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Abstract

This paper presents a new approach to bounded-error state estimation involving time uncertainties. For a given bounded
observation of a continuous-time non-linear system, it is assumed that neither the values of the observed data nor their
acquisition instants are known exactly. For systems described by state-space equations, we prove theoretically and demonstrate
by simulations that the proposed constraint propagation approach enables the computation of bounding sets for the systems’
state vectors that are consistent with the uncertain measurements. The bounding property of the method is guaranteed even
if the system is strongly non-linear. Compared with other existing constraint propagation approaches, the originality of the
method stems from our definition and use of bounding tubes which enable to enclose the set of all feasible trajectories inside
sets. This method makes it possible to build specific operators for the propagation of time uncertainties through the whole
trajectory. The efficiency of the approach is illustrated on two examples: the dynamic localization of a mobile robot and the

correction of a drifting clock.
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1 Introduction

This paper presents a novel method for the state esti-
mation of a dynamical system of the form:

{ x(t) = £(x(t), u(t)), (1a)

where x(t) € R™ is the state vector representing the sys-
tem at time ¢ and f : R” x R™ — R™ a non-linear func-
tion depicting the evolution of the system based on input
vectors u(t) € R™. The observation function g : R — R
is assumed to be scalar, without loss of generality as the
methods are readily scalable to the vector case. The t;,
i € N, are measurement times and the z; are the related
outputs.

In a bounded-error approach to the state estimation
problem, we can assume the function f and the measure-
ments z; are not known exactly. Instead, we shall con-
sider that f is represented by a set-valued function [f]

* Corresponding author: simon.rohou@ensta-bretagne.org

Preprint submitted to Automatica

and that measurements z; all belong to some known in-
tervals denoted by [z;]. When the ¢; are exactly known,
interval analysis [21] combined with constraint propaga-
tion [4, 14] is able to efficiently solve the state estima-
tion problem [20, 15, 24]. More precisely, without any
prior knowledge on the state, an interval calculus allows
to compute for each ¢ a set enclosing all feasible state
vectors.

This paper deals with uncertain measurement times: the
t; are only known to belong to some interval [¢;]. In this
context, neither the value of the output z; nor the acqui-
sition date t; are known exactly. Hence, the problem be-
comes much more complex as the uncertainties related to
the t; are difficult to propagate through the differential
equation. Some attempts of using interval analysis have
been proposed in [5, 18], but the corresponding observers
cannot be considered as guaranteed. Other works, often
referred as Out Of Sequence Measurement (OOSM) [9],
state problems of time delay uncertainties, which can be
somehow related to our problem. However, the consid-
ered time uncertainties are tight, of the same order of
magnitude as computational time step, and treated by
means of covariance matrices which do not provide guar-
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anteed results. In contrast, this paper proposes a reli-
able computational tool set to deal with strong temporal
uncertainty constraints in systems involving differential
equations and non-linear functions.

Motivating application. Some practical problems can
be formulated to deal with time uncertainties. As an il-
lustration, let us consider an underwater robot R per-
forming an exploration task using a side-scan sonar. As-
sume that a localization of the robot is based on the per-
ception of a wreck for which the highest point w is pre-
cisely geolocalized. As pictured in Figure 1, the wreck
image W(t) obtained by the sonar may be distorted,
stretched and would be highly noisy in practice, depend-
ing on the robot navigation [18]. It is a difficult problem
for image processing algorithms to detect the highest
point w in W to be used as reference for localization.
However, the problem can be dealt with in a tempo-
ral way, based on the time interval [t] during which the
robot has seen the wreck. This observation is related to
a strong temporal uncertainty: up to several seconds or
minutes. Then the state estimation amounts to a range-
only problem for which 3¢t € [t],3p € [p] | p = g (x(¢)),
with g : R® — R the distance function between R and
the known point w.

i

‘ x(t)

te ty te

Fig. 1. A robot R perceiving a plane wreck by using a side
scan sonar. The observation function g(x) represents the
distance between R and a point of interest w on the plane,
pictured by a white dot and seen at times t1 = tq, t2, t3. The
sonar image W(t) is overlaid on the graph. Although w has
been seen three times, the ¢; remain uncertain but known
to belong to [t]. Some other robot states are illustrated at
times tq, to, tec.

This example shows how a classic robotic application
can be related to strong time uncertainties. The current
paper is a first step towards new state estimation ap-
proaches that will focus on both the time and the state
spaces. It proposes a theoretical basis to deal with the
former in the most generic way and is illustrated by re-
producible examples in order to highlight the interest
and simplicity of the method and encourage further com-
parisons.

This paper is organized as follows. Section 2 gives an

overview of constraint propagations related to sets of
trajectories, introducing the concept of Constraint Net-
works, tubes and contractors. These tools will then be
extended to the time uncertainty constraint this paper
is dealing with. The approach, theoretically detailed in
Section 3, will be illustrated through two robotics ex-
amples. The first one, Section 4, involves a mobile robot
to be localized while evolving amongst beacons emitting
uncertain range-only signals. The second one, detailed
in Section 5, provides an original method to correct a
drifting clock using ephemeris measurements. Sections 6
and 7 conclude the paper and present the numerical li-
braries used during this work.

2 Constraint propagation over trajectories

Subsection 2.1 recalls the principle of constraint propa-
gation [27, 4] that will be used later to formalize prob-
lems concerning dynamical systems. To this end, a tube
can be used to enclose a feasible solution set: an envelope
of trajectories compliant with the selected constraints.
The notion of tube is recalled in Subsection 2.2 with re-
lated properties.

2.1 Constraint Networks

In a numerical context, problems of control, state es-
timation and robotics can be described as Constraint
Networks (CNs), in which variables must satisfy a set of
rules or facts, called constraints, over domains defining
a range of feasible values. Links between the constraints
define a network [19] involving variables {x1,...,2,},
constraints {Li,...,L;,} and domains {Xi,...,X,}
containing the z;’s. The variables x; can be symbols,
real numbers [3] or vectors of R™. The constraints can
be non-linear equations between the variables, such as
x3 = cos (21 + exp(zz)). Domains can be intervals,
boxes [16], or polytopes [10].

Contractors. A constraint £ can be applied on a box
[x] € IR™ with the help of a contractor C. The box [x],
also called interval-vector, is a closed and connected sub-
set of R™ and belongs to the set of n-dimensional boxes
denoted by TR"™. Formally, a contractor C associated to
the constraint £ is an operator IR" — IR" that returns
a box C ([x]) C [x] without removing any vector consis-
tent with £. Constructing a store of contractors such as
C+, Csin, Cexp associated to primitive equations such as
z=x+vy,y=sin(x), y = exp(x) has been the subject
of much work [16, 8, 11].

Decomposition. Problems involving complex equa-
tions can be broken down into a set of primitive equa-
tions. Here, primitive means that the constraint cannot
be decomposed anymore and that the related operator
is available in a collection of contractors, thus allowing
to deal with a wide range of problems. For instance,



the non-linear equation x3 = cos (:vl + exp(xg)) can be
decomposed into:

a = exp(z2),
b=xz1+a, (2)

x3 = cos (b) .

Combining primitive contractors leads to a complex con-
tractor that still provides reliable results [8].

Propagation. When working with finite domains, a
propagation technique can be used to solve a problem.
The process is run up to a fixed point when domains X;
cannot be reduced anymore.

Our goal is to consider trajectories as variables and to
implement contractors to reduce their domains given a
constraint that can be algebraic or differential. This will
be done by using tubes as domains for these variables.

2.2 Tubes: envelopes of feasible trajectories

In this paper, the notation (-) is used in order to clearly
distinguish a whole trajectory x(-) : R — R"™ from a
local evaluation: x(t) € R™.

Definition. A tube is defined [17, 13] over a domain
[to,tf] as an envelope enclosing an uncertain trajectory
x(+). We will use the definition given in [18, 6] where a
tube [x](-) : R — IR" is an interval of two trajectories
[x~(-),xT(-)] such that V¢, x () < xT(t). A trajectory
x(-) belongs to the tube [x] (-) if V¢, x(t) € [x] (¢). Fig-
ure 2 illustrates a scalar tube enclosing a trajectory x*(-).
For the sake of simplicity, the following tubes mentioned
in Sections 2.2-3.1 will be of dimension 1, without loss
of generality.

[2]

Fig. 2. A tube [z](+), interval of two functions [z~ (-),z" ()],
enclosing a random signal z* ().

It is possible to implement a tube in several ways. A
computer representation based on a set of boxes that
sample the tube over time has been mentioned in [18, 6,
26].

Arithmetics. Consider two tubes [z](-) and [y](:) and
an operator ¢ € {4, —, -, /}. We define [z](:) ¢ [y](:) as

the smallest tube (with respect to inclusion) containing
all feasible values for z(-) ¢ y(-), assuming that z(-) €
[](-) and y(-) € [y](-). This definition is an extension to
trajectories of the interval arithmetic proposed by Moore
[22]. If f is an elementary function such as sin, cos, ...,
we define f([z]()) as the smallest tube containing all

feasible values for f(z(-)), z(-) € [#](").

Figures 3a—3b present two scalar tubes [z](-) and [y](-).
The tube arithmetic makes it possible to compute any al-
gebraic operation on tubes, as illustrated by Figures 3c—
3f.

[#](-) [y1()

(a) A given tube [z](-).

lal(-) [bI(-)

(b) A given tube [y](-).

() [d() = [yl=](r)dr. (£) [dI() = [yl ()]

Fig. 3. Tube arithmetics. Note that the vertical scales of
these figures vary for full display.

2.8 Contractors for tubes

The contractors recalled in Subsection 2.1 can be ex-
tended to sets of trajectories, thus allowing constraints
over time such as a(-) = x(-) + y(-) or b(-) = sin (z(")).
A tube contractor has been defined in [6] and is recalled
here.

Definition 1 A contractor C, applied on a tube [x](-)
aims at removing infeasible trajectories according to a
given constraint L so that:

(@) Ce(() € [=](),

i ﬁ(m()) ) z(-) € Ce(]z](- consistenc
(i) (x(.)em(.) = 2() € Cc (1](1)- (consstency)

(contraction)



For instance, the minimal contractor C associated with
the constraint a(-) = z(-) + y(-) is:

In this way, information on either [a](-), [x](-) or [y](-)
can be propagated to the other tubes.

Differential contractor. The primitive constraint
relying on the differential equation () = w(-) has
been the subject of [26], introducing the contractor
C.a ([2](-), [v](+)) that will contract the tube [z](-) from

dt
its derivative bounded by [v](-). C4 is of interest to
propagate some local evaluation z = z(t), z € [z],
z(+) € [z](-) over the whole tube domain. However, it
does not apply when ¢ is not known exactly. This moti-
vates the study of a new primitive contractor to apply
any uncertain tube evaluation.

When the derivative not only depends on time but also
on the trajectory itself, as for dynamical systems de-
scribed by Eq. (1a), a decomposition is used to reduce
the problem to a set of simple constraints. For instance,
x() = f(x()) will be broken down into %(-) = v(-) and
v(-) = f(x(-)) where f is a set of algebraic constraints.
Then, an iterative resolution will apply to propagate
information between x(-) and v(-) till a fixed point is
reached. This allows to deal with general dynamical sys-
tems. However, as stated in [26], the proposed approach
may be too pessimistic when a cyclic differential con-
straint is encountered, such as & = — sin(x). In such case,
a combination with other approaches such as CAPD [28]
or DynIBEX [1] has to be studied.

3 Generic contractor for trajectory evaluation

This section provides a reliable tool to deal with any un-
certain evaluation z of a trajectory y(-) at a given time
t. This is formalized by a primitive constraint denoted
Leval : z = y(t), which is a fundamental issue in the field
of CNs involving dynamical systems. Here, the trajec-
tory y(+), its derivative w(-), the observation time ¢t € R
and the measurement z € R are all known to belong
to respective domains. Our contribution is to propose
a new contractor Ceya1 that will optimally reduce these
bounds by removing solutions not compliant with Leya).

Then, we will show the interest of Cevar when used to-
gether with other primitive contractors, in order to deal
with general state observation functions such as Eq. (1b).

3.1  Tube contractor for the constraint L epq; : 2 = y(t)

Sometimes known as a fleeting observation [18], the con-
straint Leya) differs from the ones presented in Section 2
that apply over the whole trajectory domain. Here, the
evaluation leads to an improvement of the estimation of
y(+) around ¢. In a bounded error context, this constraint
is defined by:

Leval 2 2 = y(t)7 te [t]vz € [Z]vy() € [y}() (4)
The related contractor will aim at intersecting the tube
by the envelope of all trajectories compliant with the
bounded evaluation. In other words, [y](-) will be con-
tracted as the tube of all y(-) € [y](-) going through the
box [t] x [z], see Figure 4. Some trajectories may cross
the box and leave it over [t]: the contractor must take
into account this kind of propagation during the inter-
section process. To this end, the knowledge of the deriva-
tive ¢(-) is required to depict the evolution of y(-). In or-
der to define the contractor in the most generic way, the
derivative g(-) will be also bounded within a tube [w](-),
thus allowing the [y](-) contraction even if the derivative
signal is uncertain.

The constraint Ly, then amounts to the following CN:

Variables: ¢, z, y(-), w(-)

Constraints:
‘Ceval . (1) z = y(t) (5)
(2) 9() =w(")
Domains: [t], [2], [y](), [w](")
[v]
[t] x [2]
A
| — :
to [t']

Fig. 4. Contraction of a tube [y](-) from an evaluation con-
straint. A given measurement m € R?, pictured by a black
dot, is known to belong to the blue box [t] X [z]. The tube is
contracted by means of Ceval; the contracted part is depicted
in light gray. Meanwhile, the bounded observation itself is
contracted to [t'] x [2'] with [t'] C [¢t] and [2] C [z]. This is
illustrated by the red box. The dark line is an example of a
trajectory compliant with m, enclosed within [t'] x [2/].



Proposition 2 A contractor Cepa([t], [2], [y](-), [w](+))
applying L cyq on intervals and tubes is defined by:

i 1N [ (1)
2 [ N (1)
Q—)
O | {Bon L (e nk)+

[wl(r)dr
fw] (- Held N () / )

t1
(6)

Proof. To be a contractor, Ceya needs to satisfy both
the contraction and the consistency (i.e. no solution lost)
properties from Definition 1. The contraction property
is trivial as any variable is at least contracted by itself.
Thus, it remains to prove that for two real numbers ¢ €
1], = € [2] and two signals y(-) € [y](-), w(-) € [w]()
such that z = y(t), y(-) = w(-), we always have:

te (=) (i)
= € (1) @ | o

yo e || (([ywl) Nl + / [w}(T)dT) (i)

ty€[t]

Notation used hereafter: considering a generic constraint
Ly : b = f(a),a € [a], b € [b], the set B of all vec-
tors b consistent with L¢ is [b] N U,¢[o f(a). The closed

and connected set enclosing B and representable with
intervals is | |,ep = [b] N |, (o) £(a) where the symbol

| | depicts the smallest envelope containing the following
terms.
Proof of Eq. (7):
(i) the set T C R of all ¢ consistent with Ly, is:
T = [t]N (Uyep)) Usep ¥ 1 (2)
10 (Uyewio) Ueerz v (2)
[yl (D)

n N

An illustration of the evaluation of [y]~1([z]) is given
in Figure 5.
(7i) the set Z C R of all z consistent with Leya) is:

Z

(2] N Uye[y](.) Ute[t] y(t)
C [z N (Uyepe) Urepg ¥
C Nyl ()

(7i1) the value of y(¢) from ¢; is given by

y(t) =y —|—/ w(r)dr, with y1 = y(t1).

t1

[v] [y~ ([21)

B
)
“

Fig. 5. Tube set-inversion [y]™'([2]). [t1], [tz], [t3], [td]
are preimages subsets enclosed within the inversion result

[y~ ([2))-

The set Y C R of all y(¢) consistent with Loy, is:

Y = Us e Unerlt) Upemiennt (yl + /7, “’(T)‘”)
= Unern (Upiemeonis) (yl + Uetuio) w(T)dT>)
= Unep (Uyle[y](tl)ﬁ[z] 3/1) + f:l [w](T)dT)
= Un e (W) N [2]) + Ji wl(r)dr
C Uy e (W) N [2]) + [} [w](r)dr) . [

The effect of Ceya is highlighted in Figure 4 in a non-
linear context and strong uncertainties. The derivative
9(+), not represented here, is also enclosed within a tube.
Figure 6 pictures the result of an iterative process in-
volving successive contractions.

One should note that the tube [y](:) and both [t] and [z]
may be contracted while the estimation of the derivative
signal, represented by [w](+), will remain the same. In-
deed, the evolution of any trajectory in [y](-) cannot be
known, except for degenerate tubes without thickness.

[v] [v]

] CDD

| |

t t

Fig. 6. Combined Ceval contractions on a theoretical exam-
ple involving a given tube [y](-) and some measurements.
The light gray part is the set of trajectories that have been
removed after contractions. Blue boxes represent the initial
measurements [t;] X [z;]. Gray boxes picture intermediate
contractions of these observations, obtained from the knowl-
edge provided by the tube. Finally, red boxes depict the con-
tracted measurements [t;] X [z;] obtained after a fixed-point
iterative method.




The derivative g(-) € [w](-) could then be of any arbi-
trary value. Therefore, no information from [y](-) can be
propagated back to [w](-). This is formalized and proved
hereinafter.

Lemma 3 Consider the constraint §(-) = w(-) and two
tubes [y](+), [w](:) such that there exists c(-) differen-
tiable and € > 0 with c(-) + [—¢,¢] C [y](-). Then for
all (w1,t1), there exists a trajectory y(-) € [y](-) such
that §(t1) = wi. As a consequence, no contraction can
be expected for [w](-) except in the cases of empty or de-
generate tubes where [y](t) has no uncertainty for some
consecutive times.

Proof. The function

ot
T 1442

a(t) (8)

is inside the interval [—1,1] and @(0) = 1. Therefore, the
function b(t) = ea ([3 (t— t1)> is bounded by [—¢, €] and

)

bitr) = = 2a(0) = . (9)
We have
y()=c()+b()ebl(). (10)
Thus, )
J(t) = () +h(t) =e(t) + 8 (1)

which is equal to w; if we choose § = w; — é(t1). As
a consequence, for all (wy,t7), there exists a consistent
trajectory that belongs to [y](-). [ |

Domain of contraction. C., will propagate the con-
straint as much as possible over time in a forwards and
backwards way. Contractions may cover the whole tube
domain [tg,ts] or only a part of it, depending on the
amount of uncertainties accumulated during the prop-
agation. For instance in Figure 4, the contraction does
not reach ty in backwards.

Inconsistency. If the L., constraint cannot be met
over the domains [t], [z], [y](:), [w](), then Coya will
perform a contraction to the empty set for [t], [z] and
[y](+). This can be easily proved from Eq. (6).

Multi-dimensions. Extension to multi-dimensional
problems z = y(¢), z € R", y(-) € R — R” amounts
to applying Leva for each component z; = y;(t),j €

{1...n}.

Continuum of solutions over [t]. The contractor also
applies when several evaluations are bounded within the
same ([t],[z]), since the union of feasible trajectories

through any t € [t] is kept after contraction. As an il-
lustration, Figure 1 presents a case of three unknown
evaluations enclosed within one bounded measurement

([tl; [o])-

Set of evaluations. When dealing with p € N evalu-
ations, a single application of Ceya for each ([t;],[2:]),
i € {1...p} may not provide optimal results. Indeed,
Ceval Propagates an evaluation along the whole domain
of [y](-) which may lead to new possible contractions.
As pictured in Figure 6, it is preferable to use an itera-
tive method that applies all contractors indefinitely un-
til they become ineffective on [y](-) and the ([t;], [2:])’s:

(mamwmmmmmmmﬁw- (12)

3.2 Application to state estimation

Let us come back to the state estimation problem this
paper is dealing with. The classical state equations

{ﬂﬁﬁuuw»,
zi = g(x(t:)),

can be broken down into a set of primitive constraints,
introducing variables v(+), y(-) for ease of decomposition.

Step (4) is the Leoya constraint. In order to consider it,
the derivative w(-) of the evaluated trajectory y(-) has
to be defined:

(5) w() =g(x())

Each constraint is then implemented by related primi-
tive contractors. Domains will be reduced while keeping
solutions compliant with the state equations. The differ-
ential contractor € introduced in [26] and the evalua-

tion contractor Ceya) are respectively used for the above



steps (2) and (4). Algebraic constraints (1), (3), (5) are
implemented with a composition of algebraic contrac-
tors on tubes such as C4, Cgin, C\F’ see Section 2.3.

(1) €, ([v] (), [, [u] ()
(2) Ca ([2j],[v5]), 5 € {1...n}

Set-membership state estimation then consists in an it-
erative process, each stage of which is calling these con-
tractors. The process can be stopped when the tubes
are not contracted anymore. One should note that the
above contractors can be called in any order due to their
monotonicity [2]. In this approach based on constraint
propagations, the order can only impact the computa-
tion time: it could be more interesting to apply a con-
tractor before another in order to perform the strongest
contractions as soon as possible. However, this is highly
specific to the considered problem.

Thus, the constraint satisfaction approach allows sim-
plicity in the resolution of complex problems. This effi-
ciency will be highlighted in the next sections present-
ing concrete applications. The proposed simulations are
based on analytical expressions and simple data in or-
der to encourage future comparisons with the method
provided in this paper.

4 Range-only robot localization involving low-
cost beacons

Let us focus on a set-membership state estimation prob-
lem involving a robot R moving amongst several bea-
cons.

4.1 Test case

The robot R is described by its state x € R* where
(z1,22) depicts its location, 3 = 4 its heading and
x4 = ¥ its speed. The system is modeled by the following
evolution function:

o ¥ cos(1h)

B | e, | Vsin) (13)
i3 =1 uy
l"4 = 19 Ug

Table 1
Beacons’ location and list of measurements ([t;], [2:]).

IBE [t:] [2i]
1 [14.75,15.55]  [11.69,12.69]
2 | a [20.80,21.60] [15.40,16.40]
3 | a [23.80,24.60] [10.62,11.62]
k by, 4 | a [26.80,27.60] [11.05,12.05]
o (30,20) || 5 | a [29.80,30.60] [11.87,12.87]
B (80,—5) || 6 | @ [32.80,33.60] [15.31,16.31]
v (125,20) || 7 | v [44.35,45.15] [13.65,14.65]
8 | v [47.35,48.15] [13.32,14.32]
9 | v [50.35,51.15] [12.03,13.03]
10 | v [53.35,54.15] [15.98,16.98]
11| B [56.75,57.55] [17.45,18.45]

The state x(t) is submitted to the input u(¢) whose value
is bounded as:

_(—ocostyn) 1 (1F1L1)
u(t) € [ul(t) = (1/10+Sin<t/4)> * 1000 <[1,1]> '
(14)

The robot moves amongst low-cost beacons by, k €
{a, 8,7}, thus implying drifting clocks (strong tempo-
ral uncertainties) and measurement errors. These emit-
ters have a maximum signal range py,.x = 20m and send
bounded signals z; € [z;] on a regular basis with time
uncertainties: t; € [t;]. Then the observation function g
(Eq. (1b)) related to a beacon by, is a distance function
between R and the beacon. The problem, also known
as state estimation with range-only measurements [23,
7], will highlight the use of Ceva1 based on a set of fleet-
ing bounded measurements; see Table 1. Initial condi-
tions are not known, except for ¢ € 7/2 4+ [—0.01,0.01]
and Yy € [—0.01,0.01]. The simulation will be run from
to =0toty = 64.

4.2 Resolution

For ease of understanding, we will keep the same nota-
tions as in Section 3.2. The problem amounts to CN (15).
The constraints form a network partially pictured in Fig-
ure 7 and are applied using contractors over intervals
and tubes. Tubes are initialized to [—oo, 0] V¢ except
for [u](-), set according to Eq. (14). Furthermore in or-
der to apply Ceval, an estimation of the feasible deriva-
tives of [yx](-), represented by a tube [wg](), has to be
computed. This is easily done analytically by deriving
the distance function gy.



OBSERVATIONS

()
2)
) N /\ 3) )
x(+) @ (22,12)
2)
()

Fig. 7. Constraint network detailing the relations of the first
three measurements of Table 1. Arrows indicate the possi-
ble directions of information propagation. For ease of under-
standing, derivatives wy/(-) are not represented here.

EvoLuTioN

Variables:
x(1), v(), u), {(i, 20)}, {ye ()} {we()}

Constraints:

(1) Evolution function:
V() = £(x(), u())
x() = vl
23(0) € 7/2 + [~0.01,0.01]
24(0) € [~0.01,0.01]

(2) Observation function:
(1) = /(1) = bi,1)? + (22(-) — br,2)?
wk() _ (@) =bp 1) vi () (wa()—by,2)-v2 ()
V(@1 ()=bg,1)2+(@2(-) bk 2)?
U (-) = wr (")

(3) Measurements:
zi = yk(t:)

Domains:

[<IC)s V]G, [l (), {08 (D)} {Tyal (OFs {[we] ()}

Then the process involving contractors, explained in Sec-
tion 3.2, is executed. The fixed point is reached over 52
iterations in 2 minutes, but the main contractions are
already obtained before the sixth iteration, as pictured
in Figure 8: the position domain is slightly reduced dur-
ing the next steps. A projection of the computed results
is pictured in Figure 9. This example shows how the
constraint satisfaction approach behaves: in an iterative
way and without a necessary knowledge on the initial
conditions. At the end, the true state trajectory x*(-) is
guaranteed to lie within the tube [x](-).

Remark 4 Results could be improved by bisecting the
state space. Indeed, several states x(t;) € [x](t;) may
lead to the same observation z; = g(x(t;)) since function
g is not injective. Then, bisections can help to consider
independently several states consistent with the observa-
tion, and reject them if not consistent with the other con-
straints.

¢ jteration

5] 204 iteration

fixed point

10

0o 5 10 15 20 25 30 35 10 15 50 55 60 t
Fig. 8. Thicknesses of the position estimation
[1](-) x [z2](:) for each iteration step. We define
d : IR*> — R the diagonal of a position box [z1] x [v2]:

d([x]) = \/(acl+ —7)? + (¢ —23)°. This depicts in the
worst case the error between the unknown truth and any
trajectory within the tube. Uncertain measurements’ times
[t;] are projected in light gray. The fixed point has been
reached after 52 iterations while almost final results were
already obtained during the first steps.

T
70
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40
30
20

10

-10

-20

o ™20 10 60 80 100 120 140 1
Fig. 9. State estimation of a mobile robot among a set of
beacons, as detailed in Section 4. The initial position (0, 0) is
not known. Beacons, pictured by red boxes, are sending sig-
nals till a range limit depicted by circles. Time uncertainties
[t;] are projected along the robot path with dark thick lines.
The true poses of the robot are pictured by the white line,
enclosed within the estimated tubes [z1](:) X [z2](:) projected
in blue and gray. The pessimism induced by time uncertain-
ties is represented in light gray. In other words, the blue part
depicts a state estimation assuming a precise knowledge on
the ¢;’s.

5 Reliable correction of a drifting clock

A complementary illustration of this work is the situa-
tion of a drifting clock: an isolated clock that does not
run at the same rate as a reference clock. This problem
amounts to increasing time uncertainties that can be re-
duced using a collaborative method.

5.1 Test case

An underwater system, lying on the seabed at (0,0, —10),
is equipped with a low-cost drifting clock. Absolute



time reference is represented by ¢ while the time value 7
provided by the underwater clock is drifting > such that:

7 = h(t) = 0.045t> + 0.98t. (16)

However, this information is not known: the problem
consists in estimating this function. Instead, we shall
assume the following bounded derivative of h(-), that
could be obtained from the clock data-sheet:

h(t) € [0.08,0.12] - t + [0.97,1.08]. (17)

The problem is constrained thanks to a localized robot
B evolving at the surface and a set of measured dis-
tances z; € R between the robot and the underwater
clock, see Figure 10 and Table 2. The boat’s trajectory
x(-) : R — R? is preprogrammed, forming a kind of
ephemeris for the clock in the same way as stars have
been used for celestial navigation on Earth. This way,
the beacon already knows where the robot must be at
time ¢. Conversely, detecting the location of B provides
a temporal information to be compared with the em-
bedded time value. Hence, the boat can be used by the
underwater clock to correct this temporal drift.

However, the boat may not precisely respect the defined
schedule. The ephemeris thus consists in a tube [x](-)
taking into account the possible error of the boat loca-
tion. The velocity v(-) of B is also bounded:

e < 70,90]) 100 <cos(.)> | (18)
10, 30] sin(-)
. —0.1,0.1]) 100 (—sin(-)> | (19)
—0.1,0.1] cos(+)

v (") <

! In order to keep things simple in this academic example,
we consider that the clock perfectly matches the absolute
time reference at ¢t = 0: h(0) = 0. But any unknown offset
could be assumed with our resolution method.

Autonomous boat B i

Absolute reference time: ¢

x(

[
[
[
[

Location: (z1,x2,0)
Zi

Underwater drifting clock

Local reference time: 7

ﬂ Location: (0,0, —10)

Fig. 10. Illustrating the problem of a drifting clock corrected
by ephemerides provided by an autonomous boat B. The bea-
con holding the clock receives distance measurements from
the boat once in a while.

5.2  Resolution

The problem amounts to the following CN (20). The
same notations are used as in Section 3.2. Function y(-)
now depicts the prevision of the distances separating
the boat from the beacon. Each measurement is refer-
enced by 7; that are temporal drifting values given by
the underwater clock. The estimation of h(-), depicting
the drift and bounded within a tube [h](-), will provide
a reliable enclosure of the reference time t; correspond-
ing to each 7;: t; € [h]7!(7;). The measurements values
z; are now referenced by ([t;], [z;]) and will then be con-
strained by y(-) through Leya- In particular, the estima-
tion [t;] will be refined. Another Ly, will constrain the
h(-) trajectory, based on the temporal pairs ([t;], ;). To
this end, the derivative of h(-), denoted ¢(-) and bounded
by Eq. (17), will be considered too.

As before, contractors are called on tubes in place of
constraints on trajectories listed in CN (20). Tubes
[x](-), [V](), [#](:) are respectively initialized accord-
ing to Equations (18), (19) and (17). This time, the
contractor of interest Cevar will be called twice, see
Constraints (4) of CN (20).

Variables:
{(t’ivzi)}v X(’)? V(‘), h()’ ¢()7 y(')? 'LU()
Constraints:

(1) Ephemerides (i.e. boat locations):
x() =v()

(2) Beacon-boat distance function:
y() = Va1 () + 22()7 + (-10)2
wi () = (21() -v1() +22() -v2() /y()
Ie(-) = wi ()

(3) Drifting time function:
h(-) = ¢(-)
h(0) = 0
(4) Measurements:
zi = y(t:)
7 = h(t;)

Domains:

(s (D)}, [x]C)s VIC), [RIC), [8]C)s [W]()s [w]()

Tube inversions on [h](-) provide the corresponding en-
closures [t;] = [h]~1(7;) of absolute reference times t;, see
Figure 12. The [t;] are then used to read the ephemeris
and are contracted by:

(1], [24)s [) (), [) () 22 (8], ), ), [0 )
(21)



Table 2
List of measurements (7, [2:]).

] ]

li| =

1| 1.57  [152.47,156.47]
2| 334  [34.67,38.67]
3| 532  [102.38,106.38]
4| 7.50 [184.45,188.45]
5| 9.88 [167.09,171.09]
6| 12.46  [60.03,64.03]
7| 1525  [78.76,82.76]
8| 18.24 [175.88,179.88]

The contracted [t;] can then be used to reduce the tube
[1](-) using the same contractor:

Ceval

([t 73, [R](), (1))

([t 73, [R1(), [91()- (22)

An iterative resolution process is executed up to a fixed
point. Indeed, the first contraction of [h](-) (Eq. (22))

()

200
180

160

180

6.2 6.4 6.6 6.8 T 72 74 76 78 "8

(b) Zoom on [y]().

Fig. 11. Tube [y](:) representing the reliable prevision of
the distances between the boat and the beacon (so-called
ephemeris). [y](-) is submitted to a set of measurements pic-
tured by blue boxes, before their final contraction in red.
This demonstrates the contraction of strong time uncertain-
ties by Ceval thanks to the knowledge provided by the tube
itself.
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raises new constraints for the contraction of the
[t:] (Eq. (21)). In this example, constraints have been
propagated over 5 steps of computation in less than 2
seconds.

Finally, the contracted tube [h](-) reflects the clock drift
correction, see Figure 12. We emphasize that the real
drift h(t), unknown of the resolution, remains enclosed
in its final envelope [h](t), Vt.

6 Conclusions

This paper provides an original method to deal with time
uncertainties in non-linear and differential systems. The
proposed framework, based on tubes depicting envelopes
of trajectories, is generic, reliable and simple to use. The
principle is to model the problem as a constraint net-
work and generate a contractor from each constraint.
The tubes containing the variables are then contracted
as much as possible. The main added value of this pa-
per is to provide an elementary contractor to deal with
trajectory evaluations in a bounded error context, while
considering any uncertainty on these variables.

[PI(-)

2

20]

10]

(b) Zoom on [h](-).

Fig. 12. Tube [h](:) representing the clock drift. For a given
time 7;, [h] ™' (7;) provides an enclosure [t;] of the time refer-
ence t;. When [t;] is contracted by means of ephemeris [y](-)
and Cevar (see Figure 11), the information can be propagated
back to [h](:). The tube’s contracted part is pictured in light
gray while the real drift expressed by Eq. (16) is plotted in
blue.



From a practical standpoint, this contractor now also al-
lows to consider state estimation problems from a tem-
poral point of view [25], where the time ¢ becomes an
unknown variable to be estimated. This new approach,
here introduced over simple examples of mobile robotics,
opens the way to further applications in which the con-
sideration of time uncertainties is relevant. The obtained
solutions are guaranteed and can be used for proof pur-
poses, e.g. algorithm validations, path planning, colli-
sion avoidance or formal verification of robot behavior.

7 Available libraries

The Tuber library implemented during this work
and the source code of the simulated examples pre-
sented in this paper are available on www.simon-
rohou.fr /research/tubeval. This framework is compati-
ble with IBEX: a C++ library for system solving and
global optimization based on interval arithmetic and
constraint programming, see www.ibex-lib.org. Figures
have been drawn using the visualizer VIBEs [12].
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