
This is a repository copy of Rethinking the High Capacity 3D Steganography : Increasing 
its Resistance to Steganalysis.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/127775/

Version: Accepted Version

Proceedings Paper:
Li, Zhenyu, Beugnon, Sebastien, Puech, William et al. (1 more author) (2017) Rethinking 
the High Capacity 3D Steganography : Increasing its Resistance to Steganalysis. In: IEEE 
International Conference on Image Processing (ICIP). IEEE , pp. 510-514. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



RETHINKING THE HIGH CAPACITY 3D STEGANOGRAPHY:

INCREASING ITS RESISTANCE TO STEGANALYSIS
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ABSTRACT

3D steganography is used in order to embed or hide informa-

tion into 3D objects without causing visible or machine de-

tectable modifications. In this paper we rethink about a high

capacity 3D steganography based on the Hamiltonian path

quantization, and increase its resistance to steganalysis. We

analyze the parameters that may influence the distortion of a

3D shape as well as the resistance of the steganography to

3D steganalysis. According to the experimental results, the

proposed high capacity 3D steganographic method has an in-

creased resistance to steganalysis.

Index Terms— 3D steganography, steganalysis, shape

distortion, information hiding

1. INTRODUCTION

3D objects are playing a key role in many popular and cutting-

edge technologies, such as virtual reality and 3D printing.

Crypto-security applications of 3D objects and graphics are

increasingly important given the large diversity of ways for

generating 3D objects, either by using software or 3D scan-

ning and given their ubiquitous usage in many applications.

Information hiding, including watermarking and steganogra-

phy, is the technique that can conceal the information in the

digital files without causing noticeable changes to the carri-

ers. The 3D information hiding started in the late 90s [1],

when artists and 3D graphics designers wanted to enforce

their copyright. Since then, various 3D information hiding

methods have been proposed [2, 3, 4, 5].

High capacity 3D steganography, such as the method from

[6], which can embed a payload of 10 Bits Per Vertex (BPV),

have been proposed lately. Inspired by [7], Itier et al. [8]

proposed a 3D steganographic method which hides informa-

tion following the Hamiltonian path of the 3D point cloud

resulting in 3 BPV. Subsequently, Itier et al. [9] improved the

capacity of the steganography in [8] to 24 BPV and used the

static arithmetic coding during embedding.

Nevertheless, the resistance of 3D steganography to ste-

ganalysis has not been considered when designing informa-

∗The first author acknowledges the scholarship received from Zhengzhou
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tion hiding algorithms. Few papers have discussed so far the

challenges in 3D steganalysis [10, 11, 12]. In this paper, we

rethink about the high capacity 3D steganography proposed

in [9] in the view of enhancing its resistance to steganalysis.

We analyze the influence of the parameters in the algorithm

on the steganlytic features, as well as that of the domain used

for embedding, while attempting to increase the steganogra-

phy’s resistance to steganalysis. Experiments are carried out

to evaluate the proposed methodology. Section 2 describes

the details of the high capacity 3D steganography proposed in

[9]. A brief introduction of 3D steganalysis is given in Section

3. Section 4 presents the proposed 3D embedding approach

while increasing the resistance to steganalysis. The experi-

mental results are described in Section 5 and the conclusion

is provided in Section 6.

2. HIGH CAPACITY 3D STEGANOGRAPHY

The high capacity 3D steganographic algorithm proposed in

[9] utilizes a synchronization technique to guarantee that the

order of the embedded data is the same during the embedding

and extraction stages. Unlike the steganography for digital

images, where the synchronization is based on the existing

sequential order of the pixels in the image, there is no such

evident sequence for vertices of 3D objects.

The steganographic method from [9] builds the Hamilto-

nian path over the complete graph of the vertices in the 3D ob-

ject without using the connectivity information. The Hamil-

tonian path is a unique traversal of all the vertices in the 3D

object, starting from a vertex v0 chosen by a secret key. For

each step, the algorithm chooses the nearest neighbor vi+1 of

the current vertex vi. Finally, a Hamiltonian path Pn is gen-

erated. It is noted that there is a chance that some of the edges

in the path Pn may not exist initially in the mesh. In fact,

the data is hidden whilst simultaneously ensuring its synchro-

nization with the embedded bit order. The message is embed-

ded by changing the relative position of a vertex vi+1 to its

predecessor vi once the vertex vi+1 is added to the Hamil-

tonian path Pn. In order to embed a high bit capacity, the

vertex is displaced along three coordinates in the Spherical

Coordinate System (SCS) which originates in the location of

the vertex’s predecessor. In addition, the algorithm partitions



the edge vector into intervals for each coordinate, controlled

by the parameter ∆. An interval is subdivided into s sub-

intervals which correspond to different words. The vertex is

then moved to the new sub-interval within the interval to em-

bed the corresponding word. The new position of the vertex

is converted back to the Cartesian coordinate system after the

embedding.

The division into sub-intervals can be done by using ei-

ther a uniform or a non-uniform distribution. When consid-

ering the uniform distribution, every sub-interval is of the

same length. Meanwhile, for the non-uniform distribution,

the lengths of the sub-intervals are determined by the prob-

ability of the occurrence of the corresponding words in the

whole secret message, which is coded by the Static Arith-

metic Coding.

In order to prevent the displacement of the vertices chang-

ing the existing Hamiltonian path and to preserve the syn-

chronization of the bit embedding process, a checking stage

is used during the information hiding stage. During the ex-

traction, the Hamiltonian path is built by knowing the starting

vertex v0 and the information is extracted bit-by-bit by de-

tecting the sub-interval where each vertex lies, based on the

knowledge of ∆.

3. 3D STEGANALYSIS

In the study from [9], the distortion of the meshes caused by

the embedding is analyzed by the Peak Signal-to-Noise Ra-

tio (PSNR) [6] and the Mesh Structural Distortion Measure

(MSDM2) [13] which is better correlated with human per-

ception. However, the steganography’s resistance to the 3D

steganalysis was not considered in [9]. The existing image

steganalytic methodology [14, 15] cannot be applied to 3D

meshes, because unlike 3D objects, images are represented

on regular lattices. The first 3D steganalytic algorithm was

proposed in [10]. Then, an improved approach using local

feature set for 3D steganalysis was developed by Li and Bors

[11]. Both these 3D steganalytic approaches are using the

statistics of local 3D features as inputs to machine learning

method algorithms which train the steganalyzer for differen-

tiating the cover and stego 3D objects.

Information embedding in 3D objects only change very

slightly the mesh surface. According to the studies from [10,

11], statistics of localized 3D features can be successfully

used for 3D steganalysis. A 52-dimensional feature vector

was proposed for 3D steganalysis in [11]. Before extracting

the features, Laplacian smoothing is applied to the meshes of

both cover-objects and stego-objects. The features are then

extracted from the original and smoothed meshes. Then, the

first four moments, representing the mean, variance, skew-

ness and kurtosis, of the difference between the geometrical

information of the original and smoothed meshes are used as

inputs for the steganalyzer. The 3D features considered for

steganalysis in [11], include the following: the vertex posi-

tion and norm in the Cartesian coordinate system; the vertex

position and norm in the Laplacian coordinate system [16];

the face normal; the dihedral angle of two neighboring faces;

the vertex normal; the Gaussian curvature and curvature ratio.

4. INCREASING THE RESISTANCE OF 3D

STEGANOGRAPHY TO STEGANALYSIS

In this section, we describe a 3D steganographic method

which increases the resistance of the 3D steganography [9]

to steganalysis. This investigation includes three aspects: the

interval parameter ∆, a different selection of the sub-intervals

s and a different embedding style in SCS.

In the following we analyze the displacement of a vertex

vi in the context of increasing the resistance to steganalysis.

The embedding is applied in the spherical coordinate system,

which is illustrated in Figure 1 (a). We consider the displace-

ment of the vertex along the radial coordinate. Assuming that

the sub-intervals are characterised by uniform distributions,

then the displacement of the vertex in the radial coordinate is

defined as

Dρ =

s
∑

j=1

s
∑

k=1

PjQk|j − k|
∆

s
, (1)

where Pj is the probability of the vertex vi positioned in the

j-th sub-interval, Qk is the probability of the modified po-

sition of the vertex vi being in the k-th sub-interval, and ∆
s

is the length of each sub-interval. We assume that the ver-

tex vi is randomly located in the interval, so that Pj = 1
s

,

j = 1, 2, . . . , s. If the word in the message is uniformly

distributed, the modified position of the vertex vi is accord-

ingly located randomly in the interval, and Qk = 1
s

, k =
1, 2, . . . , s. So equation (1) is simplified as:

Dρ =
∆

3

(

1−
1

s2

)

. (2)

The equations calculating the displacement of the vertex in

the two angle coordinates of SCS are similar to equation (2).

It can be inferred from equation (2) that if the interval pa-

rameter ∆ is decreased, then the displacement of the vertex

will be reduced as well. At the same time, when the number

of sub-intervals s increases, increasing the embedding capac-

ity, the displacement would increase as well. However, the

influence of the number of sub-intervals on the displacement

is very small, because dDρ/ds = 2∆/3s3 is very small when

s is large. According to this analysis, it is worthwhile to make

the interval parameter ∆ as small as possible in order to limit

the effect of the distortions, produced by the information em-

bedding, on those features used for steganalysis.

In the following we analyze the influence of the distor-

tion produced by the information embedding on the features

used for 3D steganalysis. The original version of the HPQ

steganography [9] embeds in all three coordinates of the edge

vector in SCS. However, changes in the two angle coordinates
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Fig. 1. Illustration of the embedding changes in SCS. (a) The

edge vector −−−→vivi+1 represented in SCS as (r, θ, ϕ). (b) The

changes produced by HPQ in the radial coordinate of the edge

vector in SCS.

of SCS, θ and ϕ , may provide a more significant influence on

the steganalytic features than changes in the radial coordinate,

r.

Figure 1 (b) illustrates how the change produced by the in-

formation embedding is only applied in the radial coordinate

of the edge vector
−−→
AB between the vertices A and B. The

new position of the vertex B is B′, which is not moved from

the direction of the edge
−−→
AB. The face normals of the faces

△ABD and △ABE,
−→
Nf(1) and

−→
Nf(2), are not affected by

the displacement of the vertex B. The dihedral angle between

the faces △ABD and △ABE, which is shown in Figure 1

(b), is:

αAB = arccos

−→
Nf(1) ·

−→
Nf(2)

|
−→
Nf(1)||

−→
Nf(2)|

. (3)

The dihedral angle αAB is not influenced by the modification

of the vertex B either. However, the displacement of the ver-

tex B changes the direction of the face normals
−→
Nf(3) and

−→
Nf(4), except when all the faces are on the same flat surface.

In practice, lots of flat regions exist in Computer Aided De-

sign 3D objects. Smooth regions look locally flat in 3D ob-

jects of high resolution. Consequently, the subsequent edge

vector is only slightly affected by the displacement from its

predecessor edge.

It can be observed that any modification of the edge vector
−−→
AB in any of the two angle coordinates of SCS, would result

in changes in the face normals
−→
Nf(1),

−→
Nf(2) and in the dihe-

dral angle αAB . Such features are used for steganalysis and

their modifications would be identified by the steganalyzer.

According to this analysis, the 3D embedding’s resistance

to steganalysis is improved when modifying only the radial

component of a edge vector’s representation in SCS. How-

ever, the edges used by the steganography are generated dur-

ing the construction of the Hamiltonian path, and some of

them may actually not exist in the original mesh. Neverthe-

less, the overlap between the edges of the original mesh and

those in the Hamiltonian path is quite high, so eventually this

issue does not significantly influence the steganalysis result.

5. EXPERIMENTAL RESULTS

In this section, we test the proposed 3D steganography’s re-

sistance to steganalysis. In the experiments, we use 354 cover

3D objects from the Princeton Mesh Segmentation project

[17] database. Then, we set different values for the param-

eters in the high capacity 3D steganography [9] based on the

Hamiltonian Path Quantization (HPQ), and embed the infor-

mation as described in Section 4. The steganalytic features

used for training the steganalyzers are the 52-dimensional Lo-

cal Feature Set (LFS52) proposed in [11]. For each setting of

the information algorithm, a steganalyzer is trained over 260

pairs of cover and their corresponding stego objects and tested

over the other 94 pairs. The machine learning method that we

used to train the steganalyzers is the Fisher Linear Discrimi-

nate (FLD) ensemble [18], which is the most popular method

used in the field of steganalysis. The training and testing sets

are independently split for 30 times, and the median value

of the detection errors is considered as the final result. The

detection error ratio is the sum of the false alarms and miss

detections divided by the size of the testing set.

In order to observe the influence of the interval param-

eter ∆ on the resistance of the 3D steganography based

on HPQ [9] to steganalysis, we set the values of ∆ ∈
{10−4, 10−5, 10−6, 10−7}. The embedding domains are the

three coordinates of SCS. The payload rate is 24 BPV, con-

sisting of 8 BPV for each coordinate of SCS, which means

that the number of sub-intervals is s = 28. The final results

of the detection errors for the steganalysis of the HPQ based

steganography with different values for the interval parame-

ter ∆ are provided in Figure 2. These results indicate that a

smaller value of the interval parameter ∆ leads to a higher

detection error, corresponding to higher resistance to ste-

ganalysis. In the case when ∆ = 10−4, the interval becomes

too large to find enough available edges for embedding, so

the actual payload is less than 24 BPV, which explains why

the detection error goes up.
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Fig. 2. Detection errors for the steganalysis of the high ca-

pacity 3D steganography HPQ [9] when varying the interval

parameter ∆.



Table 1. Median values and the standard deviations of the detection errors for the steganalysis of the 3D steganography (HPQ)

[9] and its variants, ∆ = 10−7.

HPQ (24 BPV) HPQ-PA (8 BPV) HPQ-R (8 BPV) HPQ-R (24 BPV)

LFS52 0.1888 (±.0253) 0.2553 (±.0242) 0.3112 (±.0259) 0.3085 (±.0246)

Dihedral Angle 0.1866 (±.0174) 0.3431 (±.0222) 0.4400 (±.0197) 0.4441 (±.0156)

Laplacian 0.3545 (±.0168) 0.3750 (±.0227) 0.3800 (±.0276) 0.3803 (±.0197)

Curvature 0.3563 (±.0232) 0.3963 (±.0190) 0.4033 (±.0253) 0.4069 (±.0212)

In the following, we provide the steganalysis results for

the high capacity 3D steganography based on HPQ [9] and

its variants designed according to the approach from Section

4. The results are summarized in Table 1, in which HPQ rep-

resents the original method introduced in [9] that embeds in-

formation in all three coordinates of SCS with a payload rate

at 24 BPV, HPQ-PA represents the variant that embeds only

in the Polar Angle coordinate (ϕ) of SCS with a payload rate

at 8 BPV, HPQ-R represents the variant that embeds only in

the Radial coordinate of SCS. For HPQ-R, two payload rates

are considered, namely, 8 BPV and 24 BPV, corresponding

to different sub-intervals s = 28 and s = 224. In all these

methods, the interval parameter is set as ∆ = 10−7.

During the testing, we consider the features from the

LFS52 steaganalytic feature set in order to observe the in-

fluence of embedding in different coordinates of SCS on

the steganlytic features. The “Dihedral Angle” represents

the 4-dimensional feature subset corresponding to the dihe-

dral angles in the 3D objects. The “Laplacian” represents

the 16-dimensional feature subset corresponding to the ver-

tex position and norm in the Laplacian coordinate system.

The “Curvature” represents the 8-dimensional feature subset

corresponding to the curvature information of the vertex as

in [11]. After comparing the steganalysis results for HPQ,

HPQ-PA and HPQ-R, it is obvious that by embedding only

in the radial coordinate of SCS increases the steganography’s

resistance to steganalysis to the largest extent, representing

an increase of more than 12% in the detection error. The di-

hedral angle features are very effective when detecting HPQ,

but they are almost useless when detecting HPQ-R, which

implies that the dihedral angles in 3D objects are quite well

preserved when embedding only in the radial coordinate.

Furthermore, even when the payload is tripled for HPQ-R,

its resistance to steganalysis is only about 0.3% lower than

embedding at the payload rate of 8 BPV.

We also compared the proposed steganography, HPQ-R,

to several other 3D information hiding algorithms, namely,

Multi-Layer Steganography (MLS) [6], the watermarking

algorithm that modifies the Mean of the distribution of the

vertices’ Radial distances in the Spherical coordinate sys-

tem (MRS) [3], Steganalysis-Resistant Watermarking (SRW)

[19], and the original version of HPQ [9], with respect to the

resistance to the steganalysis. The number of embedding lay-

ers is considered as 10 and the number of intervals is chosen
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Fig. 3. Detection errors for the steganalysis of several infor-

mation embedding algorithms in 3D objects when using the

LFS52 feature set for training of the steganalyzers.

as 104 in MLS [6] whose payload rate is nearly 10 BPV. The

payload embedded in MRS [3] is 64 bits and the watermark-

ing strength is 0.04. The parameter K in SRW [19] is set to

128, while the algorithm’s upper bound for the embedding

capacity is ⌊(K − 2)/2⌋ bits. The final detection errors of

the five information hiding algorithms when using LFS52

for steganalysis are shown in Figure 3. It can be observed

that the proposed steganoraphy, HPQ-R, has the strongest

resistance to steganalysis when using the LFS52 to train the

steganalyzers, providing a reduction of 9-15% in the ability

of the steganalyzers to detect the hidden information.

6. CONCLUSION

The contribution of the paper is a rethinking of the high capac-

ity 3D steganography based on the Hamiltonian path quanti-

zation, in order to improve its resistance to steganalysis. We

analyze the influence of the interval parameter and the num-

ber of sub-intervals with respect to the displacement of the

vertex. It is also pointed out that by embedding in the ra-

dial coordinate of the spherical coordinate system we achieve

lower distortions in the steganalytic features when compared

to embedding in the angle coordinates. The experimental re-

sults assess these ideas by testing the proposed 3D steganog-

raphy with the steganalyzers trained with the steganalytic fea-

ture set, LFS52. By increasing the resistance to 3D steganaly-

sis we increase the protection of the information stored in 3D

objects.
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