distributions belongs to the same family of distributions as the component dis-
tribution itself, and allows the easy transition from the full mixture model to a marginal
model of any order. For example, one can fit a mixture of multivariate Normal distributions
and then plot the contours of all bivariate marginal densities by using the bivariate Normal
density and the appropriate subsets of parameters from the full model without the need of
integrating over the fitted density.

For m < p and continuous random variables the requirement of closure under marginal-
ization for the component density is that if

f
(m)
j (x1, . . . , xm; θj) =

∫
Xm+1

. . .

∫
Xp

fj(x1, . . . , xp; θj)dxm+1 . . . dxp (j = 1, . . . , k) ,

where Xm+1, . . . ,Xp are the supports of the random variables Xm+1, . . . , Xp, respectively,

then f
(m)
j has exactly the same functional form as the p dimensional density fj does but in

m dimensions. For a copula-defined p-dimensional component density the requirement from
the copula distribution is that, if

C
(m)
j (G1(x1; γj1), . . . , Gm(xm; γjm);ψj) = Cj(G1(x1; γj1), . . . , Gm(xm; γjm), 1, . . . , 1;ψj) ,

then C
(m)
j belongs to the same family of copulas as Cj does. To derive this requirement,

marginalization is performed by setting xm+1, . . . , xp to the maximum of their range of def-
inition. This property is satisfied for all elliptical copulas like the Gaussian copula and the
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t-copula (see Fang et al., 2002, for results on the family of elliptical copulas). Furthermore,
closure under marginalization holds for every Archimedean and nested Archimedean cop-
ula, because its generator function necessarily takes value 0 at 1 (see, for example, Hofert
et al., 2012, for definitions and results for multivariate Archimedean and nested Archimedean
copulas).

The results here extend to the case of discrete data by replacing the integration of den-
sity functions with summations of probability mass functions of the form (3). Closure under
marginalization is a particularly relevant property to be satisfied when building mixture mod-
els for discrete data, because, otherwise, the computational burden involved in the calculation
of marginals of the mixture model can be prohibitive.

A class of copulas that does not satisfy the property of closure under marginalisation is
the class of vine copulas (see, for example, Bedford and Cooke 2002).

Example 5.1: In Example 4.2, the mixture components were defined using the Gaussian
copula. Hence, the bivariate marginal density of Xt and Xs (s, t = 1, . . . , 7; s 6= t) corre-
sponding to the density (13), are simply

k∑
j=1

πjφ2 [Ψ {Gjs(xs)} ,Ψ {Gjt(xt)} ;Rj,st]
gjs(xs)gjt(xt)

φ1[Ψ{Gjs(xs)}]φ1[Ψ{Gjt(xt)}]
, (18)

where Rj,st is the 2× 2 correlation matrix with the (s, s)th and (t, t)th components of Rj in
the diagonal and the (s, t)th component of Rj in the off-diagonal (j = 1, . . . , k).

Figure 6 shows the contours of the bivariate marginals for the best model according to
BIC in Table 2, with the data coloured according to their assigned cluster.

6 Discrete data

6.1 Copula-based mixture models

The general mixture model specification and fitting framework set in Section 2 and Section 3
can directly be used for constructing and estimating mixture models with discrete marginal
distributions. Nevertheless, in the discrete case, model specification and estimation need a
more careful consideration than they do in the continuous case.

6.2 Model specification

The choice of the component copulas cannot be based entirely on dependence considerations
(tail dependence, correlation, and so on) as is rather intuitively done in the continuous case.
This is because the copula alone does not anymore characterize the dependence between
the discrete marginals; the usual dependence measures, like Kendall’s τ and Spearman’s ρ,
are not margin-free as they are in the continuous setting. Genest and Nešlehová (2007, §4)
provide theoretical derivations and demonstrations of such issues, with detailed discussions
of how they reflect in practice. Furthermore, as discussed in Section 5 and as is illustrated by
Example 6.1 below, closure under marginalization is particularly relevant for mixture models
for discrete data, if marginal assessments of the clustering or fit are to be obtained.

6.3 Estimation

For the analysis of discrete data, M-step 2 of Subsection 3.1 takes the form
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Figure 6: The contours of all the bivariate marginal densities of the mixture model with 6
components and unstructured correlation matrices from Example 4.2. The observations are
coloured according to their assigned cluster.

• M-step 2: Maximize the log-likelihood

k∑
j=1

n∑
i=1

w
(`+1)
ij

[
log
∑
di

sgn(di)C(G1(di1;γj1), . . . , Gp(dip;γjp);ψj)

]
, (19)

with respect to ψ1, . . . ,ψk,γ11, . . . ,γ1p,γk1, . . . ,γkp, where di is as in expression (3) for an
observation xi (t = 1, . . . , p; j = 1, . . . , k; i = 1, . . . , n). Note here that in the discrete case the
ECM algorithm would offer no simplification over EM, since a copula-specified probability
mass function cannot be decomposed as in the continuous case.

The combination of
∑p

t=0

(
p
t

)
summation terms in the right-most summation in (19) and

the lack of closed-form expression for general copulas can result in the accumulation of
numerical error that in turn can lead in calculated probability mass functions less than 0
or greater than 1 for certain parameter settings, which can result in computational problems
in the M-step.

A partial resolution of those issues, at least for small to moderate p, exists for copu-
las that are derived from well-known distribution functions through the inverse probability
transform. Let C(u1, . . . , up) = H(H−1

1 (u1), . . . , H−1
p (up)), where H(., . . . , .) is some p-variate

distribution function with marginals H1(.), . . . , Hp(.) and H−1
j (.) is the quantile function of
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Figure 7: Different views of the three attribute scores for all students. The barplot at the
rightmost plot shows the observed (bars) and the fitted (points) frequencies for the three
attributes based on the selected model.

Hj(.) (j = 1, . . . , p). Then, omitting the component index and suppressing the dependence
on the parameters,∑

d

sgn(d)C(G1(d1), . . . , Gp(dp)) =

∫
D(x1)

. . .

∫
D(xp)

h(y1, . . . , yp)dyp . . . dy1 , (20)

whereD(xt) is the interval fromH−1
t {Gt(xt−1)} toH−1

t {Gt(xt)} (t = 1, . . . , p), and h(., . . . , .)
is the density function corresponding to H(., . . . , .).

Hence, a single evaluation of the rectangle probability in (20) is sufficient for calculating
the probability mass function. For special but prominent copulas like the Gaussian and the
t copula and for not very large p, the probability mass function can be calculated through
accurate approximation methods like those of Joe (1995). Such methods are implemented in
the mprobit R package by Joe, Choy and Zhang and the mvtnorm R package (Genz et al.,
2013). The following example concerns the use of copulas to construct mixtures of trivariate
Binomial distributions that allow for dependence.

Example 6.1: This example relates to cognitive diagnosis modelling. The data set consists
of the responses of 536 middle school students on 20 items of a fraction subtraction test. Each
item can belong to more than one attribute that one wants to measure. Hence, attribute
scores for each student can be obtained by counting the number of successful items out of
the total items that belong to each attribute. The data are available in the CDM R package
(Robitzsch et al., 2014) and its documentation describes which items belong to which at-
tribute. The aim of this example is to use some of the attribute scores of the students for the
construction of performance clusters of the latter. The scores that are used in this example
are for the attributes “separate a whole number from a fraction” (score X1), “borrow from
whole number part” (score X2) and “subtract numerators” (score X3), which are traced on
13, 8 and 19 items, respectively. Hence, a natural distributional choice for each of X1, X2 and
X3 is Binomial. More specifically, we assume that for the jth component, the tth marginal
distribution is Binomial with index mj and probability of success pjt (t = 1, 2, 3; j = 1, . . . , k),
where m1 = 13, m2 = 8 and m3 = 19.

Figure 7 presents the data from two different angles and reveals that there is strong
positive association between each pair of attribute scores. This is because the three attributes
share items, and this association needs to be taken into account when clustering the students.
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One-parameter Frank Gaussian - exchangeable correlation

k Log-likelihood q BIC Log-likelihood q BIC

1 -5899.71 4 11824.56 -5063.32 4 10151.78
2 -3098.11 9 6252.78 -3049.76 9 6156.08
3 -2843.22 14 5774.42 -2846.08 14 5780.14
4 -2758.64 19 5636.68 -2750.57 19 5620.54
5 -2720.35 24 5591.52 -2707.63 24 5566.08
6 -2693.26 29 5568.76 (?) -2679.56 29 5541.36 (??)
7 -2678.67 34 5570.99 -2669.90 34 5553.45
8 -2666.62 39 5578.32 -2662.46 39 5570.00

Two-parameter Frank Gaussian - unstructured correlation

k Log-likelihood q BIC Log-likelihood q BIC

1 -5897.92 5 11827.261 -5010.11 6 10057.925
2 -3085.49 11 6240.11 -2990.15 13 6061.99
3 -2825.91 17 5758.65 -2773.45 20 5672.58
4 -2750.89 23 5646.32 -2709.79 27 5589.26
5 -2711.81 29 5605.86 -2674.92 34 5563.50 (?)
6 -2673.79 35 5567.52 (?) -2671.35 41 5600.35
7 -2659.98 41 5577.60 -2662.37 48 5626.38
8 -2654.7 47 5604.76 -2658.42 55 5662.47

Table 3: Results from fitting finite mixtures with different number of components. A (?)
denotes the best BIC for each copula specification and a (??) the best BIC overall.

The barplot at the rightmost plot shows the observed (bars) and the fitted (points) frequencies
for the three attributes based on the selected model. Such data have also been analysed in the
past via mixture models (see, Dean and Nugent, 2013) but only after transforming the scores
into percentages and treating those as realizations of continuous random variables. Such
transformations are not necessary when using copula-based mixture models; to accommodate
for the apparent association, we construct 4 different families of mixture models each with
components that are trivariate Binomial distributions defined using i) one-parameter Frank
copulas, ii) two-parameter Frank copulas (see, Zimmer and Trivedi, 2006), iii) trivariate
Gaussian copulas as in (11) with unstructured correlation (one parameter each), and iv)
trivariate Gaussian copulas with exchangeable correlation (three parameters each). Note here
that defining multivariate Binomial distributions which allow for correlated marginals is not
straightforward outside the copula framework (for a discussion on bivariate and multivariate
Binomial distributions, see Johnson et al., 1997).

The one-parameter Frank copula is defined as

C(F )(u1, u2, u3;ψ) = − 1

ψ
log

{
1 +

(exp−ψu1 −1)(exp−ψu2 −1)(exp−ψu3 −1)

(exp−ψ−1)2

}
, (21)

where ψ is an association parameter which is common for all marginals, implying symmetric
dependence. The two-parameter Frank copula is a trivariate nested Archimedean copula
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which has been used in the applications in Zimmer and Trivedi (2006) and is defined as

C(F ∗)(u1, u2, u3;ψ) = − 1

ψ1

log

[
1− 1

γ1

{
1−

(
1− 1

γ2

τ1τ2

)ψ1/ψ2

}
(1− exp(−ψ1u3))

]
, (22)

where 0 < ψ1 < ψ2, ζ1 = 1 − exp(−ψ1), ζ2 = 1 − exp(−ψ2), τ1 = 1 − exp(−ψ2u1) and
τ2 = 1 − exp(−ψ2u2). The two-parameter Frank copula has (21) as a special case, and
with one extra parameter it allows for partial symmetry capturing more flexible associations
between the marginals.

Since (21) and (22) are of closed-form, the calculation of the probability mass function
for the components of the respective mixture models is performed using (3), which in the
current case of 3 variables consists of 8 terms. For the multivariate Gaussian copula, the
probability mass functions for the components are instead obtained via the approximation of
the rectangle probability in (20) using the mprobit R package. In order to avoid overflows
due to the approximation of the multivariate Normal integral, probabilities calculated as
smaller than 10−12 were kept to this value.

The finite mixture given in (1) was fitted using the EM algorithm of Section 3.1, where
now θj = (ψj, pj1, pj2, pj3) (j = 1, . . . , k). Starting values were obtained using the approach
described in Subsection 3.2.2 with 10 sets of random starting values. In parallel to that
the following sequential approach has been applied: for k = 1, estimates for the Binomial
proportions were obtained by the marginals, while the correlation parameters were set equal
to the sample counterparts or their average in the cases when one correlation parameter is
used for all pairs. For the two-parameter Frank copula, one parameter was set equal to the
smallest of the three correlations and the other to the same value plus a small positive number
in order to satisfy the restriction ψ1 < ψ2. Then starting values for the model with k + 1
components were obtained by using the parameters of the model with k components and by
adding a new component with parameter values those found when fitting a model with just
one component. This new component was given a small mixing proportion (we used 0.05).
This procedure worked well and provided the largest maximized log-likelihood for almost all
k.

Table 3 shows the results from fitting a series of models. The maximized log-likelihood,
the number of parameters q and the value of BIC are reported for each model. The overall
best model according to BIC is noted with (??) and is the model with 6 components specified
using Gaussian copulas with exchangeable correlation.

The Gaussian copula is closed under marginalisation and this allows the effortless calcu-
lation of bivariate marginals (see Section 5 for details). Each row of Figure 8 corresponds to
one of the fitted trivariate Binomial components, and shows the 3 possible bivariate marginals
of that component. The label of each row gives the corresponding mixing proportion. The
darker the color on each plot the larger is the probability mass for the corresponding com-
bination of values of the Binomial variables. The component in the first row corresponds to
the students that scored very well in the test in all attributes, and the component in the last
to those with the worst results. As is apparent in the plots of Figure 8, there is a strong
positive correlation in most of the components, which implies a general ability of different
levels in all three attributes. A few components deviate from this pattern. For example, the
component in the fourth row from the top corresponds to students that scored poorly in X1

and X2 but moderately in X3. Also, the component in the fifth row from the top corresponds
to students whose scores for X1 and X2 are very close to 0 and the scores for X3 are slightly
higher. Lastly, the barplot in Figure 7 shows that the selected model fits satisfactorily the
observed frequencies, despite the rather complicated behaviour they demonstrate.
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Figure 8: Fitted components from the model with the selected model with Gaussian copula
with exchangeable correlation and 6 components.

7 Discussion and further work

7.1 Advantages

This paper introduces a general framework for model-based clustering where the component
densities can be specified through copulas.The numerous examples in this paper both on real
and artificial data illustrate the great flexibility that this framework offers.

For continuous data, Sklar’s theorem ensures that the copula fully describes the depen-
dence structure separately from any marginal properties; this allows the construction of a
bivariate mixture model in Example 4.1 that has Normal marginals and can accommodate
extreme tail dependence in the clusters. Such flexibility allows the construction of mixture
models that are capable of producing a variety of exotic shapes (for example, star-shaped
or banana-shaped clusters), that are far from the cluster shapes that are supported from
contemporary proposals in the literature.

For discrete multivariate data, usual dependence measures are not anymore margin-free,
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but the specification of the copula still allows the easy construction of flexible multivariate
mixture models. This fact is used in Example 6.1 where a mixture of trivariate Binomial
distributions with 4 alternative copula specifications was used for the construction of perfor-
mance clusters for the students from their performance on a fraction subtraction test.

Furthermore, using copulas one may define mixture models that allow the joint modelling
of mixed-domain variables. The advantages of this approach are illustrated in Example 4.2
where a mixture model with components that have six Beta distributions and one Gamma
distribution as marginals each was fitted to NBA data, allowing at the same time the use of
a full correlation specification amongst those.

7.2 Model selection

The ability to construct new copula families from known copulas certainly adds great flexibil-
ity when constructing copula-based mixture models for clustering. However, as mentioned in
Subsection 4.3 it certainly does not simplify model selection in a mixture model framework;
if we limit ourselves to a dictionary of d copulas, then for finding the best model amongst
the models with k components we need to fit and select the best model from

(
d+k−1
k

)
models.

Furthermore, if the number of components is also considered as part of the model selection
exercise, then one needs to fit and compare

∑K
k=1

(
d+k−1
k

)
where K is a preset maximum num-

ber of components. Both these numbers increase quickly as either K or d increase possibly
making the model selection exercise impractical.

In this respect, for data sets with real-valued observations, copula-based mixture models
were extended by introducing component-wise parametric rotations and describing the ECM
algorithm that can fit these models. Example 4.4 illustrates that parametric rotations in two
dimensions allow the use of a single copula for capturing a range of dependence structures,
which would otherwise require the use of copulas with different dependence properties.

The extension of the idea of rotations to many dimensions is possible following exactly
the same prescription as in two dimensions, but using p-dimensional rotation matrices. An
accessible account of rotations in arbitrary dimensions can be found in Hanson (1995). Nev-
ertheless, in order to incorporate component-wise rotations in p dimensions, kp(p−1)/2 extra
parameters are necessary (the number of components times the number of free parameters in
an p-dimensional orthogonal matrix) which can become quickly impractical. Current work
focuses on using latent angular processes for the rotation angles which are characterized by
only a few parameters.

7.3 Other special modelling settings and extensions

Using the framework that is outlined in this paper one can construct mixture models for the
modelling of mixed-mode data; namely, data sets that have some continuous, some discrete
and some ordinal variables. Despite the fact that this kind of data appears often, in practical
applications their joint treatment has been largely overlooked, mainly because there are not
any appropriate and easy to handle models. Typically, models based on latent variables are
considered for such data (Browne and McNicholas, 2012) which may have limitations for
practical purposes because of assumptions like conditional independence. A recent attempt
for model-based clustering of mixed mode data using the Gaussian copula can be found in
the pre-print of Marbac et al. (2014).

Furthermore, there are several practical scenarios, where the marginal distributions need
to be the same and the dependence structure needs to be allowed to change. Such scenarios
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occur, for example, in finance (regarding the behaviour of a portfolio when information
for the market comes), sports (scoring behaviour depends on the current score), marketing
(purchase frequency patterns depend on household decomposition), etc. Different dependence
structures can be captured by different copulas and hence mixtures of copulas with fixed
marginals across components can be used to cluster data with respect to their dependence
behavior.

Example 4.2 and Example 6.1 fitted mixture models with components with exchangeable
and unstructured correlation matrices for the Gaussian copula. A wide-range of parsimonious
parameterizations between exchangeable and unstructured correlation matrices can be ob-
tained by adopting ideas for parsimonious parameterizations in Normal mixture models like
the eigenvalue decomposition proposed in Celeux and Govaert (1995) and the factor analyz-
ers proposed in McNicholas and Murphy (2008). These can be directly applied to any copula
family that is parameterized in terms of a full variance-covariance matrix (like the Gausssian
and the t copulas), allowing the comparison of a wide range of parsimonious models. The
study of such parsimonious parameterizations and the implications on the cluster shapes for
various types of marginal distributions will be the focus of a future study.

7.4 Large dimensions

More investigations are needed for the application of the framework on scenarios with large p.
Simple copula families, like Archimedean copulas, while attractive and easy to work with in
small dimensions, can have limited dependence structure (for example, common dependence
parameters, i.e., assuming that some correlations are the same) in large dimensions.

As a starting point one may consider vine copulas (see, for example, Bedford and Cooke,
2002) which use the fact that a p-dimensional density can be decomposed into products of
marginal densities and bivariate copula-specified densities. This can lead to flexible distribu-
tions with computationally tractable densities, at the expense that the property of closure
under marginalization is not satisfied in general, and numerical integration is necessary for
the calculation of marginals (see Section 5). For discrete models one may use the construction
defined in Panagiotelis et al. (2012) to construct flexible multivariate discrete distributions.

7.5 Computational effort

The implementation of the fitting procedures described in Section 3 has been done in R (R
Core Team, 2015). The code was written having in mind the ability to fit a diverse variety
of mixture models in terms of the choice of component copulas and marginal combinations,
instead of computational efficiency and scalability. In this respect, the available implemen-
tation is nowhere close to optimal regarding the latter. We also had to make convenience
choices and directly interface with other packages, including copula (Hofert et al., 2015) and
maxLik (Henningsen and Toomet, 2011). Such interfacing has introduced bottlenecks, due
to the necessary checks they need to be doing to the supplied inputs.

Keeping this in mind, Table 4 lists the time (in minutes) it took to fit the best models in
Example 4.1, Example 4.2, Example 6.1 and Example 4.4, the characteristics of each model
(n, k, p and q), and the fitting algorithm that has been used. All timings took place on
an iMac (Late 2014) with a 4 GHz Intel Core i7 with Hyper-Threading enabled, and 32
GB of RAM memory, running R version 3.1.3. Parallelization across components was used
as described in Subsection 3.2. The fitting time that is reported in Table 4 is the average
from 10 identical repetitions of the fitting process. This is done in an attempt to factor out
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Example Algorithm n k p q Iterations Time

Example 4.1 (artificial data) ECM 800 4 2 23 37 1.68
Example 4.2 (NBA) ECM 493 6 7 95 60 3.57
Example 4.4 (artificial data, rotations) ECM 800 4 2 27 680 28.76
Example 6.1 (cognitive diagnosis) EM 536 6 3 29 47 16.82

Table 4: Computing times (in minutes) for fitting the best models in Example 4.1, Exam-
ple 4.2, Example 6.1 and Example 4.4.

as much as possible of the effect that other OS-specific processes can have on timing. All
computing times shown can be drastically reduced by a slightly less stringent termination
criterion (see Subsection 3.1), and, definitely, by a more optimised implementation of the
fitting procedures.

7.6 Supplementary material

Supplementary material extends Example 4.2 to illustrate that distinct sensible, transforma-
tions can lead to different results. R scripts that reproduce the analyses undertaken in this
paper are available upon request to the authors.
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Frühwirth-Schnatter, S. and S. Pyne (2010). Bayesian inference for finite mixtures of univari-
ate and multivariate skew-normal and skew-t distributions. Biostatistics 11 (2), 317–336.
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Model-based clustering using copulas with applications

Supplementary material
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July 2, 2015

1 Transformations bounded- and mixed-domain vari-

ables

This section contains supplementary material for Section 4.2 (“Bounded- and mixed-domain
variables”) of the main text. The mclust (Fraley et al., 2012) R package has been used to
find the best Normal mixture model according to BIC, for each of the following transformed
versions of the data in Example 4.2

D-arcsine: the data consists of the arcsine-transformed percentages (sin−1(
√
x)), and

the logarithm of the total points scored

D-logit: the data consists of the logit-transformed percentages (log(x/(1 − x))), and
the logarithm of the total points scored

D-probit: the data consists of the probit-transformed percentages (Φ−1
1 (x)), and the

logarithm of the total points scored

For D-arcsine the best model was a 4-component Normal mixture model with VEV pa-
rameterization. On the other hand, for each of D-logit and D-probit, the best model
was a 6-component Normal mixture model with VEV parameterization. Table 1 shows the
adjusted Rand index for each of the possible pairs of clusterings corresponding to the afore-
mentioned best models and the best model for the untransformed data set. The difference
in the results across transformed data sets illustrates the point on the arbitrariness of choice
of transformation that is made in Section 4.2 of the main text.

Furthermore, for each of the margin-transformed versions of the data, we conduct the same
analysis as the one in Figure 4. The result is shown in Figure 1. A detailed explanation of
how these scatterplots are constructed is provided in Example 4.2 of the main text. In terms
of agreement to established metrics on characteristics of NBA players, the clustering from
the selected copula-based mixture model for the original mixed-mode data set in Example 4.2
dominates all models for the transformed data.

References

Fraley, C., A. E. Raftery, T. B. Murphy, and L. Scrucca (2012). mclust version 4 for R:
Normal mixture modeling for model-based clustering, classification, and density estimation.
Technical Report 597, Department of Statistics, University of Washington.
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round untransformed D-arcsine D-logit D-probit

untransformed 1.00 0.41 0.44 0.42
D-arcsine 0.41 1.00 0.48 0.48
D-logit 0.44 0.48 1.00 0.60
D-probit 0.42 0.48 0.60 1.00

Table 1: The adjusted Rand index for each of the possible pairs of clusterings corresponding
to the best Normal mixture models (according to BIC) for the untransformed, D-arcsine,
D-logit and D-probit data sets.
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Figure 1: Clustering quality of best copula-based mixture model versus the best Normal
mixture models for the data in Example 4.2 and their D-arcsine, D-logit and D-probit

transformed versions. The dashed line is the 45o line from the origin.
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