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The CCP4 (Collaborative Computational Project, Number 4) software suite for

macromolecular structure determination by X-ray crystallography groups brings

together many programs and libraries that, by means of well established

conventions, interoperate effectively without adhering to strict design guide-

lines. Because of this inherent flexibility, users are often presented with diverse,

even divergent, choices for solving every type of problem. Recently, CCP4

introduced CCP4i2, a modern graphical interface designed to help structural

biologists to navigate the process of structure determination, with an emphasis

on pipelining and the streamlined presentation of results. In addition, CCP4i2

provides a framework for writing structure-solution scripts that can be built up

incrementally to create increasingly automatic procedures.

1. Introduction

CCP4 (Collaborative Computational Project, Number 4)

began in 1979 as a forum for collaboration between academic

macromolecular crystallography (MX) software developers.

Today, it is best known for supporting and releasing a suite of

programs (Winn et al., 2011) that have been contributed by a

wide range of developers, and for organizing meetings and

workshops that are particularly geared to educating inexper-

ienced crystallographers. CCP4 has several permanent staff

who ensure that the software suite is robust, multi-platform,

easy to install, regularly updated and well documented. They

provide online support and training workshops, and maintain

an active peer-supported bulletin board.

Prior to about 2003, crystallographers using the program

suite normally had to use the command line and scripting to

run the programs. CCP4i (Potterton et al., 2002), the first

widely used graphical user interface (GUI) to the suite,

simplified and expedited use of the suite and provided tools to

view files and to track the structure-solution process in a

database. Similar graphical interfaces for MX programs

include HKL2MAP (Pape & Schneider, 2004), HKL-3000
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(Minor et al., 2006) and PHENIX (Echols et al., 2012).

A different approach, which provides a graphical view of

electron-density maps and models with interactive tools

geared mostly to model building, is used in Coot (Emsley et al.,

2010).

The graphical interface in CCP4i, based on the poorly

supported Tcl/Tk toolkit, is now out of date, and consequently

the time is right for the CCP4i2 project to provide an alter-

native automation and GUI system, informed by more

modern GUI principles and the lessons learned from the

implementation of CCP4i. The key

objectives are to provide high-level

tasks that automate the main stages of

structure solution and to remove the

need for specialized knowledge of file

formats, program input, program log-

file organization and so forth. Within

CCP4i2 the workflow and the scientific

decisions that control the tasks and

display the task results are designed to

be as transparent as possible, and care

has been taken to keep the underlying

data accessible. A key objective for

CCP4i2 is to improve accessibility for

inexperienced crystallographers,

enabling straightforward structure

solution using a default approach, with

clear reports and documentation

allowing users to understand the

process and investigate results. We have

also sought to enable more experienced

crystallographers to fine-tune each step

to address more difficult problems.

Key information about the structure-

solution process is captured in a data-

base, which maintains a record of all of

the jobs run and all of the data imported

and generated.

1.1. The user interface

CCP4i2 comprises three main

elements: a database-backed project/

job-management system, a scripting/

reporting framework and a graphical

user interface to these elements. The

majority of a user’s experience of a

software suite is determined by its user

interface, and this is described here. The

user is encouraged to organize their

work into projects: typically, one project

might result in one solved structure. The

user views the status of a project

through a project window, as shown in

Fig. 1. The left-hand side of this window

is the ‘job list’, a nested list of all jobs

and data objects associated with the

project, and the right-hand side is initially a ‘task menu’, a list

of all available tasks organized into modules corresponding to

the stages in structure solution. When the user chooses a task

from the menu, the menu is replaced by the appropriate ‘task

input’ frame. When a job has been executed, the ‘task input’

frame is replaced by a ‘report’ frame which presents the results

from the task. For longer running tasks the ‘report’ frame will

be updated continuously while the task is running.

The ‘Input’ usually has several tabs, with the topmost tab

being labelled ‘input data’ and allowing the user to select the
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Figure 1
Three views of the project window. (a) The task menu. (b) A task input frame.



input data for the task. The other tabs provide control over

different aspects of the task, but typically the user only needs

to select sufficient input data for the task, which will then run

with sensible default parameters. All data objects (coordi-

nates, reflections, phases etc.) are stored in discrete files, but

the database maintains a user-editable label for each file,

which is intended to be more meaningful than the file’s path in

the filesystem. The crystallographer using CCP4i2 is encour-

aged to think in terms of a ‘data object’ rather than a ‘file’: the

user need only be concerned with the data content, as the

software will handle file storage in the background. The

widgets to select input data all have a similar appearance

(Fig. 2), with a drop-down menu that lists the labels of any

appropriate data that are already present in the project. Such

data must have been either imported or created by a previous

job in the project. In many situations defaults are selected

automatically, being the data from the most recently run job.

There are buttons to the right of the drop-down menu to

download data from web servers, to select data from other

projects in the CCP4i2 database or to import files from the

local filesystem. On the left of the widget is the ‘icon button’,

with an icon indicating the type of data and an associated

contextual menu to access documentation as well as func-

tionality to display, copy or paste data. The contextual menu

offers additional functionality specific to

the given data type, such as selecting a

limited set of atoms from a coordinate

data object.

Tasks are designed to require

minimal user input. Where input is

essential but not yet provided by the

user, the corresponding widget is high-

lighted in red. Similarly, control para-

meters provided by the task interface

are validated against developer-speci-

fied criteria, with inappropriate input

highlighted in red and execution of the

task prevented until inconsistencies

have been addressed. The interface is

dynamic in that the available detailed

options may be updated dependent on

the user’s data selection.

All files and jobs have a label

assigned by default. However, the user

may edit these labels to make them

more meaningful and descriptive, which

may aid them when reviewing the

project in the future. There is also a

‘Comment’ tab next to the ‘Input’ and ‘Results’ tabs where the

user may enter more detailed comments on a specific job.

The job list (Fig. 3) shows all of the jobs associated with the

project, listed with the most recent first and with icons indi-

cating status (for example ‘pending’ or ‘running’). Many jobs

have an associated ‘evaluation’, for example the R values for

refinement. There is also a column for icons indicating the

user’s manual evaluation such as ‘best’, ‘good’ or ‘rejected’.

Jobs are presented hierarchically in a tree-view widget: the

disclosure triangle of each job can be clicked to reveal ‘sub-

jobs’ spawned by the parent job, and data objects imported or

generated thereby. Each entry in the tree view (job, sub-job or

data object) has an associated contextual menu which

provides access to relevant functionality. For jobs and sub-jobs

this functionality may be, for example, viewing associated log

files, while for data objects it may enable opening in a suitable

viewing utility. Thus, the user can drill down to see the details

of a particular job. CCP4i2 makes use of other graphical

viewers to display the contents of files. The CCP4 program

qtRView displays program log files. ViewHKL (Krissinel &

Evans, 2012) is used to view MTZ experimental data files.

Coot (Emsley et al., 2010) and CCP4mg (McNicholas et al.,

2011) are used to view maps and coordinate files. A ‘project

directory’ tab next to the ‘job list’ tab displays the contents of

the file-system directory in which the job was executed,

providing access to information that may be of interest to

software developers or expert users.

Extensive documentation for CCP4i2 users and developers

is provided with the program and on the CCP4 website. The

documentation includes an introductory ‘Quickstart’ tutorial

(also available as a YouTube video at https://www.youtube.com/

watch?v=fB7BRVzBURg), discussion of the different types of

data used in CCP4i2 and comprehensive documentation on all
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Figure 2
Fragment of a typical task input showing the widgets to select data
corresponding to ‘Reflections’ and ‘Phases’.

Figure 1 (continued)
Three views of the project window. (c) A task report.



of the tasks, explaining both the task-input options and the

reports.

2. Overview of implementation

CCP4i2 is written in the Python scripting language (http://

www.python.org). This was chosen, at least partly, to enable

easier collaboration with other major macromolecular crys-

tallography packages. The huge variety of libraries both

bundled with Python and available as easily installable third-

party add-ons has made it an attractive choice for many

projects. The graphical toolkit used in CCP4i2 is Qt (https://

www.qt.io/), which has a Python interface provided by the

PyQt project (https://riverbankcomputing.com/software/pyqt/

intro). Several other Python language software tools are used

as listed in Table 1. The SWIG system (http://www.swig.org)

has been used to provide a Python interface to scientific C++

libraries used in CCP4, including the model coordinate library

MMDB (Krissinel et al., 2004) and the crystallographic library

Clipper (Cowtan, 2003). All of these tools are collected

together as a bespoke Python distribution, termed ccp4-

python, which is distributed as part of the CCP4 suite. ccp4-

python is available for the three most widely used desktop

platforms (Windows, MacOSX and Linux) and provides an

excellent range of tools that allow developers to distribute

software for which the CCP4 distribution provides all essential

dependencies. Both the graphical interface and the scientific

scripts are written in Python so they both have access to ccp4-

python and the data model and the range of scientific func-

tionality that are encoded in CCP4i2.

The CCP4i2 software comprises two components: the ‘core’

software which provides the framework including the

graphical interface, database and data model, and the ‘tasks’

that encode the scientific functionality and usually provide a

‘wrapper’ around the computational crystallography programs

included in the CCP4 suite. Each wrapper generates the

appropriate inputs for the wrapped program, runs the

program and handles the program outputs. Some crystallo-

graphic software in the suite is directly accessible via a Python

interface so that the ‘wrapper’ script can use this interface

rather than wrapping and executing a separate program. The

programming interface to a wrapper script is a set of Python

functions with strictly defined interfaces, which means that

‘pipeline’ scripts can straightforwardly be generated by

combining multiple wrapper scripts and so running multiple

different programs. Within CCP4i2 both wrappers and pipe-

lines are referred to as ‘tasks’. The consistent Python interface

to the tasks also aids in creating consistent graphical interfaces

with minimal programming effort. The tasks deal with idio-

syncrasies of the individual programs and also encode a large

amount of crystallographic expertise to promote the optimal

use of the CCP4 software by inexpert crystallographers. The

fundamental idea of providing a consistent Python interface to

‘tasks’ is in common with other structure-solution systems

such as PHENIX and xia2, and makes interfacing to software

developed in these systems feasible.

The tasks have been implemented by many different

developers with expertise in different aspects of structure

solution, covering the complete structure-solution process

from processing data to validation and analysis of the final

structure. Although most tasks are

running nongraphical programs, there

are certain tasks that run interactive

software such as Coot and CCP4mg.

The integration of these programs into

the CCP4i2 framework makes their use

less error-prone, simplifies movement of

data between applications, and creates a

permanent record of the data and files

that are used and created during that

process.

The key advance in CCP4i2 over

CCP4i (and the similar PHENIX GUI)

is the clear tracking of all data in a

project. This not only improves the user

interface, but importantly also serves as

a long-term record of the structure-

solution process. Data tracking is made

possible by implementing a data model,

a clear definition of all of the types of

data used in each step of the process,

and by maintaining a robust database.
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Table 1
Third-party Python libraries bundled in ccp4-python and used in CCP4i2.

Python library Function URL

lxml Handling XML files http://lxml.de
numpy Scientific computing http://www.numpy.org
matplotlib Two-dimensional graph plotting https://matplotlib.org
paramiko Inter-machine communication http://www.paramiko.org/
psutil Access operating-system utilities http://pypi.python.org/

pypi/psutil

Figure 3
A job list showing that two jobs have been run in the project (‘Data reduction’ and ‘MOLREP’) and
the sub-jobs and files associated with these jobs.



In the data model each data type is represented by a Python

class. The classes cover a range of complexity, for example

CInt, an integer; CCell, crystallographic unit-cell para-

meters; CMtzDataFile, a reference to an MTZ data file; and

CEnsemble, a full description of an ensemble of models for

input to molecular replacement. The Python data classes

provide many utility functions. For example, CMtzDataFile

has functions to return information from the MTZ file. For

each data class there is an appropriate graphical widget that is

used in the interface. All tasks have input and output data

clearly defined in terms of the Python data classes so that data

can be passed seamlessly between tasks. The input and output

data are saved in conventional file formats [for example PDB

(Callaway et al., 1996) or CIF (Westbrook & Fitzgerald, 2009)

for model coordinates, MTZ for reflection data] and internally

the CCP4i2 data class only keeps track of the name of the file

and not the actual scientific data.

The database keeps a record of all jobs run and all files

used. The key data in the CCP4i2 database are ‘projects’,

‘jobs’, ‘files’ and ‘file uses’. A job corresponds to an instance in

which a CCP4i2 task is run. Each job is associated with one

project. For each job all of the output data (a ‘file’ in the

database) and input data (a ‘file use’ in the database) are

recorded.

Each CCP4i2 project has an associated directory structure

in which all files associated with the project are saved in a

strictly organized fashion. A copy of any file imported into the

project is always saved in the project directory and all files

associated with any given job are automatically saved in a

subdirectory for that job.

2.1. The data model

CCP4i2 has clearly defined data types, and all data and

parameters in the interface and scripts must be of one of the

defined types. This approach enables easier transfer of data

between different tasks and between the graphical interface,

scripts and database. Each data type is represented by a
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Figure 4
Examples of code. (a) Definition for cell angles. (b) Definition of a class to handle cell parameters. (c) The CSpaceGroupCell class. (d) Task input for
refinement using REFMAC5.



Python class that provides relevant functionality, and each

data type has an associated graphical widget so that the user

sees a consistent representation.

CCP4i2, as far as possible, guides the user to input appro-

priate parameters and warns if inputs are invalid or missing.

Task developers can associate criteria with each control

parameter of a task. Examples of such criteria include a

minimum allowed value, a maximum allowed value, a default

value and whether the value can be left undefined. These

criteria are stored in the qualifiers property of the

CCP4i2 data classes and can be set for each instance of the

class representing one task parameter. Most qualifiers are

relevant for data validation or representation in the user

interface. An example of the former: a CInt (integer) can

have specified max and/or min qualifiers which define an

allowed range for the integer. Examples of the latter are the

guiLabel and toolTip qualifiers that specify the default

label and ‘pop-up’ help for the parameter.

The basic data classes are CInt (an integer), CFloat (a

floating point number), CBoolean (a Boolean), CString (a

string) and CList (a list). More specific data classes can be

subclassed from these; for example, the definition for cell

angles (Fig. 4a).

Here, CCellAngle is derived from CFloat with max and

min qualifiers set so that the validity checking in the

CFloat.validity() method will flag an error for a value

outside the allowed range of 0–180�. The default is None since

there is no reasonable ‘best guess’ value and the toolTip

which will appear on the user interface reminds the user that

the value is in degrees. The only additional code for the class

are the methods getRadians() and setRadians(),

which enable the input and output of a value in radians.

More complex data can be composed from multiple basic

data classes; for example, all that is necessary to define a class

to handle cell parameters (Fig. 4b).

Here, CCell is derived from CData, which is the base class

for complex data and provides generic functionality and

CONTENTS is a dictionary specifying the cell parameters a, b,

c, �, � and �. Each of these components has a class specified,

and the toolTip qualifier is also redefined to inform the user

which component in the cell it is. No more code is necessary

to define the CCell class; when it is instantiated the

CData.build() method builds the data structures based on

the CONTENTS definition and all essential functionality is

inherited from CData.

There is also a CSpaceGroup class which is derived from

CString but has an important validity() method to

check that the space group is valid and a fix() method

which, amongst other things, will ‘fix’ a value input in an

alternative space-group convention by converting it to the

Hermann–Mauguin convention. The next level of complexity

is the CSpaceGroupCell class, which is composed from

CCell and CSpaceGroup (Fig. 4c).

The CSpaceGroupCell.validity() method first calls

CCell.validity() and CSpaceGroup.validity() to

ensure that the components are valid and then checks that the

cell parameters are appropriate for the space group.

Classes to handle all data used within CCP4i2 are built up

following similar principles to the cell and space-group

examples. For each data class in CCP4i2 there is a graphical

widget to represent the data in the graphical user

interface.

The most important classes are those that handle data files.

All data used in CCP4i2 are saved in files which are usually in

the conventional formats such as PDB or mmCIF for model

coordinates and MTZ for experimental data. The CDataFile

class handles the reference to the file and has subclasses such

as CPdbDataFile for model data and CMtzDataFile for

experimental data. Use of a particular data-file class indicates

that the corresponding data object is of a particular type, but

the file-handling classes also have concepts of file ‘subtype’

and ‘file contents’ which can give more information such as

whether reflection data are in the form of structure-factor

amplitudes or intensities, and whether a coordinate file

contains a full model, a fragment of the structure, heavy atoms

or a homologue. Although these categories cannot always be

clearly defined, they can be useful in guiding the selection of

appropriate files for a particular task. When the data file is

recorded in the database, its filetype and the subtype and file

content are also recorded. Thus, the descendants of the

CDataFile have properties that define those metadata of the

file that are relevant to its use in CCP4i2.

CDataFile classes provide an application programming

interface (API) to access the actual data in the file. The

accessible data are limited to those which have been found to

be useful for the CCP4i2 interface or scripts. Access to the files

is often via Python interfaces to the usual CCP4 C++ libraries

such as MMDB for coordinate files and Clipper for MTZ files.

A major change in CCP4i2 is in the way that experimental

data are handled. The MTZ file format is designed to hold all

possible types of experimental data (such as structure-factor

amplitudes, phases and free R flags) with one set of data per

column in the file. Multiple columns are needed for some data,

for example intensities, and their errors comprise two columns.

Most programs in the CCP4 suite expect only one input MTZ

file and will output one MTZ file that is a copy of the input file

with new data appended in additional columns. To use these

programs through older interfaces such as CCP4i, it is

necessary for the user to select an input MTZ file and then

specify which columns from the file are to be used. This was a

two-step process, which has now been simplified to one step in

CCP4i2 by organizing the data within a separate ‘mini-MTZ’

for each self-sufficient set of data. The different mini-MTZs

contain between one and four columns of data. There are four

types of mini-MTZ.

(i) Reflection data: the merged structure-factor amplitudes

or intensities, either in anomalous pairs of reflections or mean

values.

(ii) Phase probability distributions, represented either as a

phase with an associated figure of merit (FOM) or as

Hendrickson–Lattmann coefficients.

(iii) Map coefficients, corresponding to a weighted structure-

factor amplitude and associated phase.

(iv) Free R flags.
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Both reflection data and phases have alternative repre-

sentations which are interconvertible, although some repre-

sentations carry more information and thus are preferred.

CCP4i2 has tools to interconvert representations and will do

so automatically for input to any program that can only handle

a particular representation. Since most programs still expect

only one MTZ input file and output only one MTZ file, the

CCP4i2 wrapper scripts merge the mini-MTZs into one input

file before invoking an underlying program, and extract the

useful new data from the output MTZ file when the program

has finished. Although traditional MTZ files are still created

by various CCP4 programs ‘under the hood’ and are

converted to and from mini-MTZ files when required, the user

should only see the widgets that correspond to data types in

CCP4i2 and need only be exposed to the traditional many-

column MTZ file when importing an MTZ file from outside

CCP4i2 or when exporting data, for example at the end of the

project for deposition. Using mini-MTZs rather than tradi-

tional MTZ files that can have large sets of redundant data

should help to reduce disk-space requirements when using

CCP4i2, but this saving is also dependent on a cleanup

mechanism that removes redundant working files (often large

MTZ files) and intermediate files from pipelines with multiple

steps.

2.2. Database

All of the key scientific data for a project are saved in files in

the project directory, but a relational database is used to keep

a record of these files and their provenance. A full record of a

project comprises the project directory and the database

contents specific to the project, and this full record can be

exported and imported as a single bundle, as described below.

The current implementation of the database is based on

SQLite v.3 (https://www.sqlite.org/) accessed via the Python

sqlite3 interface (https://docs.python.org/2/library/sqlite3.html).

The key advantage compared with most other relational

database-management systems is the licensing, which permits

free distribution as part of the CCP4 suite. SQLite is not a

client–server system but is embedded in the CCP4i2 software.

This means that each database file is effectively only accessible

to one CCP4i2 user. In the future, we anticipate that CCP4i2

will support a multi-user client–server database; the CCP4i2

database interface has been written with this in mind and

should be easily portable.

Some of the key data tables in the database are listed

in Table 2. Each item in each table has an automatically

assigned UUID (Universally Unique IDentifier, http://

pubs.opengroup.org/onlinepubs/9629399/apdxa.htm), which is

used for cross-referencing with items in other tables.

Each project is associated with one user and has a user-

given name and recorded project directory. In the database

schema a project has one owner and other users can have

varying levels of access. This multi-user access is not available

in the present SQLite implementation, but it will be useful

when a client–server system is implemented. Projects can be

organized into a hierarchy, and to support this property each

project may have a parent project.

All jobs are associated with a project and are recorded with

the task name, the current job status (e.g. ‘running’ or

‘finished’) and an editable title. Pipeline tasks with the

corresponding subtasks are recorded in the database with the

parent job identifier (the parent’s UUID).

A record for each file that is imported or created in the

project is entered into the database. The record contains the

file’s path, type, any user annotation and content (as explained

above). Whenever a file is used as input to a job, it is recorded

in the ‘file use’ table. Besides the annotations of projects, jobs

and files that are saved in the database, for many tasks key

progress parameters such as ‘percentage built’ or ‘R factor’ are

recorded in the database. These parameters can then be

rapidly retrieved and displayed in the job list as a quick

reference for users.

All access to the database is via a Python API, the CDbApi

class, which provides tools to create, modify, delete and query

items in each table in the database. There are also more

customized tools for frequently used functions, particularly for

the common queries needed to support the graphical user

interface. The database is important in controlling the running

of a job and for communication between the graphical front-

end process and jobs running in background processes. When

the user creates a new job in the interface, a job is recorded in

the database with status ‘pending’. When the user runs the job

the parameters set in the interface are written to a file named

input_params.xml in the corresponding job directory and

the job status is changed to ‘queued’. The job controller

module, CJobController, polls the database for queued

jobs and, provided that loading limitations are not reached,

will start a new nongraphical process by running the runTask

script with the input_params.xml file passed as an
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Table 2
The key tables in the CCP4i2 database.

Main database table Represents Key data

Users CCP4i2 user User name
Projects The structure-solution project User ID, project name, directory, parent project
Jobs A job or sub-job Project ID, parent job ID, task name, status, job title
Files Files imported or created in the project Job ID, file path, annotation, file type, subtype, file content
File uses File input to a job File ID, job ID
Import files Source of a file that was imported to the project File ID, source file path, annotation
Job key values Key progress data for job Job ID, data type, data value
Comments User comment on job User ID, job ID, text
Project comments User comment on project User ID, project ID, text



argument. The job status is then updated to ‘running’. The

nongraphical process will update the database when the job

finishes and will record the status as ‘finished’, ‘failed’ or

‘unsatisfactory’; the last of these statuses means that although

there was no obvious failure, the task did not generate a useful

result. If the running job is a pipeline with sub-jobs then the

sub-jobs and their output files are recorded in the database.

When a job finishes, the job parameters are written to a

params.xml file; this is usually very similar to the

input_params.xml file but has the corresponding ‘output

data’ section populated. The contents of params.xml is also

passed to the database API CDbApi.gleanJobFiles(),

which scans for output file and job key data, which are loaded

into the database. The input_params.xml and

params.xml files serve as communication between the

graphical interface, script and database, and remain in the

project directory as a backup. This entire job-recording

mechanism works without the implementers of individual

tasks needing to access the database.

The graphical process polls the database for new jobs and

changes in job status (entered by the nongraphical processes)

and will update these in the job list so that the user can see

progress; they can usually also see a report being updated in

real time, but this is handled by a different mechanism.

As each job in the structure-solution process has an

input_params.xml file which records the exact parameters

used to run the job, these, along with the database record of

the flow of data between jobs, provide all of the information

needed to completely reproduce the structure solution.

2.3. The task application programming interface

Many different developers have contributed tasks to the

CCP4i2 project and it is therefore important that writing a

task is straightforward. CCP4i2 provides a framework which

performs as much of the generic work as possible, and the task

implementation need only provide the fragments of func-

tionality that must be customized for the task. Implementing a

task normally requires the creation or tailoring from boiler-

plate code of four files.

(i) The def file is an XML file specifying all the input data,

control parameters and output data for the task.

(ii) The script is a Python script which usually wraps a

program or encodes a pipeline.

(iii) The GUI (graphical user interface) is a Python script

defining the user interface.

(iv) The report file is a Python script defining the job

report presented to the user after the job has finished (and in

some cases while the job is running).

The def file is the definition of the interface to a task. The

def file can be created using the provided graphical editor

defEd. Whenever the defEd application is run it uses Python

introspection tools to create a list of all the data classes within

CCP4i2, their associated qualifiers and class documentation,

so that the developer is presented with all available options.

Alternatively, boilerplate code is provided together with tools

to help to derive code for a new task. The def file is broadly

equivalent to the Phil file used in the PHENIX software, and

we are developing Phil-to-def file-conversion tools to

simplify interfacing to software that already supports Phil

files.

A task script is created by subclassing CPluginScript.

Creating a program wrapper usually requires coding three

methods.

(i) processInputFiles() is called before the program

is run, and performs any input data conversion required by the

program. A common requirement is merging the user-

specified reflection-data objects into one MTZ file.

(ii) createCommandAndScript() is also called before

the program is run and defines the command line and any

input script for the program.

(iii) processOutputFiles() is called after the program

has finished and performs any necessary file-format conver-

sions to a CCP4i2 standard. It must also generate a

program.xml file containing the data needed for the task

report; if this is not provided by the program then the

processOutputFile() method should provide logic to

calculate such data or extract them from a log file.

Pipeline tasks are also derived from CPluginScript, but

this requires reimplementing the process() method to

control running a series of ‘subtasks’.

CCP4i2 can autogenerate a graphical interface for task

inputs based on the list of parameters in the def file, but this is

rarely ideal: a customized GUI script can organize parameters,

provide helpful annotations and provide logic to deal with

interdependent parameters, i.e. parameters whose relevance

or optimal value depends in some way on the value of another

parameter. Correct handling of interdependent parameters by

the GUI script makes for a dynamic interface which customizes

detailed options based on user selections and may ensure that

the user is not presented with irrelevant options. CCP4i2 has a

graphical widget class to represent each of the data classes and

can therefore automatically insert the appropriate widget for

each parameter specified in the task interface. The GUI script

defines the graphical interface layout in terms of lines in the

window using the createLine() method and through this

can specify the widgets and labels to appear on a line.

Fig. 5 shows a simple example from the interface to

refinement using REFMAC5 (Murshudov et al., 2011), where

the user can select ‘Atomic model’ and ‘Reflections’ (para-

meter names in the code: XYZIN and F_SIGF) and then select

how anomalous data are used (USEANOMALOUSFOR para-

meter) and enter the wavelength (WAVELENGTH parameter).
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Figure 5
A fragment of the task input for the REFMAC5 task showing selection of
‘Atomic model’ and ‘Reflection’ data and a line of details for using
anomalous data. This line is only shown if the user has selected
Reflections that are anomalous data.



If the user selects reflection data without anomalous data the

final line is removed from the interface. This task input is

encoded by the code in Fig. 4(d).

In this code each of four lines in the interface are specified

by one call to createLine(); firstly specifying a ‘subtitle’

and then specifying a combination of ‘labels’ and ‘widgets’.

The data type of the widget parameters has been specified in

the def file, so the CCP4i2 framework is able to provide the

correct widget. Some customizations of widgets are possible.

For example, in this code the -browseDb argument is used to

indicate drawing a ‘database’ icon in the widget through which

the user can access all data in all projects. The final call to

createLine() has an additional -toggleFunction argu-

ment that specifies a function, anomalousDataAvailable(),

that will control the visibility of the fourth line. In this case, the

implementation of anomalousDataAvailable() returns

True or False depending on the data available in the user’s

selected input reflection-data object. The function is called

automatically whenever the value of F_SIGF is changed by

the user and will return a flag indicating whether the line

should be displayed or not based on whether the user’s

selected data file contains anomalous data.

The task-input interface is organized into tabs, with the first

tab containing all the essential data selection and subsequent

tabs containing less-used options.

CCP4i2 provides a report for all finished jobs. Additionally,

for some tasks a short, frequently updated report is generated

while the job is still running. The reports show detailed data

from the job, usually presented as graphs and tables, including

comments highlighting important aspects of the data. The data

presented in the report comes from the program.xml file

that is created either by the running the program or the task

script. The report is an HTML file which is created in the

CCP4i2 graphical process on demand if the user chooses to

view a report that does not already exist.

The appearance of the HTML report file is defined by a

Python-coded task-specific subclass of the Report class.

Besides the Report class, there is a class for each of the report

elements such as folders, graphs, tables, text and pictures. The

task Report creates a hierarchy of these elements in an

arrangement corresponding to the layout required in the

HTML report. The Report class loads the data from the

program.xml file into the appropriate report elements.

After the report has been fully defined in this class instance,

the Report.as_html() method is called; this returns an

HTML file of the full report by calling all of the report

elements to return an HTML representation of themselves.

A task-report class can include a definition for a ‘running’

report presented while the job is still running; typically, this

will be a very short report such as a simple graph. The CCP4i2

graphical process updates the running report when it sees that

the program.xml file created by the program has been

updated.

The graph viewers developed for CCP4i2, Pimple and

JSPimple, display graphs in the report page or can display

graphs from log files. JSPimple is used in the CCP4i2 HTML

report pages and is written in JavaScript using either the

jquery.flot (http://www.flotcharts.org/) or the Plotly (https://

plot.ly) backends. Pimple is a standalone application with

additional graph editing, export and print functionality built

using PyQt and the libraries Matplotlib (for graphs; https://

matplotlib.org) and NumPy (for numerical calculations; http://

www.numpy.org).

2.3.1. Drop-in compatibility with CCP4 online reports.

CCP4 online (https://www.ccp4.ac.uk/ccp4online) provides

web-server access to a growing list of CCP4 programs such as

CRANK2,PISA andMrBUMP. JSrview (http://www.ccp4.ac.uk/

dist/checkout/jsrview) is a function call-driven, server-side

CCP4 framework that provides a report mechanism for CCP4

online. As a matter of convenience for developers, a transla-

tion mechanism between JSrview and CCP4i2 reports has

been included. The module, CCP4RvapiParser, offers a

class which, by means of inheritance from the standard

Report class, offers all of the basic CCP4i2 reporting func-

tionality while performing the conversion automatically upon

detecting changes on a separate XML file (i2.xml). This file,

which is produced by JSrview every time the report should be

updated, comprises all graph data points, presentation details

(for example line colour and thickness) and accompanying

text strictly required for the report (Fig. 6).

3. User-interface utilities

3.1. Export and import of projects

This utility enables users to transfer a project or selected

jobs between computers. The tools are also used to auto-

matically transfer a limited amount of data necessary to run a

job on a server (see below). The basic mechanism could also

support the transfer of information to or from electronic

notebook systems, although some software-specific function-

ality would be needed to create a user-friendly automatic

communication mechanism.

The contents of the database, either for an entire project or

for selected jobs, can be written to an XML file. To export a

project, the contents of the project directory (for example data

files) are bundled into a compressed archive file along with an

XML representation of the corresponding database entries.

Since the project directory is organized with the files for one

job in one job directory, it is straightforward to select only the

relevant job directories for export. The compressed file can be

reimported into another CCP4i2 database; this is performed

with careful checking of consistency between the database and

the unpacked project directory and using the database data

item UUIDs to ensure that data are neither duplicated nor

inappropriately overwritten.

3.2. Running jobs on a server

CCP4i2 provides mechanisms to run jobs that require heavy

computing resources on a server machine. The server machine

must have a suitable version of the CCP4 suite installed. The

client CCP4i2 must be configured by a system administrator

or a knowledgeable user to choose the server machines, the

communication mechanism, the CCP4 installation directory
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and the temporary filesystem space on the server machine.

After configuration the user need only choose a server, if more

than one is provided, and, depending on the communication

mechanism, provide a login name and password to run a job

on the server.

CCP4i2 currently supports three possible communication

mechanisms:

(i) via ssh (implemented via the Paramiko library; http://

www.paramiko.org/),

(ii) via queuing software that supports qsub standard

commands (tested for the Sun Grid Engine; http://

www.oracle.com/technetwork/oem/grid-engine-166852.html),

(iii) via a custom system. This is necessary when using a

server with its own customized, potentially web-based, inter-

face. There is documentation and examples for the user to

implement their own communication system. An example of

this has been implemented for the SCARF server (http://

portal.scarf.rl.ac.uk) run by the Science and Technology

Facilities Council in the UK.

For all three mechanisms a fragment of the project is

exported, as described above, and copied to the server

machine, where it is unpacked into a temporary project

directory and database. Running the job on the server updates

the contents of the temporary project directory and database

and, when the job finishes, these are exported to a compressed

file that is returned to the client machine and reintegrated into

the user’s project directory and database. This mechanism

requires minimal communication between client and server,

but the user is informed of progress by updates to the

‘running’ report which is implemented by the client periodi-

cally retrieving the program.xml data file from the server.

3.3. Organizing and searching jobs and projects

Given the large number of structure-solution projects

undertaken by most crystallographers, organization of

projects and data is vital. The CCP4i2 user interface provides

several ways for crystallographers to organize their work and

to label and annotate their files, jobs and projects. This addi-

tional information may be helpful when reviewing the work in

the future.

The ‘Projects manager’ window in CCP4i2 provides tools to

organize and export or import projects. The most useful

organizational tool is that projects can be grouped into folders

and the folders can be nested. There is additionally the option

to tag and provide a description of the project. There are

project-search tools based on project name, description, tags

or the date the project was in use. It is also possible to search

for projects that have used a user-specified file.
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Figure 6
Correspondence between the graphical elements of CCP4 online (a) and CCP4i2 (b) reports. Although the underlying data are strictly the same, a
different layout is imposed on JSrview reports for reasons of consistency. The different processes (1) are expanded into individual tabs, with each graph
being selectable from the title bar of the main graph (2). Other graphical elements include shaded areas (3), which are rendered as a separate entity and
not as an additional curve, and accompanying text (4). As is the case for their JSrview counterparts, these reports update seamlessly in real time.



CCP4i2 has tools to search the jobs in a project based on

simple properties such as the task name, text in the annotation

or comments and when the job was run. There are also more

sophisticated searches to find jobs that ran with given values of

a particular control parameter and to show the progress of a

given data object through a project. For the latter search the

user can select any data object, input or output for a given job,

and all jobs that used these data, either before or after the

selected job, will be highlighted in the job list. For some types

of data, particularly the model coordinates, the data values will

be updated in many jobs so that the output data object (i.e. the

data file) is different from the input data object, but the search

procedure can track these changes. The uses of a data object

may branch, for example, to produce several possible ‘final’

model coordinates. The interface enables the user to highlight

either the jobs in a selected branch or jobs in all branches.

3.4. Viewing old CCP4i projects

The important conceptual differences between CCP4i and

CCP4i2 make it impossible to work with both interfaces

interchangeably: for example, CCP4i allowed the rerunning of

jobs and therefore the overwriting of files, so that the tracking

of file provenance within the older system is not reliable.

However, a mechanism has been implemented to view old

CCP4i projects within the new interface and to select and

import files.

CCP4i2 can read the database and project files from the

CCP4i user interface and display the projects, jobs and files in

the style of the job list of the new interface. Users can view log

files and data files and can drag and drop the files listed in the

job list from CCP4i projects into jobs in CCP4i2 projects.

4. The tasks

CCP4i2 provides task interfaces to the main macromolecular

crystallographic structure-solution programs provided by the

CCP4 suite. The tasks which use these programs are organized

into various sections in the task list (Fig. 7). The task list is

arranged to guide the user through the process of solving a

crystal structure, starting from data processing and finishing

with deposition. The major tasks in each section of the task list

are described below.

4.1. Integrate X-ray images: xia2

The expert system xia2 (Winter et al., 2013) provides fully

automated data processing from diffraction images to scaled

and merged data. As a decision-making pipeline it uses other

software to perform discrete tasks such as indexing, integra-

tion and scaling. The quality of the results is assessed at each

stage, informing decisions in a dynamic manner. The capability

of the software is now such that it can stand in for an expert

crystallographer even in challenging

cases. It is of particular use when driving

command-line programs that do not

have their own built-in graphical inter-

faces and can be intimidating or tedious

to operate for many users. Although

xia2 is itself primarily a command-line

program, it has a structured interface

for optional parameters using the Phil

syntax of cctbx (http://cctbx.sourcefor-

ge.net/libtbx_phil.html). This interface

is rich enough to describe the basic

components of a GUI, including para-

meter types, tooltips, help strings and

expert levels. It is possible to map most

elements of the Phil interface onto a

def file. For this reason, the xia2 inter-

faces in CCP4i2 differ from most other

interfaces in that we choose not to use

defEd or boilerplate code templating to

design the GUI, but rather we auto-

generate them from the Phil defini-

tions. In future this may be a convenient

mechanism for creating GUIs for other

cctbx-based software.

There are two interfaces to xia2

automated processing in CCP4i2, one

specific for the DIALS package (Winter

et al., 2018), which is included in CCP4,

and another for XDS (Kabsch, 2010), if

the user has it installed. Much code is
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Figure 7
The task menu with the folder for the ‘X-ray data reduction and analysis’ module open showing the
tasks in that module.



shared between the two interfaces and the split into separate

tasks is performed for the convenience of the user. Many of

the optional parameters are specific for eitherDIALS or XDS

and in each task irrelevant parameters can be hidden. In either

case, xia2 uses CCP4 software to calculate merging statistics,

which allows the xia2 tasks to reuse the data-reduction task

report code, ensuring consistency with the data-reduction

pipeline described below.

CCP4i2 also integrates the iMosflm GUI to MOSFLM

(Powell et al., 2017) and records the activities of this GUI in

the CCP4i2 database.

4.2. X-ray data reduction and analysis: AIMLESS

This is the principal task for data processing following the

integration of intensities from images. As input it takes one or

more unmerged and (usually) unscaled data sets from inte-

gration tasks, either within CCP4i2 (xia2 or MOSFLM) or

from external sources. Even if an automated pipeline such as

xia2 has scaled and merged the data, it may be worth re-

running the data-reduction step to perform a more careful

analysis of the results. The pipeline runs a series of programs,

producing two output data objects for structure solution and

refinement: a merged set of observed intensities (and their

corresponding amplitudes) and a free-R set of reflections. In

turn, these programs are POINTLESS (Evans, 2011), which

determines the point group and, if possible, the space group;

AIMLESS (Evans &Murshudov, 2013) to scale and merge the

data; CTRUNCATE to generate amplitudes from intensities;

and FREERFLAG to generate or extend a free-R set of

reflections for refinement. The pipeline generates an extensive

report, highlighting any noteworthy issues (Fig. 8) such as

alternative indexing (in which case a reference data set may be

provided to obtain consistent indexing). The report is orga-

nized with overall summaries at the top (Fig. 9), and offers the

possibility of drilling down to more detailed graphs and tables.

After examination of the report, it is common to rerun the

task, changing the resolution limits, omitting some parts of the

data or merging multiple isomorphous data sets.

4.3. Experimental phasing: the CRANK2 and SHELXC/D/E

pipelines

CRANK2 (Skubák & Pannu, 2013) and SHELXC/D/E

(Sheldrick, 2010) are pipelines for automated structure solu-

tion from SAD, MAD or SIRAS experimental data. The

SHELXC/D/E pipeline is implemented as a subset of

CRANK2, calling SHELXC, SHELXD and SHELXE (Shel-

drick, 2010) followed by Buccaneer and REFMAC5 via

program wrappers. In this way, most of the CCP4i2 code for

the CRANK2 and SHELX pipelines is shared and thus

provides identical input and output to the user. The CRANK2

interface also supports the MR-SAD experiment –

(re)building of an input partial model, typically found by

molecular replacement – using the SAD data with the

powerful ‘combined’ algorithm (Skubák & Pannu, 2013).

CRANK2 has wrappers for a variety of programs, including

SHELXC, SHELXD, SHELXE, PRASA (Skubák, 2018),

Parrot (Cowtan, 2010), SOLOMON (Abrahams & Leslie,

1996), ARP/wARP (Langer et al., 2008), Buccaneer (Cowtan,

2006) and REFMAC5 (Murshudov et al., 2011).

The pipeline is composed of several steps: from determi-

nation of the anomalous substructure, through phasing, hand

determination and phase improvement, to model building.

Each of the steps behaves as a separate CCP4i2 wrapper, so it

is possible to clone any of the steps and rerun it with modified

parameters. Furthermore, the pipeline can be customized to

start and stop at any step: for example, the pipeline can be

started from substructure phasing by inputting a known

substructure, or can be stopped immediately after a

substructure has been determined. A CCP4i2 running report

indicates the progress of each step and, for many steps, a

button is provided to stop at the end of the current cycle and

proceed to the next step, should the user find the current

performance satisfactory (for example, to proceed to phasing

if the user believes that the substructure has been adequately

determined).

The minimal required user input consists of the anomalous

data set (or multiple data sets in the case of MAD or SIRAS

experiments), sequence description and anomalous heavy-

atom type. The partial model, typically from MR, needs to be

inputted for MR-SAD. While the compulsory input is suffi-

cient for many data sets, additional options are provided to

tackle data sets that are difficult to solve or to optimize the

structure-solution process. The default values for all of the

options are input-dependent and are dynamically generated

and subsequently displayed in the graphical user interface as

soon as the minimal user’s input is provided. Since the GUI

calls CRANK2 to generate the defaults, a typical problem of

duplication of interface and the underlying program defaults is

prevented.

There are also interfaces to phasing using Phaser and to

density modification with ACORN and Parrot.

4.4. Model preparation for molecular replacement: CCP4mg

and MrBUMP

MrBUMP (Keegan & Winn, 2008) is an automated scheme

for molecular replacement with its own CCP4i2 interface.

Given a target sequence and measured reflections, it will

search for homologous structures, create a set of suitable

search models from the template structures, perform mole-

cular replacement and test the solutions with some rounds of

restrained refinement. MrBUMP has been integrated into

the CCP4mg (McNicholas et al., 2011) molecular-graphics

program for interactive model preparation, and this module

can be called directly from CCP4i2. A fuller description of this

task is given in the article on MrBUMP in these proceedings

(Keegan et al., 2018).

CCP4i2 also has task interfaces to run the molecular-

replacement model-preparation tools CHAINSAW (Stein,

2008), Sculptor (Bunkóczi & Read, 2011) and Ensembler (part

of the Phaser suite; McCoy et al., 2007), and the sequence-

alignment tool ClustalW (Larkin et al., 2007).
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4.5. Molecular replacement

CCP4i2 provides task interfaces to MR using theMrBUMP

pipeline, MOLREP (Vagin & Teplyakov, 2010) and Phaser.

There are two versions of the Phaser-MR interface: a basic

mode for a single search model and an expert mode for more

complex models and crystal composition that provides access

to more advanced keyword options.

4.6. Refinement: REFMAC5

The Refinement pipeline is the main task for performing

model refinement using REFMAC5 (Murshudov et al., 2011),

optionally using additional restraints from ProSMART

(Nicholls et al., 2014). Model coordinates, reflection data and,

usually, a free-R set are provided as the main inputs. Optional

additional inputs include experimental phase information,

TLS coefficients, ligand dictionaries and reference models.

TLS coefficients, which describe a concerted screw motion of

rigid bodies (Winn et al., 2003), can be imported and/or edited

using the corresponding utility also found in the ‘Refinement’

menu. Bespoke ligand dictionaries (CIF files) can be gener-

ated using the ‘Make Ligand’ task in the ‘Ligands’ menu. If a

reference homologous model is provided then ProSMART

will be executed by the pipeline to generate external restraints.

These restraints will then be automatically used by REFMAC5

during refinement: this option may be suitable at lower reso-

lutions (Nicholls et al., 2012).

The main refinement options include the number of cycles,

the geometry weight, whether or not the crystal is believed to

be twinned and whether riding H atoms are to be generated

and used. By default, the geometry weight is automatically

adjusted during refinement in order to ensure a reasonable

balance between prior information (geometry) and observed

data. If twinning is assumed, refinement can be performed

against structure-factor amplitudes or intensities, depending

on the nature of the main input data. Additional options

pertain to model parameterization (B factors, TLS groups),

prior information (NCS restraints, jelly-body restraints) and

the scaling method (solvent model). The ability to perform

anisotropic regularized map sharpening when calculating

electron-density maps is also provided,

noting that this option does not affect

refinement of the model: it just modifies

the output maps.

Compared with the equivalent task in

CCP4i, the Refinement interface in

CCP4i2 is relatively minimalist so as to

avoid presenting the user with an over-

whelming number of modes and

options. Only the options that are most

commonly required by a standard user

are presented in the interface, although

additional keywords can be provided in

order to enable expert users to tweak

advanced options and parameters

should they wish. Note that the pipeline

is designed specifically for full-model

restrained refinement. For clarity of

application, some of the other func-

tional modes of REFMAC5 (un-

restrained refinement, rigid-body

refinement and structure idealization)

are excluded from the interface owing

to being outside the scope and being

deemed to be of less practical use

during the course of the modern crys-

tallographic structure-solution process.

Note also that whilst it was previously

common for rigid-body refinement to be

performed straight after molecular

replacement, it is now more typical to

execute a large number of cycles of

jelly-body restrained refinement.

When the job is running, the results

page is iteratively updated in order to

provide the user with feedback

regarding the current status of
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Figure 8
The main summary report from the Data Reduction pipeline (also used as part of the xia2 task).
This contains the principal results and warnings of potential problems.



refinement. Global refinement statistics, the current geometry

weight and graphs corresponding to the per-cycle evolution of

R factors and r.m.s.(bonds) are updated each refinement cycle,

expediting manual assessment regarding job quality (moni-

toring refinement convergence, excessive overfitting etc.),

which, in the case of a suboptimal result, may lead to the user

killing the job, cloning and re-running it using different

parameter values or options. A successfully executed job can

be immediately followed by further refinement using the

Refinement pipeline, manual model building using Coot or

autobuilding using Buccaneer.

4.7. Model building and graphics

Tasks are provided for both manual and automated model

building. Automated model building is implemented both

within experimental phasing pipelines (in particular the

CRANK2 and SHELX tasks) and in standalone model-

building tasks. Tasks are implemented for protein model

building using either the Buccaneer or ARP/wARP software

(Cowtan, 2006; Langer et al., 2008).

4.7.1. Manual model building with Coot. The Coot task

starts the Coot molecular-graphics program (Emsley et al.,

2010) with data from the CCP4i2 project. The task input

allows arbitrary numbers of coordinate sets, density and

difference density maps to be loaded into the Coot session.

Additionally, a ligand dictionary may be specified. CCP4i2 can

also generate scripts to automate some of the tasks in the Coot

session, and such scripts may be loaded through this task

interface. During a CCP4i2 Coot session, the menus of Coot

are modified to allow the saving of coordinate sets into the

CCP4i2 database, with these coordinate becoming available to

subsequent CCP4i2 tasks when the Coot session is exited.

Similarly, ligand dictionaries generated by tools with Coot are

identified when the Coot session ends, and are also made

available for use in subsequent jobs.

A further CCP4i2 extension menu allows the user access to

all coordinate, map and dictionary data objects that are known

to the user’s database, allowing rapid comparison of maps and

models from different stages of the refinement procedure.

Coot launched from CCP4i2 automatically includes various

key bindings, which were developed to allow easy ‘one-key’

access to various heavily used functions of Coot during manual

model building.

4.7.2. Scripted model building with Coot. In this task Coot

is run without opening the Coot GUI. A Coot script file is

necessary to define the operations that Coot will perform. The

model, map and dictionary inputs are the same as in the

‘Manual Coot’ task, but there are more options provided by

CCP4i2 (fill partial residues, fit protein, stepped refinement

with or without Ramachandran

restraints and iterative morph fit) and

there is the option to enter a script

manually.

There is also a separate task ‘Find

Waters’, which takes a map and a model

and runs Coot in windowless mode to

find water molecules.

4.7.3. Autobuild protein. This tool

supersedes the Buccaneer pipeline in

CCP4i, introducing a range of new

possibilities provided by the scripted

use of Coot. It consists of iterations of

Buccaneer (Cowtan, 2006), Coot and

REFMAC5, with the optional use of

ProSMART. The main inputs vary

according to the provenance of the

phases being used. If these were

produced in an MR job, the MR solu-

tion must be supplied in order to have

Buccaneer take advantage of it: placing

the new model and naming chains after

it and, optionally, deriving the first set of

coordinates from either the complete

MR solution or an edited version of it,

known as seeding mode. If no phase

estimates are provided, the MR solution

is refined in REFMAC5 in order to

produce them. If the initial phases come

from experimental methods they must

be supplied explicitly, and in this case

the user is provided with an option to
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Figure 9
Overall summary from the Data Reduction task, including a ‘Table 1’ which can be downloaded as a
CSV file for inclusion in other documents.



specify a model R-factor threshold

below which experimental phases are

no longer used in iterative model

building and phase combination.

As they are very dependent on map

interpretability, real-space refinement

options are only available after the R

factors go below a certain threshold: this

is also configurable, although a reason-

able estimate of 0.35 is provided by

default. Backrub rotamers are used by

default within Coot rounds.

Except in the first iteration, map

coefficients and the refined autobuilt

model produced by REFMAC5 in the

previous iteration are supplied as input

to Buccaneer. The input model is then

filtered (badly fitting regions are

removed), extended and refined again,

with most problems being driven to

convergence in �5 iterations (MR

phases) or �15 iterations (experimental

phases).

The CCP4mg task starts the

CCP4mg molecular-graphics program

(McNicholas et al., 2011) with data from

the CCP4i2 project. The task input

allows arbitrary numbers of coordinate

sets, density and difference density

maps, and sequences to be loaded into

the CCP4mg session.

4.8. Ligands

To refine a structure containing novel

ligands, the crystallographer needs

provisional starting coordinates for the

ligand and a geometry dictionary. These

can be created within CCP4i2 using

AceDRG (Long et al., 2017) via the

‘Make Ligand’ task. This task also

allows a molecular sketch of the ligand

to be provided as a starting point, using

the two-dimensional ligand-sketching

capability provided by the Lidia

program (part of Coot; Emsley et al.,

2010).
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Figure 10
Results page after running Privateer on PDB
entry 4byh. The report includes a conforma-
tional analysis of the monosaccharides auto-
matically found in the supplied structure, plus
additional graphs of real-space correlation
coefficient versus B factor and others. When-
ever any type of glycosylation is found, the
report will also include two-dimensional vector
diagrams of the trees, which are generated
according to the notation in the third edition of
Essentials of Glycobiology (Varki et al., 2015).



As an illustration of the power of the array of crystal-

lographic functionality that has been wrapped for use in

CCP4i2 as described above, we have also developed a ligand

pipeline that spans the entire workflow from data reduction to

ligand building and automatic ligand placement to cater for

the case of investigating fragment and/or drug binding to a

well characterized crystal system. The ligand pipeline embeds

(i) the ‘Make Ligand’ task, (ii) the data-reduction pipeline,

(iii) rigid-body refinement within Phaser and (iv) nongraphical

scripted running of Coot to perform the actual ligand fitting.

As an alternative to rigid-body fitting within Phaser, the user

can select to use theDIMPLE pipeline (Wojdyr et al., 2013) as

an engine for rigid-body refinement.

To facilitate the use of this ligand pipeline on the tens of

data sets that may be collected in a single synchrotron trip,

we have also developed a meta task that (i) investigates the

directory hierarchy of files returned from a Diamond Light

Source synchrotron trip, (ii) generates a CCP4i2 project for

each data set identified and (iii) launches the ligand pipeline in

each project using a user-specified SMILES string to define

the ligand associated with each data set and a common starting

model.

Taken together, these tools allow a user to apply best-of-

breed tools uniformly to tens of data sets in a single task, for

which the total setup time may be only a few minutes. In a

multiprocessing environment, comprehensive analysis can be

completed in less than an hour. The outputs of this approach

can also trivially be provided to PanDDA (Collins et al., 2017)

to identify low-occupancy binding events.

4.9. Validation and analysis

4.9.1. Validation of carbohydrate structures: Privateer.

The Privateer software was first released by CCP4 in 2015

(Agirre, Iglesias-Fernández et al., 2015) as a tool to aid in the

refinement, validation and graphical analysis of glycans. It is

able to perform conformational analysis, density correlation

against OMIT maps and analysis of link anomericity and

torsions, and presents the results both in tabulated form and as

vector graphics (SVG; see Fig. 10).

The graphical frontend bundled with CCP4i2 allows the

correction of conformational anomalies (Agirre, Davies et al.,

2015) using the dictionaries that Privateer produces. These will

appear as input in any subsequent Coot or REFMAC5 job.

Additionally, Coot jobs will receive a Python script that will

guide the user through the detected issues, activate torsion

restraints and colour the OMIT maps.

4.9.2. Analyse fit between model and density. The density-

correlation tool EDSTATS (Tickle, 2012) has been bundled in

a completely different way to how it was in CCP4i: instead of

producing a comprehensive frontend for the program, a

pipeline covering data conversion and analysis has been

developed, making the analysis of the results more straight-

forward.

As map coefficients (F, ’) are the preferred representation

for maps within CCP4i2, whereas EDSTATS requires over-

sampled map files, a pre-processing step using CFFT has been

added. This generates the map files in the required format

transparently to the user. Also, within the interface a set of

configurable thresholds can be set for the different accuracy

and precision metrics, separated by protein main chain and

side chain. The outliers found using these criteria are listed in

a Python script that can be used in a subsequent Coot job,

giving the user the possibility to track and fix them up quickly.

Isolated main-chain outliers can typically be improved by

flipping the peptide, while fixing side-chain outliers will

probably involve a rotamer search.

5. Summary and prospects

CCP4i2 now provides a computing environment in which

productive crystallography can be accomplished and an

effective record of the structure-determination process can be

retained. The current focus of the development team is to

consolidate and extend the existing functionality, for which

user feedback would be gratefully received. Other planned

developments include enabling group access to CCP4i2

projects by introducing a client–server database-management

system to be available as well as the current onboard SQLite

system and access to centralized computation servers from

CCP4i2. We expect that over the lifetime of CCP4i2 the

structure-solution process will become more automated, and

the system provides a sound basis for automation while still

enabling crystallographers to view the details of the process

and intervene when they need to.

For program and workflow developers, CCP4i2 provides a

framework in which aspects of pipelining, data tracking and

graphical report presentation are provided with a relatively

low overhead for task implementers. The development team

will welcome prospective developers and support them in

making their software accessible via CCP4i2. The modular

design of wrappers and incremental building of pipelines will

enable increasing automation, but by providing graphical tools

for users to review and control tasks we can avoid the

structure-solution process becoming a black box. CCP4i2 is

well positioned to support users and developers through the

next period of increased throughput and output of macro-

molecular crystallography and related disciplines.

6. Availability

CCP4i2 can be obtained from http://www.ccp4.ac.uk/download

as part of the CCP4 suite of programs.
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