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Abstract Stable isotope compositions can potentially be used to trace atmospheric Cd inputs to the

surface ocean and anthropogenic Cd emissions to the atmosphere. Both of these applications may provide

valuable insights into the effects of anthropogenic activities on the cycling of Cd in the environment.

However, a lack of constraints for the Cd isotope compositions of atmospheric aerosols is currently hindering

such studies. Here we present stable Cd isotope data for aerosols collected over the Tropical Atlantic

Ocean. The samples feature variable proportions of mineral dust-derived and anthropogenic Cd, yet exhibit

similar isotope compositions, thus negating the distinction of these Cd sources by using isotopic signatures

in this region. Isotopic variability between these two atmospheric Cd sources may be identified in other

areas, and thus warrants further investigation. Regardless, these data provide important initial constraints

on the isotope composition of atmospheric Cd inputs to the ocean.

1. Introduction

Variations in stable isotope composition have recently been employed to study the environmental cycling of

Cd, particularly in the ocean. Cadmium is subject to internal cycling in the ocean, with removal through

biological uptake in surface waters and regeneration at depth due to remineralization of organic material

[Boyle et al., 1976; Bruland, 1980]. This regenerated Cd is returned to the surface through deepwater convec-

tion, diapycnal mixing, and upwelling, constituting the dominant Cd source to ocean surface waters [Bruland,

1980]. These biogeochemical processes produce mass-dependent Cd isotope variations, whereby surface

waters evolve to “heavier” isotope compositions with increasing Cd depletion [Ripperger et al., 2007;

Abouchami et al., 2011; Xue et al., 2013; Abouchami et al., 2014]. Deviations from the expected relationship

between Cd concentrations and isotope compositions due to biological cycling have been used to decon-

volve the effects of processes such as water mass mixing and removal through sulfide precipitation on the

distribution of Cd in the ocean [Xue et al., 2013; Yang et al., 2014; Janssen et al., 2014; Conway and John,

2015]. External inputs of Cd should also perturb the coupled Cd concentration and isotope composition

distributions imparted by biological cycling [Ripperger et al., 2007; Yang et al., 2012, 2014]. Hence, Cd isotopes

will be a useful tracer of external inputs to ocean surface waters. To this end, it is necessary to constrain the Cd

isotope compositions of external oceanic inputs. Currently, limited data have been published for the compo-

sition of riverine fluxes [Lambelet et al., 2013], while only unpublished results are available for atmospheric

aerosols from a single locality [Yang et al., 2015].

Tracing external, atmospheric inputs of Cd to the surface ocean is pertinent for understanding the impact of

anthropogenic activities on marine Cd inventories. Atmospheric Cd sources are currently dominated by

emissions from high-temperature anthropogenic processes, most importantly metal smelting (particularly

of Pb-Zn ores), coal combustion, and waste incineration [Nriagu and Pacyna, 1988, Pacyna and Pacyna, 2001,

Pacyna et al., 2009; Cheng et al., 2014]. During these high-temperature processes, Cd is vaporized and

condenses onto fine (<1μm) particles in the atmosphere [Raes et al., 2000; Cloquet et al., 2006]. Such particles

are capable of undergoing long-range transport before deposition to terrestrial and marine environments

[Duce et al., 1991; Gelado-Caballero et al., 2012].

Cadmium has a relatively long residence time in the ocean of ~104–105 years, reflecting its internal cycling

[Simpson, 1981]. Therefore, recent external anthropogenic Cd inputs are unlikely to have significantly
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affected the bulk marine Cd inven-

tory. However, atmospheric inputs

are potentially an important Cd

source to ocean surface waters of

certain regions and this has been

highlighted by reconstructions of

past surface water Cd concentrations

using coral archives [Shen et al.,

1987]. Temporal variations in surface

water Cd concentrations at the

Galapagos Islands are consistent with

changes in upwelling water strength.

However, the temporal pattern at

Bermuda closely resembles that of

North American industrial Cd

emissions over the past century,

suggesting the importance of

anthropogenic Cd inputs to surface

water of this region [Shen et al.,

1987]. Variations in Cd isotope

compositions are potentially a useful

tool for distinguishing regions where

external atmospheric inputs provide

important contributions to surface

water Cd inventories. Such regions

will be particularly prone to perturba-

tion by anthropogenic Cd emissions.

Furthermore, it has been suggested

that Cd isotope composition variations can be used to distinguish between natural and anthropogenic

sources of Cd in the environment [e.g., Cloquet et al., 2006]. Since evaporation/condensation processes are

capable of inducing significant mass-dependent Cd isotope fractionations, the emission of Cd by high-

temperature industrial processes is expected to be associated with distinct isotopic signatures [Wombacher

et al., 2004; Cloquet et al., 2006]. The observed Cd isotope variations between the products (i.e., ash and slag)

and starting materials (i.e., ore minerals and coals) of Pb-Zn smelting and coal combustion support this

hypothesis [Cloquet et al., 2006; Shiel et al., 2010; Martinková et al., 2016]. Such isotopic variability has been

exploited to trace anthropogenic sources of Cd to sediments proximal to Pb-Zn mining and smelting opera-

tions [Cloquet et al., 2006; Gao et al., 2008, 2013, Chrastńy et al., 2015,Wen et al., 2015]. Furthermore, Shiel et al.

[2012, 2013] interpreted Cd isotope data for marine bivalves in the context of anthropogenic and natural Cd

sources to coastal waters.

Despite these important potential applications, the Cd isotope composition of atmospheric aerosols has yet

to be thoroughly investigated. Here we present Cd isotope and trace metal abundance data for atmospheric

aerosols from the eastern Tropical Atlantic Ocean (Figure 1). While the chosen study area is subject to the

transport of large quantities of mineral dust emitted from North Africa, aerosols in this region are commonly

also highly enriched in anthropogenic Cd [Gelado-Caballero et al., 2012; Patey et al., 2015]. The sample set is

therefore well suited for the investigation of the isotope compositions of these two important atmospheric

Cd sources.

2. Samples and Analytical Techniques

Eleven aerosol samples were collected in the eastern Tropical Atlantic during the GEOTRACES GA06 section

cruise (D361, February–March 2011; Figure 1), by high volume sampling (1m3min�1) [Chance et al., 2015;

Bridgestock et al., 2016]. In parallel to this, three size-fractionated samples (SF7, SF25, and SF26) were obtained

by using a six-stage impactor [Marple and Willeke, 1976]. All aerosols were collected onto precleaned

Figure 1. Map of aerosol sampling locations. Samples were collected during

the GEOTRACES GA06 section cruise (D361, February–March 2011) on board

the RRS Discovery. The white and black stretches indicate the area over

which the samples were collected, with “ISO” and “SF” denoting nonsize-

fractionated and size-fractionated aerosols, respectively. The purple arrows

display the main meteorological regimes, while the thin black lines denote

the position of the Intertropical Convergence Zone during the cruise. Figure

was produced by using Ocean Data View [Schlitzer, 2015].

Geophysical Research Letters 10.1002/2017GL072748
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Whatman 41 cellulose fiber filters (203mm×241mm) that were stored frozen (�20°C) in zip-lock plastic bags

prior to sample preparation (Text S1 and Table S1 in the supporting information).

Eight of the aerosol samples were collected north of the Intertropical Convergence Zone (ITCZ), with air mass

back trajectory analyses indicating that they originated from North Africa (Table S1). The three remaining

aerosols are from within/south of the ITCZ, and air mass back trajectories show that they did not encounter

land in the 5 days preceding collection [Bridgestock et al., 2016].

The nonsize-fractionated samples were split into two portions, with 25–50% and 12–50% of the total exposed

filter area subjected to total acid digestion (using concentrated HF, HClO4, and HNO3) and a leaching proce-

dure (dilute ammonium acetate solution, pH 4.7), respectively, at Imperial College London [Bridgestock et al.,

2016]. Aliquots of these subsamples were taken for determination of elemental concentrations at the Natural

History Museum, London (Text S2). The Pb and Al contents of these subsamples were previously reported

[Bridgestock et al., 2016]. Size-fractionated samples were subjected to the same leaching procedure as the

nonsize-fractionated aerosols, at the University of East Anglia [Powell et al., 2015; Chance et al., 2015]. The

Cd and Pb contents of the leachates were subsequently determined by inductively coupled plasma–mass

spectrometry (ICP-MS) (Text S2). Results for the size-fractionated sample SF7 were reported previously

[Jickells et al., 2016].

2.1. Cadmium Isotope Measurements

The low abundance of Cd in the atmosphere (~1–100 pgm�3) makes precise determination of Cd iso-

tope compositions for atmospheric aerosols challenging [Guerzoni et al., 1999; Gelado-Caballero et al.,

2012]. Hence, only total digestion and leachate subsamples of nonsize-fractionated samples, corre-

sponding to 50% of the total exposed filter area, were analyzed for Cd isotope compositions; other

subsamples contained insufficient Cd to yield precise data. For the selected samples, the blank of the

sample collection and digestion/leaching procedure amounted to 1.3–3.1% of the total Cd content

(Table S2). Aliquots equivalent to between 66 and 85% of the total digestion and leachate solutions,

with approximately 5–25 ng of Cd, were taken for Cd isotope analysis. The Cd aliquot of subsample

ISO-21Total, featuring 25 ng of Cd, was further split into two separate aliquots (ISO-21aTotal and

ISO-21bTotal) with approximately 15 and 10 ng of Cd, to assess the external reproducibility of the ana-

lytical procedure (Table S2).

Cadmium isotope compositions were determined at the Mass Spectrometry and Isotope Geochemistry at

Imperial College London Laboratories by using established techniques. These employ multiple collector-

inductively coupled plasma-mass spectrometry (MC-ICP-MS), in conjunction with a Cd double spike (DS) pre-

pared from enriched 111Cd and 113Cd, for instrumental mass bias correction [Xue et al., 2012]. Appropriate

quantities of Cd DS were equilibrated with the sample aliquots prior to chemical separation of Cd from the

sample matrix with a three-stage chromatographic procedure, utilizing Biorad AG 1X8 anion exchange and

Eichrom TRU-spec resins (Text S3 and Table S3). Liquid-liquid extraction with heptane was subsequently

employed to remove residual organics leached from the Eichrom TRU-spec resin [Murphy et al., 2016].

Finally, purified Cd solutions were evaporated to dryness and redissolved in 1ml of 0.1M HNO3 for isotopic

analysis. The Cd blank for the chemical separation procedure was consistently <10 pg, which is negligible

relative to the quantity of natural Cd processed (5–20 ng).

Cadmium isotope measurements were conducted by using a Nu Plasma MC-ICP-MS instrument (Nu

Instruments). Sample solutions were introduced by using an Aridus II desolvation unit (CETAC

Technologies) equipped with a Micromist glass nebulizer operated at flow rates of 110 to 115μl min�1.

The sensitivity obtained for Cd was between 200 and 300 V ppm�1. Analyses of samples were bracketed

by measurements of mixtures of the standard reference material (SRM) National Institute of Standards and

Technology (NIST) 3108 Cd with the Cd DS at comparable spike/sample ratios and dilutions. Measurement

protocols followed those previously described [Xue et al., 2012, Murphy et al., 2016] and data are presented

as ε
114/110Cd values relative to NIST 3108 Cd (equation (1)) [Abouchami et al., 2013].

ε
114=110Cd ¼ 114Cd=110CdSample=

114
Cd=110CdNIST 3108

� �

– 1
h i

� 104 (1)

The raw isotopic ratios were processed off-line to calculate ε
114/110Cd values corrected for instrumental mass

bias and isobaric interferences [Ripperger and Rehkämper, 2007; Xue et al., 2012; Murphy et al., 2016].

Geophysical Research Letters 10.1002/2017GL072748
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The quoted precision of the Cd isotope data was estimated from the reproducibility of the bracketing

analyses of matching NIST 3108 Cd-Cd DS mixtures, which was ±1 to ±2 ε
114/110Cd (2 SD; Table S2).

Additional SRMs were analyzed to validate the accuracy and precision of the isotope measurements

(Table S4 and Text S4) with results in good agreement with published values [Yi et al., 1998; Wombacher

et al., 2003; Abouchami et al., 2013; Wiggenhauser et al., 2016].

3. Results

Total atmospheric concentrations of Cd, Pb, Zn, and Cu range from 3.8 to 40.3 pgm�3, 0.12 to 4.11 ngm�3,

0.7 to 9.8 ngm�3, and 0.26 to 4.16 ngm�3, respectively. Atmospheric Al concentrations, a proxy for mineral

dust, vary between 68 and 5048 ngm�3 [Bridgestock et al., 2016] (Table S2). Crustal enrichment factors

(EFcrust) are used to assess the relative proportions of the trace metals derived from mineral dust and anthro-

pogenic sources in the aerosols and are calculated by normalizing the trace metal/Al ratio of the aerosol

samples (X/Alsample) to that of the upper continental crust (X/Alucc) (equation (2)). Crustal ratios are taken

from Rudnick and Gao [2003].

EFcrust ¼ X=Alsample

� �

= X=Aluccð Þ (2)

The EFcrust values range from 4 to 107 (Cd), 2 to 15 (Pb), 1 to 23 (Zn), and 1 to 23 (Cu) (Table S2). Normalization

using other elements primarily associated with mineral dust (Ti, Mn, Fe, Sc, and Th) for the calculation of

EFcrust values yields results that agree within a factor of 2, compared to those calculated with Al (Figure S1

and Table S5 in the supporting information). The EFcrust values for Cd and Pb display a strong positive corre-

lation (r2= 0.99), omitting two anomalous samples. Likewise, the EFcrust values for Zn and Cu display a strong

positive correlation (r2= 0.99) but exhibit weaker relationships to EFcrust values for Cd (r2=0.44 and 0.40,

respectively; Figures 2a–2c; Cu not shown). For all trace metals, EFcrust values generally decrease with increas-

ing atmospheric Al concentrations (Figures 2d–2f; Cu not shown).

For the size-fractionated aerosol samples SF7, SF25, and SF26, higher proportions of leachable Cd and Pb

generally reside in the >1μm size fractions (Figure 3 and Table S6). Sample SF25, furthermore, exhibits an

anomalous enrichment of these metals in the 5μm fraction.

The Cd isotope compositions of the analyzed aerosol samples are relatively constant at ε114/110Cd=�1.9 to

1.9, except for ISO-16Leach, characterized by ε
114/110Cd=�5.4 ± 1.3 (Table S2 and Figure 2g). This latter lea-

chate subsample features 2.8 times more Cd than the corresponding total digest, ISO-16Total. It is conceivable

that this anomalously high Cd content may be due to the heterogeneous distribution of Cd on the filter or

contamination during handling, storage, and/or leaching of the filter. However, contamination seems unli-

kely as it would require the addition of at least 18 ng Cd, which is significantly more than the combined blank

of the sampling and leaching procedure, consistently assessed to be <1 ng. Nonetheless, the results for this

subsample should be regarded with caution.

Results for replicate analyses of ISO-21Total (ISO-21aTotal and ISO-21bTotal) and analyses of total digests and

leachates from the same aerosol sample (ISO-21, ISO-12, and ISO-23) are all identical within analytical uncer-

tainty. With the aforementioned exception of ISO-16Leach, between 51 and 86% of the total aerosol Cd

contents were released during leaching. These relatively high solubilities reflect the labile nature of Cd

associated with both anthropogenic sources and mineral dust [Guerzoni et al., 1999; Hsu et al., 2005]. Thus,

it appears that there is no resolvable difference in the isotope composition of soluble and refractory species

of Cd in the aerosols, and no resolvable isotopic fractionation was observed for the leaching process (Text S4).

The Cd isotope compositions determined for leachates are therefore assumed to be representative of the

total digests, if no separate data were available for the latter.

4. Discussion

4.1. Atmospheric Cd Sources

The range of EFcrust values for the aerosols indicates variable contributions of Cd, Pb, Zn, and Cu frommineral

dust and anthropogenic emissions. The negative trends between EFcrust data and atmospheric Al concentra-

tions (Figures 2d–2f), a proxy for atmospheric mineral dust loadings, are a characteristic of relatively constant

“background” concentrations of anthropogenic trace metals that are diluted by sporadic emission and

Geophysical Research Letters 10.1002/2017GL072748
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transport of mineral dust [Chester et al., 1993; Chester et al., 1996; Guerzoni et al., 1999; Patey et al., 2015;

Bridgestock et al., 2016]. Although it is uncertain how closely the chosen Cd/Alucc reference ratio

approximates North African mineral dust, extension of the trend in Figure 2d to the lowest EFcrust Cd

values of 4 to 5 suggests that, at the very least, results >5 represent enrichments of anthropogenic Cd.

Without additional constraints, the importance of anthropogenic Cd to the samples featuring the lowest

EFcrust Cd values (ISO-5, ISO, 11, and ISO-8), is unclear. Samples ISO-14, ISO-16, and ISO-25, with the lowest

atmospheric Al concentrations and the highest EFcrust Cd≈ 50–107, are dominated by anthropogenic Cd.

The remaining aerosols (ISO-7, ISO-12, ISO-19, ISO-21, and ISO-23) with EFcrust Cd≈ 9–17 are likely to

contain anthropogenic Cd contributions of at least 50–60%, assuming that a value of ~5 represents pure

North African mineral dust. Importantly, the use of other mineral dust-derived elements (e.g., Ti, Sc, and Th)

for normalization during calculation of EFcrust Cd data all support the notion of significant anthropogenic

Cd contributions to these samples (Figure S1 and Table S5).

Figure 2. Trace metal enrichment factors and Cd isotope composition of the samples. (a–c) The relationships between the

EFcrust values for Cd, Pb, Zn, and Cu. Two anomalous samples (ISO-7 and ISO-12), which record anthropogenic Pb sourced

from leaded petrol usage, are labeled and omitted from the regression of EFcrust values for Cd versus Pb in Figure 2a

[Bridgestock et al., 2016]. (d–f) The relationships between trace metal EFcrust values and atmospheric Al concentrations, a

proxy for atmospheric mineral dust concentrations. (g) Cd isotope compositions for the total aerosol digests and leachate

subsamples as a function of Cd enrichment factors. For leachate subsamples, the EFcrust values of the corresponding total

digests are plotted. The colored bars denote the Cd isotope compositions of the upper continental crust [Schmitt et al.,

2009], fumes/ash from metal smelting operations [Cloquet et al., 2006; Shiel et al., 2010, Chrastńy et al., 2015], and ore

minerals [Wombacher et al., 2003; Shiel et al., 2010; Zhu et al., 2013, Chrastńy et al., 2015, Wen et al., 2015, 2016; Zhu et al.,

2016; Martinková et al., 2016].
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Comparison of EFcrust Cd values to

those of Pb, Cu, and Zn may yield

insights into the specific processes

responsible for the observed anthropo-

genic Cd enrichments. The strong cor-

relation between EFcrust values for Cd

and Pb likely reflects a common

anthropogenic source of these metals

(Figure 2a). Notably, enrichments of

anthropogenic Pb in these samples

are supported by independent con-

straints from Pb isotope variations

[Bridgestock et al., 2016]. Furthermore,

the anthropogenic Pb of these aerosols

features unradiogenic isotope compo-

sitions, indicative of derivation from

older Pb ores [Sangster et al., 2000;

Bridgestock et al., 2016]. Emissions from

Pb-Zn smelting operations are there-

fore the most probable common

anthropogenic source of these metals.

Two samples (ISO-7 and ISO-12) were

omitted from the regression of the

EFcrust values for Cd and Pb, as the

anthropogenic Pb in these samples

appears to originate from the residual

use of leaded petrol in Algeria

[Bridgestock et al., 2016]. Indeed, these

samples, particularly ISO-7, deviate

from the relationship due to excess

enrichments of anthropogenic Pb, sup-

porting this interpretation (Figure 2a).

Smelting of Pb-Zn ores is also

considered to be a major anthropogenic source of Zn and Cu to the atmosphere [Nriagu and Pacyna,

1988]. The reason for the weaker relationship between the EFcrust values of Zn and Cu with those for Cd

(and Pb) is unclear (Figure 2b). It may reflect additional atmospheric sources of anthropogenic Zn and Cu,

which do not affect Cd and Pb, or vice versa. Alternatively, the distinct volatilities of Cd, Pb, Zn, and Cu during

the different stages of smelting operations may affect the relative abundances at which these metals are

emitted [e.g., Diaz-Somoano et al., 2006].

Anthropogenic enrichments of trace metals are generally higher in finer particles of <1μm, while natural

mineral dust is mainly composed of particles >1μm [e.g., Fomba et al., 2012]. The higher proportions of

leachable Cd and Pb that reside in the sub-1μm fractions of samples SF7 and SF26 thus provide further

evidence for anthropogenic enrichments of these metals (Figure 3). In detail, larger proportions of leachable

Pb are concentrated in the sub-1μm fraction of these size-fractionated samples than are observed for Cd.

This is to be expected, since the leaching preferentially extracts anthropogenic over natural Pb, due to the

distinct solubility of these components [Bridgestock et al., 2016]. Conversely, it has been shown that the

leaching procedure likely releases anthropogenic and mineral dust-derived Cd in similar proportions

[Guerzoni et al., 1999; Hsu et al., 2005]. Samples SF25 and SF26 were collected during the same period as

ISO-25 (Figure 1 and Table S1), whereby the latter exhibits the highest observed EFcrust values for Cd and

Pb, of 107 and 15, respectively. The Cd and Pb contents of these samples are hence likely dominated by

anthropogenic emissions. The cause for anomalous enrichment of these metals in the 5μm fraction of

SF25 is unclear but may be related to the absorption of anthropogenic metals onto coarser mineral dust

particles [e.g., Koçak et al., 2005; Erel et al., 2006].

Figure 3. Distributions of leachable Pb and Cd contents for the different

size fractions of samples SF7, SF25, and SF26. The calculation of relative

trace metals abundances between the size fractions for subsamples where

trace metal contents were below the limits of detection, assumed a maxi-

mum possible value (i.e., the value of the detection limit). The latter pro-

cedure generates uncertainties of ≤3% in relative abundances, similar to or

smaller than the analytical uncertainty.

Geophysical Research Letters 10.1002/2017GL072748
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4.2. Isotope Compositions of Anthropogenic and Mineral Dust-Derived Cd

The currently available data for terrestrial rocks indicate limited Cd isotope variability [Wombacher et al., 2003;

Schmitt et al., 2009]. Based on results for three loess samples, the Cd isotope composition of the upper

continental crust is assumed to be ε
114/110Cd=�0.1 ± 0.7 (mean± 2 SD) [Schmitt et al., 2009; Rehkämper

et al., 2012]. North African mineral dust is therefore also likely characterized by ε
114/110Cd≈ 0, consistent with

the isotope compositions determined for the aerosols (Figure 2g).

The isotope composition of Cd emitted by anthropogenic processes will depend on both the composition of

the source materials and any isotope fractionation incurred during processing and emission. As previously

argued, Pb-Zn smelting is likely to be the dominant anthropogenic Cd source to the aerosols. This Cd is ulti-

mately derived from Zn ore minerals, most importantly sphalerites, which display a large range of ε114/110Cd

values between�16 and 8 [Wombacher et al., 2003; Shiel et al., 2010; Zhu et al., 2013, Chrastńy et al., 2015,Wen

et al., 2015;Wen et al., 2016; Zhu et al., 2016;Martinková et al., 2016] (Figure 2g). Furthermore, the emission of

Cd from Pb-Zn smelting is thought to be associated with a fractionation toward “lighter” isotope composi-

tions, with fume-derived Cd exhibiting ε
114/110Cd values 5 to 6 units lower than the precursor ores [Cloquet

et al., 2006; Shiel et al., 2010]. However, the magnitude of this fractionation will likely vary, depending on

the specific technological processes employed in the smelting operations [Chrastńy et al., 2015, Martinková

et al., 2016].

Based on this information, the isotope composition of anthropogenic Cd in the atmosphere is likely to vary

significantly, with signatures that are potentially distinct frommineral dust (Figure 2g). However, the majority

of aerosols analyzed here display reasonably constant ε
114/110Cd values of �1.9 to 1.9, with no discernable

difference between samples featuring high and low EFcrust Cd. As such, isotopic variations are of limited

use for distinguishing between these two atmospheric Cd sources, at least in this region. This observation

urges caution for studies attempting to use Cd isotope variations to trace anthropogenic Cd sources to the

environment. Given the somewhat surprising nature of this result, it is emphasized that the integrity of the

data are beyond reasonable doubt, with the Cd isotope methods employed here being carefully validated

both as part of the current (Text S4 and Table S4) and a number of previous studies [Xue et al., 2012,

Murphy et al., 2016, Wiggenhauser et al., 2016].

The results, however, do not preclude that resolvable differences in the isotope composition of these two

atmospheric Cd components are recorded in other regions. Such variations are expected in principle but

are difficult to predict. For example, preliminary results for anthropogenic aerosols collected in the South

China Sea indicate unusually “heavy” Cd isotope compositions, with ε
114/110Cd values of 1 to 18 [Yang

et al., 2015]. In contrast, subsample ISO-16Leach, with significant quantities of anthropogenic Cd, exhibits a

distinctly low ε
114/110Cd value of �5.4 (Figure 2g). This is the only aerosol analyzed for Cd isotopes that

was collected south of the ITCZ, potentially reflecting a distinct composition of anthropogenic Cd transported

by south-easterly winds (Figure 1). However, it is also conceivable that the unusual result for this sample

reflects contamination during collection or processing; hence, this interpretation should be regarded with

caution (see section 3). Clearly, additional studies are required to further investigate and develop possible

isotopic tracing of Cd in aerosols. Needed in particular are investigations of isotope fractionation during

industrial processing and emission of Cd and further stable isotope data for Cd source materials and anthro-

pogenic Cd in the atmosphere of other regions.

Regardless, the new data set provides important constraints for the isotope composition of atmospheric Cd

inputs to ocean surface waters, and this addresses a significant gap in our current understanding of the

global biogeochemical Cd cycle. Notably, Cd isotope variations in seawater could be used to study the

importance of atmospheric inputs versus deep upwelling as sources of Cd to ocean surface waters

[Ripperger et al., 2007; Yang et al., 2012; Yang et al., 2014]. The Cd inventories of regions, for which external

atmospheric inputs are important, will thereby be particularly prone to changes in anthropogenic emissions

and natural mineral dust inputs.

5. Conclusions

Novel results for the Cd isotope compositions of atmospheric aerosols collected over the Tropical Atlantic

Ocean are presented. These aerosols contain variable proportions of Cd derived from North African
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mineral dust and anthropogenic emissions. Despite this, they display reasonably constant Cd isotope compo-

sitions, with all samples but one featuring ε
114/110Cd values of�1.9 to 1.9. This demonstrates that natural and

anthropogenic sources of Cd to the atmosphere cannot be distinguished in this region based on their

isotopic signature. On a global basis, however, the Cd isotope compositions of anthropogenic emissions

are expected to vary significantly, due to the observed isotopic variability of relevant source materials and

the isotope fractionations that can be incurred during industrial processing and emission of Cd.

The data provide important initial constraints on the isotope composition of atmospheric Cd inputs to surface

ocean waters. Such constraints are required to utilize Cd stable isotope variations in seawater to study the

importance of atmospheric inputs versus upwelling as sources of Cd to ocean surface waters. In the future,

Cd isotope data may hence help to identify regions of the ocean surface that are particularly prone to being

affected by anthropogenic Cd emissions and changes in natural mineral dust inputs.
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