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SUMMARY

An important aim in software testing is constructing a test suite with high structural code coverage
– that is, ensuring that most if not all of the code under test has been executed by the test cases
comprising the test suite. Several search-based techniques have proved successful at automatically
generating tests that achieve high coverage. However, despite the well-established arguments
behind using evolutionary search algorithms (e.g., genetic algorithms) in preference to random
search, it remains an open question whether the benefits can actually be observed in practice
when generating unit test suites for object-oriented classes. In this paper, we report an empirical
study on the effects of using evolutionary algorithms (including a genetic algorithm and chemical
reaction optimization) to generate test suites, compared with generating test suites incrementally
with random search. We apply the EVOSUITE unit test suite generator to 1,000 classes randomly
selected from the SF110 corpus of open source projects. Surprisingly, the results show that the
difference is much smaller than one might expect: While evolutionary search covers more branches
of the type where standard fitness functions provide guidance, we observed that, in practice, the
vast majority of branches do not provide any guidance to the search. These results suggest that,
although evolutionary algorithms are more effective at covering complex branches, a random
search may suffice to achieve high coverage of most object-oriented classes.
Copyright c© 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Automatically generating software test cases is an important task, with the objective of
improving software quality. Many different algorithms and techniques for different types
of software testing problems have been proposed. One particular application area in which
search-based techniques have been successfully applied is generating unit tests for object-
oriented programs, where test cases are sequences of object constructor and method calls.
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2 RANDOM OR EA SEARCH FOR OBJECT-ORIENTED TEST SUITE GENERATION?

Automatically generated tests can be used to reveal crashes and undeclared exceptions
(e.g., Csallner and Smaragdakis [1], Pacheco and Ernst [2]), to capture the current behavior
for regression testing (e.g., Fraser and Zeller [3], Xie [4]), or they can simply be presented to
the developer in order to support them in creating test suites [5]. There are various search-
based tools available for languages such as Java and .NET, ranging from tools based on
random search such as Randoop [2], JCrasher [1], JTExpert [6], T3 [7], or Yeti-Test [8], to
tools based on evolutionary search such as EVOSUITE [9], eToc [10], NightHawk [11], or
Testful [12].

Search-based unit test generation tools dominantly use Genetic Algorithms (GAs) [13,
14], and are often thought to be superior to tools based on random search. However, it is
neither clear whether this is actually the case in practice, nor whether it generalizes to other
evolutionary search techniques. It could be that differences in performance across tools
may be accounted for by the differences in the programming language that they target, or
in the way they have been engineered, as opposed to any specific benefits of the particular
search algorithm that they apply. In order to shed more light on these questions, we report
on experiments to contrast the use of more than one different evolutionary algorithm with
random search when applied to open source Java classes.

Evolutionary search algorithms generally mimic the metaphor of natural biological
evolution, the social behavior of species, or other natural processes. Besides the many
variants of GAs and the related families of evolution strategies [15], there are various
algorithms based on, for example, how ants find the shortest route to a source of food [16],
the foraging behavior of honey bees [17], the swarm behaviour of bird flocks or fish
schools [18], as well as physical and chemical processes like chemical reactions [19].
However, in the context of evolutionary test generation of object-oriented unit tests,
examples and applications of these other algorithms are rare or do not exist. Since it
is infeasible to implement all different algorithms, we aimed to identify one suitable
alternative algorithm to increase the external validity of our experimental results and to
study if the findings generalize to other evolutionary search algorithms. In particular, the
criteria for the selection of the alternative algorithm were that: (1) it is a population-based
“global” search algorithm, like GAs; (2) it is suitable for optimization of the discrete search
domains of unit test generation and can make use of the same representation as a GA
(see Section 2); and (3) it is not just a minor twist to a GA, but a considerably different
algorithm. Since many optimization algorithms focus on continuous domains and thus
are not straight forward to apply to unit test generation, we identified Chemical Reaction
Optimization (CRO) [19] as a suitable algorithm matching our criteria. CRO has been
reported to be a promising technique in other domains (e.g. Lam et al. [20, 21] , Xu et
al. [22, 23], and Yu et al. [24]), but has not previously been applied to test generation. We
adapt CRO such that both algorithms, GA and CRO, optimize unit test suites for code
coverage, while the random search algorithm optimizes code coverage by adding random
tests to a test suite.

To allow for a fair comparison in these experiments, we use an implementation of the
GA and random test generation in the EVOSUITE tool, which is a state-of-the-art search-
based test generation tool for branch-coverage of Java classes, as demonstrated by its
successes at the annual unit testing tool competition [25] and its comparison to other tools
in terms of fault-finding [26]. We present an implementation of CRO for test generation
within EVOSUITE, and further include EVOSUITE’s archive of solutions in our experiment,
which allows the evolutionary search to focus on uncovered code, resembling more how
random search optimizes for coverage. We run experiments on a stratified random sample
of 1,000 classes from the SF110 corpus of open source projects [27] and evaluate the three
techniques in terms of the achieved code coverage.

This paper extends and consolidates our previous experiment results [28] as follows.
We extend the empirical evaluation to compare random search to Chemical Reaction
Optimization (CRO) in addition to the GA, to validate that the results obtained by
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Shamshiri et al. [28] generalize to other search algorithms beyond GAs. Note that this
paper is the first one to investigate the application of the CRO search algorithm to the test
suite generation problem. To increase our confidence in the data, we increase the number
of repetitions from 50 to 100 times for all experiments. Finally, we compare random search
with an extended version of the GA whereby an archive of past solutions (test cases) is
used to assist with the generation of test suites with high coverage. We also expand the
background on search-based test generation, as well as our analysis of the results.

To summarize, the main contributions of this paper are:

(1) an empirical study comparing the effectiveness of evolutionary and random search-
based algorithms for generating branch coverage test suites for real-world Java classes;

(2) a classification of the types of branches that exist in Java bytecode, and the search
landscape they create;

(3) a thorough investigation of how the nature of the branches that must be covered
influences the effectiveness of random and evolutionary methods;

(4) the first use of CRO for test generation as another evolutionary search algorithm and
a comparison of its effectiveness against the GA and random search;

(5) an empirical investigation of how an archive of past solutions can improve the
capability of GA to focus on the uncovered code.

(6) a study of the effect that an extended search budget may have on the effectiveness
of evolutionary and random search.

The results of our experiments suggest that the difference between the use of
evolutionary algorithms and random search is smaller in practice than one might expect.
While the two approaches have different performance profiles over time, the main
reason for this finding is actually because of the types of branches that are prevalent
in object-oriented programs. Fitness-guided search algorithms like GAs or CRO work
well when trying to cover branches that result in a smooth gradient of fitness values,
which the search can “follow” to the required test case. These branches are typically
characterized by numerical comparisons. However, our study found that in practice such
“gradient branches” are relatively few in number; allowing random search to generate
test cases without much relative disadvantage, and with a similar level of effectiveness.
These contributions have implications for future research and practice in unit test case
generation, as discussed in Section 6.

2. SEARCH-BASED TEST GENERATION

In this paper, we study the application of evolutionary and random search to automatic test
suite generation, as implemented in the EVOSUITE tool. EVOSUITE aims to generate unit
test suites that cover as many branches (i.e., true/false outcomes of conditional statements)
of a Java class as possible, while also executing all methods without any branches, which
we refer to as “branchless” methods.

The selected methods and algorithms represent state-of-the-art solutions. In particular,
the use of random search integrated in EVOSUITE could benefit from the specific
capabilities of the tool (e.g., seeding – as discussed in Section 2.1.1) guaranteeing a fair
comparison with the other methods, which would be difficult to achieve otherwise.
For instance, the annual unit testing tool competition [25] revealed that other random
testing techniques not benefiting of the EVOSUITE infrastructure are less effective than
the evolutionary algorithms defined in EVOSUITE [27]. Furthermore, the GA defined in
EVOSUITE is a state-of-the-art unit test generation algorithm. While a GA is probably
the most commonly applied search algorithm in search-based testing [13], any differences
between a random approach and the GA raise the question of whether this is a result of
specific aspects of the GA, or evolutionary search in general. Therefore, we selected CRO
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4 RANDOM OR EA SEARCH FOR OBJECT-ORIENTED TEST SUITE GENERATION?

as a relevant alternative evolutionary algorithm, which provides the intrinsic ability to
integrate GA-style and Simulated Annealing-like strategies [13].

We begin by introducing our implementation of random search to the problem of
generating test cases (which we may interchangeably refer to as tests in this paper), and
then introduce the two evolutionary algorithms evaluated in this paper for generating
complete test suites – the GA and CRO algorithms.

2.1. Random Search for Tests

One strategy for finding branch-covering test cases is simply to generate sequences of
statements to the class under test at random, coupled with randomly-generated inputs.
The test generator is given a list of methods and constructors to consider (or derives
this list with static analysis), and iteratively selects a random one. This is inserted into
the existing sequence of statements such that parameter objects of the inserted call can
either be satisfied with existing objects in that sequence (i.e., return values of previous
statements), or recursively calls constructors or methods that generate the required objects.
For primitive parameter types (e.g., numbers or strings) random values are generated. If
a randomly-generated test case covers new branches that have not been executed before,
it is added to a test suite for the class, else it can be discarded. One disadvantage of this
approach is the size of the resulting test suite, which can be very large and therefore carry
a high execution cost.

A further problem is finding inputs that need to be certain “magic” values required to
execute certain branches, such as constant values, specific strings, etc., that are unlikely
to be generated by chance. One way of circumventing this problem is to enhance the
algorithm through seeding.

2.1.1. Seeding. The process of seeding involves biasing the search process towards certain
input values that are likely to improve the chances of enhancing coverage [29, 30, 31].
EVOSUITE obtains seeds both statically and dynamically (as documented by Rojas et
al. [32]). The static approach takes place before test generation: EVOSUITE collects all
literal primitive and string values that appear in the bytecode of the class of the test.
Then, while tests are being generated, literals that are encountered at runtime may also
be dynamically added to the pool of seeds. Some of these seeds are specially computed,
according to a set of predefined rules. For instance, if the test case includes the statement
“foo.startsWith(bar)”, involving the strings foo and bar, the concatenation bar

+ foo will be added to the seed pool. During the search process, EVOSUITE will then
choose to use a seed from the pool instead of generating a fresh value, according to some
probability.

We study random search with and without seeding enabled in this paper. We refer to
the enhanced version of random search incorporating seeding as Random+, and the basic
implementation without seeding as Pure Random.

2.2. Genetic Algorithm Search for Test Suites

While random search relies on encountering solutions by chance, guided searches aim
to find solutions more directly by using a problem-specific “fitness function”. A fitness
function scores better potential solutions to the problem with better fitness values. A good
fitness function will provide a gradient of fitness values so that the search can follow a
“path” to increasingly better solutions that are increasingly fit for purpose. With a good
fitness function, guided search-based approaches are capable of finding suitable solutions
in extremely large or infinite search spaces (such as the space of possible test cases for a
class as considered in this paper).

Genetic Algorithms (GAs) are one example of a directed search technique that uses
simulated natural evolution as a search strategy. GAs evolve solutions to a problem based
on their fitness. GAs evolve several candidate solutions at once in a “population”. The
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Algorithm 1 A genetic algorithm as used in search-based testing.

1 seeds← initialize seeds with collected static literals from bytecode
2 current population← generate random population using seeds

3 repeat
4 Z ← elite of current population
5 while |Z| 6= |current population| do
6 P1, P2 ← rank selection from current population

7 if crossover probability then
8 O1, O2 ← crossover P1, P2

9 else
10 O1, O2 ← P1, P2

11 if mutation probability then
12 mutate O1 and O2 {The seeds pool may be used}
13 fP = min(fitness(P1), fitness(P2))
14 fO = min(fitness(O1), fitness(O2))
15 seeds← update seeds with collected dynamic seeds from fitness evaluations
16 if fO ≤ fP then
17 Z ← Z ∪ {O1, O2}
18 else
19 Z ← Z ∪ {P1, P2}
20 current population← Z

21 until solution found or maximum resources spent

initial population of candidate solutions is generated randomly. Here, a solution is a test-
suite, consisting of individual test cases that each contain a sequence of statements that
invoke constructor calls and methods on the the class under test [33]. Each iteration of
the algorithm seeks to adapt these solutions to ones with an increased fitness: “Crossover”
works to splice two solutions to form new “offspring” while “mutation” randomly changes
a component of a solution. The new solutions generated are taken forward to the next
iteration depending on their fitness.

As shown in Algorithm 1, the GA first creates an initial population of solutions randomly
(Line 2). Then, using rank selection, it selects two parents P1 and P2 (Line 6) and crosses
them over (Line 7-10). With a certain probability, the GA applies the mutation operator on
the resulting offspring O1 and O2 (Line 11-12), then it executes the solutions on the class
under test, calculates their fitness values, and selects the chromosomes with the minimum
(best) fitness values (Line 13 and 14), and then compares the fitness value of parents
and their offspring to determine which one will be carried over to the next generation
Z (Line 16-19). The GA repeats this process until a solution is found or the search budget
is exhausted. During this process, to enhance the effectiveness of the generated solutions,
the GA collects seeds statically and dynamically and uses them for the generation of new
or mutated solutions (Line 1 and 15).

Crossover involves recombining test cases across two test suites while mutation works
at two levels: at the test suite level and at test case level. At the test suite level, it adds fresh,
randomly-generated test cases to an existing test suite, or selects individual tests for test
case level mutation. Whenever a new test case is generated at random (when generating
the initial population or during mutation of a test suite), this is done by starting with an
empty test case and repeatedly applying mutation on it, with seeding enabled. Mutation
of test cases either randomly adds new statements, removes existing ones, or modifies
them and their parameters. Note that, in Algorithm 1, the mutate function (Line 12)
encapsulates both mutation levels.

To guide the search towards achieving a high coverage test suite, the fitness value can be
calculated based on the number of covered goals – where in the case of branch-coverage
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6 RANDOM OR EA SEARCH FOR OBJECT-ORIENTED TEST SUITE GENERATION?

with EVOSUITE, a goal is defined as either a branch or a branchless method. However,
a fitness function based solely on the number of covered goals provides no guidance to
goals that remain uncovered. As with previous work in search-based test generation [13],
EVOSUITE incorporates branch distance metric [34], which indicates how “far” a branch
is from being executed. For example, if a conditional “if (a == b)” is to be executed as
true, the “raw” distance can be computed as “|a− b|”. In this way, the closer the values of
a and b are to one another, the lower the branch distance is, and the closer the search
is to covering the goal. Note that the values or a and b in this example may not be
directly controllable from the test cases, but may be internal variables set indirectly by
the statements of a test as manipulated by the GA.

Since EVOSUITE aims to evolve test suites where each test case covers as many branches
as possible, the fitness function involves adding the distance value d(b, T ) for each branch
b within a test suite T , computed as follows [33]:

d(b, T ) =























0 if the branch has been covered,

ν(dmin(b, T )) if the predicate has been
executed at least twice,

1 otherwise.

(1)

where dmin(b, T ) is the minimum raw distance value for the b for T , and ν is a function
that normalizes a distance value between 0 and 1. Since the test suite must cover both the
true and false outcomes of each individual branch, a distance value is not computed until
the conditional is executed twice by the test suite. This is so that the initial execution of the
predicate, with some specific true/false evaluation, is not lost in the process of pursuing
the alternative outcome.

As longer test suites require more memory and execution time, controlling the length of
the test suite can improve search performance [35]. Therefore, when deciding which test
suites should proceed into the population for the next iteration of the search, EVOSUITE

prefers shorter test suites to test suites with the same fitness but are composed of a higher
number of statements.

Java programs are compiled to bytecode for execution on a Java Virtual Machine (JVM),
and it is at the level of the bytecode at which EVOSUITE works – branch distances are
computed by instrumenting and monitoring bytecode instructions. Different types of
bytecode instruction can therefore give rise to different types of fitness landscapes that
may or may not be useful in guiding the search, as we discuss in Section 3.

2.2.1. Archive of Tests. When generating solutions at a test suite level using a search
algorithm, the computation of fitness values considers all coverage goals, even if they have
already been covered by a test. This may have negative implications for the effectiveness
of the search. For instance, the application of the mutation operator may lead a test suite to
satisfy a particular coverage goal for the first time, but ceasing to satisfy two goals which
were covered before the mutation. As a consequence, the search algorithm regards the
mutation as detrimental and thus discards it, losing the improvement achieved by covering
a new branch. A practical, effective solution to overcome this problem consists in using an
archiving mechanism to store already covered goals and the tests that cover them, ensuring
that the search keeps focused on as yet uncovered goals exclusively.

The use of an archive influences the search performance by changing the fitness
evaluation, the mutation operation and the construction of the final solution. First, during
fitness evaluation, each time a new goal has been covered, the GA adds it to the archive
together with its covering test. Upon completion of the current iteration, the fitness
function no longer takes these covered goals into account. Second, when the mutation
operator adds a new test case to an existing test suite, the test added will be a mutated
clone of an test stored in the archive instead of a purely random test, given a certain
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probability. Finally, at the end of the search, the best individual is not directly regarded
as the optimal test suite as customary. In contrast, and because this best individual may be
missing goals that were covered by other individuals, the GA constructs the final result by
incrementally extending the best individual with tests from the archive which enhance the
resulting coverage. [36] provide more details and discuss the effectiveness of incorporating
an archive of tests for search-based test generation.

2.3. Chemical Reaction Optimization

Chemical Reaction Optimization (CRO) is a metaheuristic algorithm that combines the
advantages of population-based evolutionary algorithms, such as genetic algorithms, and
simulated annealing [19]. CRO is inspired by real life chemical reactions, a process that
transforms a set of molecules placed in a container to another set of molecules. In a
reaction, the initial set of molecules is usually unstable but with high potential energy,
while the set of molecules at the end of the reaction process is more stable but with less
potential energy. Solving optimization problems with CRO requires mapping the possible
solutions of a problem to molecules, the search operators to reactions, and the value of
a solution to the potential energy of the molecules. Similar to evolutionary algorithms
that manipulate individuals, the CRO optimization process manipulates molecules by
iteratively applying reactions, transforming the initial set of molecules to a set of molecules
with minimal potential energy. Similar to simulated annealing, CRO can accept reactions
that increase rather then decrease the potential energy of the molecules. This is achieved by
associating to molecules their kinetic energy, which represents the likelihood of a reaction
that increases the potential energy.

Since CRO effectively combines global and local search operations by integrating GA-
style and Simulated Annealing-style searches, it is a clear candidate for search-based unit
test generation, which requires an effective local search strategy to cover branches, and
also an effective global search strategy to effectively combine method calls.

In the following, we first present the basic CRO algorithm, and then describe how CRO
has been instantiated to address test case generation.

2.3.1. CRO Algorithm. The CRO algorithm, shown in Algorithm 2, evolves an initial
population of molecules executing reactions among molecules (called collisions). In
particular, it uses four types of collision. The on-wall ineffective collision and the inter-
molecular ineffective collision implement local transformations (i.e., they are local search
operators) of one molecule and two molecules, respectively. The decomposition and
synthesis collisions implement global transformations (i.e., they implement global search
operations) of one molecule and two molecules, respectively. In the following, we describe
how the CRO algorithm works, while we present the four collision types in the next
subsection.

When running CRO, there are several parameters that must be defined. These
parameters are specified as part of the signature of the CRO function shown in Algorithm 2
and are described below:
• f : is the fitness function, that is a function that associates to a molecule, which

represents a possible solution, a potential energy, which represents the utility of that
solution.

• initSize: is the initial number of molecules in the container
• initKE: is the initial value of the kinetic energy of each molecule
• collRate: is the probability that a collision is a collision between two molecules

instead of a collision between a molecule and the container
• KELossRate: is the percentage of kinetic energy that a molecule loses after each

collision
• decThreshold: is an integer value representing the number of ineffective collisions

that can be tolerated before triggering a decomposition

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2017)
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Algorithm 2 A chemical reaction optimization algorithm adapted for search-based testing.

1 seeds← initialize seeds with collected static literals from bytecode
2 population = randomMolecules(initSize, initKE, seeds)
3 while stopping criterion not met do
4 r ← random[0, 1]
5 if r > collRate then
6 select a random molecule M

7 if M .hitsSinceLastMin() > decThreshold then
8 population.decomposition(M, seeds, fitness)
9 else

10 population.onWallIneffectiveCollision(M,KELossRate, seeds, fitness)
11 else
12 select two random molecule M1,M2

13 if M1.KE < synThreshold AND M2.KE < synThreshold then
14 population.synthesis(M1,M2, seeds, fitness)
15 else
16 population.interMolecularIneffectiveCollision(M1,M2, seeds, fitness)
17 seeds← update seeds with collected dynamic seeds from fitness evaluations
18 if population.bestSolution.PE <= minimum.PE then
19 minimum = population.bestSolution

20 else
21 elitism(minimum, population)
22 output minimum

• synThreshold: is the value of the kinetic energy under which two colliding molecules
are automatically fused into one molecule

The algorithm starts with the generation of a random population of initSize molecules
with initKe kinetic energy each (line 2 in Algorithm 2), and then enters the main loop (from
line 3 to line 21). At each iteration, the main loop transforms the population of molecules
while searching for the best solution.

The iteration starts by randomly selecting either a single or a multi-molecular collision
(line 5). When a collision involving a single molecule is selected, CRO checks if the
number of ineffective collisions that have not improved the potential energy of the selected
molecule is greater than the parameter decThreshold (line 7). If the threshold has not been
passed, local search is assumed to still have the potential to be useful and an on-wall
ineffective collision is performed. Otherwise, CRO assumes it is not worth continuing with
local searches based on that molecule and performs a global search based on decomposition.

When a collision involving two molecules is selected, CRO checks if the kinetic energy
of both molecules is below the threshold synThreshold (line 13). If at least one of the values
is above the threshold, local search is assumed to still have the potential to be useful and
an inter-molecular ineffective collision is performed. Otherwise, CRO assumes it is not worth
continuing with local searches based on the two selected molecules and performs a global
search based on synthesis.

It is worth noting that the fitness function evaluation takes place within the search
operators (collisions), unlike the previously presented genetic algorithm, where the fitness
evaluation takes place after the mutation and crossover operations. This is due to the fact
that, to calculate the residual kinetic energy of the molecules, the algorithm needs the
potential energy value (which corresponds to the fitness value in GA).

At the end of each iteration, CRO checks if the current population includes the best
solution discovered so far (line 18). If it is not the case, the best solution is automatically
injected in the current population by replacing one of the existing molecules invoking the
elitism function. Note that the original CRO algorithm does not include elitism. However,
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we found that CRO without elitism is often too slow in reaching good solutions compared
to the genetic algorithm used in EVOSUITE, and elitism worked well to mitigate this issue.

CRO iterates this procedure until a stopping criterion is satisfied. There are several
options for the stopping criterion including the definition of a maximum number of
iterations that can be executed, a maximum amount of time that can be spent evolving
the molecules, and a level of potential energy that must be reached.

2.3.2. Test Case Generation with CRO. When CRO is used to generate test cases, molecules
represent test suites. In particular, a single molecule represents a whole test suite with an
arbitrary number of test cases. The potential energy of a molecule is the branch coverage
achieved by the corresponding test suite. The evaluation of the fitness function on a
molecule implies running the test cases associated with that molecule and collecting the
coverage information. Collisions among molecules are used to evolve the test suites. In the
following, for each collision type we first describe how it works in general, and then how
it is specifically designed for test case generation.

Collisions are elementary reactions that change the structure of the molecules and their
energy. Both potential and kinetic energies are influenced by the reactions. Since energy
must always be balanced, the container is also associated with a potential energy that can
be increased or decreased by the reactions.

Reactions can be local, that is they only require the molecules directly involved in the
transformation to be performed, or global, that is they require more information than just
the molecules involved in the reaction to be performed.

Local Reactions The on-wall ineffective collision is a reaction that involves one molecule
only. It represents the case of a molecule hitting a wall of the container without producing
any dramatic effect. This collision is modelled with the neighborhood search operator N

that generates a new molecule x′ that replaces the molecule x (x′ = N(x)). The potential
energy of x′ is determined by the fitness function, that is PEx′ = f(x′). The molecule also
loses some kinetic energy in the process (a random quantity, limited by a threshold) that is
added to the energy of the container.

For the purpose of test case generation, N is implemented as an operator that mutates
each test case in the test suite with probability 2

|T | , where |T | is the size of the test suite.

When a test is mutated, each of its statements is mutated with a given probability (in the
experiments we used a probability equals to 0.2) using one of the following statement-level
operators: insert a statement, delete a statement, modify a statement.

The inter-molecular ineffective collision is a reaction that involves two molecules. It
represents the case of two molecules hitting each other with little effect. This collision
is essentially modelled as two independent on-wall ineffective collisions. In fact, the
same operator N defined for the on-wall ineffective collision is used to mutate the two
molecules. The energy is handled in a slightly different way because molecules can
exchange energy.

Global Reactions The decomposition is a reaction that involves one molecule only. It
represents the case of a molecule hitting the wall of the container and breaking into two
or more molecules. In our evaluation, we only consider the case of two molecules, that
is the decomposition operator D applied to a molecule x always produces two molecules
(D(x) = (x1, x2)).

The energy of the original molecule must be enough to create two new molecules. Since
it is often not the case, a small portion of energy can be withdrawn from the container and
added to the kinetic energy of the newly generated molecules, making the decomposition
less likely to fail.

For the purpose of test case generation, the decomposition operator is defined as an
operator that generates new test cases by half random changes. In particular, given a test
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suite x with n test cases, the operator returns two test suites x1 and x2 both with n test
cases. The test suite x1 inherits all the test cases of x in odd positions, while the test cases
in even positions are generated randomly. The test suite x2 inherits all the test cases of x in
even positions, while the test cases in odd positions are generated randomly.

The synthesis is a reaction that involves two molecules. It represents the case of two
molecules that collide fusing into one molecule. The synthesis operator S applied to two
molecules x1 and x2 produces one molecule x′ (S(x1, x2) = x′). The kinetic energy of the
new molecule is the sum of the original molecules’ kinetic energy.

For the purpose of test case generation, the synthesis operator is defined as an operator
that generates a new test suite by selecting test cases from the two input test suites. If n1

and n2 are the number of test cases in the test suites x1 and x2, the test suite x′ consists of
the first an1 test cases from x1 and the last (1− a)n2 test cases from x2, where a is a random
number in the range (0,1).

Seeding Similar to the GA presented in Section 2.2, CRO also implements static and
dynamic seeding for the generation of new or mutated solutions (Line 1 and 17).

3. BRANCH TYPES IN JAVA BYTECODE

Given that the fitness function is one of the key differences between the evolutionary and
random search, and that a major component of the fitness function is the calculation of
distances for the branches in the class under test, we now classify the types of branches
that occur in the bytecode of Java programs, and discuss the level of guidance they can
potentially afford the evolutionary search in EVOSUITE.

This is important because it has been long known that not all branch predicates give
“good” guidance, the archetypal example being that involving the boolean flag [37, 38].
Boolean conditions in branch predicates can only ever evaluate to true or false, offering
one of only two distance values. Since one of these values corresponds to execution of
the branch, no guidance is given to the search. Nevertheless, several branch predicates do
indeed provide guidance, and result in a smooth “gradient” in the fitness landscape that a
guided search can use to easily find test inputs.

3.1. “Integer-Integer” Branches

“Integer-Integer” branches involve the comparison of two integer values. The range
of values possible for this comparison can potentially create a gradient for the search.
Figure 1a shows an example of such a comparison, in which a method receives an integer
parameter “a”, and has a conditional statement on the parameter (“a == 1”) (Figure 1a-
i). The bytecode (Figure 1a-ii) shows this is compiled to a “if icmpne” instruction, which
compares the last two integers pushed to the stack, performing a jump to some other
instruction in the bytecode if those two integers are not equal. Figure 1a-iii shows how
the distance value decreases as the chosen input value gets closer to the value that would
execute the uncovered branch.

Of course, “Integer-Integer” branches may not always result in a gradient: it depends on
the underlying program. One example of this is where two boolean values are compared,
since boolean values are represented as the integer values 0 and 1 in Java bytecode.
Therefore, source code comparisons involving two boolean values are compiled to an
integer comparison involving the usage of the if icmpne instruction. However, and as
already discussed, boolean conditions do not induce any useful landscape gradient.

Furthermore, EVOSUITE’s special handling of switch statements falls into the “Integer-
Integer” category. Java switch statements are compiled to either a tableswitch or
lookupswitch bytecode instruction. These instructions pop the top of the stack to look
up a “jump” target instruction in a map data structure, for which the keys are the values
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void m(int a) {

if (a == 1) {
// uncovered branch

}

}

void m(int);

0: iload_1

1: iconst_1

2: if icmpne 7

[uncovered branch]

7: return
0
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(i) Source code (ii) Bytecode (iii) Raw branch distance

(a) Int-Int Branch

void m(int a) {

boolean x = false;

if (a == 1)

x = true;

if (x) {
// uncovered branch

}

}

void m(int);

0: iconst_0

1: istore_2

...

9: iload_2

10: ifeq 15

[uncovered branch]

15: return

0
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(i) Source code (ii) Bytecode (iii) Raw branch distance

(b) Int-Zero Branch

void m(int a) {

Object x = null;

if (a == 1)

x = this;

if (this == x) {
// uncovered branch

}

}

void m(int);

0: aconst_null

1: astore_2

...

9: aload_0

10: aload_2

11: if acmpne 16

[uncovered branch]

16: return

0
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(i) Source code (ii) Bytecode (iii) Raw branch distance

(c) Ref-Ref Branch

void m(int a) {

Object x = null;

if (a != 1)

x = new Object();

if (x == null) {
// uncovered branch

}

}

void m(int);

0: aconst_null

1: astore_2

...

15: aload_2

16: ifnonnull 21

[uncovered branch]

21: return

0

1

−2 −1 0 1 2 3 4 5 6
input value

b
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is

ta
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ce
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w
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(i) Source code (ii) Bytecode (iii) Raw branch distance

(d) Ref-Null Branch

Figure 1. Examples of different branch types (denoted “uncovered branch”) and their effect on
the respective fitness landscape for the GA through raw (unnormalized) branch distance values.
We show both the original Java source and the compiled bytecode, as processed by EVOSUITE.
Note that the target true/false evaluation of the branches is inverted by the Java compiler. Part (a)
of the figure shows an example of a “gradient” branch, providing useful guidance to the search.
Parts (b)–(d) of the figure show examples where no guidance is available: all possible inputs to the

method except one lead to the same distance value, producing a flat fitness landscape.
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void m(double a) {

if (a == 1.0) {
// uncovered branch

}

}

(a) Source code

void m(double);

0: dload_1

1: dconst_1

2: dcmpl

3: ifne 10

[uncovered branch]

10: return

(b) Bytecode

0.0e+00

5.0e+08

1.0e+09

1.5e+09

−2 −1 0 1 2 3 4 5 6
input value

b
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ta
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(c) Raw branch distance

Figure 2. Branch distance plot for a branch involving a variable and constant of type double,
showing the source code (a) and the bytecode (b). Although these branches fall into the “Int-
Zero” category, EVOSUITE instruments the bytecode so that distances are recovered, resulting in a

gradient landscape (c).

originally used in each case of the switch. For ease of fitness computation, EVOSUITE

simply instruments the bytecode by adding an explicit if icmpeq for each case before the
original tableswitch or lookupswitch instruction, comparing the top of the stack to
each case value.

3.2. “Integer-Zero” Branches

“Integer-Zero” branches involve the comparison of an integer value with zero. One type
of “Integer-Zero” branch occurs when boolean predicates are evaluated†, for example
as shown by Figure 1b. Here the branch involves the evaluation of the boolean value x

(Figure 1b-i). The corresponding bytecode evaluates x, pushing the result (an integer, 0 or
1) to the stack. The ifeq bytecode instruction then pops this value, performing a jump if
it is zero. Such a condition can only be either true or false, and as such can only have one
of two distance values, which, as shown by Figure 1b-iii, are not useful to guiding the GA
to covering the branch. The “right” input must therefore be discovered purely by chance.

A further type of “Integer-Zero” branch occurs as a result of comparisons involving
values of float, double and long primitive Java types. Figure 2 shows an example
of a comparison involving double values. The original source (Figure 2a) performs the
comparison in the branch predicate. This is decomposed into a sequence of bytecode
instructions shown by Figure 2b. The comparison is performed by the dcmpl in relation to
the top two double values pushed to the stack. The dcmpl instruction pushes an integer to
the stack: -1 if the first value is greater than the second, 1 if the first is less than the second,
else 0 if they are equal. The ifne then performs a jump if the top of the stack is not 0.

Since the original numerical comparison in the source code is transformed to a boolean
comparison in the bytecode, a significant amount of useful distance information is “lost”
in the compilation process that would have been useful in guiding the search. EVOSUITE

therefore instruments the bytecode so that distance information can be recovered. The
branch distance plot for the example, shown by Figure 2, therefore restores a gradient
that can be used to optimize input values towards execution of the uncovered branch.

3.3. “Reference-Reference” branches

“Reference-Reference” branches are where two object references are compared for equality.
Since references are not ordinal types, no meaningful distance metric can be applied, and
the situation is similar to boolean flags – either the references are the same or they are
not. Figure 1c shows an example of this. The original source code conditional is “if
(this == x)” (Figure 1c-i), which Java compiles to the bytecode instructions 9–11 in

†Note that boolean predicate evaluations in branches differ in bytecode from comparing two boolean values
– the latter type of branch falls into the “Integer-Integer” category.
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Table I. Classification of Java bytecode branch types according to the search landscape they
produce. Int-Int and Int-Zero branches in certain scenarios produce gradient or plateau conditions.

*For these comparisons, as discussed in Section 3.2 and shown in Figure 2, a gradient can be recovered.

Gradient Branch Plateau Branch

Int-Int: Comparing two integer values Int-Int: Direct comparison of two boolean values
Int-Zero: Comparing an integer with zero Int-Zero: Checking boolean condition values

returned by method-calls or those stored in variables
Int-Zero: float, double and long comparisons*
Ref-Ref: Memory reference comparisons
Ref-Null: Memory reference comparison against null

Figure 1c-ii. Instructions 9 and 10 push the references onto the stack. Instruction 11 is the
branching point in the bytecode, with “if acmpne” popping the top two stack references
and performing a jump if they are not equal. The resulting plot of branch distances
(Figure 1c-iii) shows the resulting plateau, providing no guidance to the required input
that makes the references equal and executes the uncovered branch.

3.4. “Reference-Null” branches

“Reference-Null” branches are similar to “Reference-Reference” branches, except one
side of the comparison is null. Again, no meaningful distance metric can be applied.
Figure 1d shows an example. The source code compares x with null. In the bytecode, x
is pushed onto the stack by instruction 15. Instruction 16 is the branching point, where the
ifnonnull instruction performing the jump if the element popped off the top of the stack
is not null.

3.5. Summary

We have summarized and classified the different types of branches that can occur in Java
bytecode. As outlined in Table I, some of these instructions will potentially give rise to a
gradient in the fitness landscape, while others will not. We now study the prevalence of
these types of branches in real-world code, whether they potentially involve a gradient,
and their potential impact on the relative performance of random search and fitness-
guided GA and CRO search. Note that even gradient branches do not guarantee gradients.
For example, when the two numbers that are compared are constants or only have few
possible values that can be assigned to them, then the resulting search landscape would be
more plateau-like.

4. EXPERIMENTAL SETUP

We designed an empirical study to test the relative effectiveness of test case generation
using random, GA, and CRO search, with the aim of answering the following research
questions:

RQ1: Is the use of an evolutionary algorithm, such as GA and CRO, more effective at
generating unit tests than random search?

RQ2: How do the results of the comparison depend on the types of branches found in the
code under test?

RQ3: How do the results of the comparison depend on the time allowed for the search?

RQ4: How do the results of the comparison depend on an archiving functionality for
covered goals?
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Table II. Statistics for the sample of 975 classes. For each class, the number of ”‘Goals”’ represents
the sum of branches and branchless methods.

Min Avg Max Sum SD

Total Branches 0 26.93 1,020 26,258 79.5
Branchless Methods 0 7.18 155 6,998 11.5
Total Goals 1 34.11 1,030 33,256 84.3

4.1. Subjects

In order to compare and contrast the relative effectiveness and performance of random
and evolutionary search, we selected a sample of classes from the SF110 corpus of
open source projects [27]. The SF110 corpus is made up of 110 open source projects
from the SourceForge open source repository (http://sourceforge.net), where 10
of the projects were the most popular by download at the time at which the corpus was
constructed (June 2014) and the remaining 100 projects selected at random. Due to the
large variation in the number of classes available in each project, we stratified our random
sampling over the 110 projects, such that our sample involved at least one class from
each of the 110 projects in the corpus, and comprised 1000 classes in total‡. However, 25
classes were removed from the sample for reasons such as not having any testable methods
(e.g., they consisted purely of enumerated types, or did not have any public methods) or
test suites could not be generated for some other reason that would allow us to sensibly
compare the techniques (e.g., the class contained a bug or other issue that meant it could
not be loaded independently without causing an exception).

The final number of classes in the study therefore totaled 975, comprising small classes
with just a single coverage goal to larger classes with over 1,000 coverage goals, as shown
by Table II. In this table, Branchless Methods indicates the number of methods without
conditional statements and can be covered by simply calling the method concerned.

4.2. Collation of Branch Type Statistics

In order to answer RQ2, we collated a series of statistics on the types of branches in the
bytecode of each class.

Firstly, we simply collected the numbers of branches that fall into each of the categories
detailed in Section 3 (i.e., “Integer-Integer” etc.) by statically analyzing the bytecode of
each class in turn.

Secondly, we attempted to classify each branch as either potentially having a gradient
distance landscape (“Gradient Branches”), or, a plateau landscape (“Plateau Branches”).
We programmed EVOSUITE so that during test suite generation it would monitor the
distance value of the predicate leading to the branch. If in any of the executions of a search
algorithm in the experiments, a value other than 0 or 1 is observed, we assume a wider
range of distance values is available for fitness computation and label the branch as a
“Gradient Branch”. Otherwise the search is labelled as a “Plateau Branch”. Clearly, this
analysis is only indicative (but helps in understanding our results, as we will show in the
answer to RQ2). This is because a range of values does not necessarily imply a gradient
that will be useful for guiding the search. Nor does only finding the distances 0 and 1
for a branch mean that there are not further distance values that could be encountered.
For instance, given a branch predicate x > 5, if for the whole duration of the search only
the values x ∈ {4, 5, 6} are used, then this will result in the distance values of 1, 0, and 1
respectively; and the branch will be incorrectly classified as a plateau branch. However,
it is quite unlikely that the branch would only be attempted with these values over the
course of several executions of a search algorithm.

‡The list of classes is available on: https://sinaa.github.io/random-vs-ga-test-generation/
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4.3. Experimental Procedure

We applied EVOSUITE to conduct our experiments, with implementations of the genetic
algorithm (GA), chemical reaction optimization algorithm (CRO), and the two random
search algorithms (Random+ and Pure Random) as described in Section 2.

We use all four algorithms in RQ1 only. Pure Random features only in RQ1 in order to
analyze for possible effects with Random+ due to its seeding mechanism. CRO features in
RQ1 and RQ2 only as an additional type of evolutionary algorithm with which to compare
GA against Random+.

For RQ1 we applied each technique with a search time of two minutes (which has been
shown to be a suitable stopping condition in previous work [27]). To answer RQ2, we
investigated the influence of the type of conditional predicates on the outcome of each
technique. To do so, we used the statistics on branch types, collected as we described in the
last section. To better understand the influence of the search budget over the outcome of
the techniques for RQ3, we executed EVOSUITE using the GA and Random+ configurations
with an increased search time of ten minutes and measured the level of coverage at one
minute intervals.

For RQ4, we compared the effectiveness of the GA and random search algorithms with
the test archive. Although the use of an archive of tests is expected to enhance coverage
in general, it may also have undesired effects in some cases. For example, setting a high
probability of reusing archived tests instead of using new random ones may hinder
diversity in the population and therefore make it harder for the search to escape local
optima. To prevent this from happening, a conservative probability value of 0.2 is used in
our experiments.

For all other GA parameters we used the default values resulting from earlier tuning
experiments [39]. As CRO is new in the field of search based test generation, there is no
generally recommended set of default parameter values. We therefore used the parameter
values as suggested by Lam and Li [40] as starting point, and then we ran CRO on a sample
of classes from the SF110 projects [27], modifying one parameter at a time, repeating each
run 100 times and observing the resulting average branch coverage. The following optimal
configuration of CRO parameters emerged from these experiments:

• decThreshold: 25. We chose a substantially lower value than Lam and Li’s [40]
suggestion of 500, in order to increase the chances of decomposition. Higher values
would bias the search strongly towards the local search aspects.

• synThreshold: 5. This is similar to the default (10 [40]); the slight decrease leads to less
synthesis (global search), increasing local search.

• initKE: 1000. This matches the default value in the literature [40]. The higher the initial
KE value is, the longer single individuals will explore their local search space (local
search) before trying to explore different regions (global search).

• KELossRate: 0.1. (Default: 0.2 [40]) The lower KELossRate value is, the longer single
individuals will explore their local search space (local search) before trying to explore
different regions (global search).

• collRate: 0.1. (Default: 0.2 [40]) Higher collRate values indicate that individuals will
exchange information more often (we have more syntheses and inter-molecular
collisions at the expense of decompositions and on-wall ineffective collisions).

We conducted all our experiments on the University of Sheffield’s HPC Cluster
(http://www.shef.ac.uk/wrgrid/iceberg). Each node has a Sandy-bridge Intel
Xeon processor with 3GB real and 6GB virtual memory. We used EVOSUITE’s default
configuration and ran it under Oracle’s JDK 7u55. Our experiments resulted in over
680,000 generated test suites, requiring over 5.5 years of serial execution time.
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1036764843114GA vs Random+      

653958444243GA vs Pure Random

 GA Significantly Higher  GA Higher  Equivalent  GA Lower  GA Significantly Lower

Figure 3. Comparing GA performance with Random+ and Pure Random over the 975 SourceForge
classes: For 78% of subjects, there was no significant difference between GA and Random+.

(“GA Significantly Higher” is the number of classes for which GA obtained significantly higher coverage
than Random+/Pure Random over the 100 runs of the experiment; “GA Higher” – the number of class where a
higher average coverage was obtained (but not significantly); “Equivalent”, the number of classes where the
average coverage level was the same (equal), etc.)

4.4. Threats to Validity

Threats to the internal validity of our study include its usage of only one test generation
tool (EVOSUITE). While this was deliberate to facilitate a more controlled, fair comparison,
it is plausible that specific implementation choices made in EVOSUITE may limit the extent
to which our results generalize (an associated external threat). The size of the test suites,
for example, may influence the comparison; whereas Random+ has no constraint in the test
suite size, both GA and CRO evolve test suites with limited size (100 test cases by default)
which imposes boundaries in the search space.

The initial population of individuals and their evolution depend on the values of
several parameters for both GA and CRO. Results might thus be affected by the specific
parameter values that we used in the experiments. On the one hand, the GA has been
used for long time in EVOSUITE and all the parameters are well optimized to address test
case generation. On the other hand, however, CRO is controlled by a higher number of
parameters and has been applied to test case generation for the first time in this paper. In
an effort to mitigate this threat, we run preliminary tuning experiments on CRO in order
to ensure that the optimal combination of parameters was used when comparing it with
GA and Random+.

Another threat to internal validity stems from the branch-classification analysis
described in Section 4.2, which can mis-categorize branches in certain cases. We
acknowledge the results of this analysis may only be approximate, but while testing
the experimental setup we validated that the analysis categorized all branches correctly.
Furthermore, chance can affect the results of randomized search algorithms. To mitigate
this threat, we repeated all experiments 100 times.

Threats to external validity affect the generalizability of our results. While we used
a randomly selected sample of Java classes as subjects, our results may not generalize
beyond the SourceForge project repository. Moreover, the algorithms and tools our study
evaluates target the Java object-oriented programming language specifically; further
studies will be needed to verify if our findings generalize to other programming languages
and paradigms. Similarly, further work should look into whether our results hold when
looking at other test suite quality measurement (e.g., size, length or fault detection ability)
besides branch coverage.

Finally, we only used two different variants of evolutionary algorithms, GAs and CRO,
and CRO has not previously been applied to unit test generation. While it is possible that
other evolutionary algorithms would perform better at the specific problem of unit test
generation applied to the classes used in our experiments [41], the use of two different
algorithms is sufficient to observe differences and similarities in results compared to
random approaches.
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233961668229Random+ vs Pure Random

 Random+ Significantly Higher  Random+ Higher  Equivalent  Random+ Lower  Random+ Significantly Lower

Figure 4. Comparing Random+ performance with Pure Random over the 975 SourceForge classes.
(“Random+ Significantly Higher” is the number of classes for which Random+ obtained significantly higher
coverage than Pure Random over the 100 runs of the experiment; “Random+ Higher” – the number of class
where a higher average coverage was obtained (but not significantly); “Equivalent”, the number of classes
where the average coverage level was the same (equal), etc.)
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Figure 5. Comparing GA and CRO performance with Random+. (a) Box plot of p-values for classes
where a significantly higher level of coverage was achieved with either the GA, CRO or Random+.
(b) Violin plot of the effect sizes obtained using Vargha-Delaney’s Â12 statistic, here computing the
proportion of the 100 repetitions for which the GA or CRO score a higher level of coverage than
Random+ for each class; thereby reflecting their relative effectiveness. The violin plots indicate a

similar effect size between the evolutionary techniques (GA and CRO) and Random+.

5. RESULTS

RQ1: Coverage Effectiveness. On average over the 100 repetitions of the experiments, the
GA attains 69.10% branch coverage, CRO 68.87%, Random+ 68.76%, while Pure Random
obtains 65.22%, across all classes. Notice the similarity of the level of coverage achieved
by all techniques, specifically between the evolutionary techniques (GA and CRO), and the
random techniques (Random+ and Pure Random).

We observe further similarities in the coverage achieved by the GA and CRO against

Random+ with Figure 5b, which shows effect sizes computed with Vargha-Delaney’s Â12

statistic [42]. Here, the effect size estimates the probability that a run of GA achieves

higher coverage than Random+. A value of Â12 = 0.5 indicates that both search strategies

perform equally, Â12 = 1 indicates that all runs of the GA will achieve higher coverage

than Random+, and vice versa for Â12 = 0. The overall average effect size for GA and CRO
respectively amount to 0.51 and 0.49, which indicate that the GA is only very marginally
more effective than Random+, and CRO is only very marginally less effective.

To compare the performance of the technique at class level, Figure 3 summarizes the
number of classes for which the GA achieved a significantly higher or lower level of
coverage than Pure Random and Random+ over the 100 repetitions of the experiments. (We
computed significance using the Mann-Whitney U test at a level of α = 0.05.)

As it can be seen, for a majority of classes (78%), no significant difference exists between
the evolutionary (GA) and random (Random+) techniques. Moreover, while there are 114
(11.7%) classes for which the GA achieves significantly higher coverage than Random+,
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1481166294933CRO vs GA          

140696304195CRO vs Random+

 CRO Significantly Higher  CRO Higher  Equivalent  CRO Lower  CRO Significantly Lower

Figure 6. Comparing the coverage achieved by CRO against Random+ and GA over the 975
SourceForge classes. While for 148 classes GA achieved significantly higher coverage than CRO,
for the majority of classes, the two evolutionary techniques had a similar performance. However,
compared to Random+ the outcome of CRO was similar to that of GA: for 76% of subjects CRO and

Random+ were as performant.
(“CRO Significantly Higher” is the number of classes for which CRO obtained significantly higher coverage
than GA/Random+ over the 100 runs of the experiment; “CRO Higher” – the number of class where a higher
average coverage was obtained (but not significantly); “Equivalent”, the number of classes where the average
coverage level was the same (equal), etc.)

there are 103 (10.6%) classes on which Random+ attains significantly higher coverage than
GA. This indicates that no technique clearly achieves a better outcome than the other.

Besides subjects for which one technique achieves higher coverage than the other, for 648
classes the GA and Random+ achieve identical (i.e., equal) coverage, and likewise for 630 of
classes when comparing CRO and Random+. To a large extent, this can likely be attributed
to the simplicity of these classes: GA achieves 100% coverage on 390 classes, CRO on 376,
and Random+ on 402 classes. Classes with lower but identical coverage are likely classes
where the possible coverage is maximized, but less than 100% because of problems that
EVOSUITE cannot overcome regardless of search algorithm (e.g., due to environmental
factors such as classes depending on databases or web services that were not available
during the experiments).

The common evolutionary nature of the GA and CRO is reflected on the results. In fact,
for 94% of subjects for which CRO achieves significantly higher coverage than Random+,
the GA also achieved higher coverage than Random+. Moreover, for 98% of subjects where
CRO achieved significantly higher coverage than Random+, GA performed no worse than
Random+, which further confirms the similarity of the two evolutionary algorithms. Similar
to Figure 3, Figure 6 shows the same form of comparison for CRO against both GA
and Random+. Although CRO had a higher number of subjects on which it performed
significantly worse than both GA and Random+ (148 and 140 classes respectively), it
achieved a similar result to the GA. In particular, CRO achieved significantly better
coverage than the GA and Random+ for 33 and 95 classes, respectively. Figure 5a plots the p-
values for the significant cases for the evolutionary techniques and Random+ comparison
showing that the majority of cases are highly significant (particularly in the case of the
evolutionary algorithms) and thus unlikely to represent type-I errors.

The comparison between the GA and CRO against Pure Random shows larger differences,
with 243 and 226 classes where GA and CRO respectively achieve significantly higher
coverage. In particular, notice that in Figure 4 Random+ achieves significantly higher
coverage than Pure Random on 229 subjects. This indicates that optimizations such as
constant and dynamic seeding, which are used in Random+ (as explained in Section 2.1.1),
are effective and help covering non-trivial classes.

RQ1. Our experiments showed no significant difference between the evolutionary
techniques (GA and CRO) and Random+ in 78% and 76% of classes, respectively.

RQ2: Influence of Branch Types. Although the comparison between evolutionary
techniques (GA and CRO) against Random+ showed 648 and 630 classes with no difference
in coverage respectively, there were also 217 and 235 classes with significant differences.
RQ2 aims to shed light on these differences by studying the influence of different types of
branches in a class on the effectiveness of the search algorithms.
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(a) Numbers of Branches Classified by Bytecode Branch Type
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Figure 7. Numbers of different branch types in the classes under test. The figure shows that (a)
The number of gradient branches form a small minority of all branches. (b) The evolutionary
algorithms GA and CRO cover more gradient branches than Random+, while Random+ covers more

plateau branches compared to both evolutionary techniques.

Figure 7a shows the distribution of different branch types as taken from the bytecode
of the classes. In total, there are 11,632 branches in the 975 classes. “Reference-Reference”
branches are rare: this is not surprising as in most cases in Java a comparison is performed
using the equals method on the objects, rather than comparing references. “Reference-
Null” comparisons are more common accounting for approximately one quarter of the
branches. Almost half of the branches (5, 716) are “Integer-Zero” branches, from which
only 303 involve double, float or long comparisons. Only these 303 branches, along
with the 3, 328 “Integer-Integer” branches have the potential to provide gradients.

Effectiveness on Gradient Branches. Intuitively, one would expect that the evolutionary
algorithms should achieve higher coverage on gradient branches, as the branch distance
values will influence the search operators and guide the search towards covering
additional branches. Figure 8a and Figure 9a compare the GA and CRO against Random+
in terms of the coverage achieved when only considering gradient branches; that is, the
coverage is only calculated for classes that have at least one gradient branch, and the
coverage values exclude non-gradient branches. There are 105 classes where GA achieves
significantly higher coverage of the gradient branches, with only 23 classes where the
coverage is significantly lower. Similar to the GA, CRO respectively achieved 98 and 23
significantly higher and lower coverage of gradient branches, when compared to Random+.
Figure 7b shows that overall the GA and CRO respectively covered 5,037 and 4,938 gradient
branches, whereas Random+ covered only 4,548. This confirms that the GA and CRO benefit
from the branch distances provided by the gradient branches.

The 23 cases where Random+ has significantly higher coverage than GA can be explained
by their large number of branches (74 total goals and 24 gradient branches on average):
The fitness function that guides the GA considers all branches at the same time; this means
that a test suite that is close to covering many gradient branches may have a better fitness
value than a test suite that fully covers fewer branches. In these cases, the GA would simply
require more time to eventually fully cover all these branches. This finding is also the case
for CRO. For the 23 classes for which CRO achieves significantly lower coverage of the
gradient branches, they contain 63 total goals and 19 gradient branches on average.

Effectiveness on Plateau Branches. Figure 8b and Figure 9b compare the GA and CRO against
Random+ when only considering the coverage of plateau branches. There are 129 classes in
which the GA has significantly lower coverage compared to Random+, and 90 classes with
significantly higher coverage. The difference is even more noticeable with CRO, which
achieved a significantly lower coverage in 152 of subjects, while being significantly better
in 67 subjects. Figure 7b shows that overall the GA and CRO covered 3,508 and 3,330
plateau branches respectively, whereas Random+ covered 3,817; that is, even though the
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233216148105
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(b) “Plateau” Branches Only

79787333832

(c) Branchless Methods

 GA Significantly Higher  GA Higher  Equivalent  GA Lower  GA Significantly Lower

Figure 8. Comparing GA performance with Random+ for different types of branch and with
branchless methods: GA was more effective than Random+ in covering gradient branches, while
being less effective in covering plateau branches or methods without branches (branchless

methods).
(“GA Significantly Higher” is the number of classes for which GA obtained significantly higher coverage
than Random+ over the 100 runs of the experiment; “GA Higher” – the number of class where a higher average
coverage was obtained (but not significantly); “Equivalent”, the number of classes where the average coverage
level was the same (equal), etc.)

23331615398

(a) “Gradient” Branches Only

152622974167

(b) “Plateau” Branches Only

74687354932

(c) Branchless Methods

 CRO Significantly Higher  CRO Higher  Equivalent  CRO Lower  CRO Significantly Lower

Figure 9. Comparing CRO performance with Random+ for different types of branch and with
branchless methods: Similar to GA, CRO was more effective than Random+ in covering gradient

branches, while being less effective in covering plateau branches or branchless methods.
(“CRO Significantly Higher” is the number of classes for which CRO obtained significantly higher coverage
than Random+ over the 100 runs of the experiment; “CRO Higher” – the number of class where a higher
average coverage was obtained (but not significantly); “Equivalent”, the number of classes where the average
coverage level was the same (equal), etc.)

GA and CRO covered more branches overall, they covered fewer plateau branches. Since
the branch distance for these branches only has two values there is no guidance that the GA
could exploit – a plateau branch is either covered or it is not covered. A possible conjecture
is a loss of diversity of the evolutionary search algorithms compared to the random
search: While Random+ continuously creates independent new objects and call sequences,
GA and CRO spend more time exploring the neighborhood if existing individuals. In
addition, the GA in EVOSUITE prefers smaller test suites (when two test suites have the
same fitness value, they are ranked by size) and thus further exacerbating the removal of
random “noise”, focusing the search operators on the exploitation of achieved coverage
and mutating existing objects.

Effectiveness on Branchless Methods. Branchless methods represent a special case similar to
plateau branches, and intuitively they are simple to cover – they just require test cases
to call the method, without any need to search for specific parameter values. Figure 8c
and Figure 9c compare GA and CRO against Random+ with respect to the coverage of
methods. Although GA achieves significantly higher coverage than Random+ in 32 cases,
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Figure 10. Branch coverage comparison between GA vs. Random+ over 10 minutes with one minute
intervals. Dots represent mean averages.

there are 79 classes where the GA results in lower coverage, which is similar in proportions
to the plateau branches. Likewise, CRO achieved a similar outcome (32 and 74 classes
respectively). It is maybe surprising that there can be difference in so simple coverage goals
in the first place. Our conjecture is that this is because Random+ has a higher probability
of inserting new method calls: CRO and GA only mutate a test suite with a certain
probability, and then each test in turn is only mutated with a certain probability, and finally
insertion of new statements again does not always happen. In contrast, Random+ generates
tests by repeatedly adding new statements. Again it would only be a matter of time for
evolutionary search to fully cover all branchless methods, although possibly more time
than for Random+. Interestingly, classes on which the GA and CRO achieved more than
90% coverage have a median proportion of 100% branchless methods out of all coverage
goals, providing further evidence that many classes in practice are trivial.

RQ2. Our experiments show that the evolutionary techniques (GA and CRO) achieve
higher coverage of gradient branches compared to Random+, but lower coverage of
plateau branches, which constitute the majority of branches.

RQ3: Effects of the Time Allowed For the Search. The results so far have shown that
GA, CRO and Random+ perform similarly for the majority of classes after two minutes
of search, with some differences in performance on plateau and gradient branches. This
raises the question whether the results are influenced by the allocated search budget –
given more time, do the results change?

To analyze the impact of the search budget, we repeated the experiments with GA and
Random+ using an increased search budget of 10 minutes, and measured the coverage
values at one minute intervals. Figure 10 compares the average coverage per class for each
interval: There is a slight increase of coverage for both the GA and Random+ over time,
and after 10 minutes the GA achieves an overall average of 69.81% branch coverage, while
Random+ achieves 68.95%.

Given more time, GA will catch up on branchless methods and plateau branches covered
compared to Random+. Figure 11 compares the GA with Random+ after 10 minutes, and
shows that the GA has significantly lower coverage on only 83 classes after 10 minutes,
compared to 103 after two minutes (Note that the number of classes with coverage data
after 10 minutes is only 974, as there was 1 additional class for which EVOSUITE did
not produce any data after 10 minutes). The GA will also continue to optimize gradient
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131 39 664 57 83

 GA Significantly Higher  GA Higher  Equivalent  GA Lower  GA Significantly Lower

Figure 11. Branch coverage comparison between GA and Random+ using a search budget of 10
minutes: While the effectiveness of GA increases compared to Random+, still for the majority of

subjects there is no significant difference between the two techniques.
(“GA Significantly Higher” is the number of classes for which GA obtained significantly higher coverage
than Random+ over the 100 runs of the experiment; “GA Higher” – the number of class where a higher average
coverage was obtained (but not significantly); “Equivalent”, the number of classes where the average coverage
level was the same (equal), etc.)

branches; however, the dynamic seeding used in EVOSUITE will also help Random+ in
many cases to cover gradient branches. Figure 11 shows that there are 131 classes where
the GA has higher coverage after 10 minutes, compared to 114 after two minutes. For 760
classes the coverage is identical, which is likely because the maximum achievable level of
coverage has been reached by both algorithms.

RQ3. The coverage increase is higher for the GA than for Random+ over time,
suggesting that the disadvantage on plateau branches is overcome, although the
coverage increase is small in absolute terms.

17211955171

(a) “Gradient” Branches Only

552831059164

(b) “Plateau” Branches Only

37307208483

(c) Branchless Methods

 GA−Archive Significantly Higher  GA−Archive Higher  Equivalent  GA−Archive Lower  GA−Archive Significantly Lower

Figure 12. Comparing the effectiveness of GA with archive enabled against GA without archive
for different types of branch and with branchless methods.

(“GA–Archive Significantly Higher” is the number of classes for which GA with archive obtained significantly
higher coverage than GA without archive over the 100 runs of the experiment; “GA–Archive Higher” – the
number of class where a higher average coverage was obtained (but not significantly); “Equivalent”, the
number of classes where the average coverage level was the same (equal), etc.)

RQ4: The Effects of an Archive of Solutions. By construction, the final solution of the
Random+ search includes every test that has at some point in the search covered a coverage
goal for the first time. In contrast, due to the way in which the GA and CRO evaluate
fitness and keep track of covered goals, it is possible that the final solution they produce
does not contain all the goals covered during the search. Since the fitness function in GA
aims to maximize coverage, the individual with the best fitness – hence highest coverage
– will be preferred as a solution over another individual with worse fitness – and thus
lower coverage – although the latter may still cover some goals which are not covered by
the best individual. In this RQ we investigate whether keeping an archive of all covered
goals during the search together with the tests covering them (i.e., the approach taken by
Random+) can be beneficial to the effectiveness of evolutionary search for test generation.
Specifically, we look at the test archive implemented for the GA in EVOSUITE [36].

Let us first compare the overall effectiveness of the GA with archive against GA without
archive (i.e., the treatment used in RQ1). Figure 12 shows that using the archive leads
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 GA−Archive Significantly Higher  GA−Archive Higher  Equivalent  GA−Archive Lower  GA−Archive Significantly Lower

Figure 13. Comparing GA performance with Random+ for different types of branch and with
branchless methods, with Archive enabled.

(“GA Significantly Higher” is the number of classes for which GA obtained significantly higher coverage
than Random+ over the 100 runs of the experiment; “GA Higher” – the number of class where a higher average
coverage was obtained (but not significantly); “Equivalent”, the number of classes where the average coverage
level was the same (equal), etc.)

752665353163GA vs Random+      

 GA−Archive Significantly Higher  GA−Archive Higher  Equivalent  GA−Archive Lower  GA−Archive Significantly Lower

Figure 14. Comparing the coverage achieved by GA against Random+ over the 970 SourceForge
classes, with archive enabled: Compared to Figure 3, the archive of solutions is an effective way
to increase the performance of GA, however, for a large number of subjects, the evolutionary and

random techniques perform similarly.
(“GA Significantly Higher” is the number of classes for which GA obtained significantly higher coverage
than Random+ over the 100 runs of the experiment; “GA Higher” – the number of class where a higher average
coverage was obtained (but not significantly); “Equivalent”, the number of classes where the average coverage
level was the same (equal), etc.)

to significantly higher coverage of gradient and plateau branches, as well as branchless
methods. Overall across all classes, GA with archive lead to significantly higher coverage
in 179 cases and to significantly worse coverage in 67 cases. Whereas the improvements
observed when using the archive are expected, the detrimental effects in some cases are
worth discussing further. Although our experimental data does not shed light into what
specific goals are being missed when using the archive, we conjecture that the negative
effect is due to the way the archive influences the generation of new test chromosomes as
explained in Section 2. Arguably, sampling from the set of archived tests may in some cases
reduce the diversity among the evolved populations, thus resulting in limited exploration
of the search space and a consequently lower coverage compared to the more randomized
strategy applied by the GA without archive.

Having established that the effectiveness of the GA does improve with the use of the
archive, let us now revisit the comparison of GA versus Random+ presented in Figure 8.
As Figure 13 and Figure 14 show, the GA with archive was significantly more effective in
163 cases and only significantly worse in 75 (note that we excluded five further classes
for experiments with archive enabled as EVOSUITE failed to produce test cases due to
execution failures). These results represent a considerable improvement with respect to
the comparison results presented in Figure 8. In particular, the GA with archive covers
a significantly higher number of gradient branches than Random+ in 32% of subjects,
significantly higher number of plateau branches in 22% of subjects, and significantly
higher number of branchless methods in 5% of subjects. Furthermore, for the three kinds
of branches, the number of subjects on which GA is significantly worse than Random+
is consistently reduced (notably for plateau branches). Notice that the largest absolute
improvement is observed for plateau branches: whereas the GA without archive has
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significantly higher (resp. lower) coverage of plateau branches than Random+ in 90 (resp.
129) classes (Figure 8), the GA with archive achieves significantly higher coverage of
plateau branches than Random+ in 134− 90 = 44 cases, and significantly lower coverage
than Random+ in 129− 83 = 46 (Figure 13).

Although it is reasonable to assume that the archive contributes to better coverage of
plateau branches (for which RQ2 showed that the GA without archive did not perform as
well as Random+) our data does not allow us to specifically link the archive to plateau
branches, as improving coverage of any type of branch may open up the possibility
to easily cover many dependent branches of other types. Overall, the positive results
observed in terms of number of branches are validated in Figure 14 in terms of branch
coverage effectiveness.

RQ4. Our experiments show that archiving covered goals improves the performance
of GA vs. Random+, leading to 49 additional subjects with significantly better
coverage, and 28 fewer subjects with significantly worse coverage.

6. IMPACT OF THE FINDINGS

The results reported in this paper have important practical implications that may influence
research and practice on search-based unit test case generation. In the following, we report
and discuss these implications focusing on both the perspective of developers, who use
these methods to test classes, and on the perspective of researchers, who work on the
design of more effective and efficient test generation methods.

“Quick and dirty” coverage does not need evolutionary methods. If developers intend to
use unit test case generators to achieve fast shallow coverage of their classes, methods
based on random search are as effective as evolutionary methods, and might be even
superior in quickly covering all the easy cases, such as executing all the branchless
methods.

Residual coverage benefits from evolutionary methods. When covering gradient
branches, evolutionary methods clearly outperform random methods. If part of
the code in the target classes has been already covered with other methods, such
as with some manually written or random test cases, achieving higher coverage by
generating test cases that execute the uncovered areas of the code likely requires
dealing with complex branch conditions and gradient branches. According to our
findings, developers should exploit test case generation based on evolutionary search
to address this case.

Results across evolutionary methods are consistent and complemental. The results
obtained with GA and CRO are fairly consistent, and we can thus speculate
that evolutionary methods have similar effectiveness on the same sets of classes.
However, we also noticed differences that might be exploited in the future. For
instance, GA has been generally more effective than CRO, but CRO worked on
gradient branches more effectively than GA, suggesting that CRO might be stronger
in the local search compared to GA. Researchers in evolutionary methods and testing
might want to exploit these results to thoroughly investigate the complementarities
between these methods and design highly effective test case generation methods
that combine the strongest points of the individual techniques.

Switching across methods may lead to high effectiveness. The complementarities we
observed among Random, GA and CRO can be exploited to design effective testing
strategies. This might be of interest for the developers, who might simply start testing
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classes using random methods, which are highly effective on the bootstrap phase,
then switching to GA, which is more effective in executing the statements that are
not trivial to reach, and finally switching to CRO, to deal with the gradient branches
that have not been covered with GA. These complementarities are also interesting for
researchers who might design methods that automatically switch from one approach
to another when needed.

Testability transformation may be crucial to improve object-oriented testing. Our
experiments indicate a dominance of plateau branches in object-oriented classes,
which leads to a difficult search landscape. Similar findings have been reported
by recent attempts to classify the search landscape [43]. One proposed way
to improve problematic search landscapes in search-based testing is to apply
testability transformation [44]. Initial results on transformation of Java bytecode [45]
indicate feasibility, but researchers will need to investigate and develop advanced
transformations to fully transform the search landscapes of object-oriented programs
in order to enable search-based test generation tools to achieve higher code coverage.

The characteristics of the classes should influence the test generation strategy. The
results reported in this paper show that each test generation method has several
strong points that relate to the structural characteristics of the classes under test. For
instance, the methods studied in this paper have shown a different effectiveness for
gradient branches, plateau branches and branchless methods. This result might be
very interesting for researchers in unit test generation. In fact, it motivates research on
the definition of quick static analysis strategies that might be executed on a per-class
basis to identify the optimal strategy for generating the tests for that class. What the
set of characteristics that should be analyzed is, and how these characteristics should
guide the identification of the strategy, is an open question, only partially answered
by the results reported in this paper.

7. RELATED WORK

There have been several papers that have compared GAs with random search in the
procedural domain (e.g., Harman and McMinn [46] and Wegener et al. [47]). This work
has found guided search to always outperform random. In general, procedural code tends
to consist of larger functions than the ones found in OO code, and each function tends to
involve more parameters. While random search typically covers a large percentage of the
branches involved, the GA covers significantly more.

Sharma et al. [48] showed on 13 examples that random testing of OO container classes
achieves the same coverage as shape abstraction, a systematic technique specific for
container classes. The results of our experiments suggest that in practice, many OO classes
are, similarly to container classes, simple in nature and thus well suited for random testing.

Earlier experiments with EVOSUITE on the former SF100 corpus [27] showed that a
large number of classes are either trivially covered, or uncoverable without providing
the test generator with additional features (e.g., to handle environmental inputs such as
web services or databases). This finding is in line with our results; however, a comparison
with Randoop [2] in the same study suggested a large improvement of GA over random
testing. The results of our experiments suggest that this improvement is largely due to the
engineering of the tool rather than the search algorithm; for example, Randoop does not
use seeding.

Eler et al. [49] analyzed the SF100 corpus from the point of view of test data generation
using dynamic symbolic execution (DSE). They also reported the large number of reference
comparisons and the challenges of handling those in a constraint solver. They further
reported the relatively low number of branches involving integer comparisons, which
result in constraints that DSE is typically strong at handling.
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While Chemical Reaction Optimization, to the best of our knowledge, has not been
applied to automatic test generation before, it has been shown that this algorithm can be
applied to real problems in many disciplines, obtaining very competitive results. Lam and
Li [19] applied CRO to a wide variety of optimization problems (quadratic assignment,
resource-constrained project scheduling and channel assignment problem in wireless mesh
networks), achieving superior results in many instances of those. CRO has also been used
to tackle the population transition problem in peer-to-peer live streaming [21], the grid
scheduling problem in grid computing [22], the stock portfolio selection problem [23], the
0–1 knapsack problem [50], and for artificial neural network training [24].

8. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an empirical study comparing the effectiveness of evolutionary
and random search-based algorithms for generating test suites aimed at maximising
branch coverage. Experiments were carried out using a pool of 1,000 real-world Java
classes. One might expect evolutionary algorithms such as a GA or CRO to vastly
outperform random search for this task, but surprisingly we observed that all algorithms
behaved similarly on the majority of classes, in particular when applying optimizations
such as seeding of constant values, which applies to random search just as well as
to evolutionary search in the domain of test generation. Although evolutionary search
algorithms can exploit the guidance provided by certain types of branches, in practice
there are many more branches that provide no such guidance. And, on some classes with
many such branches, GA or CRO resulted in lower coverage than random search – even
when a large search budget was used.

Our findings suggest several specific areas for future work in order to improve the
effectiveness of evolutionary search algorithms for the task of unit test generation:

• To the best of our knowledge, this is the first time CRO has been applied to automatic
software test generation, and the high degree of flexibility of the algorithm and the
wide range of parameters has not been studied in detail for this particular problem.
Although CRO on the whole performed comparable to the GA, there are some
classes on which CRO performed significantly better than GA, and in these cases
we observed that CRO covers more gradient branches. In particular, for these classes,
out of the 54.67 total branches to be covered on average, CRO covered 11.53 gradient
branches, while GA covered 11.15 gradient branches. This suggests that there are
indeed potential benefits of the local search operators in CRO, and an in-depth study
of how to exploit this potential remains as future work.

• Our experiments with EVOSUITE’s GA used a basic implementation of the search
algorithm. However, there are various attempts to extend this GA to a memetic
algorithm, such as by applying dynamic symbolic execution as a type of local
search [51], or using specifically designed local search operators [52]. While these
local search operators would mainly benefit the search on gradient branches, the
overall effects in comparison to a random search would need to be studied in detail.

• The high number of plateau branches suggests that testability transformation [44]
could be used to convert some of these branches to gradient branches. While initial
experiments on EVOSUITE [45] showed the potential of this approach, a significant
engineering effort remains to be done before the effects can be studied at large scale.

• The analysis of RQ2 suggests that the search operators of the GA and CRO have an
effect on the diversity: While random search constantly generates new tests, these
evolutionary search algorithms spend more time exploring the neighborhood of
existing tests through mutation, which may lead to less diversity, and negative effects
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on covering plateau branches or branchless methods (cf. Figures 8b and 8c). Using
an archive of solutions as an optimization, to focus the GA search on not yet covered
goals, proved useful to enhance coverage effectiveness. This was specially the case
for plateau branches, which seem to abound in open source Java projects.

• Since random search and evolutionary search are complementary in the types of
branches they are good at covering, there is potential to combine the benefits of both
in a hybrid approach: Random search could first be applied to more quickly cover the
plateau branches, while evolutionary search could then be applied to target residual
coverage. An interesting question in this context is to identify the point at which
evolutionary search becomes more effective than random search.

• Future work could also explore the possibility of adapting the search to the specific
fitness landscape of the problem at hand, and controlling search parameters such as
the mutation rate. For instance, if a class appears to have mainly plateau branches,
then the mutation rate could be increased.

From a practical standpoint, our empirical study shows that, if the objective is simply
to quickly achieve a decent level of branch coverage on object-oriented classes, then using
random search with seeding may be sufficient. However, considering that average branch
coverage was at most 69.81%, there are plenty of possibilities for further improvements.
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15. Bäck T, Hoffmeister F, Schwefel H. A survey of evolution strategies. Proceedings of the International
Conference on Genetic Algorithms (ICGA), Morgan Kaufmann, 1991; 2–9.

16. Dorigo M, Birattari M, Stutzle T. Ant colony optimization. IEEE computational intelligence magazine 2006;
1(4):28–39.

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2017)
Prepared using stvrauth.cls DOI: 10.1002/stvr



28 RANDOM OR EA SEARCH FOR OBJECT-ORIENTED TEST SUITE GENERATION?

17. Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial
bee colony (abc) algorithm. Journal of global optimization 2007; 39(3):459–471.

18. Kennedy J. Particle swarm optimization. Encyclopedia of machine learning. Springer, 2011; 760–766.
19. Lam A, Li VO. Chemical-reaction-inspired metaheuristic for optimization. IEEE Transactions on

Evolutionary Computation (EVC) 2010; 14(3).
20. Lam A, Victor L, Xu J. On the convergence of chemical reaction optimization for combinatorial

optimization. IEEE Transactions on Evolutionary Computation (EVC), IEEE, 2013.
21. Lam A, Xu J, Li VO. Chemical reaction optimization for population transition in peer-to-peer live

streaming. IEEE Congress on Evolutionary Computation (CEC), IEEE, 2010.
22. Xu J, Lam A, Li VO. Chemical reaction optimization for task scheduling in grid computing. IEEE

Transactions on Parallel and Distributed Systems 2011; 22(10).
23. Xu J, Lam AY, Li VO. Stock portfolio selection using chemical reaction optimization. Proceedings of the

International Conference on Operations Research and Financial Engineering (ICORFE), 2011; 458–463.
24. Yu JJ, Lam A, Li VO. Evolutionary artificial neural network based on chemical reaction optimization.

Evolutionary Computation (CEC), 2011 IEEE Congress on, IEEE, 2011.
25. Rueda U, Just R, Galeotti JP, Vos TEJ. Unit testing tool competition: Round four. Proceedings of the

International Workshop on Search-Based Software Testing (SBST), ACM, 2016.
26. Shamshiri S, Just R, Rojas JM, Fraser G, McMinn P, Arcuri A. Do automatically generated unit tests find

real faults? an empirical study of effectiveness and challenges. Proceedings of the International Conference on
Automated Software Engineering (ASE), IEEE, 2015.

27. Fraser G, Arcuri A. A large-scale evaluation of automated unit test generation using EvoSuite. ACM
Transactions on Software Engineering and Methodology (TOSEM) 2014; 24(2).

28. Shamshiri S, Rojas JM, Fraser G, McMinn P. Random or genetic algorithm search for object-oriented test
suite generation? Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), ACM, 2015.

29. Alshahwan N, Harman M. Automated web application testing using search based software engineering.
Proceedings of the International Conference on Automated Software Engineering (ASE), IEEE, 2011.

30. Fraser G, Arcuri A. The seed is strong: Seeding strategies in search-based software testing. Proceedings of
the International Conference on Software Testing, Verification and Validation (ICST), IEEE, 2012.

31. McMinn P, Shahbaz M, Stevenson M. Search-based test input generation for string data types using
the results of web queries. Proceedings of the International Conference on Software Testing, Verification and
Validation (ICST), IEEE, 2012.

32. Rojas JM, Fraser G, Arcuri A. Seeding strategies in search-based unit test generation. Software Testing,
Verification and Reliability (STVR) 2016; .

33. Fraser G, Arcuri A. Whole test suite generation. IEEE Transactions on Software Engineering (TSE) 2013; 39(2).
34. Korel B. Automated software test data generation. IEEE Transactions on Software Engineering (TSE) 1990;

16(8).
35. Fraser G, Arcuri A. Handling test length bloat. Software Testing, Verification and Reliability (STVR) 2013;

23(7).
36. Rojas JM, Vivanti M, Arcuri A, Fraser G. A detailed investigation of the effectiveness of whole test suite

generation. Empirical Software Engineering (EMSE) 2017; 22(2):852–893.
37. Harman M, Hu L, Hierons R, Baresel A, Sthamer H. Improving evolutionary testing by flag removal.

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), MK Pub., 2002.
38. Baresel A, Sthamer H. Evolutionary testing of flag conditions. Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO), Springer, 2003.
39. Arcuri A, Fraser G. Parameter tuning or default values? an empirical investigation in search-based

software engineering. Empirical Software Engineering (EMSE) 2013; 18(3):594–623.
40. Lam A, Victor L, Xu J. Chemical reaction optimization: A tutorial. Memetic Computing (2012), Springer,

2012.
41. Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Transactions on Evolutionary

Computation (EVC) 1997; 1(1):67–82.
42. Vargha A, Delaney HD. A critique and improvement of the “CL” Common Language Effect Size Statistics

of McGraw and Wong. Educational and Behavioral Statistics 2000; 25(2).
43. Aleti A, Moser I, Grunske L. Analysing the fitness landscape of search-based software testing problems.

Proceedings of the International Conference on Automated Software Engineering (ASE) 2016; .
44. Harman M, Hu L, Hierons R, Wegener J, Sthamer H, Baresel A, Roper M. Testability transformation. IEEE

Transactions on Software Engineering (TSE) 2004; 30(1).
45. Li Y, Fraser G. Bytecode testability transformation. International Symposium on Search Based Software

Engineering (SSBSE). Springer, 2011; 237–251.
46. Harman M, McMinn P. A theoretical and empirical study of search-based testing: Local, global, and hybrid

search. IEEE Transactions on Software Engineering (TSE) 2010; 36(2).
47. Wegener J, Baresel A, Sthamer H. Evolutionary test environment for automatic structural testing.

Information and Software Technology 2001; 43(14).
48. Sharma R, Gligoric M, Arcuri A, Fraser G, Marinov D. Testing container classes: Random or systematic?

Proceedings of the International Conference on Fundamental Approaches to Software Engineering (FASE).
Springer, 2011.

49. Eler M, Endo A, Durelli V. Quantifying the characteristics of Java programs that may influence symbolic
execution from a test data generation perspective. Proceedings of the International Conference on Computer
Software and Applications Conference (COMPSAC), IEEE, 2014.

50. Truong TK, Li K, Xu Y. Chemical reaction optimization with greedy strategy for the 0–1 knapsack problem.
Applied Soft Computing (ASOC) 2013; 13(4):1774–1780.

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2017)
Prepared using stvrauth.cls DOI: 10.1002/stvr



29

51. Galeotti JP, Fraser G, Arcuri A. Improving search-based test suite generation with dynamic symbolic
execution. Proceedings of the International Symposium on Software Reliability Engineering (ISSRE), IEEE, 2013.

52. Fraser G, Arcuri A, McMinn P. A memetic algorithm for whole test suite generation. Journal of Systems and
Software (JSS) 2015; 103:311–327.

Copyright c© 2017 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (2017)
Prepared using stvrauth.cls DOI: 10.1002/stvr


	Introduction
	Search-based Test Generation
	Random Search for Tests
	Seeding.

	Genetic Algorithm Search for Test Suites
	Archive of Tests.

	Chemical Reaction Optimization
	CRO Algorithm.
	Test Case Generation with CRO.


	Branch Types In Java Bytecode
	``Integer-Integer'' Branches
	``Integer-Zero'' Branches
	``Reference-Reference'' branches
	``Reference-Null'' branches
	Summary

	Experimental Setup
	Subjects
	Collation of Branch Type Statistics
	Experimental Procedure
	Threats to Validity

	Results
	Impact of the Findings
	Related Work
	Conclusions and Future Work

