
This is a repository copy of Automated repair of mobile friendly problems in web pages.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/127563/

Version: Accepted Version

Proceedings Paper:
Mahajan, S., Abolhassani, N., McMinn, P.S. orcid.org/0000-0001-9137-7433 et al. (1 more
author) (2018) Automated repair of mobile friendly problems in web pages. In: Proceedings
of the 40th International Conference on Software Engineering. International Conference on
Software Engineering (ICSE 2018), 27 May - 03 Jun 2018, Gothenburg, Sweden. ACM ,
pp. 140-150. ISBN 978-1-4503-5638-1

https://doi.org/10.1145/3180155.3180262

© 2018 ACM. This is an author-produced version of a paper subsequently published in
Proceedings of the 40th International Conference on Software Engineering. Uploaded in
accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Automated Repair of Mobile Friendly Problems in Web Pages

Sonal Mahajan
University of Southern California, USA

Negarsadat Abolhassani
University of Southern California, USA

Phil McMinn
University of Sheield, UK

William G. J. Halfond
University of Southern California, USA

ABSTRACT

Mobile devices have become a primary means of accessing the In-
ternet. Unfortunately, many websites are not designed to be mobile
friendly. This results in problems such as unreadable text, cluttered
navigation, and content overlowing a device’s viewport; all of
which can lead to a frustrating and poor user experience. Existing
techniques are limited in helping developers repair these mobile
friendly problems. To address this limitation of prior work, we de-
signed a novel automated approach for repairing mobile friendly
problems in web pages. Our empirical evaluation showed that our
approach was able to successfully resolve mobile friendly problems
in 95% of the evaluation subjects. In a user study, participants pre-
ferred our repaired versions of the subjects and also considered the
repaired pages to be more readable than the originals.

KEYWORDS

Mobile Friendly Problems, automated repair, web apps

ACM Reference Format:

Sonal Mahajan, Negarsadat Abolhassani, Phil McMinn, and William G. J.
Halfond. 2018. Automated Repair of Mobile Friendly Problems inWeb Pages.
In Proceedings of ACM Conference (Conference’17).ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Mobile devices have become one of the most common means of ac-
cessing the Internet. In fact, recent studies show that for a signiicant
portion of web users, a mobile device is their primary means of ac-
cessing the Internet and interacting with other web-based services,
such as online shopping, news, and communication [12, 18, 19, 40].
Unfortunately, many websites are not designed to gracefully handle
users who are accessing their pages through a non-traditional sized
device, such as a smartphone or tablet. These problematic sites may
exhibit a range of usability issues, such as unreadable text, cluttered
navigation, or content that overlows the device’s viewport and
forces the user to pan and zoom the page in order to access content.
Such usability issues are collectively referred as mobile friendly

problems [4, 15] and lead to a frustrating and poor user experience.
Despite the importance of mobile friendly problems, they are

highly prevalent in modern websites Ð in a recent study over 75%

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

of users reported problems in accessing websites from their mobile
devices [19]. Over one third of users also said that they abandon
mobile unfriendly websites and ind other websites that work better
on mobile devices. This underscores the importance for developers
in ensuring themobile friendliness of the web pages they design and
maintain. Adding to this motivation is the fact that, as of April 2015,
Google has incorporated mobile-friendliness as part of its ranking
criteria when returning search results to mobile devices [17]. This
means that unless a website is deemed to be mobile friendly, it is
less likely to be highly ranked in the results returned to users.

Making websites mobile friendly is challenging even for a well
motivated developer. These challenges arise from the diiculties in
detecting and repairing mobile friendly problems. To detect these
problems, developers must be able to verify a web page’s appear-
ance on many diferent types and sizes of mobile devices. Since the
scale of testing required for this is generally quite large, developers
often use mobile testing services, such as BrowserStack [6] and
SauceLabs [39], to determine if there are problems in their sites.
However, even with this information it is diicult for developers to
improve or repair their pages. The reason for this is that the appear-
ance of web pages is controlled by complex interactions between
the HTML elements and CSS style properties that deine a web
page. This means that to ix a mobile friendly problem, developers
must typically adjust dozens of elements and properties while at
the same time ensuring that these adjustments do not impact other
parts of the page. For example, a seemingly simple solution, such
as increasing the font size of text or the margins of clickable ele-
ments, can result in a distorted user interface that is unlikely to be
acceptable to end users or developers.

Existing approaches are limited in helping developers to de-
tect and repair mobile friendly problems. For example, the Mobile
Friendly Test Tools produced by Google [15] and Bing [4], only
focus on the detection of mobile friendly problems in a web page.
While these tools may provide hints or suggestions as to how to
repair the pages, the task of performing the repair is still a manual
efort. Developers may also use frameworks, such as Bootstrap
and Foundation, to help create pages that will be mobile friendly.
However, the use of frameworks cannot guarantee the absence of
mobile-friendly problems [1]. Some commercial websites attempt
to automate this process (e.g., [5, 11, 29]), but are generally targeted
for hobbyist pages as they require the transformed website to use
one of their preset templates. This leaves developers with a lack of
automated support for repairing mobile friendly problems.

To address this problem we designed an approach to automati-
cally generate CSS patches that can improve the mobile friendliness
of a web page. To do this our approach builds graph-based models
of the layout of a web page. It then uses constraints encoded by
these graphs to ind patches that can improve mobile friendliness

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Sonal Mahajan, Negarsadat Abolhassani, Phil McMinn, and William G. J. Halfond

while minimizing layout disruption. To eiciently identify the best
patch, our approach leverages unique aspects of the problem do-
main to quantify metrics related to layout distortion and parallelize
the computation of the solution. We implemented our approach
in a prototype tool,MFix, and evaluated its efectiveness on the
home pages of 38 of the Alexa Top 50 most visited websites. The
results showed that our approach could efectively increase the
mobile friendliness ratings of a page, typically by 33%, while mini-
mizing layout distortion. Our approach was also fast, needing less
than 5 minutes, on average, to generate the CSS patch. We also
evaluated our results with a user study, in which participants over-
whelmingly preferred the repaired version of the website for use on
mobile devices, and also considered the repaired page to be more
readable than the original. Overall, these results are very positive
and indicate that our approach can help developers to improve the
mobile friendliness of their web pages.

The contributions of our paper are as follows:

(1) A technique for automatically generating CSS based patches
to improve the mobile friendliness of a web page

(2) An empirical study on popular websites that shows the
approach’s efectiveness at improving mobile friendliness
scores while maintaining the original pages’ layout.

(3) A user study that shows that pages patched by our approach
are preferred for mobile usage and are rated as more readable.

Our paper is organized as follows. In Section 2, we provide back-
ground information about typical mobile friendly problems and
solutions. Our approach is presented in Section 3. We evaluated our
approach on popular websites and conducted a user study of the
results, which are described in Section 4. We discuss related work
in Section 5, and conclude in Section 6.

2 BACKGROUND

In this section we discuss a variety of mobile friendly problems and
current ways of addressing them in order to build a mobile friendly
website.

2.1 Types of Mobile Friendly Problems

Widely used mobile testing tools provided by Google [15] and
Bing [4] report mobile friendly problems in ive areas:

1. Font sizing: Font sizes optimized for viewing a web page on a
desktop are often too small to be legible on a mobile device, forcing
users to zoom in to read the text, and then out again to navigate
around the page.

2. Tap target spacing: łTap targetsž are elements on a web page,
such as a hyperlinks, buttons, or input boxes, that a user can tap
or touch to perform actions, such as navigate to another page or
ill and submit a form. If tap targets are located close to each other
on a mobile screen, it can become diicult for a user to physically
select the desired element without hitting a neighboring element
accidentally. Targets may also be too small, requiring users to zoom
into the page in order to tap them on their device.

3. Content sizing:When aweb page extends beyond the width of a
device’s viewport, the user is required to scroll horizontally or zoom
out to access content. Horizontal scrolling is particularly considered
problematic since users are typically used to scrolling vertically
but not horizontally [20]. This can lead to important content being

missed by users. Therefore attention to content sizing is particularly
important on mobile devices, where a smaller screen means that
space is limited, and the browser may not be resizable to it the
page.

4. Viewport coniguration: Using the łmeta viewportž HTML tag
allows browsers to scale web pages based on the size of a user’s
device. Web pages that do not specify or correctly use the tag may
have content sizing issues, as the browser may simply scale or clip
the content without adjusting for the layout of the page.

5. Flash usage: Flash content is not rendered by most mobile
browsers. This makes content based on Flash, such as animations
and navigation, inaccessible.

In our approach, detailed in Section 3, we focus on addressing
the irst three of these problems. We regard the Flash usage as out
of scope for our approach, since it requires a major content change
in the page; while the viewport coniguration problem is trivial to
address, as it only requires insertion of a missing łmeta viewportž
tag into the page’s HTML head.

2.2 Current Methods of Addressing Mobile
Friendly Problems

There are a number of ways in which a website can be adjusted
to become more mobile friendly. In the early days of mobile web
browsing, a common approach was to simply build an alternative
mobile version of an existing desktop website. Such websites were
typically hosted at a separate URL and delivered to a user when
the web server detected the use of a mobile device. However, the
cost and efort of building such a separate mobile website was
high. To address this problem, commercial services, such as bMobi-
lized [5] and Mobify [29], can automatically create a mobile website
from a desktop version using a series of pre-designed templates.
A drawback of these templated websites, however, is that they
fail to capture the distinct design details of the original desktop
version, making them look identical to every other organization
using the service. Broadly speaking, although having a separate
mobile website could address mobile friendly concerns, it intro-
duces a heavy maintenance debt on the organization in ensuring
that the mobile website renders and behaves consistently and as
reliably as its regular desktop version, thereby doubling the cost of
an organization’s online presence. Furthermore, having a separate
mobile-only site would not help improve search-engine rankings
of the organization’s main website, since the two versions reside at
diferent URLs.

To avoid developing and maintaining separate mobile and desk-
top versions of a website, an organization may employ responsive

design techniques. This kind of design makes use of CSS media
queries to dynamically adjust the layout of a page to the screen
size on which it will be displayed. The advantage of this technique
over mobile dedicated websites is that the URL of the website re-
mains the same. However, converting an existing website into a
fully responsive website is an extremely labor intensive task, and is
better suited for websites that are being built from scratch. As such,
repairing an existing website may be a more cost efective solution
than completely redeveloping the site. Furthermore, although a re-
sponsive design is likely to allow for a good mobile user experience,
it does not necessarily preclude the possibility of mobile friendly

Automated Repair of Mobile Friendly Problems in Web Pages Conference’17, July 2017, Washington, DC, USA

problems, since additional styles may be used or certain provided
styles may be incorrectly overridden [1].

Our approach introduces a novel technique for handling mobile
friendly problems by adjusting speciic CSS properties in the page
and producing a repair patch. The repair patch uses CSS media
queries to ensure that the modiied CSS is only used for mobile
viewing ś that is, it does not afect the website when viewed on a
desktop.

3 APPROACH

The goal of our approach is to automatically generate a patch that
can be applied to the CSS of a web page to improve its mobile
friendliness. Our technique addresses the three speciic problem
types introduced in Section 2, namely font sizing, tap target spacing,
and content sizing for the viewport ś factors used by Google to
rate the mobile friendliness of a page.

There is usually a straightforward ix for these problems ś sim-
ply increase the font size used in the page and the margins of the
elements within it. The result, however, is one that would likely be
unacceptable to an end-user: such changes tend to signiicantly dis-
rupt the layout of a page and require the user to perform excessive
panning and scrolling. The challenge in generating a successful
repair, therefore, involves balancing two objectives ś addressing
a page’s mobile friendliness problems, while also ensuring an aes-
thetically pleasing and usable layout.

With this in mind, the goal of our technique is to generate a
solution that is as faithful as possible to the page’s original layout.
This requires ixingmobile friendliness problemswhile maintaining,
where possible, the relative proportions and positioning of elements
that are related to one another on the page (for example, links in
the navigation bar, and the proportions of fonts for headings and
body text in the main content pane).

Our approach for generating a CSS patch can be roughly broken
down into three distinct phases, segmentation, localization, and
repair. These are shown in Figure 1. The input to our approach
is the URL of a page under test (PUT). Typically, this would be a
page that has been identiied as failing a mobile friendly test (e.g.,
Google’s [15] or Bing’s [4]), but it may also be a page for which a
developer would like to simply improve mobile friendliness. The
segmentation phase identiies elements that form natural visual
groupings on the page ś referred to as segments. The localization
phase then identiies the mobile friendly problems in the page, and
relates these to the HTML elements and CSS properties in each
segment. The last phase ś repair ś seeks to adjust the proportional
sizing of elementswithin segments, alongwith the relative positions
of each segment and the elements within them in order to generate
a suitable patch. We now explain each of these three phases in more
detail.

3.1 Phase 1: Segmentation

The irst phase analyzes the structure of the page to identify seg-

ments ś sets of HTML elements whose properties should be adjusted
together to maintain the visual consistency of the repaired web
page. An example of a segment is a series of text-based links in a
menu bar where if the font size of any link in the segment is too
small, then all of the links should be adjusted by the same amount

to maintain the links’ visual consistency. The reason our approach
uses segments is that through manual experimentation with pages
that contained mobile friendly problems, we found that once we
identiied the optimal ix value for an element, to maintain visual
consistency, the same value would also need to be applied to closely
related elements (i.e., those in the element’s segment). This insight
motivated the use of segments, and it allowed the approach to treat
many HTML elements as an equivalence class, which also reduced
the complexity of the patch generation process.

To identify the segments in a page, the approach analyzes the
Document Object Model (DOM) tree of the PUT. In informal ex-
periments, we evaluated several well-known page segmentation
analyses, such as VIPS [7], Block-o-matic [38], and correlation clus-
tering [8]. We chose to use an automated clustering-based partition-
ing algorithm proposed by Romero et al. [33], as its segmentation
results more readily conformed to our deinition of a segment. We
summarize the algorithm here for completeness. The approach
starts by assigning each leaf element of the DOM tree to its own
segment. Then, to cluster the elements, the approach iterates over
the segments and uses a cost function to determine when it can
merge adjacent segments. The cost function is based on the number
of hops in the DOM tree between the lowest common ancestors
of the two segments under consideration. If the number of hops
is below a threshold based on the average depth of leaves in the
DOM tree, then the approach will cluster the adjacent segments.
The value of this threshold is determined empirically. The approach
continues to iterate over the segments until no further merges are
possible (i.e., the segment set has reached a ixed point). The output
is a set of segments, Segs, where each segment contains a set of
XPath IDs denoting the HTML elements that have been grouped
together in the segment.

Figure 2a shows a simpliied version of the segments that were
identiied for one of the web pages, Wiley, used in our evaluation.
The red overlay rectangles show the visible elements that were
grouped together as segments. These include the header content,
a left-aligned navigation menu, the content pane, and the page’s
footer.

3.2 Phase 2: Localization

The second phase identiies the parts of the PUT that must be
targeted to address its mobile friendly problems. The second phase
consists of two steps. In the irst step, the approach analyzes the
PUT to identify which segments contain mobile friendly problems.
Then, based on the structure and problem types identiied for each
segment, the second step identiies the CSS properties that will
most likely need to be adjusted to resolve each problem. The output
of the localization phase is a mapping of the potentially problematic
segments to these properties.

3.2.1 Identifying Problematic Segments. In the irst step of the
localization phase, the approach identiies mobile friendly problem
types in the PUT and the subset of segments that will likely need
to be adjusted to address them.

In our approach, mobile friendly problems in the PUT are de-
tected by an Mobile Friendly Oracle (MFO). An MFO is a function
that takes a web page as input and returns a list of mobile friendly
problem types it contains. The MFO can identify the presence of

Conference’17, July 2017, Washington, DC, USA Sonal Mahajan, Negarsadat Abolhassani, Phil McMinn, and William G. J. Halfond

Identify	

Segments	

Identify	

Problematic	

Segments	

Identify	

Problematic	

CSS	Properties	

Compute	Candidate	

Mobile	Friendly	

Patches	

Generate	the	

Mobile	Friendly	

Patch	

Mobile	Friendly	

Oracle	(MFO)	

Mobile	

Friendliness	

Score	(!)	

Layout	

distortion	(L)	

P1.	Segmentation	 P2.	Localization	 P3.	Repair	

Page	under	test	

(PUT)	
Repaired	PUT	

Figure 1: Overview of the approach.

(a) PUT with segments highlighted (b) PUT with distortions highlighted (c) Repaired PUT

Figure 2: Example for demonstrating our approach. Thick red rectangles highlight segments identiied by our technique, while dashed red ovals indicate distor-
tions caused by undesirable adjustments to the page’s layout.

mobile friendly problems but cannot identify the faulty HTML ele-
ments and CSS properties responsible for the observed problems.
In the implementation of our approach, we use the Google Mobile-
Friendly Test Tool (GMFT) as our approach’s MFO. However, any
detector or testing tool may also be used as an MFO. The basic re-
quirement for an MFO is that it can accurately report whether there
are any types of mobile friendly problems present in the page. Ide-
ally, the MFO should also detail what types of problems are present,
along with a mapping of each problem to the corresponding HTML
elements. However, these are not strict requirements: our approach
can correctly function with the assumption that all segments have
all problem types. Though this over-approximation can increase the
amount of time needed to compute the best solution in the second
phase.

Since we leverage the GMFT in our implementation, we discuss
how the output of this particular tool is used by our approach.
We expect that other MFOs, such as Bing, could be adapted in a
similar way. Given a PUT, the GMFT returns, for each problem
type it detects, a reference to the HTML elements that contain
that problem. However, through experimentation with the GMFT,

we learned that the list of HTML elements it supplies is generally
incomplete. Therefore, given a reported problem type, our approach
applies a conservative iltering to the segments to identify which
ones may be problematic with respect to that problem type. For
example, if the GMFT reports that there is a problemwith font sizing
in the PUT, then our technique identiies any segment that contains
a visible text element as potentially problematic. As mentioned
above, this over-approximation may increase the time needed to
compute the best solution, but does not introduce unsoundness
into our approach.

The output of this step is a set of tuples of the form ⟨s,T ⟩ where
s ∈ Segs is a potentially problematic segment and T is the set of
problem types associated with s (i.e., in the domain of {tap_targets,
font_size, content_size}). Referring back to the example in Figure 2a,
GMFT identiied S3 as having two problem types, the tap targets
were too close and the font size was too small, so the approach
would generate a tuple for S3 where T includes these two problem
types.

3.2.2 Identifying Problematic CSS Properties. After identifying
the subset of problematic segments, the approach needs to identify

Automated Repair of Mobile Friendly Problems in Web Pages Conference’17, July 2017, Washington, DC, USA

the CSS properties that may need to be adjusted in each segment
to make the page mobile friendly. The general intuition of this step
is that each of a segment’s identiied problem types generally map
to a set of CSS properties within the segment. However, this step
is complicated by the fact that HTML elements may not explicitly
deine a CSS property (i.e., they may inherit a style from a par-
ent element) and that our approach adjusts CSS properties at the
segment level instead of the individual element level.

To address these issues, we introduce the concept of a Property
Dependence Graph (PDG), which for a given segment and problem
type, models the relevant style relationships among its HTML ele-
ments based on CSS inheritance and style dependencies. Formally,
we deine a PDG as a directed graph of the form ⟨E,R,M⟩. Here
e ∈ E is a node in the graph that corresponds to an HTML ele-
ment in the PUT that has an explicitly deined CSS property, p ∈ P ,
where P is the set of CSS properties relevant for a problem type
(e.g., font-size for font sizing problems, margin for tap target
issues, etc.). R ⊆ E × E is a set of directed edges, such that for each
pair of elements ⟨e1, e2⟩ ∈ R, there exists a dependency relationship
between e1 and e2. M is a function M : R 7→ 2C that maps each
edge to a set of tuples of the form C : ⟨p,φ⟩, where p ∈ P and φ is a
ratio between the values of p for e1 and e2. This function is used in
the following repair phase (Section 3.3) to ensure that style changes
made to a segment remain consistent across pairs of elements in a
dependency relationship.

Our approach deines a variant of PDG for each of the three prob-
lem types: the Font PDG (FPDG), the Content Size PDG (CPDG),
and the Tap Target PDG (TPDG). Each of these three graphs has a
speciic set of relevant CSS properties (P), a dependency relation-
ship, and a mapping function (M). Due to space constraints, we
only present the formal deinition of the FPDG, as the other two
graphs are deined in a similar manner.

The FPDG is constructed for any segment for which a font sizing
problem type has been identiied. For this problem type, the most
relevant CSS property is clearly font-size, but the line-height,
width, and height properties of certain elements may also need to
be adjusted if font sizes are changed. Therefore P = {font-size,
line-height, width, height}. A dependency relationship exists
between any e1, e2 ∈ E, if and only if e1 is an ancestor of e2 in the
DOM tree and e2 has an explicitly deined CSS property, p ∈ P ,
i.e., the value of the property is not inherited from e1. The general
intuition of using this dependency relationship is that only nodes
that explicitly deine a relevant property may need to be adjusted
and the remainder of the nodes in between e1, e2 will simply inherit
the style from e1. The ratio, φ, associated with each edge is the
value of p deined for e1 divided by the value of p deined for e2. To
illustrate consider two HTML elements in S3 of Figure 2a. The irst,
e1, is a ⟨div⟩ tag wrapping all of the elements in S3 with font-size
= 13px and the second, e2, is the ⟨h2⟩ element containing the text
łResources” with font-size = 18px. A dependency relationship
exists from e1 to e2 with p as font-size and the ratio φ = 0.72.

The output of this inal step is the set, I , of tuples where each
tuple is of the form ⟨s,д,a⟩ where s identiies the segment to which
the tuple corresponds, д identiies a corresponding PDG, and a is an
adjustment factor for the PDG that is initially set to 1. The adjust-
ment factor is used in the repair phase and serves as a multiplier

to the ratios deined for the edges of each PDG. A tuple is added
to I for each problem type that was identiied as applicable to a
segment. Referring back to the example in Figure 2a, the approach
would generate two tuples for S3, one containing an FPDG and the
other containing an TPDG.

3.3 Phase 3: Repair

The goal of the third phase is to compute a repair for the PUT. The
best repair has to balance two objectives. The irst objective is to
identify the set of changes ś a patch ś that will most improve the
PUT’s mobile friendliness. The second objective is to identify the
set of changes that does not signiicantly change the layout of the
PUT.

3.3.1 Metrics. A key insight for our approach is that both of
the aforementioned objectives ś mobile friendliness and layout
distortion ś can be quantiied. For the irst objective, it is typical for
mobile friendly test tools to assign a numeric score to a page, where
this score represents the page’s mobile friendliness. For example,
the Google PageSpeed Insights Tool (PSIT) assigns pages a score in
the range of 0 to 100, with 100 being a perfectly mobile friendly page.
By treating this score as a function, F , that operates on a page, it is
possible to establish an ordering on solutions and use that ordering
to identify a best solution among a group of solutions. The second
objective can also be quantiied as a function, L, that compares
the amount of change between the layout of a page containing a
candidate patch versus the layout of the original page. The amount
of change in a layout can be determined by building models that ex-
press the relative visual positioning among and within the segments
of a page. We refer to these models as the Segment Model (SM) and
Intra-Segment Model (ISM), respectively. Given these two models,
our approach uses graph comparison techniques to quantify the
diference between the models for the original page and a page
with an applied candidate solution.

We now provide a more formal deinition of the SM and ISM. A
Segment Model (SM) is deined as a directed complete graph where
the nodes are the segments identiied in the irst phase (Section 3.1)
and the edge labels represent layout relationships between seg-
ments. To determine the edge labels, the approach irst computes
the Minimum Bounding Rectangles (MBRs) of each segment. This
done by inding the maximum and minimum X and Y coordinates
of all of the elements included in the segment, which can be found
by querying the DOM of the page. Based on the coordinates of each
pair of MBRs, the approach determines which of the following rela-
tionships apply: (1) intersection, (2) containment, or (3) directional
(i.e., above, below, left, right). Each edge in an SM is labeled in this
manner. Referring to Figure 2a, one of the relationships identiied
would be that S1 is above S3 and S4. An ISM is the same, but is built
for each segment and the nodes are the HTML elements within the
segment.

To quantify the layout diferences between the original page and
a transformed page to which a candidate patch has been applied,
the approach computes two metrics. The irst metric is at the seg-
ment level. The approach sums the size of the symmetric diference
between each edge’s labels in the SM of the original page and the
SM of the transformed page. Recall that both models are complete
graphs, so a counterpart for each edge exists in the other model.

Conference’17, July 2017, Washington, DC, USA Sonal Mahajan, Negarsadat Abolhassani, Phil McMinn, and William G. J. Halfond

To illustrate, consider the examples shown in Figures 2a and 2b.
The change to the page has caused segments S3 and S4 to overlap.
This change in the relationship between the two segments would
be counted as a diference between the two SMs and increase the
amount of layout diference. The second metric is similar to the irst
but compares the ISM for each segment in the original and trans-
formed page. The one diference in the computation of the metric is
that the symmetric diference is only computed for the intersection
relationship. The intuition behind this diference in counting is that
we consider movement of elements within a segment, except for
intersection, to be an acceptable change to accommodate the goal
of increasing mobile friendliness. Referring back to the example
shown in Figure 2b, nine intra-segment intersections are counted
among the elements in segment S4 as shown by dashed red ovals.
The diference sums calculated at the segment and intra-segment
level are returned as the amount of layout diference.

3.3.2 Computing Candidate Mobile Friendly Patches. To identify
the best CSS patch, the approach must ind new values for the
potentially problematic properties, identiied in the irst phase, that
make the PUT mobile friendly while also maintaining its layout.
To state this more formally, given I , the approach must identify a
set of new values for each of the adjustment factors (i.e., a) in each
tuple of I so that the value of F is 100 (i.e., the maximum mobile
friendliness score) and the value of L is zero (i.e., there are no layout
diferences).

A direct computation of this solution faces two challenges. The
irst of these challenges is that an optimal solution that satisies
both of the above conditions may not exist. This can happen due
to constraints in the layout of the PUT. The second challenge is
that, even if such a solution were to exist, it exists in a solution
space that grows exponentially based on the number of elements
and properties that must be considered. Since many of the CSS
properties have a large range of potential values, a direct computa-
tion of the solution would be too expensive to be practical. Both of
these challenges motivate the use of an approximation algorithm
to identify a repair. Therefore, the approach must ind a set of val-
ues that minimizes the layout score while maximizing the mobile
friendliness score.

The design of our approximation algorithm takes into account
several unique aspects of the problem domain to generate a high
quality patch in a reasonable amount of time. The irst of these
aspects is that, through manual experimentation, we learned that
good or optimal solutions typically involve a large number of small
changes to many segments. This motivates targeting a solution
space comprised of candidate solutions that difer from the original
page in many places but by only small amounts. The second of
these aspects is that computing the values of the L and F functions
is expensive. The reason for this is that F requires accessing an
API on the web and L requires rendering the page and computing
layout information for the two versions of the PUT. This motivates
us to avoid algorithms that require sequential processing of L and
F (e.g., simulated annealing or genetic algorithms).

To incorporate these insights, the approximation algorithm irst
generates a set of size n of candidate patches. To generate each can-
didate patch, the approach creates a copy of I , called I ′, then iterates
over each tuple in I ′ and with probability x , randomly perturbs the

value of the adjustment factor (i.e., a) using a process we describe in
more detail in the next paragraph. Then I ′ is converted into a patch,
R, using the process described in the next section (Section 3.3.3),
and added to the set of candidate patches. This process is repeated
until the approach has generatedn candidate patches. The approach
then computes, in parallel, the values of F and L for a version of
the PUT with an applied candidate patch. (Our implementation
uses Amazon Web Services (AWS) to parallelize this computation.)
The objective score for the candidate patch is then computed as a
weighted sum of F and L. The candidate patch with the maximum
score, i.e., with the highest value of F and the lowest value of L, is
selected as the inal solution, Rmax . Figure 2c shows Rmax applied
to the example page.

Our approach perturbs adjustment factors in such a way as to
take advantage of our insight that the optimal solutions difer from
the original page in many places but by only small amounts. To
represent this insight, we based our perturbation on a Gaussian
distribution around the original value in a property. Through exper-
imentation, we found that it was most efective to have the mean
(µ) and standard deviation (σ) values used for the Gaussian dis-
tribution vary based on the speciic mobile friendly problem type
being addressed. For each problem type, the goal was to identify
a µ and σ that provided a large enough range to allow suicient
diversity in the generation of candidate patches. For identifying µ

values, we found through experimentation that µ set at the values
suggested by the GMFT [14] was not efective in generating candi-
date patches that could improve the mobile friendliness of the PUT.
Therefore we added an amendment factor to the values suggested
by the GMFT to allow the approach to select a value considered
mobile friendly with a high probability. The speciic amendment
factors we found the most efective were: +14 for font size, -20 for
content sizing, and 0 for tap target sizing problems. For example, if
the GMFT suggested value for font size problems was 16px, we set
µ at 30px. For each problem type, we then identiied a σ value. The
speciic values we determined to be most efective were: σ = 16 for
content size problems, σ = 5 for font size problems, and σ = 2 for
tap target spacing problems.

3.3.3 Generating the Mobile Friendly Patch. Given a set I , the
approach generates a repair patch, R, and modiies the PUT so that
R will be applied at runtime. The general form of R is a set of CSS
style declarations that apply to the HTML elements of each segment
in I . To generateR, the approach iterates over all tuples in I . For each
tuple, the approach iterates over each node of its PDG, starting with
the root node, and computes a new value that will be assigned to the
CSS property represented by the node. The new value for a node is
computed by multiplying the new value assigned to its predecessor
by the ratio, φ, deined on the edge with the predecessor. Once new
property values have been computed for all nodes in the PDG, the
approach generates a set of ixes, where each ix is represented as
a tuple ⟨i,p,v⟩, where i is the XPath for each node in the PDG that
had a property change, p is the changed CSS property, and v is
the newly computed value. These tuples are made into CSS style
declarations by converting i into a CSS selector and then adding the
declarations of p andv within the selector. All of the generated CSS
style declarations are then wrapped in a CSS media query that will
cause it to be loaded when accessed by a mobile device. In practice

Automated Repair of Mobile Friendly Problems in Web Pages Conference’17, July 2017, Washington, DC, USA

we found that the size range speciied in our patch’s media query
is applicable to a wide range of mobile devices. However, to allow
developers to generate patches for speciic device sizes, we provide
conigurable size parameters in the media query.

Referring back to the example, the ratio (φ) between e1 (⟨div⟩
containing all elements in S3) and e2 (⟨h2⟩ containing text łRe-
sources”) is 0.72. Consider a tuple ⟨S3, font-size, 2⟩ in I . Thus,
a value v of 26px is calculated for the predecessor node e1 based
on the adjustment factor 2. Accordingly v = 26px * 1/0.72 = 36px
is calculated for e2. Thus, the approach generates two ix tuples:
⟨div, font-size, 26px⟩ and ⟨h2, font-size, 36px⟩.

4 EVALUATION

To evaluate our approach, we designed experiments to determine
its efectiveness, running time, and the visual appeal of its solutions.
The speciic research questions we considered were:

RQ1: How efective is our approach in repairing mobile friendly
problems in web pages?

RQ2: How long does it take for our approach to generate patches
for the mobile friendly problems in web pages?

RQ3:How does our approach impact the visual appeal of web pages
after applying the suggested CSS repair patches?

4.1 Implementation

We implemented our approach in Java as a prototype tool named
MFix [21]. For identifying the mobile friendly problems in a web
page, we used the Google Mobile-Friendly Test Tool (GMFT) [15]
and Google PageSpeed Insights Tool (PSIT) [16] APIs. We also used
the PSIT for obtaining the mobile friendliness score (labeled as
łusabilityž in the PSIT report). For identifying segments in a web
page and building the SM and ISM, we irst built the DOM tree by
rendering the page in an emulated mobile Chrome browser v60.0
and extracting rendering information, such as element MBRs and
XPath, using Javascript and SeleniumWebDriver. The segmentation
threshold value determined by the average depth of leaves in a
DOM tree was capped at four to avoid the situation where all of the
visible elements in a page were wrapped in one large segment. This
constant value was determined empirically, and was implemented
as a conigurable parameter inMFix. We used jStyleParser for
identifying explicitly deined CSS properties for HTML elements
in a page for building the PDG. We parallelized the evaluation of
candidate solutions using a cloud of 100 Amazon EC2 t2.xlarge
instances pre-installed with Ubuntu 16.04.

4.2 Subjects

For our experiments we used 38 real-world subjects collected from
the top 50 most visited websites across all seventeen categories
tracked by Alexa [3]. The subjects are listed in Table 1. The columns
łCategory” and łRank” refer to the sourceAlexa category and rank of
the subject within that category, respectively. The column ł#HTML”
refers to the total number of HTML elements in a subject, which
we counted by parsing the subject’s DOM for node type łelement”.
This value gives an approximation for the size and complexity of
the subject.

Table 1: Subjects

ID URL Category Rank #HTML

1 http://aamc.org Health 23 598
2 https://arxiv.org Science 21 381
3 http://us.battle.net Kids and teens 2 615
4 https://bitcointalk.org Science 25 1302
5 http://blizzard.com Kids and teens 33 313
6 https://boardgamegeek.com Games 31 4474
7 https://bulbagarden.net Kids and teens 26 151
8 http://coinmarketcap.com Science 8 1964
9 http://correios.com.br/para-voce Society 14 769
10 http://dict.cc Reference 20 633
11 https://www.discogs.com Arts 26 5738
12 http://drudgereport.com News 23 779
13 http://www.inalfantasyxiv.com Games 37 61
14 http://www.lashscore.com Sports 16 6621
15 https://www.fragrantica.com Health 35 1091
16 http://forum.gsmhosting.com/vbb Home 39 2618
17 http://www.intellicast.com Science 38 1393
18 https://www.irctc.co.in Regional 34 1031
19 https://www.irs.gov Home 14 569
20 https://www.leo.org Reference 31 990
21 http://letour.fr Sports 3 1260
22 http://lolcounter.com Kids and teens 30 1257
23 http://www.mmo-champion.com Games 29 1903
24 http://myway.com Computers 42 135
25 https://www.ncbi.nlm.nih.gov Science 2 833
26 http://www.nexusmods.com Games 28 2108
27 http://nvidia.com Games 20 719
28 http://rotoworld.com Sports 41 2523
29 http://sigmaaldrich.com Science 37 141
30 http://us.soccerway.com Sports 30 2708
31 http://www.square-enix.com Games 30 198
32 https://travel.state.gov Home 26 440
33 http://www.weather.gov Science 18 1101
34 http://www.bom.gov.au Kids and teens 48 685
35 http://www.wiley.com Shopping 14 460
36 http://onlinelibrary.wiley.com Business 33 824
37 https://www.wowprogress.com Games 46 2828
38 https://xkcd.com Arts 48 121

We used Alexa as the source of our subjects as the websites
represent popular widely used sites and a mix of diferent layouts.
From the 651 unique URLs that were identiied across the 17 cat-
egories, we excluded the websites that passed the GMFT or had
adult content. Each of the remaining 38 subjects was downloaded
using the Scrapbook-X Firefox plugin, which downloads an HTML
page and its supporting iles, such as images, CSS, and Javascript.
We then removed the portions of the subject pages that made active
internet connections, such as for advertisements, to enable running
of the subjects in an oline mode.

4.3 Experiment One

To address RQ1 and RQ2, we ranMFix ten times on each of the 38
subjects to mitigate the non-determinism inherent in the approxi-
mation algorithm used to ind a repair solution.

For RQ1, we considered two metrics to gauge the efectiveness
of our approach. For the irst metric, we used the GMFT to measure
how many of the subjects were considered mobile friendly after the
patch was applied. For the second metric, we compared the before
and after scores for mobile friendliness and layout distortion for
each subject. For comparing mobile friendliness score, we selected,
for each subject over the ten runs, the repair that represented a
median score. For layout distortion, we selected, for each subject
over the ten runs, the best and worst repair, in terms of layout
distortion, that passed the mobile friendly test. Essentially, for each
subject, these were the two patched pages that passed the mobile
friendly test and had the lowest (best) and highest (worst) amount of
distortion. For the subjects that did not pass the mobile friendly test,

http://aamc.org
https://arxiv.org
http://us.battle.net
https://bitcointalk.org
http://blizzard.com
https://boardgamegeek.com
https://bulbagarden.net
http://coinmarketcap.com
http://correios.com.br/para-voce
http://dict.cc
https://www.discogs.com
http://drudgereport.com
http://www.finalfantasyxiv.com
http://www.flashscore.com
https://www.fragrantica.com
http://forum.gsmhosting.com/vbb
http://www.intellicast.com
https://www.irctc.co.in
https://www.irs.gov
https://www.leo.org
http://letour.fr
http://lolcounter.com
http://www.mmo-champion.com
http://myway.com
https://www.ncbi.nlm.nih.gov
http://www.nexusmods.com
http://nvidia.com
http://rotoworld.com
http://sigmaaldrich.com
http://us.soccerway.com
http://www.square-enix.com
https://travel.state.gov
http://www.weather.gov
http://www.bom.gov.au
http://www.wiley.com
http://onlinelibrary.wiley.com
https://www.wowprogress.com
https://xkcd.com

Conference’17, July 2017, Washington, DC, USA Sonal Mahajan, Negarsadat Abolhassani, Phil McMinn, and William G. J. Halfond

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	

A
ft

e
r

m
o

b
il
e

 f
ri

e
n

d
li
n

e
s

s
 s

c
o

re

Subjects

Before mobile friendliness score Difference between before and after scores

Figure 3: Distribution of the median mobile friendliness score across 10 runs

we considered the patched pages with the highest mobile friendly
scores to be the łpassingž pages.

For RQ2, we measured the average total running time ofMFix
for each of the ten runs for each of the subjects, and also measured
the time spent in the diferent stages of the approach.

4.3.1 Discussion of results. The results for efectiveness (RQ1)
were that 95% (36 out of 38) of the subjects passed the GMFT after
applyingMFix’s suggested CSS repair patch. This shows that the
patches generated byMFix were efective in making the pages
pass the mobile friendly test.

Figure 3 shows the results of comparing the before and after
median mobile friendliness scores for each subject. For each subject,
the dark gray portion shows the score reported by the PSIT for the
patched page and the light gray portion shows the score for the
original version. The black horizontal line drawn at 80 indicates
the value above which the GMFT considers a page to have passed
the test and to be mobile friendly. On average,MFix improved the
mobile friendliness score of a subject by 33% Overall, these results
show that our approach was able to consistently improve a subject’s
mobile friendliness score.

We also compared the layout distortion score for the best and
worst repairs of each subject. On average, the best repair had a
layout distortion score 55% lower than the worst repair. These
results show that our approach was efective in identifying patches
that could reduce the amount of distortion in a solution that was
able to pass the mobile friendly test. (For RQ3, we examined, via
a user study, if this reduction in distortion translates into a more
attractive page.)

We investigated the results to understand why two subjects
did not pass the GMFT. The patched version of the irst subject,
gsmhosting, contained a content sizing problem. The original ver-
sion of the page did not contain this problem, which indicates that
the increased font size introduced by the patch caused content in
this page to overlow the viewport width. For the second subject,
aamc,MFixwas not able to fully resolve its content sizing problem
as the required value was extremely large compared to the range
explored by the Gaussian perturbation of the adjustment factor.
Both of these issues suggest further reinements to our techniques
that could be explored in future work, such as making the process
iterative and expanding the initial search space.

The total running time (RQ2) required by our approach for the
diferent subjects ranged from 2 minutes to 10 minutes, averaging
a little less than 5 minutes. As of August 2017, an Amazon EC2

t2.xlarge instance was priced at $0.188 per hour. Thus, with an
average time of 5minutes the cost of runningMFix on 100 instances
was $1.50 per subject. Figure 4 shows a breakdown of the average
time for the diferent stages of the approach. As can be seen from
the chart, inding the repair for the mobile friendly problems (phase
3) was the most time consuming, taking up almost 60% of the
total time. A major portion of this time was spent in evaluating the
candidate solutions by invoking the PSIT API. The remainder of the
time was spent in calculating layout distortion, which is dependent
on the size of the page. The overhead caused by network delay in
communicating with the Amazon cloud instances was negligible.
For the API invocation, we implemented a random wait time of 30
to 60 seconds between consecutive calls to avoid retrieving stale
or cached results. Identifying problematic segments was the next
most time consuming step as it required invoking the GMFT API.

4.4 Experiment Two

To address RQ3, we conducted a user-based survey to evaluate the
aesthetics and visual appeal of the repaired page. The main intent
of the study was to evaluate the efectiveness of the layout distor-
tion metric, L (Section 3.3), in minimizing layout disruptions and
producing attractive pages. The general format of our survey was
to ask participants to compare the original and repaired versions
of a subset of the subjects. To make the survey length manageable,
we divided the 38 subjects into six diferent surveys, each with
six or seven subjects. For each subject, the survey presented, in
random order, a screenshot of the original and repaired pages when
displayed in a frame of the mobile device. The screenshots were
obtained from the output of the GMFT. An example of one such
screenshot is shown in Figure 2c. We asked each human subject
to (1) select which of the two versions (original or repaired) they
would prefer to use on their mobile device; (2) rate the readability
of each version of the page on a scale of 1ś10, where 1 means low
and 10 means high; and (3) rate the attractiveness of the page on
a scale of 1ś10, where 1 means low and 10 means high. We had
two variants of the survey, one that used the best repair as the
screenshot of the repaired page and the other one that used the
worst repair as the screenshot of the repaired page. Here, the best
and worst repairs were as deined in Experiment 1.

We used Amazon Mechanical Turk (AMT) service to conduct
the surveys. AMT allows users (requesters) to anonymously post
jobs which it then matches them to anonymous users (workers)
who are willing to complete those tasks to earn money. To avoid
workers who had a track record of haphazardly completing tasks,
we only allowed workers that had high approval ratings for their

Identifying

problematic

segments

(25%)

Segmentation

(1%)

Identifying

problematic CSS

properties

(15%)

Finding repair for

mobile friendly

problems

(59%)

Figure 4: Breakdown of the running time ofMFix

Automated Repair of Mobile Friendly Problems in Web Pages Conference’17, July 2017, Washington, DC, USA

previously completed tasks (over 95%) and had completed more
than 5,000 approved tasks to complete our survey. In general, this
is considered a fairly selective criteria for participant selection on
AMT. For each survey, we had 20 anonymous participants, giving
us a total of 240 completed surveys across both variants of the
survey. Each participants was paid $0.65 for completing a survey.

4.4.1 Discussion of results. Based on the analysis of the results
of the irst variant of the survey, we found that the users preferred
to use the repaired version in 26 out of 38 subjects, three subjects
received equal preference for the original and repaired versions,
and only nine subjects received a preference for using the original
version. Interestingly, users preferred to use the repaired version
even for the two subjects that did not pass the GMFT. For readability,
all but four subjects were rated as having an improved readability
over the original versions. On average, the readability rating of the
repaired pages showed a 17% improvement over original versions
(original = 5.97, repaired = 6.98). This result was also conirmed as
statistically signiicant using the Wilcoxon signed-rank test with a
p-value = 1.53× 10−14 < 0.05. Using the efect size metric based on
Vargha-Delaney A measure, readability of the repaired version was
observed to be 62% of the time better than the original version. With
regards to attractiveness, no statistical signiicance was observed,
implying thatMFix did not deteriorate the aesthetics of the pages in
the process of automatically repairing the reported mobile friendly
problems. In fact, overall, our repaired versions were rated slightly
higher than original versions for attractiveness (avg. original = 6.50,
avg. repaired = 6.67 and median original = 6.02, median repaired =
7.12).

We investigated the nine subjects where the repaired version was
not preferred by the participants. Based on our analysis, we found
two dominant reasons that applied to all of the nine subjects. First,
these subjects all had a ixed sized layout, meaning that the section
and container elements in the pages were assigned absolute size
and location values. This caused a cascading efect with any change
introduced in the page, such as increasing font sizes or decreasing
width to it the viewport. The second reason was linked to the irst
as the pages were text intensive, thereby requiringMFix to increase
font sizes. These results motivate future work in techniques that
can better handle these types of pages.

Overall, these results indicate thatMFix was very efective in
generating repaired pages that (1) users preferred over the original
version, (2) considered to be more readable, and (3) that did not
sufer in terms of visual aesthetics.

The results for the second variant of the survey underscored the
importance of our layout distortion objective and the impact visual
distortions can have on end users’ perception of a page’s attractive-
ness. The results showed that the users preferred to use the original,
non-mobile friendly version, in 22 out of 38 subjects and preferred
to use the repaired version for only 16 subjects. Readability showed
similar results as the irst survey variant. On average, an improve-
ment of 11% in readability was observed for the repaired pages
compared to the original versions, and was still found to demon-
strate statistical signiicance (p-value = 7.54 × 10−6 < 0.05). This is
expected as the enlarged font sizes can make the text very readable
in the repaired versions despite layout distortions. However, in this
survey a statistical signiicance (p-value = 2.20× 10−16 < 0.05) was

observed for the attractiveness of the original version being rated
higher than the repaired version. On average, the original version
was rated 6.82 (median 7.00) and the repaired version was rated 5.64
(median 5.63). In terms of the efect size metric, the repaired version
was rated to have a better attractiveness only 38% of the time. These
results strongly indicate that the layout distortion objective plays
an important role in generating patches that make the pages more
attractive to end users.

4.5 Threats to Validity

External Validity: The irst potential threat is bias in the selection
of participants for the user-based study in Experiment two. To
address this threat, we used AMT that provided us with a large
pool of anonymous participants. We only speciied qualiication
requirements for the participants in our study (i.e., high numbers of
previously completed tasks and high approval ratings, as outlined in
Section 4.4) to ensure authentic results. Another potential threat is
in the selection of subject web pages for our evaluation. To mitigate
any bias, we used the home pages of websites drawn from Alexa’s
50 top ranked websites from diferent categories.

Internal Validity: One potential threat is that the survey used
in the user-based study may not render in full resolution when
viewed on small screen devices, potentially impacting the results.
To mitigate this threat, we asked participants to enter the device
they used for answering the survey, so that we could isolate those
results. However, only a small minority of our participants did not
use a desktop or laptop, and the results from the few who used a
mobile phone or tablet to answer the survey did not indicate any
anomalous responses. Another potential threat is the use of GMFT
and PSIT in our approach to determine mobile friendly problems
andmobile friendliness score. However, the PSIT is the only publicly
available tool that reports a mobile friendliness score. Bing only
ofers a web interface for detecting mobile friendly problems, unlike
GMFT, which provides an API. Furthermore, GMFT and PSIT are
stable tools that are used by Google to rank pages in their own
search results.

Construct Validity: A potential threat is that the layout distor-
tion objective used in our approach quantiies the aesthetic value
of a page, which is a subjective aspect of a web page. To address
this threat, we conducted two user-based studies (i.e., Experiment
Two) to qualitatively understand the impact of layout distortion
on the visual appeal of a page. A second potential threat is that
the numbers supplied by participants in response to the readability
and attractiveness ratings that we asked them to provide are also
subjective. To mitigate this threat, we used relative values given
by the participants for the before and after repair versions for the
subjects, as opposed to using their absolute values. That is, although
two participants may supply diferent numbers for the ratings for
the same pair of web pages, they will supply higher values for one
of the pages if they believe that readability/attractiveness is better
for that page. A third potential threat is that we used screenshots
of the subject pages in the user-based study as opposed to allowing
the users to interact with the pages on mobile devices. We selected
this mechanism as we wanted the users to visualize the before and
after repair versions of the pages next to each other to allow for an
easy comparison. Also, we did not have control over participants’

Conference’17, July 2017, Washington, DC, USA Sonal Mahajan, Negarsadat Abolhassani, Phil McMinn, and William G. J. Halfond

mobile devices and wanted to avoid variations in results that this
could cause. A fourth potential threat is that the participants have
a bias in selecting the repaired version based on the order in which
the original and repaired versions are presented in the survey. To
mitigate this threat, we randomized the order of the two versions
for each question of the survey. A inal potential threat is that the
deinition of correct repair used in our approach may be diferent
from developer intent. However, this threat is mitigated by the user
study results discussed in RQ3, which show that the repairs gener-
ated byMFix were considered visually appealing and preferred by
the participants.

5 RELATED WORK

There have been approaches in the literature that attempt to ix pre-
sentation issues in a web page, but none of these attempt to repair
mobile friendly problems. The XFix [22, 23] technique, for example,
repairs layout Cross Browser Issues (XBIs) Ð presentation failures
arising from the inconsistencies in the rendering of a website across
diferent browsers. In this domain, the łcorrectž presentation of the
page is available through one of the browsers, the layout of which
must be mimicked in another. Mobile friendly problems entail a
diferent approach, in which the presentation of a page must be
changed to correct a series of identiied issues. There is no correct
reference rendering available to the repair process, which must also
maintain as much of the original aesthetics of the page as possible.
The latter constraint motivates the use of the segment model in this
paper’s approach (Section 3), which enables certain properties of
related HTML elements to be adjusted in proportion to one another.
Elsewhere, Cassius [32], proposes a framework based on automated
reasoning for debugging and repairing faulty CSS. However, the
technique assumes as input the faulty source lines in CSS iles,
and a set of page layout examples that the technique can use to
synthesize repair. These are unavailable in the problem domain
of mobile-friendly issues, however, where the only information
available is the types of mobile friendly problems that exist in a
page. Meanwhile, PhpRepair [37] and PhpSync [31] detect and re-
pair HTML syntax problems in web applications. Also, Wang et
al. [45] present a technique that uses static and dynamic analysis
to repair web applications by propagating a given presentation ix
to the server side source code. However, none of these techniques
speciically address mobile friendly problems and would be unable
to provide suitable repairs for them.

Other approaches circumvent mobile friendly problems by pre-
senting alternative versions of a desktop website, rather than by
issuing repairs. For example, commercial services such as bMobi-
lized [5], WompMobile [46], Mobilifyit [30], Duda [11], and Mob-
ify [29], can convert a given desktop website to a mobile friendly
version using pre-designed templates. Although helpful, the solu-
tions are not appropriate in all situations. Firstly, the templates are
unlikely to capture the carefully crafted layout and graphics de-
signed for the desktop versions, possibly undermining the branding
eforts a company is trying to achieve. Our approach avoids these
limitations by maintaining a close similarity to the original version.
Second, the output represents a separate mobile friendly website
with a new URL, requiring the development team to maintain two
websites. In contrast, our approach generates a CSS media query

patch that is added to the existing CSS of the original website and
that will only be triggered if the page is requested from a device
with a smaller screen size. Alternatively, modern browsers, such as
Chrome [10], Safari [36], and Firefox [13], provide a łreaderž mode
intended for easy clutter-free viewing of web pages on mobile de-
vices by presenting its text only and stripping out layout and page
styling. The primary purpose of this mode, however, is to allow for
easier reading of a page’s primary content, rather than to address
mobile friendly problems.

Techniques from the research community target various parts of
the detection and localization process for various types of UI related
problems in web apps, such as XBIs [9, 34, 34, 35], presentation
failures [24, 25, 25ś28, 41], internationalization [2], responsive web
page problems [42, 43], and need-to-translate strings [44]. However,
the problems detected by these approaches do not overlap with
mobile friendly problems and their solutions are too speciic to
generalize to this broader domain.

6 CONCLUSION AND FUTUREWORK

In this paper, we introduced an approach for the automated repair of
mobile friendly problems in web pages. Our approach irst segments
the page into elements forming natural visual groupings. It then
builds graph-based models of the segments and layout of the page
and uses the constraints represented by these graphs to compute
a repair that can improve mobile friendliness while minimizing
layout disruption. In the evaluation, we found that our approach
was efective in resolving mobile friendly problems for 95% of the
subjects and required only an average of ive minutes per subject.
In a user study, the participants overwhelmingly preferred the
repaired version of the website for use on mobile devices and also
considered the repaired page to be signiicantly more readable than
the original. Overall, these results are very positive and indicate that
our approach can help developers to improve themobile friendliness
of their web pages.

One possible direction of future work is to extend our approach
to handle complex transformations, such as converting navigation
links to dropdown menus. This would pose new research chal-
lenges, such as analysis to identify which lists of hyperlinks could
be grouped into a drop down menu, a refactoring to carry out this
change, and a method to quantify the change’s impact.

ACKNOWLEDGMENTS

This work was supported by U.S. National Science Foundation grant
CCF-1528163.

Automated Repair of Mobile Friendly Problems in Web Pages Conference’17, July 2017, Washington, DC, USA

REFERENCES
[1] StackOverlow Search Ð Mobile Friendly Problems with Bootstrap. Retrieved

Aug 2017 from https://stackoverlow.com/search?q=bootstrap+mobile+problem
[2] Abdulmajeed Alameer, Sonal Mahajan, andWilliam G.J. Halfond. 2016. Detecting

and Localizing Internationalization Presentation Failures in Web Applications. In
Proceeding of the 9th IEEE International Conference on Software Testing, Veriication,
and Validation (ICST).

[3] Alexa. 2017. Alexa Top 50 Websites by Category. Retrieved Aug 2017 from
https://www.alexa.com/topsites/category

[4] Bing. 2017. Bing Mobile Friendly Test Tool. Retrieved Aug 2017 from https:
//www.bing.com/webmaster/tools/mobile-friendliness

[5] bMobilized. 2017. bMobilizedWebsite. Retrieved Aug 2017 from http://bmobilized.
com/

[6] Browserstack. 2017. BrowserStack for Testing Mobile Websites. Retrieved Aug
2017 from https://www.browserstack.com/

[7] Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. 2003. VIPS: a Vision-based
Page Segmentation Algorithm. Technical Report.

[8] Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera. 2008. A Graph-theoretic
Approach to Webpage Segmentation. In Proceedings of the 17th International
Conference on World Wide Web (WWW ’08).

[9] Shauvik Roy Choudhary, Mukul R. Prasad, and Alessandro Orso. 2012. Cross-
Check: Combining Crawling and Diferencing to Better Detect Cross-browser
Incompatibilities in Web Applications. In Proceedings of the IEEE Fifth Interna-
tional Conference on Software Testing, Veriication and Validation (ICST). IEEE
Computer Society, Washington, DC, USA, 171ś180.

[10] Chrome. 2017. Chrome Reader Mode. Retrieved Aug 2017 from https://github.
com/chromium/dom-distiller

[11] Duda. 2017. Duda Website. Retrieved Aug 2017 from https://www.dudamobile.
com/

[12] eMarketer. 2017. Estimates for Digital Users. Re-
trieved Aug 2017 from https://www.emarketer.com/Article/
eMarketer-Releases-Updated-Estimates-US-Digital-Users/1015275

[13] Firefox. 2017. Firefox Reader Mode. Retrieved Aug 2017 from https://support.
mozilla.org/en-US/kb/irefox-reader-view-clutter-free-web-pages

[14] Google. 2017. Google Mobile Friendly Problem Types. Retrieved Aug 2017 from
https://support.google.com/webmasters/answer/6352293

[15] Google. 2017. Google Mobile Friendly Test Tool. Retrieved Aug 2017 from
https://search.google.com/test/mobile-friendly

[16] Google. 2017. Google PageSpeed Insights Tool. Retrieved Aug 2017 from https:
//developers.google.com/speed/pagespeed/insights/

[17] Google. 2017. Google Search Ranking based on Mobile Friendliness. Retrieved
Aug 2017 from https://support.google.com/adsense/answer/6196932?hl=en

[18] Google. 2017. Google Study for Mobile Usage. Retrieved Aug 2017 from https:
//developers.google.com/search/mobile-sites/

[19] Google. 2018. Consumer Study. Retrieved Feb 2018 from https://www.
consumerbarometer.com/en/insights/?countryCode=US

[20] Google. 2018. Content Sizing. Retrieved Feb 2018 from https://developers.google.
com/web/fundamentals/design-and-ux/responsive/

[21] Sonal Mahajan. 2017. MFix Project. Retrieved Aug 2017 from https://github.
com/USC-SQL/mix

[22] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G.J. Halfond.
2017. Automated Repair of Layout Cross Browser Issues using Search-Based
Techniques. In Proceedings of the 26th International Symposium on Software Testing
and Analysis (ISSTA).

[23] Sonal Mahajan, Abdulmajeed Alameer, Phil McMinn, and William G.J. Halfond.
2017. XFix: Automated Tool for Repair of Layout Cross Browser Issues. In
Proceedings of the 26th International Symposium on Software Testing and Analysis
(ISSTA) ś Tool Track.

[24] Sonal Mahajan and William G. J. Halfond. 2014. Finding HTML Presentation Fail-
ures Using Image Comparison Techniques. In Proceedings of the 29th IEEE/ACM
International Conference on Automated Software Engineering (ASE) ś New Ideas
track.

[25] Sonal Mahajan and William G. J. Halfond. 2015. Detection and Localization of
HTML Presentation Failures Using Computer Vision-Based Techniques. In Pro-
ceedings of the 8th IEEE International Conference on Software Testing, Veriication

and Validation (ICST).
[26] Sonal Mahajan and William G. J. Halfond. 2015. WebSee: A Tool for Debug-

ging HTML Presentation Failures. In Proceedings of the 8th IEEE International
Conference on Software Testing, Veriication and Validation (ICST) ś Tool track.

[27] Sonal Mahajan, Bailan Li, Pooyan Behnamghader, and William G. J. Halfond.
2016. Using Visual Symptoms for Debugging Presentation Failures in Web
Applications. In Proceedings of the 9th IEEE International Conference on Software
Testing, Veriication and Validation (ICST).

[28] Sonal Mahajan, Bailan Li, and William G. J. Halfond. 2014. Root Cause Analysis
for HTML Presentation Failures Using Search-based Techniques. In Proceedings
of the 7th International Workshop on Search-Based Software Testing (SBST).

[29] Mobify. 2017. MobifyWebsite. Retrieved Aug 2017 from https://www.mobify.com/
[30] Mobilifyit. 2017. Mobilifyit Website. Retrieved Aug 2017 from http://www.

mobilifyit.com/
[31] Hung Viet Nguyen, Hoan AnhNguyen, Tung ThanhNguyen, and Tien N. Nguyen.

2011. Auto-locating and Fix-propagating for HTML Validation Errors to PHP
Server-side Code. In Proceedings of the 2011 26th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE). IEEE Computer Society, Washing-
ton, DC, USA, 13ś22.

[32] Pavel Panchekha and Emina Torlak. 2016. Automated Reasoning for Web Page
Layout. In Proceedings of the ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA).

[33] Richard Romero and Adam Berger. 2004. Automatic Partitioning ofWeb Pages Us-
ing Clustering. In Proceedings of Mobile Human-Computer Interaction - MobileHCI
2004: 6th International Symposium.

[34] Shauvik Roy Choudhary, Mukul R. Prasad, and Alessandro Orso. 2013. X-PERT:
Accurate Identiication of Cross-browser Issues in Web Applications. In Proceed-
ings of the 2013 International Conference on Software Engineering (ICSE). 702ś711.

[35] Shauvik Roy Choudhary, Husayn Versee, and Alessandro Orso. 2010. WEBD-
IFF: Automated Identiication of Cross-browser Issues in Web Applications. In
Proceedings of the IEEE International Conference on Software Maintenance (ICSM).
1ś10.

[36] Safari. 2017. Safari Reader Mode. Retrieved Aug 2017 from https://en.wikipedia.
org/wiki/Safari_(web_browser)

[37] Hesam Samimi, Max Schäfer, Shay Artzi, Todd Millstein, Frank Tip, and Laurie
Hendren. 2012. Automated Repair of HTML Generation Errors in PHP Ap-
plications Using String Constraint Solving. In Proceedings of the International
Conference on Software Engineering (ICSE). 277ś287.

[38] AndrÃľs Sanoja and StÃľphane GanÃğarski. 2014. Block-o-Matic: A web page
segmentation framework. In Proceedings of the International Conference on Multi-
media Computing and Systems (ICMCS).

[39] SauceLabs. 2017. SauceLabs for Testing Mobile Websites. Retrieved Aug 2017
from https://saucelabs.com/

[40] Statcounter. 2017. Mobile Market Share. Retrieved Aug 2017 from
http://gs.statcounter.com/platform-market-share/desktop-mobile/worldwide/
#monthly-201407-201707

[41] Michael Tamm. 2009. Fighting layout bugs. https://code.google.com/p/
ighting-layout-bugs/.

[42] Thomas Walsh, Gregory Kapfhammer, and Phil McMinn. 2017. Automated
Layout Failure Detection for ResponsiveWeb Pages without an Explicit Oracle. In
Proceedings of the 26th International Symposium on Software Testing and Analysis
(ISSTA).

[43] Thomas A. Walsh, Phil McMinn, and Gregory M. Kapfhammer. 2015. Automatic
Detection of Potential Layout Faults Following Changes to Responsive Web
Pages. In International Conference on Automated Software Engineering (ASE).
ACM, 709ś714.

[44] Xiaoyin Wang, Lu Zhang, Tao Xie, Hong Mei, and Jiasu Sun. 2010. Locating
Need-to-Translate Constant Strings in Web Applications. In Proceedings of the
Eighteenth ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE ’10).

[45] Xiaoyin Wang, Lu Zhang, Tao Xie, Yingfei Xiong, and Hong Mei. 2012. Automat-
ing Presentation Changes in DynamicWeb Applications via Collaborative Hybrid
Analysis. In Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering (FSE). ACM, New York, NY, USA, 16:1ś16:11.

[46] WompMobile. 2017. WompMobile Website. Retrieved Aug 2017 from http:
//www.wompmobile.com/

https://stackoverflow.com/search?q=bootstrap+mobile+problem
https://www.alexa.com/topsites/category
https://www.bing.com/webmaster/tools/mobile-friendliness
https://www.bing.com/webmaster/tools/mobile-friendliness
http://bmobilized.com/
http://bmobilized.com/
https://www.browserstack.com/
https://github.com/chromium/dom-distiller
https://github.com/chromium/dom-distiller
https://www.dudamobile.com/
https://www.dudamobile.com/
https://www.emarketer.com/Article/eMarketer-Releases-Updated-Estimates-US-Digital-Users/1015275
https://www.emarketer.com/Article/eMarketer-Releases-Updated-Estimates-US-Digital-Users/1015275
https://support.mozilla.org/en-US/kb/firefox-reader-view-clutter-free-web-pages
https://support.mozilla.org/en-US/kb/firefox-reader-view-clutter-free-web-pages
https://support.google.com/webmasters/answer/6352293
https://search.google.com/test/mobile-friendly
https://developers.google.com/speed/pagespeed/insights/
https://developers.google.com/speed/pagespeed/insights/
https://support.google.com/adsense/answer/6196932?hl=en
https://developers.google.com/search/mobile-sites/
https://developers.google.com/search/mobile-sites/
https://www.consumerbarometer.com/en/insights/?countryCode=US
https://www.consumerbarometer.com/en/insights/?countryCode=US
https://developers.google.com/web/fundamentals/design-and-ux/responsive/
https://developers.google.com/web/fundamentals/design-and-ux/responsive/
https://github.com/USC-SQL/mfix
https://github.com/USC-SQL/mfix
https://www.mobify.com/
http://www.mobilifyit.com/
http://www.mobilifyit.com/
https://en.wikipedia.org/wiki/Safari_(web_browser)
https://en.wikipedia.org/wiki/Safari_(web_browser)
https://saucelabs.com/
http://gs.statcounter.com/platform-market-share/desktop-mobile/worldwide/#monthly-201407-201707
http://gs.statcounter.com/platform-market-share/desktop-mobile/worldwide/#monthly-201407-201707
https://code.google.com/p/fighting-layout-bugs/
https://code.google.com/p/fighting-layout-bugs/
http://www.wompmobile.com/
http://www.wompmobile.com/

	Abstract
	1 Introduction
	2 Background
	2.1 Types of Mobile Friendly Problems
	2.2 Current Methods of Addressing Mobile Friendly Problems

	3 Approach
	3.1 Phase 1: Segmentation
	3.2 Phase 2: Localization
	3.3 Phase 3: Repair

	4 Evaluation
	4.1 Implementation
	4.2 Subjects
	4.3 Experiment One
	4.4 Experiment Two
	4.5 Threats to Validity

	5 Related Work
	6 Conclusion and Future Work
	References

