
This is a repository copy of Type inference in flexible model-driven engineering using
classification algorithms.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/127257/

Version: Published Version

Article:

Zolotas, Athanasios, Matragkas, Nicholas orcid.org/0000-0002-8594-1912, Devlin, Sam
orcid.org/0000-0002-7769-3090 et al. (2 more authors) (2019) Type inference in flexible
model-driven engineering using classification algorithms. International Journal on Software
& Systems Modelling. pp. 345-366. ISSN 1619-1366

https://doi.org/10.1007/s10270-018-0658-5

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Software & Systems Modeling

https://doi.org/10.1007/s10270-018-0658-5

SPEC IAL SECT ION PAPER

Type inference in flexible model-driven engineering using
classification algorithms

Athanasios Zolotas1 · Nicholas Matragkas2 · Sam Devlin1 · Dimitrios S. Kolovos1 · Richard F. Paige1

Received: 17 June 2016 / Revised: 27 July 2017 / Accepted: 11 January 2018

© The Author(s) 2018. This article is an open access publication

Abstract

Flexible or bottom-up model-driven engineering (MDE) is an emerging approach to domain and systems modelling. Domain

experts, who have detailed domain knowledge, typically lack the technical expertise to transfer this knowledge using traditional

MDE tools. Flexible MDE approaches tackle this challenge by promoting the use of simple drawing tools to increase the

involvement of domain experts in the language definition process. In such approaches, no metamodel is created upfront,

but instead the process starts with the definition of example models that will be used to infer the metamodel. Pre-defined

metamodels created by MDE experts may miss important concepts of the domain and thus restrict their expressiveness.

However, the lack of a metamodel, that encodes the semantics of conforming models has some drawbacks, among others

that of having models with elements that are unintentionally left untyped. In this paper, we propose the use of classification

algorithms to help with the inference of such untyped elements. We evaluate the proposed approach in a number of random

generated example models from various domains. The correct type prediction varies from 23 to 100% depending on the

domain, the proportion of elements that were left untyped and the prediction algorithm used.

Keywords Model-driven engineering · Flexible model-driven engineering · Bottom-up metamodelling · Type inference ·
Classification and regression trees · Random forests

1 Introduction

In contrast to traditional rigorous MDE lifecycles where

engineers start the DSL development process by creating

Communicated by Prof. Alfonso Pierantonio, Jasmin Blanchette, Fran-

cis Bordeleau, Nikolai Kosmatov, Prof. Gabriele Taentzer, Prof. Manuel

Wimmer.

B Athanasios Zolotas

thanos.zolotas@york.ac.uk

Nicholas Matragkas

n.matragkas@hull.ac.uk

Sam Devlin

sam.devlin@york.ac.uk

Dimitrios S. Kolovos

dimitris.kolovos@york.ac.uk

Richard F. Paige

richard.paige@york.ac.uk

1 Computer Science Department, University of York,

Deramore Lane, Heslington, York YO10 5GH, UK

2 Computer Science Department, University of Hull,

Hull HU6 7RX, UK

a metamodel, in flexible MDE approaches engineers and

domain experts start the process by defining example models

in free-form drawing tools [11,18,23,38]. Flexible modelling

is arguably more accessible to domain experts as the latter

can use tools that they are already familiar with to express the

concepts of the domain; the involvement of domain experts

is widely argued to be important in the definition of high-

quality DSLs [12,13,23,35]. In this fashion, modellers work

without being restricted by a metamodel, which may be

defined by MDE experts who are not necessarily domain

experts. The sketched elements can have type annotations

assigned to them and can be consumed by model manage-

ment suites, which in turn can be used to determine whether

the sketches are fit for purpose, e.g. by programmatically

interrogating the sketches and building code generators for

them. This process may lead to changes being made to the

sketches incrementally. Using this approach, a potentially

richer understanding of the domain is being incrementally

developed, while concrete insights (e.g. type information)

pertaining to the envisioned metamodel are discovered.

However, there are some drawbacks to what flexible MDE

offers: the drawn elements do not conform to a specific pre-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-018-0658-5&domain=pdf

A. Zolotas et al.

defined metamodel and as a result there is no guarantee that

they will consistently obey the syntactic and semantic rules

that a metamodel would impose. This can be revealed in the

aforementioned type annotation process, where elements of

a sketch have types proposed for them (by a domain expert),

and thereafter attached to them using a sketching tool. This

process can be problematic: in particular, different types of

errors may arise in the annotation process.

1. User input errors: the types assigned to two elements of

the same type are different due to spelling errors (e.g.

Person vs. Prson)

2. Changes: due to better understanding of the domain

following the incremental fashion of flexible MDE, a spe-

cific type may change to a new one. The new type should

be assigned to all the elements manually. (Animal vs.

Mammals)

3. Inconsistencies: different types might by assigned to ele-

ments that express the same concept due to the fact that

multiple domain experts work on the same example mod-

els. (Doctor vs. Veterinarian)

4. Omissions: it becomes easier to overlook some elements

and not assign them types, especially when example mod-

els become larger.

Such challenges need to be addressed to provide support

for the transition from flexible to more rigorous (metamodel-

based) modelling approaches.

In this paper, we propose a technique to tackle errors that

belong to the fourth category given above: that of type omis-

sions. In this category, sketch elements are overlooked and

are not annotated with type information. There are at least two

different approaches for solving this problem. The first is the

application of a mechanism that will check for untyped nodes

on the example models when these are created and request

from the domain experts to provide their types; a constraint

and language with model repairing capabilities [28] can be

used to support this. However, such an approach may force

users to take decision on types when they are not ready to

do so. Also, this kind of approaches tend to reveal all omis-

sions and inconsistencies at once, and so it can be difficult to

find and repair specific problems. We consider this solution

to be closer to the spirit of rigorous MDE (and constraint

checking), rather than the spirit of flexible modelling.

The second approach is that of type inference: missing

types can be inferred by analysing and calculating specific

characteristics between the elements that are typed and those

that are left untyped. One benefit of this approach is that

users can avoid reapplying the same type to elements that

are already defined in the diagram. In addition, elements can

be created without having a type assigned to them, which

can be calculated when it suits the domain expert, not the

modelling tool.

This paper builds on top of the work presented in [43].

In [43], we proposed the use of a classification algorithm,

specifically classification and regression trees (CART) [4],

to calculate matches between typed and untyped elements,

based on five characteristics of each of them. We demon-

strated the approach using a flexible modelling technique

based on GraphML, called Muddles [18]. The accuracy and

limitations of the approach were evaluated via experiments

on a number of randomly generated models.

In this extended version:

1. We test the use of a second classification mechanism, that

of random forests (RF) [3] in an attempt to improve the

accuracy of the prediction.

2. In addition to the initial dataset of random generated mod-

els, both CART and RF are now evaluated on a new set of

random generated models that this time is injected with

noise affecting 4 of the 5 variables used as input in the

prediction algorithm.

3. Finally, the importance of each of the 5 variables in creat-

ing the decision tree(s) is also calculated and presented.

The rest of this paper is structured as follows. Section 2

includes a brief review of a specific flexible modelling

approach, Muddles [18], which is based on GraphML. In

Sect. 3, the proposed approach is described. In Sect. 4, details

on the experiments that were carried out are presented. The

results of running the experiments are given in Sect. 5, along

with threats to experimental validity. In Sect. 6, related work

in the field of type and metamodel inference is presented. In

Sect. 7, we conclude the paper and outline plans for future

work.

2 Background: Muddles

In this section, we present the Muddles [18] flexible mod-

elling approach that is used in this work to illustrate the

proposed approach to type inference.

2.1 Overview

In Muddles [18], yEd,1 a GraphML-compliant drawing edi-

tor, is used to create the example models. Language engineers

start by drawing the examples which they can then anno-

tate with types and attributes. The relations (references and

containments) between elements can be expressed using

edges and group containers, respectively. Using a multipass

model-to-model transformation, the annotated diagram is

automatically transformed to an intermediate Muddle (the

Muddle metamodel is given in Fig. 1), so it can be consumed

1 http://www.yworks.com/en/products_yed_about.html.

123

http://www.yworks.com/en/products_yed_about.html

Type inference in flexible model-driven engineering using classification algorithms

Fig. 1 The Muddle metamodel. (adapted from [18])

Fig. 2 An example Zoo diagram

by suites like the Epsilon platform [28] to perform model

management operations (e.g. model-to-text transformation).

2.2 Example

We demonstrate “muddling” with an example, creating a

language used to describe zoos. The language definition pro-

cess starts with the creation of an example zoo diagram (see

Fig. 2). Next, the elements are annotated with basic type

information. For example, one can define the type of the dia-

mond shape as “Doctor” and the type of the directed edges

from “Doctor” to “Animal” nodes (hexagons) as instances of

the “treats” relationship. In a muddle, the types are not bound

to the shape; in the same drawing, a hexagon represents both

elements of type “Tiger” and “Lion”. Types and type-related

information like properties (attributes of the type), roles and

multiplicity of edges are specified using the appropriate fields

in the yEd’s custom properties dialog. The inheritance rela-

tionship can be denoted by using the “<” symbol in the type

field. For example, for types “Lion” and “Tiger” this should

be “Lion < Animal” and “Tiger < Animal”, respectively.

More details about these properties are given in Table 1.

Model management programs use this type-related infor-

mation to access and manipulate elements of the diagram.

123

A. Zolotas et al.

Table 1 Element properties

(based on Table 1 from [18])
Extension For Description Example

Type Node, edge The type of the element Lion, Doctor < Person

Properties Node, edge Descriptors and values for

primitive attributes of

nodes/edges

String name = Jenny,

Integer age = 25

Default Node, edge Descriptor of the slot under

which the first label of the

node/edge should be made

accessible

name, label

Source role Edge Descriptor of the role of the

source end of the edge

source, sourceNode

Target role Edge Descriptor of the role of the

target end of the edge

target, targetNode

Role in source Edge Descriptor of the role of the

edge in its source node

patient 0…5, partner 0…1

Role in target Edge Descriptor of the role of the

edge in its target node

carer *, employee *

Fig. 3 An overview of the proposed approach (based on Fig. 3 from [43])

For example, if all the circled elements (typed as “Fan”)

have a string attribute called “name” assigned to them, then

the Epsilon Object Language (EOL) [19] script in Listing 1

returns the names of all of them. As such, muddles can be

programmatically processed like other models, without hav-

ing to transform them to a more rigorous format (e.g. Ecore).

var fans = Fan. al l () ;

for (f in fans) {

("Fan: " + f .name) . println () ;

}

Listing 1 EOL commands executed on the drawing

3 Type inference

In this section, we describe the proposed approach to type

inference in flexible MDE approaches. An overview of the

approach is given in Fig. 3. The source code for all the

algorithms described in Sects. 3 and 4 along with detailed

instructions can be found online.2

Language engineers initially construct a flexible model

using a GraphML-compliant drawing tool, like yEd. Each

element of this example model can then be annotated with

types of the envisioned DSL. However, for the reasons men-

tioned in Sect. 1, some nodes may be left untyped. The

annotated model is then automatically analysed to extract

characteristics of interest, called features, which are pre-

sented in detail in the following section. These characteristics

are passed to the classification algorithm of choice (either

CART or random forests), which performs type inference.

We now explain this process in more detail.

2 http://www.zolotas.net/type-inference-sosym/.

123

http://www.zolotas.net/type-inference-sosym/

Type inference in flexible model-driven engineering using classification algorithms

Table 2 Signature features for nodes

Name of feature Description

Number of attributes (F1) The number of attributes that the

node has

Number of different types

of incoming references

(F2)

The number of all the types of

references that target that node. If

a node is targeted by more than

one references of the same type,

only 1 instance of them is taken

into account (unique references)

Number of different types

of outgoing references

(F3)

The number of all the types of

references that come from that

node. As above, multiple

outgoing references of the same

type are counted once

Number of different types

of children (F4)

The number of all the unique types

that the node contains. Multiple

contained elements of the same

type are counted once

Number of different types

of parents (F5)

The number of all the types that the

node is contained in. As in

Eclipse Modelling Framework

and thus in Muddles one element

can be contained in maximum 1

other node, this value is binary;

0: no parents, 1: has parent

3.1 Model analysis and feature selection

In order to be able to match untyped elements with those that

are typed, we need to specify a set of features that describe

selected attributes of each element. In this approach, we use

a set of five features, presented in Table 2 which are the

same as those used in our previous work [43]. These fea-

tures were selected because they arguably measure structural

and semantic characteristics of the models. As mentioned in

Sect. 1, naming inconsistencies in types may appear espe-

cially if many domain experts work on the same models. Our

feature selection was based on this assumption, and thus in

this set of features we do not take into account string sim-

ilarity between the various attributes of each element (i.e.

names of attributes, names of references and names of con-

tainments). However, we need to highlight that we do not

claim that the names should be totally ignored as they can

carry useful information. Methodologies which base their

similarity measurement on name matching could be com-

bined with the approach we propose and possibly improve

the prediction results.

The set of features for each node is called its feature sig-

nature. At the end of each signature, the type of the element

(if known) is also attached. If the type is not known, then

this field is left empty. Below we present some examples of

feature signatures for the elements of the model illustrated in

Fig. 4 which is an object-diagram-like representation of the

muddle shown in Fig. 2.

The feature signature of the node “JurassicZoo : Zoo” is

[2,0,0,1,0,Zoo], as it has 2 attributes, no incoming or outgo-

ing references, 3 children which are of the same type (so 1

unique child) and 0 parents. The sixth position of the sig-

nature declares the type of the element, which is useful for

training the classification algorithm. Similarly, the feature

signature of the node “Kato : Tiger” is [3,3,1,0,1,Tiger] as

it has 3 attributes, 3 unique incoming references (supports,

partner and treats), 1 unique outgoing reference (partner), 0

children and 1 parent (resident). The class of the node is Tiger,

placed at the end of the signature. Note here that although the

element “Kip : Tiger” is also of type Tiger, has not got the

“supports” incoming reference instantiated so its signature

(i.e. [3,2,1,0,1,Tiger]) is different from the aforementioned

“Kato : Tiger” node. This justifies the choice of using a clas-

sification algorithm to perform the matching. Classification

algorithms do not look for perfect matches but are trained to

classify elements by using each time those and only those

features that are most important in the specific set they are

trained on, increasing the possibilities of identifying true pos-

itives even if two elements have different signatures.

A script that parses all the elements of the diagram was

implemented. The parser constructs the signatures and stores

them in a text file. The signatures that have types assigned to

them are used to train the classification algorithm. The type

of the rest is then predicted based on the outcome of this

training.

3.2 Training and classification

Classification algorithms are a form of supervised machine

learning for approximating functions mapping input fea-

tures (e.g. our feature signature [3,3,1,0,1]) to a discrete

output class (e.g. Tiger) from a finite set of possible val-

ues (e.g. [Tiger, Lion, Fan, Doctor, Zoo]. They require a

training dataset with labelled examples of the output class

to process, after which they can generalise from the previous

examples to new unseen instances. For example, provided

sufficient examples (i.e. diagram elements) of the form

[3,3,1,0,1,Tiger] a classification algorithm can learn to pre-

dict the class Tiger when given an unlabelled example such

as [3,2,1,0,1].

Many classification algorithms exist, some of the most

established being decision trees, random forests, support

vector machines and neural networks [15]. For our previ-

ous work [43], we chose to use decision trees due to the

interpretable output representing the hypothesis learnt. In

practice, other classification algorithms can often have higher

accuracy, but will produce a hypothesis in a form that is not

human readable. As part of the extensions presented in this

paper, we experiment also with random forests (RF) [3], a

123

A. Zolotas et al.

Fig. 4 Example model

Fig. 5 Example decision tree

method that typically gives higher accuracy but less inter-

pretable results [10].

Specifically, for decision trees, we used the rpart package

(version 4.1-9)3 that implements the functionality of CART

[4] in R.4 An example decision tree is illustrated in Fig. 5.

Internal nodes represent conditions based on features (e.g.

number of attributes, unique children), branches are labelled

with “TRUE” or “FALSE” values for the condition of the

parent node and leaf nodes represent the final classification

given. To classify a new instance, the algorithm starts at the

root of the tree and takes the branch that satisfies the condition

of this node. The algorithm continues to process each internal

node reached in the same manner until a leaf node is reached

where the predicted classification of the new instance is the

value of that leaf node. For example, given the tree in Fig. 5, a

new instance with fewer than 1.5 unique incoming references

(F2) and less than 3.5 attributes (F1) is classified as “Fan”

(path is highlighted in Fig. 5).

3 http://cran.r-project.org/web/packages/rpart/index.html.

4 http://www.r-project.org/.

CART generates a decision tree by considering all labelled

instances in the training dataset in one single batch. For each

input feature, the information gain of using that feature to

classify the instances in the batch is calculated. The feature

with the highest information gain is used as the root node.

The dataset is then split based on the values of the feature at

the root node, and the process repeated on each child node

with each subset of the dataset until a stop condition (e.g.

minimum number of instances in a leaf node, depth or accu-

racy of tree) is satisfied.

Additionally in this work, we used the randomForest R

package (version 4.6-12)5 to compare the performance of

CART against a method that typically provides higher accu-

racy. An RF is an ensemble of multiple decision trees, each

trained on a different set of training instances from the dataset

chosen at random with replacement and often using a ran-

dom subset of the input features. Once trained, the ensemble

classifies new instances by processing each tree in the same

manner as an individual decision tree and then choosing

a single predicted class by majority vote. Intuitively, this

typically increases the accuracy in a manner similar to the

wisdom of crowds. More formally, the combined multiple

weak hypotheses in an RF will typically outperform the

single hypothesis generated by CART due to each tree con-

taining bias towards the data it observed but the ensemble

being able to average out these biases. This advantage, how-

ever, is balanced by an increase in the complexity of the

resultant model. While it is simple to read a single decision

tree and gain an understanding as to which features the model

has correlated with a particular class, an ensemble of multiple

trees becomes harder to read as many trees must be consid-

5 https://cran.r-project.org/web/packages/randomForest/.

123

http://cran.r-project.org/web/packages/rpart/index.html
http://www.r-project.org/
https://cran.r-project.org/web/packages/randomForest/

Type inference in flexible model-driven engineering using classification algorithms

Fig. 6 The experimentation process

ered and the classifications of each combined to reach the

final prediction of the model.

In our approach, the feature signatures list that contains the

signatures of the known elements of the model are the input

features to the CART and RF algorithms. A trained deci-

sion tree or ensemble of trees is produced dependent on the

algorithm used. These can then be used to classify (identify

the type of) the untyped nodes using their feature signatures.

To compare the relative performance of CART and RF, the

success of a classification algorithm can be evaluated by the

accuracy of the resultant model (e.g. the decision tree learnt

by CART) on test data not used when training. The accuracy

of a model is the sum of true positives and negatives (i.e. all

correctly classified instances) divided by the total number of

instances in the test set. A single measure of accuracy can be

artificially inflated due to the learnt model overfitting bias in

the dataset used for training. To overcome this, k-fold clas-

sification can be implemented [27]. This approach repeats

the process of training the model and testing the accuracy k

times each time with a different split of the data into training

and test data sets. The final accuracy using this method is

then the mean value generated from the k repeats.

4 Experiment

In this section, the experiments ran to evaluate the proposed

approach are presented. An overview of the experiment is

shown in Fig. 6. Details about each step follow. All the scripts

used in the approach are available at the paper’s website.6

6 http://www.zolotas.net/type-inference-sosym/.

123

http://www.zolotas.net/type-inference-sosym/

A. Zolotas et al.

To evaluate our approach, we applied it to a number of

randomly generated models, instances of publicly available

metamodels that were collected as part of the work presented

in [37]. The 10 metamodels selected are the same used in the

evaluation of our previous work [43]. For each of these meta-

models, we produced 10 random instances using the Crepe

model generator tool [36] (step 1© in Fig. 6) which uses a

genetic algorithm to produce random models. In the major-

ity of the cases, the Crepe random model generator had the

tendency to instantiate all the “0.. *” and “0.. 1” references

and containment relationships appeared in the metamodels.

This might be a bias in the experiment as features 2–5 are

relying on the unique appearance of references and contain-

ments: if a type of reference is not instantiated, then it is

not counted; in contrast, if it is instantiated at least once,

then it is counted. By injecting this type of noise, we create

cases like those presented in the example feature signatures

in Sect. 3.1 between two “Tiger” nodes that have different

signatures due to the absence of the “support” incoming rela-

tionship in one of them. To include noise in the signatures, in

this work we decided to create an extra set of random models

modifying the generator to be less keen in instantiating the

aforementioned relationships. This second set, consisting of

10 models for each of the metamodels, is called as “Sparse”

set while the original is called as “Normal” in this work. For

our approach, the values of the attributes of each node in

the example models were randomly selected, as these do not

affect the final feature signature of the element. We discuss

threats to validity introduced by using randomly generated

models instead of muddles in Sect. 5.6.

Having the models generated, we then transform them into

muddles. A model-to-text (M2T) transformation was imple-

mented to transform instances of EMF models to GraphML

files that conform to the Muddles metamodel (step 2©).

These two steps (1© and 2©) could be skipped if there

was a portfolio of muddles available to test our approach

on. However, to our knowledge such a repository of flexible

models does not exist. A second approach, that of drawing

example muddles on our own to experiment with, was also

rejected because it could introduce bias to the process. We

decided to follow the two-step process instead firstly because

we would be able to have a bigger number of test muddles and

secondly because these muddles are randomly generated and

are not biased to fit our approach. Moreover, by introducing

the second set of models (i.e. “Sparse”), we inject noise in the

feature signatures that works against the proposed approach.

After the generation of the muddles from the random

models, we extract the feature signature of each node. We

implemented a script that parses each muddle to collect the

information needed for each node (i.e. number of attributes,

unique outgoing and incoming references, children and par-

ents). By following this process, a text file containing a list

with signatures is created for each muddle (step 3©).

At this point, the types of all the nodes are known and

saved in the feature signatures list. However, in order to test

the proposed approach we had to simulate the scenario where

some nodes were left untyped. For that reason, each feature

signature file is split into two sets (step 4©): the training set

which includes all the nodes whose type is known and will

be used to train the classification algorithm and the test set

which includes all the nodes left untyped and will be used to

test the prediction capabilities of the algorithm. Of course,

in this experiment all the nodes have types assigned to them

as the muddles were generated from typed models. Thus the

simulation of a realistic scenario was done by randomly sam-

pling the feature signatures lists and placing elements in the

training and testing sets. As done in previous work [43], we

picked 7 different sampling rates, from 30 to 90% (with a

step of 10%). A 30% sampling rate means that only 30%

of the nodes have a type assigned to them. In order to con-

form to the standard 10-fold cross-validation in the domain

of classifications algorithms, described in Sect. 3.2, we did

this random sampling 10 times for each of the sampling rates

for each example model, ending with 700 different couples

of training and test sets for each metamodel in the exper-

iment. The same process was done for both the “Normal”

and “Sparse” set of models. It is important to highlight that

each time the classification algorithm was trained using one

training set and was tested using the coupled test set. After

that, the algorithm was reset and trained/tested with the next

couple of sets. In contrast with the previous work [43], we

tried two different classification algorithms, CART (step 5a©)

and random forests (step 5b©). In addition, in order to check

if the number of trees used for the classification in random

forest affects the accuracy of the prediction we performed

the same experiment for 7 different values for the number of

trees variable: 1, 5, 10, 50, 250, 500 and 1000.

At the end of each train/test run, the success ratio was

calculated (step 6©). The success ratio (also referred as accu-

racy) is defined as the total number of correct predictions to

the total number of untyped nodes. In the next section, the

results of the experiments are presented.

5 Results and discussion

In this section, the results of the experiment are presented.

The raw results for all the experiments with plots and tables

not included in the paper can be found at the paper’s website.

As described in Sect. 4, the experiment can be split into

four sub-experiments based on 2 variables (see Table 3); the

type of classification algorithm (CART vs. RF) and the den-

sity of the models (“Normal” vs. “Sparse”). In Sects. 5.1 and

5.2, the raw results of running the experiment on both the

“Normal” and “Sparse” sets using the CART and RF algo-

rithms will be given. In Sect. 5.3, a comparison of the results

123

Type inference in flexible model-driven engineering using classification algorithms

Table 3 Experiments’ IDs

Normal Sparse

CART N-CART S-CART

Random Forest N-RF S-RF

for the CART versus RF and the “Normal” versus “Sparse”

experiments will be presented. The results of the experiments

on the importance of the variables used in the feature signa-

tures will be discussed in Sect. 5.4 followed by a qualitative

analysis and the threats to validity in the experiments.

Before going into the presentation and the discussion of

the results, we give a summary of the models used as input

in the experiments (see Table 4). The smallest of the meta-

models consists of only 2 types. The largest is the one that

describes Wordpress Content Management System websites

with 19 different types of classes. On average, the test meta-

models had 6.5 types with a median of 6. The number of

classes excludes the abstract classes in the metamodels as it

takes into account only those that can be instantiated in mod-

els. For each metamodel, 10 models were generated for the

“Normal” set and 10 different for the “Sparse” set. The sizes

of the smallest (Min) and the largest (Max) instance model

for each metamodel are shown in the respective columns of

Table 4. The average number of elements for the instances

of each metamodel is also given for both sets.

We also provide the values for a muddle drawing we

examined. This muddle was part of a side project and was

created before commencing this work. It was used to describe

requirements of a booking system. We provide this muddle

as an indication that the performance of the approach on the

synthetic muddles from metamodels does not differ from the

that of applying it to real muddles.

Finally, Table 5 presents the results of randomly assigning

values to the untyped nodes. These values are provided for

comparison with the results of our approach. To obtain these

values for each model, we initially collected all the avail-

able types appearing in the model (i.e. the set of all the types

of the typed nodes). We then visited each untyped node and

assigned a type to it by picking one randomly from the afore-

mentioned set. When all the untyped nodes in a model had a

random type assigned, we compared the randomly assigned

value with the correct one, which was already stored before

the type deletion, to calculate the success ratio of the ran-

dom assignment. Each field in Table 5 denotes the average

success rate for each of the 100 models for each sampling

rate. It is important to mention that the sampling rate is not

important in the scenario of random type allocation. This is

because, random allocation does not require any training and

thus the information available in the model will not affect

its performance as is the case with the CART and RF. As

expected, the average accuracy across the same model is the

same regardless the sampling rate. We include the results for

all the sampling rates though to facilitate 1-to-1 comparison

with the accuracy values of the classification algorithms.

5.1 Quantitative analysis for CART

As discussed in Sect. 4, 10 random models were instantiated

from each of the metamodels. Seven different sampling rates

(30–90%) were applied to each of these models. The clas-

sification algorithms were run 10 times (10-fold) for each

sampling rate of each model. That sums up to 700 experi-

ments for each of the 10 metamodels (7,000 runs in total).

In this work, the exact same experiments were executed on

the “Sparse” set for 7 different values of the number of trees

(49,000 runs in total). The results are summarised in Tables 6

and 7, respectively.

Table 4 Data summary table
Model name #Types Normal Sparse

Min Max Average #elements

in instances

Min Max Average #elements

in instances

Chess 2 17 26 21.3 18 33 25.5

Conference 4 30 61 42.5 21 48 36.7

Profesor 4 25 36 29.2 19 37 27.7

Zoo 5 47 73 57 22 35 26.2

Ant 6 53 78 65.3 39 77 61.1

Usecase 6 35 71 54.2 42 70 52

Bugzilla 7 21 56 39.9 10 30 21.4

BibTeX 8 56 106 78.8 66 122 92.9

Cobol 11 33 92 63.7 13 62 39.1

Wordpress 19 42 71 58.6 40 88 64.2

Muddle 20 105 105 105 – – –

123

A. Zolotas et al.

Table 5 Results summary table

for random assignment
Model name #Types Average accuracy for random assignment Avg.

30% 40% 50% 60% 70% 80% 90%

Chess 2 – 0.49 0.49 0.51 0.52 0.49 0.53 0.507

Profesor 4 0.41 0.42 0.40 0.41 0.41 0.45 0.38 0.411

Zoo 5 0.20 0.20 0.19 0.19 0.20 0.21 0.18 0.197

Ant 6 0.15 0.16 0.16 0.16 0.16 0.16 0.19 0.162

Conference 6 0.22 0.20 0.18 0.19 0.21 0.20 0.22 0.202

Usecase 6 0.18 0.16 0.15 0.16 0.17 0.16 0.19 0.167

Bugzilla 7 0.14 0.14 0.13 0.14 0.15 0.13 0.14 0.138

BibTeX 8 0.13 0.12 0.12 0.13 0.12 0.12 0.10 0.122

Cobol 11 0.09 0.09 0.09 0.09 0.10 0.09 0.08 0.092

Wordpress 19 0.05 0.05 0.05 0.06 0.05 0.06 0.05 0.053

Avg. 0.18 0.20 0.20 0.20 0.21 0.21 0.21

Table 6 Results summary table

for N-CART
Model name #Types Average accuracy for different sampling rates (N-CART) Avg. Cor. 1

30% 40% 50% 60% 70% 80% 90%

Chess 2 – 1.00 1.00 1.00 1.00 1.00 1.00 1.000 –

Profesor 4 0.97 0.98 0.98 0.99 0.99 1.00 1.00 0.985 1

Zoo 5 0.96 0.98 0.99 1.00 1.00 1.00 1.00 0.990 0.99

Ant 6 0.66 0.69 0.72 0.74 0.74 0.73 0.76 0.723 0.89

Conference 6 0.87 0.91 0.93 0.96 0.96 0.97 0.99 0.940 1

Usecase 6 0.74 0.76 0.80 0.81 0.80 0.80 0.78 0.783 0.5

Bugzilla 7 0.46 0.52 0.55 0.55 0.55 0.55 0.55 0.531 0.75

BibTeX 8 0.66 0.67 0.67 0.68 0.66 0.67 0.69 0.673 0.46

Cobol 11 0.59 0.63 0.68 0.71 0.75 0.75 0.74 0.692 0.89

Wordpress 19 0.44 0.53 0.63 0.69 0.75 0.77 0.81 0.658 1

Muddle 20 0.55 0.60 0.63 0.65 0.66 0.66 0.66 0.630 0.89

Avg. 0.70 0.77 0.79 0.81 0.82 0.82 0.83

Cor. 2 −0.88 − 0.90 − 0.89 − 0.87 − 0.74 − 0.73 − 0.72

Table 7 Results summary table

for S-CART
Model name #Types Average accuracy for different sampling rates (S-CART) Avg. Cor. 1

30% 40% 50% 60% 70% 80% 90%

Chess 2 – 1.00 1.00 1.00 1.00 1.00 1.00 1.000 –

Conference 4 0.87 0.91 0.93 0.94 0.96 0.97 0.97 0.936 0.95

Profesor 4 0.85 0.90 0.93 0.95 0.95 0.96 0.94 0.926 0.82

Zoo 5 0.72 0.82 0.88 0.93 0.94 0.99 0.99 0.896 0.95

Ant 6 0.71 0.74 0.77 0.78 0.78 0.80 0.79 0.767 0.91

Usecase 6 0.74 0.79 0.81 0.82 0.81 0.83 0.83 0.804 0.86

Bugzilla 7 0.53 0.57 0.61 0.62 0.63 0.67 0.56 0.599 0.50

BibTeX 8 0.67 0.68 0.67 0.67 0.68 0.67 0.69 0.676 0.49

Cobol 11 0.44 0.51 0.54 0.59 0.62 0.64 0.68 0.574 0.99

Wordpress 19 0.41 0.51 0.57 0.60 0.64 0.66 0.69 0.583 0.96

Avg. 0.59 0.74 0.77 0.79 0.80 0.82 0.81

Cor. 2 −0.17 − 0.83 − 0.81 − 0.79 − 0.75 − 0.74 − 0.63

123

Type inference in flexible model-driven engineering using classification algorithms

In Tables 6 and 7, the average accuracy is given for all the

models of each metamodel. The results are separated based

on the sampling rate that was used each time. For instance,

the highlighted value 0.71 in Table 6 indicates that for the

Cobol metamodel, on average (between the 10 models and

10 sampling simulations), 71% of the missing types were suc-

cessfully predicted, using 70% sampling rate. The respective

value for the “Sparse” case was 62% (highlighted in Table 7)

Considering the raw values of both tables, the average

accuracy varied from 53.7 to 100% for the “Normal” dataset

and from 57.4 to 100% for the “Sparse” dataset. Comparing

with the random allocation baseline provided in Table 5, we

can see that in any model and regardless the sampling rate

our approach performed significantly better. By checking the

values for the “Normal” experiments, there are some small

models (i.e. their metamodel has fewer than 5 types) that

the predictive mechanism performs quite well (success ratio

of 85–100%). There are cases where the scores are higher

than 97% even for samples as low as 30 or 40%. The same

outcome is noticed at the smaller metamodels (fewer than

4 types) of the “Sparse” experiments. In both, the average

accuracy drops (some times significantly) for models of more

types. However, these values are affected by the fact that

in the relatively large metamodels, the prediction scores are

lower in small sampling rates, but they keep increasing as

the sampling rate (which equals to the amount of knowledge

that the CART algorithm is trained with) is increased.

These two observations lead us investigate the following

questions:

Q1: How strong is the dependency between the sampling

rate and the success score?

Q2: How strong is the dependency between the number

of types in a metamodel (size of metamodel) and the success

score?

The answers to these questions are given by the values of

the correlation measures that are calculated in column “Cor.

1” and row “Cor. 2”, respectively.

As expected, the correlation coefficient values for Cor. 1

indicate a strong or perfect dependency for all the metamod-

els, except two (i.e. BibTeX and Usecase) for the “Normal”

and BibTeX and Bugzilla for the “Sparse” experiments.

Regarding the second correlation (Cor. 2), we observe a

strong (negative) correlation between the number of types

in a metamodel and the success score for some samples

in the “Normal” experiments and for all (except 30%) for

the “Sparse” experiments. What it is of interest is that in

both experiments the correlation is dropping steadily as the

sampling rates are increasing. In some cases (above 70%

sampling rate), in the “Normal” experiments the correlation

stops being significant. One can extract the following 3 obser-

vations by checking these trends:

1. Fewer types lead to better results.

2. Fewer untyped nodes result to higher accuracy of the

approach.

3. As the sampling rate increases, the effect of the second

observation becomes less strong.

The approach presented here was tested (see Table 4) on

models that have on average from 21 to 79 elements. These

are “human-sized” models and not “super-sized” models of

thousands of elements that would probably lead to better

training with better results but are not considered realistic

in scenarios where flexible MDE is used. We need to high-

light that in our approach and the experiments, the learning

algorithm is reset every time a new model is assessed, thus

the results presented here are based on the algorithm trained

each time on one “human-sized” model. It then starts from

the beginning without any prior knowledge.

An experiment was conducted to explore if the size of the

model affects the prediction accuracy. Two line graphs for

the BibTeX and the Cobol metamodels are provided in Fig. 7

(the rest can be found on the paper’s website).7 These graphs

show the accuracy for the 50% sampling of the 10 models of

varying size for each of these two metamodels. As one can

see, the accuracy is fluctuating and there are cases where

biggest models score lower than smaller ones. Moreover,

models of almost the same size have significantly different

prediction accuracy. For example, in the Cobol metamodel

(see Fig. 7b) two models of almost the same size (34 vs.

36 nodes) have 15% difference in the prediction accuracy

(59–44%). What is interesting is that the smaller one have

better accuracy. A possible explanation for this is the fact

that the number of the elements is not the only variable that

is changing when models grow in size. In reality, when new

elements are added, more references (and containments) are

created as well, which affects 4 out of the 5 variables in the

experiment. Thus, when new nodes are added, the signatures

of the already existing nodes are changing. As a result, the

accuracy of the mechanism is affected not only by the addi-

tion of new elements (so, there is more training data for the

approach) but from the fact that the features are changing as

well, which is a very important (if not the most important)

factor that affects the performance of the approach.

5.2 Quantitative analysis for RF

The results of running the experiments using the random

forest algorithm as the prediction mechanism for both the

“Normal” and “Sparse” experiments are summarised in

Tables 8 and 9, respectively. In the paper, we only include

the results where the algorithm was trained using 1, 50 and

1000 trees. The data for all the values can be found at the

paper’s website.

7 http://www.zolotas.net/type-inference-sosym/.

123

http://www.zolotas.net/type-inference-sosym/

A. Zolotas et al.

60 70 80 90 100

0
.6

0
0

.6
2

0
.6

4
0

.6
6

0
.6

8
0

.7
0

Number of Elements

S
u
c
c
e
s
s
 S

c
o
re

Success score for different number

of elements (BibTeX)

(a)

40 50 60 70 80 90

0
.5

0
.6

0
.7

0
.8

Number of Elements

S
u
c
c
e
s
s
 S

c
o
re

Success score for different number

of elements (Cobol)

(b)

Fig. 7 Accuracy for different model sizes. a BibTeX—50% sampling, b Cobol—50% sampling

Table 8 Results summary table

for N-RF
Model name #Types #Trees Average accuracy for different sampling rates (N-RF) Avg. Cor. 1

30% 40% 50% 60% 70% 80% 90%

Chess 2 1 – 0.96 0.97 0.98 0.99 0.96 0.98 0.973 0.35

50 – 1.00 1.00 1.00 1.00 1.00 1.00 1.000 –

1000 – 1.00 1.00 1.00 1.00 1.00 1.00 1.000 –

Conference 4 1 0.71 0.78 0.78 0.81 0.82 0.82 0.85 0.796 0.93

50 0.82 0.85 0.87 0.88 0.88 0.89 0.90 0.870 0.94

1000 0.81 0.86 0.87 0.88 0.89 0.90 0.93 0.877 0.95

Profesor 4 1 0.85 0.87 0.91 0.90 0.91 0.92 0.93 0.899 0.92

50 0.95 0.97 0.97 0.97 0.97 0.97 0.99 0.970 0.80

1000 0.95 0.98 0.96 0.98 0.98 0.98 0.99 0.974 0.77

Zoo 5 1 0.61 0.64 0.64 0.66 0.73 0.75 0.73 0.680 0.93

50 0.88 0.91 0.93 0.95 0.97 0.97 0.98 0.941 0.97

1000 0.89 0.92 0.95 0.96 0.98 0.98 0.99 0.953 0.95

Ant 6 1 0.57 0.58 0.64 0.64 0.63 0.65 0.68 0.627 0.91

50 0.67 0.68 0.71 0.71 0.72 0.70 0.72 0.701 0.79

1000 0.67 0.69 0.71 0.71 0.72 0.71 0.74 0.707 0.91

Usecase 6 1 0.60 0.62 0.66 0.69 0.71 0.71 0.72 0.673 0.96

50 0.74 0.75 0.76 0.78 0.78 0.76 0.75 0.760 0.35

1000 0.75 0.75 0.77 0.79 0.78 0.77 0.76 0.767 0.41

Bugzilla 7 1 0.38 0.39 0.39 0.39 0.38 0.42 0.41 0.394 0.71

50 0.45 0.43 0.46 0.46 0.43 0.44 0.45 0.446 −0.06

1000 0.46 0.43 0.47 0.47 0.44 0.45 0.45 0.453 −0.10

BibTeX 8 1 0.56 0.57 0.58 0.57 0.57 0.60 0.57 0.574 0.49

50 0.63 0.64 0.64 0.63 0.63 0.64 0.64 0.636 0.29

1000 0.63 0.63 0.64 0.64 0.64 0.64 0.64 0.637 0.79

Cobol 11 1 0.43 0.49 0.53 0.55 0.55 0.61 0.60 0.537 0.95

50 0.58 0.62 0.66 0.69 0.70 0.71 0.74 0.671 0.97

1000 0.59 0.63 0.67 0.69 0.70 0.71 0.75 0.677 0.97

123

Type inference in flexible model-driven engineering using classification algorithms

Table 8 continued
Model name #Types #Trees Average accuracy for different sampling rates (N-RF) Avg. Cor. 1

30% 40% 50% 60% 70% 80% 90%

Wordpress 19 1 0.29 0.36 0.40 0.42 0.45 0.47 0.46 0.407 0.94

50 0.45 0.55 0.62 0.66 0.69 0.71 0.76 0.634 0.97

1000 0.48 0.56 0.62 0.67 0.70 0.71 0.77 0.644 0.98

Muddle 20 1 0.44 0.45 0.45 0.48 0.46 0.51 0.52 0.473 0.91

50 0.48 0.54 0.55 0.56 0.58 0.60 0.58 0.556 0.89

1000 0.50 0.56 0.55 0.58 0.59 0.60 0.56 0.563 0.70

Avg. 0.58 0.70 0.73 0.74 0.74 0.75 0.76

Table 9 Results summary table

for S-RF
Model name #Types #Trees Average accuracy for different sampling rates (S-RF) Avg. Cor. 1

30% 40% 50% 60% 70% 80% 90%

Chess 2 1 – 0.98 0.98 0.98 0.96 0.98 0.95 0.972 −0.68

50 – 1.00 1.00 1.00 1.00 1.00 1.00 1.000 –

1000 – 1.00 1.00 1.00 1.00 1.00 1.00 1.000 –

Conference 4 1 0.77 0.80 0.83 0.81 0.82 0.85 0.86 0.820 0.91

50 0.83 0.85 0.87 0.86 0.87 0.88 0.88 0.863 0.90

1000 0.84 0.86 0.87 0.86 0.87 0.89 0.87 0.866 0.77

Profesor 4 1 0.75 0.77 0.84 0.86 0.87 0.87 0.87 0.833 0.89

50 0.87 0.90 0.92 0.94 0.94 0.95 0.95 0.924 0.93

1000 0.88 0.90 0.92 0.94 0.94 0.95 0.95 0.926 0.94

Zoo 5 1 0.48 0.56 0.60 0.58 0.59 0.63 0.66 0.586 0.91

50 0.64 0.70 0.77 0.78 0.79 0.85 0.88 0.773 0.97

1000 0.65 0.71 0.77 0.79 0.80 0.85 0.88 0.779 0.98

Ant 6 1 0.52 0.54 0.60 0.62 0.63 0.64 0.67 0.603 0.96

50 0.64 0.69 0.72 0.75 0.75 0.77 0.78 0.729 0.95

1000 0.66 0.71 0.74 0.75 0.75 0.77 0.78 0.737 0.93

Usecase 6 1 0.59 0.63 0.67 0.69 0.71 0.75 0.76 0.686 0.99

50 0.71 0.75 0.78 0.80 0.80 0.84 0.82 0.786 0.93

1000 0.72 0.76 0.78 0.80 0.80 0.82 0.83 0.787 0.96

Bugzilla 7 1 0.47 0.48 0.53 0.53 0.53 0.58 0.48 0.514 0.45

50 0.55 0.57 0.60 0.60 0.59 0.65 0.55 0.587 0.33

1000 0.55 0.57 0.59 0.61 0.59 0.64 0.55 0.586 0.33

BibTeX 8 1 0.59 0.59 0.59 0.58 0.59 0.61 0.59 0.591 0.34

50 0.63 0.64 0.64 0.64 0.63 0.63 0.64 0.636 0.00

1000 0.63 0.65 0.64 0.64 0.63 0.64 0.65 0.640 0.28

Cobol 11 1 0.32 0.39 0.39 0.45 0.46 0.48 0.47 0.423 0.93

50 0.45 0.51 0.53 0.58 0.61 0.63 0.63 0.563 0.97

1000 0.45 0.51 0.55 0.58 0.62 0.65 0.64 0.571 0.97

Wordpress 19 1 0.23 0.30 0.33 0.34 0.40 0.38 0.43 0.344 0.96

50 0.39 0.47 0.52 0.52 0.56 0.60 0.62 0.526 0.97

1000 0.40 0.48 0.52 0.54 0.58 0.59 0.63 0.534 0.97

Avg. 0.54 0.68 0.70 0.71 0.72 0.75 0.74

123

A. Zolotas et al.

0
.4

5
0

.5
0

0
.5

5
0

.6
0

0
.6

5
0

.7
0

0
.7

5

Number of Trees

S
u

c
c
e

s
s
 S

c
o

re

1 5 10 50 250 500 1000

Success score for different number of trees and

sampling rates (Cobol, Random Forests, Normal)

Sampling %

30

40

50

60

70

80

90

(a)

0
.3

0
.4

0
.5

0
.6

0
.7

Number of Trees

S
u

c
c
e

s
s
 S

c
o

re

1 5 10 50 250 500 1000

Success score for different number of trees and

sampling rates (Wordpress, Random Forests, Normal)

Sampling %

30

40

50

60

70

80

90

(b)

0
.3

5
0

.4
0

0
.4

5
0

.5
0

0
.5

5
0

.6
0

0
.6

5

Number of Trees

S
u

c
c
e

s
s
 S

c
o

re

1 5 10 50 250 500 1000

Success score for different number of trees and

 sampling rates (Cobol, Random Forests, Sparse)

Sampling %

30

40

50

60

70

80

90

(c)

0
.3

0
.4

0
.5

0
.6

Number of Trees

S
u

c
c
e

s
s
 S

c
o

re

1 5 10 50 250 500 1000

Success score for different number of trees and

 sampling rates (Wordpress, Random Forests, Sparse)

Sampling %

30

40

50

60

70

80

90

(d)

Fig. 8 Accuracy for different sampling rates and number of trees. a Cobol—Normal, b Wordpress—Normal, c Cobol—Sparse, d Wordpress—

Sparse

The random forest mechanism has the same prediction

characteristics identified in the CART experiments: for mod-

els with few types the accuracy is higher. It drops as the

number of types is increased. The same pattern occurs when

it comes to the sampling rate: the higher the number of typed

elements in the graph, the best the prediction. This behaviour

is identical for the “Sparse” set as well. More specifically, for

the “Normal” set the accuracy prediction varies from 87.0 to

100.0% for models with less than 5 types (based on the 50

trees classification). The same values for the “Sparse” set are

77.3–100.0%. The lowest prediction value in the “Normal”

set is for the Bugzilla metamodel, with 44.6% of the untyped

nodes predicted correctly. The same value in the “Sparse”

set is 58.7%. As with the CART approach, RF also outper-

forms the random allocation approach, the results of which

are presented in Table 5.

Regarding the experiments related to the number of trees

used and how this affects the prediction results it is clear

from both the tables that the number of trees created as part

of the random forest generation affects the accuracy: more

trees lead to better accuracy. However, by analysing all the

data for the 7 different tree values (1, 5, 10, 50, 250, 500,

1000) we identified that there is a point after which there

is not significant improvement in the prediction. To make

this more clear, we present the line graphs for the prediction

accuracy based on the number of trees used, for 2 different

models of the experiment (Cobol and Wordpress), for both

the “Normal” set and the “Sparse” set.

123

Type inference in flexible model-driven engineering using classification algorithms

Table 10 Accuracy difference

trends between “Normal” and

“Sparse” experiments

Model Name # of “*” Relationships

out of total

Difference from

N-CART to S-CART

Difference from

N-RF to S-RF (50 trees)

Ant 6/6 ր ∼
BibTeX 0/1 ∼ ∼
Bugzilla 6/6 ր ր
Chess 1/1 ∼ ∼
Cobol 6/13 ց ց
Conference 2/6 ∼ ∼
Profesor 3/5 ց ց
Usecase 7/7 ∼ ∼
Wordpress 32/33 ց ց
Zoo 2/3 ց ց

As shown in Fig. 8, from 1 to 50 trees there is a rapid

increase in the predictive ability of the RFs generated.

After 50 trees, the accuracy does not improve any more but

the computation needed to generate the ensemble continues

to increase. This pattern of diminishing returns is typical

when increasing the number of trees in a RF. Given the

common occurrence of convergence in the accuracy across

multiple metamodels, these results would suggest that if

deploying RF as the classification algorithm for type infer-

ence, 50 is a suitable parameter setting.

5.3 Comparison

5.3.1 Normal versus Sparse

In this experiment, we adjusted the random model genera-

tor to produce less dense models by minimising the “*” or

“0…1” references and containments instantiated. We sum-

marise the results of the comparison in Table 10. In the table,

the second column presents the number of “*” or “0…1” ref-

erences in each model out of the total references. The third

column shows the trend in the prediction accuracy between

the “Normal” and the “Sparse” set in CART. For example,

in the Ant metamodel the average accuracy was higher (ր)

in the “Sparse” set than the “Normal” set. In the same man-

ner, the last column hosts the trend for the random forests

equivalent.

As one can see from the table, in 9 cases the accuracy

wasn’t affected at all, while in 8 others the accuracy dropped,

sometimes significantly. There were three cases where the

accuracy was increased. There are models which have all

their relationships marked as “*” (e.g. Bugzilla, Usecase,

Wordpress) and have different trends in their prediction

scores (ր, ∼, ց, respectively). That does not allow us to

reach a definitive conclusion if the density of the models

affects the prediction accuracy.

In addition, we believe that the following, unavoidable,

side effect of the “Sparse” model generation also affects the

results: the elements that are created only through one “*”

relationship will be instantiated less times in the “Sparse”

experiment. If these elements, on their turn, are responsible

to instantiate other types that are only hosted by them, then the

latter have significantly decreased chances in appearing in the

set. For example, in a naive model with 3 types (Grandparent,

Parent, Children) with 2 “*” relationships (Grandparent -*-

> Parent -*-> Children), the “Sparse” set will have fewer

“Parent” nodes and even less (maybe 0) “Children” nodes

than the “Normal” set. In the scenario, where the “Children”

node is a distinctive one, and the prediction algorithm has

high accuracy in predicting this specific type, the lack of

presence of this type in the model will be the reason why the

total average accuracy is dropped and not the fact that the

model is less dense (and thus the feature signatures of the

“Grandparent” and “Parent” nodes were affected).

Finally, as mentioned in Sect. 3.2, CART and RF dynam-

ically pick each time the feature that is distinctive among the

different types. Thus, it is possible that between two types

that have one of their features affected by the noise injec-

tion (e.g. F2), the algorithm to pick any other from the rest

4 features (i.e. F1, F3, F4 or F5) to differentiate them. This

way, the noise injection has no effect in the accuracy of the

prediction mechanism.

5.3.2 CART versus RF

By comparing the accuracy of RF and CART given the same

metamodel and sampling rate, our results show that the accu-

racy of our implementation of RF is at best equivalent to

CART and often worse (see Table 11 for the trends in the

average scores for each metamodel). This was an unexpected

outcome for the study, given that RF typically outperform

CART and more generally that ensembles of classifiers typ-

ically outperform individual classifiers [10].

123

A. Zolotas et al.

Table 11 Accuracy difference trends between CART and RF

Model name Difference from

N-CART to N-RF

Difference from S-CART

to S-RF (50 trees)

Ant ∼ ց
BibTeX ց ց
Bugzilla ր ∼
Chess ∼ ∼
Cobol ∼ ∼
Conference ց ց
Profesor ∼ ∼
Usecase ∼ ∼
Wordpress ց ց
Zoo ∼ ց

Our expectation is that this result has occurred due to the

reduction in features used by each tree in the RF. By default,

the randomForest package used chooses
√

(p) where p is

the number of features in the input. Given that our feature

signature contains only 5 features, the package chose only 2

features to train each tree in the ensemble potentially harming

the accuracy achievable by the resultant models. This default

behaviour of RF does not allow it to outperform CART when

datasets have restricted number of features as is the case in

our approach. A possible solution that would help not only RF

perform better but CART as well is the introduction of new,

extra features on top of those five presented in this work. Plan

for future work is described in Sect. 7. Furthermore, consid-

ering the high accuracy of CART on almost all metamodels

(particularly those with 6 or less types) this may also have

occurred because CART is able to achieve an upper bound

on the accuracy achievable. Therefore, the extra predictive

ability of RF may become more apparent if we increased

the number of features in our feature signature, removed the

sampling of features used by each tree in a RF or increased

the complexity of the metamodels by including more types.

However, assuming the metamodels tested are representative

of those this method may be applied to, we conclude these

results support our decision in the previous study that for this

application to type inference CART is both sufficiently accu-

rate and preferable to more complex classification algorithms

due to its interpretable output.

5.4 Variables importance

The importance of each variable is a value that signifies how

important that variable is in classifying the elements of the

test set. In experiments with large sets of features (variables)

such a process is important as it helps eliminate those that do

not play a significant (or any) role in creating the split deci-

sion nodes in each tree and thus reduce the time needed for

training. As, to the best of our knowledge, this is the first time

classification algorithms are used for type inference, and it

is of interest to assess if any of the 5 proposed features is

redundant and/or which features are more important in this

domain. To measure the importance of different variables in

the experiments we used the built-in functions available in the

same packages (rpart and randomForest) used for the classi-

fication. A description of how the calculation is performed

follows.

As discussed in Sect. 3.2, CART calculates the split per-

formance of all the features (variables) available and selects

the one that has the best goodness of split to place it as a

condition on a node. The selected feature is called primary

feature for the node [40]. However, sometimes there might be

more than one features that would produce the identical split-

ting with the one selected to appear on the node (primary).

These “clone” variables are called surrogate variables for

the node [40]. The rpart package (responsible for classifying

elements based on the CART algorithm in our approach) cal-

culates the importance of each variable by accumulating the

goodness of split measures of each variable whenever it par-

ticipated as a primary or a surrogate variable in a node [33].

The final sums are then scaled to 100 to appear as percent-

ages.

Regarding RFs [3], the importance of each variable is cal-

culated by summing up the impurity decreases [24] for all the

nodes that the variable participated. This sum is then divided

by the total number of trees in the forest [24]. The Gini index

is used as impurity decreases measure (also referred as the

Mean Decrease Gini [24]) in the randomForest package used

for classification in this work [22].

A summary of the results for the four different experiments

is shown in the pie charts of Fig. 9. These values are the

average importance of different variables for all the runs of

the experiments expressed as percentages. We also include a

table with the variable importance values of each feature for

each metamodel in the N-CART experiments, in Table 12.

The tables for the rest 3 experiments (S-CART, N-RF and

S-RF) are available at the paper’s website.

The pie charts suggest that in the 4 different experiments,

the first feature (F1), that of Number of Attributes, is the one

that is important in creating the decision nodes in the clas-

sification trees. The second most important is either feature

2 (Number of Incoming References) or feature 5 (Number of

Parents). The last 2 positions occupy feature 3 or 4 (Number

of Outgoing or Number of Children, respectively).

The fact that F1 is the most important feature is an

expected outcome. This is because in all the metamodels

used, there are types that have attributes assigned to them,

thus at some point this becomes a distinctive point between

some types. In contrast, there are metamodels which have

no containment relationships or references at all. Thus this

specific feature value (i.e. F2 and F3 if there are no refer-

123

Type inference in flexible model-driven engineering using classification algorithms

F1 37%

F2 21%

F3 12%

F4 12%

F5 18%

Variables Importance (CART, Normal)

(a)

F1 37%

F2 17%

F3 11%

F4 14%

F5 20%

Variables Importance (CART, Sparse)

(b)

F1 38%

F2 24%

F3 12%

F4 9%

F5 18%

Variables Importance (RF, Normal)

(c)

F1 40%

F2 18%

F3 11%

F4 11%

F5 20%

Variables Importance (RF, Sparse)

(d)

Fig. 9 Variables importance. a CART—Normal, b CART—Sparse, c RF—Normal, d RF—Sparse

Table 12 Variable importance table CART normal

Model name F1 F2 F3 F4 F5

Ant 17.20 9.58 6.76 3.08 6.97

BibTeX 21.96 0.00 0.00 12.02 13.24

Bugzilla 10.69 5.37 0.00 4.81 5.38

Chess 6.12 0.00 0.00 0.92 6.10

Cobol 12.83 12.03 8.05 4.55 7.44

Conference 8.04 8.76 0.29 7.51 7.36

Profesor 7.64 1.99 1.84 0.66 6.43

Usecase 7.41 10.99 11.74 5.57 5.94

Wordpress 15.81 13.57 7.75 0.39 2.61

Zoo 17.29 9.85 3.85 0.00 0.00

ences, F4 and F5 if there are no containments) is always 0

between all elements. This way features 2 to 4 are sometimes

absolutely ignored and thus their average importance value

shown in the pie is decreased. For example, as is shown in

Table 12, in the “Chess” metamodel, which has no reference

relationships, the values of F2 and F3 are 0.

5.5 Qualitative analysis

We now examine the results from a qualitative perspective in

order to identify patterns that may occur in the models that

affect the prediction accuracy.

By assessing the Bugzilla metamodel, we found out that

all the wrong predictions were done among four classes that

were extending the same abstract superclass. More specif-

123

A. Zolotas et al.

ically, the types DependsOn, Keywords, Blocks and CC

(which extend the same class “StringElt”) were all identified

as being of the same type, the one with the greatest presence in

the training data. By looking at the metamodel, we identified

that these types follow the structure of modelling inheritance

with no concrete differentiating characteristics [26] (i.e. no

differentiating point with the parent class as they have no

extra attributes, references or containment relations assigned

to them). As a result, the constructed feature signature is

identical for all of the four types and thus the classification

algorithm is unable to find a distinctive characteristic to split

them into different classes/leaves.

A similar behaviour was also discovered in the BibTeX

metamodel; the types had one differentiating point which was

of the same category (i.e. an extra attribute each). Again, the

feature signature was identical.

This behaviour is one of the reasons why the results are

not getting close to the maximum possible value (that of

100% prediction accuracy) when the training set is high

(90%): there are some cases like those described above where

even the language engineer would not be able to identify the

intended type of an untyped node as some types are not differ-

entiated. A second reason that explains why the prediction is

not maximised even when high training sets are used, which

is also related with the first reason, is the number and the

type of the features used in the proposed approach. These

features are not able to find differences between nodes that

have the same attributes and incoming/outgoing references

or containments.

A way to address this problem and improve the prediction

accuracy could be the introduction of other features, atop the

five used in this study, which are calculated based on other

characteristics that are not always the same in such situations.

In [44], four features that are based on concrete syntax are

proposed. Combining these features with the five proposed in

this work might help in the direction of tackling the problems

appearing in the aforementioned cases. In addition, includ-

ing string similarity measurements in the prediction (like

checking the name of the extra added attribute in the BibTeX

example) will help, too. Finally, in a usual flexible modelling

approach, a draft metamodel that explains the current con-

cepts in the example models might already exists. This draft

metamodel includes some constraints (e.g, multiplicities of

references) that can be exploited to improve type inference

in scenarios like the aforementioned where types have no

differentiation point. Consider for example the following sce-

nario. A draft metamodel which was inferred in one of the

iterations of the Bugzilla metamodel development using a

flexible MDE approach contained a reference from “Bug” to

“Keyword” with multiplicity of “1”. If in the example model,

a “Bug” node is already connected with a “Keyword” node,

then all the other remaining nodes connected with the same

“Bug” node could not be of type “Keyword”. In contrast with

our approach that mixes the types “Keyword” and “Block” as

they have no differentiation characteristics, a “Block” node

that has been left untyped could not be incorrectly been pre-

dicted as of type “Keyword” following the new suggested

approach. Such an approach that is based on Constraint Pro-

gramming principles has been implemented in [42]. Plans

in the direction of combining the above solutions with the

proposed approach are discussed in Sect. 7.

However, that behaviour is not always undesirable: more

specifically if the goal is that of metamodel inference,

this behaviour will help in identifying possible unnecessary

inheritance introduced in the language. Both algorithms used

in this approach have built-in mechanisms to group classes/-

types that are very similar by using the notion of “buckets”

in the leaf nodes.

5.6 Threats to validity

The data used to evaluate the performance of the proposed

approach were generated using a random model generator.

The first issue of that is that we are using models which

conform to a metamodel, and not real muddles. We wanted

to evaluate the feasibility of the proposed approach for type

inference first before carrying out more detailed experiments

on user-created flexible models. We followed this approach of

synthetic muddles creation for pragmatic reasons: firstly, we

have a model generator that uses genetic algorithms to pro-

duce random models (no random muddle generator currently

exists) and secondly, a library of example models created as

part of a flexible MDE approach does not exist. It is not pos-

sible to be sure if the synthetic muddles created as part of

this approach are representative examples of real muddles

because flexible modelling is a relatively new technology

which still positions itself in the MDE world. We do not

believe that the use of models instead of muddles will have

significant impact on the experimental results as the accuracy

of our classification algorithm depends only on the features

identified in Table 2; randomly generated models and mud-

dles will not be observably different in terms of these features.

To support this argument, we ran the prediction on a real

muddle and the results suggest that the performance of the

predictions is not affected by this fact. However, other user-

defined models and muddles may differ—and as such our

future work will involve conducting experiments with more

user-created muddles. In addition, we introduced noise in

four out of five features to include structural inconsisten-

cies in our data. The results of running the approach on

this “Sparse” set revealed that the performance is slightly

reduced.

A second issue related to the use of the this generator

is that although it generates random models, the number of

attributes that each node has is always the same for nodes of

the same type. However, this does not always work in favour

123

Type inference in flexible model-driven engineering using classification algorithms

of our approach, because in cases where two different types

have the same number of attributes, all instances will have the

same value in the attributes feature in their signature. A work-

around for this would be the injection of noise in the number

of attributes that each node has by running a post-generation

script that randomly deletes attributes from elements. Plans

for future work are described in Sect. 7.

In the experiment, 10 metamodels were used in total from

which a number of muddles were generated. The metamodels

were picked randomly from a zoo of 500 metamodels with no

specific criterion other than that of describing a domain that

most of the readers are familiar with. The number of types

in these varied from 2 up to 19 as shown in Table 4. It would

be of interest to experiment with even larger metamodels,

although our experience with working on muddles suggests

that having a flexible model with more than 20 different types

is a marginally realistic scenario.

Finally, the number of instances that the experiment was

ran on is sufficient as it complies with the standard 10-fold

methodology used in the domain of classification algorithms.

6 Related work

Flexible modelling is one of the methods proposed in the lit-

erature for tackling the symmetry of ignorance gap [7] in DSL

development, i.e. the fact that domain experts do not usually

possess language development expertise, and language engi-

neers do not have domain knowledge.

One of the common activities of flexible modelling is the

inference of a modelling language from a set of examples.

This language can be textual or graphical. Roth et al. [30]

propose an approach to the bottom-up development of textual

DSLs. More particularly, their tool can infer a grammar from

a set of textual examples. These examples are snippets of free

text entered in a dedicated text editor. The grammar inference

is based on regular expressions and lexical analysis.

Cuadrado et al. [6] propose an interactive and tool-

supported approach to metamodel inference for DSLs. Their

main goal is to actively engage the domain experts dur-

ing the DSL development process. Domain experts can use

either sketching tools such as Dia8 or a dedicated textual

notation to specify model fragments, which capture domain

knowledge. Such fragments consist of untyped nodes and

relations. Once a fragment is defined, a language engineer can

enhance its semantics by annotating it with additional infor-

mation (e.g. typing information). Semantically enhanced

model fragments can then be consumed by the provided tool

in order to infer a metamodel.

A similar approach is the MLCBD process [5]. This pro-

cess consists of three phases. First, domain experts use shapes

8 http://projects.gnome.org/dia/.

and connectors to define model examples. These examples

are then annotated with domain-specific information, and

finally these annotated examples guide the metamodel infer-

ence.

The two aforementioned approaches to metamodel infer-

ence rely on simple rectangular shapes and connectors

between them for expressing model fragments. Kuhrmann

[20] and Wuest et al. [39] propose more flexible approaches in

which model fragments can be expressed in free-form shapes.

Type annotations can be assigned to the various elements

of the model fragment, and a metamodel can be inferred

from the annotated example. The novelty of these approaches

lies in sketch recognition algorithms, which assign typing

information to new free-form shapes by matching them to

annotated ones.

Metamodel inference is not used only in the context

of flexible modelling. The MARS tool [14] supports meta-

model inference from a set of models after migrating or

losing their metamodel. This tool relies on a transforma-

tion engine, which converts models expressed in XMI to a

domain-specific representation, and on an inference engine,

which uses grammar inference techniques on the new repre-

sentation in order to infer the metamodel.

The main goal of the aforementioned approaches is quite

different from ours. Their goal is to infer a metamodel from a

set of model fragments, which are assumed to be correct and

complete. However, in our work we assume that model frag-

ments in the context of flexible modelling can be incorrect

and incomplete, since their correctness and completeness is

not enforced by a modelling tool. Therefore, our approach

is complementary to the aforementioned approaches. It can

support the user during the definition of model fragments,

and once correct and complete fragments are defined meta-

models can be inferred automatically.

Work of partial modelling is also relevant to our work.

In the literature there are different definitions of model

partiality. In [8], a partial model is a system model, in

which uncertainty about an aspect of the system is captured

explicitly. In this context, “uncertainty” means “multiple pos-

sibilities”; for example a model element may be present or

not. In contrast to [8], in our work model partiality means

that a model fragment contains incomplete information. For

example element types can be missing. Our notion of model

partiality is close to the one of [29,31].

Rabbi et al. [29] propose a diagrammatic approach to

the completion of partial models based on category theory.

Similarly, in [31] the authors use constraint logic program-

ming (CLP) to assign appropriate values for every missing

property in the partial model so that it satisfies the struc-

tural requirements imposed by the metamodel. The aim of

both approaches is to provide model completion in order to

reduce modelling effort in the same manner that code com-

pletion provided by programming language editors reduces

123

http://projects.gnome.org/dia/

A. Zolotas et al.

coding effort. Moreover, these approaches rely on a meta-

model and they are not directly applicable in the context of

flexible modelling.

Antkiewicz et al. [1] propose an approach to partial model

completion based on the Clafer [2] language, which is a mod-

elling language with first class support for feature modelling.

The main aim of this approach is to use model examples for

improving domain comprehension. In this work, partial mod-

els are expressed in Clafer and then an inference engine uses a

metamodel and the initial set of examples in order to derive a

complete model. Compared to this work, our approach does

not rely on a metamodel. Moreover, our approach is more

generic, since it does not depend on a dedicated modelling

environment.

In the context of MDE, model examples are used not

only for metamodel inference but also for other MDE-related

activities. Faunes et al. [9] propose an approach for infer-

ring metamodel well-formedness rules from sets of valid and

invalid models. The rule inference is based on genetic pro-

gramming, and the derived rules are in the form of OCL

invariants.

Furthermore, model transformation by-example (MTBE)

approaches (e.g. [17,21,32,34]) have been proposed for

automatically deriving model transformation rules. These

approaches rely on user-defined examples of input and out-

put models, and the inference is based on various techniques

such as metaheuristics, model comparison and induction. A

literature survey, which summarises the research in this area,

is provided in [16].

7 Conclusions and future work

In this paper, we built atop our previous work presented

in [43] to support type inference in flexible MDE approaches,

providing support for moving from partially typed example

models to more complete ones. In our previous work, we used

a single classification algorithm, CART. In this work, we used

a second algorithm based on random forests to assess how this

will affect the prediction accuracy. The results showed that

CART has already maximised the prediction performance

and the use of an algorithm that belongs to the same cate-

gory does not improve the results. For the random forests

algorithm, we used 7 different values for the number of trees

that the algorithm is trained with, identifying a point (50

trees) after which the prediction accuracy reaches a plateau.

In addition, in this work, we injected noise in 4 out of the 5

variables used by creating more “Sparse” example models.

The results showed that this has an impact in some metamod-

els. Finally, we calculated the importance of each variable in

both algorithms.

The approach is intended to be used to support flexible

modelling, where examples can be created in ways that are

not restricted by metamodels. However, it could be applied

directly to traditional MDE, for instance, to infer types for

an already typed model, which may potentially reveal poor

or incorrect type assignments or misuses of the metamodel.

In the future, we plan to make use of additional features.

Work in this direction was presented in [44] where 4 spatial/-

graphical related features are used (i.e. colour of the node,

width and height, shape). A user study in which domain

experts will create real example models using a flexible MDE

approach (e.g. Muddles) is of interest. This will also allow the

combination of the four features based on spatial characteris-

tics mentioned above with those presented in this work. This

is not possible at this point as all the nodes of the synthetic

muddles created as part of this work have exactly the same

graphical characteristics (i.e. shape, colour and dimensions).

In addition, the names that the domain experts choose

to assign to the semantic characteristics (e.g. types, refer-

ences or attributes) could also be assessed to improve the

predictions. We could in principle enumerate all known type-

s/references/attributes, calculate the distance of the label to

each other and then use all of these distances within the

input features. However, this would significantly increase

the dimensionality of the feature space, which would then

likely decrease the accuracy of the predictive model due

to the low number of sample data points. Another possible

approach would be that of the direct use of string similarity

algorithms where elements are matched based on the dif-

ferences between their types, references or attributes. Initial

work in this direction has been carried out in [41, Chapter 5]

using a widely used similarity algorithm, called similarity

flooding [25]. Results suggest that a combination with the

approaches presented in this work is possible and could

improve prediction results. As mentioned before, we base

this work on the assumption that domain experts may use

different naming conventions to express the same structural

information. However, we could overcome this by assigning

weights to the importance of name-matching feature: if the

examples are generated by more than one domain experts

then decrease the impact of the name matching in the predic-

tion.

Acknowledgements This work was carried out in cooperation with

Digital Lightspeed Solutions Ltd and was supported by the EPSRC

through the LSCITS initiative and part supported by the EU, through

the MONDO FP7 STREP Project (#611125).

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Type inference in flexible model-driven engineering using classification algorithms

References

1. Antkiewicz, M., Bak, K., Czarnecki, K., Diskin, Z., Zayan,

D., Wasowski, A.: Example-driven modeling using clafer. In:

MDEBE@MoDELS, vol. 1104, pp. 32–41. CEUR-WS.org (2013)

2. Bak, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., Wasowski, A.:

Clafer: unifying class and feature modeling. Softw. Syst. Model.

15(3), 1–35 (2015)

3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001).

https://doi.org/10.1023/A:1010933404324

4. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification

and regression trees. CRC Press, Boca Raton (1984)

5. Cho, H., Gray, J., Syriani, E.: Creating visual domain-specific

modeling languages from end-user demonstration. In: 2012 ICSE

Workshop on Modeling in Software Engineering (MISE), pp. 22–

28. IEEE (2012)

6. Cuadrado, J.S., de Lara, J., Guerra, E.: Bottom-up meta-modelling:

an interactive approach. In: MODELS’12: ACM/IEEE 15th Inter-

national Conference on Model Driven Engineering Languages and

Systems, LNCS 7590, pp. 3–19. Springer, Berlin (2012)

7. Dillenbourg, P.: What do you mean by collaborative learning. Col-

lab. Learn. Cogn. Comput. Approach. 1, 1–15 (1999)

8. Famelis, M., Salay, R., Chechik, M.: Partial models: towards

modeling and reasoning with uncertainty. In: 34th International

Conference on Software Engineering (ICSE), pp. 573–583. IEEE

(2012)

9. Faunes, M., Cadavid, J., Baudry, B., Sahraoui, H., Combemale,

B.: Automatically searching for metamodel well-formedness rules

in examples and counter-examples. In: Model-Driven Engineering

Languages and Systems, pp. 187–202. Springer, Berlin (2013)

10. Friedman, J., Hastie, T., Tibshirani, R.: The elements of statistical

learning. Springer series in statistics, vol. 1, pp. 587–604. Springer,

Berlin (2001)

11. Gabrysiak, G., Giese, H., Lüders, A., Seibel, A.: How can meta-

models be used flexibly. In: Proceedings of ICSE 2011 Workshop

on Flexible Modeling Tools, Waikiki/Honolulu, vol. 22 (2011)

12. Izquierdo, J.L.C., Cabot, J.: Community-driven language devel-

opment. In: 2012 4th International Workshop on Modeling in

Software Engineering (MISE), pp. 29–35. IEEE (2012)

13. Izquierdo, J.L.C., Cabot, J.: Enabling the collaborative definition

of DSMLs. In: Advanced Information Systems Engineering, pp.

272–287. Springer, Berlin (2013)

14. Javed, F., Mernik, M., Gray, J., Bryant, B.R.: MARS: a metamodel

recovery system using grammar inference. Inf. Softw. Technol.

50(9), 948–968 (2008)

15. Jiawei, H., Kamber, M.: Data mining: concepts and techniques,

vol. 5. Morgan Kaufmann, San Francisco (2001)

16. Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wim-

mer, M.: Model transformation by-example: a survey of the first

wave. In: Düsterhöft, A., Klettke, M., Schewe, K.-D. (eds.) Con-

ceptual Modelling and Its Theoretical Foundations, pp. 197–215.

Springer, Berlin (2012)

17. Kessentini, M., Sahraoui, H., Boukadoum, M., Omar, O.B.: Search-

based model transformation by example. Softw. Syst. Model. 11(2),

209–226 (2012)

18. Kolovos, D.S., Matragkas, N., Rodríguez, H.H., Paige, R.F.:

Programmatic muddle management. In: XM 2013—Extreme Mod-

eling Workshop (2013)

19. Kolovos, D.S., Paige, R.F., Polack, F.A.: The epsilon object

language (EOL). In: Rensink, A., Warmer, J. (eds.) Model

Driven Architecture—Foundations and Applications, pp. 128–142.

Springer, Berlin (2006)

20. Kuhrmann, M.: User assistance during domain-specific language

design. In: FlexiTools Workshop (2011)

21. Langer, P., Wimmer, M., Kappel, G.: Model-to-model transforma-

tions by demonstration. In: Tratt, L., Gogolla, M. (eds.) Theory and

Practice of Model Transformations, pp. 153–167. Springer, Berlin

(2010)

22. Liaw, A., Wiener, M.: Randomforest: Breiman and Cutler’s random

forests for classification and regression. Version: 4.6-12. https://

cran.r-project.org/web/packages/randomForest/index.html (2015)

23. López-Fernández, J.J., Cuadrado, J.S., Guerra, E., de Lara, J.:

Example-driven meta-model development. Softw. Syst. Model.

14(4), 1–25 (2013)

24. Louppe, G., Wehenkel, L., Sutera, A., Geurts, P.: Understanding

variable importances in forests of randomized trees. In: Advances

in Neural Information Processing Systems, pp. 431–439 Cur-

ran Associates, Inc. (2013). http://papers.nips.cc/paper/4928-

understanding-variable-importances-in-forests-of-randomized-

trees.pdf

25. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a

versatile graph matching algorithm and its application to schema

matching. In: Proceedings of the 18th International Conference on

Data Engineering, 2002, pp. 117–128. IEEE (2002)

26. Meyer, B.: Object-Oriented Software Construction, vol. 2. Prentice

Hall, New York (1988)

27. Mitchell, T.M.: Machine learning, vol. 45. McGraw Hill, Burr

Ridge (1997)

28. Paige, R.F., Kolovos, D.S., Rose, L.M., Drivalos, N., Polack, F.A.:

The design of a conceptual framework and technical infrastruc-

ture for model management language engineering. In: 14th IEEE

International Conference on Engineering of Complex Computer

Systems, pp. 162–171. IEEE (2009)

29. Rabbi, F., Lamo, Y., Yu, I.C., Kristensen, L.M., Michael, L.: A

diagrammatic approach to model completion. In: 4th Workshop

on the Analysis of Model Transformations (AMT)@ MODELS,

vol. 15 (2015)

30. Roth, B., Jahn, M., Jablonski, S.: On the way of bottom-up design-

ing textual domain-specific modelling languages. In: Proceedings

of the ACM Workshop on Domain-Specific Modeling, pp. 51–56

(2013)

31. Sen, S., Baudry, B., Precup, D.: Partial model completion in

model driven engineering using constraint logic programming. In:

International Conference on the Applications of Declarative Pro-

gramming. Citeseer (2007)

32. Strommer, M., Wimmer, M.: A framework for model transforma-

tion by-example: concepts and tool support. In: Paige, R.F., Meyer,

B. (eds.) Objects, Components, Models and Patterns, pp. 372–391.

Springer, Berlin (2008)

33. Therneau, T.M., Atkinson, E.J., et al.: An introduction to recur-

sive partitioning using the rpart routines. Technical report Mayo

Foundation (2015)

34. Varró, D., Balogh, Z.: Automating model transformation by exam-

ple using inductive logic programming. In: Proceedings of the 2007

ACM Symposium on Applied Computing, pp. 978–984. ACM

(2007)

35. Volter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M.,

Kats, L.C.L., Visser, E., Wachsmuth, G.: DSL Engineering—

Designing, Implementing and Using Domain-Specific Languages.

dslbook.org (2013). http://www.dslbook.org

36. Williams, J.R., Paige, R.F., Kolovos, D.S., Polack, F.A.: Search-

based model driven engineering. Technical Report, Technical

Report YCS-2012-475, Department of Computer Science, Univer-

sity of York (2012)

37. Williams, J.R., Zolotas, A., Matragkas, N.D., Rose, L.M., Kolovos,

D.S., Paige, R.F., Polack, F.A.: What do metamodels really look

like? EESSMOD@ MoDELS 1078, 55–60 (2013)

38. Wüest, D., Seyff, N., Glinz, M.: Flexisketch: a mobile sketching

tool for software modeling. In: Uhler, D., Mehta, K., Wong, J.L.

123

https://doi.org/10.1023/A:1010933404324
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
http://papers.nips.cc/paper/4928-understanding-variable-importances-in-forests-of-randomized-trees.pdf
http://papers.nips.cc/paper/4928-understanding-variable-importances-in-forests-of-randomized-trees.pdf
http://papers.nips.cc/paper/4928-understanding-variable-importances-in-forests-of-randomized-trees.pdf
http://www.dslbook.org

A. Zolotas et al.

(eds.) Mobile Computing, Applications, and Services, pp. 225–

244. Springer, Berlin (2013)

39. Wuest, D., Seyff, N., Glinz, M.: Semi-automatic generation of

metamodels from model sketches. In: 2013 IEEE/ACM 28th Inter-

national Conference on Automated Software Engineering (ASE),

pp. 664–669. IEEE (2013)

40. Yohannes, Y., Webb, P.: Classification and regression trees, CART:

a user manual for identifying indicators of vulnerability to famine

and chronic food insecurity, vol. 3. International Food Policy

Research Institute, Washington, D.C. (1999)

41. Zolotas, A.: Type inference in flexible model-driven engineering.

Ph.D. Thesis, University of York, York, United Kingdom. http://

etheses.whiterose.ac.uk/16380/1/main.pdf (2016)

42. Zolotas, A., Clariso, R., Matragkas, N., Kolovos, D.S., Paige,

R.F.: Constraint programming for type inference in flexible model-

driven engineering. Comput. Lang. Syst. Struct. (2016). https://doi.

org/10.1016/j.cl.2016.12.002

43. Zolotas, A., Matragkas, N., Devlin, S., Kolovos, D., Paige, R.:

Type inference in flexible model-driven engineering. In: Taentzer,

G., Bordeleau, F. (eds.) Modelling Foundations and Applications,

Lecture Notes in Computer Science, vol. 9153, pp. 75–91. Springer,

Berlin (2015)

44. Zolotas, A., Matragkas, N., Devlin, S., Kolovos, D.S., Paige, R.F.:

Type inference using concrete syntax properties in flexible model-

driven engineering. In: 1st Flexible Model-Driven Engineering

Workshop (2015)

Athanasios Zolotas is a Research

Associate at the Computer Sci-

ence department of University of

York, UK. He is member of the

Enterprise Systems research group.

Athanasios received his EngD in

Large-Scale Complex IT Systems

from the University of York in

2017. His research interests are in

model-driven engineering, safety

critical systems and requirements

engineering.

Nicholas Matragkas is a Lec-

turer of Software Engineering at

the University of Hull, UK. He

is a member of the Dependable

Systems research group. Nicholas

received his Ph.D. in Computer

Science from the University of

York in 2011. His current research

interests include model-driven engi-

neering, model management, soft-

ware analytics and software test-

ing.

Sam Devlin received an M.Eng.

degree in Computer Systems and

Software Engineering from the

University of York, UK, in 2009.

In 2013, he completed his Ph.D.

on multi-agent reinforcement learn-

ing at the University of York and

visited Oregon State University

funded by a Santander Interna-

tional Connections Award. His

research interests are focused on

machine learning and artificial intel-

ligence. He was a Research Asso-

ciate from 2013–2015, working

on data mining for collective game

intelligence. He now holds a permanent academic role as a transitional

fellow in the Digital Creativity Labs.

Dimitrios S. Kolovos is a Professor

at the University of York. He has

co-authored more than 150 scien-

tific papers in international jour-

nals, conferences and workshops

in the field of model-driven soft-

ware engineering and has been

an Eclipse Foundation commit-

ter leading the development of

the Epsilon opensource project

(eclipse.org/epsilon) since 2006,

and the Emfatic project (eclipse.

org/emfatic) since 2010.

Richard F. Paige is Professor of

Enterprise Systems at the Univer-

sity of York, UK, where he leads

the Enterprise Systems research

group that specialises in Model-

Driven Engineering. He has

chaired numerous leading software

engineering conferences and work-

shops, is on the editorial boards of

Software and Systems Modeling,

the Journal of Object Technology

and Empirical Software Engineer-

ing. His research interests are in

model management, formal meth-

ods, software processes, agile meth-

ods and safety critical systems.

123

http://etheses.whiterose.ac.uk/16380/1/main.pdf
http://etheses.whiterose.ac.uk/16380/1/main.pdf
https://doi.org/10.1016/j.cl.2016.12.002
https://doi.org/10.1016/j.cl.2016.12.002

	Type inference in flexible model-driven engineering using classification algorithms
	Abstract
	1 Introduction
	2 Background: Muddles
	2.1 Overview
	2.2 Example

	3 Type inference
	3.1 Model analysis and feature selection
	3.2 Training and classification

	4 Experiment
	5 Results and discussion
	5.1 Quantitative analysis for CART
	5.2 Quantitative analysis for RF
	5.3 Comparison
	5.3.1 Normal versus Sparse
	5.3.2 CART versus RF

	5.4 Variables importance
	5.5 Qualitative analysis
	5.6 Threats to validity

	6 Related work
	7 Conclusions and future work
	Acknowledgements
	References

