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Abstract   Autonomous Systems are seeing increasing use and increasingly  

safety-significant application. Consequently, the safety of autonomous systems is 

an important topic. To reflect this importance the Safety Critical Systems Club 

(SCSC) has established the Safety of Autonomous Systems Working Group 

(SASWG). This paper introduces the SASWG and describes (and justifies) the 

approach it is taking. A running example is used to illustrate challenges, which 

are organised against three “difficulty horizons”. Potential solutions to some of 

the challenges are outlined; possible research directions are suggested for other 

challenges. Some proposed but invalid solutions are also identified. Overall, 

whilst the SASWG acknowledges the very significant benefits that could accrue 

from autonomous systems, it believes their development and implementation 

should be pursued carefully and thoughtfully.  

1 Introduction  

The SCSC has created a working group to help with the autonomous system 

safety problem. Autonomous systems (AS) safety is important. There is great 

deal of money and effort going into developing, manufacturing and field-testing 

autonomous systems of many kinds. Uber, Waymo, Tesla and others are experi-

menting with autonomous cars. DeepMind is developing autonomous diagnostic 
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systems for use in hospitals. This volume and intensity of research and develop-

ment is very different to ten or even five years ago. 

In response to this, the Safety Critical Systems Club (SCSC) has established 

the Safety of Autonomous Systems Working Group (SASWG). Our long-term 

objective is to produce clear guidance on how AS and autonomy technologies 

should be managed in a safety-related context, throughout the system lifecycle, 

in a way that is tightly focussed on challenges unique to autonomy. 

The creation of SASWG is timely because, as noted above, such systems are 

starting to be used, are starting to be involved in accidents, and are starting to 

attract specific public controversy. The Tesla crash of May 2016 (National Trans-

portation Safety Board 2017) has shown the public one of the risks in shared-

autonomy control. DeepMind’s work with patient data at the Royal Free Hospital 
has attracted controversy (Mathieson 2017), as have proposals for platooning of 

heavy goods vehicles on motorways (Department for Transport 2017).  

The SASWG is also timely because some AS technology developers, system 

integrators and manufacturers are now taking AS safety seriously. Many integra-

tors and manufacturers are working with regulators and legislators to find ways 

for their products to be approved; many technology developers are working hard 

to convince integrators that their components can be assured safe. For example, 

NVIDIA claim that the “Parker” system-on-a-chip has features that support 

claims of compliance with ISO 26262 (Shapiro 2016). 

The picture is not always so clear. It is difficult to determine what safety pro-

cesses were associated with the decision to use DeepMind's human health prog-

nostic software. We can also observe that for certain key technologies, such as 

neural networks, there are no extant high-integrity libraries available. 

In this paper, we introduce the SASWG in terms of our proposed general ap-

proach and our arguments for its appropriateness. We then describe some rela-

tively easy, moderately difficult, and possibly unsolvable challenges, and say 

how we intend to act on each of them.  

To some extent, this paper provides a vision of how the SASWG will operate 

over the next few years. However, in doing so it offers an implicit answer to the 

broader question of how we can advance system safety for radically novel tech-

nology that seems to be rapidly being deployed in society. 

2 Progress  

We have made some progress in structuring the problem. The SASWG’s 
long-term objective is to produce clear guidance on how AS and autonomy tech-

nologies should be managed in a safety-related context, throughout the lifecycle, 

in a way that is tightly focussed on challenges unique to autonomy. This objective 

includes, but is not limited to, guidance on how to achieve: 
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● Safety management; 

● Safety assurance; 

● Communication of safety (and safety limitations) to end users. 

Communication with a range of stakeholders is obviously important. In the above 

list we have chosen to specifically highlight end users as they may have an im-

portant role in ensuring overall system safety, for example, by monitoring the 

behaviour of an autonomous component. 

We have adopted a set of principles to guide our work. These do not fully 

describe what we do: rather, they guide us to avoid well-known traps we could 

fall into. In the SASWG we have experience with initiatives that failed, often 

drowning in a mire of complexity or vague generality. Each principle is a re-

sponse to a problem that someone else has seen. 

Our principles include: 

 

● The distinction between autonomous and automatic is not useful. 

We are interested in systems where it is currently a challenge to make 

a convincing safety argument. We will favour working by example 

over abstract discussion, even if at times those examples are fictitious 

and overly simple. 

● Consider the whole system lifecycle, but don’t try to impose our 
own lifecycle model. We recognise that developers use a wide variety 

of different lifecycles. To the extent that we impose a very specific 

lifecycle or top-level process, our guidance will be impractical for 

many of them. We acknowledge, however, that AS software may be 

updated much more frequently than is currently the case, for example, 

for aircraft systems. 

● Focus on problems specific to autonomous systems. Safety-critical 

AS inherit essentially all the safety engineering concerns of conven-

tional systems. It is easy to get distracted by this, especially when in-

timidated by the difficulty of the obviously AS-specific challenges. 

However, if the SASWG spends time thinking about well-established 

safety practice, and modifying it only slightly for AS, then it is wasting 

its members’ time. If the SASWG publishes guidance which purports 
to be about AS safety, but spends many words on established system-

safety practice, it is wasting the time of others.1  

                                                           
1 For an illustration of this problem, see the criticism in (Alexander, Kelly, and Herbert 2009) 

of the Unmanned Systems Safety Guide for DoD Acquisition (United States Department of 
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● Focus on the challenges raised by specific tasks, environments and 

solutions. In a novel field, solutions are likely to be most easily found 

in specific cases. Generalisation of solutions (e.g. to “all autonomous 
systems” or “all systems of autonomy level X”) may be possible later, 
but is rarely practical until many special-case solutions have been 

found. 

● Prioritise understanding of requirements over understanding of 

how we might implement and assure them. In the first instance, the 

most important thing to do is to define the general requirements that an 

AS must meet in order to be safe. In other words, we will adopt the 

DO-178C and ISO 15288 / ISO 12207 model of providing objectives 

rather than means of compliance. In our process of working out those 

requirements, however, we will consider concrete implementations and 

technologies (as we do in later sections of this paper). Inevitably, given 

the maturity of the field, potential means of compliance may be imma-

ture and unproven. Where what we are asking is currently impossible, 

we will make it clear that we know this (e.g., by placing such require-

ments in a separate section of a document). 

● Don’t duplicate existing work. Wherever possible, reference out to 

existing and emerging standards, guides and other sources, rather than 

incorporating their detail in our guidance. If we establish that our guid-

ance, applied to examples, generates requirements that can be dis-

charged by following existing guidance and standards (e.g. software 

safety requirements that look to be dischargeable under DO-178C or 

ISO 26262 / IEC 61508), then we should give no further guidance. 

Where emerging standards are used, care will be taken to ensure they 

are appropriately validated. 

● Consider security, but only insofar as it affects safety. We 

acknowledge that a system can only be safe if it is also secure (and that 

a safe system can be made unsafe by the addition of security features). 

However, AS raise many novel security challenges, including ones re-

lating to data rather than software. These specific challenges will be 

work enough for us; covering the entire security space within the 

SASWG is not feasible. 

                                                           
Defense 2007). Note, however, that the former assumes the latter was written for a target au-

dience of safety engineers, which is probably not correct. 

 



The State of Solutions for Autonomous Systems Safety      11 

 

● Consider ethics, but only in so far as it is relevant to safety, and 

without commitment to a particular ethical system or rules. Ethical 

decisions are important, but are outside the expertise of the SASWG. 

Instead, our aim is to understand the types of safety requirement that 

ethical considerations may introduce. 

3 Challenges  

We can identify challenges of different kinds. Different kinds of challenges 

require different solutions. There are many ways to subdivide the space of “AS 
safety challenges”, but we will offer just one here —challenges of different ap-

parent difficulties. We refer to these as “horizons” (which are orthogonal to the 
“development and operation” subdivision): 
 

● Problems that we are quite close to solving; 

● Problems where it is not clear how to solve them; 

● Problems where is it not clear that they can be solved at all. 

To help illustrate these problems over subsequent sections, we develop a ficti-

tious example. Specifically, our running example is a medical imaging system 

that makes treatment decisions based on a learned model. 

Figure 1 below is a schematic of the process supported by the AS. In outline: 

a patient’s records declare that an image-based diagnosis is required; the patient 

is scanned (via a non-invasive procedure); the resulting image is fed to an auto-

mated diagnosis system, a component of which is the AS; the resulting diagnosis 

is recorded in the patient records. 
 

 

Fig. 1. Schematic of the process supported by the AS 
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Autonomous 
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Automated  
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For the purposes of this example, it is assumed that the diagnosis will be one of 

the following three categories: 

● Re-Image, which requests another image be captured (for example, be-

cause the supplied image is not of a high enough quality); 

● Treatment, which initiates a course of treatment with unpleasant and 

potentially significant side effects; 

● All-Clear, which suggests no further action need be taken. 

We make the following assumptions: 

● Some pre-processing is likely to be required before the image is fed 

into the decision-making part of the AS. This pre-processing, which 

could be implemented using traditional software techniques, is not a 

focus for this analysis. It is, however, noted that this step offers a 

means by which the behaviour of the AS could be subverted (Stevens 

et al. 2017). 

● The task being performed by the AS is, in essence, classification based 

on image recognition. Hence, it is assumed that the AS is implemented 

using some form of Artificial Neural Network (ANN). That said, many 

of the assurance challenges would apply regardless of the implementa-

tion technology. 

● It is assumed the ANN is developed via some form of training, test and 

validation activity, after which it is left fixed. In particular, when in 

operational use, providing the same image to the AS will always result 

in the same diagnosis2. (This assumption does not prevent observations 

from in-use behaviour being used to develop an improved AS.) 

The key sub-property3 of “suitably safe” relates to whether the correct diagnosis 
has been provided. Note that there is no always-safe diagnosis — a patient is only 

optimally safe when a correct diagnosis is made. For example, the AS diagnosing 

Re-Image rather than All-Clear wastes resources and causes unnecessary worry 

for the patient. Alternatively, diagnosing Re-Image rather than Treatment 

                                                           
2 Strictly speaking, it is the automated diagnosis system that produces the diagnosis. However, 

since the AS is the focus of this activity, within this paper the term AS is used as a shorthand 

for referring to the wider diagnosis system.
 

3 Other important properties include: always making a diagnosis; making a diagnosis within a 

specific time; etc.
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potentially delays treatment, which could have significant adverse effects. More 

generally, all incorrect diagnoses are associated with some form of harm. 

The following sections discuss problems that are faced by safety engineering 

for the above example. We should note that this is a relatively simple system with 

a very narrow space of perception and action; unrealistically so, at least given 

current and likely-near-future imaging technology. As such, however, it presents 

an intriguing challenge: if we cannot demonstrably make this safe, then we may 

have little chance of making autonomous cars (or autonomous robot surgeons) 

safe at all. 

3.1 Close to solving 

There are problems that we are quite close to solving. Problems in this cate-

gory are beyond current practice, but there seems to be a plausible path to their 

solution. Typically, we already have the frameworks and techniques we need; we 

get general agreement about, or empirically determine, some aspects, and then 

apply them. 

3.1.1 Running example 

Our main example here is checking that the inputs seen during operational use 

are appropriately similar to the distribution of Training, Test and Validation 

(TTV) data. The “appropriately similar” here, formally, is that the operational 

data (both individual images and collections of images) should be statistically 

indistinguishable from the TTV data. 

The medical diagnosis device is of course part of a controlled process (e.g. 

only images from defined-suitable medical scanners need analysing), which 

means that the operational environment of this AS is much simpler that associated 

with, for example, an autonomous car. 

Put simply, the challenge here is just about comparing two statistical distribu-

tions. There are at least three distinct types of distribution shift that can occur 

between TTV data and operational data (Moreno-Torres et al. 2012). In simple 

terms, for classification problems4, they are: 

● Covariate shift relates to changes in the independent (or input) varia-

bles;  

                                                           
4 That is, problems where the aim is to allocate an input to a given class, for example, to take 

pictures as input and identify all “pictures of cats”. 
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● Prior probability shift relates to changes in the target (or output) varia-

ble;  

● Concept shift relates to changes in the relationship between the inde-

pendent and target variables. 

Techniques exit to detect each of these, but how to do them adequately in a 

safety-critical context needs to be determined. 

3.1.2 General discussion 

For this problem, the SASWG approach is: 

1. Define the need for this as precisely as possible (so that solutions can 

be proposed and evaluated) i.e. saying how requirements can be stated; 

2. Identify possible published solutions and directing attention of devel-

opers to those; 

3. Note that these topics are probably best solved by developers attempt-

ing to do so as part of new product development, and regulators at-

tempting to negotiate how they will accept them. 

There are many similar problems. For example: 

● Putting in a human-level monitor that checks one in every x diagnoses 

(for a suitable value of x) is easy enough. In many ways this could be 

viewed as being similar to normal quality control sampling, for exam-

ple, in a biscuit factory. This could provide quantitative evidence as to 

how often the human and the AS disagree. This, however, implicitly 

assumes the human is always correct, which may be a questionable as-

sumption. Longer-term studies, with associated ethical implications, 

would be needed to properly monitor the AS performance; for exam-

ple, recording how many patients who had been given the all clear sub-

sequently reported with symptoms. Again, this type of study is similar 

to those that are, presumably, conducted on a routine basis within the 

medical world. 

● Ensuring that “advisory systems” are indeed merely advisory, and re-
main so. As we see humans and AS work more closely together, it is 

possible that safety arguments will make claims that the AS is only ad-

visory. This is an easy claim to make, but it is not always easy to jus-

tify. For example, in order for an AS to be advisory: first, the person 

being advised has to have some independent way of checking the ad-

vice / making the decision; second, the “incident investigation” process 
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has to be able to cover cases where the person didn’t follow the advice, 
bad things happen, yet the person is not automatically castigated for 

not following the system’s advice. Conversely, over time humans may 
assign too much trust to the AS and, for example, stop cross-checking 

it. 

We probably cannot safely deploy anything of note by only solving the problems 

in this category. As a society we will need to solve problems in the next category. 

3.2 Not clear how to solve 

There are many problems that it is not clear how to solve. Problems in this 

category are beyond current practice (as with the previous category), and here 

there are many competing approaches with none of them clearly the way forward. 

Research is needed. 

One example is establishing adequate standards of Verification and Validation 

(V&V) for safety-related use of offline learning. In order to have confidence in 

the predicted performance of a learning system, confidence is needed in the data 

(noting that confidence in training and test data supports different types of argu-

ment than confidence in the validation data). 

3.2.1 Running example 

For the medical device example, we need: 

1. Independence of testers and of the Training, Test and Validation 

(TTV) data; 

2. Confidence in TTV data; 

3. A way of ensuring that typical errors have been avoided during the de-

velopment, implementation and use of an AS. 

Independence of testers and test data is superficially straightforward. Once the 

development team has produced a candidate ANN, this should be subject to in-

dependent validation. This involves a separate team analysing the performance 

of the ANN using data that is separate from that used by the development team 

for training and testing the ANN. In other words, the training and test data (used 

for development) and the validation data need to be independent.  However, it is 

not clear what constitutes adequate independence in this context.  

For confidence in TTV data, we could rely on historical data that includes both 

the original image-based diagnosis and the final outcome; these could differ if, 

for example, treatment was subsequently required despite an initial All-Clear 
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diagnosis. It would need to contain difficult cases that result from failures in other 

parts of the process (e.g. images corrupted either during capture by the scanner 

or in transmission to the ANN); determining the correct diagnoses for these cases 

could be challenging. 

Avoidance of typical errors is analogous to the use of robustness testing in 

traditional safety-critical software, where attempts are made to induce known 

problems (e.g. arithmetic overflow). Some possible errors associated with some 

forms of machine learning are known, for example, their vulnerability to adver-

sarial examples (where a small, carefully chosen, change in input leads to an un-

desirable change in output (Szegedy et al. 2014), (Goodfellow, Shlens, and Sze-

gedy 2015)). Some level of protection against this phenomenon may be provided 

by including such examples in the training set and using a larger model. However, 

what is missing is a generally accepted list of typical errors (possibly organised 

by machine learning approach), ways of detecting them and ways of correcting 

them. Even limiting ourselves to modern ANNs, no such list is known to the 

SASWG. (Amodei et al. 2016) catalogues a wide variety of failure modes for 

learners in general, but it does not claim to be exhaustive. 

The medical device is of course a system where the worst-case single failure 

is a single unnecessary death. For vehicles, especially ones with many passen-

gers, we will need much higher confidence in their V&V. Statistical techniques 

are very unlikely to give us adequate confidence here, due to the huge volume of 

data required. We will need analytical techniques, such as those proposed for 

(specific subclasses of) ANNs in (Kurd 2005) and (Katz et al. 2017). 

General discussion 

For this problem, the SASWG approach is: 

1. Define the need for this as precisely as possible (so that solutions can be 

proposed and evaluated) i.e. say how requirements can be stated (recog-

nising, though, that this itself is likely to be very difficult). Where we 

cannot say how to define the requirements, we will identify the barrier 

to doing so such that further research on that is possible. 

2. Catalogue materials that point towards a solution, where available. 

3. Note that applied research (of the type that e.g. Innovate UK would 

fund) is needed on these topics. 

There are many similar problems. For example: 

1. The lack of high-integrity frameworks and libraries that implement neu-

ral networks. One of the reasons rapid progress is being made in the field 

of AS is the ready availability of supporting libraries and frameworks 

(eg, TensorFlow (https://www.tensorflow.org/) and Caffe 



The State of Solutions for Autonomous Systems Safety      17 

 

(http://caffe.berkeleyvision.org/)). However, these libraries have not 

been developed using the rigorous processes one would associate with 

safety-critical software. Furthermore, the role of these frameworks in 

typical system architectures means it is difficult, if not impossible, to 

sandbox them and treat them as Software Of Uncertain Provenance 

(SOUP).  It should be noted that this is, in effect, a marketplace problem 

rather than a technical one. Perhaps in the future we will see “certified” 
machine learning frameworks, in the same way there are “certified” op-
erating systems today. 

2. Assuring driver readiness in SAE level 3 and 4 systems. A feature of 

these systems is the need for control to revert from the AS to the human 

driver. Maintaining system safety through this handover and, in partic-

ular, ensuring the human is ready and able to take control, and under-

stands that they have done so, is a challenge. This becomes significantly 

more challenging if the handover has to occur in a critical, or emergency, 

situation. This is so much of a concern that a recent report from the Ger-

man Federal Government (The Ethics Commission on Automated and 

Connected Driving 2017) states: “The software and technology in highly 

automated vehicles must be designed such that the need for an abrupt 

handover of control to the driver (“emergency”) is virtually obviated.” 

3. Finding quantitative metrics that can measure the extent to which an AS 

has been tested and, furthermore, setting appropriate thresholds for dif-

ferent types of AS use. This consideration is, in some ways, analogous 

to the use of statement, branch and modified condition / decision cover-

age in DO-178C and ISO 29119. There is some work that suggests, for 

neural networks, that neuron activation patterns may be a helpful meas-

ure (Tian et al. 2017). There are also more general measures that relate 

to the way that the TTV data covers the input domain, examples include: 

the gap ratio (Bishnu et al. 2015), which is a summary statistic from the 

distribution of distances between TTV samples; and the Maximum 

Empty Hyper Rectangle (MEHR) (Lemley, Jagodzinski, and Andonie 

2016) which identifies the largest region of the input domain without a 

TTV samples. Moving away from machine learning and into a broader 

space of autonomous applications, we have concepts like situation cov-

erage (Alexander, Hawkins, and Rae 2015) and environmental hazard 

analysis (Dogramadzi et al. 2014). 
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A great many AS safety problems are in this category. If we can solve them, we 

will probably be able to deploy a range of interesting and useful AS in safety-

related situations. 

3.3 Not demonstrably solvable  

Some problems may yet derail the whole endeavour. Problems in this category 

are not demonstrably solvable, and there are reasons to believe they are not solv-

able at all. 

One example is avoiding pathological learning behaviours in online learning 

systems. (Amodei et al. 2016) catalogues a range of unsafe failure modes that 

such systems can exhibit, albeit with a bias towards one specific class of tech-

niques (reinforcement learning) and a very broad definition of “safety”. Their 
failure modes are thus: 

● Negative side effects of learned behaviour; 

● “Reward hacking”, whereby learning systems learn pathological be-
haviours that nevertheless meet the implemented definitions of good 

behaviour; 

● Systems that require impractical amounts of human oversight; 

● Unsafe exploratory behaviours; 

● Models become unsafe due distributional shift in inputs or needed out-

puts. 

Some of the above are extensions of challenges we noted earlier. For example, a 

distributional shift can potentially invalidate the results of any validation, cer-

tainly any validation that was efficient enough to be practical. 

Some of the problems are exhibited by offline learning systems, but are worse 

in online ones. For example, negative side effects can be learned offline, but in 

that case there is potential for them to be detected and fixed offline. Online learn-

ing systems can learn to create negative side effects during operation. 

For all the above problems, Amodei et al point to work on possible solutions, 

but few of them are compelling at this time, and none of them are ready for gen-

eral engineering use.  

It may be possible to introduce system-level architectural protection, for ex-

ample, by implementing a monitor using conventional techniques (Caseley 

2016). However, it may be difficult to strike an appropriate balance between al-

lowing an AS sufficient freedom whilst simultaneously implementing a monitor 

that can provide strong guarantees about overall system behaviour. 

For this category of problems, the SASWG approach is: 

1. Note their existence, as before; 
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2. Indicate unequivocally that these are not currently tractable, with clear 

justification of such (so that developers do not waste effort on impossi-

ble things); 

3. Provide a high-level, fairly abstract indication of the requirements any 

solution would need to meet; 

4. Note that these problems are of a type that will hinge on basic research, 

of the kind that UK research councils (such as the EPSRC) fund. 

Other problems in this category include: 

● Safety arguments are inherently incomplete with respect to “unknown 
unknowns”. Novel threats (and deliberate attacks) can potentially appear 
at any time, and with novel technology they are more likely than with 

more established technology. See, for example, the recent reports of 

tricking autonomous car visual identification by applying small paper 

stickers to road signs (Snyder 2017). In addition, AS may feature emer-

gent behaviour that was not predicted at design time. 

● Interaction between independently-designed AS. Consider a future in 

which there are a variety of different self-driving cars, which have been 

produced by competing manufacturers. It may be the case that each car 

considered in isolation is judged to be (in some sense) “safe” but the 
combination of different cars leads to unexpected, undesirable and po-

tentially unsafe situations. That is, the system-of-ASs has an unsafe 

emergent behaviour. Something similar has already been seen, albeit in 

a non-safety-related context, in the way that simple automatic trading 

algorithms can lead to flash crashes (Markets Committee, Bank for In-

ternational Settlements 2017).  

One potential solution could involve a central authority maintaining a 

detailed simulation of all AS within the system, but even this approach 

raises many potential difficulties, for example: demonstrating the simu-

lation has sufficient fidelity; choosing an appropriate number of simula-

tion runs, with suitable properties; keeping up-to-date with software 

(and system) updates; deciding how to resolve identified conflicts (with-

out having an inappropriate benefit for “first to market” manufacturers). 

● Providing confidence in new types of hardware. The safety-critical com-

munity has traditionally been very wary of new types of hardware, 

which can induce new types of failure mode. Consider, for example, the 

challenges associated with introducing multi-core processors (see (FAA 
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Certification Authorities Software Team 2016) for some details). Yet, 

multi-core processors are significantly simpler than, for example, neu-

romorphic chips or system-on-chip solutions like NVIDIA’s “Parker”. 

Although there is not necessarily a link between the level of challenge and the 

associated reward, if we can solve the problems in this category, we may be able 

to develop some extremely powerful systems, with concomitant social impacts. 

We should of course remain aware of the ethics of deploying such systems, as 

their social impacts may not necessarily be beneficial. Conversely, there may be 

an ethical imperative  to deploy such systems, for example, if they can reduce 

accidental deaths (The Ethics Commission on Automated and Connected Driving 

2017). 

3.4 Invalid Solutions  

Some proposed solutions are invalid. Beyond the solution ideas identified 

above, there are many invalid proposed solutions. 

Some proposed solutions are plausible in theory but invalid in practice. The 

most prominent example is the idea that if we get autonomous cars on the roads 

we can accumulate enough miles for statistical evidence of safety. The problem 

with this is that such evidence is unstructured; it is evidence when taken as a 

whole, but we cannot subdivide it, nor relate it to specifics of the system design. 

This means that if the system is changed in any way then all of the evidence is 

invalidated. This is, of course, incompatible with any realistic development and 

maintenance process for a single vehicle model, let alone for the class of auton-

omous cars in general. There is also the issue that many of the driven miles will 

be, in essence, “boring”. Conversely, we are interested in the behaviour of the 

autonomous cars in exceptional, or emergency, situations, which by their very 

nature are likely to be sparsely represented in the sampled driving hours.  

Some partial solutions are useful but easy to overhype. For example, being 

able to explain an individual decision made by an AS is very useful, but it doesn’t 
scale as an option for providing confidence in an AS’s overall behaviour. In par-
ticular, being able to explain a decision in a human-accessible form (Ribeiro, 

Singh, and Guestrin 2016) can be useful during system development and accident 

investigation. However, it will never be possible for a human to inspect enough 

examples, which cover enough different situations, to provide confidence in over-

all system behaviour. 

Some partial solutions are intuitively compelling, but only because of unsup-

portable assumptions. For example, it is sometimes suggested that an AS could 

be assured in the same way that human beings, or working animals such as guide 

and police dogs, are. Focusing on the human example, their assurance relies on 

things like training courses, tests and examinations. All of these approaches 
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implicitly rely on the way that humans interpolate and extrapolate from their 

training to new and novel situations.  

There is evidence, unfortunately, that extant machine learning algorithms in-

terpolate and extrapolate in a different way to humans. We can create adversarial 

examples (Szegedy et al. 2014), where a small change in input leads to a large 

change in output (and, crucially, a change that a human would not produce) is 

well known. As a minimum, this indicates that algorithms would need radically 

different types of training, tests and examinations than are used for humans; at 

maximum, it could suggest that this type of approach will not be feasible at all. 

The SASWG will systematically catalogue these known invalid solutions, and 

publish clear proposal-and-rebuttal statements to inform people of the problems 

with them. Where solutions are partial, we will explain the role that they can 

legitimately have. 

4 Conclusions 

Achieving autonomous system safety, particularly in very challenging cases like 

fully autonomous cars, is likely to be very difficult indeed. However, there are 

easier cases where some progress appears feasible. 

In this paper, we have defined the approach that the SASWG is taking towards 

tackling the general AS safety problem. Our approach has the potential to help 

progress. The degree to which we will ever be able to have confidence in the 

safety of autonomous systems is unknown. 

Overall, we concur with the statement made by a member of the board that 

investigated the Tesla accident in May 2016, and would extend the statement to 

cover all applications of automation and autonomous systems: “the potential ben-

efits of automation on our streets and highways are truly phenomenal, but they 

must be pursued carefully and thoughtfully” (National Transportation Safety 

Board 2017). 
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