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Human Group Activity Recognition based on

Modelling Moving Regions Interdependencies

Kyle Stephens and Adrian G. Bors

Department of Computer Science, University of York, York YO10 5GH, UK

E-mail: adrian.bors@york.ac.uk

Abstract—In this research study, we model the interdepen-
dency of actions performed by people in a group in order to
identify their activity. Unlike single human activity recognition,
in interacting groups the local movement activity is usually
influenced by the other persons in the group. We propose a
model to describe the discriminative characteristics of group
activity by considering the relations between motion flows and
the locations of moving regions. The inputs of the proposed model
are jointly represented in time-space and time-movement spaces.
These spaces are modelled using Kernel Density Estimation
(KDE) which is then fed into a machine learning classifier. Unlike
in other group-based human activity recognition algorithms, the
proposed methodology is automatic and does not rely on any
pedestrian detection or on the manual annotation of tracks.

Index Terms—Group Activity Identification, Motion Segmen-
tation, Streaklines.

I. INTRODUCTION

Several algorithms have been proposed for human activity

recognition by considering individual actions. This research

area has a significant importance for video surveillance,

human-computer interaction, semantic annotations of multi-

media, retrieval of video data, among many other applications.

Meanwhile, group activity classification has attracted interest

only very recently, despite being essential in defining the real

intention and the context of human activities. Most of the

human activity recognition methods begin by modelling low

level local features from video sequences, for example using

the Dollar gradient cuboids [1] or histograms of gradients

(HOG) [2]. In other approaches, Baktashmotlagh et al. [3]

applied non-linear stationary subspace analysis to activity

recognition while Ryoo and Aggarwal [4] introduced a method

named spatio-temporal relationship match.

More recently, the main focus of human activity has moved

on from simple human activities to those that are more com-

plex, where the main objective is scene analysis rather than

determining the activities of a single individual. One group of

approaches is to detect abnormalities or uncommon activity

events. The method from [5] modelled the motion patterns

using Gaussian Mixture Models (GMMs) of 3D distributions

of local space-time gradients. Similarly, GMMs of Markov

random fields (GMM-MRF) was used in [6] for abnormal

activity detection. Dynamic texture models [7], which consid-

ers both appearance and dynamics, have also been considered

for abnormal activity detection. An observational system, in

which new activities are identified in the scene, based on a

significant Kullback-Leibler divergence from a dictionary of

activities pre-learnt during the training stage, was proposed in

[8], [9]. In comparison to human activity recognition, group

activity recognition requires more complex descriptions of the

people’s interaction in the group. Ni et al. [10] recognizes

group activities using manually initialized tracklets. Lin et al.

[11] used a heat-map based algorithm for modelling human

trajectories when recognising group activities in videos. Chang

et al. [12] used a probabilistic approach to group human

activity by forming various probabilities depending on the

tracks between individuals using a multi-camera system. Choi

et al. [13] proposed a framework for analysing collective group

activities based on different levels of semantic granularity.

Zhang et al. [14] addressed the problem of group event

recognition by computing histograms of different features

extracted from the tracklets, representing localized movement

in the video. Similarly, Cheng et al. [15] modelled group

activity as a framework composed of multiple layers and

Gaussian defined processes were used for representing motion

trajectories. One common issue with all these methods is that

they rely on either the training of a pedestrian detector for

each scene, or on the manual annotation of tracklets.

In this research study we propose an automatic method for

group activity recognition by modelling the inter-dependant

relationships between features over time. Unlike other meth-

ods, we do not rely on any manual initialisation of tracklets

and instead make use of medium term tracking as provided by

streaklines [16]. Compact moving regions are then segmented.

The interdependency between moving regions is represented

by evaluating the relative movement and location of each

moving region with respect to all the others. Kernel Density

Estimation (KDE) is used to model both time-location and

time-motion spaces, resulting in representing the dynamics

of such interactions. Moreover, the model keeps track of

stationary pedestrians by marking the locations where they

stop moving and considers these locations in modelling their

following movements. We also propose a scaling procedure in

order to compensate for the effect of perspective projection in

video sequences acquired by lowly located cameras of wide

view and compensate in the group activity model for such

effects. Section II describes the features used for representing

moving regions, while how their inter-dependencies are mod-

elled in the context of group activity is explained in Section III.

Section IV describes the classification of group activities.

Section V shows the experimental results and Section VI draws

the conclusions of this research study.



II. GROUP ACTIVITY MODELLING

The proposed methodology for group activity recognition

has several stages, including extracting streaklines, represent-

ing medium-time trajectories of movement, identifying moving

regions and their dynamics, using these for modelling group

interactions, and then finally classifying the sequences into

group activities using Support Vector Machines (SVM). A

block diagram of the proposed method for recognising group

activities is shown in Figure 1.

The first processing stage consists of movement estimation.

One issue that arises from using traditional optical flow is

the difficulty in capturing unsteady movement in scenes with

multiple pedestrians interacting and crossing each other. To

alleviate this problem, we propose the use of a medium-time

movement tracking method such as the streaklines proposed in

[16] which was used in [8], [9] as well. Streaklines correspond

to tracking fluid particles that have passed through a particular

location in the past and its modelling is based on the La-

grangian framework for fluid dynamics [16]. The streakflows

represent the fluid like flow in a scene, enabling the filling of

spatial gaps. Unlike in [16], where streaklines are computed

for each pixel, we associate each streakline with blocks of

pixels of a fixed size by computing the marginal median as

the streakline estimate for each block of pixels. Following this,

we fit a first degree polynomial to each streakline in order

to obtain a smoother representation. This differs from [8],

where the principal direction of movement was obtained from

applying PCA on the vectors forming each streakline. One

issue with the approach from [8] is that it does not consider

the motion consistency over several frames. In the approach

from this study the consistency of the streaklines is enforced

over several frames.

We make the assumption that each compact region of streak-

flows may contain several individual movements, which can

be represented by clusters. Firstly, we begin by segmenting the

streakflow field into distinct moving regions. The Expectation-

Maximization (EM) algorithm, under the Gaussian Mixture

Model (GMM) modelling assumption, is used for segmenting

and modelling each inter-connected region. The number of

clusters and the centres of the Gaussian functions in the EM

algorithm are initialised using the modes of the histogram of

streakline flow in order to improve the convergence. Moreover,

in this study we also address the perspective distortion effects

by using a two-step approach to movement segmentation. Such

effects are evident in the case of video sequences acquired with

wide-angle lens cameras which are located at low heights.

In the first step, the segmentation is performed in order to

estimate the height of the moving objects, which is used to

derive a scaling factor. In the second step, the segmentation is

repeated considering this scaling factor, applied appropriately

to the estimated movement, according to the location of its

corresponding moving region in the scene. A moving region

i is scaled as follows:

si =
1

2hm
(hi +

∑n

j=1 hj

n
) (1)

Where hi is the height identified for each moving region in

the first step, j = 1, . . . , n are the segmented moving regions,

hm is the predetermined overall mean height of all moving

regions and si is the scaling factor for moving region i. This

is repeated for all compact moving regions which are identified

in the scene. The motion Mi of region i is then scaled by a

factor si:

M
′

i = siMi. (2)

Each moving region is therefore represented by a GMM

defined by its characteristic parameters representing its move-

ment and location in the scene. Another issue that is addressed

in this research study is the modelling of people who become

stationary after they have moved through the scene. Under the

optical flow detection and motion model such people would

not be accounted for. To overcome this situation, we propose

to identify when and where people stop moving in the scene.

If no movement is present in a particular region where motion

was previously detected, during p consecutive frames, this

indicates a stationary region that has previously moved. Such

stationary regions are characterised by their location and by

zero motion. Any movements of a person present near the

edge of the scene that subsequently moves out of the scene

is identified and the respective moving region is no longer

considered. Finally, when movement occurs within a bounding

box of the stopped pedestrian, the region is deemed to be no

longer stationary and the new emerging moving region in the

area is activated in the existing group activity model.

III. MODELLING INTERDEPENDENT RELATIONSHIPS OF

MOVING REGIONS

The key characteristics of group activities are often present

in the interdependent relationship between the pedestrians and

moving objects. In this research study we propose to model the

interdependent relationship between the features of each pair

of moving regions detected in the scene. In this section, we

describe how we model four distinct features for representing

group activities: streakflows, streakflow dynamics, locations

and location dynamics.

To begin, we model the interdependent relationship by

evaluating the differences between streakflow models in the

scene for each pair of movingregions. This models the inter-

dependant relationship of the movement of the group at a

particular time instance. We compute the differences between

streakflows, AI(t) and AJ(t) for two moving regions I(t) and

J(t) at time t by:

M(I(t), J(t)) = e−
DSKL(A

I(t)||AJ(t))

σm (3)

where σm is a scaling factor for movement differences and

DSKL(AI(t)||AJ(t)) is the symmetrised KL divergence be-

tween the streakline distribution of moving regions I(t) and

J(t) at time t. This results in a value within the range

[0, 1] which models the difference between two streakflow

models, each characterising the movement of one region

in the scene, associated to a moving person. For example,

individuals moving in completely different directions will have



Fig. 1. Overview of the proposed group activity recognition approach

M(I(t), J(t)) = 0, whilst individuals moving in the same

direction and at the same speed will have M(I(t), J(t)) = 1.

The differences are computed by considering all pairs of

moving regions in the scene at a particular time t by using

equation (3). These are then concatenated to form a vector

representing the inter-dependant group relationship of the

streakflows at a particular time t.

We also model the dynamic changes of differences between

moving regions over subsequent frames by computing the

differences between all streakflow models at time t and those

identified at time t + n. These are computed as in equation

(3), except that the models are now across subsequent sets

of frames instead of at the same time instance. A vector

of streakflow differences representing all the inter-dependant

relationships of streakflow models between the time instances

t and t+ n is then formed.

The distributions of relative locations for the people from

the scene, both moving or stationary, is modelled similarly

by considering differences between the GMM representing

the spatial-location of their corresponding moving region. The

means will approximate the centres of moving regions, whilst

the variance will provide some characteristics of the size

and shape of the region. Similarly to the streakflows, the

differences between such location GMMs are then computed.

Given two location GMMs CI(t) and CJ(t) for moving regions

I(t) and J(t) at time t, the differences between their locations

can be computed by:

D(I(t), J(t)) = e
−

DSKL(C
I(t)||CJ(t))

σl (4)

where σl represents the characteristic scale parameter for

locations. Similarly to the streakflow model, this provides a

value in the range [0,1] representing the spatial relationship

between the two moving regions. For example, individuals

characterised by moving regions I(t) and J(t) at time t,

located far apart, will have D(I(t), J(t)) = 0, whilst indi-

viduals located close together will have D(I(t), J(t)) = 1. A

vector, representing all the inter-relationships of locations for

the group activity at time t, is then formed.

Similarly to the streakflow model, the dynamics of the

locations over time is computed as well. The dynamic changes

of differences over subsequent frames are computed by the dif-

ferences between all location points at time t and all location

points at time t+ n using equation (4). A vector representing

the moving regions location differences, representing all the

inter-dependant relationships of location points between time

t and t + n, is then obtained. These movement models are

illustrated in Figure 2.

a) Base model b) Dynamic model

Fig. 2. Modelling the inter-dependencies of moving regions in both space
and time.

One further issue that arises when computing such differ-

ences is that the rate of movement change and the rate of

location change are not clearly characterised. For example,

when using the dynamics in both movement and locations

alone, the dynamics between walking and running activities

may appear quite similar. In order to avoid this situation we

consider the background as an additional region for both the

streakflow and the location models. In the former case, the

background object is defined as the GMM model comprising

of all the motion in the scene that does not belong to a

moving region (often zero motion if the camera is stationary).

In the latter case, the location object is defined as the GMM

representing the centre of the scene. By adding the background

model, the change in both motion and location relative to the

background represents the absolute movement in the scene. In

the case of camera movement, such a model would account

for this. Given a streakflow background model AB(t), at time t

the difference between the streakflow model AI(t), for moving

region I(t), at time t, and the background B(t) is computed

as:

M(I(t), B(t)) = e−
DSKL(A

I(t)||AB(t))

σm (5)

Similarly, given the centre point CB(t) defined as the location

of background model B(t) (the centre of the scene) at time t

and the location model CI(t) for moving region I(t) at time

t, the difference is computed as:

D(I(t), B(t)) = e
−

DSKL(C
I(t)||CB(t))

σl (6)

Such differences are then computed between every region

in the scene and the background model B(t). Finally, the

vector of differences in both cases are concatenated with the

vector representing the other pairwise movement and location

differences, corresponding to the pairs of moving regions.



IV. GROUP ACTIVITY CLASSIFICATION

To model the change in feature relationship over the whole

sequence, we propose to use bi-variate Kernel Density Estima-

tion (KDE). KDE would provide smoothing on the dynamics

of feature changes over time increasing the robustness of the

group activity model. We form two column matrices where

the motion and location interdependences for each pair of

moving regions are represented along the first column and

their corresponding time instances are located in the second

column. This matrix representation is used for each feature

representing streakflow, streakflow dynamics, locations and

location dynamics, separately. The bi-variate kernel density

estimation is applied over a fixed grid size of K ×K, given

the normalized matrix data.

By using a fixed grid size, video sequences of different

lengths will be normalized in length. This helps to normalise

the difference in speeds at which the activities are performed.

The grid size is a important parameter in the density estimation

as a too small grid would result in over-smoothed feature data

and consequently important characteristics in the relationship

features may be lost. If the grid size is too large, then the data

will appear too sparse and would not model well the under-

lying pattern of the data. The kernel for density estimation is

assumed to be Gaussian. The bandwidth parameters of the bi-

variate Gaussian kernel are used to help control the smoothing

effects of the kernel density estimator.

The densities computed over the fixed grid are used as the

defining feature vector representation for the group activity.

Such densities are computed independently for each dimen-

sion, representing the relationships of the moving regions in

the movement, movement dynamics, location and location dy-

namics, respectively. Finally, the feature vectors representing

each activities are used to train a Support Vector Machine

(SVM).

V. EXPERIMENTAL RESULTS

For all experiments, we follow the same recognition routine.

Firstly, the streakflows are extracted for each set of frames

as in [16] and the moving regions are segmented based

on the streakflows aiming to obtain compact inter-connected

regions. Streakflows and their location are calculated for the

moving regions in each set of frames. The features of the

moving regions are then modelled by the differences between

all pairs moving regions across the given set of frames.

The dynamic changes of the features are modelled by the

differences between all moving regions in one set of frames

and the following set. Finally, the vector of differences for

each set are used to form a two column matrix with differences

along the first column and the time instance along the second

column. KDE is applied on a fixed grid size using the data

from the feature matrix. The features are then represented

by their density estimation obtained from applying the KDE

with the difference in movement and location features along

one axis for the same timing, while the differences between

such features at two different time instances are located along

the other. This procedure is repeated for the dynamic model.

Finally, the densities are used as features to build a classifier

and the recognition decisions are taken by a Support Vector

Machine (SVM) with RBF kernel.

Unlike in human activity recognition, the number of group

activity datasets are quite limited, and in this study we present

results on the NUS-HGA dataset [10]. This data set consists of

six different group activities collected in five different sessions,

each session representing the actions of various actors taking

place in a road area located between office buildings. In total

there are 6 group activities with 476 video sequences in total.

To begin, streaklines are extracted for blocks of size 14× 14

over 10 consecutive frames. The motion filter described in

Section II is placed over each set of 5 frames, where motion

must be present in 3 out of 5 image frames. The motion is

segmented as described in Section II and each moving region is

represented by its streakflow Gaussian Mixture Model (GMM)

and its location GMM. Figure 3 shows an example of the

estimated streakflows, motion histograms, and the moving

region segmentation for the fight activity from the NUS-HGA

dataset. In this particular activity, movement is very intense

and very chaotic. In Figure 3b the solid green bars correspond

to peaks of the histogram, while the solid red bars are entries

with the height below 15% of the maximum bar height which

are removed. The moving regions are well segmented and

the small regions obtained in region 1 of Figure 3d help

characterise the smaller atomic events performed in the group,

for example pushing or kicking which usually happens during

the fighting activity.

Following the initial movement segmentation, the motion in

each moving region is scaled according to the height of the

region using equation (2). The segmentation is then performed

for the second time using the scaled motion. Following the

second movement segmentation step, the stationary pedestrian

detector is applied as in Section II where the number of prior

frames is set to p = 25. We define the boundary parameter

from Section II as 10% of the region size. Two examples

of detecting stationary pedestrians are shown in Figure 4 for

the talking and gathering activities. In Figures 4a and 4c the

pedestrians are still moving and therefore their corresponding

moving regions are properly detected. In Figure 4b and 4d the

individuals have stopped but their stationary regions are prop-

erly detected by the stationary pedestrian detector procedure.

The streakflow movement model, streakflow dynamics,

location and location dynamics relationship differences are

computed as in Section III, considering the scaling parameters

σm = 15, σl = 550 for motion and location differences

respectively, and σm = 17.5, σl = 650 for the motion

and location dynamics. The size of the number of frames,

considered for the dynamic window from Section III, is set to

n = 13. The data is represented by a 2-column matrix over

time as described in Section IV. KDE is applied over a fixed

grid size using the 2-column feature matrices as input data. In

this study, we use the bivariate KDE method proposed in [17]

which is based on using linear diffusion processes. The KDE

methodology from [17] assumes the kernel to be Gaussian and

uses a bandwidth selection method such that the bandwidth



a) Streakflows b) Histograms of flow c) Inter-connected regions d) Moving regions after segmentation

Fig. 3. Example of streakflows, histograms of flow and the moving regions before and after segmentation on a fight sequence from the NUS-HGA dataset.
In b) ”n” refers to the number of histogram peaks.

a) Talk activity (moving) b) Talk activity (stopped)

c) Gather activity (moving) d) Gather activity (stopped)

Fig. 4. Identifying when pedestrians stop during the video frames showing
gathering and talking activities from the NUS-HGA dataset.

Fig. 5. Recognition results as K is varied when using KDE and histograms.

parameters are automatically selected depending on the data.

The bivariate kernel density estimation is computed over a

fixed grid size of K × K. In our experiments, we examine

the difference in recognition results as K is varied for KDE,

when compared to histograms of the same size. Figure 5 shows

the difference in recognition results between the histograms

and KDE for grid sizes of 4, 8 and 16. In all three cases, a

notable improvement can be seen when the KDE is used. We

use the value K = 16, because the results do not improve

further when increasing K, despite a higher computational

complexity of the required processing. Representations of the

PDFs are shown in Figure 6 for both motion and location.

The walking motion shown in Figure 6a has a difference value

close to 1 for the entire sequence, this implies that the motion

is all quite similar, which is expected of the walking in group

activity. The gathering motion shown in Figure 6b displays

a variety of difference values, which is expected as some

individuals are gathering coming from different direction. The

walking activity location differences shown in Figure 6c are

all close to 1. This implies that the individuals are tightly

grouped, which is expected in the walk group activity. The

gather activity location differences shown in Figure 6d display

clear transitions between locations far apart to locations close

together towards the end of this activity. This is expected,

as the gathering activity involves individuals coming from a

distance towards gathering in a small group at the end of the

activity.
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Fig. 6. KDEs for the motion and location differences of activities from the
NUS-HGA dataset.

For classification purposes, the density estimations are sub-

sampled and fed to the classifier independently. The results are

then combined to form a discriminant model as the motion and

location features are often complimentary. For the classifier

we use SVM with the RBF kernel, considering the parameters

C = 2.8284 and γ = 0.0019531. For all experiments, we

follow the evaluation protocol described in [10], where the

NUS-HGA dataset is split into 5-fold training and testing

and the performance is evaluated by average classification

accuracy.
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Fig. 7. Confusion matrix showing the recognition results when the combina-
tion of all four features are used is 98%

TABLE I
RECOGNITION RESULTS ON THE NUS-HGA DATASET

Method Result (%)

Localized Causalities [10] 74.2%
Group interaction zone [18] 96.0%
Multiple-layered model [15] 96.2%

Motion differences 86.2%
Location differences 87.1%
Motion dynamics 91.6%
Location dynamics 92.6%
Motion and location differences 94.5%
Motion and location dynamics 97.1%
Combined differences and dynamics 98.0%

A comparison of the results when compared to the state-

of-the-art in group activity recognition is shown in Table I.

The location features provide a better recognition result than

the motion features while the results for the dynamics models

for motion and location emphasise their importance for group

activity recognition. The combination of all features provides

the best overall result of 98%. We should remark that the

group interaction zone method from [18] does not evaluate

the results using the 5-fold training and testing as suggested

in [10], therefore slightly different results are expected from

their method. In comparison to the state-of-the-art methods,

we achieve a clear improvement in results of about 2%, while

using a fully automated method.

VI. CONCLUSION

In this paper, we present an automatic approach for group

activity recognition. We propose a model to describe the

discriminative characteristics of group activity by considering

the relations between motion flows and locations of moving

regions in the scene as well as their dynamics in time. We

also propose a scaling method to compensate for the effect of

perspective projection in video sequences taken by cameras

with wide angles located at low height. Moreover, we propose

a stationary pedestrian detector to keep track of stationary

pedestrians by marking the locations where they stop moving.

Kernel Density Estimation (KDE) is used to model both

time-location and time-motion spaces for representing such

interactions. Experimental results show the effectiveness of the

approach, without relying on any manual annotation of tracks

like in other approaches.
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