

This is a repository copy of Variable response of nirK and nirS containing denitrifier communities to long term pH manipulation and cultivation.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/127230/

Version: Accepted Version

Article:

Herold, M.B., Giles, M.E., Alexander, C.J. et al. (2 more authors) (2018) Variable response of nirK and nirS containing denitrifier communities to long term pH manipulation and cultivation. Fems Microbiology Letters, 365 (7). fny035. ISSN 0378-1097

https://doi.org/10.1093/femsle/fny035

This is a pre-copyedited, author-produced version of an article accepted for publication in FEMS Microbiology Letters following peer review. The version of record Miriam B Herold, Madeline E Giles, Colin J Alexander, Elizabeth M Baggs, Tim J Daniell, Variable response of nirK and nirS containing denitrifier communities to long-term pH manipulation and cultivation, FEMS Microbiology Letters, Volume 365, Issue 7, April 2018, fny035 is available online at: https://doi.org/10.1093/femsle/fny035.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

http://mc.manuscriptcentral.com/fems

Variable response of nirK and nirS containing denitrifier communities to long term pH manipulation and cultivation

	· · · · · · · · · · · · · · · · · · ·
Journal:	FEMS Microbiology Letters
Manuscript ID	FEMSLE-17-11-0644.R1
Manuscript Type:	Research Letter
Date Submitted by the Author:	n/a
Complete List of Authors:	Herold, Miriam; University of Aberdeen, SBS; The James Hutton Institute, Ecological Sciences Giles, Maddy; The James Hutton Institute, Ecological Sciences Alexander, Colin; Biomathematics and Statistics Scotland, The James Hutton Institute Baggs, Elizabeth; University of Edinburgh, The Royal (Dick) School of Veterinary Studies Daniell, Tim; The James Hutton Institute, Ecological Sciences; The University of Sheffield, Department of Animal and Plant Sciences
Keywords:	nitrite reductase (nirK, nirS), community dynamics, gene abundance, pH, 16S rRNA
All articles in FEMS Microbiology Letters are published under one of eight subject sections. Please select the most appropriate subject category for your submission from the drop down list:	Environmental Microbiology (Editor: Tim Daniell)

SCHOLARONE[™] Manuscripts

Variable response of <i>nirK</i> and <i>nirS</i> containing denitrifier communities to long term pH
manipulation and cultivation
Miriam B. Herold ^{1,2#} , Madeline E. Giles ^{1#,} Colin J. Alexander ³ , Elizabeth M. Baggs ⁴ , Tim J.
Daniell ^{1,5} ,
¹ The James Hutton Institute; ² Institute of Biological and Environmental Sciences, University
of Aberdeen; ³ Biomathematics and Statistics Scotland; ⁴ The Royal (Dick) School of
Veterinary Studies, University of Edinburgh; ⁵ Department of Animal and Plant Sciences,
University of Sheffield.
M Herold and M Giles have joint first authorship.
*Corresponding author. E-mail address: t.j.daniell@sheffield.ac.uk
Full postal address: Department of Animal and Plant Sciences, University of Sheffield,
Sheffield S10 2TN, UK
Phone number: +44 114 2220137
Fax number: +44 114 2220137
Running title: pH and cultivation effects on soil denitrifier community
Keywords: nitrite reductase (nirK, nirS), 16S rRNA, gene abundance, pH
One sentence summary: Cultivation affected the overall size of the bacterial community,
while <i>nirS</i> containing denitrifiers showed a greater sensitivity to pH change than <i>nirK</i>
containing denitrifiers, with <i>nirS</i> showing a threshold pH of 4.7 for both abundance and
community structure.
1

25 Abstract

Denitrification is a key process responsible for the majority of soil nitrous oxide (N_2O) emissions but the influences of pH and cultivation on the soil denitrifier community remain poorly understood. We hypothesised that the abundance and community structure of the total bacterial community and bacterial denitrifiers would be pH sensitive and that *nirK* and *nirS* containing denitrifiers would differ in their responses to change in pH and cultivation. We investigated the effect of long-term pH adjusted soils (ranging from pH 4.2 to pH 6.6) under different lengths of grass cultivation (one, two and three years of ley grass) on the general bacterial and denitrifier functional communities using 16S rRNA, *nirK* and *nirS* genes as markers. Denitrifier abundance increased with pH, and at pH below 4.7 there was a greater loss in *nirS* abundance per unit drop in pH than soils above this threshold pH. All community structures responded to changes in soil pH whilst cultivation only influenced the community structure of *nirK*. These differences in denitrifier responses highlight the importance of considering both *nirK* and *nirS* gene markers for estimating denitrifier activity. Identifying such thresholds in response of the microbial community to changes in pH is essential to understanding impacts of management or environmental change.

42 Introduction

Denitrification in agricultural soils is a major source of the greenhouse gas nitrous oxide
(N₂O) (IPCC 2014). An understanding of the controls on denitrifier abundance and
community composition is important to aid development of mitigation strategies for N₂O
emission from soil and it has been suggested that community composition is an important
control on pH-driven changes in denitrification rates (Dörsch *et al.* 2012). However, the link
between soil communities, both size and structure, and function remains one of the major
challenges in microbial ecology, in part because the response of denitrifiers to certain

1 2 3 4	
5 6 7 8 9	
10 11 12 13 14	
15 16 17 18	
19 20 21 22 23	
24 25 26 27 28	
29 30 31 32	
33 34 35 36 37	
38 39 40 41 42	
43 44 45 46	
47 48 49 50 51	
52 53 54 55	
56 57 58 59 60	

50	environmental variables, such as pH, remains poorly understood. The effects of pH on both
51	soil conditions and microbial activity can be wide ranging. Soil pH can be correlated to
52	concentrations of dissolved organic matter (Bárta et al., 2010) through altering sorption of
53	dissolved organic matter components to soil molecules, affecting the formation of insoluble
54	organic molecules and the concentration of polyvalent cations which can create complexes
55	with organic molecules (Bárta et al. 2010). Changes in nutrient availability can alter the size
56	and composition of denitrifying communities affecting a soil's genetic capacity to denitrify.
57	In addition pH can directly affect denitrification through transcript (Liu et al. 2010),
58	translation, transport and degradation of enzymes (Samad et al. 2016a).
59	
60	Denitrifying bacteria are phylogenetically diverse with genes encoding the copper containing
61	nitrite reductase (<i>nirK</i>) and the cd_1 type nitrite reductase (<i>nirS</i>) commonly used as markers.
62	Denitrifying bacteria possess either <i>nirK</i> or <i>nirS</i> with both genes exclusive within the genome
63	of denitrifiers (Rösch et al. 2002). These genes have been used to assess both denitrifier
64	abundance and community structure in response to environmental changes (e.g. Philippot
65	2006; Attard et al. 2011) and the nirS-to-nirK ratio may be related to a soil's N ₂ O sink
66	capacity (Jones et al. 2014). Denitrifier communities that possess these nitrite reductases can
67	be influenced by soil pH but reported responses vary reflecting the diverse influence pH can
68	have on functional communities; in one instance Enwall et al. (2010) found nirS community
69	structure to be affected by pH in a crop rotation while Dandie et al. (2011) found pH to affect
70	nirK community structure in a gradient of land management from maize field to riparian
71	zone. Recent studies have also found <i>nirK</i> and <i>nirS</i> community size to play an important role
72	in determining potential rates of denitrification in grassland systems (Čuhel et al. 2010) and
73	actual rates of denitrification in pasture soils (Samad et al. 2016a). pH driven differences in
74	community response may be a consequence of soil conditions with pH affecting post

Page 4 of 21

60

1 2

75	transcriptional controls on the proteome of the denitrifying community where carbon was
76	absent and pH affecting the transcription rates of denitrifiers where carbon was present, in 3
77	different soils (Liu et al. 2010). Similarly Samad et al. (2016b) found carbon mineralization
78	to be linked to denitrification rates across 13 pasture soils with diverse pH's. Differences in
79	soils and agricultural practices between study systems and the range of pH over which
80	measurements are taken may help to account for the differences in findings. While pH is an
81	important control on denitrification, cultivation history may affect the size and structure of
82	the communities reacting to pH conditions. For example (Herold et al. 2012) found bacterial
83	biomass to increase with the length of time soil had been left under ley grass. Consequently it
84	is important to understand the effects of both pH and land management in the same soil type
85	across a gradient of pH values

86

87 Our objective here was to explore how the size and structure of the denitrifying bacterial 88 community changed in arable soil of the same site managed long-term for pH and left for 89 one, two and three years under ley grass. We hypothesised that (i) that there would be a 90 positive correlation between the gene copy numbers of both *nirS* and *nirK* with soil pH, (ii) 91 the size of both general bacterial and the *nirS* and *nirK* containing bacterial community 92 would increase with increasing years of ley cultivation, and (iii) pH would have a stronger 93 effect on the abundance and structure of both the 16S rRNA gene nirS and nirK containing 94 bacterial communities in soil under the first year of ley grass compared to soils under the 95 third year of ley grass.

96

97 Methods

Soil was sampled from the long term (50 years) pH plots maintained by SRUC at the

99 Craibstone Estate, UK; 57°11′N, 2°12′W. The soil at this site is a sandy loam, iron podsol as

1	
n	
2	
ر ۸	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	
∠3	
23 24 25 26 27 28 29	
25	
26	
27	
28	
29	
30	
31	
32	
33	
22 24	
34	
35	
36	
34 35 36 37	
38	
39	
40	
41	
42	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

100	described in Herold et al. (2012). The site is sub-divided into 12 m ² plots, maintained at
101	seven different levels of pH which increase in increments of 0.5 pH units from pH 4.2 to pH
102	7.5 (CaCl ₂). Within each pH range there are 8 subplots each at different stage of an eight year
103	crop rotation, winter wheat, potatoes, spring barley, swedes, spring oat, followed by 3
104	successive years of ley grass with no re-sowing. Ley grass plots were sown with a mixture of
105	Lolium perenne (cv. Fornax, Elgon, Cooper), Phleum Pratense (cv. Comtal) and Trifolium
106	repens (cv. Alice and grassland demand).
107	
108	For this study, soil was sampled from plots under they're 1 st , 2 nd and 3 rd year ley grass for
109	each of the pH areas. For each plot soil samples were taken randomly with a grass plot
110	sampler (Van Walt Ltd., Surrey, UK) to a depth of 10 cm in May 2008 and 2009 as described
111	in Herold et al. (2012). Soil was collected from each plot until a bulked sample of 500 g of
112	soil was achieved. The soil was then sieved to ≤ 4 mm and stored at either 4 °C until chemical
113	analysis and -80 °C until community analysis.
114	
115	Soil pH was determined from 10 g of soil from each plot and using 0.01 M CaCl ₂ . Dissolved
116	organic C and inorganic N (NH_4^+ , NO_3^- and NO_2^-) were extracted from 10 g of soil using 1 M
117	KCl and quantified using a Skalar SAN ^{plus} Segmented Flow analyser (Skalar Analytical B.V.,
118	The Netherlands). Soil water content was determined 10g of soil by oven drying at 60 °C
119	until a constant weight was achieved.
120	
121	Total DNA was extracted from 1 g of frozen soil, taken from each plot. Samples were spiked
122	with a mutated 16S rRNA gene which was used as an internal standard to control for
123	differences in both extraction and PCR efficiency (Daniell et al. 2012) in a similar manner to
124	the use of housekeeping genes in expression analysis (Pfaffl et al. 2002) and the addition of
	5

ScholarOne Support 1-434/964-4100

Page 6 of 21

י ר	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
19 20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
32 33	
33 34	
34	
35 36	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

125	internal standards in lipid extractions (Schutter & Dick 2000). The DNA extraction was
126	performed using a phenol-chloroform extraction (Deng et al. 2010). Gene copy numbers of
127	nirK and nirS (Hallin et al. 2009), the 16S rRNA gene (Muyzer et al. 1993) and the internal
128	standard were quantified using relative real time PCR (Daniell et al. 2012) where the internal
129	standard controls for efficiency. The 16S rRNA gene, <i>nirK</i> and <i>nirS</i> community structures
130	were determined using T-RFLP (Braker et al. 1998; Griffiths et al. 2010; Gulden et al. 2015).
131	
132	Genotyping was performed on an ABI 3730 capillary sequencer and data we processed using
133	GeneMapper [®] Software (Applied Biosystems, Paisley, UK). For T-RFLP analysis, relative
134	peak areas were calculated for each sample and peaks that contributed less than 1% of total
135	fluorescence were removed. The remaining peaks were Hellinger transformed to reduce the
136	effect of dominant peaks (Blackwood et al. 2003). The transformed relative abundance data
137	were analysed with Principal Component Analysis (PCA). For each gene and PC score from
138	each PCA, linear or non-linear (depending on the relationship between variables) regression
139	models were created. Soil pH, years of ley cultivation and calendar year were used as
140	independent variables. Model selection was performed forward-stepwise using the Akaike
141	Information Criterion with finite sample distribution and AICc. Parameter estimates are
142	quoted with standard errors in brackets. Principal Component Analyses and regression
143	models were fitted using Genstat 16th edition (VSN International Ltd., Hemel Hempstead,
144	UK).
145	
146	Results and discussion
147	Analysis of bacterial communities across the Americas has shown that bacterial diversity
148	varies between ecosystems with differences largely related to pH (Fierer and Jackson 2006).
149	Similarly here, the general bacterial and denitrifier community structures showed a

Page 7 of 21

1

FEMS Microbiology Letters

1
2
3
4 5
5 6
0
/ 8
8 9
, 10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 27
27
29
30
31
32
33
34
35
36
37
38
39
40
41 42
42
44
45
46
47
48
49
50
51
52
53
54
55
56 57
57 58
58 59
59 60
50

150	significant response to soil pH (Fig. 1b, d, f) and in all cases the greatest change in
151	community structure per unit pH occurred in more acidic soils. Existing information about
152	the effect of soil pH on the community structure of <i>nirK</i> or <i>nirS</i> containing bacteria is limited
153	and inconsistent, with studies finding nirK, nirS or both changing with pH in agricultural
154	systems (Enwall et al. 2010; Dandie et al. 2011, Yin et al. 2015). In this study both nirK and
155	nirS community structures were influenced by soil pH. The scores from PCA analysis for
156	both <i>nirS</i> and <i>nirK</i> showed a polynomial relationship with pH (Fig. 1d, f) (Table 1), though
157	changes in community structure appeared smoother in <i>nirK</i> than <i>nirS</i> . A study which
158	compared over 600 microbial genomes has shown a significantly higher frequency of co-
159	occurrence of <i>nirS</i> with both nitric oxide reductase (<i>nor</i>) and nitrous oxide reductase (<i>nosZ</i>)
160	than organisms that possess nirK (Graf et al. 2014). This could suggest that these organisms
161	are more likely to be capable of complete denitrification under suitable conditions than
162	denitrifiers that possess <i>nirK</i> . Hence, it could be proposed that the <i>nirS</i> community generally
163	translates more denitrification enzymes than the <i>nirK</i> community and potentially invests
164	more energy to maintain the process of denitrification. Interestingly, the reduction of N_2O to
165	di-nitrogen gas (N ₂) is impaired under acidic pH which is thought to be related to post-
166	transcriptional inhibition of the nitrous oxide reductase enzyme (Bergaust et al. 2010, Liu et
167	al. 2014). It could be hypothesised that the more distinct nirS community at low pH is related
168	to a discrepancy of resources used in the assembly of denitrification enzymes, the small yield
169	of energy generated by enzymes with impaired functionality at acidic pH and potential post
170	transcriptional controls driving selection away from the <i>nirS</i> community structure found at
171	higher pH.
172	
1 = 2	

173 Changes in the community structure of denitrifiers in response to pH may potentially explain
174 observed variation in denitrification rates in soil (Šimek *et al.* 2002; Herold *et al.* 2012), and

1 2	
2	
4	
5	
6	
7	
8 9	
9 10	
11	
12	
13	
14	
15 16	
16 17	
18	
19	
20	
21 22	
23	
24	
25	
26	
27 28	
29	
30	
31	
32	
33 34	
35	
36	
37	
38	
39 40	
41	
42	
43	
44 45	
45 46	
47	
48	
49 50	
50 51	
51 52	
53	
54	
55	
56 57	
58	
59	
60	

175	changes in the abundance of certain bacteria with pH have been found in soils where this pH
176	change has been linked to N ₂ O emissions (Samad et al. 2016a). Nonetheless denitrification
177	rates are sometimes only indirectly linked to N ₂ O emission (Petersen et al. 2012) and a
178	correlation between gene abundance and activity measurements hindered by ecological or
179	methodological factors (Rocca et al. 2015). Despite this microbial communities may account
180	for variation in process rates that remain unexplained by environmental variables, with the
181	predictive strength of models explaining facultative processes expected to improve when the
182	diversity of microbial communities are taken into account (Graham et al. 2016).
183	
184	Increasing soil pH had a limited but positive effect on 16S rRNA gene abundance. There was
185	also a difference in 16S rRNA gene abundance between soils under the first year of ley grass
186	and soils under either the second or third year of ley grass. Neither <i>nirS</i> nor <i>nirK</i> gene copy
187	numbers were influenced by the age of the grass ley, but were both significantly influenced
188	by soil pH, increasing with pH across the pH gradient with two distinct slopes for <i>nirS</i> above
189	and below pH 4.7 (<i>nirK</i> ; <i>P</i> < 0.001, <i>nirS</i> > pH 4.7; <i>P</i> < 0.05, <i>nirS</i> < pH 4.7; <i>P</i> < 0.001) (Fig.
190	1c, e; Table 1). Denitrification is a facultative anaerobic process therefore the presence or
191	absence of denitrifiers may not only be driven by the presence or absence of a particular
192	denitrification gene but also by the niche a microorganism occupies under aerobic conditions.
193	In this study it is likely the system was not selecting for the denitrification trait at the point
194	samples were taken. The moisture content of the soil was between 0.37 and 0.42 g water g
195	soil ⁻¹ from this the water filled pore space was estimated at between 54 and 64 %. While
196	denitrification will occur at this water content in smaller or less well connected pores it will,
197	in general, be occurring in competition with other aerobic processes (Bateman and Baggs,
198	2005). This suggests, that the bacterial community adapted to low pH in these soils contained
199	a limited number of organisms with <i>nirS</i> .

60

1 2		
3 4	200	
5 6	201	Other studies have also found differences in the abundance of <i>nirS</i> and <i>nirK</i> in response to
7 8	202	pH. Philippot et al. (2009) found correlations between nirS, but not nirK abundance, and soil
9 10	203	pH in grassland pasture. In cultured communities created from soil inocula the transcription
11 12	204	of nirS has been found to be sensitive to pH, with transcription limited at lower pH
13 14	205	(Brenzinger et al. 2015). Inhibition of the transcription of nirS at low pH will mean
15 16	206	organisms containing <i>nirS</i> will have a poor capacity to reduce NO ₂ ⁻ to nitric oxide at lower
17 18	207	pHs. This makes its presence of limited competitive advantage to bacteria adapted to living in
19 20 21	208	low pH conditions and may result in its exclusion from these organisms, potentially
22 23	209	accounting for its far lower abundance in this study at pH's below 4.7. In contrast, nirK,
24 25	210	while sensitive to pH, did not show a threshold value. It has been suggested that $nirK$ is
26 27	211	sensitive to soil organic C (Kandeler et al. 2006) which was proposed as a driver for
28 29	212	differences in nirK abundance in spruce forest soils of different pH (Bárta et al. 2010). In
30 31	213	contrast to that study, DOC in the Craibstone soil decreases linearly with pH ($R^2 = 0.54$, P <
32 33	214	0.001).
34 35 36	215	
37 38	216	Highest DOC was found in soils with a pH of 4.7. For <i>nirK</i> containing bacteria a loss of
39 40	217	available DOC may have offset the enzyme regulatory benefits of higher pH's and resulted in
41 42	218	a smoother increase in gene copy numbers with pH. In contrast soil NO_3^- concentrations
43 44	219	increased linearly with pH ($R^2 = 0.24$, $P < 0.05$) and the DOC:NO ₃ ⁻ ratio also decreased
45 46	220	linearly with soil pH ($R^2 = 0.36$, $P < 0.001$). Total soil C, total soil N and copper
47 48	221	concentrations showed no differences between pH plots. Both the chemical changes and
49 50 51	222	differences in biological capacity to reduce NO_2^- (<i>nirS</i> and <i>nirK</i> abundance) between pH
52 53	223	plots are likely to affect the soils potential to denitrify. Herold et al. (2012) measured
54 55	224	potential denitrification rates in the same soils as this study and found them to be highest
56 57		
58 59		9
C 0		ScholarOpe Support 1-434/964-4100

between pH 5.5 and 6.3 in 1st and 2nd year ley grass, which are the pHs where the highest abundance of *nirK* and *nirS* were found in this study. While direct correlations of potential denitrification and denitrifier abundance were not possible in this study, the abundance of nirS has been found to link to potential denitrification rates in soils between 5.52 and 7.67 (Čuhel et al. 2010). and disturbance rather than the crop present has been found to be an important control on

In addition to pH, the cultivation history of the plots also affected the microbial communities. The number of years plots had been under grass influenced the community structure of *nirK* containing bacteria, while plots under their first year of ley grass had the lowest abundance of the 16S rRNA gene (table 1.). The *nirK* community structure in the third year under ley grass diverged from the community structure in plots under their 1st and 2nd years of lev grass. In contrast, the *nirS* community structure showed no response to the number of years plots had been under grass (Figure 1f). The planting of ley grass represents a significant disturbance bacterial communities as factors such as nutrient dynamics can be altered (Smith et al. 2016). An analysis of global patterns of microbial community structures has shown that both *nirS* and *nirK* communities cannot be separated between disturbed and un-disturbed sites (Jones and Hallin 2010). Assuming that the three years of ley grass form a disturbance gradient in itself, the lack of response of the two communities in years one and two might not be surprising, although smaller scale studies have found nitrite reducers to be affected by disturbance (Kandeler et al. 2006, Smith et al. 2016). The habitat preference of nirS and nirK is thought to be different with *nirS* better adapted to soil with higher water content (Petersen et al., 2012) and nirK sensitive to changes in concentrations of nitrate and carbon (Jones & Hallin 2010). It has been shown that the diversity of *nirS* is largely clustered over a wide range of habitats whereas *nirK* communities show greater habitat selectivity (Jones and

FEMS Microbiology Letters

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
24
25
26
27
28
29
30
31
32
33
33 34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60

Hallin 2010). This habitat selectivity could explain the divergence of the *nirK* community
structure in the third year of ley grass but the underlying cause and process of community
assembly is not clear.

253

254 The plots most recently rotated to lev grass had lower 16S rRNA gene abundance (p < 0.001) 255 which were similar to values reported by Rousk et al. (2010) who investigated 16S rRNA 256 gene abundance under continuous winter wheat across a pH range (pH range 4-8). This 257 reflects the importance of time in the growth of a rhizosphere population. The gene copy 258 numbers of *nirS* and *nirK* did not vary with year since grass planting which could support the 259 hypothesis that soil type can override plant effects in arable systems (Graf et al. 2016). As a 260 consequence the *nirS* and *nirK* gene copy numbers decreased relative to 16SrRNA gene copy 261 numbers, reducing the soils genetic capacity to denitrify.

262

263 Our study shows, that in an agricultural context, long term pH management of soils can affect 264 both denitrifier abundance and community structure. Our hypothesis that bacterial 265 communities respond differently to soil pH was confirmed with *nirS* being more sensitive 266 than *nirK* to pH below 4.7. While the years since ley grass establishment may influence the 267 size of the bacterial community, pH was a better predictor of denitrifier abundance and 268 community structure. The different dynamics in denitrifier communities highlight the 269 importance of studying both *nirK* and *nirS* gene markers when considering denitrifier 270 response to both cultivation and pH, as well as identifying thresholds in denitrifier response 271 to environmental change. 272

273 Acknowledgements

274	MBH received a joint studentship from the University of Aberdeen and the James Hutton
275	Institute partly funded by the Rural and Environment Science and Analytical Services
276	Division of the Scottish Government. TJD is partly funded by the HEFCE N8 Agrifood
277	programme. EMB was supported by an Advanced Research Fellowship awarded by the
278	Natural Environment Research Council. We are grateful to the SRUC who granted field site
279	access. This paper was written by MBH who was supervised by EMB and TJD. Statistical
280	help was provided by CJA. Final versions of the paper were revised by MEG.
281	
282	References
283	Attard E, Recous S, Chabbi A, De Berranger C, et al. Soil environmental conditions rather
284	than denitrifier abundance and diversity drive potential denitrification after changes in land
285	uses. Global Change Biol 2011;17:1975-1989.
286	
287	Bárta J, Melichová T, Vaněk D, et al. Effect of pH and dissolved organic matter on the
288	abundance of nirK and nirS denitrifiers in spruce forest soil. Biogeochemistry 2010;101:123-
289	132.
290	
291	Bateman EJ, Baggs EM. Contributions of nitrification and denitrification to N ₂ O emissions
292	from soils at different water-filled pore space. <i>Biology and Fertility of Soils</i> 2005; 41 :379-388.
293	
294	Bergaust L, Mao Y, Bakken LR, et al. Denitrification response patterns during the transition
295	to anoxic respiration and posttranscriptional effects of suboptimal pH on nitrogen oxide
296	reductase in Paracoccus denitrificans. Appl Environ Microb 2010;76:6387-6396.
	12
	ScholarOne Support 1-434/964-4100

•		
2 3	297	Blackwood CB, Marsh T, Kim S-H, et al. Terminal restriction fragment length polymorphism
4 5	298	data analysis for quantitative comparison of microbial communities. Appl Environ Microb
6 7	299	2003; 69 :926-932.
8 9	300	
10 11 12	301	Braker G, Fesefeldt A, Witzel KP. Development of PCR primer systems for amplification of
13 14	302	nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental
15 16 17	303	samples. <i>Appl Environ Microb</i> 1998; 64 :3769-3775.
18 19	304	
20 21	305	Brenzinger K, Dörsch P, Braker G. pH-driven shifts in overall and transcriptionally active
22 23	306	denitrifiers control gaseous product stoichiometry in growth experiments with extracted
24 25	307	bacteria from soil. Front Microbio 2015; DOI:10.3389/fmicb.2015.00961.
26 27 28	308	
29 30	309	Čuhel J, Šimek M, Laughlin RJ. Insights into the effect of soil pH on N_2O and N_2 emissions
31 32	310	and denitrifier community size and activity. Applied and Environmental Microbiology
33 34 35	311	2010; 76 :1870-1878.
36 37	312	
38 39	313	Dandie CE, Wertz S, Leclair CL. Abundance, diversity and functional gene expression of
40 41	314	denitrifier communities in adjacent riparian and agricultural zones. FEMS Microbiol Ecol
42 43	315	2011;77:69-82.
44 45	316	
46 47	317	Daniell TJ, Davidson J, Alexander CJ. Improved real-time PCR estimation of gene copy
48 49 50	318	number in soil extracts using an artificial reference. J Microbiol Meth 2012;91:38-44.
50 51 52	319	
53 54	320	Deng H, Zhang B, Yin R. Long-term effect of re-vegetation on the microbial community of a
55 56	321	severely eroded soil in sub-tropical China. Plant Soil 2010;328:447-458.
57 58		13
59 60		ScholarOne Support 1-434/964-4100

	FEMS Microbiology Letters
322	
323	Dörsch P, Braker G, Bakken LR. Community-specific pH response of denitrification:
324	experiments with cells extracted from organic soils. FEMS Microbiol Ecol 2012;79:5
325	
326	Enwall K, Throbäck IN, Stenberg M. Soil resources influence spatial patterns of deni
327	communities at scales compatible with land management. Appl Environ Microb
328	2010; 76 :2243-2250.
329	
330	Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities.
331	Acad Sci USA 2006; 103 :626-631.
332	
333	Graf DRH, Jones CM, Hallin S. Intergenomic comparisons highlight modularity of th
334	denitrification pathway and underpin the importance of community structure for N2O
335	emissions. PLOS ONE 2014; DOI:10.1371/journal.pone.0114118.
336	
337	Graf DRH, Zhao M, Jones CM. Soil type overrides plant effect on genetic and enzym
338	N ₂ O production potential in arable soils. Soil Biol Biochem 2016;100:125-128.
339	
340	Graham EB, Knelman JE, Schindlbacher A. Microbes as engines of ecosystem function
341	When does community structure enhance predictions of ecosystem processes? Front
342	Microbio 2016; DOI:10.3389/fmicb.2016.00214.
343	
344	Griffiths BS, Ball BC, Daniell TJ. Integrating soil quality changes to arable agricultur
345	systems following organic matter addition, or adoption of a ley-arable rotation. Appl S
346	<i>Ecol</i> 2010; 46 :43-53.
	1.4
	14 ScholarOne Support 1-434/964-4100

1 2 3	347	
4 5 6	348	Gulden RH, Tenuta M, Mitchell S. Preceding crop and weed management history affect
7 8	349	denitrification and denitrifier community structure throughout the development of durum
9 10 11	350	wheat. Agr Ecosyst Environ 2015; 212:49-63.
12 13	351	
14 15	352	Hallin S, Jones CM, Schloter M. Relationship between N-cycling communities and
16 17 18	353	ecosystem functioning in a 50-year-old fertilization experiment. <i>ISME J</i> 2009; 3 :597-605.
19 20	354	
21 22	355	Herold MB, Baggs EM, Daniell TJ. Fungal and bacterial denitrification are differently
23 24 25	356	affected by long-term pH amendment and cultivation of arable soil. Soil Biol Biochem
26 27	357	2012; 54 :25-35.
28 29 30	358	
31 32	359	IPCC (2014) Climate Change 2014: Mitigation of climate change. Working group III
33 34	360	contribution to the IPCC 5th assessment report. Geneva, Switzerland.
35 36 37	361	
38 39	362	Jones CM, Hallin S. Ecological and evolutionary factors underlying global and local
40 41	363	assembly of denitrifier communities. ISME J 2010;4:633-641.
42 43 44	364	
45 46	365	Jones JM, Spor A, Brennan FP. Recently identified microbial guild mediates soil N2O
47 48	366	capacity. Nat Clim Change 2014;4:801-805.
49 50 51	367	
52 53		
54 55		
56 57 58		
58 59		15
60		ScholarOne Support 1-434/964-4100

368	Kandeler E, Deiglmayr K, Tscherko D. Abundance of narG, nirS, nirK, and nosZ Genes of
369	Denitrifying Bacteria during Primary Successions of a Glacier Foreland. Applied and
370	Environmental Microbiology 2006;72:5957-5962.
371	
372	Liu B, Mørkved PT, Frostegård Å. Denitrification gene pools, transcription and kinetics
373	of NO, N ₂ O and N ₂ production as affected by soil pH. FEMS Microbiology Ecology
374	2010; 72 :407-417.
375	
376	Liu B, Frostegård, Bakken LR. Impaired reduction of N_2O to N_2 in acid soils is due to a
377	posttranscriptional interference with the expression of nosZ. mBio 2014;5:e01383-14.
378	
379	Muyzer G, De Waal EC, Uitterlinden AG. Profiling of complex microbial populations by
380	denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes
381	coding for 16S rRNA. Appl Environ Microb 1993;59:695-700.
382	
383	Pfaffl MW, Horgan GW & Dempfle L. Relative expression software tool (REST©) for
384	group-wise comparison and statistical analysis of relative expression results in real-time PCR.
385	Nucleic Acids Research 2002; 30 :e36.
386	
387	Petersen DG, Blazewicz SJ, Firestone M. Abundance of microbial genes associated with
388	nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in
389	Alaska. <i>Environ Microbiol</i> 2012; 14 :993-1008.
390	
590	
	16

ScholarOne Support 1-434/964-4100

2 3	391	Philippot L. Use of functional genes to quantify denitrifiers in the environment. Biochem Soc
4 5	392	T 2006; 34 :101-103.
6 7 8	393	
9 10	394	Philippot L, Čuhel J, Saby NP. Mapping field-scale spatial patterns of size and activity of the
11 12	395	denitrifier community. Environ Microbiol 2009;11:1518-1526.
13 14	396	
15 16	397	Rocca JD, Hall EK, Lennon JT. Relationships between protein-encoding gene abundance and
17 18 19	398	corresponding process are commonly assumed yet rarely observed. ISME J 2015;9:1693-
20 21	399	1699.
22 23	400	
24 25	401	Rösch C, Mergel A, Bothe H. Biodiversity of denitrifying and dinitrogen-fixing bacteria in an
26 27	402	acid forest soil. Appl Environ Microb 2002;68:3818-3829.
28 29 30	403	
31 32	404	Rousk J, Bååth E, Brookes PC. Soil bacterial and fungal communities across a pH gradient in
33 34	405	an arable soil. <i>ISME J</i> 2010; 4 :1340-1351.
35 36	406	
37 38 39	407	Samad MS, Biswas A, Bakken LR. Phylogenetic and functional potential links pH and N2O
40 41	408	emissions in pasture soils. Sci Rep 2016a;6:35990.
42 43	409	
44 45	410	Samad MS, Bakken LR, Nadeem S. High-resolution denitrification kinetics in pasture soils
46 47 48	411	link N ₂ O emissions to pH, and denitrification to C mineralization. PLOS ONE 2016b;11:
49 50	412	e0151713.
51 52	413	
53 54	414	Schutter ME, Dick RP. Comparison of Fatty Acid Methyl Ester (FAME) methods for
55 56	415	characterizing microbial communities. Soil Sci Soc Am J 2000;64:1659-1668.
57 58 59		17
60		ScholarOne Support 1-434/964-4100

416	i de la constante de la constan
417	Šimek M, Jíšova L, Hopkins DW. What is the so-called optimum pH for denitrification in
418	soil? Soil Biol Biochem 2002; 34 :1227-1234.
419	
420	Smith CR, Blair PL, Boyd C, et al. Microbial community responses to soil tillage and crop
421	rotation in a corn/soybean agroecosystem. Ecol Evol 2016;6:8075-8084.
422	
423	Yin C, Fan F, Song A. Denitrification potential under different fertilization regimes is closely
424	coupled with changes in the denitrifying community in a black soil. Appl Microbiol
425	Biotechnol 2015;99:5719-5729.
426	R
427	Figure 1: Relationship of bacterial and denitrifier gene copy number (estimated by relative
428	real time PCR to correct for extraction efficiency and inhibition) and community structure
429	(estimated by T-RFLP subjected to Principal Component Analysis) with soil pH and
430	cultivation. Only significant linear or second polynomial regression models are shown (p
431	<0.05). Figure a, c, e show gene abundance data for 16S rDNA, <i>nirK</i> and <i>nirS</i> , respectively;
432	and figure b, d, f show community structure data for 16S rDNA, <i>nirK</i> and <i>nirS</i> , respectively.
433	Please note that graphs differ in scale.
434	
435	
436	Table 1. Parameters for the fitted regression models. Parameters were selected from
437	measured pH (linear and quadratic), ley grass cycle (years since cultivation), calendar year
438	and any interactions. Principle component scores from principle component analysis using T-
439	RFs of either <i>16s rRNA</i> , <i>nirS</i> and <i>nirK</i> , were used as the measure of community composition.
	18
	ScholarOne Support 1-434/964-4100

FEMS Microbiology Letters

440 Model selection was performed forward-stepwise using the Akaike Information Criterion 441 with finite sample size correction (AICc). Note that for *nirS* gene abundance there are two 442 sets of parameters for the split line regression and that the constant intercepts shown in 443 brackets have been derived for comparison with 16S and *nirK*. Asterisk indicate whether the 444 parameter is significantly different from zero where '***' is p < 0.001, '**' is p < 0.01 and 445 '*' is p < 0.05. Entries with a '-' symbol indicate parameters for a model term which was 446 non-significant and not included in the regression

to people period

ScholarOne Support 1-434/964-4100

Data		All yea	rs		Year 2			Year 3		
Gene		Gradient			Gradient					
Abundance	Intercept	linear	s.e.		linear	s.e.	significance	Gradient linear	s.e.	significance
16S rRNA	7.1	0.06	0.033	n.s.	0.25	0.068	***	0.29	0.068	***
nirK	4.1	0.25	0.051	***	-	-	-	-	-	-
<i>nirS</i> ¹ pH>4.7	(4.2)	0.24	0.102	*	-	-	-	-	-	-
pH<4.7	(-14.2)	4.17	0.766	***		-	-	-	-	-

pH<4	.7 (-14.2)	4.17	0.766	* * *	10	r D	-		-	-	-	
Data				A	l years	0	Year 2			Year 3		
Communit Structure	•	Gradient linear	s.e.		Gradient quad.	s.e. significance	Gradient linear	s.e.	significance	Gradient linear	s.e.	significance
16S rRNA		23.30	4.840	***	-1.80	0.451 ***	R	-	-	-	-	-
nirK	-6.4	2.08	0.664	**	-0.16	0.061 *	-0.05	0.075	n.s.	0.20	0.077	*
nirS	-7.2	2.36	0.983	*	-0.19	0.091 *	-	-		-	-	-

b)

16S rDNA PCA 1 (18.5 %)

-2

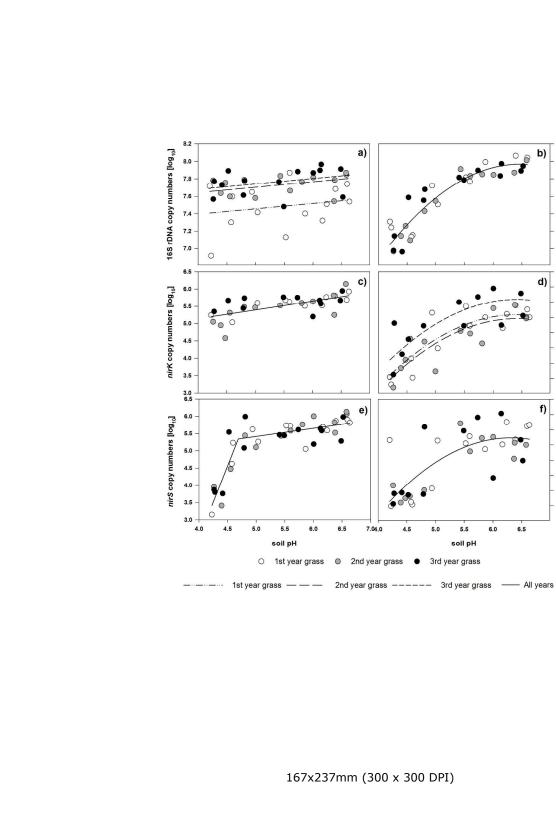
-4

-6

0.8

-0.6

0.8


0.6

-0.6

f)

rC

d) 0.6

